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Abstract

Since the development of the ensemble Kalman filter, it has seen a wide application

to many scientific fields ranging from signal processing to weather forecasting and

reservoir simulation. One field which has recently seen a keen interest towards filter-

ing techniques is that of inverse problems. Ensemble-based methods are a popular

choice of filtering techniques as they provide a computational advantage over tradi-

tional methods whilst retaining a good level of accuracy. This thesis is concerned

with developing analysis and numerics of ensemble Kalman inversion (EKI) in the

context of Bayesian inverse problems. In particular we are interested in quantifying

the uncertainty that can arise for problems where our unknown is defined through

geometric features. In the first part of this work we are interested in developing

hierarchical approaches for EKI. This motivation is taken from hierarchical com-

putational statistics for Gaussian processes where we are interested in a number of

further unknowns such as hyperparameters that define the underlying unknown for

the model problem. We present numerics of these hierarchical approaches whilst

understanding its long term effect through continuous-time limits. The second part

of this work is aimed at improving the computational burden of the forward solver

within inverse problems. This improved forward solver is based on the reduced

basis method which was designed for parameterized partial differential equations.

The final part of the thesis concludes with an application of EKI where we adopt a

Bayesian approach of the inverse eikonal equation. Our motivation is to extend the

current work to Hamilton-Jacobi equations, where there exists a rich mathematical

theory. A key understanding of how to tackle the uncertainty for this equation is

addressed.

xii



Chapter 1

Background

1.1 Introduction

In numerous scientific disciplines inverse problems are ubiquitous. Inverse problems

[138] are concerned with the recovery of an input to a model, or set of equations,

from partial noisy measurements of an output. Some examples of common inverse

problems include inferring the geological properties of an oil reservoir from produc-

tion data, calculating the earths density from its gravity fields and estimating the

sound speeds in the earth’s subsurface from seismic data. Mathematically speak-

ing inverse problems can be expressed as aiming to estimate u ∈ X from noisy

measurements of data y ∈ Y which are in the form

y = G(u) + η, (1.1.1)

where

• X ,Y - function spaces.

• u ∈ X - input.

• y ∈ Y - output.

• G : X → Y - forward operator.

• η - additive noise.

Usually we assume that (X , ‖·‖X ), (Y, ‖·‖Y) are two Banach spaces and our output,

or the data, y is representative of noisy solutions to our forward model where we

have some noise η within our system. A common assumption with (1.1.1) is that

the additive noise is Gaussian, though other choices for the noise observational
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noise are possible; however in this thesis we will focus on additive Gaussian noise

for simplicity. An issue that arises when aiming to solve the inverse problem (1.1.1)

is that it is ill-posed in the Hadamard sense i.e. there is no guarantee of existence,

stability and uniqueness of solutions. Due to this drawback during the 20th Century

mathematicians aimed at producing algorithms that approximated a solution to

(1.1.1). An idea that came about was that one way to approximate the solution to

inverse problems was by relating it it to the least squares functional

ΦLS(u) =
1

2

∣∣y − G(u)
∣∣2
Y , (1.1.2)

with subscript LS denoting least squares. From (1.1.2) our solution u∗ to the inverse

problem is then given by a minimisation procedure such that

u? = argmin
u∈X

ΦLS(u),

where our minimization occurs in the solution space X . However, despite this for-

mulation with the LS functional there still lies issues with approximating a solution.

We can approximate solutions, but under certain conditions uniqueness is not guar-

anteed as well as the stability of solutions. One way that was proposed to overcome

this issue was to modify the least square functional such that it incorporated prior

information of the unknown. By doing so this leads to a slight modification of

(1.1.2), where now our functional is defined as

ΦTP(u) =
1

2

∣∣y − G(u)
∣∣2
Y +R(u). (1.1.3)

Our new inclusion in our least-square functional is a regularisation term R(u). One

example of this is the form of R(u) = λ
2 |u|

2
Z ; this is referred to as Tikhonov-Phillips

regularization [55, 107]. From our regularisation term λ > 0 denotes our regulari-

sation constant and Z is an embedded subspace of X . The motivation for adding

regularisation terms is threefold: firstly to aid the inversion by reducing the amount

of influence the data has on the solution, i.e. to prevent overfitting of data. Sec-

ondly the add some further prior information about our unknown. Finally adding

regularization ensures that the inverse problem is continuous with respect to the

data. Choosing the form of regularization can be dependent on the actual problem

of interest for inversion and model [13, 54]. Now we can restate our inverse solution

which is the following minimization procedure

u? = argmin
u∈X

(1

2

∣∣y − G(u)
∣∣2
Y +

λ

2
|u|2Z

)
. (1.1.4)
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As there is a relationship between the TP functional and LS functional, optimi-

sation methods have been traditionally been used and applied for solving inverse

problems in the form of (1.1.4). Some common examples of iterative optimisation

algorithms that have been used include: the Gauss-Newton method [12, 131], the

Landweber method [65, 125] and the conjugate gradient method [85]. Like many

optimizations methods, solving inverse problems requires information about deriva-

tives. In the inverse problem setting this would include the Jacobian DG(u) and the

Hessian D2G(u), which are based on the forward operator. There has been extensive

research into deterministic inverse problems which have included various forms of

regularization. Although this aids with approximating stable solutions, still does

not resolve the lack of uniqueness. Resolving this issue largely depends on the in-

verse problem, the setting and the form of regularization which is added. One way

to alleviate this issue is to look at an alternative approach that was adopted to solve

inverse problems. This approach negates the idea of characterizing a functional and

aiming to minimize it for u. Instead the unknown u is set as a probabilistic distri-

bution, where all the quantities from (1.1.1) are treated as a random variable. This

approach is known as a statistical or Bayesian approach to inverse problems.

1.2 Bayesian Approach

The methodology that was discussed previously in subsection 1.1 is related to the

“deterministic approach” to inverse problems. Since then there has been much

development in this field which has sparked an alternative viewpoint of inverse

problems. Instead of our unknown u we are now interested in characterizing a

distribution of the random variable u|y which is the unknown conditioned on the

noisy data y. This is statistical view point of inverse problems which is commonly

referred to as the “Bayesian approach” [87, 137]. Taking our inverse problem (1.1.1)

the Bayesian approach allows us to treat each quantity as a random variable with

a Lebesgue density. In order to characterise our new unknown we apply Bayes’

Theorem which, in its general finite-dimensional form, is

P(u|y) =
P(u, y)

P(y)
(1.2.1)

P(u|y) =
P(y|u)× P(u)

P(y)
(1.2.2)

∝ P(y|u)× P(u). (1.2.3)
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In (1.2.3) the term P(u) denotes our prior distribution, encoding initial belief about

our unknown u, prior to seeing any data; on the other hand the data-likelihood term

P(y|u) captures the relationship between the forward model G(u) and the data y. By

using Bayes’ Theorem, as done in (1.2.2), we can combine both the prior and data-

likelihood which results in the conditional distribution of u given y, P(u|y), known as

the posterior. The form (1.2.3) is presented because the constant of proportionality

P(y) is often hard to compute, and is not needed for many computational methods

which explore the posterior. We note that in the case of our posterior form (1.2.3)

we can approximate the posterior up to some level of proportionality. In many

scenarios in Bayesian statistics the normalising constant 1
P(y) is not known, or is

to difficult to obtain. However, despite this simple form of Bayes’ Theorem, the

Bayesian approach has been further applied to inverse problems in a differential

equation setting, specifically partial differential equations (PDEs). Due to this one

has to reformulate Bayes’ Theorem for PDEs, in a function space setting. Instead

of a distribution we now wish to characterise our unknown as a posterior measure

µy. This change corresponds to going from a finite-dimensional to a ∞-dimensional

problem. An obvious question to ask is what advantages does the Bayesian approach

have over the deterministic case? Unlike its counterpart, under certain conditions,

well-posedness of the Bayesian inverse problem can be attained. This is one of

the key significant advances with the Bayesian approach, which is possible due to

its ∞-dimensional analysis. Secondly, arguably its main contribution is handling

uncertainty within the problem. This can be tackled more effectively due to various

prior forms, where a range of these are discussed in [137]. However much of the

initial and existing theory on this assumed that the reference measure was of a

Gaussian form. We now recall the definition of a Gaussian measure [20] and discuss

some important definitions and assumptions which are required in order to present

a well-posedness theorem of (1.1.1).

Definition 1.2.1. A Borel measure µ on R is called a non-degenerate Gaussian

measure if there exists a m ∈ R and σ2 > 0 such that

dµ

dλ
(x) =

1√
2πσ2

exp
(
− 1

2σ2
(x−m)2

)
.

A Gaussian measure can be characterized through two quantities its mean

m ∈ R and its variance (covariance) σ2 > 0. We now extend this formal definition

to Gaussian measures on Banach spaces.

Definition 1.2.2. Let X be a separable Banach space and µ be a Borel measure on

X . Then µ is said to be a Gaussian measure if `#µ is a Gaussian measure on R for
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all ` ∈ X ∗.

From the above definition `#µ is a push forward measure of the measure µ.

We say that µ is centered if `#µ has mean 0 for all ` ∈ X ∗ . Our final definition on

Gaussian measures is with regards to defining the covariance of a Gaussian measure

on both a Banach and Hilbert space.

Definition 1.2.3. Let µ be a centered Gaussian measure on a separable Banach

space X . Then the covariance operator C : X × X → R is defined as

C(`, `′) =

∫
X
`(u)`(u′)µ(du), (1.2.4)

is called the covariance operator of µ. If X is a Hilbert space, then after identification

with its dual space, our covariance operator is now

C =

∫
X

(u⊗ u)µ(du).

In the case of a centered Gaussian measure µ ∼ N (0, C), the measure is

defined entirely through its covariance operator. In the context of Bayesian inversion

in the ∞-dimensional case an important question is how to relate a measure on the

prior µ0 to the posterior measure µy. With Gaussian measures this relationship

between both measures could be represented through a Radon-Nikodym derivative

dµy

dµ0
(u) =

1

Z
exp(−Φ(u; y)). (1.2.5)

The Radon-Nikodym derivative (1.2.5) describes the change of measure from the

prior to the posterior, and as seen through Bayes’ Theorem (1.2.3), this is achieved

through the negative log-likelihood, which in this case is Φ(u; y) up to a constant

Z. To express this change of the measures, we require that µy to be absolutely

continuous with respect to the measure µ0. In order to provide a well-posedness

theorem for the posterior measure µy we need a suitable metric to provide a stability

result. Common metrics which are used are the total variation, the Hellinger and

Kullback-Liebler metric [91].

Definition 1.2.4. (Total variation distance) Given two measures µ and µ′, and

their corresponding densities ρ(u) and ρ(u′), the total variation distance between

these measures is given as

dTV (µ, µ′) =
1

2

∫
Rn

∣∣ρ(u)− ρ′(u)
∣∣du.
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Definition 1.2.5. (Hellinger distance) Given two measures µ and µ′, and their cor-

responding densities ρ(u) and ρ(u′), the Hellinger distance between these measures

is given as

dHell(µ, µ
′) =

(1

2

∫
Rn

(√
ρ(u)−

√
ρ′(u)

)2
du
)1/2

.

Definition 1.2.6. (Kullback-Liebler divergence) Given two measures µ and µ′, and

their corresponding densities ρ(u) and ρ(u′), the Kullback-Liebler divergence between

these measures is given as

dKL(µ′||µ) =

∫
Rn

log

(
ρ′(u)

ρ(u)

)
ρ′(u)du.

An important way to compare some of these metrics is through the following

relationship between the total variation and Hellinger metrics

0 ≤ 1√
2
dTV (µ, µ) ≤ dHell(µ, µ′) ≤ dTV (µ, µ′)1/2 ≤ 1.

A natural question one can ask regarding the above metrics is between the total

variation and Hellinger metric, which one is preferred? The following lemma is

crucial in understanding why the Hellinger distance is more favourable over total

variation.

Lemma 1.2.1. Let f : Rl → Rp be such that

(
Eµ|f(u)|2 + Eµ

′ |f(u)|2
)
<∞.

Then ∣∣Eµf(u)− Eµ
′
f(u)

∣∣ ≤ 2
(
Eµ|f(u)|2 + Eµ

′ |f(u)|2
) 1

2dHell(µ, µ
′),

where as a consequence

∣∣Eµf(u)− Eµ
′
f(u)

∣∣ ≤ 2
(
Eµ|f(u)|2 + Eµ

′ |f(u)|2
) 1

2dTV (µ, µ′)1/2.

Lemma 1.2.1 is significant as it shows that two measures µ and µ′ are O(ε)-

close within the Hellinger metric. That is if the function f(u) is square integrable

with respect to µ and µ′, then its expectations are O(ε)- close within the Hellinger

metric. However this is not the case with the total variation metric as the expecta-

tions of f(u) with respect to µ and µ′ are O(ε−1/2). In order to attain O(ε)-closeness

we need stronger assumptions, which is achieved through the following lemma.

Lemma 1.2.2. Assume that |f | is finite almost surely with respect to both µ and
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µ′, where we denote the almost sure upper bound on |f | by fmax, then

∣∣Eµf(u)− Eµ
′
f(u)| ≤ 2fmaxdTV (µ, µ′).

The previous two lemmas are proved in [91], and provide a basis on why

we should choose the Hellinger metric over the total variation. This is due to the

induced perturbations of the measure on expectations of square-integrable functions.

It is for this reason why we consider the Hellinger metric as a more “appropriate”

metric to use than total variation for the existence of solution to a Bayesian inverse

problem. We omit using the Kullback-Liebler (KL) divergence as using the definition

of a metric, it does not abide by the symmetry property of the metric. As we

have discussed both necessary concepts we can present the following theorem which

provides uniqueness and existence of solutions to (1.1.1), which is based on the

Hellinger metric.

Theorem 1.2.1. (Well-posedness) Assume that µ0 is defined as N (0, C), y by

(1.1.1) and Φ by 1
2 |y − G(u)|2Γ. If µy is the regular conditional probability measure

on u|y, then µy � µ0 with Radon-Nikodym derivative

dµy

dµ0
(u) =

1

Z
exp(−Φ(u; y)),

where

Z :=

∫
X

exp(−Φ(u; y))µ0(du).

Furthermore µy is locally Lipschitz with respect to y in the Hellinger distance: for

all y, y
′

with max{|y|Γ, |y′|Γ} ≤ r, there exists a C = c(r) > 0 such that

dHell(µ
y, µy

′
) ≤ C|y − y′|Γ.

Remark 1.2.1. We note that with the above theorem, we have assumed that our

prior is of a Gaussian form. This theorem can be extended to include numerous

other priors such as uniform and Besov, whilst the main statements of the theorem

still hold. Further assumptions are required for well-posedness which can be found

in [137].

With the Bayesian setting of inverse problems extended to the∞-dimensional

case, the next natural question is to study numerical methods to explore the poste-

rior. This can be achieved by taking, or extending, existing methods from compu-

tational statistics. We review a number of class of methods designed and optimized

for Bayesian inversion, where in particular we present sampling methods and meth-
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ods which arise in a deterministic optimization setting. We will discuss both the

numerical method used in its original context and how the methodology can be

used for solving Bayesian inverse problems. These methods will primarily be split

into data assimilation methods and Markov chain Monte Carlo methods, whilst we

briefly review other commonly used methods.

1.3 Markov Chain Monte Carlo Methods

In many situations arising in computational statistics one is interested in simulating

from a probabilistic distribution π, or in other words calculating an expectation of

a π- integrable function f : X → R

Eπ(f) :=

∫
X
f(x)π(dx). (1.3.1)

However simulating from a distribution π is not always possible due to a number of

reasons that make it difficult such as:

• High dimensionality of the problem.

• Difficult to attain the normalising constant.

Traditional methods such as analytical integration and quadrature schemes do not

aid significantly when aiming to solve (1.3.1). One way to overcome this issue is

to construct a Markov chain {Xi}ni=1 on a measurable space (X ,B(X )), with Borel

σ-algebra that converges to π. This in a nutshell is the aim of Markov chain Monte

Carlo (MCMC) methods [121], where we are interested in constructing an invariant

ergodic Markov chain with respect to π. MCMC methods are used to calculate

(1.3.1) based the notion of ergodic averages

Sn(f) :=
1

n

n∑
i=1

f(Xi), for n ∈ R+.

We know from the strong law of large numbers that the ergodic average, taking a

large enough n, will converge to π i.e.

Sn(f) −→ Eπ(f), when n→∞.

From the central limit theorem (CLT) we know that the convergence is of order

O(n−
1
2 ), which is also the order of MCMC methods. By working in an MCMC

framework, we can consider our distribution of interest π as a posterior of the form
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(1.3.1), and as a result can obviate the need to calculate the normalizing constant.

One of the most common type of MCMC methods that are used in practice are

Metropolis-Hastings (MH) algorithms. These algorithms are based on an accept-

reject scheme for proposed moves through a transition kernel q(x, y), which encodes

the condition that the probability of going from state x to y is the same as from y

to x. It implies that π is an invariant distribution for Markov chain with kernel q.

The accept-reject is designed in such a way to allow for detailed balance

π(y)q(y, x) = π(x)q(x, y). (1.3.2)

This detailed balance (1.3.2) is a consequence of reversibility of the Markov chain,

and it reflects the property that the probability of going from state x to y is the

same as from y to x. The MH algorithm is described in more detail in Algorithm 1.

We recall the properties of transition kernels through the following definition.

Definition 1.3.1. A function q : X × B(X ) → [0, 1] is defined as a Markov kernel

if the following conditions are satisfied

• For each x ∈ X , q(x, ·) is a probability measure on (X ,B(X )).

• x 7→ q(x,A) is B(X )-measurable for all A ∈ B(X ).

In the context of MH from (1.3.2) we can think of π(y) as the target density

we are interested in simulating from and q(x, y) as the transition kernel, or proposal,

from the current state x to y. The accept-reject scheme for MH is based on an

acceptance probability which is given in the form

α(x, y) := min
{

1,
π(y)q(y, x)

π(x)q(x, y)

}
, for x 6= y,

For the MH algorithm the overall kernel for the scheme can be written as,

p(x, y) = α(x, y)q(x, y) + (1− α(x, y))p(x, y). (1.3.3)

which includes the usual transition kernel q(x, y). The intuition behind the (1.3.3)

is that we have a number of choices based on proposing and accepting y. If we

move from x to y and the proposed move is accepted then we have the result of

α(x, y)q(x, y). However we also have the option of moving from state x to x. This

can occur in two ways either by having the accepted proposal α(x, x)q(x, x) or that

our proposed move from x to y is rejected.
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Algorithm 1 Metropolis Hastings Algorithm

1. If current position is x propose move to y according to q(x, y).
2. Compute acceptance probability

α(x, y) = min
{
π(y)q(y,x)
π(x)q(x,y), 1

}
, for x 6= y.

3. With acceptance probability α(x, y) move from from x to y otherwise stay
still.
4. Go back to 1.

For MH we can choose a number of proposals which work best under different

scenarios. Three common proposal types are given by:

• Random walk Metropolis Hastings (RWMH).

• Metropolis-adjusted Langevin algorithm (MALA).

• Preconditioned Crank-Nicholson (pCN).

For RWMH this employs a Gaussian proposal that is centered at the current state.

Given we are at xn the proposal for the next step is defined as

yn+1 = xn + σξn+1, (1.3.4)

such that ξn+1 ∼ N (0, σ2). Our initial state x0 ∼ N (0, 1) is also normally dis-

tributed, which implies our transition kernel is now q(x, y) ∼ N (x, σ2). Due to

symmetry of the Normal distribution we can set the proposal as q(x, y) = q(y, x)

which leads to an acceptance probability of

α(x, y) := min
{

1,
π(y)

π(x)

}
. (1.3.5)

An important note to make about RWMH is that the noise ξn+1 is independent of

xn, which means that the noise has no information about the current position. This

is one limitation regarding this proposal. An obvious way to alleviate this problem

is to consider more informative proposals. This leads to an alternative method that

combines more information, while remaining in the MH accept-reject mechanism.

One example of this is the MALA proposal [63, 122]. Its derivation comes from the

SDE

dXt = −∇V (Xt)dt+ (2β−1)1/2dWt, (1.3.6)
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which is a common stochastic differential equation (SDE) that arises in various

scientific disciplines, known as the Langevin equation. From (1.3.6) {Wt}t≥0 is a

d-dimensional standard Brownian motion, V (x) is a potential with Xt ∈ Rd and

β > 0 is a constant. In order to encapsulate Langevin dynamics in our MCMC we

need to efficiently discretize (1.3.6). Arguably the simplest way to do so is by taking

a forward Euler discretization of the SDE (1.3.6)

Xn+1 ∼ N (Xn − h∇V (Xn), 2hId),

with our constant chosen as β = 1. Therefore the proposal of MALA are given as

Yn+1 := Xn − h∇V (Xn) + (2h)1/2ξn+1, ξn+1 ∼ N (0, 1). (1.3.7)

Based on the MALA proposal given in (1.3.7) our transitional kernel is now q(x, y) ∼
N (x − h∇V (x), 2hId). Our final proposal we discuss is a simpler variant of the

RMWH which includes a slightly different proposal kernel to that of (1.3.4). The

proposal itself is a redefined version of RWMH given as

yn+1 = m+ (1− β2
∗)

1/2(xn −m) + β∗ξn+1, (1.3.8)

which we call the pCN method. Here again we assume that ξn+1 ∼ N (0, C) is

Gaussian noise, but with the addition of β∗ ∈ (0, 1] which is some tuneable parameter

and m is the mean of our initial state. Equation (1.3.8) was first derived in [18]

and tested numerically in [39]. The pCN proposal is specific to when our target

density is a Gaussian. The intuition behind the parameter β∗ is that in this context

it is defined as the proposal variance and can be tuned to ensure a more reasonable

acceptance probability. Combined with the initial condition x0 it can be viewed as an

improvement over the independence sampler, that is defined through the acceptance

probability (1.3.5).

1.3.1 MCMC Within Inverse Problems

Statistical inverse problems in the finite-dimensional case are reviewed in the text

by Kaipio and Somersalo [87], where they discuss various MCMC methods used

for different problems. The text itself is oriented towards applications, including

interpolation and PDE inversion. Beyond this and work of others [69], developing

MCMC methods on function spaces was crucial in understanding how we can use

MCMC inversion for ∞-dimensional problems. We recall that in the MCMC for

Bayesian inversion we are interested in sampling from a measure µy as in Theorem
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1.2.1.

Notably the work of Roberts and Stuart [17, 104, 118] developed much of

the existing literature of various MCMC algorithms in high dimensions, and this

itself posed a motivation for merging this work to the Bayesian approach. Much of

the existing work has been based on the RWMH, whereas before, the key aspects

of this in Bayesian inversion is through the proposal and the likelihood. Recalling

that pCN proposal is defined, with slightly different notation

û(n) = (1− β2
∗)

1/2u(n) + β∗ζ
(n), ζ(n) ∼ N (0, C). (1.3.9)

We omit defining our proposal as y as this denotes the data. As we assume our

prior measure µ0 is a centered Gaussian measure, we set m = 0 .We can interpret

the proposal (1.3.9) as how we define our prior which is given through ζ(n) with

covariance C. Now for the data-likelihood, this is incorporated in the MH framework

through the acceptance probability which is given by

α(u(n), û(n)) := min
{

1,
π(û)

π(u)

}
= min

{
1, exp

(
Φ(u(n); y)− Φ(û(n); y)

)}
. (1.3.10)

Combining both the proposal and the acceptance probability a simple RMWH al-

gorithm for Bayesian inversion is presented below in Algorithm 2.

Algorithm 2 pCN Algorithm

1. Set initial state u(n) ∈ X with proposal (1.3.9) with β∗ ∈ (0, 1].
2. Compute acceptance probability

α(u(n), û(n)) = min
{

1, exp
(
Φ(u(n); y)− Φ(û(n); y)

)}
.

3. With acceptance probability α(u(n), û(n)) move from u to û otherwise stay
still.
4. Go back to 1.

Aside from RWMH, other MCMC algorithms have been implemented which are that

of a geometric type which include Hamiltonian Monte Carlo [15], as well as MALA.

We note that with these latter methods that they are not-derivative free. Much

of the ongoing work on MCMC for inverse problems is not derivative-free which in

numerous cases can produce better results, but at the same time adds constraints

with the implementation and the cost [22, 117]. Concentrating on derivative-free

methods, there have been a number of extensions such as the use of geometric priors
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[80] and level set techniques [81].

In this context we can state that this particular inverse solver is a sampling method

as it gains inference from a probability distribution in the form of a posterior through

(1.3.3). As we will discuss later, there are other types of methods that can be used

in a Bayesian setting such as methods deriving from optimization rather than sam-

pling.

1.4 Data Assimilation Techniques

Data assimilation [57, 90, 91] is the study of state estimation of a dynamical system

with the incorporation of noisy measurements. The ideas behind data assimilation

can be related back to control theory and optimal control [88]. Since then there

has been a growing number of applications where data assimilation techniques can

be used such as weather forecasting, geosciences and meteorology [58, 59]. The two

governing equations of data assimilation, in discrete time, are given as

uj+1 = Ψ(uj) + ξj , {ξj}j∈Z+ ∼ N (0,Σ), (1.4.1)

yj+1 = H(uj+1) + ηj+1, {ηj+1}j∈Z+ ∼ N (0,Γ). (1.4.2)

Here {uj}j∈Z+ is our signal which is updated through a forward operator Ψ : Rm →
Rm, which when combined with noise, provides the update uj+1. Our data is de-

noted as yj+1 which is produced by sending our updated signal through the operator

H : Rm → Rn which is known as observational operator. Our initial conditions for

the system are given as u0 ∼ N (m0, C0). We also notice that there is the addi-

tion of additive Gaussian noise. In data assimilation the common goal is to use

the data (1.4.2) to inform the signal dynamics governed by (1.4.1). We can think

of this probabilistically where we are interested in characterising the distribution

of P(uj |yj). Algorithms that are used to quantify this distribution are classified as

either; (i) smoothing, (ii) filtering.

Smoothing is concerned with determining the smoothing distribution P(u|y) ∝
P(y|u)P(u) where the signal is conditioned on all of the data specified in the ap-

propriate time interval. Filtering is concerned with the determining the filtering

distribution P(uj |Yj) where Yj = {yl}jl=1 be the accumulated data up to time j.

Filtering is commonly split into two steps:

• Prediction step: P(uj |Yj) 7→ P(uj+1|Yj) - maps the signal into the data

space.

• Analysis/Update step: P(uj+1|Yj) 7→ P(uj+1|Yj+1) - updates the signal by
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comparing it with the data.

By applying Bayes Theorem’ in the analysis step we can deduce that

P(uj+1|Yj+1) = P(uj+1|Yj , yj+1)

=
P(yj+1|uj+1)P(uj+1|Yj)

P(yj+1|Yj)
(1.4.3)

Unlike smoothing, filtering has the advantage of determining information from the

signal at the current state. Due to this filtering algorithms are a more popular

choice among practitioners. Some of the most common filtering algorithms that

are used are: (i) the Kalman filter, (ii) the extended Kalman filter (ExKF), (iii)

3DVAR and (iv) the ensemble Kalman filter (EnKF). A common attribute among

filtering algorithms is to update the signal based on observations through statistical

quantities. As the original signals that were considered were Gaussians i.e. uj ∼
N (mj , Cj), we aim to update our filtering distribution using notions of the mean

and the covariance. Below we present the 3DVAR algorithm and the extended and

ensemble Kalman filter.

1.4.1 3DVAR

The 3DVAR algorithm is derived from the linear Kalman filter [88], which has the

assumption that the underlying signal is of a Gaussian form. It differs in that the

covariance matrix is fixed such that Ĉj+1 ≡ Ĉ. This leads to the equations

m̂j+1 = Ψ(mj),

mj+1 = (I −KH)m̂j+1 +Kyj+1,

K = ĈHTS−1,

S = HĈHT + Γ.

3DVAR works in a variational manner and is sequentially updated at each j

through the minimization procedure

m̂j+1 = argmin
u

In(u),

with cost function In(u) given as

In(u) :=
1

2
|y(n)
j+1 −Hu|

2
Γ +

1

2
|u− m̂(n)

j+1|
2
Ĉ
.
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This optimization procedure despite having a different mathematical formulation,

leads to the update formulae for the ExKF. As suggestive from its name in practical

application the minimisation procedure is taken over all spatial dimensions. The

extension from this is 4DVAR which takes the time dimension into consideration.

However by doing so our problem is now given as a smoothing algorithm. We now

look to go beyond this with two methods that sequentially update our quantity of

interest through both an updated mean and covariance; the extended Kalman filter

and ensemble Kalman filter.

1.4.2 Extended Kalman Filter

The ExKF was developed to work with non-linear Gaussian proposals of the linear

Kalman filter which propagates both the mean and the covariances. As with all

filtering methods the ExKF has a prediction and analysis step where the prediction

step is to define both m̂j+1 and Ĉj+1.

m̂j+1 = Ψ(mj),

Ĉj+1 = DΨ(mj)CjDΨ(mj)
T + Σ.

Sj+1 = HĈj+1H
T + Γ,

Kj+1 = Ĉj+1H
TS−1

j+1,

mj+1 = (I −Kj+1H)m̂j+1 +Kj+1yj+1,

Cj+1 = (I −Kj+1H)Ĉj+1.

In filtering Kj+1 is commonly referred to as the Kalman gain matrix which describes

how much information we have gained through the covariance structure. From the

predicted mean and covariance we have an update of our distribution in terms of

mj+1 and Cj+1.

1.4.3 Ensemble Kalman Filter

Out of the filtering algorithms that were mentioned in Section 1.4, the EnKF can be

thought of as a Monte Carlo approximation of the Kalman filter which has certain

advantages over its counterparts. Arguably its main advantage it acquires is the

reduction in cost of the algorithm for high dimensional problems. As we can see

with the ExKF we constantly have to update the covariances in the analysis step

through previous knowledge of information. This procedure is expensive.

With the EnKF this takes away this issue by using an ensemble of particles
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to represent the predicted mean and covariances, which in turn are used for the

updated moments. As before, we can split the EnKF into a prediction and analysis

step:

û
(n)
j+1 = Ψ(u

(n)
j ) + ξ

(n)
j ,

m̂j+1 =
1

N

N∑
n=1

u
(n)
j+1,

Ĉj+1 =
1

N − 1

N∑
n=1

(u
(n)
j+1 − m̂j+1)(u

(n)
j+1 − m̂j+1)T .

Kj+1 = Ĉj+1H
T (HĈj+1H

T + Γ),

u
(n)
j+1 = (I −Kj+1H)û

(n)
j+1 +Kj+1y

(n)
j+1,

y
(n)
j+1 = yj+1 + η

(n)
j+1.

As before Kj+1 represents the Kalman gain matrix and ξ
(n)
j and η

(n)
j+1 are i.i.d.

Gaussian noise. In the EnKF context our prediction step defines a sample mean and

covariance from our signal. From this in the analysis step we define our Kalman gain

through our sample covariance, which updates our signal, which is given by u
(n)
j+1.

This is aided by aiming to minimize the discrepancy of the data y
(n)
j+1 and the quantity

H(u). To better understand this discrepancy, there is an alternative approach of

looking at the EnKF is through a variational approach, where we consider the follow

cost function

In(u) :=
1

2
|y(n)
j+1 −H(u)|2Γ +

1

2
|u− û(n)

j+1|
2
Ĉj+1

, (1.4.4)

for which we aim to minimise, which is defined as the updated mean

m̂j+1 = argmin
u

In(u). (1.4.5)

This minimization procedure relies on the updated covariance Ĉj+1 which is depen-

dent entirely on v̂(n). As described in the prediction step and update step of filtering,

a mapping is presented between distributions. As we related the distributions in

the filtering setting, for each step, we can do so similarly for the EnKF, i.e.

{u(n)
j }

N
n=1 7→ {u

(n)
j+1}

N
n=1, {u(n)

j+1}
N
n=1 7→ {û

(n)
j+1}

N
n=1.
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1.4.4 DA Techniques within Inverse Problems

Data assimilation and Bayesian inverse problems have an important connection,

arguably due to the fact that both fields have a common aim of constructing a

distribution of a quantity of interest conditioned on some data. In particular one

data assimilation method that has seen a significant translation to inverse problems

is the EnKF. We refer this type of inversion as ensemble Kalman inversion (EKI).

EKI was first considered by Reynolds and coauthors [93, 110] which was motivated

by applications in subsurface flow. Since then a new method was proposed of how

to effectively apply EnKF techniques to solve PDE-constrained Bayesian inverse

problems. This was done through the work of Iglesias et al. [78, 79], known as

the iterative EnKF method. This method proposed is very similar to that of the

traditional EnKF, where in this context we are interested in updating an ensemble

of particles {u(j)
n }Jj=1 where n is the iteration count and J is the ensemble member.

This is achieved through defining the mean and the covariances

Ḡn =
1

J

J∑
j=1

G(u(j)
n ), (1.4.6)

ūn =
1

J

J∑
j=1

(u(j)
n ), (1.4.7)

Cuwn =
1

J − 1

J∑
j=1

((u(j)
n )− ū)× (G(u(j)

n )− Ḡ), (1.4.8)

Cwwn =
1

J − 1

J∑
j=1

(G(u(j)
n )− Ḡ)× (G(u(j)

n )− Ḡ), (1.4.9)

where as discussed before G is the forward operator of the PDE. Then finally the

update of the ensemble is achieved through the following update formula

u
(j)
n+1 = u(j)

n + Cuwn (Cwwn + Γ)−1(y(j)
n − G(u(j)

n )). (1.4.10)

From the update formula (1.4.10) (y(j) −G(u
(j)
n )) can be viewed as the discrepancy

between the data y
(j)
n and the solution evaluated at the forward operator. Relating

this further to the EnKF discussed in subsection 1.4.3, our Kalman gain matrix in

this context is simply Cuwn (Cwwn + Γ)−1. The iterative EnKF has two important

characteristics: firstly that the method is completely derivative free: it requires

no derivatives of the forward operator and its adjoint to implement. This poses

computational advantages and as a result can be treated as a black-box solver. The
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other is that the method can be viewed as a semi -Bayesian method in that it is based

on an optimization framework, but can incorporate numerous Bayesian techniques,

motivated from the likes of MCMC.

To derive this method we can do so in a number of ways, one is to follow a

similar approach as the Kalman filter, was is shown in [88]. The other approach is

to consider the functional of interest we aim to minimize as

I(u) = ‖y − Gu‖2Γ + ‖u− ū‖2C , (1.4.11)

where uTP is a solution of the functional (1.4.11). Equation (1.4.11) can be charac-

terized, as before, as the analysis step. An important result was shown in [92] that

if we have a linear operator G(u) = Gu, then for all cases of C,G,Γ we have

uTP = ū+ CG∗(GCG∗ + Γ)−1(y − Gū),

where G∗ is the adjoint operator. By using the estimates (1.4.6) - (1.4.9) and update

formula (1.4.10), and taking the limit as J → ∞, it was shown that u → uTP . We

omit the derivation here but for the interested reader we refer them to [79]. One

issue with this method, similarly with deterministic inverse solvers, is stability, where

regularization is usually added. In the work of Iglesias [77] a regularized version was

considered which was motivated by the work of Hanke [71] which looked at the effect

of Levenburg-Marquardt regularization for nonlinear elliptic PDEs. This added an

additional step to the iterative EnKF method in the form of a discrepancy principle

(or stopping rule)

‖y − Ḡ(u)‖2Γ ≤ ζη, (1.4.12)

where ζ > 1/ρ ∈ (0, 1) is a regularization parameter. Incorporating this regulariza-

tion modifies our update equation (1.4.10) to

u
(j)
n+1 = u(j)

n + Cuwn (Cwwn + αnΓ)−1(y(j)
n − G(u(j)

n )),

such that αn ≡ αNn satisfies

ρ‖Γ−1/2(y(j) − Ḡn)‖Y ≤ αNn ‖Γ1/2(Cwwn + αNn Γ)−1(y(j) − Ḡn)‖Y ,

and where αn is chosen based on αi+1
n = 2iα0

n. By adopting this form of regular-

ization numerical results were substantially improved as the discrepancy principle

(1.4.12) allows for a termination, before the experiment has finished. The robustness

of this approach was shown for various PDEs in [81] where a numerical investigation
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was considered for tuning the additional parameters mentioned above.

The use of Levenberg-Marquardt regularization has been an effect tool in

inverse problems, which originally arises from its use in nonlinear optimization. For

a review on both the original Levenberg-Marquardt method, and its adaption as a

form of regularization in inverse problems, we refer the reader to Appendix A.

We note as well that the discrepancy principle described as in (1.4.12) is

just one possible choice one can use. This discrepancy principle arises from the

Levenberg-Marquardt regularization, however once can choose other principles de-

pending on the application or model problem. A nice review on discrepancy princi-

ples can be found in the book by Hansen [72].

1.5 Other Computational Techniques

Our last two Bayesian inverse solvers that we aim to discuss differ in that one is of

a Monte-Carlo form and the other is a variational method. The first one we will

discuss is an extremely popular method used in computational statistics which are

sequential Monte Carlo (SMC) methods.

1.5.1 Sequential Monte Carlo Methods

Gaining inference with respect to expectations from (1.3.1) can be difficult even

with complex samplers. An alternative to using MCMC methods are SMC methods

[42, 43]. This is a convenient approach when π can be decomposed in a sequence of

distributions, where importance sampling at each step can be implemented. These

methods are based on hidden Markov models (HMM).

A HMM is composed of two processes which take values in measurable spaces

(X ,B(X )) and (Y,B(Y)). We assume we have a random variable {Xn}n≥0 which

take the form of a time-homogenous Markov chain with transition kernel mθ. Our

transition kernel depends on a set of parameters θ ∈ Θ. Our observed random

variable {Yn}n≥1 are conditionally independent on and distributed according to

Yn|Xn ∼ gθ(·|Xn),

where we assume we have some initial X0 = x0 which is known. With SMC we are

interested in gaining inference from πθ,y1:T

πθ,y1:T (f) =

∫
XT f(x1:T )

∏T
n=1(xn−1, dxn)

∏T
n=1 gθ(yn|xn)

l(θ; y1:T )
,
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for some function f : X T → R where l(θ; y1:T ) denotes the likelihood for θ such that

l(θ; y1:T ) :=

∫
XT

T∏
n=1

mθ(xn−1dxn)
T∏
n=1

gθ(yn|xn).

Likewise with data assimilation schemes, we can characterize SMC approaches as

either smoothing or filtering methods. The simplicity of SMC methods depends

hugely on the choice of the kernels. In the case of a Gaussian mθ and gθ we can

evaluate the likelihood l(θ; y1:T ) in analytical manner recursively. However the con-

verse of this with non-Gaussian kernels makes it more difficult where a number of

algorithms have been developed. These include the bootstrap filter, the auxiliary

particle filter, sequential importance resampling and more.

1.5.2 Maximum a Posteriori Estimation

An efficient and rather simple approach which is also considered in computational

statistics are Maximum a posteriori (MAP) methods. The key idea behind these

methods is based on quantifying the unknown target, which in this case is a posterior

distribution, through its mode. The formal equation of a MAP estimator is

uMAP := argmax
u

P(u|y).

MAP methods pose an advantage over maximum likelihood estimation (MLE)

uMLE := argmax
u

P(y|u),

as it incorporates the prior distribution. However both MAP and MLE coincide

when the prior is given as a constant function. Despite its simplistic approach MAP

estimation can be viewed as a method which can perform significantly worse due a

number of reasons. One of them is when the posterior is a multi-modal distribution

it is not always a guarantee that the maximum value is a good estimate of the

posterior. A second reason is that it is a point estimate, which is less informative

than using a distribution to gain inference. For these reasons MCMC is a more

favourable choice.

1.5.3 SMC & MAP Within Inverse Problems

Due to the high computational burden which arises from MCMC for inverse prob-

lems, alternate approaches have been considered and developed, notably both MAP
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and SMC methods. In the case of a linear inverse problem defined as

y = Au+ η, η ∼ N (0, Cη),

where A is linear operator and u ∼ N (0, Cu) we can express our MAP estimate as

P(u|y) ∝ P(y|u)P(u)

= exp(−1

2

∣∣C−1/2
u u

∣∣2 − ∣∣C−1/2
η (y −Au)

∣∣2),

therefore leading to

uMAP = argmax
u

(
exp(−1

2

∣∣C−1/2
u u

∣∣2 − ∣∣C−1/2
η (y −Au)

∣∣2)
)
,

⇐⇒ argmin
u

(1

2

∣∣C−1/2
u u

∣∣2 − ∣∣C−1/2
η (y −Au)

∣∣2).
The Gaussian MAP estimate in the finite-dimensional case has been considered quite

extensively which is summarised well in [46]. Extending this to the ∞-dimensions

we now think of a seeking a center of a ball with maximal probability and study the

the limit of the center z as the radius δ tends to zero. This is aided through the

Onsager-Machlup functional I which satisfies

lim
δ→0

µ(Bδ(z2))

µ(Bδ(z1))
= exp(I(z1)− I(z2)),

such that Bδ(·) ⊂ X is an open ball with radius δ. Since there has been development

of MAP methods such as considering certain geometric priors [50] and extensions

and more rigorous analysis [7, 24].

In terms of SMC methods used for Bayesian inversion, there has been a

number of papers developed which have analyzed this [16, 89] . However there

still lacks an investigation on how these methods can be best optimized. This will

of course depend on what particular SMC method is used. As the EnKF can be

further seen as a HMM, the relationship between both methods could pose a nice

combination for future work to be developed.

1.6 Outline of Thesis

This thesis is to consider a number of avenues of investigation concerning EKI. Fur-

thermore, much of our focus is on geometric inversion problems, in which (part of)

the unknown is a geometrical feature such as an interface. Thus far much of the
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understanding of PDE-constrained Bayesian inversion have been based on MCMC.

Part of the reason behind this is that there are many problems in uncertainty quan-

tification in which MCMC has been traditionally used, due to their high-level per-

formance and for its sampling capabilities of a probability distribution. EKI is an

optimization based alternative to MCMC which, like MCMC, operates via an en-

semble, but has distinct computational advantages: it typically requires far fewer

forward model evaluations.

Rather than focusing on understanding one aspect of EKI, the thesis is split

into numerous avenues which answer different key and important questions in the

field of inverse problems, but with the common theme that we aim to do so in a

setting that aligns with subsections 1.4.3 and 1.4.4. In particular the motivation be-

hind this thesis is to consider a number of avenues in EKI which are based on solving

geometric inverse problems, i.e. where our underlying unknown contains some form

of geometry, such as in the geosciences and in medical imaging. Examples include

piecewise constant, piecewise continuous and level set functions. Understanding

inverse problems through these functions is important as numerous fields require

recovering some form of geometry such as geosciences and medical imaging. Some

of the questions that this thesis aims to address are:

• Can we effectively use EKI to recover some form of geometry from our un-

known, which includes various discontinuities?

• Given the computational burden that can arise with the forward operator, can

we reduce this cost in a practical manner and what kind of cost reduction is

possible?

• Can we transfer ideas from hierarchical Bayesian inversion to the EKI method-

ology, and in doing so find improved inversion strategies?

• Given the current extent of the literature on Bayesian-related inversion, and

the EKI in particular, can we extend this to new and potentially more chal-

lenging PDEs applications?

The layout and description of each chapter is provided as follows:

1.6.1 Chapter 2. Parameterizations of Ensemble Kalman Inversion

The prior form in Bayesian inversion is of crucial importance as depending on how it

is chosen, our reconstructions can be quite varied. One way to overcome this issue is

to understand the inverse problem in a hierarchical manner. This introduces further
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unknowns where these additional unknowns correspond to hyperparameters which

allow for parsimonious representation of the unknown, and which are learned from

the data, along with the unknown itself. These priors are usually defined through

three key parameters; (i) amplitude σ ∈ R, (ii) smoothness α ∈ R+ and (iii) inverse

length-scale τ = 1/` ∈ R+ which appear in the covariance structure C

C = σ2(τ2I −∆)−α, (1.6.1)

where ∆ is the Laplacian operator. However with EKI still lies a limitation which

is known as the subspace property, that states however your prior is chosen, your

reconstructed solution will be of a similar form. By placing a Gaussian initial

ensemble with prescribed hyperparameters we can expect our end result to have

a similar result with the same value of hyperparameters. One technique we use to

break away from this property is to generate the Gaussian prior through a Stochastic

partial differential approach, which in turn states that the solution u of

(τ2I −4)
α
2 u = τ−2/d

√
βξ,

omits a structure similar to that of the covariance (1.6.1). By doing so we can

successfully break away, and effectively learn the various unknowns. This is based

on two hierarchical approaches: the centered and non-centered case. We consider

this for a variety of PDEs and adopt level set techniques. A further extension we

look at in this chapter is the question of whether we can extend the modelling of our

hyperparameters from a scalar field to a random field, as done with our underlying

unknown. For this we adopt the length-scale as both a Gaussian random field,

but also a newly adopted random field in the area of Bayesian inversion, a Cauchy

random field. The latter poses an advantage over the former as it performs better

for edge-preserving and rougher features. We further consider analyzing some limit

analysis of hierarchical EKI which can be seen as an extension for the recent work

that was done on non-hierarchical EKI.

The work in this chapter appeared as a jointly co-authored paper [33]. Al-

though the four authors, myself included, contributed in unison to the methodology

developed in the paper, and to the choice of numerical experiments, the majority of

the computational work is mine alone.
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1.6.2 Chapter 3. Analysis of Hierarchical Ensemble Kalman Inver-

sion

The EnKF has showcased a high level of applicability to a number of scientific dis-

ciplines, due to its ease of implementation and low computational cost. However

despite this is a lack of clear foundational understanding, both for the traditional

EnKF from data assimilation, and EKI for inverse problems.. Much of the work

since the derivation of the work has been on improving the algorithm under dif-

ferent settings. Only till recently there has been some work which has aimed at

understanding this. However for EKI there has only been one piece of work that

has looked at developing diffusion limits aiming to understand the long-term be-

haviour. This chapter aims to complement Chapter 2. in that it provides a more

analytical understanding of hierarchical EKI. We look to extend the results of the

work done on EKI, namely understand the long-term behaviour. It was shown that

in the linear case EKI could be interpreted as a gradient-flow structure. In the hier-

archical case we see that this also holds, for both the centered and non-centered case.

Aside from diffusion limits and gradient-flow structures, we aim to prove whether

using both approaches allow us to break away from the subspace property, in the

case of both a discrete and continuous case. Finally we consider hierarchical aspects

of certain variants of the EnKF, which include localization and variance inflation.

Both these techniques are known to break from the induced property, therefor we

take a hierarchical approach and see if if we have the similar effect if not a better

performance. This is highlighted through a numerical example on a 1D linear elliptic

PDE.

This chapter was solely carried out by myself, and has been submitted as the

solo-authored paper [31]. However the work benefitted from a number of individuals

including Dr. Marco Iglesias and Prof. Claudia Schillings.

1.6.3 Chapter 4. Reduced Basis Methods for Bayesian Inverse

Problems

Most inverse problem techniques involve multiple evaluations of the forward model,

which can be computationally expensive. Therefore a fundamental question that

arises is how to reduce the cost of the forward solver in an efficient manner which

still allows for high quality inversion? Traditional PDE solvers such as the finite

difference and finite element method have shown to work well under various condi-

tions, but can be costly in high-dimensional problems. In particular this question

has gained an interest from uncertainty quantification where various methods have
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been developed to tackle these issues. These methods are commonly referred to

as reduced order models (ROMs). One of these methods, which we consider in

this chapter, are reduced basis methods (RBMs). RBMs can be interpreted as a

dimension reduction method based on a Galerkin projection which is based on a

greedy algorithm. The solution of the RBM is controlled via an a posteriori error

bound. It is specific to parameterized PDEs, which are PDEs where the input and

output are induced by some random parameter. As an example in an elliptic PDE

we would have both a random diffusion coefficient κ(x;ϑ) and a random solution

p(x;ϑ) induced by some parameter ϑ in a parameter space Γ, given by

−∇ · (κ(x;ϑ)∇p(x;ϑ)) = f, ∈ D,

p(x;ϑ) = 0, ∈ ∂D.

The RBM projects the solution pN onto a smaller space XN and aims to build a

RB space by solving the following system given by the variational formulation

A(pN , q;ϑ) = F (q), ∀q ∈ XN .

The focus on this chapter is two fold; firstly that we consider the proposal of a

new set of points to represent the parameter space Γ. Traditional choices of these

points include uniform points, random points and Curtis-Clenshaw points. Our set

of points we propose are Lebesgue optimal points, where our motivation arises from

the work of Chen et al. [35]. By using these points we aim to see if we can get

more accurate results and see how these points scale within our experiments. The

second aim of this chapter is to transfer these ideas from ROMs, and apply them in

to Bayesian inverse problems. Specifically we consider the inverse problem of Darcy

flow, where in particular we focus on geometric inverse problems such that our

random coefficient takes a piecewise constant form. We briefly consider the inverse

problem of impedance tomography where we derive particular bounds related to the

RBM.

The work conducted on the forward problem can be viewed as extension to

the 2D case of existing work in 1D; in particular I studied the 1D case as part of a

research study groups project in my MSc year Warwick with three other MSc stu-

dents. This study group was led by Dr’s Claudia Schillings and Aretha Teckentrup

and their input was instrumental in setting directions for this work.
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1.6.4 Chapter 5. A Bayesian Formulation of the Inverse Eikonal

Equation

Since the development of the Bayesian approach in the infinite dimensional case,

there have been a wide class of PDE-related inverse problems that have been ana-

lyzed. Most of this work has been concerned with elliptic and parabolic problems,

such as those arising in groundwater flow, electrical impedance tomography and

electro-magnetics (elliptic) and data assimilation in fluid, through the Navier-Stokes

equation (parabolic). One class of PDEs that has a rich theory behind it, but has not

being analyzed greatly in an inverse setting, are Hamilton-Jacobi (HJ) equations.

We are interested in one particular HJ equation which is the eikonal equation. The

eikonal equation is an important PDE which arises in numerous application such as

computer vision and geosciences. The forward problem is concerned with finding T

solving

|∇T (x)| = u(x) x ∈ Ω \ {x0},

T (x0) = 0,

∇T (x) · ν(x) ≥ 0, x ∈ Γ.

Here T (x) represents the shortest distance of a travel-time from a point x0 on the

boundary to a point x on the domain, from u(x) known as the slowness function,

characterizes the properties of the medium. The solution, rather than being ex-

pressed through a weak formulation, is given as a minimisation procedure, as done

in optimal control theory, where

T (x) = inf
ζ

{∫ b

a
u(ζ(r))|ζ ′(r)|dr | ζ ∈W 1,∞([0, 1], Ω̄), ζ(a) = x0, ζ(b) = x

}
.

The inverse eikonal equation has only been considered in the deterministic setting by

Decklenick et al. [52]. Our motivation is to formulate the inverse eikonal equation in

a Bayesian inverse setting. By doing so we aim to tackle uncertainty that can arise

within the slowness function, such as discontinuities. Unlike the diffusion coefficient

in elliptic PDEs, the slowness function poses stricter regularity conditions and can

allow for only a number of discontinuities. We aim to understand this behaviour

by testing a variety of various priors, including both Gaussian and geometric. We

further consider deriving analytical results for the inverse eikonal equation, namely

well-posedness for some of the priors considered. Hierarchical techniques developed

in previous chapters will also be further applied.

The overall problem formulation and methodology in this chapter was carried

26



out in conjunction with Prof. Charlie Elliott, Prof. Andrew Stuart and Dr. Vanessa

Styles’; however the majority of the computational work was carried out by myself,

with some help from Dr. Ollie Dunbar on coding aspects relating to the forward

Eikonal solver.

27



Chapter 2

Parameterizations for ensemble

Kalman inversion

2.1 Overview

In this chapter we introduce various hierarchical approaches to understand EKI

in a hierarchical manner. This includes two approaches: the centered and non-

centered approach, where we derive various scaling limits and test our methodology

on numerous geometric PDEs.

2.2 Introduction

2.2.1 Content

Consider finding u from y where

y = G(u) + η, (2.2.1)

G is a forward map taking the unknown parameter u into the data space, and η rep-

resents noise. Ensemble Kalman inversion is an attractive technique that has shown

considerable success in the solution of such problems. Whilst it is derived from the

application of Kalman-like thinking, with means and covariances computed from an

empirical ensemble, it essentially acts as a black-box derivative-free optimizer which

requires only evaluation of the forward map G(·); in practice it can often return good

solutions to inverse problems with relatively few forward map evaluations. However

the choice of parameterization of the unknown is key to the success of the method.

In this chapter we will demonstrate how carefully thought out parameterizations
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can have substantial impact in the quality of the reconstruction.

Although our viewpoint in this chapter is to consider Ensemble Kalman

inversion as an optimization method, and evaluate it from this perspective, there is

considerable insight to be gained from the perspective of Bayesian inversion; this is

despite the fact that the the algorithm does not, in general, recover or sample the

true Bayesian posterior distribution of the inverse problem. Algorithms that can,

with controllable error, approximately sample from the true posterior distribution

are commonly referred to as fully Bayesian, with examples including Markov Chain

Monte Carlo and sequential Monte Carlo. Ensemble Kalman inversion is not fully

Bayesian but the link to Bayesian inversion remains important as we now explain.

There is considerable literature available about methods to improve fully Bayesian

approaches to the inverse problem through for example, geometric and hierarchical

parameterizations of the unknown. The purpose of this chapter is to demonstrate

how these ideas from Bayesian inversion may be used with some success to improve

the capability of ensemble Kalman methods considered as optimizers. In view of

the relatively low computational cost of the ensemble methods, in comparison with

fully Bayesian inversion, this cross-fertilization of ideas has the potential to be quite

fruitful.

2.2.2 Literature Review

The Kalman filter (KF) [88] was developed to sequentially update the probabil-

ity distribution on states of partially observed linear Gaussian systems, and sub-

sequently generalized to nonlinear problems in the form of the extended Kalman

filter. However for high-dimensional systems the size of covariances makes use of

these methods prohibitive. In 1994 Evensen [57, 58] proposed a Monte-Carlo based

nonlinear Kalman filter which tackled this issue by using an ensemble of particles to

represent the covariances and mean, resulting in what is now known as the ensem-

ble Kalman filter (EnKF). A major success story for the EnKF has been in weather

prediction models [4, 74], but it has also been deployed in numerous applications do-

mains, including the reservoir engineering community [1] and in oceanography [59].

Variants on the idea include the randomized maximum likelihood (RML) method

[97], and algorithms such as the ensemble square-root Kalman filter [140].

In this chapter we are primarily interested in use of ensemble Kalman meth-

ods to study inverse problems for parameter estimation, an approach pioneered for

oil industry applications where the inverse problem is known as history matching

[93, 97]; the paper [56] contains an insightful analysis of the methodology in the

large ensemble limit. In this application domain such inversion methods are some-
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times referred to as ensemble Kalman smoothers, although the nomenclature is not

uniform. We will simply refer to ensemble Kalman inversion (EKI). The methodol-

ogy is formulated quite generally in [79], independently of oil industry applications;

and in [78] it is shown that the method performs well as an optimizer but does not

capture true posterior uncertainty, in the context of oil industry applications.

The ideas introduced in this chapter concerning parameterization are in-

dependent of the particular implementation of the EKI method used; in all our

numerical experiments we will use the form of iterative regularization proposed by

Iglesias [77]. The general philosophy behind the method is that, as the algorithm is

iterated, the solution to the inverse problem should approach the truth in the small

noise limit, and hence that any regularization introduced should diminish in influ-

ence in this limit. However, because the convergence theory for ensemble Kalman

inversion is in its infancy, the choice of iterative regularization is made by analogy

with classical iterative methods that have been used for inverse problems [10, 12, 71],

with the ensemble method using empirical covariances in place of derivatives or ad-

joints of the forward solver. The resulting iterative method is an ensemble version of

the Levenberg-Marquardt algorithm with the inclusion of regularization as in [71].

In the form of EKI that we use the linear span of the initial ensemble is pre-

served by the iteration [79, 93]. The initial ensemble thus encodes prior information

about the solution of the problem. This means that choice of the parameterization

of the method, as well as the choice initial subspace, is key to its performance. Based

on experience with (Bayesian) statistical modelling we will introduce geometric and

hierarchical priors that address the issue of making good parameterizations, and we

will draw from those priors to create the initial ensemble. Hierarchical models have

been extensively studied in the fields of computational statistics and machine learn-

ing [94, 115, 139]. Their use in the context of Monte Carlo Markov chain (MCMC)

methods for Bayesian inverse problems is overviewed in [116]; see [47, 127] for ap-

plication oriented work. One important outcome of research in this area is that

learning parameters such as length-scale, amplitude and regularity within Gaussian

random field priors (such as Whittle-Matérn) can be of significant value [6, 98, 123].

In a series of recent papers this hierarchical modelling was extended to allow for

length-scale which is itself spatially varying [102, 123]. The development of hier-

archical methods within EKI, rather than fully Bayesian MCMC, has been limited

to date, with the primary contribution being the work [53] where the methodology

was based on building large ensembles from multiple Gaussians assigned different

weights. However this work requires that the correct hierarchical parameter is in

the ensemble if it is to be successful. We also note that there is some work in hier-
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archical EnKF within the context of state estimation; see [143] and the references

therein.

In addition to hierarchical approaches we will also study geometric parame-

terizations. These can be of use when the geometric object has known form, such

as faults, channels and inclusions, or when it is of unknown topology the level set

method may be used [128]. We will build on recent Bayesian implementation of

these ideas; see [80, 81] and references therein.

2.2.3 Contribution of This Work

Our main contribution is to establish the importance of novel parameterizations

which have the potential to substantially improve the performance of EKI. Although

our perspective on EKI is one of optimization, the methods we introduce are all based

on taking established and emerging methods from Bayesian statistics and developing

them in the context of the ensemble methods. The connection to Bayesian statistics

is exploited to provide insights about how to make these methods efficient. The

resulting methods are illustrated by means of examples arising in both electrical

impedance tomography, groundwater flow and source inversion. The contributions

are:

• We develop hierarchical approaches for EKI, based on solving for the unknown

function and unknown scalars which parameterize the prior.

• We generalize these hierarchical approaches to EKI to include unknown fields

which parameterize the prior, rather than scalars.

• We demonstrate the key role of choosing non-centered variables when imple-

menting hierarchical methods.

• We show the potential for geometric hierarchical priors, including the level set

parameterization, for piecewise continuous reconstructions.

2.2.4 Organization

The layout of the chapter is as follows, in section 3.3 we discuss different approaches

to parameterizing inverse problems. We begin by conveying the main ideas in sub-

section 2.3.1 in abstract. In subsection 2.3.2 we describe these ideas more concretely.

In section 2.4 we describe the hierarchical version of iterative EKI as used in this

chapter, and section 2.5 describes the model problems that we use to illustrate the

power of the proposed parameterizations. Numerical results are presented in section

3.5, whilst in section 3.6 we make some concluding remarks.
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2.2.5 Notation

Throughout the chapter we make use of common notation for Hilbert space norms

and inner products, ‖·‖, 〈·〉. We will assume that X and Y are two separable Hilbert

spaces which are linked through the forward operator G : X → Y. This nonlinear

operator can be thought of as mapping from the space of unknown parameters X to

the observation space Y. Our additive noise for the inverse problems will be denoted

by η ∼ N(0,Γ) where Γ : Y → Y is a self-adjoint positive operator. For any such

operator we define 〈·, ·〉Γ = 〈Γ−1/2·,Γ−1/2·〉 and ‖ · ‖Γ = ‖Γ−1/2 · ‖, and for finite

dimensions | · |Γ = |Γ−1/2 · | with | · |the Euclidean norm. If the Gaussian measure

associated to η is supported on Y then we will require Γ to be trace-class; however

we will also consider white noise whose support is on a larger space than Y and for

which the trace-class condition fails in the infinite dimensional setting.

2.3 Inverse Problem

2.3.1 Main Idea

Non-Hierarchical Inverse Problem

We are interested in the recovery of u ∈ X from measurements of y ∈ Y given

by equation (2.2.1) in which, recall, η is additive Gaussian noise. In the Bayesian

approach to inverse problems we treat each quantity within (2.2.1) as a random

variable. Via an application of Bayes’ Theorem 1 [137] we can characterize the

conditional distribution of u|y via

P(u|y) ∝ P(y|u)× P(u), (2.3.1)

where P(u) is the prior distribution, P(u|y) is the posterior distribution and P(y|u) is

the likelihood. Although we view EKI as an optimizer in this chapter, the Bayesian

formulation of (2.2.1) is important because we derive the initial ensemble from the

prior distribution P(u). From an optimization viewpoint, our goal is to make the

following least squares objective function small:

Φ(u; y) =
1

2
|y − G(u)|2Γ. (2.3.2)

1We write all instances of Bayes’ Theorem in finite dimensions for simplicity; extension to Bayes’
Theorem for functions is straightforward but not central to this chapter and so we avoid the extra
notation that would be needed for this.
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This (upto an irrelevant additive constant) is the negative log likelihood since it is

assumed that η is a mean-zero Gaussian with covariance Γ.

Centered Hierarchical Inverse Problem

In many applications it can be advantageous to add additional unknowns θ to the

inversion process. In particular these may enter through the prior, as in hierarchical

methods, [116], and we will refer to such parameters as hyperparameters. The

inverse problem is then the recovery of (u, θ) from measurements of y given again

by (2.2.1). The additional parameterization of the prior results in Bayes’ Theorem

in the form

P(u, θ|y) ∝ P(y|u)× P(u, θ). (2.3.3)

Prior samples, used to initialize the ensemble smoother, will then be of the pair (u, θ).

What we will term centered hierarchical methods (a terminology we discuss in Sec-

tion 2.4) typically involve factorization of the prior in the form P(u, θ) = P(u|θ)P(θ).

From an optimization point of view our goal is again to make the objective function

(2.3.2) small, but now using hierarchical parameterization to construct the initial

ensemble. 2

Non-Centered Hierarchical Inverse Problem

Another variant of the inverse problem that is particularly relevant for hierarchical

methods, in which θ enters only the prior, is non-centered reparameterization (a

further terminology discussed in Section 2.4). We introduce the transformation

T : (ξ, θ)→ u and note that (2.2.1) then becomes

y = G(T (ξ, θ)) + η, (2.3.4)

and Bayes’ Theorem then reads

P(ξ, θ|y) ∝ P(y|ξ, θ)× P(ξ, θ). (2.3.5)

Prior samples, again used to initialize the ensemble smoother, will then be of the

pair (ξ, θ). Typically the change of variables from u to ξ is introduced so that ξ and θ

are independent under the prior: P(ξ, θ) = P(ξ)P(θ). As a result the inverse problem

(2.3.4) is different to that appearing in (2.2.1), in terms of both the prior and the

2We note that hyperparameters θ may also enter the likelihood as well as the prior if the
state variable is re-scaled in a hyperparameter-dependent fashion, as happens in the version of the
Bayesian level set method advocated in [47].
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likelihood. This non-centered approach is equivalent to the ancillary augmentation

technique discussed in [115] which discusses the decoupling of u and θ through the

variable ξ. From an optimization viewpoint, our goal is to make the following least

squares objective function small:

Φ(ξ, θ; y) =
1

2
|y − G(T (ξ, θ))|2Γ. (2.3.6)

In this chapter we consider the application of EKI for solution of the in-

verse problems (2.2.1), non-hierarchically and centered-hierarchically, and (2.3.4)

non-centered hierarchically. Although this method has a statistical derivation, the

work in [79, 90] demonstrates that the method may be thought of as a derivative-

free optimizer that approximates the least squares problem (2.3.2) and (2.3.6) rather

than sampling from the relevant Bayesian posterior distribution. We will show that

the use of iterative EKI, as proposed by Iglesias in [77], can effectively solve a wide

range of challenging inversion problems, if judiciously parameterized.

2.3.2 Details of Parameterizations

In this section we describe in detail several classes of parameterizations that we

use in this chapter. The first and second are geometric parameterizations, ideal for

piecewise continuous reconstructions with unknown interfaces. The third and fourth

are hierarchical methods which introduce an unknown length-scale, and regularity

parameter, into the inversion. For the two geometric problems we initially formulate

in terms of trying to find a function w : D 7→ R, D a subset of Rd, and then

reparameterize w. For the hierarchical problems we initially formulate in terms of

trying to find a function u : D 7→ R, and then append parameters θ and also rewrite

in terms of (ξ, θ) 7→ u.

Geometric Approach – Finite Dimensional Parameterization

In many problems of interest the unknown function w has discontinuities, determi-

nation of which forms part of the solution of the inverse problem. To tackle such

problems it may be useful to write w in the form

w(x) =

n∑
i=1

ui(x)χDi(x). (2.3.7)
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Here the union of the disjoint sets Di is the whole domain D. If we assume that the

configuration of the Di is determined by a finite set of scalars θ and let u denote

the union of the functions ui and the parameters θ then we may rewrite the inverse

problem in the form (2.2.1). The case where the number of subdomains n is unknown

would be an interesting and useful extension of this work; but we do not consider it

here.

Geometric Approach – Infinite Dimensional Parameterization

If the interface boundary is not readily described by a finite number of parameters

we may use the level set idea. For example if the field w takes two known values

w± with unknown interfaces between them we may write

w(x) = w+Iu>0(x) + w−Iu<0(x), (2.3.8)

and formulate the inverse problem in the form (2.2.1) for u. This idea may be gener-

alized to functions which take an arbitrary number of constant values, through the

introduction of level sets other than u = 0, or through vector level sets functions u.

Scalar-valued Hierarchical Parameterizations

To illustrate ideas we will concentrate on Gaussian priors of Whittle-Matérn type.

These are characterized by a covariance function of the form

c(x, y) = σ2 21−α+d/2

Γ(α− d/2)

(
|x− y|
`

)α−d/2
Kα−d/2

(
|x− y|
`

)
, x, y ∈ Rd, (2.3.9)

where K· is a modified Bessel function of the second kind, σ2 > 0 is the variance

and Γ(·) is a Gamma function. We will always ensure that ` > 0 and α > d/2 so

that draws from the Gaussian are well-defined and continuous. On the unbounded

domain Rd, samples from this process may be generated by solving the stochastic

PDE

(I − `24)
α
2 u = `d/2

√
βξ, (2.3.10)

where ξ ∈ H−s(D), s > d
2 , is a Gaussian white noise, i.e. ξ ∼ N(0, I), and

β = σ2 2dπd/2Γ(α)

Γ(α− d
2)

.

In this chapter we will work with the scalar hierarchical parameters α and
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τ = `−1. Putting ` = τ−1 into (2.3.10) gives the stochastic PDE

C−
1
2

α,τ u = ξ, (2.3.11)

where the covariance operator Cα,τ has the form Cα,τ = τ2α−dβ(τ2I−∆)−α. Through-

out this chapter we choose σ such that β = τd−2α so that

Cα,τ = (τ2I −∆)−α, (2.3.12)

and we equip the operator ∆ with Dirichlet boundary conditions on D. These

choices simplify the exposition, but are not an integral part of the methodology;

different choices could be made.

We have thus formulated the inverse problem in the form of the centered

hierarchical inverse problem (2.2.1) for (u, θ) with θ = (α, τ). The parameter θ

enters only through the prior as in this particular case it does not appear in the

likelihood. In this chapter we will place uniform priors on α and τ , which will be

specified in subsection 2.6.1. We may also work with the variables (ξ, θ) noting that

(2.3.11) defines a map T : (ξ, θ) 7→ u and we have formulated the inverse problem

in the form (2.3.4), the non-centered hierachical form. In Figures 2.1 and 2.2 we

display random samples from (2.3.12) with imposed Dirichlet boundary conditions

and varying values of the inverse length-scale τ and the regularity α. These samples

are constructed in the domain D = [0, 1]2.

Figure 2.1: Modified inverse length-scale for τ = 10, 25, 50 and 100. Here α = 1.6.

Function-Valued Hierarchical Parameterization

In order to represent non-stationary features it is of interest to allow hierarchical

parameters to themselves vary in space. To this end we will also seek to generalize

(2.3.10) and work with the form

(
I − `(x; v)2∆

)α
2 u = `(x; v)

d
2 ξ. (2.3.13)
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Figure 2.2: Modified regularity for α = 1.1, 1.3, 1.5 and 1.9. Here τ = 15.

where (We have set β = 1 for simplicity). In order to ensure that the length-scale

is positive we will write it in the form

`(x; v) = g(v(x)), (2.3.14)

for some positive monotonic increasing function g(·). We thus have a formulation

as a centered hierarchical inverse problem in the form (2.2.1) noting that hyperpa-

rameter θ = v is here a function and enters only through the prior. We may also

formulate inversion in terms of the variables (ξ, v) giving the inverse problem in the

form (2.3.4) with θ = v. We will consider two forms of prior on v. The first is based

on a Gaussian random field with Whittle-Matérn covariance function (2.3.9) and

we then choose g(v) = exp(v). The second, which will apply only in one dimension,

is to consider a one-dimensional Cauchy process, as in [102]. In particular we will

construct `(x; v) by employing a one-dimensional Cauchy process v(x), which is an

α-stable Lévy motion with α = 1 with Cauchy increments on the interval δ given

by the density function f , and positivity-inducing function g, where

f(x) =
δ

π(δ2 + x2)
, g(s) =

a

b+ c|s|
+ d, (2.3.15)

such that a, b, c, d > 0 are constants. 3 Samples from these two priors on v, and

hence `, are shown in Figures 2.3 and 2.4.

2.4 Iterative Ensemble Kalman Inversion

In this section we describe iterative EKI as implemented in this chapter. We outline

it first for inverse problems as parameterized in equations (2.2.1) and then discuss

3We note here that α has a different meaning from the parameter α used in the covariance
function of a Gaussian prior in, for example, (2.3.12). We abuse notation in this way because the
parameter α is widely used in the literature in both contexts.
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Figure 2.3: Gaussian random field. Left: Length-scale realization `(x). Right:
Realization of v(x).
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Figure 2.4: Cauchy random field. Left: Length-scale realization `(x). Right: Real-
ization of v(x).

generalizations to centered hierarchical inversion and the non-centered hierarchical

inversion (2.3.4). We briefly mention the continuous time limits of the methods

as these provide insight into how EKI works, and the effect of re-parameterizing;

the study of continuous limits from EKI was introduced in [129] and further details

concerning their application to the problems considered here may be found in [31].

2.4.1 Formulation for (2.2.1)

The form of iterative EKI that we use is that employed in [77]. When applied to the

inverse problem (2.2.1) it takes the following form, in which the subscript n denotes

the iteration step, and the superscript (j) the ensemble member:

u
(j)
n+1 = u(j)

n + Cuwn (Cwwn + ΥnΓ)−1(y − G(u(j)
n )). (2.4.1)
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The empirical covariances Cuwn , Cwwn are given by

Cuwn =
1

J − 1

J∑
j=1

(u(j)
n − ūn)⊗ (G(u(j)

n )− Ḡn) (2.4.2)

Cwwn =
1

J − 1

J∑
j=1

(G(u(j)
n )− Ḡn)⊗ (G(u(j)

n )− Ḡn). (2.4.3)

Here ūn denotes the average of u
(j)
n over all ensemble members and Ḡn denotes the

average of G(u
(j)
n ) over all ensemble members. The parameter Υn is chosen to ensure

that

‖y − Ḡn‖Γ ≤ ζη, (2.4.4)

a form of discrepancy principle which avoids over-fitting.

If we define

d(j,m)
n = 〈(Cwwn + ΥnΓ)−1(G(u(j)

n )− y),G(u(m)
n )− Ḡn〉,

then we see that

u
(j)
n+1 = u(j)

n −
1

J − 1

J∑
m=1

d(j,m)
n u(m)

n , (2.4.5)

and it is apparent that the algorithm will preserve the linear span of the initial en-

semble {u(j)
0 }Jj=1. We describe the details of how Υn is chosen in the next subsection

where we display the algorithm in full for a generalization of the setting of (2.2.1)

to the hierarchical setting.

To write down the continuous-time limit of the EKI we consider the setting

in which Υ−1
n ≡ (J − 1)h and view u

(j)
n as approximating a function u(j)(t) at time

t = nh. If we define

d(j,m) = 〈Γ−1(G(u(j))− y),G(u(m))− Ḡ〉,

with obvious definition of Ḡ, then we obtain the continuous-time limit

u̇(j) = −
J∑

m=1

d(j,m)u(m), (2.4.6)

where u̇(j) denotes the standard time derivative of u(j) viewed as solving an ordinary

differential equation; because the algorithm preserves the linear span of the initial

ensemble [129] the dynamics take place in a finite dimensional space, even if X is
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Algorithm 3 Hierarchical Iterative Kalman Method (Centered Version).

Let {u(j)
0 , θ

(j)
0 }Jj=1 ⊂ X be the initial ensemble with J elements.

Further let ρ ∈ (0, 1) with ζ > 1
ρ and θ = (α, τ).

Generate {u(j)
0 , θ

(j)
0 } i.i.d. from the prior P(u, θ), with synthetic data

y
(j)
n+1 = y + η

(j)
n+1, η(j) ∼ N(0,Γ) i.i.d.

Then for n = 1, . . .

1. Prediction step: Evaluate the forward map w
(j)
n = G(u

(j)
n ),

and define w̄n = 1
J

∑J
j=1w

(j)
n .

2. Discrepancy principle: If ‖Γ−1/2(y − w̄n)‖Y ≤ ζη, stop!

Output ūn = 1
J

∑J
j=1 u

(j)
n and θ̄n = 1

J

∑J
j=1 θ

(j)
n .

3. Analysis step: Define sample covariances:

Cuwn = 1
J−1

∑J
j=1(u(j) − ū)⊗ (G(u(j))− Ḡ),

Cθwn = 1
J−1

∑J
j=1(θ(j) − θ̄)⊗ (G(u(j))− Ḡ),

Cwwn = 1
J−1

∑J
j=1(G(u(j))− Ḡ)⊗ (G(u(j))− Ḡ).

Update each ensemble member as follows

u
(j)
n+1 = u

(j)
n + Cuwn (Cwwn + ΥnΓ)−1(y

(j)
n+1 − G(u

(j)
n )),

θ
(j)
n+1 = θ

(j)
n + Cθwn (Cwwn + ΥnΓ)−1(y

(j)
n+1 − G(u

(j)
n )),

where Υn is chosen as Υi+1
n = 2iΥ0

n,

where Υ0
n is an initial guess. We then define Υn ≡ ΥN

n where N is the first
integer such that

ρ‖Γ−1/2(y(j) − w̄n)‖Y ≤ ΥN
n ‖Γ1/2(Cwwn + ΥN

n Γ)−1(y(j) − w̄n)‖Y .
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infinite dimensional. Note that d(j,m) depends on {u(k)}Jk=1 and that the dynamical

system couples the ensemble members.

2.4.2 Generalization for Centered Hierarchical Inversion

Algorithm 3 shows the generalization of (2.4.1) to the setting of centered hierarchical

inversion. The ensemble is now over both u and θ and cross covariances from the

observational space to both the u and θ spaces are required. Algorithm 3 also spells

out in detail how the parameter Υn is chosen. We now define

d(j,m)
n = 〈(Cwwn + ΥnΓ)−1(G(u(j)

n )− y),G(u(m)
n )− Ḡn〉,

and we see that

u
(j)
n+1 = u(j)

n −
1

J − 1

J∑
m=1

d(j,m)
n u(m)

n , (2.4.7)

and

θ
(j)
n+1 = θ(j)

n −
1

J − 1

J∑
m=1

d(j,m)
n θ(m)

n . (2.4.8)

It is apparent that, once again, the algorithm will preserve the linear span of the ini-

tial ensemble {u(j)
0 , θ

(j)
0 }Jj=1. Furthermore we note that for the centered hierarchical

method, since G does not depend on θ, the algorithm projected onto the u coordi-

nate is identical to that in the preceding subsection, with the only difference being

that the initial span of {u(j)
0 }Jj=1 is constructed over a diverse set of θ, reflecting the

dependency structure in P(u, θ); for hierarchical priors as in subsubsections 2.3.2

and 2.3.2, the dependency structure is typically of the form P(u, θ) = P(u|θ)P(θ). 4

If we again define

d(j,m) = 〈Γ−1(G(u(j))− y),G(u(m))− Ḡ〉,

with obvious definition of Ḡ, then we obtain the continuous-time limit

u̇(j) = −
J∑

m=1

d(j,m)u(m), (2.4.9)

θ̇(j) = −
J∑

m=1

d(j,m)θ(m). (2.4.10)

4The centered hierarchical method, where G does not depend on θ, is presented for simplicity.
The details of this algorithm are readily transferred to include θ dependence in the forward mapping
G as required by the version of the Bayesian level set method advocated in [47].
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Since d(j,m) depends only on {u(k)}Jk=1 and not on {θ(k)}Jk=1 for the centered hier-

archical method the continuous time limit for u is identical to that in the preceding

subsection, with the only difference being the creation of the initial ensemble using

variable θ. This severely limits the capability of the hierarchical method in the cen-

tered case, and is motivation for the non-centered approach that we now describe.

2.4.3 Generalization for Non-Centered Hierarchical Parameteriza-

tion

One of the reasons for using hierarchical parameterizations is that good choices of

parameters such as length-scale and regularity of u are not known a priori; this

suggests that they might be learnt from the data. In this context the preservation

of the linear span of the initial ensemble is problematic if the algorithm is formulated

in terms of (u, θ). This is because, even though the length-scale (for example) may

update as the algorithm progresses, the output for u remains in the linear span of

the initial set of u, which likely does not contain a good estimate of the true length

scale. Instead one can work with the variables (ξ, θ), where ξ is the forcing function

in a stochastic PDE, as explained in subsubsection 2.3.2. Working with (u, θ) and

with (ξ, θ) are referred to as the centered parameterization and the non-centered

parameterization, respectively. The pros and cons of each method is discussed in the

context of Bayesian inversion in [115, 116], where the terminology is also introduced.

The provenance of the terminology has no direct relevance in our context, but we

retain it to make the link with the existing literature.

The algorithm for updating (ξ, θ) is identical to that shown in subsection

2.4.1 with the identifications u 7→ (ξ, θ) and G 7→ G ◦ T. Note that even though, in

the centered case, G depends only on u, the mapping G ◦ T will depend on both ξ

and θ. Hence these variables are coupled through the iteration. Indeed if we now

define

d(j,m)
n = 〈(Cwwn + ΥnΓ)−1(G ◦ T (ξ(j)

n , θ(j)
n )− y),G ◦ T (ξ(m)

n , θ(m)
n )− G ◦ Tn〉

then we see that

ξ
(j)
n+1 = ξ(j)

n −
1

J − 1

J∑
m=1

d(j,m)
n ξ(m)

n , (2.4.11)

and

θ
(j)
n+1 = θ(j)

n −
1

J − 1

J∑
m=1

d(j,m)
n θ(m)

n . (2.4.12)

42



Although the algorithm will preserve the linear span of the initial ensemble {ξ(j)
0 , θ

(j)
0 }Jj=1

the variable of interest u
(j)
n = T (ξ

(j)
n , θ

(j)
n ) is not in the linear span of u

(j)
0 , in gen-

eral. This confers a significant advantage on the non-centered parameterization in

comparison with the centered approach.

As in the previous subsections we describe a continuous-time limit, now for

the non-centered hierarchical approach. We define

d(j,m) = 〈(Γ−1(G ◦ T (ξ(j), θ(j))− y),G ◦ T (ξ(m), θ(m))− G ◦ T 〉,

again with the obvious definition of G ◦ T . In the same setting adopted in the pre-

vious two subsections we obtain the limiting equations

ξ̇(j) = −
J∑

m=1

d(j,m)ξ(m),

θ̇(j) = −
J∑

m=1

d(j,m)θ(m).

Now d(j,m) depends on both {ξ(k)}Jk=1 and on {θ(k)}Jk=1 so that the dynamical system

not only couples the ensemble members but in general can couple the dynamics for

ξ and for θ. This is another way to understand the significant advantage of the

non-centered parameterization in comparison with the centered approach.

2.5 Model Problems

In order to demonstrate the benefits of the parameterizations that we introduced

here we employ a number of models on which we will base our numerical experiments.

This section will be dedicated to describing the various PDEs that will be used.

We will describe the forward problem, together with a basic version of the inverse

problem, for each model, relevant in the non-hierarchical case. We note that the

ideas such as the level set method, and hierarchical formulations from subsubsections

2.3.1 and 2.3.1, can be used to reformulate the inverse problems, and we will use

these reformulations in section 3.5.

2.5.1 Model Problem 1

Our first test model is from electrical impedance tomography (EIT). This imaging

method is used to learn about interior properties of a medium by injecting current,

and measuring voltages, on the boundary [21, 49, 144]. We will use the complete
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electrode model (CEM) introduced in [134]. The forward model is as follows: given

a domain D = B(0, 1)2 and a set of electrodes {el}me1=1 on the boundary ∂D with

contact impedance {zl}mel=1, and interior conductivity κ, the CEM aims to solve for

the potential ν inside the domain D and the voltages {Vl}me1=1 on the boundary. The

governing equations are

∇ · (κ∇ν) = 0, ∈ D (2.5.1a)

ν + zlκ∇ν · n = Vl, ∈ el, l = 1, . . . ,me (2.5.1b)

∇ν · n = 0, ∈ ∂D\ ∪mel=1 el (2.5.1c)∫
κ∇ν · n ds = Il, ∈ el, l = 1, . . . ,me, (2.5.1d)

with n denoting the outward normal vector on the boundary. The linearity of

the problem implies that the relationship between injected current and measured

voltages can be described through an Ohm’s Law of the form

V = R(κ)× I. (2.5.2)

In our experiments D will be a two-dimensional disc of radius 1. The inverse problem

may now be stated. We write the unknown conductivity as κ = exp(u) and try to

infer u from a set of J noisy measurements of voltage/current pairs (Vj , Ij). If we

define Gj(u) = R(κ) × Ij then the inverse problem is to find u from y given an

equation of the form (2.2.1).

2.5.2 Model Problem 2

Our second model problem arises in hydrology: the single-phase Darcy flow equa-

tions. The concrete instance of the forward problem is as follows: given the domain

D = [0, 6]2 and real-valued permeability function κ defined on D, the forward model

is to the determine real-valued pressure (or hydraulic head) function p on D from

−∇ · (κ∇p) = f, x ∈ D, (2.5.3)

with mixed boundary conditions

p(x1, 0) = 100,
∂p

∂x1
(6, x2) = 0, −κ ∂p

∂x1
(0, x2) = 500,

∂p

∂x2
(x1, 6) = 0, (2.5.4)
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and the source term f defined as

f(x1, x2) =


0, if 0 ≤ x2 ≤ 4,

137, if 4 ≤ x2 ≤ 5,

274, if 5 ≤ x2 ≤ 6.

The inverse problem concerned with (2.5.3) is as follows: write κ = exp(u) and

determine u from J linear functionals of the pressure Gj(u) = lj(p). This may thus

be cast in the form (2.2.1). We take the linear functionals as mollified pointwise ob-

servations on a regular grid. This specific set-up of the PDE model is that tested by

Hanke [54] in his consideration of the regularized Levenberg-Marquardt algorithm.

More information on this setting can be found by Carera et al. [29].

2.5.3 Model Problem 3

Our final model is a simple linear inverse problem which we can describe directly.

The aim is to reconstruct a function u from noisy observation of J linear functionals

Gj(u) = lj(p), j = 1, · · · , J , where p solves the equation

d2p

dx2
+ p = u, ∈ D, (2.5.5a)

p = 0, ∈ ∂D. (2.5.5b)

This may also be cast in the form (2.2.1). We use equally spaced pointwise eval-

uations as our linear functionals. We will assume our domain is chosen such that

D = [0, 10].

2.6 Numerical Examples

To assess the performance of each parameterization we present a range of numerical

experiments on each of the three model problems described in the previous section.

Our experiments will be presented in a consistent fashion, between the different

models and the different algorithms. Each model problem will be tested using each

of the non-hierarchical and hierarchical approaches, although we will not use the

centered approach for Model Problem 3. Within each of these approaches we will

show the progression of the inverse solver from the first to the last iteration. This

will include five images ordered by iteration number, with the first figure displaying

the first iteration and the last displaying the final iteration. These figures will be

accompanied with figures demonstrating the learning of the hyperparameters, as
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the iteration progresses, for Model Problems 1 and 2, but not for Model Problem 3

(where the hyperparameter is a field).

In order to illustrate the effect of the initial ensemble we will show output of

the non-centered approach for ten different initializations, for each model problem.

We will plot the final iteration reconstruction arising from four of those initializa-

tions. We observe the variation across the initializations through the relative errors

in the unknown field uEKI, with respect to the truth u†, and in the data misfit, as

the iteration progresses:

‖uEKI − u†‖L2(D)

‖u†‖L2(D)
,

‖y − Ḡ(uEKI)‖Γ.

2.6.1 Level Set Parameterization

Level set methods are a computationally effective way to represent piecewise con-

stant functions, and there has been considerable development and application to

inverse problems [23, 25, 77], starting from the paper [128], in which interfaces are

part of the unknown. We apply level set techniques, combined with hierarchical

parameter estimation, in the context of ensemble inversion; we are motivated by the

recent Bayesian level set method developed by Lu et al. in [81], and its hierarchical

extensions introduced in [34, 47].

When applying the level set technique to inverse problems of the form (2.2.1),

we modify our forward operator to

G = O ◦G ◦ F, (2.6.1)

where G : X 7→ Y maps the coefficient of the PDE to its solution, O : Y → Y is our

observational operator, and F : X → X is the level set map described by

(Fu)(x)→ κ(x) =

n∑
i=1

κi1Di(x). (2.6.2)

The sets {Di}ni=1 are n disjoint subdomains with union D and whose boundaries

define the interfaces. The boundaries are assumed to be defined through a con-

tinuous real-valued function u on D via its level sets. In order to model the level

set method hierarchically we will base our reconstructions on the approaches taken

in subsection 2.3.2. In general it can be helpful to re-scale the level values as the

46



hierarchical parameter τ is learned [47]; however if the unknown is binary and the

level set taken as zero, as used in our numerical experiments here, then this is not

a consideration.

We apply level set inversion to Model Problem 1 (EIT) from subsection 2.5.1.

We reconstruct a binary field and the variable u is, rather than the logarithm of

the conductivity κ, the level set function defining (2.6.2): specifically the level set

formulation is achieved through representing the conductivity as

κ(x) = (Fu)(x) = κ−χu≤0 + κ+χu>0, (2.6.3)

where χA denotes a characteristic function of A with κ− and κ+ being known positive

constants that help define low and high levels of our diffusion coefficient.

We place 16 equidistant electrodes on the boundary of the unit disc D in

order to define our observations. All experiments are conducted using the MATLAB

package EIDORS [2]. The contact impedances {zl}mel=1 are chosen with value 0.05

and all electrodes chosen subjected to an input current of 0.1. This provides a

matrix of stimulation patterns I = {I(j)}15
j=1 ∈ R16×15 given as

I = 0.1×



+1 0 . . . 0

−1 +1 . . . 0

0 −1
. . . 0

...
...

. . . +1

0 0 0 −1


.

For our iterative method we choose J = 200 ensemble members with regularization

parameter ρ = 0.8. The covariance of our noise η is chosen such that Γ = 10−4 × I.

Our truth for the EIT problem will take the form given in Figure 2.5 where we

have high levels of conductivity within the two inclusions. This is constructed by

thresholding a Whittle-Matérn Gaussian random field defined by (2.3.11), (2.3.12);

true values for the hierarchical parameters used are shown in Table 2.1.

Remark 2.6.1. We do not display the underlying Gaussian random field u which

is thresholded to obtain the true conductivity in Figure 5 as this Gaussian random

field cannot be expected to be reconstructed accurately, in general. Furthermore it is

important to appreciate that in general a true conductivity will not be constructed

by such thresholding; the field u is simply an algorithmic construct. We do however

show u, and its evolution, in the algorithm, because this information highlights the

roles of the length-scale and regularity parameters.

47



When performing inversion we sample initial ensembles using the prior dis-

tributions shown in Table 2.2. We have set our prior distributions in such a way

that the true value for each hyperparameter lies within the range specified.

Hyperparameter Value

α† 3
τ † 10

Table 2.1: Model problem 1. True values for each hyperparameter.

Hyperparameter Prior

α U [1.3, 4]
τ U [5, 30]

Table 2.2: Model problem 1. Prior distribution for each hyperparameter.
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Figure 2.5: Model problem 1: true log-conductivity.
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Figure 2.6: Model problem 1. Progression through iterations of non-hierarchical
method.

Figure 2.7: Model problem 1. Progression through iterations of non-hierarchical
method with level set.
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Figure 2.8: Model problem 1. Progression through iterations of centered hierarchical
method.

Figure 2.9: Model problem 1. Progression through iterations of centered hierarchical
method with level set.
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Figure 2.10: Model problem 1. Progression through iterations of non-centered hier-
archical method.

Figure 2.11: Model problem 1. Progression through iterations of non-centered
method with level set.
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Figure 2.12: Model problem 1. Progression of average value for α and τ .
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Figure 2.13: Model problem 1. Left: relative error. Right: log-data misfit.
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Figure 2.14: Model problem 1. EKI for the final iteration for the non-centered
approach with Whittle-Matérn from four different initializations.

Figures 2.6 - 2.11 show the progression of both the level-set function u, and

the permeability κ, through five iterations of the method. Non-hierarchical, centered

and non-centered methods are considered in turn. By comparing the reconstructions

with the true conductivity, these figures clearly demonstrate two facts: (a) that being

hierarchical is necessary to obtain a good reconstruction; (b) that implementing the

hierarchical method using a non-centered parameterization has significant benefits

when compared to the centered method. These points are further demonstrated in

Figures 2.12 which shows the learning of the hyperparameters, in comparison with

the truth, for the three methods.

Concentrating solely on the non-centered approach, we run ten different ini-

tializations of the EKI. We display the resulting data-misfit and error, as a function

of iteration, for all ten in Figure 2.13. We display the last iteration of four of these

ten in Figures 2.14 - 2.15.

In summary, Figures 2.10 - 2.12 clearly show the superiority of the non-

centered hierarchical method. For all the initializations shown, the EKI produces

conductivities which concentrate near to the true conductivity and have length-scale

similar to those appearing in the truth; see Figures 2.13 - 2.15. The centered hierar-
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Figure 2.15: Model problem 1. EKI for the final iteration for the non-centered
method with level set from four different initializations.

chical and non-hierarchical methods fail to do this; see Figures 2.6 - 2.9. However it

is important to note the non-centered method does produce substantial variation in

the predicted solution, depending on which initialization is used as shown in Figures

2.13 - 2.15.

2.6.2 Geometric Parameterization

In this subsection we employ Model Problem 2 from subsection 2.5.2. We con-

sider reconstruction of a piecewise continuous channel which is defined through two

heterogeneous Gaussian random fields, scalar geometric parameters specifying the

geometry and scalar hierarchical parameters characterizing the length-scale and reg-

ularity of the two fields.

The truth u† is shown in Figure 2.16. It is drawn from a prior distribution

which we now describe; details may be found in [80]. The channel is described by

five parameters: d1 – amplitude; d2 – frequency; d3 – angle; d4 – initial point; and

d5 – width. We generate two Gaussian random fields {κi}2i=1, both defined on the

whole of the domain D but entering the permeability κ only inside and outside
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(respectively) the channel. The unknown u thus comprises the five scalars {di}5i=1

and the two fields {κi}2i=1. We do not explicitly spell out the mapping from u to

the coefficient κ appearing in the Darcy flow, but leave this to the reader. The

{κi}2i=1 are specified as log-normal random fields and the underlying Gaussians are

of Whittle-Matérn type, defined by (2.3.11), (2.3.12); different uniform distributions

on α and τ are used for the two fields {κi}2i=1 The parameters {di}5i=1 are also given

uniform distributions. The entire specification of the prior is given in Table 2.4. For

the truth the true hierarchical parameters are provided in Table 2.3.

In our inversion we employ 64 mollified pointwise observations {li(p)}64
i=1

given by, for some σ > 0,

lt(p) =

∫
D

1

2πσ2
e−

1
2σ2

(x−xt)2p(x)dx, (2.6.4)

where the xi are uniformly distributed points on D. We discretize the forward model

using a second order centered finite difference method with mesh spacing 10−2. For

our EKI method we use the same values for our parameters as in subsection 2.6.1.
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Figure 2.16: Model problem 2. True log-permeability.

Parameter Value

α†1 2

α†2 2.8

τ †1 30

τ †2 10

Table 2.3: Model problem 2. Parameter selection of the truth.
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Parameter Prior

d1 U [0, 1]
d2 U [2, 13]
d3 U [0.4, 1]
d4 U [0, 1]
d5 U [0.1, 0.3]
κ1 N(1, (I − τ2

1 ∆)−α1)
κ2 N(4, (I − τ2

2 ∆)−α2)
α1 U [1.3, 3]
τ1 U [8, 30]
α2 U [1.3, 3]
τ2 U [8, 30]

Table 2.4: Model problem 2. Prior associated with channelised flow.

Figure 2.17: Model problem 2. Progression through iterations of non-hierarchical
method.
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Figure 2.18: Model problem 2. Progression through iterations of centered hierarchi-
cal method.

Figures 2.17 - 2.19 are consistent with the previous subsection in that we

notice that hierarchical methods are needed and that non-centring is necessary to

make hierarchical methods perform well. We qualify this by noting that the geom-

etry is well-learned in all cases, but that the reconstructions of the random fields

u1 and u2 inside and outside the geometry are sensitive to needing non-centered

hierarchical representation. Even then the reconstruction is only accurate in terms

of amplitude and length-scales and not pointwise.

Figures 2.20 and 2.21 give further insight into this, showing how the smooth-

ness and length-scale parameters are learned differently in the hierarchical, centered

and non-centered methods. Again the conclusions are consistent with the previous

subsection. Figures 2.22 and 2.23 concentrate on the application of the non-centered

approach, using ten different initializations. The data misfit and relative error in the

field are shown for all ten cases in Figure 2.22; four solution estimates are displayed

in Figure 2.23. The results are similar to those in the previous subsection. However

there is more variability across initializations. This might be ameliorated by use of

a larger ensemble size.
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Figure 2.19: Model problem 2. Progression through iterations of non-centered hier-
archical method.
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Figure 2.20: Model problem 2. Progression of average value for α1 and τ1.
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Figure 2.21: Model problem 2. Progression of average value for α2 and τ2.
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Figure 2.22: Model problem 2. Left: relative error. Right: log-data misfit.
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Figure 2.23: Model problem 2. EKI for the final iteration for the non-centered
approach from four different initializations.

2.6.3 Function-valued Hierarchical Parameterization

Our final set of experiments will be based on hierarchical inversion of non-stationary

random fields, using Model Problem 3. We consider reconstruction of truths that

are not drawn from the prior; the prior will be a hierarchical Gaussian model with

spatially varying inverse length-scale as hyperparameter. Examples of such truths

are ones which contain both rough and smooth features. We discretize the forward

model using a piecewise-linear finite element method (FEM), with a mesh of h =

1/100. The truth we aim to recover is given by

u†(x) =



exp

(
4− 25

x(5−x)

)
, x ∈ (0, 5)

1, x ∈ [7, 8]

−1, x ∈ (8, 9]

0, otherwise,

(2.6.5)
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which incorporates both rough and smooth features. Our parameters for the iter-

ative methods are identical to those used in subsection 2.6.1. Because the results

of subsection 2.6.1 and 2.6.2 clearly demonstrate the need for non-centring in hier-

archical methods, we do not include results for the centered hierarchical approach

here; we compare non-hierarchical methods with the use of non-centered hierarchical

methods with both Cauchy and Gaussian random fields as priors on the hyperpa-

rameter v.
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Figure 2.24: Model problem 3. Progression through iterations of non-hierarchical
method.
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Figure 2.25: Model problem 3. Progression through iterations with hierarchical
Gaussian random field.
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Figure 2.26: Model problem 3. Progression through iterations with hierarchical
Cauchy random field.
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Figure 2.27: Model problem 3. Left: relative error. Right: log-data misfit.
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Figure 2.28: Model problem 3. EKI for the final iteration for the Gaussian hierar-
chical method from four different initializations.
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Figure 2.29: Model problem 3. EKI for the final iteration for the Cauchy hierarchical
method from four different initializations.

For our Cauchy density function (2.3.15), we set a = 4 and b = d = 0. Our

length-scale for the non-hierarchical method will be based on a Gaussian random

field (2.3.14), similarly with the non-centered Gaussian approach. Our comparison of

each approach is provided in Figures 2.24 - 2.26. We notice that the non-hierarchical

method struggles to reconstruct the truth, and in particular the piecewise constant

part of it with discontinuities. In contrast both non-centered approaches perform

well. The effectiveness of the non-centered approaches are highlighted in Figures 2.27

- 2.29. The first shows the data-misfit and relative error over ten realizations, and
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the second shows four reconstructions chosen from these ten at random. Substantial

robustness to the choice of realization is clear. Note however that for a multi-

dimensional problem inversion the variability with respect to initialization may be

more significant, as in the previous two subsections.

2.7 Conclusion & Discussion

In this chapter we have considered several forms of parameterizations for EKI. In

particular our main contribution has been to highlight the potential for the use

of hierarchical techniques from computational statistics, and the use of geometric

parameterizations, such as the level set method. Our perspective on EKI is that

it forms a derivative free optimizer and we do not evaluate it from the perspec-

tive of uncertainty quantification. However the hierarchical and level set ideas are

motivated by Bayesian formulations of inverse problems. We have shown that our

parameterizations do indeed lead to better reconstructions of the truth on a variety

of model problems including groundwater flow, EIT and source inversion. There

is very little analysis of EKI, especially in the fixed, small, ensemble size setting

where it is most powerful. Existing work in this direction may be found in [19, ?];

it would be of interest to extend these analyses to the parameterizations introduced

here. Furthermore, from a practical perspective, it would be interesting to extend

the deployment of the methods introduced here to the study of further applications.
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Chapter 3

Analysis of hierarchical

ensemble Kalman inversion

3.1 Overview

The motivation in this chapter is to generalize the scaling results derived in Chapter

2. We do so by considering both the noisy and noise-free limits while giving a

better overview of both approaches. As much of this chapter will follow from its

predeceasing one, we state a major difference in this chapter, which is to introduce

certain variants of the EnKF hierarchically and to define their continuous-time limit.

A numerical example will highlight the importance of this through a discretization

of the limit on a 1D elliptic PDE.

3.2 Introduction

The ensemble Kalman filter (EnKF) [57, 59] was proposed by Evensen in 1994 as a

Monte-Carlo approximation of the Kalman filter (KF). Its motivation was based on

mitigating the computational challenges associated with the KF, replacing the up-

dated mean and covariances with an ensemble of particles. Since then the EnKF has

been widely applied in numerous fields such as weather prediction and oceanography

[4, 58, 97]. Given its robustness and Bayesian formulation paradigm, the EnKF has

been further applied to inverse problems. Inverse problems are concerned with the

recovery of some quantity of interest u ∈ X from noisy measurements y ∈ Y given

by

y = G(u) + η, η ∼ N (0,Γ). (3.2.1)
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By allowing for a Bayesian approach one is interested in constructing, via an appli-

cation of an infinite-dimensional Bayes’ Theorem [137], a posterior measure of the

random variable u|y
µ(du) =

1

Z
exp(−Φ(u; y))µ0(du),

with normalizing constant

Z :=

∫
X

exp(−Φ(u; y))µ0(du),

such that our data-likelihood is in the form of a potential

Φ(u; y) =
1

2
‖Γ−1/2(y − G(u))‖2,

with the addition of a prior measure µ0. This has been recently studied where

there have been advancements in both computational and theoretical understand-

ing [19, 77, 78, 129]. From the computational aspect the EnKF was derived as

a derivative-free inverse solver, which can be thought of as an optimizer which

uses techniques from the Levenberg-Marquardt (LM) scheme [71] combined with

elements of the EnKF. It has been shown that applying these regularization tech-

niques from LM [77, 71] can improve the performance of the method. Regarding

the theory of the EnKF for inverse problems, there has been progress on gaining

analytical insight such as approximating continuous-time limits [19, 129] within the

context of inverse problems. A new direction in this field which has emerged is the

incorporation of hierarchical approaches for inverse problems [6, 47, 98, 123, 124].

In hierarchical inverse problems we are interested in recovering our unknown and

a corresponding hyperparameter θ ∈ R+ that defines the unknown i.e. we wish to

recover an unknown (u, θ) ∈ X × R+ from noisy measurements y where

y = G(u, θ) + η.

This allows for richer reconstructions as more information about the underlying

unknown is available. An important feature of the EnKF applied to inverse problems

is that it produces an ensemble of particles which lies within the linear span of the

initial ensemble. This effect is known as the “subspace property”. By incorporating

various hierarchical approaches we look to break this subspace property. This allows

the solution to learn from information which may not be given within the span,

but instead the data. Specifically for EnKF inversion a hierarchical methodology

was proposed in [33] which demonstrated improvements over its non-hierarchical
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counterpart. The newly proposed method provides a way to effectively learn both

the unknown and its hyperparameters that define it. This work used ideas from

hierarchical computational statistics and applied it in an inverse problem setting

[115, 116].

However regarding analytical results there has been no development in un-

derstanding these hierarchical approaches for the EnKF. This can be related to the

lack of analysis on the EnKF. As of yet there has been work done on estimating non-

hierarchical continuous-time limits [64]. The purpose of this chapter is to build some

analytical insight for hierarchical approaches that were used in [33] for Bayesian in-

verse problems. It was shown in the linear noise-free case that one can attain a

preconditioned gradient flow structure. Much of this will be based on extending the

current theory in a hierarchical manner to the nonlinear noisy case, while providing

an overview of the limit results attained in [33]. We also aim to understand these

approaches with modified versions of the EnKF, namely localization [70] and covari-

ance inflation [5]. Both these techniques were developed to improve errors based

on a small ensemble size. Similarly with some of the hierarchical approaches, lo-

calization and covariance inflation have the ability to break the subspace property.

As a result it would be of interest to understand the limiting behaviour of these

techniques. This includes conducting numerical experiments to verify hierarchical

results obtained. We emphasize that with this chapter, rather than deriving new

results for the EnKF, we aim to shed some light on hierarchical EnKF approaches

for inverse problems and their respective continuous-time limits.

3.2.1 Structure

The layout of this chapter is as follows; in Section 3.3 we provide an overview of the

EnKF applied to inverse problems. This will lead onto the formal derivation of the

continuous-time limits applied to inverse problems. In Section 3.4 we give a brief

introduction for hierarchical approaches to EnKF inversion, while in Section 3.5 we

derive and present continuous-time limits for a list of variants on the EnKF. We

verify these results through means of numerics in Section 3.6. Finally in Section 3.7

we summarize our results and provide a brief mention on future work to consider.

3.2.2 Notation

We assume that (X , ‖·‖, 〈·〉) and (Y, ‖·‖, 〈·〉) are two separable Hilbert spaces which

are linked through the forward operator G : X → Y. The operator can be thought of

as mapping from the space of parameters X to the observation space Y. We denote
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the space of our hyperparameters as θ = (σ, α, `) ∈ H where H := R×R+×R+. For

any such operator we define 〈·, ·〉Γ = 〈Γ−1/2·,Γ−1/2·〉 and ‖ · ‖Γ = ‖Γ−1/2 · ‖, while

for finite dimensions | · |Γ = |Γ−1/2 · | with | · | denoting Euclidean norm. u
(j)
n will

denote an ensemble of particles where n is the iteration count and j ∈ {1, . . . , J} is

the jth ensemble member.

3.3 EnKF for Inverse Problems

The iterative EnKF method was first proposed in [79] to tackle Bayesian inverse

problems in a partial differential equation (PDE)-constrained framework. The

method can be derived as a sequential Monte-Carlo (SMC) approximation, where

our probability measures of interest µn are defined by, for h = N−1,

µn(du) ∝ exp(−nhΦ(u; y))µ0(du),

thus leading to

µn+1(du) =
1

Zn
exp(−hΦ(u; y))µn(du),

where

Zn :=

∫
X

exp(−hΦ(u; y))µn(du).

We can construct our update for our probability measures µn+1 through the opera-

tion

µn+1 = Lnµn, (3.3.1)

where Ln can be treated as a non-linear operator from µn to µn+1 via an application

of Bayes’ Theorem. The idea behind the formulation of (3.3.1) is that it can be

viewed as an artificial discrete-time dynamical system mapping the prior measure

µ0 to the posterior measure µn. Recall that with SMC methods one is interested in

approximating a sequence of particles and weights which take the form

µn '
J∑
j=1

w(j)
n δ

u
(j)
n
, j ∈ {1, . . . , J},

with δ
u
(j)
n

denoting the delta-Dirac mass at u
(j)
n . The weights associated with our

sequence of particles satisfy the condition

J∑
j=1

w(j)
n = 1.
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The SMC approach poses computational advantages over other Monte-Carlo meth-

ods, but still has limitations within it. These arise when the weights {w(j)
n }Jj=1

become degenerate i.e. that one of the weights becomes close to one where the rest

are negligible [8]. The EnKF poses an improvement on this as its approximation

has the form

µn '
1

J

J∑
j=1

δ(j)
un ,

which excludes the weights. The EnKF for inverse problems, similarly to the EnKF,

can be into two steps: a prediction step and an update step. The prediction step can

be interpreted as mapping an ensemble of particles u
(j)
n into the data space where

we define our sample means for J ensemble members

ū =
1

J

J∑
j=1

u(j)
n ,

Ḡ =
1

J

J∑
j=1

G(u(j)
n ),

and our empirical covariances

Cuwn =
1

J − 1

J∑
k=1

(u(k) − ū)⊗ (G(u(k))− Ḡ) (3.3.2)

Cwwn =
1

J − 1

J∑
k=1

(G(u(k))− Ḡ)⊗ (G(u(k))− Ḡ). (3.3.3)

The update step matches the mapped ensemble of particles to the data y
(j)
n+1 by

using the calculated mean and covariances through the update formula

u
(j)
n+1 = u(j)

n + Cuwn
(
Cwwn + hΓ

)−1(
y

(j)
n+1 − G(u(j)

n )
)
, (3.3.4)

where

y
(j)
n+1 = y + ι

(j)
n+1, ι

(j)
n+1 ∼ N (0, h−1Γ). (3.3.5)

The EnKF for inverse problems possesses an important characteristic known as the

subspace property [78, 93]. The property was first discussed [93] which states that

the updated ensemble of particles u
(j)
n+1 is preserved by the linear span of the initial

ensemble A := span{u(j)
0 } for j ∈ {0, . . . , J}. In the context of Gaussian priors, in

the discrete case, this was proved in the following theorem.
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Theorem 3.3.1. For every (n, j) ∈ N × {1, . . . , J} we have u
(j)
n+1 ∈ A and hence

un+1 ∈ A.

Proof. The proof can be found in [79] by Iglesias et al..

The property can be interpreted as given an initial ensemble, with particular

set features depending how it is chosen, our solution to the inverse problem (3.2.1)

will remain in the form that it is chosen initially. This can be advantageous if we

know that the underlying unknown u is of a similar form to the initial ensemble,

where the converse of this is that it poses a limitation if they differ significantly.

3.3.1 Continuous-Time Limit

Nonlinear Noisy Case

The continuous-time limit of the EnKF applied to inverse problems was considered

in the work of Schillings et al. [129]. We briefly recall the limit analysis here,

firstly by considering the nonlinear noisy case. The limit here arises by taking the

parameter h → 0. We define un = {u(j)
n }Jj=1 and assume that un ≈ u(nh). Our

update step (3.3.4) can now be written in the form

u
(j)
n+1 = u(j)

n + hCuwn (un)
(
hCwwn (un) + Γ

)−1(
y − G(u(j)

n )
)

+ hCuwn (un)
(
hCwwn (un) + Γ

)−1
ι
(j)
n+1

= u(j)
n + hCuwn (un)

(
hCwwn (un) + Γ

)−1(
y − G(u(j)

n )
)

+ h
1
2Cuwn (un)

(
hCwwn (un) + Γ

)−1√
Γζ

(j)
n+1,

where ζ
(j)
n+1 ∼ N (0, I). By taking the limit h → 0, our limit can be viewed as a

tamed Euler-Maruyama type discretization of the stochastic differential equations

(SDEs)

du(j)

dt
= Cuw(u)Γ−1

(
y − G(u(j))

)
+ Cuw(u)

√
Γ−1

dW (j)

dt
,

with W (j) denoting independent cylindrical Brownian motions. By substituting the

form of the covariance operator (3.3.2) we see

du(j)

dt
=

1

J

J∑
k=1

〈
G(u(k))− Ḡ, y − G(u(j)) +

√
Γ
dW (j)

dt

〉
Γ
(u(k) − ū). (3.3.6)
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This derivation of the limit satisfies a generalization of the subspace property in

continuous-time provided there is a solution, as the vector field is in the linear span

of the ensemble. As we have just analyzed the limit in the noisy-case we will now

turn our attention towards the linear noise-free case.

Linear noise-free case

For this we take our forward operator G(·) = A· to be bounded and linear. Using

this notion and by substituting our linear operator A in (3.3.6) we have the following

diffusion limit

du(j)

dt
=

1

J

J∑
k=1

〈
A(u(k) − ū), y −Au(j)

〉
Γ
(u(k) − ū). (3.3.7)

By defining the empirical covariance operator

C(u) =
1

J − 1

J∑
k=1

(u(k) − ū)⊗ (u(k) − ū),

and taking Γ = 0 we can express (3.3.7) as

du(j)

dt
= −C(u)DuΦ(u(j); y), (3.3.8)

with

Φ(u; y) =
1

2
‖Γ−1/2(y −Au)‖2.

Thus we note that each particle performs a preconditioned gradient descent for

Φ(·; y) where all the gradient descents are preconditioned through the covariance

C(u). Since our covariance operator C(u) is semi-positive definite we have that

d

dt
Φ(u(t); y) =

d

dt

1

2
‖Γ−1/2(y −Au)‖2 ≤ 0,

which provides a bound on ‖Au(t)‖Γ. In this case it was shown, through Theorem

2. in [129], that the gradient flow structure provides the existence of a solution

satisfying the subspace property.

3.4 Hierarchical Ensemble Kalman Inversion

In order to derive continuous-time limits we first recall a few properties of the hier-

archical ensemble Kalman inversion (EKI). This will include newly defined update
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equations where we consider both the centred and non-centred approaches towards

generating our prior measure µ0. Our prior µ0 ∼ N (0, C) will be assumed to be of

a Gaussian form with a Whittle-Matérn covariance function

c(x, x′) = σ2 21−ν

Γ(ν)

(
|x− x′|

`

)ν
Kν

(
|x− x′|

`

)
, x, x′ ∈ Rd, (3.4.1)

where Kν denotes a modified Bessel function of the second kind and Γ(ν) is a

Gamma function. From (3.4.1) we also have the inclusion of three hyperparameters;

the amplitude σ ∈ R, the regularity ν = α+ d/2 ∈ R+ and the length-scale ` ∈ R+.

We can explicitly represent this covariance function through the following stochastic

partial differential equation (SPDE), which is derived in [124],

(I − `24)
α
2 u = `d/2

√
βξ, (3.4.2)

where ξ ∈ H−s(D), s > d
2 , for D ⊂ Rd is Gaussian white noise and

β = σ2 2dπd/2Γ(α)

Γ(α− d
2)

.

Taking the SPDE defined above with β ≡ 1 we can rewrite (5.4.8) as

C−
1
2

θ u = ξ, (3.4.3)

where θ = (σ, α, `) ∈ H denotes the collection of hyperparameters. We specifi-

cally choose the value of β ≡ 1 for simplicity. The SPDE (3.4.2) is a common way

of representing and expressing Gaussian random fields. This approach introduced

by Lindgren et al. [96] was motivated to act as alternative to the Karhunen-Loève

expansion which posed significant computational benefits. They showed that the

solution to the SPDE (3.4.2) omitted a covariance structure of the form (3.4.1).

Hierarchical modelling in statistics [116] has become quite crucial for better under-

standing of estimating the underlying unknown.

This can be translated to inverse problems where we are not only interested

in the field u but its hyperparameters associated with it. Within hierarchical mod-

elling there are commonly two approaches one can take: the centred approach and

the non-centred approach. These approaches were derived by Papaspiliopoulos et

al. in [115, 116] in the context of Gaussian processes for computational statistics.

Translating this to our inverse setting, the non-centred approach can be viewed as

the parameterization under which we aim to solve (ξ, θ) ∈ H−s(D)×H from (3.4.3).

While the centred approach differs as under its parameterization we aim to solve for
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(u, θ) ∈ X × H from (3.4.3). In terms of how the quantities (u, θ) and (ξ, θ) differ,

their respective prior forms will be different as for the non-centred approach ξ and

θ are independent. Before discussing each approach in more detail we present an

important proposition which states both approaches are equivalent when generating

samples from (3.4.2).

Proposition 3.4.1. Given a Gaussian random field u with covariance operator Cθ,
the centred and non-centred approaches to generate u are equivalent.

Proof. Let T : (ξ, θ) → u be a mapping where we choose Cθ := `dβ(I − `2∆)−α for

equation (3.4.3). We can express u through the Karhunen-Loève expansion

u =
∑
k

√
λkξ̂kφk, ξ̂k ∼ N (0, 1),

where (λ2
k, φk) are the eigenpairs of Cθ for k = 1, 2. Using the fact that both

u =
∑
k

ûkφk, (3.4.4)

ξ =
∑
k

ξ̂kφk, (3.4.5)

we see after substituting (3.4.4) and (3.4.5) into (3.4.3), where k =

(
k1

k2

)
, that

1

`d/2
√
β

(I − `2|k|2)
α
2

∑
k

ûkφk =
∑
k

ξ̂kφk,

1

`d/2
√
β

(I − `2|k|2)
α
2 ûk = ξ̂k.

This implies

ûk = `d/2
√
β(I − `2|k|2)−

α
2 ξ̂k,

which is equivalent to λ2
k := (I − `2|k|2)−α.
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3.4.1 Centred Formulation

We now characterize our inverse problem through the centre formulation. For this

approach our prior will have the form

P(u, θ) = P(u|θ)P(θ), (3.4.6)

via the definition of conditional probability. We are interested in the recovery of our

unknown u ∈ X from noisy measurements of our data y where

y = G(u) + η, η ∼ N (0,Γ). (3.4.7)

We can further define a potential for our inverse problem Φ(u; y) : X → R where

Φ(u; y) =
1

2
|y − G(u)|2Γ. (3.4.8)

From the potential given in (3.4.8) we can define our data-likelihood as

P(y|u) = exp
(
− Φ(u; y)

)
. (3.4.9)

Combing both our prior (3.4.6) and data-likelihood (3.4.9), via Bayes’ Theorem, we

can construct our posterior probability

P(u, θ|y) ∝ P(y|u)P(u, θ)

= exp
(
− Φ(u; y)

)
P(u|θ)P(θ).

Remark 3.4.1. We note that the inverse problem associated with the centred ap-

proach (3.4.7) is the exact same as the non-hierarchical inverse problem (3.2.1) as the

data does not depend on the updated hyperparameters. Thus in deriving continuous-

time limits, the limit for our updated random field u
(j)
n should be equivalent.

As with the non-hierarchical method, we are interested in analyzing the hi-

erarchical approaches influence on the subspace property, specifically whether they

can break away from this property. With the centred approach we know that the

data is only conditioned on the field u and not its hyperparameters. Due to this

we expect that with the centred approach, (u, θ) to lie within the span of the initial

ensemble A. The following theorem verifies this in the discrete case.
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Theorem 3.4.1. For every (n, j) ∈ N × {1, . . . , J} we have u
(j)
n+1, θ

(j)
n+1 ∈ A and

hence un+1, θn+1 ∈ A.

Proof. The proof follows similarly to that in [79] which is based on simple induction,

but with the key difference of the inclusion of our hyperparameters θ
(j)
n . We define

our Kalman gain matrices as

Ku
n =

(
Cuwn

(
Cwwn + Γ

)−1

Cuun
(
Cwwn + Γ

)−1

)
,

Kθ
n =

(
Cθwn

(
Cwwn + Γ

)−1

Cθθn
(
Cwwn + Γ

)−1

)
,

with empirical covariances Cuwn , Cuun , Cθwn . Recalling that the update equations are

given as

u
(j)
n+1 = u(j)

n + Cuwn (Cwwn + Γ)−1(y
(j)
n+1 − G(u(j)

n )), (3.4.10)

θ
(j)
n+1 = θ(j)

n + Cθwn (Cwwn + Γ)−1(y
(j)
n+1 − G(u(j)

n )). (3.4.11)

By defining

d
(j)
n+1 = (Cwwn + Γ)−1(y

(j)
n+1 − G(u(j)

n )),

Then the update formulas (3.4.10) and (3.4.11) can be defined as

u
(j)
n+1 = u(j)

n +
1

J

J∑
j=1

〈Ḡn+1, d
(j)
n+1〉u

(j)
n+1

= u(j)
n +

1

J

J∑
j=1

〈Ḡn+1, d
(j)
n+1〉u

(j)
n ,

θ
(j)
n+1 = θ(j)

n +
1

J

J∑
j=1

〈Ḡn+1, d
(j)
n+1〉θ

(j)
n+1

= θ(j)
n +

1

J

J∑
j=1

〈Ḡn+1, d
(j)
n+1〉θ

(j)
n .

At step size n this shows that u
(j)
n+1, θ

(j)
n+1 ∈ A for j ∈ {1, . . . , J}. Hence since our
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outputs un+1, θn+1 at the end are defined as

un+1 =
1

J

J∑
j=1

u
(j)
n+1,

θn+1 =
1

J

J∑
j=1

θ
(j)
n+1,

it follows that both un+1, θn+1 ∈ A.

3.4.2 Non-Centred Formulation

As done previously in subsection 3.4.1 we characterize our inverse problem but now

for the non-centred formulation. For this approach our prior will have the form

P(ξ, θ) = P(ξ)P(θ), (3.4.12)

via the definition of the non-centred approach in [115]. We are interested in the

recovery of our unknown (u, θ) ∈ X × H from noisy measurements of our data y

where

y = G(T (ξ, θ)) + η, η ∼ N (0,Γ), (3.4.13)

where T : (ξ, θ)→ u is an operator such that u = T (ξ, θ). This modified formulation

of our unknown arises from the SPDE (3.4.2). As before we can further define a

potential for our inverse problem ΦNC(ξ, θ; y) : X ×H→ R where

ΦNC(ξ, θ; y) =
1

2
|y − G(T (ξ, θ))|2Γ. (3.4.14)

With NC denoting non-centred. From the potential given in (3.4.14) we can define

our data-likelihood as

P(y|ξ, θ) = exp
(
− ΦNC(ξ, θ; y)

)
. (3.4.15)

Combing both our prior (3.4.12) and data-likelihood (3.4.15), via Bayes’ Theorem,

we can construct our posterior probability

P(ξ, θ|y) ∝ P(y|ξ, θ)P(ξ, θ)

= exp
(
− ΦNC(ξ, θ; y)

)
P(ξ)P(θ).

Remark 3.4.2. Unlike the centred approach, the non-centred formulation also dif-

fers as shown in the inverse problem (3.4.13), namely that the data it is dependent
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on both the field u and the set of hyperparameters θ which is based on the transfor-

mation T . This would suggest the continuous-time limits would be different to the

centred approach.

The difference in the prior form between both approaches is important in un-

derstanding why the non-centred approach is advantageous. Given that we are using

ξ and that it is independent on the initialization of θ in the prior form, and under

the transformation T , this allows a much less restriction induced by the subspace

property. As a result both ξ and θ mix and update well, showcasing improvements

over the centred approach. Also numerics in [33] demonstrated this for a range of

non-linear PDE based inverse problems. The following theorem highlights this key

difference related to the subspace property.

Theorem 3.4.2. For every (n, j) ∈ N × {1, . . . , J} we have ξ
(j)
n+1, θ

(j)
n+1 ∈ A and

ξn+1, θn+1 ∈ A hence un+1 /∈ TA, where TA is the space containing the transformed

ensemble of particles.

Proof. The proof follows very similarly to Theorem 3.4.1 but with the difference of

the transformation T (ξ, θ) = u which abides by a difference space than the one of

the initial ensemble A. Therefore un+1 /∈ TA.

Centred approach Non-centred approach

Inverse problem y = G(u) + η y = G(T (ξ, θ)) + η

Prior µ0 ≡ P(u, θ) µ0 ≡ P(ξ, θ)
µ0 ≡ P(u|θ)× P(θ) µ0 ≡ P(ξ)× P(θ)

Likelihood Φ(u; y) = 1
2 |y − G(u)|2Γ ΦNC(ξ, θ; y) = 1

2 |y − G(T (ξ, θ))|2Γ
P(y|u) = e−Φ(u;y) P(y|ξ, θ) = e−ΦNC(ξ,θ;y)

Posterior P(u, θ|y) ∝ P(y|u)× P(u, θ) P(ξ, θ|y) ∝ P(y|ξ, θ)× P(ξ, θ)

P(u, θ|y) ∝ e−Φ(u;y)P(u|θ)P(θ) P(ξ, θ|y) ∝ e−ΦNC(ξ,θ;y)P(ξ)P(θ)

Table 3.1: Comparison of both hierarchical approaches.

3.5 Hierarchical Continuous-Time Limits

3.5.1 Centred Approach

3.5.2 Nonlinear Noisy Case

We begin our derivation of a continuous-limit for the hierarchical iterative EnKF

method by considering firstly the centred approach. As we are interested now in
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(u, θ) ∈ X ×H we can construct a general posterior measure for (u, θ|y)

µ(du, dθ) =
1

Z
exp(−Φ(u; y))µ0(du, dθ),

with

Z :=

∫
X×H

exp(−Φ(u; y))µ0(du, dθ).

Similarly with the non-hierarchical EnKF, we can derive an approximation of the

posterior measure through introducing an artificial dynamical system µn+1 = Lnµn

where

µn+1(du, dθ) =
1

Zn
exp(−hΦ(u; y))µn(du, dθ),

and

Zn :=

∫
X×H

exp(−hΦ(u; y))µn(du, dθ).

To construct our continuous-time limit we recall that the updates equations with

the hierarchical iterative EnKF for

u
(j)
n+1 = u(j)

n + Cuwn (Cwwn + h−1Γ)−1(y
(j)
n+1 − G(u(j)

n ))

θ
(j)
n+1 = θ(j)

n + Cθwn (Cwwn + h−1Γ)−1(y
(j)
n+1 − G(u(j)

n )).

Our update equations contain empirical covariance operators

Cuwn =
1

J − 1

J∑
k=1

(u(k) − ū)⊗ (G(u(k))− Ḡ)

Cθwn =
1

J − 1

J∑
k=1

(θ(k) − θ̄)⊗ (G(u(k))− Ḡ)

Cwwn =
1

J − 1

J∑
k=1

(G(u(k))− Ḡ)⊗ (G(u(k))− Ḡ),

where, as before,

θ̄ =
1

J

J∑
k=1

θ(k)
n , ū =

1

J

J∑
k=1

u(k)
n , Ḡ =

1

J

J∑
k=1

G(u(k)
n ),
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for j = 1, . . . , J . By taking the limit of our update equations as h→ 0 this leads to

an Euler-Maruyama (EM) discretization of the form

du(j)

dt
= Cuwn (u)Γ−1

(
y − G(u(j))

)
+ Cuwn (u)

√
Γ−1

dW (j)

dt
(3.5.1)

dθ(j)

dt
= Cθwn (u)Γ−1

(
y − G(u(j))

)
+ Cθwn (u)

√
Γ−1

dW (j)

dt
, (3.5.2)

such that W (j) are cylindrical Brownian motions. By substituting the covariance

operators Cuwn , Cθwn in (3.5.1) and (3.5.2) this leads to

du(j)

dt
=

1

J

J∑
k=1

〈
G(u(k))− Ḡ, y − G(u(j)) +

√
Γ
dW (j)

dt

〉
Γ
(u(k) − ū) (3.5.3)

dθ(j)

dt
=

1

J

J∑
k=1

〈
G(u(k))− Ḡ, y − G(u(j)) +

√
Γ
dW (j)

dt

〉
Γ
(θ(k) − θ̄). (3.5.4)

In the hierarchical case the key distinguishment we see is firstly that our formulation

of our measure differs as we take more than one underlying unknown, but also, when

taking the limit h → 0 we see we have coupled systems of SDEs. Using the same

arguments in the non-hierarchical case given there is a solution to both (3.5.3) and

(3.5.4)

3.5.3 Linear Noise-Free Case

which after further substitution of the linear operator A ∈ L((X×H),Y) our coupled

SDEs read

du(j)

dt
=

1

J

J∑
k=1

〈
A(u(k) − ū), y −Au(j)

〉
Γ
(u(k) − ū),

dθ(j)

dt
=

1

J

J∑
k=1

〈
A(θ(k) − θ̄), y −Au(j)

〉
Γ
(θ(k) − θ̄).

Given our covariance operators for the centred approach

C(u) =
1

J − 1

J∑
k=1

(u(k) − ū)⊗ (u(k) − ū), (3.5.5)

C(θ) =
1

J − 1

J∑
k=1

(θ(k) − θ̄)⊗ (θ(k) − θ̄), (3.5.6)
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and Γ = 0, we can express (3.5.5) and (3.5.6) as

du(j)

dt
= −C(u)DuΦ(u(j); y), (3.5.7)

where our potential is defined as

Φ(u; y) =
1

2
‖Γ−1/2(y −Au)‖2.

As before we can interpret (3.5.7) as each particle {u(j)}Jj=1 performing a gradient

descent for Φ(·; y). This is the exact same limit and gradient flow structure that we

have in the non-hierarchical case (3.3.8).

3.5.4 Non-Centred Approach

3.5.5 Nonlinear Noisy Case

Our construction of our posterior measure differs with the non-centred approach as

we have a modified potential (3.4.14). Using this potential our posterior measure

for (ξ, θ|y) now reads

µ(dξ, dθ) =
1

Z
exp(−ΦNC((ξ, θ); y))µ0(dξ, dθ),

with

Z :=

∫
H−s(D)×H

exp(−ΦNC((ξ, θ); y))µ0(dξ, dθ).

As similarly done for the centred approach we can derive an approximation by an

artificial dynamical system µn+1,NC = Ln,NCµn,NC where

µn+1(dξ, dθ) =
1

Zn
exp(−hΦNC((ξ, θ); y))µn,NC(dξ, dθ),

and

Zn :=

∫
H−s(D)×H

exp(−hΦNC((ξ, θ); y))µn(dξ, dθ).

The prediction step of the non-centred approach is a mirror to that of the cen-

tred approach but with the difference of updating ξ instead of u, and we evaluate

both(ξ, θ) in the forward evaluation. By defining GT = G ◦ T our update equations
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for the non-centred approach are

ξ
(j)
n+1 = ξ(j)

n + Cξpn (Cwwn + h−1Γ)−1(y
(j)
n+1 − G

T (ξ(j)
n , θ(j)

n ))

θ
(j)
n+1 = θ(j)

n + Cθwn (Cwwn + h−1Γ)−1(y
(j)
n+1 − G

T (ξ(j)
n , θ(j)

n )),

where we again assume that ιn+1 ∼ N (0, h−1Γ) such that y
(j)
n+1 = y+ ιn+1, and that

our empirical covariances are defined as

Cξpn =
1

J − 1

J∑
k=1

(ξ(k) − ξ̄)⊗ (GT (ξ(k), θ(k))− GT ),

Cθwn =
1

J − 1

J∑
k=1

(θ(k) − θ̄)⊗ (GT (ξ(k), θ(k))− GT ),

Cwwn =
1

J − 1

J∑
k=1

(GT (ξ(k), θ(k))− Ḡ)⊗ (GT (ξ(k), θ(k))− GT ).

We see that with the covariances defined above we have the addition of the hyper-

parameter included in the evaluation of the forward operator which coincides with

the inverse problem formulation (3.4.13) where

GT =
1

J

J∑
j=1

GT (ξ(j)
n , θ(j)

n ), j = 1, . . . , J.

Therefore by taking the limit of our update equations as h→ 0, we have the coupled

SDEs

dξ(j)

dt
= Cξpn (·)Γ−1

(
y − GT (ξ(j), θ(j))

)
+ Cξpn (·)

√
Γ−1

dW (j)

dt
(3.5.8)

dθ(j)

dt
= Cθwn (·)Γ−1

(
y − GT (ξ(j), θ(j))

)
+ Cθwn (·)

√
Γ−1

dW (j)

dt
, (3.5.9)

such that W (j) are cylindrical Brownian motions. Using the formula for the covari-

ances from (3.5.8) and (3.5.9)

dξ(j)

dt
=

1

J

J∑
k=1

〈
GT (ξ(k), θ(k))− GT , y − GT (ξ(j), θ(j)) +

√
Γ
dW (j)

dt

〉
Γ
(ξ(k) − ξ̄)

dθ(j)

dt
=

1

J

J∑
k=1

〈
GT (ξ(j), θ(k))− GT , y − GT (ξ(j), θ(j)) +

√
Γ
dW (j)

dt

〉
Γ
(θ(k) − θ̄).
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3.5.6 Linear Noise-Free Case

As before we work in a linear setting where we define GT (·) = A·. Substituting

GT (ξ(k), θ(k)) = Au(k), for k = 1, . . . , J , yields

dξ(j)

dt
=

1

J

J∑
k=1

〈
A(u(k) − ū), y −Au(k)

〉
Γ
(ξ(k) − ξ̄) (3.5.10)

dθ(j)

dt
=

1

J

J∑
k=1

〈
A(u(k) − ū), y −Au(k)

〉
Γ
(θ(k) − θ̄). (3.5.11)

We notice with the SDEs the inclusion of the hyperparameter θ highlights one of

the differences for the non-centred approach. Given our covariance operators for the

non-centred approach

C(ξ) =
1

J − 1

J∑
k=1

(ξ(k) − ξ̄)⊗ (ξ(k) − ξ̄)

C(θ) =
1

J − 1

J∑
k=1

(θ(k) − θ̄)⊗ (θ(k) − θ̄),

which we can express (3.5.5) and (3.5.6), where Γ = 0, as

dξ(j)

dt
= −C(ξ)DuΦNC(u(j); y) (3.5.12)

dθ(j)

dt
= −C(θ)DuΦNC(u(j); y), (3.5.13)

with potential

ΦNC(ξ, θ; y) =
1

2
‖Γ−1/2(y −Au)‖2.

For the non-centred approach we have derived a coupled gradient flow system for

both the underlying unknown (3.5.12) and the hyperparameters (3.5.13) that differs

from its centred counterpart.

3.5.7 Hierarchical Covariance Inflation

With the developments of the EnKF there has been considerable advancements

which have looked at alternative approaches that provide improvements. An issue

that can arise with the EnKF is rank deficiency. This problem occurs from the

empirical covariances when the number of ensemble particles J in the data space Y
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is less than that of the input space X . One way to counteract this issue is through the

technique of covariance inflation [57]. We now aim to derive continuous-time limits

of hierarchical covariance inflation, for EnkF inversion. We will do so specifically

for the non-centred case, given its advantages we have discussed and shown in [33].

This allows for a modification of our covariances C(ξ), C(θ) given by

C(ξ)→ γC0 + C(ξ) (3.5.14)

C(θ)→ γθ0 + C(θ), (3.5.15)

with γ ∈ R+. Substituting (3.5.14) and (3.5.15) in our gradient flow system leads

to, for j = 1, . . . , J ,

dξ(j)

dt
= −(γC0 + C(ξ))DuΦNC(u(j); y)

dθ(j)

dt
= −(γ`0 + C(θ))DuΦNC(u(j); y).

By taking the inner product with DuΦNC(u(j); y) we have

dΦNC(u(j); y)

dt
≤ −γ‖C1/2

0 DuΦNC(u(j); y)‖2

dΦNC(u(j); y)

dt
≤ −γ‖θ1/2

0 DuΦNC(u(j); y)‖2.

which indicates that all limits are contained in the critical points of both potentials.

3.5.8 Hierarchical Localization

A further issue with the EnKF can arise from the correlation between the empirical

covariances. If the correlation distance is long this can cause problems with updating

our unknowns. Localization [58] is a method that aids by cutting off these long

distances which helps improve the update of the estimate. It is usually achieved

through the aid of convolution kernels that reduce distances of distant regions. The

convolution kernels ρ : D ×D → R are usually of the form

ρ(x, y) = exp
(
− (x− y)T

)
,
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given D ⊂ Rd for d ∈ N, thereby allowing us to define continuous-time limits

dξ(j)

dt
= C loc(ξ)DuΦNC(u(j); y)

dθ(j)

dt
= C loc(θ)DuΦNC(u(j); y),

where

C loc(ξ)Φ(x) =

∫
D
φ(y)k(x, y)ρ(x, y)dy

C loc(θ)Φ(x) =

∫
D
φ(y)k(x, y)ρ(x, y)dy,

given that k(x, y) corresponds to the kernel of the covariances and φ ∈ X .

3.6 Numerical Experiments

We now wish to add some numerics to the theory discussed regarding the variants of

localization and covariance inflation. We have seen through numerical investigation

in [33] that the theory discussed here matches with the results attained for various

non-linear and linear inverse problems. In the context of this work we will only

test for linear inverse problems, specifically a 1D elliptic PDE. Our numerics will

consist of learning rates of hyperparameters and the reconstruction of the truth for

both hierarchical localization and covariance inflation. Given a domain D ⊂ Rd,
for d = 1, with boundary ∂D, our forward model is concerned with solving for

p ∈ H1
0 (D) from

d2p

dx2
+ p = u x ∈ D, (3.6.1)

p = 0 x ∈ ∂D. (3.6.2)

Here we assume a domain of D = (0, π) with prescribed zero Dirichlet boundary

conditions (3.6.2). The inverse problem associated with the forward problem (3.6.1)

is the recovery of noisy measurements from the right hand side u where

yj = lj(p) + ηj , (3.6.3)
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such that lj ∈ V ∗ where V ∗ is the dual space of H1
0 (D). By defining Gj(T (ξ, θ)) =

lj(p), where we take our unknown function T (ξ, θ) = u, we can rewrite (3.6.3) as

y = G(T (ξ, θ)) + η. (3.6.4)

Our inverse solver for our numerics will be the iterative ensemble Kalman method

[79], where we aim to reconstruct a Gaussian random field. We will use the exact

continuous-time limits and take a discretization of the ODEs, using the MATLAB

solver ODE45. The time-stepping we use for our ODE solver will be chosen as

h = 0.01.

Remark 3.6.1. Note the choice of the time-stepping can be crucial. Our results we

will present are for the case of h = 0.01. However we have tested other values for h

for which the experiments differed marginally.

Initially we set our initial ensemble based on a prior distribution. Our initial

field will be set such that ξ
(j)
0 ∼ N (0, Cθ) where Cθ takes the form (3.4.3). To

generate our initial ensemble with covariance structure of (3.4.1) we first discretize

our SPDE (3.4.2) for u using a 1D centred finite difference method

ui − `2
ui+1 − 2ui + ui−1

h2
∗

= ξi, ξi ∼ N (0, α`/h∗),

which in matrix form is given as

1 + 2 `
2

h2∗
− `2

h2∗
0 . . . 0

− `2

h2∗
1 + 2 `

2

h2∗
− `2

h2∗

. . .
...

0 − `2

h2∗

. . .
. . . 0

...
. . .

. . .
. . . − `2

h2∗

0 . . . 0 − `2

h2∗
1 + 2 `

2

h2∗




x1

x2

...

xI

 =


ξ1

ξ2

...

ξI

 .

After generating u we take our linear mapping T : X → X to generate samples of

ξ. Our mesh size for our discretization is given as h∗ = 1/50 where I = 50. From θ

we will only treat the parameter of the length-scale ` hierarchically. Our reason for

this is that in a 1D numerical example the length-scale has a more notable effect on

how the input is generated. We keep σ = 1 and α = 0.8 while setting a prior now

on the inverse length-scale τ = 1/`

τ ∼ U [10, 40], (3.6.5)
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This modification is for numerical purposes to notice the learning at a better rate.

We generate our prior form P(ξ, θ) by solving the SPDE (3.4.2) using a piecewise

linear finite element method. Our truths will be chosen such that ξ† ∼ N (0, C†θ),
similar to the initial ensemble, where θ† = (σ†, α†, τ †) = (1, 0.8, 37). For our iterative

method we set an ensemble size of J = 50 and an iteration count of n = 15, with

covariance noise Γ = 0.012I. We discretize our PDE model (3.6.1) with a different

mesh size of h∗ = 1/50 using a centred finite difference method. We make inference

of our unknown through 16 chosen observations which lie on the true value of the

unknown. For implementing covariance inflation we set the parameter as γ = 0.1.

For our prior covariance θ0, as we consider it as uniformly distributed, we modify

this based on a Gaussian where we have θ0 ∼ N (25,
√

7
2
). This is the case for the

inverse length-scale.

In Figure 3.1 we analyze the performance of hierarchical localization by com-

paring it with non-hierarchical localization and the standard EnKF. We see that in

the left subfigure the standard EnKF and localization perform similarly emulating

a smooth function. However for hierarchical localization we see an improved recon-

struction which is more closely related to the truth, which incorporates its sharper

features. This can be attributed to changes in the length-scale which are verified in

the right sub figure, where we see that by adopting a hierarchical approach we can

effectively learn the true value of the length-scale which is τ † = 37. The learning of

the length-scale remains consistent with the results of [33] where the hyperparame-

ters learn the true value quickly and reach a limit before the learning stops prior to

the termination of the experiment.
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Figure 3.1: Performance of hierarchical localization. Left: reconstruction of the
truth. Right: learning rate of the length-scale.
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Figure 3.2: Performance of hierarchical covariance inflation. Left: reconstruction of
the truth. Right: learning rate of the length-scale.

We see similar results when analyzing hierarchical covariance inflation, where

learning the length-scale improves on the overall reconstruction of the truth as shown

in Figure 3.2.

3.7 Conclusion

The objective of this work was to introduce analysis regarding the recent hierarchical

approaches that were applied to EKI [33]. We have given a detailed description and

comparison of both the centred and non-centred approaches. For each case we have

shown how they relate to the subspace property where we further derived continuous-

time limits in in both the noisy and noise-free case. Our analysis clarifies that by

taking a non-centred approach one can significantly improve the performance of EKI.

This is verified through the transformation which allows the ensemble of particles to

leave the span of the initial ensemble. We introduced certain variants of the EnKF

to show that hierarchically this can be achieved too, which was verified through a

numerical experiment.

One avenue of interest is to consider, as done in [129], the behaviour of the

gradient flow structure defined for the non-centred approach (3.5.12) and analyze the

relationship with the subspace property. This is beyond the scope of this chapter,

but analyzing the behaviour could potentially result in improved convergence results

over the non-hierarchical case. A further direction is to extend this work by using

certain SDE discretizations of EKI. This was analyzed in [19], the natural extension

of this would be to translate this in a hierarchical manner.
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Chapter 4

Reduced basis methods for

Bayesian inverse problems

4.1 Overview

This chapter is concerned with the deployment of reduced order models to reduce the

cost of the forward model. This will be focused on one reduced order model which is

the reduced basis method. As the aim of this chapter is on reducing computational

cost, this is distinguishable compared to the other chapters. However we note this

chapter contains a brief review of Bayesian inverse problems and EKI, which have

already been mentioned in previous chapters.

4.2 Introduction

Uncertainty quantification (UQ) has risen as a topic of interest for both academics

and practitioners in recent years. It is concerned with quantifying the complexity

and uncertainty that can arise within a model or a set of equations. Due to its

popularity it has sparked the development of various numerical methods [9, 42,

38, 67, 148] which aid by attempting to quantify this uncertainty. One form of

how uncertainty arises is through quantities within the model such as the diffusion

coefficient, boundary conditions and the source terms. In order to model these

quantities better, while taking into account the randomness which can arise, we

pose the model as a parametric system. Many methods have been developed to

solve parametric systems of differential equations. One group of numerical methods

which have shown promise of recent is that of reduced order models (ROMs) [119].

Some popular examples include
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• Proper orthogonal decomposition

• Reduced basis method

• Krylov subspaces

The general philosophy of these methods can be thought of as a means to re-

duce the complexity within a system by reducing the dimensionality. Due to this one

can think of these ROMs as projection-based methods, which aim to approximate

the random solution on a lower-dimensional subspace through a Galerkin projection.

With ROMs they seek a reduced subspace. This work will specifically be looking

at one of the ROMs stated above, the reduced basis method (RBM). This partic-

ular method is based on a greedy optimisation algorithm which builds the reduced

subspace. The RBM is specific for parametric partial differential equations (PDEs).

This subspace consists of approximate solutions to the variational formulation with

respect to the parameters. These reduced approximation solutions in ROMs are

commonly referred to as snapshots. Comparing ROMs, a key difference and advan-

tage of the RBM is that it uses a posteriori error estimates to control the stability

and error of the solution, while other methods such as the proper orthogonal de-

composition method (POD) are based on a priori estimates. Recent work [141] has

indicated that within lower dimensional parameter spaces both methods perform

similarly but once the dimension size is increased the RBM performs considerably

more effectively.

As well as developments in handling randomness within models, inverse prob-

lems have seen an increase in popularity within UQ. Traditionally inverse problems

were numerically solved through optimisation techniques in the classic approach but

an alternative approach was formulated which guarantees well-posedness and tackles

uncertainty, which is known as the Bayesian approach [87, 137]. Since then a wide

array of methods have been used to solve Bayesian inverse problems, most notably

Markov chain Monte Carlo (MCMC) [39, 80] and ensemble-based methods [77, 79].

A comparison of these types of methods can be found by Iglesias et al. [78].

Our aims in this chapter is to combine the ideas behind ROMs and inverse

problems where we look to implement the RBM as the forward solver. The moti-

vation behind this is that in inverse problems a common issue is the computational

burden of the forward solver. Thus by working with the RBM we hope to get a

cheaper approximation of the inverse solution. Our focus will be on two PDE-based

inverse problems, that of groundwater flow (GWF) and electrical impedance to-

mography (EIT). For the GWF problem we aim to test our newly proposed method

both in terms of accuracy and cost. While for EIT our primary focus will be on
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deriving a new a posteriori error bound, where we omit numerics. One important

aspect of RBMs is the training set which is a collection of the points represented as

the parameters. To complement the work discussed above, we further consider the

question of how to effectively choose the parameters. Various collections of points

(or training sets) have already been tested, however we propose a new training set

which is motivated from ideas of stochastic collocation and Lagrangian interpola-

tion. This new training set will be tested in the context of both forward and inverse

problems.

The outline of this chapter is as follows: at the beginning in Section 4.3

we provide an overview of random PDE theory and finite element methods before

discussing the RBM in detail in Section 4.4. We then provide a discussion of the

various training sets in Section 4.5 which includes a number of numerical investiga-

tions. We then present an introduction into Bayesian inverse problems 4.6 in which

a review will be done, whilst introducing the inverse solver which is the iterative

Kalman method. This will lead onto Section 4.7 where we present various numerical

examples of the coupled inverse solver. We conclude by deriving a posteriori error

bound for the RBM applied to EIT in Section 4.8, and mentioning a number of final

remarks on further directions of research.

Literature Review

The last decade has seen further development and applications [26, 108] of reduced

basis methods in the context of solving high dimensional problems. Since its ap-

plication towards differential equations it has been extensively used in UQ related

problems which has sparked much popularity within the UQ community. Know-

ing that it has considerable improvements on computational cost over traditional

methods it seems a natural choice to implement into inverse solvers. Despite this

idea there has not been much work which has exploited this. Recently there has

been some work done which has looked at doing this but in the context of analysing

inverse problems in the classical sense. What was proposed was a reduced basis

Landweber method by Garmatter et al. [65]. As of yet this has been one of few

examples where inverse problems have exploited the benefits of the RBM. In the

Bayesian setting of inverse problems this still has to be explored.

Ensemble based methods [77, 79] have proven to be a suitable choice for solv-

ing inverse problems which aim to use ensemble approximations for the derivative

operators. One of these methods that looks to improve on these perhaps limitation is

the iterative ensemble Kalman method which serves as a derivative-free optimization
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method. The method combines ensemble techniques from the Kalman filter with

that of the regularized Levenburg-Marqardt method [71]. Comparing to MCMC

methods one key difference is that the number of forward evaluations required is

significantly less as shown in [78]. Given this advantage of computational power,

this could speed up the inverse problem considerably further.

Currently there has been recent literature on employing RBM techniques

into the EnKF but in a different context to what we are aiming to do. [65] has

discussed the role of the RBM within inverse problems but from a classical non-

Bayesian approach. There has also been work specifically implementing it in a

Bayesian setting but from a data-assimilation perspective by Manzoni at al. [114],

thus so far no work has been done on the iterative Kalman method.

As of yet there has been no advancements on applying the RBM in conjunc-

tion with EIT. One of the reasons behind this could be the difficulty of attaining

rigorous RB a posteriori error bounds for forward problem associated with EIT, or

even with the numerical implementation.

4.3 Background Material

4.3.1 Random PDE Theory

Given some probability space (Ω,F ,P) where Ω is our sample space, F is a sigma-

algebra and P : F → [0, 1] is a probability measure where we define samples from

our sample space as ϑ ∈ Ω. We assume we have a domain D ⊂ Rd for d <∞ where

D is a Lipschitz domain with boundary ∂D. Given a random field κ(x;ϑ) we are

interested in finding the solution p(x;ϑ) to the random PDE

−∇ · (κ(x;ϑ)∇p(x;ϑ)) = f, ∈ D, (4.3.1a)

p(x;ϑ) = 0, ∈ ∂D, (4.3.1b)

where we have imposed Dirichlet boundary conditions. Before discussing a well-

posedness theorem of (4.3.1) we first review a number of assumptions regarding

both the source term f and the random coefficient κ(x;ϑ).

Assumption 4.3.1. There exist constants 0 < κmin < κmax <∞ such that

P(κmin ≤ κ(x;ϑ) ≤ κmax, ∀x ∈ D) = 1. (4.3.2)

where κ(x;ϑ) ∈ L∞(D;R) and esssupκ(x;ϑ) = κmax(ϑ) > 0,P− a.s.

We also assume that κ(x;ϑ) has a very particular structure.
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Assumption 4.3.2. Let Γ ⊂ RK be called the parameter space. Let κ0, κ1, . . . , κK ∈
L∞(D), and let u1, . . . , uK be independent random variables from Ω taking values

in R such that u = (u1, u2, . . . , uK) ∈ Γ. Then our random coefficient can be be

expressed through the following series

κ(x;ϑ) = κ0(x) +

K∑
k=1

κk(x)uk(ϑ). (4.3.3)

That is, κ(x;ϑ) has a linear dependence on finitely many random variables.

For ease of computation and analysis, we will assume that the uk’s are chosen

uniformly at random from the uniform distribution U [−1, 1]. Given these two as-

sumptions we present the uniqueness and existence theorem of random PDEs which

is an application of the Lax-Millgram Theorem:

Theorem 4.3.1. Assume that f ∈ V ∗,P− a.s, and

essinfκ(x;ϑ) = κmin(ϑ) > 0, P− a.s.

Then P− a.s (4.3.1) has a unique solution which satisfies

‖p(·;ϑ)‖V ≤
‖f‖V ∗
κmin(ϑ)

.

Assume further that either:

(i) f ∈ V ∗ is deterministic and κ is distributed according to a uniform prior.

(ii) κ = eu, u ∈ L∞(D;R) deterministic and f ∈ L2
P(Ω;V ∗).

Then (4.3.1) has a solution P− a.s and in L2
P(Ω;V ).

Proof. The proof can be found in [99] which is based on the Lax-Milgram Lemma.

Remark 4.3.1. We note that the Lax-Milgram Theorem in Theorem 4.3.1 holds

also for a random source term f(x;ϑ), but for the purposes of this work we keep f

deterministic as stated above.

4.3.2 Finite Element Method

To solve numerically a realisation of (4.3.1), we use a finite element method (FEM),

which is based on the Galerkin projection. In particular, let D = [0, 1] and h ∈ (0, 1)

and let x0 = 0 < xh1 < . . . < xNh < xhNh+1 = 1 be a partition of D such that
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xhi − xhi−1 = h, for all i ∈ {1, . . . , Nh}. Define the basis functions {φj}Nhj=1 such that

φj(x
h
i ) = δij , for all i ∈ {0, 1, . . . , Nh}, and interpolate linearly between any two

points of the partition. Then {φj}Nhj=1 is a basis of a finite dimensional subspace Vh

of H1
0 (D) which contains all the functions q ∈ C0(D) such that q|[xhi−1,x

h
i ] is a linear

polynomial, for all i ∈ {1, . . . , Nh}.
We now consider the family {Vh}h∈(0,1) of the finite dimensional subspaces

of H1
0 (D), generated by the discretisation parameters h ∈ (0, 1), and the finite

dimensional equations

A(ph(ϑ), qh;ϑ) = l(qh), ∀qh ∈ Vh. (4.3.4)

We know that there exists a unique solution ph(ϑ) of (4.3.4) and it is called

the Galerkin projection of the solution p(ϑ) onto Vh. As Vh = span{φ1, . . . , φNh},
where Nh = dimVh and {φi}Nhi=1 is the basis of Vh, we can express the solution ph(ϑ)

in terms of the basis functions {φi}Nhi=1

(ph(ϑ))(x) =

Nh∑
i=1

Pi(ϑ)φi(x), (4.3.5)

where {Pi(ϑ)}Nhi=1 are real numbers still to be calculated. In fact such a

calculation can be done by solving the following system of linear equations

Nh∑
i=1

A(φi, φj ;ϑ)Pi(y) = l(φj), j = 1, . . . , Nh. (4.3.6)

It is more convenient to think of the above linear system as

Aϑh · P ϑh = lh, (4.3.7)

where Aϑh ∈ RNh×Nh is called the stiffness matrix given by Aϑh(i, j) = A(φi, φj ;ϑ), for

all i, j ∈ {1, . . . , Nh}, P yh = (P1(ϑ), . . . , PNh(ϑ)) and lh = (l(φ1), . . . , l(φNh)). Note

that the stiffness matrix is tri-diagonal because each basis function only overlaps

with the two neighbouring basis functions. This implies that for large enough Nh

the matrix is sparse.

A good approximation result of the Galerkin projections {ph(ϑ)}h∈(0,1) is

given by Céas Lemma which in general states the following.

Lemma 4.3.1. Let H be a Hilbert space, A be a bilinear form on H, which is

coercive with constant κmin > 0 and bounded with constant κmax > 0, and l a linear
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functional on H. Let p ∈ H such that A(p, q) = l(q), for all q ∈ H, and consider a

finite dimensional subspace V of H and pV such that A(pV , q) = l(v), for all q ∈ V .

Then

‖p− pV ‖H ≤
κmax
κmin

inf
q∈V
‖p− q‖H . (4.3.8)

In the case of the FEM the lemma above takes the following form

‖p(ϑ)− ph(ϑ)‖H1
0 (D) ≤ C inf

qh∈V
‖p(ϑ)− qh‖H1

0 (D), (4.3.9)

for C = κmax
κmin

> 0.

Finally, we have the following convergence result in terms of h, provided that

p(ϑ) ∈ H2(D), the coefficient κ(·, ϑ) ∈ C1(D) and D is a convex, bounded, Lipschitz

boundary

‖p(ϑ)− ph(ϑ)‖H1
0 (D) ≤ Ch‖p(ϑ)‖H2(D). (4.3.10)

Note that the classical theory of PDEs implies that p(ϑ) ∈ H2(D) since

f ∈ L2(D).

4.4 Reduced Basis Method

In this section we provide an overview of the RBM beginning with a general under-

standing before discussing the main components of the numerical method. This will

lead to discussing our new proposed set of points which can be used as the training

set for our experiments. Note for ease of notation we label p = ph noting that now

p denotes our true solution, which is a finite dimensional approximate solution of

(4.3.1). Specifically for this chapter we take it be of the form (4.3.5).

The RBM is a projection based method which is to serve as a cheaper

evaluation of a forward problem. The idea behind this method is to replace the

high order (Nh) FEM basis by a lower one consisting of solutions induced by pa-

rameters {p(ϑn)}Nn=1. It uses a greedy sampling algorithm to aid with parame-

ter selection ϑ1, . . . , ϑN ∈ Γ which in turn builds a reduced basis space XN :=

span{p(ϑ1), . . . , p(ϑN )}, by solving a Galerkin projection problem

A(pN , q;ϑ) = F (q), ∀q ∈ XN , (4.4.1)

for N = 2, . . . , Nmax, such that Nmax � Nh. Instead of viewing the RB solution as
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an approximation of (4.3.1), it can be viewed and expressed in the following way

pN (ϑ) =
N∑
m=1

pNm(ϑ)ζm, (4.4.2)

where {ζm}Nm=1 are the orthonormalized solutions. This procedure is done for com-

putational purposes where now XN = span{ζ1, . . . , ζN}. The solutions which cor-

respond to the reduced basis space XN are referred to as snapshots, and Γ is the

space where the parameters lie. Usually for further computational purposes instead

of using the whole parameter space we take a training sample Ξtrain ∈ Γ, hoping it

is a good representative of the parameter space. As briefly mentioned, an important

question to ask is how are the parameters chosen in an optimal way?

Initially we look to build the reduced basis space XN in a hierarchical manner

which is initially done by sampling the first parameter

ϑN+1 = argmaxϑ∈Γ‖p(ϑ)− pN (ϑ)‖X ,

However this can be expensive to compute so commonly the first parameter is usually

chosen randomly within Γ. Once the first parameter is attained we now have our

reduced space as

X1 = span{p(ϑ1)}.

For the rest of the parameters we seek them at which the error between the reduced

basis solution and the true solution attains its maximum, however as before this

optimisation procedure is quite costly. Instead we replace the true error p(ϑ)−pN (ϑ)

by an error estimator ∆N (ϑ). We treat the error estimator as an upper bound for

the reduced solution error. Now our parameter section is based on the following

optimisation procedure for N = 2, ..., Nmax

ϑN = argmaxϑ∈Ξtrain
∆N−1(ϑ),

where now we seek our parameters within a subset Ξtrain ∈ Γ of the parameter space

known as the training set. The motivation behind using a training set, as mentioned,

is namely improve on computational efficiency. Ideally the training set should be a

good representative of the parameter space and be also cheap to evaluate. A more

thorough discussion on training sets and various forms it can take are presented in

Section 4.5. We present below in Algorithm 4 the RBM method.
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Algorithm 4 Greedy-Reduced Basis Algorithm

For N = 1,

1. Choose ϑ1 ∈ Ξtrain and set tolerance,

2. Compute ∆1(ϑ) for each ϑ ∈ Ξtrain.

For N = 2, . . . , Nmax,

3. Set ϑN = argmaxϑ∈Ξtrain
∆N−1(ϑ).

4. Compute p(ϑN ) via (4.4.1).

5. Build the reduced basis space XN = XN−1 ⊕ span{p(ϑN )}.

A posteriori error bound

The efficiency of the reduced basis approximation is an important factor where one

way to control this is via an a posteriori error bound ∆N . We derive an error bound

as follows:

let R(q;ϑ) ∈ X ′ be the residual in the dual space of X, which is defined as

R(q;ϑ) := F (q)−A(pN , q;ϑ), ∀q ∈ X,

where A(·, ·;ϑ) is the associated bilinear form and F (·) defining our right hand side.

Through the Riesz-representation theorem, there exists a unique ê(ϑ) ∈ X such that

(ê(ϑ), q)X = R(q;ϑ) and ‖ê(ϑ)‖X = ‖R(·;ϑ)‖X′ . We define the error between our

true solution and our approximated reduced basis solution as

e(ϑ) := p(ϑ)− pN (ϑ),

which leads to the equation A(e(ϑ), q;ϑ) = R(q;ϑ), ∀q ∈ X. Letting q = e(ϑ) and

using Cauchy-Schwarz inequality we obtain

κLB(ϑ)‖e(ϑ)‖2X ≤ A(e(ϑ), e(ϑ);ϑ) = R(e(ϑ);ϑ)

≤ ‖R(·;ϑ)‖X′‖e(ϑ)‖X
= ‖ê(ϑ)‖X‖e(ϑ)‖X ,

where κLB(ϑ) is the lower bound of the coercivity constant κmin. From this we get
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our bound as

∆N :=
‖ê(ϑ)‖X
κLB(ϑ)

. (4.4.3)

From the bound given in (4.4.3), both quantities ‖ê(ϑ)‖X and κLB(ϑ) are of interest

to compute. Commonly for the lower bound an optimisation procedure is taken to

calculate it, known as a successive constrained linear optimisation method [76]. For

the estimate ‖ê(ϑ)‖X , we compute this by an offline-online decomposition procedure.

Offline-online decomposition

As stated in the previous subsection, the offline-online procedure helps with esti-

mating the a posteriori error bound by calculating the value ‖ê(ϑ)‖X . We initiate

the discussion of the method by recalling the reduced basis solution which is

pN (ϑ) =
N∑
m=1

pNm(ϑ)ζm.

Then by substituting this into (4.4.1) and choosing ζn = q, for 1 ≤ n ≤ N , we

obtain the equation

N∑
m=1

(
A0(ζm, ζn) +

K∑
k=1

ϑkAk(ζm, ζn)

)
pNm(ϑ) = F (ζn). (4.4.4)

where we aim to solve for pNm(ϑ). From the above expression, we note that F (ζn),

A0(ζm, ζn) and Ak(ζm, ζn) are all independent of ϑ which we can precompute and

store. This is known as the offline procedure. After the offline procedure we assemble

the stiffness matrix of (4.4.4) and solve, this is known as the online procedure.

However now with these stored components we still have to compute ‖ê(ϑ)‖X for

each corresponding ϑ, therefore we expand the residual as

R(q;ϑ) = F (q)−A(pN , q;ϑ) = F (q)−
N∑
n=1

pNn

( K∑
k=0

Ak(ζn, q)

)
.

By the Riesz representation theorem we can find Φ and Ψk
n ∈ X where

(Φ, q)X = F (q)

(Ψk
n, q)X = −Ak(ζn, q),
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∀q ∈ XN , 1 ≤ n ≤ N, 0 ≤ k ≤ K. Substituting this into (4.4.4) and noting that

(ê(ϑ), q)X = R(q;ϑ) leads to the following expression

‖ê(ϑ)‖2X = (Φ,Φ)X +
K∑
k=0

N∑
n=1

ϑkpNn(ϑ)

(
2(Φ,Ψk

n)X +
K∑
k′=0

N∑
n′=1

ϑk′pNn′(ϑ)(Ψk
n,Ψ

k′
n′)X

)
.

4.5 Training Set

As mentioned it is of importance to pick a sensible choice of a training set Ξtrain ∈ Γ

where ideally it should be a good representative of Γ and one that minimises the

error. For the purpose of these experiments we decide to propose a new training

set which are the Lebesgue optimal points (LOPs) whose motivation arises from

a result presented in [35]. We wish to compare this training set to the Clenshaw-

Curtis sparse grid points, which is a commonly used training set, in order to see the

effectiveness of the LOPs. Before discussing some results we present an overview of

both training sets and the motivation behind our proposed training set.

4.5.1 Clenshaw-Curtis Points

The Clenshaw-Curtis points arise as part of a quadrature rule. The goal of a quadra-

ture rule is to approximate the integral I[f ] of some say continuous function f on

[−1, 1]. We are taking [−1, 1] for concreteness and since this is the interval (and its

K-dimensional products) that we will be investigating in our numerical experiments.

Consider the N -th approximation of I[f ] given by IN [f ] =
∑N

k=0wkf(xk).

The weights wk here are chosen so that the expansion is exact for polynomials up

to degree N . The Clenshaw-Curtis points are a particular choice for the evaluation

points xk. They are defined as follows:

Consider theN -th degree Chebyshev polynomial TN (x) defined by TN (cos(θ)) =

cos(Nθ). The Clenshaw-Curtis points (of degree N) are the extrema in [−1, 1] of

TN (x) and they are given by the explicit formula:

xn = cos

(
nπ

N

)
n = 0, . . . , N (4.5.1)

A property of the Clenshaw-Curtis points that can be easily deduced from the

explicit formula above is the asymptotic (for N large) clustering of points near the

boundary (i.e. near -1 and 1). The following result gives error stability for the

Clenshaw-Curtis quadrature:
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If IN is constructed using the Clenshaw-Curtis points then for any f ∈
C[−1, 1] we have the estimate:

|I[f ]− IN [f ]| ≤ 4‖f − p∗N‖∞

where p∗N is the best approximation for f in terms of degree n polynomials. Since

‖f − p∗N‖∞ → 0 as N → ∞ the Clenshaw-Curtis quadrature does indeed converge

to the actual value of the integral: IN [f ]→ I[f ].

Of course there are a number of other quadrature rules, for example Gauss

quadrature. The relevant points here are the Gauss points which are the roots of

the normalised Legendre polynomials. This quadrature rule (and others) satisfy

similar (and even better in the case of Gauss quadrature) error stability estimates;

so the reader might wonder what is the merit of using the Clenshaw-Curtis points

which were introduced much later in the 1960s. The reason is the following compu-

tational one: using the Fast Fourier Transform one needs O(N log(N)) operations

to calculate the Clenshaw-Curtis weights while Gauss quadrature needs O(N2) op-

erations. For a further discussion of these facts and more on Clenshaw-Curtis and

Gauss quadrature see [37].

4.5.2 Sparse Grid

In uncertainty quantification one common problem that arises is the “curse of dimen-

sionality” which says as the dimension size of the associated problem gets bigger so

does the cost of the evaluation. This causes problems for numerical schemes when

trying to work in a high dimensional setting. One way to overcome this issue is

through the use of sparse grids [133].

Suppose we start off with one dimensional points {x1, . . . xN}, we would like

a way to build a collection HsK,q of K-dimensional points i.e. our sparse grid. Let

i = (i1, . . . , iK) be a multi-index and consider the norm |i|l1 =
∑K

k=1 ik and let

q ≥ K. Take a nested family of collections of points {Θj} so that Θj ⊂ {x1, . . . xN},
∀j, Θj ⊂ Θl if l > j and |Θj | = 2j−1 + 1. Now define the sparse grid in K

dimensions (note that this depends on how we picked the nested family of points

{Θj}) as follows,

HsK,q =
⋃

q−K+1≤|i|l1≤q

(
Θi1 × · · · ×ΘiK

)
.

Due to this constrained building of our grid (the l1 constraint on the multi-index

does not allow us to choose too many high index/high cardinality families Θj) the
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number of points is much less. It is important and of interest to note with sparse

grids that despite the actual points in the sparse grid depend on how we chose {Θj}
the cardinality of the sparse grid is independent of this choice.

In order to motivate out final proposed training set, we present the following theo-

rem from the work of Chen et al. [35] which combines the the UQ techniques of the

reduced basis method and the stochastic collocation method.

Theorem 4.5.1. Provided that the training set Ξtrain for the reduced basis method

is taken as the set of collocation points Θ, then

‖p− pN‖L∞(Γ;H1
0 (D)) ≤ C‖p− LM (p)‖L∞(Γ;H1

0 (D)), ∀N ≤M, (4.5.2)

where C = 3κmax/κmin is independent of N , LM (p) is the Lagrangian operator and

κmax and κmin are the upper and lower ellipticity constants.

Proof. The proof can be found in [35].

What Theorem 4.5.1 is stating is that provided the training set used is a

set of collocation points Θ, the RBM will perform just as good if not better as the

stochastic collocation method. Of course one has to propose a set of optimal points

than can be described as a set of collocation points. Our points we aim to use in this

context are the Lebesgue optimal points. In order to describe them we review both

the stochastic collocation method and the Lagrangian interpolation problem which

in turn discuss the Lagranian operator LM (p), which appears in Theorem 4.5.1.

4.5.3 Stochastic Collocation Method

We now introduce the univariate case of the stochastic collocation Method (SCM).

Further details can be found in [9]. For K = 1, the 1-dimensional stochastic collo-

cation method approximates a solution p(ϑ) ∈ H1
0 (D), ϑ ∈ Γ, using the Lagrangian

interpolant. Given any set of collocation points Θ = {ϑ0 < ϑ1 < . . . < ϑM} ⊂ Γ

and the corresponding snapshots {p(ϑn)}Mn=0, define the Lagrangian operator,

(LM (p)(ϑ)) (x) =

M∑
n=0

(p(ϑn)) (x)ln(ϑ), ϑ ∈ Γ, x ∈ D, (4.5.3)
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where {ln}Mn=0 are the Lagrangian characteristic polynomials, ln(ϑk) = δnk, 0 ≤
n, k ≤M , given by the formula,

ln(ϑ) =
∏
m6=n

ϑ− ϑm

ϑn − ϑm
, 0 ≤ n ≤M. (4.5.4)

If K > 1, then by using tensor products or sparse grids we can extend the

definition of the Lagrangian operator in K dimensions. Note that this gives us

interpolation by tensor product polynomials.

4.5.4 Lebesgue Optimal Points

We next describe the Lagrange interpolation problem and its relation to the stochas-

tic collocation method. Let ΠK
β = {χ : RK → R|χ polynomial with deg(χ) ≤ β},

the set of polynomials on RK with total degree at most β and q = dim(ΠK
β ) =

(
β+K
K

)
.

Let Xβ,K = {ξj}qj=1 ⊂ Γ, where Γ is a compact subset of RK . Then, the Lagrange

Interpolation problem is the following:

For f ∈ C0(Γ), find a polynomial χf ∈ ΠK
β , such that

χf (ξj) = f(ξj), j = 1, 2, . . . , q.

The set Xβ,K is said to be unisolvent if such a unique polynomial exists for each

f ∈ C0(Γ) and we call χf the Lagrangian interpolant of f . In general, not every

set Xβ,K is unisolvent but if the Vandermonde determinant formed by the points

{ξj}qj=1 is non-zero the existence of the Lagrangian interpolant is guaranteed. More

specifically, if the set Xβ,K is unisolvent the explicit formula for the Lagrangian

interpolant of f is given by

Lq(f(x)) =

q∑
n=0

f(ξn)ln(x), (4.5.5)

where {ln}qn=1 are the Lagrangian Characteristic polynomials ln(ξj) = δnj , n, j ∈
{1, . . . , q}, which form a basis for ΠK

β and it can be written as the Vandermonde

determinants

ln(x) =
det[V (ξ1, . . . , ξn−1, x, ξn+1, . . . , ξq)]

det[V (ξ1, . . . , ξq)]
, n = 1, . . . , q,

where V ∈ Rq×q such that (V (λ1, λ2, . . . , λq))jn = ln(λj) (In general, instead of

ln, we can use any other basis of ΠK
β ). Notice that in the 1-dimensional case the

expression above is actually (4.5.4).
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We would like now to find a set Xβ,K which gives the lowest upper bound on

the interpolation error. To find such a set we first have to find an upper bound of

the error which applies to all f ∈ C0(Γ). If we denote by χ∗f the best approximation

of f in ΠK
β in the ‖ · ‖∞ then Lq(χ

∗
f ) = χ∗f , thus

‖f − Lq(f)‖∞ ≤ ‖f − χ∗f‖∞ + ‖Lq(χ∗f )− Lq(f)‖∞ ≤ (1 + λq,K)‖f − χ∗f‖∞,

where

λq,K := ‖Lq‖∞ = max
x∈Γ

q∑
n=1

|ln(x)|.

The upper bound above is called the Lebesgue constant of the set Xβ,K and we

easily see that the optimal choice X∗β,K of such a set is one that solves the following

optimisation problem:

X∗β,K = argmin
{ξj}qj=1

max
x∈Γ

q∑
n=1

|ln(x)|. (4.5.6)

We know that such an optimal set exists but is not unique in general. However, in [6]

there is an extended description of the structure of the optimal set X∗β,K , especially

in the case of the cube [−1, 1]K , which is the state space we are concerned with.

Remark 4.5.1. We have seen that stochastic collocation method constructs the

Lagrangian polynomials using any set of collocation points and then approximates the

solution as a linear combination of these polynomials based on the set of snapshots.

On the other hand, the solution to the Lagrange interpolation problem provides us

with a set of collocation points which are “universally” the best choice of reducing

the error to such an approximation. Thus, a priori, the solution of (4.5.6), seems

to be a promising choice of a collocation set.

However, there is a slight difference between the two problems, which lies on

the space where the Lagrangian operator acts. In (4.5.3) LN acts on L∞(Γ, H1
0 (D))

while in (4.5.5) Lq on L∞(Γ).

To convince ourselves that this is not as terrible as it seems, we only have

to observe two important facts. First, the minimisation problem (4.5.6) minimises

the Lebesgue constant λq,K , which is the norm of the operator Lq, depending only

on the set Γ. Second, the operator norm of LN is also a Lebesgue constant. More

specifically, we have the following theorem:

Theorem 4.5.2. Let LN : L∞(Γ;H1
0 (D)) → L∞(Γ;H1

0 (D)), where Γ is any com-
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pact subset of RK , be the Lagrangian operator. Then,

‖LN‖ = max
ϑ∈Γ

N∑
n=0

|ln(ϑ)|.

Proof. Let p ∈ L∞(Γ, H1
0 (D)) such that ‖p‖L∞(Γ,H1

0 (D)) ≤ 1. Then for ϑ ∈ Γ

‖LN (p)(ϑ)‖ = ‖
N∑
n=0

ln(ϑ)p(ϑn)‖H1
0 (D)

≤ ‖
N∑
n=0

|ln(ϑ)|p(ϑn)‖H1
0 (D)

≤ |ln(ϑ)|,

since ‖p(ϑn)‖H1
0 (D) ≤ ‖p‖L∞(Γ,H1

0 (D)), for all n. Thus, taking the maximum over all

ϑ ∈ Γ we have

‖LN‖ ≤ max
ϑ∈Γ

N∑
n=0

|ln(ϑ)|.

For the opposite direction, first we notice that the function g : Γ→ R is continuous

so that is ϑ0 ∈ Γ such that g(ϑ0) = maxϑ∈Γ
∑N

n=0 |ln(ϑ)|, where we use the fact

that Γ is compact. Consider a function φ ∈ C∞c (D) where ‖φ‖H1
0 (D) = 1. Define

p ∈ L∞(Γ;H1
0 (D)) such that p(ϑn) = sign(ln(ϑ0)) · φ for all n ∈ {0, . . . , N} and

p(ϑ) = 0 ∈ H1
0 (D) for all ϑ ∈ Γ \ {ϑn}Nn=0. From this we have

‖LN (p)ϑ0‖H1
0 (D) = ‖

N∑
n=0

|ln(ϑ0)| · φ‖H1
0 (D)

=
N∑
n=0

|ln(ϑ0)| · ‖φ‖H1
0 (D)

= max
ϑ∈Γ

N∑
n=0

|ln(ϑ)|

the proof is now complete, since

‖LN (p)‖H1
0 (D) ≥ ‖LN (p)ϑ0‖H1

0 (D).
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Figure 4.1: Left: spare grid training set in [−1, 1]2. Right: LOPs training set in
[−1, 1]2

4.5.5 RBM Numerics

We now present a 2D example of using the RBM to solve a partial differential equa-

tion, specifically to start we will test the method on the elliptic partial differential

equation with Dirichlet boundary conditions.

−∇ · (κ(x;ϑ)∇p(x;ϑ)) = f, ∈ D, (4.5.7a)

p(x;ϑ) = 0, ∈ ∂D, (4.5.7b)

Our domain for all of these experiments unless stated otherwise will be D = [0, 1]2.

For our random coefficient κ(x;ϑ) we represent this by an affine representation given

as

κ(x;ϑ) = κ0(x) +

K∑
k=1

κk(x)uk(ϑ), (4.5.8)

where we choose κ0(x) = 2 and κk(x) = 1
2k
· sin(2πkx) as our basis functions. From

equation (4.5.8) {uk}Kk=1 are independent random variables on Ω taking values in

[−1, 1]. As a result our lower and upper bounds for our random coefficient are

such that κmin = 1 and κmax = 3. High differences in this values can lead to

certain instabilities hence our choice for the values. For our true solution p(ϑ) to

(4.5.7) we use a piecewise linear finite element method (FEM) method with mesh

size h = 1/40. For our right hand side we set f = 1. Our training set Ξtrain for this

experiment will be the LOPs in 1D and 9D and sparse grid points in 1D and 9D
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with a tolerance level TOL = 10−9. A visual comparison of these training sets can

be found in Figure 4.1 where we take Γ = [−1, 1]K . For K = 1 we set the number

of points to be 11 for both training sets. Our motivation for this is to understand

better the performance of the LOPs, which we will showcase through further visual

representations. For the case of K = 9 we set the number of points higher to 50

points, aiming to test better the efficiency of the both training sets. Instead of using

the the successive constrained linear optimisation method as described in [76], for

simplicity we explicitly calculate the lower bound of our function which is a sine

function.
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Figure 4.2: RBM numerics. Orthonormalized snapshots for LOPs in [−1, 1]1.
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Figure 4.3: RBM numerics. Left: FEM solution. Right: RBM solution.
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Figure 4.4: RBM numerics. Associated errors for Lebesgue optimal points in
[−1, 1]1.

These experiments were conducted in Matlab with a processor of 2.6 GHz

Intel Core i5. We first observe that from Figure 4.3 that both the RBM and FEM

solutions corresponding to the elliptic PDE are approximately the same. For this

106



1 2 3 4 5 6 7 8 9 10 11
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.5: RBM numerics. Parameter selection for Lebesgue optimal points in
[−1, 1]1.
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Figure 4.6: RBM numerics. Errors with respect to our snapshots in [−1, 1]1.

plot the 1D LOPs were used as the training set. The errors associated with the

LOPs are shown in Figure 4.4. More noticeably for the final RB error, we have the

error corresponding to each snapshot provided in Figure 4.6 and the corresponding
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Training set Dimension Time (seconds) L∞(Γ, H1
0 (D))

Lebesgue optimal points 1 757 1.142× 10−7

Lebesgue optimal points 9 1193 1.104× 10−9

Sparse grid 1 892 1.234× 10−7

Sparse grid 9 1716 2.428× 10−8

Table 4.1: Performance of different training sets.

snapshots in Figure 4.5. Simultaneously we also ran the RBM for the 1D sparse

grid points. An analysis of the performance is presented in Table 4.3.

We see in the 1D case that the L∞(Γ, H1
0 (D)) errors are different by a factor

of 10%, despite the time taken to be similar. Going from dimension 1 to 9 with re-

spect to the parameter space we see a considerable difference for the errors. However

more noticeably we see a substantial increase in time for the sparse grid points, but

not such a dramatic increase for the optimal points. This was tested with 50 points

in the parameter space. It can be said that from both training sets in dimension

K = 1 they perform almost identically, but for the case of K = 9 we see a slight

improvement in terms of both accuracy and computational efficiency.

4.6 Bayesian Inverse Problems

As we have discussed the potential of using the RBM over finite element methods, we

now in this section aim to couple our new forward solver within inverse problems.

Inverse problems require repetitive evaluations of the forward problem, therefore

by hopefully implementing the RBM we can acquire a cheaper evaluation whilst

maintaining similar accuracy. Our inverse solver for this chapter will be based on

the iterative Kalman method. Before we present the algorithm we need to define our

inverse problem in a Bayesian setting which will take a similar form as done in [137]

but now with a dependence on our parameters ϑ. Following on from this we then

given an overview of the iterative Kalman method and some of it’s key properties

before defining the method. We now begin this section with a quick review of the

Bayesian approach towards inverse problems.

Given two separable Hilbert spaces X and Y and a forward operator G : X →
Y we are interested in the recovery of the quantity of interest u ∈ X from noisy

observations y ∈ Y which are given by

y = G(u) + η, (4.6.1)
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where η ∼ N (0,Σ) with Σ denoting a positive self-adjoint operator. Trying to invert

(4.6.1) can cause difficulty as there is no guarantee with well-posedness through the

classical approach. One way to alleviate this is through the Bayesian approach

where now we are interested in the posterior distribution µy on the random variable

u|y which can be evaluated through Bayes’ Theorem. From this we can characterise

the posterior as
dµy

dµ0
(u) =

1

Z
exp

(
− Φ(u; y)

)
, (4.6.2)

with Z being

Z =

∫
X

exp
(
− Φ(u; y)

)
µ0(du), (4.6.3)

where our misfit functional is given as Φ(u; y) = 1
2

∣∣y − G(u)
∣∣2
Σ

.

4.6.1 Iterative Kalman Method

Our inverse solver for this chapter will be the iterative Kalman method, which was

proposed by Iglesias et al. [79] as an optimisation based technique to produce stable

solutions to constrained PDE problems. The method can be derived from the least-

squares formulation, which takes motivation from data assimilation. The main idea

behind the method is to represent a noise controlled system i.e. u → u† as η → 0.

Assume we have an ensemble of J members
{
u

(j)
0

}J
j=1
⊂ X . We label this as our

initial ensemble at iteration level 0 which is said to be a linear space of our solution

space X . We wish to build upon our ensemble
{
u

(j)
n

}J
j=1

which at each iteration

level n is updated through by combining the artificial dynamics with artificial data

yn, resulting in a new ensemble
{
u

(j)
n+1

}J
j=1

which is achieved by using the ensemble

mean

ūn =
1

J

J∑
j=1

u(j)
n , (4.6.4)

to approximate the solution of the inverse problem.The iterative Kalman method can

be split into two parts, a prediction step and an analysis step similar to the ensemble

Kalman filter [57]. The purpose of the prediction step is to map the ensemble of

particles into the observational space Y implying information is introduced into the

forward model.

The analysis step takes the mapped ensemble in the data space and compares

it with the data where the the ensemble is modified to better match the data.

As stated previously the scheme attains regularisation properties, this is achieved

through the discrepancy principle. In order to define the principle a regularisation

parameter τ > 1
ρ is usually introduced where ρ ∈ (0, 1) and from this the discrepancy
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Algorithm 5 Regularized Iterative Kalman Method

Let {u(j)
0 }Jj=1 ⊂ X be the initial ensemble with J elements. Let ρ ∈ (0, 1) with

τ > 1
ρ

We wish to generate,

u
(j)
0 ∼ µ0, y(j) = y + η(j), η(j) ∼ N(0,Σ).

Then for n = 1, . . .

Prediction Step

1. Evaluate the forward map,

w
(j)
n = G(u

(j)
n ) for j ∈ {1, . . . , J},

and define w̄n = 1
J

∑J
j=1w

(j)
n .

Discrepancy Principle

2. If ‖Σ−1/2(y − w̄n)‖Y ≤ τη, stop!

Output ūn = 1
J

∑J
j=1 u

(j)
n .

Analysis Step

3. Define sample covariances:

Cwwn = 1
J−1

∑J
j=1(G(u

(j)
n )− w̄n)〈G(u

(j)
n )− w̄n, ·〉Y .

Cuwn = 1
J−1

∑J
j=1(u

(j)
n − ūn)〈G(u

(j)
n − w̄n, ·〉Y .

Update each ensemble member as follows

u
(j+1)
n = u

(j)
n + Cuwn (Cwwn + αnΣ)−1(y(j) − w(j)

n ),

where αn ≡ αNn satisfies

ρ‖Σ−1/2(y(j) − w̄n)‖Y ≤ αNn ‖Σ1/2(Cwwn + αNn Σ)−1(y(j) − w̄n)‖Y ,

and where αn is chosen based on

αi+1
n = 2iα0

n.
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principle is given as

‖Σ−1(y − w̄n)‖Y ≤ τη, (4.6.5)

where w̄n = 1
J

∑J
j=1 G(u

(j)
n ). Usually with iterative inverse solvers it is common

to add some regularisation. We note that for all the experiments we will work

with the regularized iterative version which is given by Algorithm 5. EKI uses

regularisation properties taken from the Levenburg-Marqardt scheme [71]. We note

also that this discrepancy principle is slightly different to typical one as it is applied

to the average of the output w̄n. We will now refer to inversion as ensemble Kalman

inversion (EKI).

4.6.2 RB-EKI

As we have discussed both the forward and inverse solver in detail we will now

present the coupled scheme. We begin the development of the algorithm by refor-

mulating the inverse problem with the RBM.

As we have defined our parametric PDE of interest, we can use this to formulate

a Bayesian inverse problem. Recall that our solution p(·;ϑ) ∈ X := H1
0 (D) and

lj ∈ X∗ are continuous linear functionals. Then we can define our observed data

yj = lj(p(·;ϑ)) + ηj , j = 1, . . . , J, (4.6.6)

where {η}Jj=1 ∼ N(0,Σ) is Gaussian additive noise. From this we can further define

our forward operator G : Rk → RJ where

Gj(u) = lj(p(·;ϑ)) =


p(xj) ∈ D = [0, 1]∫
D
p(xj)gj(x)dx ∈ D = [0, 1]2,

where gj(x) is a covariance kernel for our inverse problem. This allows us to rewrite

(4.6.6) as the inverse problem

y = G(u) + η.

Note here we define our domains to be D = [0, 1]d for d = 1, 2 as these are the

specific domains we will be using for the proceeding numerics.
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4.7 Numerical Results

4.7.1 Uniform Prior

From our experiments in subsection 4.5.5 our random coefficient was based on the

expansion (4.5.8). For the RB-EKI our random coefficient will be based on a prior

which is that of a geometric type. These priors will have the general form of

u = φ0 +
∞∑
j=1

ujφj , (4.7.1)

where u ≡ κ. (4.7.1) consists of random functions uj = γjξj for j = 1, . . . ,∞, where

ξ = {ξi}∞j=1 is an i.i.d. sequence with ξ1 ∼ U [−1, 1] and {γ}∞j=1 ∈ `1. We note that

{φj}∞j=1 ∈ L∞(D) is an infinite sequence. Note the form of the random coefficient

in (4.7.1) is a general case, for our experiments we will use a truncated expansion.

4.7.2 Single Phase 2D Prior

Recalling the RB experiments conducted for the forward problem had a random

coefficient that was based on a form given in (4.7.1). Now that we are working

towards implementing the RBM within the inverse solver we need to define the

form of the random coefficient as a prior µ0. In order to do so we have to remain

consistent with the assumptions of the random coefficient; that it has an affine form

which is independent of the parameters µ = (µ1, . . . , µk).

In the RBM literature it is common to choose the random coefficient either

uniformly or log-normally. Modifying the coefficient based on this can change the

setup of the RBM, due to this we continue to use to assume a uniformly distributed

random coefficient. In the context of groundwater flow recent priors that have been

developed by Iglesias et al. [80] have showcased to perform well which are based on

channelized flow. This is based on some non-linearities. For our prior will we use a

modification of the channel flow prior defined in [80] neglecting the non-linearities.

In order to define our channelized flow we have two equations which govern

the channel which are defined as

t1 =
x

d3
+ d1, (4.7.2)

t2 =
x

d3
+ d1 + d2. (4.7.3)

From equations (4.7.2) and (4.7.3) we have three main parameters within our prior.

The first being d3 ∈ R+, which can be though of as determining the steepness of the
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channel, d1 ∈ R+ which defines the initial point and d2 ∈ R+ defining the height of

the channel. As well as the channel parameters we also have the the values of κ1, κ2

which are the values of the permeability in and out the channel. All the parameters

within the model are distributed accordingly to a uniform which is provided in Table

4.2. By relating this to the assumptions on the random coefficient, we design our

prior such that κmin = 1 ad κmax =5.5.

Parameter Prior distribution

d1 U [0, 0.5]
d2 U [0, 1]
d3 U [1, 20]
κ1 U [1, 1.5]
κ2 U [5, 5.5]

Table 4.2: Prior associated with single phase flow.

The unknown parameter for this model is u = (d1, . . . , d3, κ1, κ2) ∈ R5.
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Figure 4.7: Random draws from single phase prior.

4.7.3 RB-EKI Numerics

We now look to test the RB-EKI method for the model problem (4.5.7). For the

inclusion of the inverse solver we need to define our truth u† which we stated would
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be piecewise constant. Our truth is given below in Figure 4.8.

Our aim for choosing this particular prior form is in hope for a good recon-

struction, hence why it is of a similar form to the truth. We are interested in an

underdetermined system where we have 64 observational points uniformly spread.

For the regularisation we choose ρ = 0.8 and τ ≈ 1.25. The number of ensem-

ble members chosen is J = 150, with an iteration count of n = 20. Our noise

η ∼ N (0, γ2I) will be chosen such that γ = 0.4.

For the forward solver we initialise the numerics similarly as before where

we have a mesh size of h = 1/40 where our training set Ξtrain will be based on the

Lebesgue optimal points for Γ = [−1, 1]9 with a tolerance level of TOL = 10−9. As

before we generate 50 points in our parameter space. Apart from the mean of the

output uEKI we are also interested in two other quantities of interest:
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Figure 4.8: Channelized geometric truth u†.

• Relative error -
‖u†−uEKI‖L2(D)

‖u†‖L2(D)
.

• Data misfit -
∥∥y − Ḡ(uEKI)

∥∥2

Γ
.

Method Dimension Time (seconds)

FEM-EKI 9 3773
RB-EKI 9 2287

Table 4.3: 2D RB-EKI numerics. Performance of the different iterative methods.

From the numerics conducted we gain an indication of the performance of

RB-EKI in terms of both the mean reconstruction of the truth i.e. uEKI, the dif-

ference in computation time and the two quantities of interest: the log data misfit
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Figure 4.9: 2D RB-EKI numerics. Left: True permeability. Centre: Finite element
reconstruction. Right: Reduced basis reconstruction.
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Figure 4.10: 2D RB-EKI numerics. Left: RB-relative error. Right: RB-log-data
misfit.

and the relative error. Firstly regarding Figure 4.9 we see the performance of the

RB-EKI which shows a relatively good recovery of the true permeability shown on

the left hand side. We also see the reconstruction of the iterative method with a

FEM where we see a similar performance to that of the RB-EKI. Despite the per-

meability levels being slightly off as well as the width of the channel the overall

structure is recovered. This is aided by Figure 4.10 which demonstrates the effec-

tiveness of the regularized properties within the iterative method. As the number

of iterations increase we see a decline in both the data misfit and the relative error

which terminates after the 20th iteration.

In terms of the error and the computational time when comparing both

methods, we see an decrease in computational time needed with the inclusion of the

RBM while showing similar errors with the FEM. This speed is up is significantly

better than the results we were obtaining within the 1D elliptic problem.
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4.8 Electrical Impedance Tomography

Another inverse problem that we are interested is that of impedance tomography.

electrical impedance tomography, often referred to as EIT [21], is a common imaging

technique concerned with measuring changes in the conductivity distribution inside

a body. This is achieved by applying electrical currents to the electrodes which lie

on the boundary, and applying Ohms’ Law to record voltages.

The inverse problem is concerned with the recovery of the conductivity dis-

tribution from the voltage measurements of the electrodes. This inverse problem is

both non-linear and ill-posed. The most common approach to model the forward

model associated with EIT is referred to as the complete electrode model (CEM).

The equations associated with the random-CEM are

∇ · (κ(·;ϑ)∇ν(·;ϑ)) = 0, ∈ D, (4.8.1a)

ν + zlκ(·;ϑ)∇ν(·;ϑ) · n = Vl, ∈ el, l = 1, . . . ,me, (4.8.1b)

∇ν(·;ϑ) · n = 0, ∈ ∂D\ ∪mel=1 el, (4.8.1c)∫
κ(·;ϑ)∇ν(·;ϑ) · n ds = Il, ∈ el, l = 1, . . . ,me. (4.8.1d)

The log-conductivity distribution of the electrodes is denoted by κ, while ν is the

electric potential from the electrodes {el}mel=1. From the model given above {Il}mel=1

and {Vl}mel=1 are the currents and voltages associated with the electrodes while {zl}mel=1

are the contact impedances. Further details on the derivation of the EIT model can

be found in [21]. The forward solution associated with the CEM (4.8.1) is to find

(ν, V ) ∈ H where H := H1(D) ⊕ Rme which involves the me surface voltages and

the electric potential in the interior. The CEM is based on Ohms’ law which is used

to construct the voltage i.e.

V (κ) = I(κ)×R,

where R denotes the resistivity. In order to ensure well-posedness of the CEM we

require conservation of charge i.e.

me∑
l=1

Il = 0.

As of yet there has been no extensive literature which has applied the RBM to solve

the EIT problem. We emphasize again that the purpose of this section is to consider

deriving the a posteriori bound for EIT where numerics are omitted from this work.
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4.8.1 A Posteriori Bound

In order to test the RB-EKI for the EIT problem we need to derive an a posteriori

error bound in a similar fashion to the elliptic PDE as done in Section 4.4. To

achieve this we begin with defining the weak formulation of the CEM. From this we

then look to use the definition of the residual and the elliptic structure of the PDE

to obtain our bound. Given the CEM (4.8.1) we can define its weak formulation.

For simplicity we stick to the non-random weak formulation, which can easily be

extended to the random case. For the weak formulation we say that (ν, V ) ∈ H is a

weak solution is for any (q,Q) ∈ H such that∫
D
κ∇ν · ∇q dx+

me∑
l=1

z−1
l

∫
el

(ν − Vl)(q −Ql)ds =

me∑
l=1

IlQl, (4.8.2)

where our bilinear form A : H×H→ R and right hand side F : H→ R are defined

as

A(νN , q;ϑ) =

∫
D
κ∇ν · ∇q dx+

me∑
l=1

z−1
l

∫
el

(ν − Vl)(q −Ql)ds, (4.8.3)

and

F (q) =

me∑
l=1

IlQl.

We can prove existence and uniqueness of solutions to (4.8.2) via the Lax-Milgram

lemma. However this poses difficulty as the bilinear form (4.8.3) is not coercive.

From the expression

A((ν, V ), ν, V )) =

∫
D
κ|∇ν|2dx+

me∑
l=1

z−1
l

∫
el

|ν − V |2ds,

we see the difficulty in A((ν, V ), ν, V )) = 0 implying (ν, V ) = 0, in other words

solutions can only be defined up to the addition of a constant. Instead now we seek

our solution (ν, V ) ∈ Ḣ where Ḣ = H/R is an alternative space with the induced

norm

‖(ν, V )‖Ḣ = inf
c∈R

(
‖ν − c‖2H1(D) + ‖V − c‖2Rme

)1/2
.

Now using the weak formulation defined by equation (4.8.2) we can define our RB

Galerkin projection method as

A(νN , q;ϑ) = F (q), ∀q ∈ XN . (4.8.4)
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Now that we have defined our bilinear form we can express this in an affine repre-

sentation, as done with the general elliptic PDE, where

A(ν, q;ϑ) = A0(ν, q) +
K∑
k=1

Ak(ν, q)ϑk, ϑk ∼ U [−1, 1], (4.8.5)

Ak(ν, q) =

∫
D
κk∇ν · ∇q dx+

me∑
l=1

z−1
l

∫
el

(ν − Vl)(q −Ql)ds. (4.8.6)

As we are working with the CEM our solution space is now defined as X := Ḣ =
H1(D)⊕Rme

R . From this we can define the RB weak formulation for (4.8.1) as

A(νN , q;ϑ) = F (q), ∀q ∈ XN . (4.8.7)

Our residual corresponding to (4.8.7) is given as

r(q;ϑ) = A(νN , q;ϑ)− F (q) ∈ X ′ . (4.8.8)

As similarly done in section 4.4 we can define our error between our true solution

and our approximated reduced basis solution as e(ϑ) := ν(ϑ)− νN (ϑ) ∈ XN which

satisfies

A(e(ϑ), q;ϑ) = r(q;ϑ), ∀q ∈ XN . (4.8.9)

As before through the Riesz representation Theorem there exists a ê(ϑ) ∈ X such

that

(ê(ϑ), q)X := r(q;ϑ), ∀q ∈ XN . (4.8.10)

Using equation (4.8.10) we can also write the error residual (4.8.9) as

A(e(ϑ), q;ϑ) = (ê(ϑ); q)X , ∀q ∈ XN . (4.8.11)

Using the same argument as in Section 4.4 it leads to our a posteriori error bound

for the CEM as

‖e(ϑ)‖X := ‖ν(ϑ)− νN (ϑ)‖X ≤ ∆N (ϑ) =
‖ê(ϑ)‖X
κLB(ϑ)

:=
‖r(·;ϑ)‖X′
κLB(ϑ)

. (4.8.12)

Note: with the new a posteriori error bound defined by (4.8.12), it looks identical

to the one used for the groundwater flow problem, but with the key differences of

the space X changing as well as the form of the residual (4.8.8).
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4.8.2 Offline-Online Decomposition

With the newly defined error bound defined by (4.8.12) we now seek to evaluate

‖ê(ϑ)‖X . In order to do so we begin, as before, by expanding the form of νN (ϑ) as

νN (ϑ) =
N∑
m=1

ζmνNm(ϑ), (4.8.13)

where {ζm}Nm=1 is the RB matrix. If we substitute the above expression into (4.8.4)

and choosing ζn = q, 1 ≤ n ≤ N , we obtain an equation where we aim to solve for

νNm(ϑ)

N∑
m=1

(
A0(ζm, ζn) +

K∑
k=1

ϑkAk(ζm, ζn)

)
νNm(ϑ) = F (ζn). (4.8.14)

From the expression (4.8.14) we can evaluate the quantities independentlyAk(ζm, ζn),

F (ζn) of ϑ. In the RBM setting we treat this as the online procedure where we pre-

compute the quantities and store them. In order to evaluate the a posteriori bound

(4.8.12) we use the residual form defined as:

r(q;ϑ) = F (q)−
N∑
m=1

νNm(ϑ)

( K∑
k=0

ϑkAk(ζm, q)

)
, ϑ0 = 1. (4.8.15)

As done before to aid with the computation of ‖e(ϑ‖2X we can use the Riesz repre-

sentation theorem i.e. we can define Φ and Ψk
n as

(Φ, q)X := F (q), ∀q ∈ XN (4.8.16)

(Ψk
n, q)X := −Ak(ζn, q), ∀q ∈ XN , 1 ≤ n ≤ N. (4.8.17)

Recalling that (ê(ϑ), q)X := r(q;ϑ) and by substituting (4.8.16), (4.8.17) into (4.8.14)

we get an expression for ‖ê(ϑ)‖2X that reads

‖ê(ϑ)‖2X :=(Φ,Φ)X +

K∑
k=0

N∑
n=1

ϑkνNn(ϑ)

(
2(Φ,Ψk

n)X +

K∑
k′=0

N∑
n′=1

ϑk′νNn′(ϑ)(Ψk
n,Ψ

k′
n′)X

)
.

4.8.3 Inverse Problem

As stated the inverse problem of the CEM is known as EIT which is interested in

recovering the conductivity distribution from voltages (Vl)
Me
l=1 on the boundary ∂D.

We know our forward solution can be constructed via Ohm’s Law therefore assuming
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we have J linear independent current patterns I(j) ∈ Rme and noisy measurements

from V (κ) = I(κ)×R in the form:

yj = V (j) + ηj , ηj ∼ N (0,Γ).

By the relationship between the operator G and V (j) we can rewrite our inverse

problem as

yj = Gj(κ) + ηj ,

where

Gj(κ) = I(j) ×R(κ). (4.8.18)

Finally the inverse problem (4.8.18) can be expressed as

y = G(κ) + η, η ∼ N (0,Γ). (4.8.19)

Via an application of Bayes’ Theorem we can propose an existence and well-posedness

theorem for the Bayesian approach to EIT. The proof of this and further information

regarding the construction of the posterior can be found in [49] by Dunlop et al. By

incorporating randomness our inverse problem is now reformulated to solving

yj = Gj(κ;ϑ) + ηj ,

where now

Gj(κ;ϑ) = I(j) ×R(κ;ϑ),

which can be rewritten in the same way as (4.8.19) is defined.
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4.9 Conclusion

RBMs are a class of powerful forward solvers aimed at improving efficiency for para-

metric systems of equations. The goal of this chapter was to use ideas from RBMs

and implement them within Bayesian inverse problems to improve on the compu-

tational burden of traditional solvers. In particular we proposed a new training set

which were the LOPs, which were motivated from [35] which stated that a set of

collocation points were an effective choice. By doing so we saw an improvement to

our experiments while retaining a good level of accuracy. We transferred these ideas

to solve the a geometric inverse problem for a 2D elliptic PDE. As before results

were consistent and showcased a bigger reduction in time taken. At the end of the

chapter we briefly considered the analysis of the RBM applied to the CEM, where

we derived an a posteriori bound similar to that of groundwater flow. Despite the

improvement of using the LOPs as a training set, there is still the limitation in

that it can only be expressed up to a dimension size of 10 for the parameter space.

Commonly the parameter space for the sorts of problems that were discussed are

much bigger, which can incorporate more points.

There are many further investigations one can take from this, mainly con-

ducting experiments for the RB-EKI for EIT. One reason why this was omitted was

that Theorem 4.5.1 is specific for the function space H1
0 (D) which is the not the

solution space of (4.8.1). Another reason being that the task of implementing the

RBM with the EIT is of course more complicated and issues could arise. However it

is of interest to see from Section 4.8 that the posteriori bound (4.8.12) has an almost

identical form to that of (4.4.3). Given how the numerics conducted were not best

optimized, this poses an interesting question on how best to approach this. There

is also the issue that a reduction in the error of the forward solver does not imply

a reduction in the inverse solver. One possibly way of sorting this out could be

a discrepancy principle which incorporates both errors for the forward and inverse

solver. This has been done in the deterministic inverse problem framework [65]. As

a final remark, we explicitly calculated the lower bound of the coercivity constant

as we had our basis functions as a sine function. It would be interest to test this

against the the optimization method in [76] which is commonly used to compute

the lower bound.
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Chapter 5

A Bayesian formulation of the

inverse eikonal equation

5.1 Overview

The basis of this chapter is to apply the current literature on Bayesian inversion

and UQ to new classes of PDEs. Our PDE we consider in this chapter is the eikonal

equation. This chapter will differ from previous chapters as it is application based,

however there are certain similarities such as using the hierarchical methodologies

developed in Chapter 2 and 3. As before in previous chapters we present a review

and brief introduction into Bayesian inversion and EKI.

5.2 Introduction

The eikonal equation [11, 28, 44, 95, 111] is a fundamental partial differential equa-

tion (PDE) that arises in numerous fields such as geosciences [109] and imaging

[86, 136]. The eikonal equation can be related via electromagnetic potential, that

describes the relationship between electrical potential and electrical strength. The

interpretation of this for an electromagnetic example is that any charge in a region

is pushed to move at right angles to the lines of constant potential that is deter-

mined through the the electric strength. Mathematically the eikonal equation is a

well-studied model, with a mathematical interpretation of determining travel-time.

More specifically it is concerned with calculating the time required T (x) to travel

from the boundary x0 ∈ ∂D to a point in the interior of the domain x ∈ D given a
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prescribed speed, known as the slowness function u(x) where|∇T (x)| = u(x) x ∈ Ω \ {x0},

T (x0) = 0.

The forward problem has been extensively studied both numerically and analyti-

cally. Well-posedness of the eikonal equation follows from the theory of HJ equa-

tions, which is achieved by formulating an optimal control problem. Numerically

there has been significant research on this where a number of powerful and efficient

computational methods have been developed, namely the fast marching method and

the fast sweeping method. [130]. Now if we consider the inverse problem associated

with the eikonal equation, i.e. recovering our unknown u from noisy measurements

of y

y = G(u) + η, η ∼ N (0,Γ), (5.2.1)

our quantity of interest is the slowness function. This problem can be attributed

as essentially a gradient recovery problem, which has been looked at in a general

sense [113, 149, 150]. Unlike the forward model, the inverse eikonal equation has

not been as well studied. This was recently tackled in the work of Deckelnick et

al. [52] where they showed well-posedness of the inverse solution through the aid of

gamma-convergence. The inverse problem was analyzed in a deterministic frame-

work, where they showcased numerics for a number of different piecewise constant

truths. Beyond this further work was done in [142] where the inverse problem of

travel-time tomography was analyzed. This chapter primarily looked at implement-

ing a modified fast marching algorithm where they used the eikonal equation as the

forward model. However it still remains of interest to see how the slowness function

can be recovered under various scenarios, due to such constraints as positivity and

continuity. This body of work is concerned with understanding the behaviour of the

slowness function and tackling the level of uncertainty that can arise. In order to

do we propose an alternative viewpoint which is to adopt a Bayesian formulation of

the inverse eikonal equation.

By adopting a Bayesian approach for our inverse problem (5.2.1) we now

seek a probabilistic distribution of the random variable u|y known as the posterior.

The Bayesian formulation of inverse problems has seen a significant body of recent

work since the formulation of Bayesian inverse problems in infinite dimensions [137].

Due to this instead of a distribution we can construct a posterior measure µy in the
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form of a Gaussian measure with Radon-Nikodym derivative given as

dµy

dµ0
=

1

Z
exp(−Φ(u; y)), (5.2.2)

such that

Z :=

∫
X

exp(−Φ(u; y))µ0(du), (5.2.3)

Φ(u; y) =
1

2
|y − G(u)|2Γ,

where denote the normalizing constant and misfit functional. As a result the

Bayesian approach has been readily applied for numerous PDEs. Specifically there

has been a wide development of computational methods based on Markov chain

Monte Carlo (MCMC) theory [15, 80, 81] and ensemble based methods [33, 77, 78].

Much of the work done has been looking at developing priors and techniques which

handle geometric features of the unknown. This includes both geometric priors and

level set techniques. More recently there has been an interest in understanding in-

verse problems in a hierarchical manner [6, 33, 47]. These approaches are concerned

with understanding the unknown and its hyperparameters that define it.

Our motivation for analysing the inverse eikonal equation is to exploit the

recent advancements made in the Bayesian approach for inverse problems, looking

to extend from the current literature [52, 66]. Specifically our aim is to under-

stand the uncertainty that can arise by considering a wide array of priors and to

establish well-posedness of the inverse problem. The level set method [25] is a pop-

ular technique at solving interface based problems which are usually concerned with

models governed by some geometry. Recently there has been a method which has

applied the level set method to Bayesian inverse problems, the Bayesian level set

method [81]. This method poses advantages over traditional level set methods for

deterministic problems. By allowing for a Bayesian setting we can further pose

geometric constraints as prior information. This has shown to be successful at re-

constructing geometric truths within inverse problems [80]. In this chapter we will

consider a number of various prior ranging from piecewise deterministic priors, to

level set priors and finally priors based on Whittle-Matérn Gaussian random fields

[124]. Our inverse solver for this problem will be an ensemble-based method, the

iterative ensemble Kalman method [79]. The core advantage of using these over its

MCMC counterparts is computational cost, where they pose a significantly lower

computational burden. This has shown to be promising with applications in PDEs

such as electrical impedance tomography and Darcy flow. We emphasize that our
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work will comprise mainly of a numerical investigation, with regards to introducing

a Bayesian approach to the inverse problem. Our contributions to this piece of work

are as follows:

• To the best of our knowledge this is the first piece of work to consider a

Bayesian formulation of the inverse eikonal equation.

• We propose a number of prior forms to represent the slowness function rang-

ing from a continuous Whittle-Matérn Gaussian prior to discontinuous priors

which have some form of geometry attributed to them such as fixed shape

priors and level set priors.

• We exploit the recent hierarchical developments made for ensemble Kalman

inversion as done in [33].

5.2.1 Outline

The layout of this work is as follows; in Section 5.3 we present and formulate the

forward model of the eikonal equation reviewing existing theory of well-posedness.

This will lead onto Section 5.4 where we formulate the inverse problem in a Bayesian

setting while describing our inverse solver, the iterative Kalman method. This will

include an overview of the various prior forms used. Finally in Section 5.5 we present

numerical examples of the inverse problem combining our priors and inverse solver,

while concluding in Section 5.6 with some final remarks on further areas of research.

5.2.2 Notation

Throughout this work we make use of common notation for Hilbert space norms and

inner products, ‖ · ‖, 〈·〉. We will assume that X and Y are two separable Hilbert

spaces. These spaces are related through the forward operator G : X → Y. This

nonlinear operator can be thought of as mapping from the space of parameters X to

the observation space Y. Our additive noise for the inverse problems will be denoted

by η ∼ N (0,Σ) where Σ : Y → Y is a self-adjoint positive operator. For any such

operator we define 〈·, ·〉Σ = 〈Σ−1/2·,Σ−1/2·〉 and ‖ · ‖Σ = ‖Σ−1/2 · ‖, and for finite

dimensions | · |Σ = |Σ−1/2 · | with | · | the Euclidean norm. The superscript † will

denote the true value of the particular quantity. We denote U [a, b] as a uniform

distribution with parameters a and b.
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5.3 The Forward Model

We begin by defining and reviewing the forward model of the eikonal equation.

Assume an open bounded domain Ω ⊂ Rd for d = 2, 3 with a Lipschitz

boundary Γ. Let x0 ∈ Ω be fixed and u : Ω̄ → R be a positive continuous function

with x ∈ Ω̄. The eikonal equation is concerned with the first arrival time of a signal.

It can be interpreted as finding T associated with the smallest path ζ needed to

travel from x0 to x. There are referred to as arrival times. A formal definition of

the first arrival time is provided in the following definition.

Definition 5.3.1. Given a slowness function u(x) our first arrival time is charac-

terized by

T (x) = inf
ζ

{∫ 1

0
u(ζ(r))|ζ ′(r)|dr | ζ ∈W 1,∞([0, 1], Ω̄), ζ(0) = x0, ζ(1) = x

}
,

(5.3.1)

where W 1,∞([0, 1], Ω̄) is the space of paths ζ.

We denote by u(x) = 1
c(x) as the slowness function where c(x) is the speed

of the signal in the medium. A representation of this can be seen in Figure 5.1.

We say T (x) is a solution of the eikonal equation if it solves the following partial

differential equation

|∇T (x)| = u(x) x ∈ Ω \ {x0}, (5.3.2)

T (x0) = 0, (5.3.3)

∇T (x) · ν(x) ≥ 0, x ∈ Γ. (5.3.4)

The condition (5.3.4) is a Soner boundary condition where ν denotes a unit

outer normal vector to the boundary Γ. The eikonal equation was first introduced

in 1827 by Hamilton as an approximation to equations which model light behaviour

travelling through various materials. The eikonal equation is characterized as a

Hamilton-Jacobi (HJ) equation. As with HJ equations a common approach to show

uniqueness and existence of solutions is through the theory of viscosity solutions,

which is based on optimal control theory.

Viscosity solutions correspond to equations of a HJ form which satisfy the

vanishing viscosity form. When it it is difficult to show well-posedness some form

of regularization is added such as ε∆ for some ε > 0. From this by taking ε → 0

we hope that T ε will converge to a weak solution. We refer the interested reader

to the book by Evans [60] and Lions [28] for a richer understanding on viscosity
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solutions to PDEs. Now applying the theory of viscous solutions to our model

problem we have the following definitions which are required to show well-posedness

for (5.3.2)-(5.3.3).

Definition 5.3.2. A function T ∈ C0(Ω̄) is called a viscosity subsolution of (5.3.2)

in Ω \ x0 if for each ζ ∈ C∞(Ω): if T − ζ has local maximum at a point x ∈ Ω \ x0

then

|∇ζ(x)| ≤ u(x). (5.3.5)

Definition 5.3.3. A function T ∈ C0(Ω̄) is called a viscosity supersolution of

(5.3.2) in Ω̄ \ x0 if for each ζ ∈ C∞(Rn): if T − ζ has local minimum at a point

x ∈ Ω̄ \ x0, relative to Ω̄ ,then

|∇ζ(x)| ≥ u(x). (5.3.6)

Then from Definition 5.3.2 and 5.3.3 we can generalise a viscosity solution

of (5.3.2) - (5.3.4) with the following definition.

Definition 5.3.4. A viscosity solution of (5.3.2) - (5.3.4) is then a function T ∈
C0(Ω) which is a viscosity subsolution in Ω̄ \ {x0}, a viscosity supersolution in

Ω̄ \ {x0}, and which which satisfies T (x0) = 0.

Using Definitions 5.3.2 - 5.3.4 the following theorem guarantees uniqueness

and existence of a viscous solution to (5.3.2).

Theorem 5.3.1. Suppose that u ∈ C0(Ω̄) is non-negative, then there exists a unique

viscosity solution T ∈ C0(Ω̄) of (5.3.2) - (5.3.4) given as

T (x) = inf
ζ

{∫ 1

0
u(ζ(r))|ζ ′(r)|dr | ζ ∈W 1,∞([0, 1], Ω̄), ζ(0) = x0, ζ(1) = x

}
.

(5.3.7)

Furthermore there exists a a constant C = C(Ω) where T is Lipschitz continuous in

Ω with an upper bound on C such that

lip(T ) ≤ C max
Ω̄

u (5.3.8)

Proof. The proof can be found in [28] and [135].

In order to attain well-posedness for (5.3.2) - (5.3.3) we need a number of

assumptions regarding both the slowness function u and the solution T . We will

discuss the assumptions required for u in the proceeding section, as they will be

discussed in Section 5.4 where we introduce various prior forms.
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Figure 5.1: Representation of the eikonal equation.

5.3.1 Forward Finite Difference Solver

The eikonal equation also poses an important question on how to effectively numer-

ically solve it. Since the late 20th Century there has been a significant body of work

on answering this question. Namely the work by Sethian [130] helped answer this

for boundary value problems of the eikonal equation where he developed a method

entitled the fast marching method (FMM). Before explaining and defining the FMM

we first require to discretize (5.3.2) - (5.3.4).

Assume our domain Ω ⊂ Rd has a boundary Γ which is piecewise C2. We

will discretize our domain Ω, where h > 0, given the following grid

Z2
h := {xϕ = (hϕ1, hϕ2)| ϕi ∈ Z, for i = 1, 2}.

Now suppose that x0 is a grid point where x0 = xϕ0 for some ϕ0 ∈ Z2. We

define a set of inner grid points as Ωh = Ω ∩ Z2
h. If for some xϕ ∈ Ωh there

are ι ∈ {−1, 1}, k ∈ {1, 2} with xϕ+ιek /∈ Ω, then there exists s ∈ (0, 1] such that

xϕ + sιhek ∈ Γ and we set ψ := ϕ + sιhek as well as xψ := xϕ + sιek. We further

denote Γh ⊂ Γ to be the set of all points obtained in this manner. By defining

Qh := Ωh ∪ Γh for a point xϕ ∈ Qh

Nϕ :=

{xψ ∈ Qh|xψ is a neighbour of xϕ}, xϕ ∈ Ωh,

{xψ ∈ Ωh|xψ is a neighbour of xϕ}, xϕ ∈ Γh.
(5.3.9)

We note for points xϕ ∈ Γh the region Nϕ contains only the interior points. As we

have provided our discretized domain and mesh with (5.3.9) our discretized system

of equations representing (5.3.2) - (5.3.3) is
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∑
xψ∈Nϕ

[(T (xϕ)− T (xψ))

hϕψ

)+]2
= u(xϕ)2, xϕ ∈ Qh \ xϕ0 , (5.3.10)

Tϕ0 = 0, (5.3.11)

where hϕψ := |xϕ − xψ|.

Lemma 5.3.1. Suppose that u ∈ C0(Ω) then (5.3.10) - (5.3.11) has a unique solu-

tion T : Qh → R and

1. Tϕ > 0, xϕ ∈ Qh.

2.
∣∣Tϕ − Tψ∣∣ ≤ C(maxΩ u

)∣∣xϕ − xψ∣∣, xϕ, xψ ∈ Qh.

Proof. A proof can be found by Deckelnick et al. in [52].

Now that we have formulated our set of discretized equations (5.3.10) -

(5.3.11), we are now in a position to discuss our forward solver. The method is

based on a discretization of the mesh and from this the grid points needed are cal-

culated using neighbouring grid points. Here we denote our unique solution Vϕ at

grid point xϕ, which as mentioned depends, only on the neighbouring values Vψ such

that 0 ≤ Vψ ≤ Vϕ. An example of an FMM method for our problem is provided

in Algorithm 6. Here we label xϕ0 as known points and any other grid points that

are one point away from this known point as a trial point. Other various methods

that were proposed for the numerical analysis of the eikonal equation include the

fast sweeping method.

Algorithm 6 Fast Marching Method

1. Compute a trial value of Ṽϕ for every ϕ ∈ trial according to (2.4), assuming
it is smaller or equal to its trial neighbours.

2. Let xψ be any trial point where every trial point satisfies Ṽµ ≤ Ṽϕ
∀xϕ ∈ trial.

3. Set Vψ = Ṽψ for all such xψ and add xµ to known and remove from trial.

4. Tag all neighbours of known as trial if they are not known.

5. If trial = {∅} then STOP.

6. Return to 1.
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5.4 Inverse Problem

In this section we discuss the inverse problem of reconstructing the slowness function

from the eikonal equation. We begin with a discussion on the various priors we

wish to use and how they relate to the slowness function. We then describe both

approaches to inverse problems with an emphasis on Bayesian formulation of (5.3.2).

This will in turn lead to the motivation for our chosen inverse solver which is the

iterative ensemble Kalman method.

5.4.1 Prior

One of our motivations behind this work is to test the inverse eikonal equation on

a number of priors. The prior form is crucial within inverse problems as depend-

ing hows similar it is to the truth, reconstructions can differ substantially between

different priors. Before discussing the four prior forms we review the slowness func-

tion and what certain conditions we need to ensure the formulation of an inverse

problem.

Assumption 5.4.1. u : Ω → R is Borel measurable and there exists 0 < m ≤ M

such that

m ≤ u(x) ≤M, ∀x ∈ Ω. (5.4.1)

Assumption 5.4.2. For every x0 ∈ Ω there exists εx0 > 0 and a direction nx0 ∈
Sd−1 so that for all x ∈ Ω, r > 0, d ∈ Sn−1 with |d− nx0 | < εx0 and x+ rd ∈ Ω we

have

u(x+ dr)− u(x) ≤ (ω|x0 − x|+ r). (5.4.2)

where ω : [0,∞) → [0,∞) is a continuous function which is nondecreasing where

ω(0) = 0. A stronger result of (5.4.2) is given below.

Assumption 5.4.3. There exists ε > 0 and K ≥ 0 such that for all x0 ∈ Ω there

is a direction n = nx0 ∈ Sn−1 with

u(x+ dr)− u(x) ≤ Kr, (5.4.3)

for all y ∈ Ω, r > 0 and d ∈ Sn−1 with |x0 − x| ≤ ε, |d− n| < ε and y + rd ∈ Ω.

Both Assumption 5.4.1 and 5.4.2 are important in characterizing a viscosity

solution to (5.3.2). Assumption 5.4.1 implies that our continuous slowness function

u(x) needs to be strictly. Both Assumption 5.4.2 and 5.4.3 states that the slowness

function for all x is continuous, specifically at least Lipschitz continuous. However
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Assumption 5.4.2 is unique in that it allows for certain discontinuities of f . An

example of this can be found in [44], where the authors state that if the geometry

of the discontinuities are known, then well-posedness can be shown.

Remark 5.4.1. As a note we emphasise that with this work the analytical solution

of the forward problem (5.3.2) may not be unique. This will of course depend on

the actual prior form of the slowness function, and the assumptions stated above.

Numerically all our priors are of a discrete form where the forward problem admits

a unique discrete solution.

Whittle-Matérn Priors

Our first prior form will be based on a Gaussian random field i.e. u ∼ N (0, C),
specifically a Whittle-Matérn random field. The function representing the prior is

chosen such that u ∈ C0(Ω). These are a family of Gaussian random fields which

are isotropic and stationary with covariance function

c(x, x′) = σ2 21−ν

Γ(ν)

(
|x− x′|

`

)ν
Kν

(
|x− x′|

`

)
, x, x′ ∈ Rd. (5.4.4)

where Kν denotes a modified Bessel function of the second kind and Γ(ν) is a

Gamma function. From (5.4.4) we also have the inclusion of three hyperparameters;

the amplitude σ ∈ R, the regularity ν = α− d/2 ∈ R+ and the length-scale ` ∈ R+.

The covariance function has a corresponding covariance operator which is given as

C := σ2(I − `2∆)−α, (5.4.5)

such that ∆u =
∑d

i=1 ∂
2
xiu is the Laplacian operator. The connection between the

covariance structures of (5.4.4) and (5.4.4) can be found in Chapter 2.. There is

a vast amount of literature which discusses how to generate random fields of the

covariance form (5.4.4), which are provided in the text [99]. We will simulate our

Gaussian prior based on the Karhunen-Loève (KL) expansion, which is given in the

form of

log u =

J∑
j=1

√
λjξjφj . (5.4.6)

(λj , φj) are given as the eigensystem which satisfies Cφj = λjφj and ξj ∼ N (0, 1)

is Gaussian white noise. Depending on the boundary conditions of the PDE, the

eigenfunctions φj are taken as an inverse discrete Fourier transform. For the case

of the eikonal equation we would impose Neumann conditions. We usually assume

the series (5.4.6) is truncated, for computational purposes and that the eigenvalues
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are defined as λj := σ2(I − `2∆)−α. By defining

cJ = −max
j

(|
√
λj |‖φj‖∞)J ,

We can explicitly bound the variation of the values our unknown can take i.e. log u ∈
[−cJ , cJ ]. By taking the the exponential of log u we can bound u by

0 < mJ ≤ u ≤MJ

given that mJ := exp(−cJ ) and MJ := exp(cJ ). Combining everything we present

our first prior through the following definition.

Definition 5.4.1. Given a set of fixed hyperparameters θ = (σ, α, `) ∈ H defined

in subsection 5.4.1 corresponding to the covariance operator C with eigensystem

(λj , φj), and white noise ξ, our Whittle-Matérn prior is defined such that

PWM
(σ,α,`) =

{
u ∈ C0(Ω̄) | log u =

J∑
j=1

√
λjξjφj

}
, (5.4.7)

where WM stands for Whittle-Matérn.

Our prior defined in (5.4.7) satisfies both assumptions 5.4.1 and 5.4.2. The

positivity of the prior is indicated through the log where we take the exponential of

(5.4.6). The continuity of the prior comes through the condition that α > d
2 which

ensures continuous sample paths, and from the continuity of the eigenfunctions φj .

This is discussed in detail in [99]. Random draws from the KL expansion (5.4.6)

with covariance (5.4.5) are provided in Figures 5.2 and 5.3.

Figure 5.2: Random draws from the KL expansion with ` = 0.1 and α =
1.5, 2.5, 3.5 and 4.5 with a fixed σ = 1.
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Figure 5.3: Random draws from the KL expansion with α = 3 and ` =
0.1, 0.05, 0.02 and 0.01 with a fixed σ = 1.

Hierarchical Whittle-Matérn Priors

We now wish to consider the extension of the first prior in the previous subsection to

a hierarchical version. These priors consider our problem in a hierarchical manner

with respect to the Whittle-Matérn covariance function 5.4.4. By doing so our

unknown is not only u but θ = (σ, α, `) ∈ H which are the hyperparameters that

define u. To keep our work consistent with [33] we keep the amplitude constant,

and consider the recovery of only (α, `) ∈ H := R+ × R+.

In order to do so we use an alternative approach to the KL expansion (5.4.6)

known as the stochastic partial differential (SPDE) approach. This approach looks

to solve the following SPDE for u

(I − `2∆)
α
2 log u =

√
β`2/dξ, (5.4.8)

where ξ ∈ H−s(D), s ≥ d
2 is Gaussian white noise and

β = σ2 2dπd/2Γ(α)

Γ(α− d
2)

. (5.4.9)

This approach is different to the KL expansion as rather than being a spectral

method, our prior is generated by solving the SPDE (5.4.8). Numerically this can

be achieved using finite element methods, where further details on the discretization

can be found in Chapter 3.. As before to ensure continuity of the prior we assume

α > d
2 , similarly with s. By solving (5.4.8) our solution has a representation of

the form (5.4.4). Further information on the derivation of (5.4.8) from (5.4.4) can

found in [124] but Roininen et al.. Now if we wish to work in hierarchical manner

we can do so in two ways: firstly to consider the unknown as (u, θ) or as (ξ, θ).

The former is referred to as the centered approach, while the later is known as the

non-centered approach [115, 116], for which one reparamaterize (5.4.8) in terms of ξ.

A comparison of both methods was conducted in the context of inverse problems by
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Chada et al. [33], where it was shown that the non-centered approach outperformed

its counterpart. The reason for this arises from the difference of both methods which

is through the prior. Our prior distributions for both approaches are constructed as

P(u, θ) = P(u|θ)P(θ), (5.4.10)

P(ξ, θ) = P(ξ)P(θ). (5.4.11)

As shown in the non-centered case (5.4.11) both the hyperparameters and the un-

known are independent under the prior. Due to this loss of dependence it allows for

richer reconstructions. In order to hierarchically learn our Gaussian random field,

we place uniform bounds on our hyperparameters provided in Table 5.1.

Parameter Prior distribution

α U [1.1, 4.1]
` U [0.02, 0.1]

Table 5.1: Prior distributions of the hyperparameters.

Definition 5.4.2. Given a covariance operator C defined in subsection 5.4.1, with

constant β > 0, fixed amplitude σ and white noise ξ, our hierarchical Whittle-Matérn

prior is defined such that

PHWM
σ =

{
(α, `) ∈ H, u ∈ C0(Ω̄) | (I − `2∆)

α
2 log u =

√
β`2/dξ

}
, (5.4.12)

where HWM denotes hierarchical Whittle-Matérn.

Level Set Priors

Level set methods [128, 130] have been important when analyzing problems regard-

ing interfaces between domains, such as when the unknown is piecewise constant.

These methods work by thresholding a continuous function ũ which results in a level

set function u. We can then formulate the inverse problem in the form (5.2.1) for

u. Our level set function is defined as

Fũ(x)→ u(x) = Thr(ũ(x)),

where F : C0(Ω;R)→ D(Ω;R) is our level set mapping. Here D(Ω;R) is a space of

discontinuous slowness functions. Level set methods have seen wide applications to

inverse problems [23, 25]. Recently there have been extensions of this to Bayesian
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inverse problems where the Bayesian level set method [47, 81] was derived. For our

level set prior we assume ũ is a Gaussian random field generated through (5.4.8).

for which thresholding results in n = 3 subdomains. We have fixed constants [c1, c2]

which define the thresholding levels, given as

c1 = 0.1× `−( d
2
−α), (5.4.13)

c2 = −0.1× `−( d
2
−α), (5.4.14)

which are scaled through the regularity α and length scale `. Given these threshold

levels, we define multiple subdomains {Ω}n−1
i=0 defined as

Ω1 = {x ∈ Ω | ũ(x) < c1},

Ω2 = {x ∈ Ω | c1 ≤ ũ(x) ≤ c2},

Ω3 = {x ∈ Ω | ũ(x) > c2},

such that Ωi ∩ Ωj = ∅ for i 6= j. Therefore our level set function is defined as

Thr(ũ(x)) =


u0, ũ(x) < c1,

u1, c1 ≤ ũ(x) ≤ c2,

u2, ũ(x) > c2.

The amount of subdomains and thresholding is not restricted to the setting

we have chosen. As our threshold levels are determined through the parameters in

Table 5.1, we work in a hierarchical manner. We are now interested in recovering

both the regions ui and the threshold levels [c1, c2].

Definition 5.4.3. Given a Gaussian random field ũ defined in subsection 5.4.1,

and thresholding constants [c1, c2] given by (5.4.13)-(5.4.14), our level set prior is

given as

PLS
(σ,c) =

{
(α, `) ∈ H, ũ ∈ C0(Ω̄), u ∈ D(Ω̄) | u(x) = Thr(ũ(x))

}
, (5.4.15)

where LS denotes level set.

Unlike the previous priors defined in subsections 5.4.1 and 5.4.1, our level

set prior is not continuous, but abides by Assumption 5.4.1. An example of the

level set prior is given in Figure 5.4 which includes n = 3 defined interfaces through

thresholding.
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Figure 5.4: Random draws from level set thresholding of three interfaces from Gaus-
sian draws with varying regularity and length scale with three interfaces.

Vector-Valued Level Set Priors

One disadvantage that arises with the level set formulation in subsubsection 5.4.1 is

that it orders each of different layers or interfaces. This implies, in the case of three

interfaces, that each regions can not be directly connected. One way to alleviate

this issue is to consider a different level set formulation. Given a level set function

S : C0(Ω;Rn)→ D(Ω;Rn) where S is defined in such a way that

Sũ(x)→ u(x) = er(x;ũ), (5.4.16)

where

r(x; ũ) = argmax
i∈{1,...,n}

ũi(x). (5.4.17)

Similarily with the level set prior (5.4.15), ũ denotes a Gaussian random field gen-

erated through the SPDE (5.4.8). In this formulation our level set map Sũ = u is

represented through {er}ni=1 which is the standard orthonormal basis on Rn deter-

mined through the operation (5.4.17). The number of interfaces is denoted by n.

Not only does this alternative formulation allow for all interfaces to coincide but

it allows for unknowns that can not be generated from the level set formulation as

described through (5.4.15). This motivation is taken by the work of Bertozzi et

al. [75], where they consider it for classification problems. The alternative level set

method is defined through the following.

Definition 5.4.4. Given a set of hyperparameters θ = (α, `) ∈ H defined in subsec-

tion 5.4.1, a collection of n Gaussian random fields through (5.4.12) and a thresh-

olding level r, our level set prior is given as

PVLS
(σ,r) =

{
(α, `) ∈ H, {ũ}ni=1 ∈ C0(Ω̄), u ∈ D(Ω̄) | u(x) = er(x;ũ)

}
, (5.4.18)

where VLS denotes vector level set. As an example we show draws from the prior

form (5.4.18) for the case of n = 3 in Figure 5.5.
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Figure 5.5: Random draws from vector level set thresholding with varying regularity
and length scale with three interfaces.

Fixed Shape Priors

Our last prior we consider are priors that can be defined through piecewise constant

functions where shape is fixed. These priors differ in the case of the level set priors

as they are not based on thresholding a Gaussian random field. Our fixed shape

prior will include circular subdomains BR(ai), for i = 1, . . . , n where n denotes the

number of balls. The geometric parameters associated with each circle {ui}ni=1 is a

common radius R and center {ai}ni=1 = (ai,x, ai,y). Our function defining each circle

are given as

ui = (x1 − ai,x)2 + (x2 − ai,y)2 −R2.

Therefore our fixed shape circular prior will take the general form

u(x) =
n∑
i=1

uiχBR(ai)(x), (5.4.19)

where χBR(ai)(x) is a characteristic function of the form

χBR(ai)(x) =

1, x ∈ BR(ai)

0, x /∈ BR(ai)
(5.4.20)

such that BR(ai) ∪ BR(aj) = ∅ for i 6= j. These prior were first tested in the

Bayesian formulation by Iglesias et al. [80] where they considered geometric priors

for subsurface flow. Our prior u ∈ BV (Ω) belongs the space of functions of bounded

variation where BV (Ω) = {u ∈ L1(Ω) :
∫

Ω |Du| < ∞}. Specifically for this work

(5.4.19) is now chosen were we have a two circular inclusion prior. Therefore we

introduce an unknown û = (a1, a2, R) ∈ F := R5 with parameters

• a1 = (a1,x, a1,y) ∈ R2 - first circular center.

• a2 = (a2,x, a2,y) ∈ R2 - second circular center.

• R ∈ R+ - circular radius.
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In order to ensure that the circles do not coincide with each other, we ideally

would like a radius, such that for ε > 0

|ai − aj | ≥ R+ ε.

For this prior we impose conditions which prevent this type of phenomenon. This

is highlighted in Table 5.2 below. The following definition presents the fixed shape

prior.

Definition 5.4.5. Given a set of geometric parameters (a1, a2, R) ∈ F defined in

subsection 5.4.1, our fixed shape prior is constructed as

PFS =
{

(a1, a2, R) ∈ F , u ∈ BV (Ω) |u(x) =
n∑
i=1

uiχBR(ai)(x)
}
, (5.4.21)

where FS denotes fixed shape.

Our fixed shape prior (5.4.21) will abide by Assumption 5.4.1, as similarly

with the level set prior (5.4.15) to ensure positivity we assign positivity to the balls

and the region outside the balls. However for continuity Assumption 5.4.3 holds for

some discontinuities, such as numerous curves in the domain which are highlighted

in an example of Definition 2.1 in [44].

Parameter Prior distribution

R U [0, 0.2]
a1 U [0.10, 0.45]2

a2 U [0.55, 0.85]2

Table 5.2: Distributions of the geometric parameters.

From Table 5.2, four random draws generated through (5.4.21) are shown in

Figure 5.18.

Figure 5.6: Random draws from circular fixed shape prior with varying positions
and radii.
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Remark 5.4.2. We emphasize that for our fixed shape prior we keep the various

levels of the slowness function constant, however it can be of interest to model this

prior further with the inclusion of random parameter for the values of ui(x).

To understand the effect of each prior on the solution T (x) we see visually the

differences in T (x) as we consider each prior individually. This is seen through Figure

5.7 where we place 3 source points situated at (0.4, 0.5), (0.3, 0.35) and (0.75, 0.85)

in the domain D = [0, 1]2.

Figure 5.7: Top row: various slowness functions of priors. Bottom row: correspond-
ing forward solution.

5.4.2 Deterministic Approach

The inverse problem associated with the eikonal equation was initially considered in

a deterministic setting [52]. It was presented in an optimization framework which

uses a least squares formulation: given n number of measured arrival times denoted

as Tobs : Γ→ R+ we aim to minimise the misfit functional, i.e. compute

argmin
u∈X

J(u),
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such that our functional is expressed as

J(u) =
1

2

∫
Γ
|Tu(x)− Tobs(x)|2dox, (5.4.22)

where Tu(x) is our forward solution. Now by considering a number of source points

xi0, for i = 1, . . . , I we can rewrite the functional (5.4.22) as

J(u) =
1

2

∫
Γ
|T iu(x)− T iobs(x)|2dox. (5.4.23)

An important characteristic in the deterministic framework is regularization, which

adds some information of the underlying unknown to improve reconstruction of the

unknown. One of the simplest and most popular forms of regularization is Tikhonov

regularization which was considered in [52]. When applied, modifies the functional

(5.4.22) to

J(u) =
1

2

∫
Γ
|Tu(x)− Tobs(x)|2dox +

λ

2

∫
Ω
|∇u|2, (5.4.24)

for λ > 0. Here the form of regularization comes through gradient of the unknown u.

Well-posedness for (5.3.2) with prescribed Sonar boundary conditions was shown in

[52], which was achieved through showing a subsequence converging to the solution

as the mesh size went to zero. This was achieved through using techniques from Γ

- convergence.

5.4.3 Bayesian Approach

We now consider a statistical approach to model the inverse problem. The Bayesian

approach to inverse problems [137] seeks to solve (5.2.1) for u(x) by treating each

quantity as a random variable. Through an application of finite-dimensional Bayes’

Theorem we can construct a posterior distribution

P(u|y) =
P(y|u)P(u)

P(y)

∝ P(y|u)P(u),

where P(u) denotes the prior distribution under our unknown u and P(y|u) repre-

sents the data-likelihood. By relating (5.2.1) we can construct our inverse problem

in a Bayesian setting. We are now in a position to relate the Bayesian approach

to our model of interest (5.3.2). Recall that with the eikonal equation our space of

slowness functions is defined as either u(x) ∈ X := C0(Ω) or u(x) ∈ X := D(Ω), and
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similarly with our solution space T (x) ∈ V := C0(Ω). As before, assume a forward

operator G : X → Y where our forward operator is defined as G = O ◦G : X → Rm,

composing of two mappings. Here O : V → Rm =: Y is defined as our observational

operator and G : X → V is our parameter to unobserved operator. We are interested

in the undetermined problem of recovering uj from noisy measured functionals

yj = (Oj ◦Gj)(u) + ηj .

We concatenate these observations to get data y ∈ R such that

y = G(u) + η. (5.4.25)

We note that (5.4.25) is a general expression of the inverse problem. Though in order

to account for the numerous priors we have mentioned, we have to reformulate the

inverse problem.

Level set prior

Given our level set prior PLS
(σ,c) defined as (5.4.15), we now have the inclusion of an

additional mapping F : X → X which is our level set map. With the inclusion of

this map our forward operator is now given as G# = O ◦ G ◦ F : X → Rm. Using

the same arguments as in Subsection 5.4.3 we have

y = G#(u) + η. (5.4.26)

Remark 5.4.3. We can alter (5.4.26) to consider the vector level set formulation

using the prior PVLS
(σ,r) defined in (5.4.18). The only modification would be to change

in the level set map S.

Hierarchical Whittle-Matérn prior

Extending our Gaussian prior to a hierarchical prior requires the SPDE formulation

(5.4.8). In particular now our unknown is (ξ, θ) such that ξ ∈ H−s(Ω) is white noise

with θ = (α, `) ∈ H denoting the collection of hyperparameters. In order to account

for ξ, which we refer to as the non-centered approach, our forward mapping is such

that GT = G ◦ T = O ◦G ◦ T : H∗ → Rm, where H∗ := H×H−s(D). The mapping

T : (ξ, θ) → u is associated with the non-centered approach arising from (5.4.8).

Again using similar arguments we can express our inverse problem as

y = G(T (ξ, θ)) + η. (5.4.27)
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We omit the formulation of the inverse problem for the fixed shape prior (5.4.21) as

it is the same to (5.4.25).

5.4.4 Likelihood and Posterior

In order to characterize a solution of our inverse problems defined we need three

components as discussed from Bayes’ Theorem (1.2.2). All that remains is the

likelihood for which we can represent our solution as a posterior distribution. We

aim to do so for all the inverse problems that were discussed. We firstly recall the

inverse problem of recovering u from noisy measurements y where

y = G(u) + η, η ∼ N (0,Σ). (5.4.28)

We can further define a potential for our inverse problem Φ(u; y) : X → R where

Φ(u; y) =
1

2
|y − G(u)|2Σ. (5.4.29)

From the potential given in (5.4.29) we can define our data-likelihood as

P(y|u) = exp
(
− Φ(u; y)

)
. (5.4.30)

Combing both our prior and data-likelihood (5.4.30), via Bayes’ Theorem, we can

construct our posterior probability

P(u|y) ∝ P(y|u)× P(u) (5.4.31)

= exp
(
− Φ(u; y)

)
× P(u). (5.4.32)

Remark 5.4.4. As our non-hierarchical Gaussian and fixed shape priors associated

inverse problems can be expressed through (5.4.28), we further omit specifying their

data-likelihoods and posteriors which are defined as (5.4.30) and (5.4.32).

Level Set Posterior

For our level set inverse problem, we emphasis two differences. Firstly that our prior

is of the form (5.4.15), and that our forward operator includes a level set mapping.

Therefore our inverse problem is to recover u from noisy measurements y where

y = G#(u) + η, η ∼ N (0,Σ),
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The potential for our inverse problem Φ#(u; y) : X → R is defined such that

Φ#(u; y) =
1

2
|y − G#(u)|2Σ. (5.4.33)

From (5.4.33) we can define our data-likelihood as

P(y|u) = exp
(
− Φ#(u; y)

)
. (5.4.34)

Via Bayes’ Theorem, we can construct our posterior probability through our prior

ad data-likelihood (5.4.34)

P(u|y) ∝ P(y|u)× P(u)

= exp
(
− Φ#(u; y)

)
× P(u).

Hierarchical Posterior

Recall that with our hierarchical Whittle-Matérn prior (5.4.12) we are interested in

recovering (ξ, θ) from y, where θ is the collection of hyperparameters and ξ is the

forcing term of the SPDE (5.4.8). An important distinguishment with this prior

is that both ξ and θ are independent, implying P(ξ, θ) = P(ξ)P(θ). Therefore our

inverse problem is such that

y = G(T (ξ, θ)) + η, η ∼ N (0,Σ),

with potential ΦNC(ξ, θ; y) : H→ R given as

ΦNC(ξ, θ; y) =
1

2
|y − G(T (ξ, θ))|2Σ, (5.4.35)

where NC denotes non-centered. From the potential given in (5.4.35) we can define

our data-likelihood as

P(y|ξ, θ) = exp
(
− ΦNC(ξ, θ; y)

)
. (5.4.36)

Combing both our prior and data-likelihood (5.4.36), via Bayes’ Theorem, we can

construct our posterior probability

P(ξ, θ|y) ∝ P(y|ξ, θ)× P(ξ, θ)

= exp
(
− ΦNC(ξ, θ; y)

)
× P(ξ)P(θ).

Remark 5.4.5. For this work we omit characterizing well-posedness of the inverse
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problems. Showing this will depend both on the prior forms, but also the forward

problem used. Specific to the case of our inverse solver, as there is no posterior to

analytically infer we do not require a well-posedness theorem. However we note this

is a useful direction to pursue, for which we leave as future work to consider which

could enhance this work.

5.4.5 Iterative Ensemble Kalman Method

The field of Bayesian inverse problems has seen developments of numerous computa-

tional algorithms. In particular a large majority of them have been for Monte Carlo

methods, such as MCMC and sequential Monte Carlo, which have been favourable

for extracting information well from the posterior distribution. An alternative to

these methods are taken from data assimilation which are ensemble methods. These

methods use an ensemble of particles to update the quantity of interest. Rather

than actually sampling from the posterior these methods can be thought of as op-

timisers which are based on update equations. In particular common examples

ensemble-based methods include the randomized maximum likelihood and the en-

semble Kalman filter (EnKF) [57]. Our inverse solver that we are interesting in

using is an extension of the EnKF which is the iterative ensemble Kalman method

[77, 78].

The iterative ensemble Kalman method was originally developed by Iglesias

et al. [79] to solve PDE-constrained optimization problems, specifically for inverse

problems. The key idea behind the method is to update an ensemble of particles

{u(j)
n }Jj=1 ⊂ X where n denotes the iteration count and J are the number of ensemble

particles. The method can be thought of as a black-box which is derivate free. It

combines the usual procedure of the EnKF where there is a prediction and update

step and, while taking techniques from deterministic inverse problems such as the

Levenberg-Marquardt (LM) method [71]. Like the EnKF the prediction step defines
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a sample mean and empirical covariances based on the ensemble of particles

ū =
1

J

J∑
j=1

u(j)
n , (5.4.37)

Ḡ =
1

J

J∑
j=1

G(u(j)
n ), (5.4.38)

Cwwn =
1

J − 1

J∑
j=1

(G(u(j)
n )− Ḡ)⊗ (G(u(j)

n )− Ḡ), (5.4.39)

Cuwn =
1

J − 1

J∑
j=1

((u(j)
n )− ū)⊗ (G(u(j)

n )− Ḡ), (5.4.40)

and maps these from the parameter space X to the data space Y. The update

compares the mapped ensemble with the data and matches it with it based on the

update equation

u
(j)
n+1 = u(j)

n + Cuwn (Cwwn + Σ)−1(y
(j)
n+1 − G(u(j)

n )), (5.4.41)

which uses the sample mean and empirical covariances. The derivation and mo-

tivation behind this method arising by relating it to the least squares formula-

tion. In the deterministic framework, suppose our functional is of the form I(u) =

‖y − G(u)‖2Γ + ‖u− ū‖C , our inverse solution is then defined as

uTP = argmin I(u),

with TP denoting Tikhonov-Phillips regularization. the work of Lehtinen et al. [92]

showed that for a linear inverse problem, i.e. G(u) = Gu, that for any C,G,Γ the

inverse solution has the form

uTP = ū+ CG∗(GCG∗ + Γ)−1(y − Gū), (5.4.42)

with G∗ expressed as the adjoint forward operator. Now if we consider (5.4.37) -

(5.4.40), then by taking the ensemble size J →∞ then our update equation (5.4.41)

remains consistent with (5.4.42). This is justified in the following theorem.

Theorem 5.4.1. Assume a linear operator G(u) = Gu with update equation (5.4.41)

and least squares solution (5.4.42) to I(u), then

u→ uTP, as J →∞. (5.4.43)
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Proof. The proof can be found in the work of Iglesias et al. [79].

We emphasis with this method, unlike the least squares approach, that it

remains derivative free. As stated the iterative ensemble Kalman method is also

based on the LM method, specifically it uses regularization properties that were first

used in [71] to prevent the over-fitting of data. This form of regularization comes in

the form a discrepancy principle, where if the following condition is satisfied

‖Σ−1/2(y − w̄n)‖Y ≤ δη, (5.4.44)

then we terminate the experiment. From (5.4.44) δ > 1/ρ where ρ ∈ (0, 1) denotes

a regularization term. With the inclusion of the discrepancy principle this modifies

the update equation (5.4.41) thus leading to a new update equation

u
(j)
n+1 = u(j)

n + Cuwn (Cwwn + βnΣ)−1(y
(j)
n+1 − G(u(j)

n )). (5.4.45)

A full numerical investigation on the effect of tuneable parameters for the regular-

ization are provided in [77]. The full method of our inverse solver is provided by

Algorithm 5 in Chapter 4.

5.5 Numerical Experiments

This section will be devoted to applying our priors, which were defined in Section

5.4, to the inverse eikonal equation. We seek to test each priors performance within

the inverse solver, where we will quantify this through various ways:

‖y − Ḡ(uEKI)‖2Σ (Data misfit), (5.5.1)

‖uEKI − u†‖L2(Ω)

‖u†‖L2(Ω)
(Relative error), (5.5.2)

1

J

J∑
j=1

u
(j)
EKI (Mean output at iteration), (5.5.3)

where u
(j)
EKI denotes the current iterate solution. As well as considering the data

misfit (5.5.1) and relative error (5.5.2), our mean output will be on five different

values throughout the iteration count which we will set n = 23. Each subfigure will

be assigned an iteration number i.e. (1st, 2nd, 3rd, 4th, 5th) = (1, 5, 11, 17, 23). We

denote u† as our truth we are interested in reconstructing and our reconstructed
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solution thus far in the iterative solver as uEKI where EKI stands for ensemble

Kalman inversion. As the inversion can largely depend on the initial ensemble, we

repeat each experiment for each corresponding prior eight times. We showcase four

final reconstructions from the eight experiments, where the best experiment will be

shown in terms of the iteration number mentioned above. Our forward solver for

(5.3.2) will be based on the FMM which is described in Algorithm 1. We will choose

for our discretization h = 1/100. We specify 12 source points on the boundary with

3 on each corresponding side of the boundary. Our inverse solver, as mentioned, will

be based on EKI with an ensemble size of J = 200, a regularization parameter of

ρ = 0.8, the variance of the noise as Σ = γ2I such that γ2 = 0.01. Our motivation

for choosing these prescribed values for the iterative solver comes from [33, 77] where

Iglesias tested optimal values for various parameters from the inverse scheme. We

further assume 64 pointwise observations {lt(T )}64
t=1 given as

lt(T ) =

∫
Ω

1

2πσ2
e−

1
2σ2

(x−xt)2T (x)dx,

that are defined on the boundary. From our measurements synthetic data y are

generated through

y = (l1(h†), . . . , l64(h†)) + η, η ∼ N (0,Σ). (5.5.4)

All of the numerics are run through MATLAB@2014 on a computer with 8GB RAM

DDR3 and a processor of Intel core 3.2 GHz.

Remark 5.5.1. Our noisy measurements y in the form of our forward solution can

be taken in various ways. Usually the measurements are taken either in the domain

Ω or placed on the boundary Γ. An another alternative to this is a combination

where the measurements are over both the boundary and domain. For the purposes

of this work we keep the measurements on the domain, which remain consistent with

the work of [52].

5.5.1 Hierarchical Whittle-Matérn Prior

Our first set of numerical experiments will involve the Gaussian Whittle-Matérn

prior defined in Section 5.4.1 through the SPDE formulation. We consider this in-

verse problem in a hierarchical manner. As discussed in subsection 5.4.1, acting

hierarchically allows us to further consider the reconstruction of certain hyperpa-

rameters. For these experiments we will only consider θ = (α, `) ∈ R+×R+ where we

exclude the scaling constant σ > 0. Part of the reason for this is to remain consistent
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with the work carried out in [33], and that differences in the tested hyperparame-

ters are considerably more noticeable. Our true values for our hyperparameters are

provided in Table 5.3.

Parameter True value

α 3.8
` 0.08

Table 5.3: True value of the hyperparameters.

For our initial ensemble our priors for θ will be chosen based on Table 5.1.

Our truth constructed through Table 5.3 is shown in Figure 5.9.
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Figure 5.8: Learning rates of hyperparameters. Left: α. Right: `.
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Figure 5.9: Hierarchical truth.

Figure 5.10: Reconstruction of hierarchical prior.

Our first set of numerical experiments were conducted with the hierarchical

prior. If we first analyze Figure 5.10 we see the progression of the iterative method.

We notice initially that we see an improvement in terms of both the hyperparameters

where we see an increase in both the length-scale and regularity. As the iterative

method terminates, our solution at the end is consistent with the truth, both in

terms of the true values of the hyperparameters and the overall unknown, as seen

in Figure 5.9. This is verified through Figure 5.15 which shows the learning rates of

both the hyperparameters.

The performance of the iterative scheme in terms of the data misfit and

relative error are given in Figure 5.12. As mentioned an important note to make

on the scheme is how the initial ensemble is chosen. Figure 5.11 shows solutions to
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Figure 5.11: Final iteration from four different initializations of hierarchical prior.
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Figure 5.12: Hierarchical prior. Left: Relative error. Right: Log data misfit.

four of the different initializations, which gives an indication that regardless of how

the initial ensemble is chosen, based on Table 5.1, the iterative method is able to

reconstruct the truth.
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5.5.2 Vector Level Set Prior

As discussed in subsection 5.4.1 we have introduced two level set priors, one which

is based on a layering system. The other method negates this issue which is based

on a vector level set approach. Due to this we will test only the vector level method,

which we aim to test hierarchically. For our level set experiments we will consider

the case of k = 3 classes. As a result our truth is constructed through 3 Gaussian

random fields which is presented in Figure 5.13.

The true values of the hyperparameters are chosen based on Table 5.5, where as the

prior on both hyperparameters are chosen in the same manner as before, namely

Table 5.1.

Parameter True value

α 4.0
` 0.06

Table 5.4: True value of the hyperparameters.

Figures 5.15 and 5.14 provide a representation of how the algorithm works

and how the learning of the hyperparameters proceed. For Figure 5.14 we see the

progression of the iterative method, as shown similarly in subsection 5.5.1. The

overall learning of the algorithm seems to work well, however in the case of vector

level set method it takes slightly longer to reconstruct the unknown. However despite

this, in the the learning rate of the hyperparameters we see a similar phenomenon

where after roughly the 15th iteration, the rate remains roughly constant.

We repeated this experiment numerous times where the four best overall

reconstructions are found in Figure 5.17. Unlike with the hierarchical prior PHWM
σ

we see a greater variation between the solutions, which could be argued due to the

intensity and difficult of working with the vector level set prior. The relative errors

and the data misfits of all repeated experiments, are presented in Figure 5.16.
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Figure 5.13: Vector level set truth.

Figure 5.14: Reconstruction of vector level set prior.
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Figure 5.17: Final iteration from four different initializations of vector level set prior.

5.5.3 Fixed Shape Prior

The final prior we wish to test is our fixed shape prior with circular inclusions.

The prior is defined in the form (5.4.19) where we set two circular inclusions in our

domain, and a common radius between the circles. We specify a truth which is

provided in Figure 5.18, which is aided through the geometric parameters chosen

as shown in Table 5.5. As before we keep the setting the same for both the inverse

and forward solver, where we are interested in assessing the performance through

(5.5.1) - (5.5.3).

We emphasis that our focus of this experiment is to recover the geometry of

the slowness function.

Parameter True value

(a1,x, a1,y) (0.375,0.375)
(b2,x, b2,y) (0.625,0.625)

R 0.12

Table 5.5: True value of the geometric parameters.

The numerical experiments conducted through the fixed shape prior showcase

a strong performance within the iterative method. Figure 5.19 gives an indication

of this where we see that the learning occurs fairly quickly, as seen in the third

subfigure which is the 11th iteration. Considering this with the data misfit and
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Figure 5.18: Fixed shape truth.

Figure 5.19: Reconstruction of fixed shape prior.

relative error in Figure 5.20, we see a strong decline in both these quantities with

a final relative error of just under 0.1. Finally we repeat the experiment where

four of the best initializations are presented in Figure 5.21, which is based on Table

5.2. Each final solution of the initializations produces a strong reconstruction with

respect to the truth. This, with the performances discussed above, can be attributed

to the restrictions given on the initial conditions of the prior presented in Table 5.2.
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Figure 5.21: Final iteration from four different initializations of fixed shape prior.

5.6 Conclusion

The Bayesian approach to inverse problems is an attractive one, largely due to

incorporating methodology from other fields. One of those fields is uncertainty

quantification (UQ) which can be aided by both Bayesian techniques and applied

mathematics. In this chapter we used some of those UQ techniques to tackle the

problem of the inverse eikonal equation. This was achieved by introducing various

prior forms that the slowness function could take, ranging from both heteregenous

and piecewise constant fields. Under the various priors we showed, despite stricter

assumptions on the eikonal equation, that attainable numerical results were achieved
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for recovering the slowness function. It is still to be shown analytically whether we

can attain well-posedeness both for the inverse and forward problem. Analyzing

the inverse eikonal equation leads to a number of interesting further directions of

research, namely

• The area of pedestrian dynamics has sparked recent attention. The models

used in pedestrian dynamics are commonly referred to as either macroscopic

or microscopic models. One model which is have been analyzed is the Hughes

model which is given as

∂ρ

∂t
−∇ · (ρf(ρ)2∇φ) = 0

‖∇φ‖ =
1

f(ρ)
.

The model is concerned with how quickly a group of pedestrians can reach an

exit in a particular region. From the above equation we notice that we have a

coupled system with includes the eikonal equation. Given the work that has

been done, applying those tools to the inverse Hughes model would be a nice

extension. Other insights which would be useful in this context would be to

characterize a mean field limit.

• In the context of the eikonal equation, it is common to model the slowness

function as a piecewise constant function. Due to this instead of using level

set techniques, it may be worth pursing a phase field approach. This offers

a much richer understanding mathematically of the problem, but would be

more beneficial to consider this in a deterministic setting. This would mea

considering the solution as a minimizer of the functional

Jε(u) :=
1

2

∫
Γ
|T (x)− Tobs(x)|2dsx + σ

∫
Ω

( ε
2
|∇u|2 +

1

ε
φ(u)

)
dx,

which can be interpreted as the function (5.4.22) with an additional phase-field

regularization term.
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Chapter 6

Conclusion & discussion

The motivation behind this thesis was to understand and develop methodology for

ensemble Kalman inversion, where we addressed various avenues of research. Our

results and findings for each chapter are summarized below:

• Chapter 2. - Our interest for this thesis chapter was to develop hierarchical

approaches for ensemble Kalman inversion. Taking motivation from Roberts et

al. [115, 116], we characterized two approaches; the centred and non-centred

approach. We saw that with these approaches, specifically the non-centred

one, that we were able to learn not only the underlying field but the hyperpa-

rameters that define it. This was tested for a range of inverse problems. The

key point from this work is that when understanding ensemble based meth-

ods hierarchically, that we are able to break away from the subspace property

which can pose a restriction on the inversion through the initial ensemble.

• Chapter 3. - This chapter was concerned with developing theory of these

hierarchical approaches discussed in Chapter 2. Namely we were interested

in deriving diffusion limits (continuous-time) in the linear case, and providing

a better formulation and definition of these approaches. This relates to the

generation of the Gaussian random fields, where we further analyzed the ap-

proaches regarding the subspace property. Lastly we considered a number of

variants on the ensemble Kalman filter such as variance inflation and localiza-

tion. Diffusion limits were further derived here, where we showed through the

means of a simple numeric experiment how these techniques act hierarchically.
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• Chapter 4. - This chapters aim was to improve on a challenge within uncer-

tainty quantification and inverse problems, which is to improve the efficiency

of the forward solver. This was done through the reduced basis method, a

method which is based on a Galerkin projection. A question we considered

for this was the effect of the training set used in the reduced basis method,

where we tested this for an elliptic partial differential equation. We then used

this to further test this training set in a setting for geometric inverse problems.

The improved forward solver showcased an improvement on computation time,

without losing much accuracy through the inversion.

• Chapter 5. - The final body of work was dedicated to understanding, from

a Bayesian approach, the inverse eikonal equation. The eikonal equation has

been well studied, however the inverse problem associated with it has seen

a lack of literature. We sought to extend the work of [52] which considered

a deterministic setting. In particular we tested a number of various priors,

such as geometric and log-Gaussian, on the equation and derived a Bayesian

formulation of the equation. We showed that with these priors we could get

good reconstructions of the slowness function. The motivation here was to

understand how inverse HJ equations act under the Bayesian formulation.

Overall the thesis looked to shed light on a number of interesting areas being con-

sidered in the inverse problem community. As mentioned one of these is the issue

with the forward solver where, for more computational intensive partial differential

equations, alternatives are being proposed to traditional FEMs. We considered the

RBM which has been well studied and showed improvements on the computation

of experiments. However we still think that in a Bayesian setting, that the RBM

could be studied further to gain an insight, as most of work has been done in a

deterministic fashion. It would be of interest consider other ROM methods, such as

Gaussian process regression, in a more computational demanding manner.

Hierarchical learning has been a recent trend as well within the inverse prob-

lem community, where the aim is to produce good enough priors to negate the

influence of the data-likelihood. In order to do this, hierarchical inverse problems

usually involve a number of unknowns to reconstruct. In the context of EKI we say

that we could do this well, for a number of hyperparameters, whilst not sacrificing

any efficiency in the experiments. As of now other hierarchical methods are being

considered and developed for various solvers such as MAP estimation and Gaussian

process regression. We note again that each hierarchical approach taken in can be

interpreted in a different manner. This includes the analysis for each corresponding
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hierarchical solver.

As a side topic, with the huge improvements on the developments of methods

for Bayesian inverse problems, it would be of interest to test and clarify an under-

standing of further mathematical models. Thus far elliptic PDEs have been (and

are still) being mainly considered, but moving to non-variational formulation cases

poses many interesting questions. This was one of the reasons for initiation on the

work of the eikonal equation. We combined methodologies of both EKI and various

priors and noticed similar performances with other models.

Finally we summarize our findings and points discussed above by answering

the questions from Chapter 1 namely:

• Can we effectively use EKI to recover some form of geometry from our un-

known, which includes various discontinuities?

Yes, this is shown through the various prior forms which we introduce such as

level set, piecewise constant and continuous priors. Furthermore this has been

shown on numerous PDEs where the underlying unknown can be represented

through a geometric structure, such as EIT and groundwater flow. This was

evident from Chapters 2, 4 and 5.

• Given the computational burden that can arise with the forward operator, can

we reduce this cost in a practical manner and what kind of cost reduction is

possible?

To some degree yes this was tackled well where we introduced the RBM in

Chapter 4. The motivation was to exactly reduce this computational burden

where we saw a reduction in cost. However the limitations on this are that

this was not compared with other reduced order models, and that the RBM

is PDE specific.

• Can we transfer ideas from hierarchical Bayesian inversion to the EKI method-

ology, and in doing so find improved inversion strategies?

Yes, this was shown for the work conducted in both Chapter 2 and 3. Much of

the methodology was taken from computational statistics, where both assumed

that the prior was of a Gaussian form. As a result certain hyperparameters

were successfully recovered. This was loosely extended to the case where the

hyperparameters were modelled as a random field and not a constant value.
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• Given the current extent of the literature on Bayesian-related inversion, and

the EKI in particular, can we extend this to new and potentially more chal-

lenging PDEs applications?

Yes, this was done solely in Chapter 5 where we considered the extension to

an inverse eikonal equation. The eikonal equation appears in numerous sci-

entific areas which has further mathematical constraints compared to other

PDEs tested. Our aim was to test how various prior forms could tackle the

uncertainty within the model, through a numerical investigation, which was

successfully achieved.

To conclude we highlight a number of future research directions which can

be taken regarding inverse problems.

6.1 Further Areas of Research

• Machine learning - Big data and machine learning have seen a recent trend,

due to the large amounts of data that is now available. With this comes the

question of how to efficiently process it and gain inference. Many techniques

which are used in Bayesian inverse problems seem natural to apply to these

fields. Thus far the topics of mathematical classification and clustering has

been addressed through inverse problems, both analytically and computation-

ally [14, 48, 61, 62]. One way this has been done is the incorporation of MCMC

methods in machine learning. The issue with this, and especially in machine

learning problems, is the computational burden. Developing more efficient

UQ methods for machine learning is a challenging task currently, but one with

much potential.

• Optimal transport - A key issue that still lies within MCMC methods is the

cost. Despite this issue it still very favourable due to the ability to reconstruct

images with various prior forms. This problem is nullified with ensemble based

methods, however its disadvantage lies with the accuracy and large ensemble

limit. A new class of methods which are being developed are to negate any

major assumptions on the prior and posterior. These methods are based on

an optimal transport problem which considers a linear programming problem.

There has been significant research into optimal transport maps for inverse

problems and data assimilation [51, 103, 105]. A potential step forward could

be to combine the ideas of EKI with optimal transport.
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• Pedestrian dynamics - Pedestrian dynamics based on PDE models have

sparked an interest in the applied mathematics community. In the context of

this field developing and analzying inverse problems is a new direction which

can be taken. The eikonal equation which was the focus in Chapter 6. appears

in pedestrian models, notably the Hughes model [27, 30]. This model can be

be interpreted as a coupled system between the eikonal equation and a reaction

diffusion equation. So through the work done in Chapter 5., this would seem a

natural extension to which it opens up with the additional theory of pedestrian

dynamics. As other models are based on an SDE formulation, we could apply

techniques used as well.

• Non-Gaussian priors - A key issue that is still apparent in Bayesian inverse

problems is how to recover rough features and edges. Examples which have

been used include the Besov prior and the Laplace prior. However in the

context of numerically testing these, it is not necessarily clear how the sampling

done. Given how the α-stable priors [102] have shown to work well for edge-

preserving [33, 123], a direction to take with this is to build both theory and a

numerical investigation of these priors. In terms of the theory given how these

processes incorporate a variety of different priors, it motivates questions in

statistical theory such as posterior convergence, consistency and contraction

rates.

162



Appendices

163



Appendix A

Levenberg-Marquart algorithm

For non-linear optimization, the Levenberg-Marquart algorithm (LMA) seeks to

minimize a function F (x), which is the sum of squares of non-linear functions

F (x) =
1

2

m∑
j=1

fj(x)2. (A.0.1)

By denoting the Jacobian matrix as Ji(x) of fi(x), the LMA uses a search direction,

based on derivative information, in the direction of the solution p which satisfies

(JTk Jk + λkI)pk = −JTk fk, (A.0.2)

where λk are a set of non-negative scalars, commonly referred to as the damping

factor. The LMA can be viewed as combination between traditional gradient desent

and the Gauss-Newton method. Like many optimization methods it works by finding

a local minimizer as opposed to a global minimizer.

The LMA applied to inverse problems can be thought of as a regularization

scheme, where the solution is of a similar form to (A.0.2), but with the addition of

a discrepancy principle. This was first discussed by Hanke [71] where the solution

of the inverse problem

y = G(u) + η,

can be characterized as

uj+1 = uj −
(
αjI + G′(uj)TG(uj)

)−1G′(uj)T (G(uj)− y), (A.0.3)
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with discrepancy principle

‖G(uj)− y‖ ≤ τη ≤ ‖G(uj−1)− y‖. (A.0.4)

From (A.0.3), αk is a sequence of posititve numbers determined by certain strate-

gies. This inclusion is for the incorporation of the regularization within the iterative

formula, which is linked to the discrepancy principle (A.0.4). The discrepancy prin-

ciple is to ensure stable solutions which is controlled through the noise level and

τ > 1, which is a tuneable parameter.

The LMA is of particular interest to our setting as the update formula is

reminiscent to that of the EKI, with the addition of the positive numbers αk. As a

result it is a natural choice of regularization for the EnKF.

2



Appendix B

Eikonal equation

In this appendix we aim to derive the solution of the eikonal equation

|∇T (x)| = u(x), (B.0.1)

as a minimization procedure through the theory of optimal control. This is achieved

as the solution to Hamilton-Jacobi equations can be characterized through Poincaré-

Cartan integrals, or path intergrals. However in order to do so we will make use of

the method of characteristics. Firstly given (B.0.1) is a Hamilton-Jacobi equation,

we can rewrite the equation using its corresponding Hamiltonian, i.e.

H(x,∇T (x)) = u(x),

where H : Rn → R is defined as the Hamiltonian. A number of assumptions are

required on the Hamiltonian, to ensure we can characterize a solution to (B.0.1),

such as

• H is strictly convex.

• H : Rnp → R is a function of p.

• lim|p|→∞
H(p)
p = 0.

Under these assumptions we can define a Lagrangian by

L(u) := sup
u∈Rn
{p · u−H(p)}, (B.0.2)

This arises from the Hamilton which can be written through the Lagrangian in

(B.0.2), so

H(p) := sup
p∈Rn
{p · u− L(u)},

3



Through the properties of a Legendre transform, we can express the eikonal equation

as

max
p∈Rn
{p · ∇T (x)− L(u)} = u(x). (B.0.3)

Now given how our usual source term/slowness function is f(x) = u(x), we can

express a general optimization problem for T (x), from (B.0.3),

T (x) = min
u

{∫ t

0
L(u(s))ds

}
= min

ζ

{∫ t

0
L(ζ̇(s))ds

}
,

where the minimum is taken over all paths ζ(s) such that ζ(0) = x0 and ζ(t) = x.

From the theory of Lagrangian mechanics, as the Lagrangian depends only on u and

not x, the minimum can be interpreted as a straight line path.

Now through a slight change of notation where we place r = s and set our in-

terval to be [0, 1]d for d ≥ 1, our solution to the eikonal equation (B.0.1) can be

expressed as

T (x) = inf
ζ

{∫ 1

0
u(ζ(r))|ζ ′(r)|dr | ζ ∈W 1,∞([0, 1], Ω̄), ζ(0) = x0, ζ(1) = x

}
.

4
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for the Langevin algorithm in high dimensions, Ann. Appl. Probab., 22, 2320-

2358, 2012.

[119] A. Quarteroni and G. Rozza. Reduced Order Methods for Modeling and Com-

putational Reduction, Springer, Volume 9, 2014.

[120] S. Reich. A non-parametric ensemble transform method for Bayesian inference,

SIAM J. Sci. Comput., 35(4), A2013-A2024, 2013.

[121] C. Robert and G. Casella. Monte Carlo statistical methods, Springer Science

& Business Media, 2013.

[122] G. O. Roberts and J. S. Rosenthal. Optimal scaling of discrete approxima-

tions to Langevin diffusions, Journal of the Royal Statistical Society, Series B

(Statistical Methodology), 60 (1): 255-268, 1998.

14



[123] L. Roininen, M. Girolami, S. Lasanen and M. Markkanen. Hyperpriors for

Matérn fields with applications in Bayesian inversion, arXiv:1612.02989, 2016.

[124] L. Roininen, J. M. J. Huttunen and S. Lasanen. Whittle-Matérn priors for

Bayesian statistical inversion with applications in electrical impedance tomog-

raphy, Inverse problems and Imaging, 8, 2014.

[125] R. Ramlau. A modified landweber method for inverse problems, Numerical

Functional Analysis and Optimization, 20:1-2, p79-98, 2007.

[126] G. Rozza, D.B.P. Huynh and A. T. Patera. Reduced basis approximation and

a posteriori error estimation for affinely parametrized elliptic coercive partial

differential equations, Archives of Computational Methods in Engineering, 2008.

[127] F. Ruggeri, Z. Sawlan, M. Scavino and R. Tempone. A Hierarchical Bayesian

Setting for an Inverse Problem in Linear Parabolic PDEs with Noisy Boundary

Conditions, Bayesian Anal, 2016.

[128] F. Santosa. A level-set approach for inverse problems involving obstacles. The

European Series in Applied and Industrial Mathematics: Control, Optimization

and Calculus of Variations, Vol 1, p17-33, 1996.

[129] C. Schillings and A. M. Stuart. Analysis of the ensemble Kalman filter for

inverse problems, SIAM J. Num. Anal., 2017.

[130] J. A. Sethian. Level set methods and fast marching methods. Cambridge

Monographs on Applied and Computational Mathematics, Cambridge University

Press, 1999.

[131] M. Schweiger, S. Arridge and I. Nissila. Gauss?Newton method for image

reconstruction in diffuse optical tomography, Inverse Problems, 50(10), 2005.

[132] H. Silvennoinen. 3D Structure of the crust and upper mantle below northern

part of the fennoscandian shield, PhD Dissertation, 2015.

[133] S.A. Smolyak. Quadrature and interpolation formulas for Tensor Products of

Certain Classes of Functions, Dokl. Akad. Nauk SSSR, 148: p1042-1043, 1963.

[134] E. Somersalo, M. Cheney and D. Isaacson. Existence and Uniqueness for

Electrode Models for Electric Current Computed Tomography, SIAM J. Appl.

Math., 52, p1023-1040, 1992.

15



[135] H. M. Soner. Optimal control with state-space constraint, SIAM Journal on

Control and Optimization, Vol. 24, p552-561, 1986.

[136] A. Spira and R. Kimmel. An efficient solution to the eikonal equation on

parametric manifolds, Interfaces and Free Boundaries, 6, 315?327, 2004.

[137] A. M. Stuart. Inverse problems: A Bayesian perspective. Acta Numerica, Vol.

19, p451-559, 2010.

[138] A. Tarantola. Inverse Problem Theory and Methods for Model Parameter

Estimation, Elsevier, 1987.

[139] Y. W. Teh, M. I. Jordan, M. J. Beal, and M. D. Blei. Hierarchical Dirichlet

processes, Journal of the American Statistical Association, 101, 1566-1581, 2016.

[140] M. K. Tippett. Ensemble Square Root Filters , Monthly Weather Review, 131,

2002.

[141] T. Tonn, K. Urban and S Volkwein. Comparison of the Reduced-Basis and

POD a-Posteriori Error Estimators for an Elliptic Linear-Quadratic Optimal

Control Problem, Mathematical and Computer Modelling of Dynamical Systems,

2010.

[142] E. Treister and E. Haber. A fast marching algorithm for the factored eikonal

equation. Journal of Computational Physics, Vol 324, p210-225, 2016.

[143] M. Tsyrulnikov and A. Rakitko. Hierarchical Bayes Ensemble Kalman Filter,

Physica D: Nonlinear Phenomena, 2016.

[144] G. Uhlmann. Electrical impedance tomography and Calderón?s problem, in-

verse Problems, 2006.

[145] C. Villani Topics in optimal transportation, American Mathematical Soc., 58,

2003.

[146] C. Villani. Optimal transport: old and new, Springer Science & Business

Media, Vol. 338 2008.

[147] C. R. Vogel. Computational Methods for Inverse Problems, Frontiers in Ap-

plied Mathematics, 2002.

[148] D. Xiu. Numerical methods for stochastic computations: a spectral method

approach, Princeton University Press, 5th version, 2010.

16



[149] Z. Zhang. Polynomial Preserving Gradient Recovery and A Posteriori Esti-

mate for Bilinear Element on Irregular Quadrilaterals, SIAM J. Sci. Comput.,

1(1), 1-24, 2004.

[150] Z. Zhang and A. Naga. A New Finite Element Gradient Recovery Method:

Superconvergence Property, SIAM J. Sci. Comput., 26(4), 1192-1213, 2006.

17


	List of Tables
	List of Figures
	Acknowledgments
	Declarations
	Abstract
	Chapter Background
	Introduction
	Bayesian Approach
	Markov Chain Monte Carlo Methods
	MCMC Within Inverse Problems

	Data Assimilation Techniques
	3DVAR
	Extended Kalman Filter
	Ensemble Kalman Filter
	DA Techniques within Inverse Problems

	Other Computational Techniques
	Sequential Monte Carlo Methods
	Maximum a Posteriori Estimation
	SMC & MAP Within Inverse Problems

	Outline of Thesis
	Chapter 2. Parameterizations of Ensemble Kalman Inversion
	Chapter 3. Analysis of Hierarchical Ensemble Kalman Inversion
	Chapter 4. Reduced Basis Methods for Bayesian Inverse Problems
	Chapter 5. A Bayesian Formulation of the Inverse Eikonal Equation


	Chapter Parameterizations for ensemble Kalman inversion
	Overview
	Introduction
	Content
	Literature Review
	Contribution of This Work
	Organization
	Notation

	Inverse Problem
	Main Idea
	Details of Parameterizations

	Iterative Ensemble Kalman Inversion
	Formulation for (2.2.1)
	Generalization for Centered Hierarchical Inversion
	Generalization for Non-Centered Hierarchical Parameterization

	Model Problems
	Model Problem 1
	Model Problem 2
	Model Problem 3

	Numerical Examples
	Level Set Parameterization
	Geometric Parameterization
	Function-valued Hierarchical Parameterization

	Conclusion & Discussion

	Chapter Analysis of hierarchical ensemble Kalman inversion
	Overview
	Introduction
	Structure
	Notation

	EnKF for Inverse Problems
	Continuous-Time Limit

	Hierarchical Ensemble Kalman Inversion
	Centred Formulation
	Non-Centred Formulation

	Hierarchical Continuous-Time Limits
	Centred Approach
	Nonlinear Noisy Case
	Linear Noise-Free Case
	Non-Centred Approach
	Nonlinear Noisy Case (1)
	Linear Noise-Free Case (1)
	Hierarchical Covariance Inflation
	Hierarchical Localization

	Numerical Experiments
	Conclusion

	Chapter Reduced basis methods for Bayesian inverse problems
	Overview
	Introduction
	Background Material
	Random PDE Theory
	Finite Element Method

	Reduced Basis Method
	Training Set
	Clenshaw-Curtis Points
	Sparse Grid
	Stochastic Collocation Method
	Lebesgue Optimal Points
	RBM Numerics

	Bayesian Inverse Problems
	Iterative Kalman Method
	RB-EKI

	Numerical Results
	Uniform Prior
	Single Phase 2D Prior
	RB-EKI Numerics

	Electrical Impedance Tomography
	A Posteriori Bound
	Offline-Online Decomposition
	Inverse Problem

	Conclusion

	Chapter A Bayesian formulation of the inverse eikonal equation
	Overview
	Introduction
	Outline
	Notation

	The Forward Model
	Forward Finite Difference Solver

	Inverse Problem
	Prior
	Deterministic Approach
	Bayesian Approach
	Likelihood and Posterior
	Iterative Ensemble Kalman Method

	Numerical Experiments
	Hierarchical Whittle-Matérn Prior
	Vector Level Set Prior
	Fixed Shape Prior

	Conclusion

	Chapter Conclusion & discussion
	Further Areas of Research

	Appendices
	Chapter Levenberg-Marquart algorithm
	Chapter Eikonal equation

