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In this thesis we present results and examples concerning
the asymptotic (large tine)behaviour of the flow of a
nondegenerate snooth stochastic dynanicul system on a
smooth compact manifold.

In Chapter 2 we prove a stochastic version of the Oseledec
(Multiplicative lirgodic) Theorem for flows(theorem 2.1), 1in
which we define the Lyapunov spectrum for the stochastic
flow/. Then we obtain stochastic analogies (Theorems 2.2,1,
2.2.2) of the Stable Manifold Theorems of RuelleCu], These
theorems are proved by adapting Rueile"S techniques to our
situation. A.lso we liscuss the implications of “Lyapiuiov
stability", which we define to be the situation i/hen the
Lyapunov spectrum is strictly negative. In this situation
the trajectories of the flow cluster in a certain way.
(Proposition 2.3.3).

In Chapter 3 we give some examples of systems for which
we can calculate the Lyapunov spectrum. We can choose our
parameters such that these systems are Lyapunov stable,
and iIn this case wo can calculate the flows and th"eir
asymptotic behaviour completely.

In Chapter 4 YWe give a formula for the Lyapunov numbers
which is analogous to that of ilhas"minskiiC*"i] ’or a linear
system. Then we use this formula to prove a theorem on the
preservation of Lyapunov stability under a stochastic
perturbation.



1. INTRODUCTION

1.1 Aims

Our aim in this article is to present results and examples
concerning the asymptotic (large time) behaviour of the flow of
a nondegenerate smooth stochastic dynamical system (SDS) on a
smooth compact manifold. The definition and existence of such
(stochastic) flows is given in Carverhill and Elworthy [1+],
which we will use as our standard reference. See also Kunita
[11]/ [U1] lkeda and Watanabe (g ], Dismut [31/ Elworthy [4 ]-

In Chapter 2 we define the Lyapunov spectrum for the
stochastic flow (Theorem 2.1) and obtain analogues (Theorems
2.2.1, 2.2.2) for the stochastic flow, of the stable manifold
theorems of Ruelle [U]. These theorems are proved by adapting
Ruelle®s techniques to our situation. Also (Section 2.3) we
discuss the implications of “Lyapunov stability", which we
define to be the situation when the Lyapunov spectrum is bou*»d«J.

that in this situation, the tra-
Jjectories of the flow cluster in a certain way. (Proposition
2.3.3)

In Chapter 3 we give some examples of SDS"s for which we
can calculate the Lyapunov spectrum. We can choose our
parameters such that these systems are Lyapunov stable, and
in fact in this case we can calculate the flows and their
asymptotic behaviour completely.

In Chapter 4 we give a formula for the Lyapunov numbers

which is analogous to that of Khas"minskii ] for a linear



system. Then we use this formula to prove a theorem on the
preservation of Lyapunov stability under a stochastic
perturbation. (For this we need an assumption about the
invariant measure (see Section 1.2) which is studied by
Ventsel and Freidlin [li].)

The extension of Ruelle"s work to the case of a stochastic
flow was suggested by Arnold and Kliemann []], p- 81, though
they have in mind real noise rather than white noise (Brownian
motion). Also, their approach is to linearise the system
about a stationary solution, whereas ours is to consider the
derivative flow. Note that our work can be adapted to the
case of real, time homogeneous noise.

The Lyapunov spectrum, and the asymptotic behaviour in
the case of a linear SDS on IRn has been studied by Khasminskii
(11, [iQ] (see our Section 4.1). The linear case, and the
linearisation of an SDS on IRn about an almost surely fixed
point xq of the flow, can be studied using the ideas of this
article. (Essentially, we take the invariant measure for the

system to be just 6 . It does not matter in this case that
X0

the space of the system is noncompact). See Arnold and
Kliemann [1]-

Note that in the case of a linear system, Lyapunov stability
implies that the solution starting from any point tends a.s.
to the trivial (zero) solution. In our situation (i.e. for a

nondegenerate system) Lyapunov stability implies that the



system. Then we use this formula to prove a theorem on the
preservation of Lyapunov stability under a stochastic
perturbation. (For this we need an assumption about the
invariant measure (see Section 1.2) which is studied by
Ventsel and Freidlin [Ii].)

The extension of Ruelle"s work to the case of a stochastic
flow was suggested by Arnold and Kliemann []], p- 81, though
they have in mind real noise rather than white noise (Brownian
motion). Also, their approach is to linearise the system
about a stationary solution, whereas ours is to consider the
derivative flow. Note that our work can be adapted to the
case of real, time homogeneous noise.

The Lyapunov spectrum, and the asymptotic behaviour in
the case of a linear SDS on JRm has been studied by Khasminskii
117, [0] (see our Section 4.1). The linear case, and the
linearisation of an SDS on IRn about an almost surely fixed
point xq of the flow, can be studied using the ideas of this
article. (Essentially, we take the invariant measure for the

system to be just 6 . It does not matter in this case that
o]

the space km of the system is noncompact). See Arnold and
Kliemann ((]-

Note that in the case of a linear system, Lyapunov stability
implies that the solution starting from any point tends a.s.
to the trivial (zero) solution. |In our situation (i.e. for a

nondegenerate system) Lyapunov stability implies that the
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trajectories of the flow cluster into groups (see Proposition
/
2.3.3), but the groups themselves move randomly.
We assume throughout that our system is nondegenerate

(see Section 1.2).

1.2 Preliminary Results

In this section we establish some notation and summarise
some standard results which we will need iIn the sequel. The
notation is as in Carverhill and Elworthy [3], which is our
standard reference.

We deal mostly with a Stratonovitch SDS (X,z) defined on
a smooth, compact manifold M of dimension m, and driven by an
n-dimensional Brownian motion Bt and a drift. When it is
necessary to deal with an Ito system, we will denote it by
1(X,2) . Thus, X is a bundle morphism M x M+~ +TM, i.e. a
map such that X(xX) € LORn+1,TxM) for each x £ M. We will
put X(xX) o dzfE=Y(x) 0 dBt + A(x)dt (i.e. we will denote the

noise by Y and drift by A), and we will assume throughout

that (X,z) is nondegenerate, i.e. Y(X) £ LORn, ™M) 1is surjective
*

for each x £ M
We must iImpose certain smoothness conditions on (X,z).
These refer to the smoothness of X as a map M @aLQRn+1,TM).
We are not concerned about the precise smoothness conditions
required: all these conditions will be satisfied if X is C-.
The solution £t (W,X) of the SDS (X,z), starting from

x £ M, is defined to be that stochastic process in M which



satisfies the following equation in R, where 4 is any C2 map

M &R

Tt
SIE”i:(<"),><) = <K + JIO KOG (W,X)) odz O .-

(This is equivalent to Elworthy®"s [t J definition, in which t
is taken to be a chart map U #@aU, ¢ Rn (U open in M) and the
integral is taken up to time t a(First exit time from U)).
The solution exists and is unique up to equivalence if (X,2)
is of class C2. (See Elworthy [( ], lkeda and Watanabe [& ],
Kunita 11i]).-

The flow of (X,z) will be denoted by £ (w). It is defined
to be such that a.s. £t (W) 1is a continuous map M M for all t,
and such that for each x, £t U)x is a solution starting from X
of (X,z). The existence and a.s. uniqueness of the flow if
(X,2) is of class HS+2 (s >/2)+1) is given in Carverhill and
Elworthy [ ]- See also (t ], [&] and [U ]. The flow is a.s.
for all t an Hg diffeomorphism.

Denote the underlying probability space for Bf by (fl,F,P),
taking to be the set of continuous paths in Jn starting from
the origin, and denote the time shift by time s on ft by
O0g (i.e. 6 (WH® =m(t+s) - w(s))- The TFollowing proposition
is immediate from the time homogeneity of the Brownian motion

and the a.s. uniqueness of the flow.



Proposition 1.2.1

IT the flow £fo)) of (Xf2) exists, then for each s > 0

we have a.s.
Ct<0s @) )?s (@) = 5s+tM  for all t > O. //

We will work extensively with invariant probability
measures for (X,z) on M, i.e. measures p such that if
(Pt x,A) : A € B(M)} denotes the transition probabilities
for (X,z), then for any B £ 6(M), we have p(B) = [EMpt(x,B)dp(x).
"X

Here, B(M) denotes the Borel o- algebra over M. If (X,2) is
nondegenerate, the solutions are metrically transitive, and
there exists a unique invariant measure for (X,z). See Doob
[S]1, Yosida [ ] Chapter 13.

Denote the time shift by time s on COR® M) by Og (thus
if ¥ € COR>0,M) then (Ogf) (©® = f(t+s) for all t > 0). Now
any invariant measure p for (X,zZ) on M induces a measure Qp on
COR>0,M) (the Markov measure) which is invariant under 0g for

any s>0. On cylinder sets, is given by
Qp{f e CCR>0,M) : Ff(ti) e B.; i = 1,...,p; B £ 6(\W}

dp(x-)p (x-,dx9)
vV B1 x€B, 1 c2 1

Wty -ty et A
IT (X,2) is nondegenerate, then for each s >0, Og is ergodic
with respect to the measure Qp. (Doob (F J).

In Sections 1-5 of (it), Ruelle works with an “abstract”

measure space (M,Z,p), measure preserving map tsM ¢ M, and

measurable maps



TsM s L(-IRn ,Rn) and F:M % Cr "6 @) ,0 ;Rn,0) .

In Section 6 he applies his results to the case when M is a
smooth compact manifold, f ij a CII'.O diffeomorphism of M,

T =TF, F = f over charts (essentially), and p is a measure
on M which is preserved by f. In our Chapter 2, we apply the
results of Ruelle®s Sections 1-5, taking the measure space to
be the product M xO , BM) O F, p 6 P), with the map $

(any s > 0) corresponding to Ruelle"s t, where

s (W) = Gy WX, es @).-

Proposition 1.2.2

For any s >0, the map 4s (x,(0) preserves the measure p O P

on M x8 ,

Proof
It suffices to show that for any B € S(M), A € F, the

set $g1@® x A ) has measure p(B).P(A ). But
pOPE1IB x A
=p®P{CLUIES(WX c b , Os@) € A }.
=pOP{(U ES@X €B }. pO0 P{(x,u):e @ €A |Es<u>)xeB }
= §X€M |oS GBYAp &) - p O PL(X,W :8§(id) dA}

(N.B. The events of the conditional probability are

independent).

= p(B).P(A ). /



The following result is a consequence of the ergodic
theorem applied to the Markov process given by the solution

of the SDS. See Yosida [KN] Chapter 13, Doob [J ]-

K
Proposition 1.2.3 (Strong law of large numbers
Suppose (X,z) 1is nondegenerate with unique invariant
measure p on M. Then for p O P - almost every (W) e M x fL
we have
T
T g E. @.x))dt gMdp(y) as t + «
0 yEM
A

for any g € CIMR) . L
2. STABLE MANIFOLD THEOREMS FOR THE STOCHASTIC FLOW

In this chapter we apply the results of Ruelle [I<],
Sections 1-5, to obtain stochastic analogues of the results
of his Section 6. We take the product measure space
M*J 8(M ® F, pO P) to correspond to Ruelle®s Tabstract”
measure space M,1,p).

Throughout his Sections 1-6, Ruelle discusses the discrete
time situation. However, our results apply to continuous time.
Our technique is first to prove the results for discrete time
increments T > 0, taking the map 4 :M xA. mM xfl to correspond
to Ruelle®s t, and then to proceed to continuous time in a
similar way to Ruelle®s Appendix B. Corresponding to the Cyk'Q

diffeomorphism f of Ruelle®s Section 6 we take the stochastic

flow £T (@ at time T.



2.1 The Oseledec (Multiplicative Ergodic) Theorem for the

Derivative of the Stochastic Flow

Theorem 2.1 (CFf. Ruelle [E], Theorem 1.6, and introduction to
Section 6).
) s+4
Consider the nondegenerate H SDS (X,z) on the smooth
compact manifold M, where dim M =m and s 3m/2 +1. Choose
a version of the flow £t (U):M = M.
Then there exists a set r ¢ HxA of full p 0 P-measure

such that for each (x,w) £ r we have a Lyapunov spectrum

*g - - B
(<,5)3 < X( fUJ)’<' - < )ﬁx%) '
_ _ _ e A
and associated filtration V()(I,uj) < ... < vbt("m)_ of 'I;( M.
Thus, if v C vI1* then
(X,0)) (XM
1/t log |ITCE (wv]] - as t +

(Here, || =l denotes any norm on the tangent space coming from

a Riemannian inner product . Qb ( v~ - 10}

Proof
@O It is cglvenient to work in a flat space. Thus%we
embed M in R for some %% > m, and extend X to ,)2 on IIQ1 in the
following way:

Choose t > 0 such that the set of points in IR& less
than a distance t from M is a tubular neighbourhood of M. Then

for any x € M , the nearest point y € M to x iIs unique and
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the line xy is perpendicular to M. Also for any other z € M,
if xz is perpendicular to M then d(x,z) > t . Take a smooth
bump function fdR +]R”, supported on r,X] and such that
f@O = 1. Now, for any x £1Rm if x £ MT, set /)\((x) = 0;
otherwise take the nearest point y to x in M and put
X(e = F(y-xPX(y)e.

Clearly, )Y is just as 0smooth as X and is suppg)rted on
a bounded domain say U in ]R/TOL Also, for any x € lR/:1 the
solution to (0/>0(,z) starting from X remains at a constant
distance from M a.s. (To see this, note that it is easily
true for a deterministic system, and therefore for a piecewise
linear approximation to our system, and consider Carverhill
and Elworthy (#], Theorem 2.3). Denote the flow of g](,z)
by gt(g’) and let "\i for (.)\(/,z) correspond to Bt for (X,2).
Mow the choice of Riemannian metric on M is unimportant; we

%

will take it to be that induced from JRn by the embedding.

@ We prove our result first for discrete time increments,
say of length T.

Denote by GQ (x,w) the linear map DO/’U‘(uj)x , and put
Gn (X,W) = Gq (0'/l0>nT (X,0))), so that a.s. we have Gn (,w) =
DIV OnT@&),1*nT(w,x = DPM(n+DT@*CnT @] I"nTU)X* Also*
put Gn,@) =G6n_1(x.,d) o --- o Go  ,uf) so that a.s. we have
6" @ = DENT (U)x.

From our Appendix A (Proposition A.1.2) we have that for

each standard basis vector e

100 - ,en’1\ in Pm, u‘gj)"GO (x,ui)e,ifdP

is bounded uniformly over x € M. (N.B. by the Sobolev embedding

=B
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theorem, since X is HSH*, it is C2). Now,

o
G k,®lL< Z 16 ,p)e-.|,
i=1

therefore we can deduce that

log ||G LW ldp &) dP@io) < = .
XEU

% X
CIG (u) || -operator norm on LORm ,Rn).

By log+(X) we mean max {0, log x). Here, p is regarded as
a measure on U, supported on M).
For each q = 1,..., m, consider [JGg X, W)Aq|l- (Ag-qth n

exterior power). Denoting the eigenvalues bo (x ) Gq (x ,6)Y

by t*1 .. *t~ , we have IG X ®Aq| = t , SO that
° p=m-g+1
%]1
logl' |IG (x,i0)Aqll< %E log+ t*p*. Also, for each p,
p=m-q+1
tTp* < |Gq %,i0) |I2- Therefore for each q = 1,. ..,m, we have

lop"lIGC X)) ASlldp QdP ) < &,
XEU wen

and by the subadditive ergodic theorem (Ruelle, Theorem 1.1)

applied to log IGn x,i0)Aq [, 1/n log HGn (X,u) Ag|| tends to a

limit a.s., which is invariant under the map . Also, by
n-1 +

the usual ergodic theorem, 1/n E log G- (x,u) || tends to
i=o 1

a limit a.s., therefore lim sup 1/n log IG X,w) JI< O a.s-.
n ..

These results allow us to apply Ruelle®s Proposition 1.3

for each (x,w) a.s., taking our Gi (x,@) to correspond to
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Ruelle®s Tn, from which we deduce that there exists a.s. a

spectrum \El)u_) <...< }’g)w) _and filtration
N ]) - - -
VSx,u) < < v{&) Gl ~ JRn, such that if v € V(i)vV<i"D

then 1/nT log ||G *,0 -’iX(-) The discrete time T version

of our theorem follows from this by interesecting each

N
V,(S) - with TxM’ using the fact that #t W):TU =+ TU maps

tangent spaces of M to tangent space a.s..

® To obtain the full (continuous time) result, we proceed

as in Ruelle®s Appendix B. For each 0 < s < t, put

\ % 1 i ; \% _ _

Sst*'w) = £t (W)-£g@@)~ = Then for fixed s,£ t(W) is the "nice"
0,

version of the flow of &,z) from time s given in Carverhill

and Elworthy [#¥] Lemma 6.1. Also, we have a.s. (independently

of n,t) that

NEN) AnT,t™NT Q)i
C+DTW = 2t, (I ~ t @)

for all n, and all t 6 [nT,(n+1)T]. Hence we have a.s.,

r log I[PE @)a] vi < log |ID [CnT,t(w)]CnT(w)x

+ log B IDIENT WDAIVII
log |IDI5t WidX] vl > log | IDCC (n+1>TW) )x)v]|
- log IDIELF (+1)X D) Ht (@i

for all t 6 [nT, (+1)T] , x €U, v £R .
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Thus, if we put

r N\
= sup log |IDIC G@)Ix]!
tG[O0,T]
%
4>,(XU0) = sup log|ID[C- _ W J5. (x|
L 1 t€[0,T] C \Y

then we have a.s., independently of Xx,v,n, that

log B P t5S(n+DTWIKIVIT - 42 @EnTOeD)

< log IPEL@G VI

< log DIChT @ Ix]vil+ 41 &@&T (X,00))

for all t £ [nT,(n+1)T].

(Here, # , € correspond to the functions of (B.1), (B.2) in
Ruelie®s Appendix B).

Now, 4|, 2 are p© P-integrable. This follows from our
Appendix, Proposition A.1.2 for and Proposition A.2.3 for
42+ (N.B. it is clear that 4» > 0 a.s.). Therefore by the

ergodic theorem,
V
Un @& (x,w)) W0 as n ” for a.e. (X,W) .
For these (,w) , lim I/t IDC. @®IAVIl =
©0 c
\Y
lim I/nT log 1P C T WIXIvl] and the continuous time result
i

= n

follows. /



-13-

Notes

@ From the proof we see that the Lyapunov spectrum is a.s.
invariant under the map The question arises of the nature
of the dependence of the spectrum on (X,w). In our Appendix B
we discuss this question and show that to some extent the
spectrum is constant, i.e. independent of (X,w) a.s.. We
conjecture that it is a.s. constant for all nondegenerate

systems.

(i) Ruelle"s approach to dealing with a manifold, rather
than a flat %oace, is different from ours. Rather than

embed M in 1IRn, he takes a finite Borel of M which
trivialises TM, and uses this to express the derivatives as
linear maps in &Rn, which are piecewise continuous in x G M.
(See Ruelle, proof of Theorem 6.1, and Appendix D, note (6)).
Ruelle®s approach in our situation would require more difficult

p © P-integrability estimates than ours.

2.2 The Stable Manifold Theorems

Theorem 2.2.1 (Local Stable Manifold Theorem. Cf. Ruelle [it]
Theorem 6.1).
Consider the SDS (X,z) and flow £t (§) of Theorem 2.1, but

suppose that X is of class s> 3m/2+k, k22. Take X < 0,

and assume X is a.s. disjoint from the Lyapunov spectrum.



Then we have a set rX ¢ F of full p O P-measure, and

measurable functions a»B >y ZTX ° such that if we denote by

V\IX,W ,@(X,u)) the set

{y 6 B(x,ay,wW):-dE@®y, WX < BX,w)ext

for all t > Of (Here, by B(X,a) we mean the closed ball

at x in M, of radius *), then:

@ V,IX u;(a(x,w)) is a Cv submanifold of é(x,a(x,w)) which

(
H [ A ] FAN N N
is tangent at x to V'(x,w)"' where i is such that x ,Vb< X < X(x,u)l .
© Ify,z£ I/X\b(f ,(a(x,t0)) then
d(ct Wy, £t )2 < Yx,0) d(y,z)eXt. n )4 pA

G®® If X7 < X and [X*,X3 is disjoint from the spectrum, ~ (then

there exists a measurable map y’: rX #®1R*” such that if

Y,z € ><>(ﬂﬁ(a(x,w)) then d(EV(u))y,E,\ W2 < y"(x,w).d(y,z)ex t.

Proof

We retain the notation of the proof of Theorem 2.1.
(@O Embed M in JRn and extend (X,z) to (X,z) supported on
U c IRn, as in the proof of Theorem 2.1. Take the Riemannian
metric on M to be that induced from IRn by the embedding. It
is clear from the fact that solutions in U remain a.s. at a

constant distance from M that if x £ M, v € TXINTxM, then
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Then we have a set c F of full p O P-measure, and

measurable functions a »Y:TA ° such that if we denote by

Iﬁx u)\(a X,w)) the set

{y € B(a,10) : d (Et @y £t X < 6(x,i0)ext

for all t > 0} (Here, by B(x,a) we mean the closed ball

nt x in M, of radius £), then:

@ I/:X bojo(ot(x-ui)) is a C submanifold of B_(x,a(x,w)) which

is tangent at x to Vi)?nil” where i is such that 0 X < Xéfog)l)'

® Ifyze | @W) then

d(Ct(w)y, Ct(@i)2) < yX,to) d(y,z)eAt. , N

(bl) If X* < X and [X*»X] is disjoint from the spectrum, ~ (then

there exists a measurable map y": rA maRsuch that if

V.2 £ W\ (g2 @GO then d €, (0)y.C, @) < ¥ () -4 (Y, 2)eA t.

Proof

We retain the notation of the proof of Theorem 2.1.
(@ Embed M in IRn and extend (X,z) to (X,z) supported on
U c IR, as in the proof of Theorem 2.1. Take the Riemannian
metric on M to be that induced from R by the embedding. It
is clear from the fact that solutions in U remain a.s. at a

constant distance from M that if x f M, v € TAIKT™, then
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vt log,] [ WXVl > 0 a.s.. Therefore the strictly
4=
negative part of the Lyapunov spectrum is the same for

5t and 5t @) -

@ We prove our result first for discrete time iIncrements
of length T. Our technique follows Ruelle®s for his Theorem
6.1.

Consider the map F (x,u>):B(1) JRn given by
Fo (x,m)y = O/COT M &+y) - £t @)x - Thus, Fo (X,w) represents
0éotT W) near x, and Fq & ,w)(0 = 0. Note that GQ (x,m) of the
proof of Theorem 2.1 is just DFq (& ) ©) - Put
F" ,0) = Fo@( LjiT Guu)) O ... o FQQLW). Then
Fn x,0))y = InT@) ¢+y) - CnT (@)X a.s., so that Fn (x,w)
represents 0/EOnT(u>) near X.

We will apply Ruelle®s Theorem 5.1 to Fo (x,w), with the
map BT corresponding to Ruelle"s t. For this we require the

following regularity condition, which can be deduced from our

Appendix A, Proposition A.2.1:

| IF X, Ol - dP@E) dp X < 5
JxeU C

where
i aH 1

1iFQ (X»lPIC_l}g = 35/55 I|a|<kH —gyt FO <x"u>)yii Jf—
(This corresponds to Ruelle®s (5.1)).
Also, we require that the Lyapunov spectrum of Ggq & ,»» (i.e.
that of Theorem 2.1) does not contain -"". From Ruelle®s

Section 2, part 3, we see that this is ensured if we have
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' log+ [[Gg &.,©1 1l dp dP < *“*

For this estimate, see our Appendix, Proposition A.2.1. We
obtain the discrete time increment T version of our result
from Ruelle®s Theorem 5.1, restricting attention to M as a

subset of U c JRn.

@ To obtain the full (continuous ) result, consider
%
the function K(W) = sup {3DIC. OIxi}* From our
XEM C
t£[0.T]

Appendix A, Proposition A.2.1 we see thatE[log K] < &€ .
(NB. K@ > 1 a.s.) Now, if t £ [nT,(n+1)T], then for any

y z £ M, we have

d ("t ()y.£t @2 < K(enT ((@)d(CnT ()y.£nT ((©)2) -
Also, lim sup I/n log K(ONT(@@) = O a.s. (by the ergodic
n A
theorem applied to log K(<0)), i.e. for any e > 0, we have
m

a.s. that K(e T@) < e n for sufficiently large n.

Consider the measurable, ~-invariant partition
10,11,12,.. . of T given by 1™ = {(XW) £ T: {Largest X|x "<l 1in the
spectrum at )} £ [X -M%,, X - /*+D }.
By part (©* of the discrete time version of the theorem
applied to 1 , if we take X" e (X-1/*+1,X) then there exists
a function y : I%\ -+ >0 such that for all y,z £ VXij,,(a(x,w))

we have
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X nT
Ao @W-GT M) D <y, W) d(y.2e

Thus if t £ [nT,(n+DT] , then

dCCt(W)y,Ct&)2z) < K(enT(w)) d(*nT@)y.0nT (O
X nT
Yn (x,w) d(y,z)e
for sufficiently large n (taking e = X-X )

S yAn(x,u>) d(y,z)eXt.

Thus, we can extend parts (@), () to continuous time, replacing
BOGW) by y oD a0 and y (u) by Y, G
if W £ 1

Part (") for continuous time follows in a similar way. /

Note

Our approach to dealing with M rather than a flat space
is again more convenient than Ruelle®s. (See note (ii) after
Theorem 2.1.) Ruelle®s approach necessitates choosing a 6 > 0
as in the proof of his Theorem 6.1. In the stochastic situation

this 6 would have to be stochastic.

Theorem 2.2.2 (Full Stable Manifold Theorem. CFf. Ruelle,
Theorem 6.3)

Consider the SDS of Theorem 2.2.1, but assume that
the Lyapunov spectrum is a.s. constant. Let X*1N < ... < X"CF
be the strictly negative Lyapunov numbers.

Then we have a set r. in TcM*i) of full measure and such

that for each (x,m) £ we have:
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For each p = 1f.._,q, the set . defined to be
\X £/

{y €M : I%m“sg)p /¢ log dG- O @@y < 1 } is the

image of V by a Ck 1 immersion which is tangent to the

Ix,0ol
identity at x. Thus, is locally a 1 submanifold
of M.
Proof

Again we follow Ruelle (Theorem (6.3) and we deal Tfirst

with the case of discrete time increments T.

Take  constants ...»A fn»C» such that
<Al <A@ < ... <A@ <A< ~; <0, 0<n <~C/5.
For each p = 1,...,q define a = a =+IR N as in the

discrete time increment T version of Theorem 2.2.1 for A = Ap,
and put a = min aP. Then for each p we can define
Ix,Of (ax,0))) for .,ad) in a set of full measure, as iIn

Theorem 2.2.1.

To complete the proof in the discrete time case, we must
show that a @fT (x,a)) ) decreases atmost like e ?nas3#@a» .
(See the proof of Ruelle"s Theorem 6.3). Thisfollows from
Ruelle®s Remark 5.2(c), when his Section 5 is applied to Fq (x ,w)
of Part (@ of our proof of Theorem 2.2.1.

The result for continuous time is obtained as in Part Q)

of the proof of Theorem 2.2.1. //
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oy defined to be

{y €M - Llim sup I/t log d WX @Yy < X~ } is the
t=>®

For each p = the set

image of V%E*o))' by a c* immersion which is tangent to the
identity at x. Thus, ~(0) is "“oca*‘y a 1 submanifold

of M.

Proof
Again we follow Ruelle (Theorem (6-3) and we deal first
with the case of discrete time increments T.

Take constants such that

A <AL <X@ < ... <X(@ <X <~ <0, 0<p < _c/5.

For each p = 1,...,q define a = cip:rP -+®>0 as in the
discrete time increment T version of Theorem 2.2.1 for X = XP ,
and put a = min aP- Then for each p we can define
I@,bl(a(x,o))) for (x,ai) in a set of full measure, as in
Theorem 2.2.1.

To complete the proof in the discrete time case, we must
show that a &@&fT (X,w)) decreases at most like e fhas £ #& .
(See the proof of Ruelle®s Theorem 6.3). This follows from
Ruelle"s Remark 5.2(c), when his Section 5 is applied to Fo (X,w)
of Part (2 of our proof of Theorem 2.2.1.

The result for continuous time is obtained as in Part Q)

of the proof of Theorem 2.2.1. /
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2.3 Lyapunov Stability

Definition
We say that the flow of a nondegenerate SDS is Lyapunov

stable if the Lyapunov spectrum is a.s. bounded Ukw

In the sequel, we will mostly be concerned with Lyapunov
stable flows. In Chapter 3 we give examples in which Lyapunov
stability occurs, and in Chapter 4 we show that certain
stochastic perturbations of deterministic systems are Lyapunov
stable. We work from Theorem 2.2.1 rather than 2.2.2; we are
concerned with the clustering properties of the flow (see
Proposition 2.3.3) rather than the smoothness properties of
the stable manifolds themselves.

For a Lyapunov stable flow, let us denote by I’ the set
rX of Theorem 2.2.1, where {Lyapunov spectrum) < A < 0 a.s..
Any such choice of A will give the same r°, by Theorem 2.2.1 (b*),

and clearly r° has full p 8 P-measure.

Proposition 2.3.1

Suppose the flow of the SDS of Theorem 2.2.1 is Lyapunov

stable. Then;

(@) For a.e. uq € U, the set given by {X £ M:(,I)) € T°}
0

has full measure in M. Also, for each T > 0 we have p- a.s.
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(ii) For a.e. x £ M, the set r° given by {w £ @ (q,u) £ r°}
o

has full measure in n.

Proof
Immediate from the fact that r° has full measure, and

that B :M x n #M x ft preserves that measure. /

Proposition 2.3.2 (CF. Ruelle, Corollary 6.2)

Suppose the flow of the SDS of Theorem 2.2.1 is Lyapunov

stable. Then for a.e. U, , I’

WO is a proper open subset of M.

Proof
Choose X < 0 such that {Spectrum} < X < 0 and choose ojq

such that r° has full measure in M. (See Proposition 2.3.1 (i) )-
“0

Consider the function a(-»u0):r° @l O given in Theorem 2.2.1.

By part (@ of that theorem, for any x € r° , the local stable
o

manifold & 'WO)(a(x,uo )) is a neighbourhood of x, and by

part (b), we can define a local stable manifold at any point

in the interior of ]/i(x,mO)(a(X’Lp°)). Thus, rO’WO is an open
subset of M.

Now, suppose r° = M. Then by compactness, we can take
a finite collection >¥V’9,..-,xN such that the interiors of

»@(x-_ )) cover M. Take B =
i o

Max
i u0) i=1

MECICES)

(B(,u) defined in Theorem 2.2.1). Then by part @ of



Theorem 2.2.1, diam { @O)B (OGN UQ)}< 6 which 1is

impossible since £t @ ) is a diffeomorphism for all t. /

Note
In Proposition 2.3.2, r°w might be the complement of

a Cantor set in M.

Proposition 2.3.3 (Clustering property for Lyapunov stable
Fflows)

Suppose the flow of Theorem 2.2.1 is Lyapunov stable.
Then for a.e. xg C M, P{(o:diam WBE,ND}=+0 as
tw@® + las r + 0. (C diam £ WBXo,N} ¥ 0 as t <&
means that the trajectories starting in B(xQ,r) of the flow

5t (W) cluster together).

Proof

For this we must have r°,),(o c n of full measure. This
holds for a.e. X CM. (Proposition 2.3.1(H)). The result
follows because a(x0,-):r°xo aX is strictly positive,

P-measurable. //

3. SOME EXAMPLES
In this chapter we give some examples of stochastic
flows, for which the Lyapunov spectrum can be calculated

explicitly. We can choose parameters such that the flow is
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Lyapunov stable (see Section 2.3) and in this case we can
calculate explictly the flow itself and its asymptotic

behaviour, and verify the assertions of Section 2.3.

3.1 An Example of the Circle (Noisy North-South Flow)

Example 3.1 (Noisy N.S. Flow)

(@) The (noise-free) N.S. Flow is taken to be the stereo-
graphic projection from R to the unit circle S, via the north
pole x € S and such that the south pole xg sits at the origin
in R, of the flow g on R, where nt X) = x exp(-t).

This flow clearly has a source at x* and a sink at Xxg.
In this chapter we will denote this flow on S by and the

vector field for this flow by AsS - TS.

(if) The noisy N.S. flow (with parameter e > 0) is taken to

be the flow of the SDS (XL,z), where X () o dzf = eY(y)°dBt+A(y)d
Here, BE is Brownian motion in R; A is as in part (i); and

Y(X) € LOR,TNS) is given by Y(X)(1) = {Tangent at x to S of

unit length in the positive direction), so that the flow of

the SDS (Y ,B) is a stochastic rotation. We will denote this

flow by 57(q))- Then putting e = 0 gives the flow of part (i)

and the flow for e > 0 may be regarded as a stochastic

perturbation of f,°.
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Notes
O) For e > 0, (XE,z) is nondegenerate.

@) It is helpful to think of S as 1R/2uZ, and functions on

S as periodic functions on R, so that we can write derivatives

explictly. If we do this then we can express the SDS as an

Ito system. Since Y is constant over S =7]R/2uZ, its derivative

is zero, and so is the Stratonovitch correction term, therefore

the SDS will look the same if it is written as an Ito system. //
By Theorem 2.1 there is just one Lyapunov number Ar for

(XE,2), and it is given by I_i}g) /7t log JTEE@W V] for a.e.
t

*,w) G S x n, where v is any non-zero vector in T"S. In
the following proposition we give a formula for XE , and in
Proposition 3.1.2 we show that for e > 0 sufficiently small,

we have Lyapunov stability.

Proposition 3.1.1

Denote the unique invariant measure on S for (Xc,z) by
pc. (See Section 1.2). Then the Lyapunov number XE for
(Xc,2) is given by

Ae = DA(y) dpe(®) -
JyES

(Here, DA is the derivative of A, where we have identified

S HIR/2dX, so that A is a periodic map R #3R).
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Proof

We can deduce from Carverhill and Elworthy [,

Remark 4.2, the following equation involving D (id):

dEt® WX, DE U)X V]
= A (M (u)x), [DA(GBMNu>))x] [DM(w)x)v] dt
+  [fY(CMNu))x) , e(DY(£/(u))xj [BEN (u))x]v]l ° dBt (u).

(See also Proposition 4.2 , in which derivative flows are
discussed generally).

Also, Xe is given a.s. by lim 1/t [DCN(oo)x]v -(Any v / 0) .
=

Now, since Y is constant over JR/2vZ, we have DY = 0, therefore

[Dr(aj)x]v is just the solution r£(w) of the linear equation
dR*(u) = DA(G™(udx ) -RMu)dt,

in which the coefficient DA(r(ulx) is stochastic, driven
by cf(u>)x and is a.s. continuous in t. This equation has

rc
solution F&E(w) = R, exp DA( <w)x)ds for some Ro_

,t
Therefore \c = lim 1/t DAGN (U)X)ds a.s., and the result
0]

B0

follows using the Strong Law of Large Numbers (Proposition

1.2.3). W

For Proposition 3.1.2 we need the following lemma:
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Lemma 3.1
The invariant measure pe for (XL,2) tends weakly to &

(unit measure concentrated at xg) as e ®#0, i.e. for any
continuous f:S &R, we have fy) dp () > f(xg) as e @0.
yes
Proof
This follows from the work of Ventsel and Freidlin
[il]. See our Section 4.3. However, since our manifold
is l-dimensional, we can calculate pc explicitly and verify

the result. This calculation is outlined in Khas"minskii [1], iJ

Proposition 3.1.2
As e ->0, the Lyapunov number Xe tends to DA(xs) < O.
Thus, for sufficiently small c > 0, the flow is Lyapunov

stable.

Proof
Note that the periodic function DAdR + IR is continuous,
and DA(xS) <0 since Xg is an attractor. The result follows

from the formula of Proposition 3.1.1 for Xe,and Lemma 3.1. /
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3.2 Asymptotic Behaviour of the Noisy North-South Flow

In this section we give a formula for the noisy N.S.
flow, and from this we are able to deduce its asymptotic
behaviour and describe the stable manifolds completely. We
can attempt this analysis because (@s we show in Lemma 3.2.1),
the flow lies in a finite dimensional Lie group.

We will denote this Lie group by Cmn @): it is the group
of MFlbius diffeomorphisms on S, i.e. diffeomorphisms such
that if we identify S with the one-point compactification 1R*
of R via the stereographic projection given in the definition
of the noisy N.S. flow (Example 3.1), then we can write the

diffeomorphism as x % , and represent it as a matrix

> ™). Note that composition of Mflbius diffeomorphisms
corresponds to multiplication of these matrices. Also, the
matrices A ~) for A ~ 0 all represent the same diffeomorphism,
and “m(S has dimension 3.

Throughout this section we will take e > 0 fixed, such
that AC < 0, and we will suppress e from our notation. Thus,

in this section only, £t(@) denotes the noisy N.S. flow.

Lemma 3.2.1
Almost surely, for all t > 0 the diffeomorphism £t @)

lies in the Lie group Vm(S)-
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Proof

Restrict attention to a finite time interval [O,U],
and take a partition 0 = {0,V,2V,...} of this. Denote by
(X,z™) the piecewise linear approximation to (X,z) and denote
by C~(a) the Fflow of (X,zT). (See Carverhill and Elworthy [if]
Section 2.3). Since Vm (®) is closed in the C° topology, and
since CN<j) tends to £t @) a.s. as mesh () =V tends to zero,
uniformly over t € [0,U] and in the C° topology (See [ 1,
Proposition 4.2), it suffices to prove the result for C "(w).
This we do below.

Now, for each U 6 il, C™(ij) is a composition of flows of

deterministic dynamical systems: if t € [gv, (g+1)V), then

AN =V,t 5 (g-DV,qV ° ... 0O COfV»
where for 0 < 1 <q, G+1)v tie N ow “or t™me v °f the
vector field pMY+A, and t is the flow for time t-qV of

p0| Y+A. (Here,

P @ EGG+DHV@ - i
V
Also, the flows of Y and A are Mdbius diffeomorphisms: they
are rotation and the N.S. flow respectively.
The result follows from the Lie-Trotter product formula
(see for example Nelson [lit] Chapter 4), which says that if
1 ana £ are flows of the vector fields Z1 ané Z , then the
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flow of Z1 + Z2 is just [lim ° Here> the

limit is in the C° topology). Thus, if the flows of Z1 and

2 . . _ _
Z lie in a certain Lie group, then so does the flow of

Note

This result can also be obtained using the “lift"
(7(,2) of (X,2) to VS(S) (s sufficiently large) and showing
that Xl_i?n s/ is tangent to co\;m(S) . See Carverhill and Elworthy
[¥] for a description of (X,z) , and Elworthy [t ] Chapter 7,
Section 3. W

Our technique for the analysis of this section is to
compose each diffeomorphism of the flow SYoo) with a rotation,
so that the composition fixes xg £ S, and to get a formula
for that. The rotations, and hence the compositions are
still Mfibious diffeomorphisms, and since the rotations are
isometries, they do not affect the stable manifold structure.

Note that a rotation through the angle 0O has matrix ,

where g = 2 tan $0. Also, any Mobius diffeomorphism which
Fixes xS has matrix Ig' f),

In the following lemma we treat a discrete time analogue
of our problem, and in Lemma 3.2.3 we let the discrete time
increment tend to zero, to obtain the formula relating to the

noisy N.S. flow itself.
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Lemma 3.2.2

Choose T > 0, and take a stochastic process y: R
Consider the following stochastic flow with discrete time
increment T, where R. @ is a rotation through the

angle Y((+D)TW) - YIiT™ -

V. W: [RD)T,rT@w) ° ° ° [RO,TQ) ° 5;

(Here, is the noise-free N.S. flow at time T). Denote by
VIT(W) the rotation which sends n-|[T<io)><s back to xg, and denote
by 9r the angle of V»,.

G Then a.s., for all r, the flow VIT@) o nFT@) has

matrix ~ar T ™~ # O\ , where

crt(w)-

T T T

arT = a0“aT (r-DT1T *

Qi fji iji iji 1] iji iji

CHT = + Yt. a0 * "T*a0"aT +

T T T T
+ Y(r-1)T,a0 O **= a(r-2)T°

T _ 1+45 T q-(e21-1)

i Lot T T 2(@@M2*e2T) *
and = 2 tan JB™.

/aiT = ®
The matrix ' T } represents the diffeomorphism

YiT *= 1
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JT = VGE+1DT ° [RIT:(G+1)T © AT1 ° (ViTl

(i) If we identify S ™ JR/2nX, then a*T is the derivative

of n-I[T(W) at zero.
Note

IT we take y = eB iIn this lemma, then n;|1—T(w) is an

approximation to the noisy N.S. flow.

Proof
(@ Clearly we have VA, o n?"T = C*r_1)T o ?(r_s)T ° °
so that if rT has matrix/aiT , then
IT \,J_ #
1T
T T
arT " °\ Ca@-1)T " =\ (ao = °\
vV T J \T J
crT m "> Y (r-DT - YO *©

T

T . T T
and the formulae for a8, Cpx N terms of CRE iﬁu follow.

r
Therefore, it suffices to show that does have this matrix,
as we do below.

The matrices for £7 and (V-J;T)_1 are and

0

(C 1 » 2{i~ respectively. Also fixes xg, and is

\ 12, 1> T MT

therefore 2% o (VWET>_1 composed with a rotation which causes

the whole to fix xg. Therefore £I has matrix



-31-

/1" 2 T -
1-Pi/2 ZI;I\J %O ;/A\/\I/Z» . i) v where is such that
this matrix has the form ec 9> ° Therefore —T,

and dT has matrix

-T 2
(e (l+agp
ti/z (1-e_§L)

-2T

Dividing each term in this by 1 + q_2 e gives the required

formulae for anT, y~.

(i) For any Mobius diffeomorphism which fixes xg and has
matrix @#f’?_) , the derivative (i.e. the enlargement factor)

at xg is a. To see this, just differentiate the map
X . Also, identifying S =B/2irZ, a rotation is

identified with a translation and therefore it does not affect
the enlargement factor. Thus, the derivative of n-nl:T(a)) at

zero is equal to that of VATW) o nT (W), which is a*"T(W). /

Note

. T T

aiT"™ YiT dePend only on 0™ and hence only or niT(w)xs.
Therefore aIT» CIT depend only on the stochastic process

T
NiTxs for 1 = O»l»e eenr-1.

Lemma 3.2.3
Denote by Vt W) the rotation which sends Et (w)xS back
to xg Et (W) - noisy N.S. Fflow).
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Then a.s., the flow VAiw) o £YI0) has matrix | . 23
where at @) JO DA(rn(u)xS)du, C:b(U) C(F,u (up»s)an U)du,

and C:S +E 1is defined as follows:
Take x £ S and put 0 = angle between x and xg. Put
p = 2 tan Jo.
2T
Define DAR>"™ x S + R by D(t,x) = qg-"-] -
2@ +e x)

(So D comes from y of Lemma 3.2.2).

Take CX) = &= D(T,x) 1
3 IT=0

(Here, we have identified S =JR/24Z so that the vector field

A is a periodic map R =R -

Proof

The idea is to take y = cBt in Lemma 3.2.2, so that
nIT is an approximation to the noisy N.S. flow, and to take
limits as T + 0. However, we must go via the piecewise linear
approximation (see Carverhill and Elworthy [if] Section 2.3)
to the SDS (X,z) for the noisy N.S. flow, because it is not

clear that we have convergence if we go directly.

(@ So, restrict attention to a finite time interval [0,U]
and take a partition n = {0,V,2V,...} of this, as in Lemma
3.2.1. Denote by (XjZ1D) the piecewise linear approximation
to (X,z), and denote by £*(u) the flow of X,z7D). Take the

stochastic process y of Lemma 3.2.2 to be eB”, and denote by
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the flow of n"T (W) with this choice of y. For t

not a multiple of T, put @ = ) » where
qT < t < (g+t1)T. We take T always to be a factor of V in
this proof. From Carverhill and Elworthy [<=] Proposition 4.2
we see that ~(u) tends to a.s., uniformly over t € [0,U]
and in the C° topology, as mesh () H V tends to zero. We
show below that for each n and each 10, t-"1 (Iv) tends to
uniformly over t and in the C° topology, as T tends to zero.
(T a factor of V).

As we stated in Lemma 3.2.1, if t £ (qV,(g+1)V) then

-t

-1T . m »
rt - Aqv,t | P(g-DV,qv e x - © F

o,V

Aiso, £t° = v/t ° £(G1V,qV ° ** ° 20,V"

NV/T

, - g T.« sl 5,0 LT, 1t
where for 0 < I < q, Ctv, >V 1S (@®T ° V " and Agv,t

is (R* o £9)p-(p = largest integer < )

(Here, R* is the flow of pY for time T and is the noisy
N.S. flow for time T).
By the Lie-Trotter product formula []if], for each 1,

(itl)vy) tends to ?iV, (itl)vy as T tends to Zer°"
and the result follows.

(074 /e (@), O\

Denote by VcT,tw@) # and o, V
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the matrices representing VA"1I'(uj) o @ and V*(w) o Ft@),
where vJ"T are rotations such that these compositions fix X

From the previous paragraph we see that

r

alr, i@ - O

for each w, and uniformly over

vcJ-U) - ¢j(u). t€ [O,U,as T =0,
r

a.s., uniformly over t G [O,U], as
v mesh () =V < 0.

@ As in Part (ii) of Lemma 3.2.2, we see that if we

identify S ~ TR/2W then at(@) = DEt (U)xs. From the proof of
t

Proposition 3.1.1 we see that this is exp DAE W)xg)du,

as required.

3 We now calculate c" as lim c?’"7, and then c as
t T-0

lim cl.
Mesh (nN)—>0

For any choice of stochastic process y in Lemma 3.2.2, y-l;\

depends only on T and 0%, and we can write

y T = D(T,pTT@U)xs). (@ as in the statement of the lemma).

Thus, from the formula of Lemma 3.2.2,

cT,w « D@, (@X0) + d (T,$3,LUxQ aj LW

¢ +D DT  X0)"a (r-1)T k<"
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where r is the largest integer such that rT < t. Using the
T

fact that D is smooth and that a*."1 tends to a’R:, we can

deduce from this that

lim cj,v@® =c" ®© C(E |u)xJda]® ()du.
T-0 0 s u

Now, letting mesh (@ =V tend to zero gives us the required

formula for ct(w). /7

Since the rotations Vt @) in Lemma 3.2.3 are isometries,
we can study the stable manifolds of £t (W) by looking at the
formula of Lemma 3.2.3 for Vt(@® o £foU)- Note that we can
characterise a Mobius diffeomorphism which fixes xg by the
other fixed point, and the derivative (enlargement factor)
at xg. Also, for any z t xg, there exists a Mobius diffeo-
morphism F which moves z to xN, fixes xg, and has derivative
1 at xg- If we identify S with JR* via stereographic projection
from xg (ot xN), then F is given by x + x- (projection of z
from xg). With respect to our usual projection from x®, F

has matrix

1
22
Projection of z ,

In Lemma 3.2.4 we study the fixed point distinct from xg
for Vt<u) o £ (W), and to prove Proposition 3.2 w_ move this

fixed point to x* by conjugation with a suitable F, so that

the flow has matrix ~at™0® " ® j. For this conjugate we can
"o , 11

easily describe the stable manifold structure.
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Lemina 3.2 .4

For each g a.s., the flow Vt(@) o 5t of Lemma 3.2.3
has just two fixed points for each t, one of which is xg, and
the other will be denoted by z"(gj))- For each @ a.s., z™(m)
tends to a limit Zq (@) as t tends to < and this limit is

distinct from Xg.-

Proof
Identifying S with JR* via the stereographic projection,

V. () o I-(g» IS aiven a.s. by x &+ at@)x e Therefore the
t ct U)x+1

fixed points are the solutions to

£ -1
cC N -

ct @ + (Q-afo))x = 0, i.e. x =0, X =

Now xs corresponds to 0; take zt (@) to correspond to the other
solution. To show that zE£(p) tends to a limit a.s., we will
show that this other solution tends to a limit in R a.s..

By the formula of Lemma 3.2.3 and the Proposition 3.1.1,
1/t log aE(@y) WX < 0 a.s. (A-Lyapunov number). Take p € (A,0).
Then for each @ a.s., there is a time U©>) such that if
t > U(@xhen 1/t log at@W) < p, i.e. at@ < ext tp. Also
af(@) > 0 a.s.. Therefore afo@) *#0 a.s. and it suffices to
show that ¢ (@) tends to a limit a.s.. For this, observe
that C:S +]R of Lemma 3.2.3 is bounded, and that if

t > r>U (@), then
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IC W -c ®l<sup {LCIF- exp pu du.
Cc r XES Jr

Therefore for each u a.s., cE(y) is a Cauchy sequence.
To see that the limit of zfoQ)) is a.s. not equal to xg,
note that the limit of at(w)-1 is a.s. not zero. /

cth

Proposition 3.2§

Take a version of the noisy N.S. flow ~(w). Then
for a.e. € € W) defined in Lemma 3.2.4 exists for
Vt(W) o Et(w) and is distinct from Xg -

Also, for a.e. w € U, we have the following:

(@) For any x £ SMZq @)} the Lyapunov spectrum exists at
&,w) and is just {A} . Thus, 1/t log ||ITEE@W)Vv]] *A as

t = , for any nonzero v 6 T/S.

(i) The stable manifold V. . exists if x £ SMzn @)}

and is just SM zQ(u)}, i.e. for any y € SMzg(o))},

lim sup 1/t log d(Et (WX, Et(@)y) <
t>0

(i) For any closed set K ¢ sMZq @)} we have the clustering

property:

diam {Et(WK} -+ 0O as t #» <
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Proof

Since the rotations ®© of Lemma 3.2.3 are isometries,
it suffices to prove the result for VtW o £t(w). For a.e.
b € £ the fixed point t(u>) tends to ze(m) sA X . Choose ug
such that this is so. Choose a closedsegment L of S such
that Zq @¢q) € L°, xg t L, and choose atime U(i0g) such that
if t € U@q) then z~Wg) £ L. For t >U(MWwg) denote by

FEu>0) the Mobius map described beforeLemma 3.2.4, which

sends z”0jg) to xN> Note that the conjugate FEo [Vt o o Fia
has matrix ~at” Also, since z (u) is bounded away
0,1 "

from xs for t > U (Qog), Ft(wg) and Ft{i)g 1 are both globally

bi -Lipschitz, uniformly in t > U(iOg). Therefore it suffices
to obtain the result for Ftd\g) o [Vt @9 o ~(wg)] o Ft(wy) 1,
and for this the result follows easily from the fact that

/t log at(W) WX <0Oa.s. as t+» . /

3.3 A Further Example on the Circle (Noisy N.E.S.W. Flow)

In this section and the next, we construct some more
complicated flows, using the noisy N.S. flow, and we deduce
their asymptotic behaviour from that of the noisy N.S. flow

itself.
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Example 3.3 (Noisy N.E.S_.W. Flow)

Consider the double covering map E:S &S given by
E@ = 20, if S is parameterised by the angle 9 from x\<
Induce from the maps A,Y of Example 3.1 the maps A,Y such
that A(X) = TA(EX), YOQ() = jJYED(E) (= jJY()e). Then
we take the noisy N.E.S.W. flow .EV%(W) to be that of the SDS

Xe ,z), where X! () o dzt = eY(y) o dBE + A(y)dt.

Note

The deterministic flow é’t has sources »t Xy xS and
sinks at xE, xw.//

The following proposition relates £t (0) to £t @ and
thus enables us to deduce the asymptotic behaviour of

Ce @ from that of fe (ui)-

Proposition 3.3.1
For a.e. ) C 2we have for all t > 0, x € E that

v
ECt (WX = r (E:S < S given in Example 3.3).

Proof

This follows from the fact that
TEA(X) = A(EX), TEYC)() = Y(EX)(E), i.e. ALY
are the lifts of A,Y to the double cover.

We have
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Applying the Ito formula:

BfZAAW)x = Ex + A(EcE (io)x)ds + Y(EN())x) o dBs<

Thus, E~t (Gox is a solution to (X£,z) starting from Ex, and

the result follows by a.s. uniqueness of flows. /

This result, and the fact that is continuous in
time a.s., enables us to determine completely from
QE(W) . We see that E\M(oj) is antipodally symmetric a.s..

The following proposition gives the asymptotic behaviour
of 7t(W) , and is immediate from Proposition 3.3.1, and the
corresponding facts for c¢c£ @) given in Propositions 3.1.2,

3.2.

Proposition 3.3.2

. *P _
() For any c> 0, the Lyapunov number X for v is the
same as xXC for ¢E(@). Thus, if e > 0 is sufficiently small,

then Xe < O.

(i) Choose c such that \< < 0, and take a version of
ék(w). Then for a.e. @&, z0 (W) of Proposition 3.2 exists and
is distinct from Xs' For such m, take zl(w) , zi(u) to be the
inverse images of Zqlo), under the map E of Exa[]rlple 3.3.

Then for a.e. u € £, the stable manifold V.r a exists
for each x € SNz @), z2()y* and is just the component of

SMz_.j(u)), Z2(@)} containing X.
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3.4 A flow on the Torus (Double Noisy N.S. Flow)

The example of this section exhibits in a more complicated

way than the noisy N.S. flow, the behaviour of Chapter 2.

Example 3.4 (Double Noisy N.S. Flow)
Take any el> e2 > 0, and consider the independent pair

cl £? -
W2) of noisy N.S. flows. Then we take the

double noisy N.S. flow to be the product SGl(u) X eZ(W) on
S xS =T.

The following obvious proposition tells us that the
Lyapunov spectrum for this flow is {Xel,XeZ} , and Proposrition
3.4.2 tells us about the stable manifolds. Note that we can
choose e.> e2 such that Xel t \°?_ In fact by the explicit

calculation of x*outlined in Section 3.1, we see that Xc iIs a

strictly increasing function of e*

Proposition 3.4.1 (Cf. Theorem 2.1)

Choose e2 > 0 and assume without loss of generality
C1 - o !
that X77 < X For ( ., xz) € T, denote by t! ’X21T the

tangent to the curve {(X,x2): x £ S) iInT.
Then for a.e. (bj™u-) € il x Q we have the following:
The points Zq @), z0@R) of Proposition 3.2 exist, and

we can define the filtration for the double noisy N.S. flow

at the points (X™"x™ £ (™MzZQ UL} x [SM*a @D H InT.
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then the

Proposition 3.4.2 (CF. Theorem 2.2.2)

Choose e.], e2 as in Proposition 3.4.1, and assume that

Then for a.e. (@@-.,w2) € Q X n, the conclusions of
Proposition 3.4.1 hold and at those (x*,x2) for which the
Lyapunov spectrum exists, the stable manifolds also exist,

el E2
If X < X , then

{(X,x2) : x € S™zq ul)>}
Od.x2 whae) YYTY2) =y: € sh{z0@i)}}
C

If X X then

Uyry2) 1Yi c sv{zOWwi)}p
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4. A FORMULA FOR THE LYAPUNOV NUMBERS. A PERTURBATION THEOREM

In [1], Khas’minskii gives a formula for the Lyapunov numbers
in the case of a linear stochastic differential equation in
Fm. His technique is to project the solution onto the unit
sphere Sm 1 and to obtain anequation for that. In this
chapter we give a formula which is analogous to his and which
gives the Lyapunov numbers for an SDS on a smooth compact
Riemannian manifold M. We work with the derivative flow and
we take the radial projection onto the unit sphere bundle
over M to correspond to Khaslminskii®s projection onto Sm .
In Section 4.1 we present Khas™minskii®s work, adapted to our
notation, and in Section 4.2 we give our analogue.

In Section 4.3 we give a perturbation theorem based
on our formula: the theorem says roughly that if we have a
deterministic dynamical system which is Lyapunov stable,
then so is a small non-degenerate stochastic perturbation of

1t.

4.1 KhasIminskii®s Formula [1 ]

Khas’minskii deals with a stochastic process on
which is the solution to a linear Ito stochastic equation:
the work of this section will be essentially the same as his,
except that we will express the equation in the Stratonovitch
form as the SDS (X,z), where X ) o dzt = A(y)dt aY(y) o dBTc,
being a Brownian motion in IRm. ((X,z) being linear means

that A(y) and Y(y)e (for any fixed e £ ) are linear in y.)
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Note

Suppose the solution to the linear SDS (X,z) starting

from x M is £t (W)x. Then iIn this section we define the

Lyapunov number A. - just to be lim sup I/t log |IG- (WXII -
®

L ‘=
(Thus, we have a Lyapunov number rather than a Lyapunov
spectrum at (x,00)). If, for each x, the Lyapunov numbers
are all negative for a.e. u , then the solutions tend a.s.
to the zero solution, and we say that the zero solution is
asymptotically stable. See Arnold and Kliemann [11],

Khas’minskii [D].

Lemma 4 .1.1

(i) Denote by G:IRM{0} & Sm 1 the radial projection
G(X) =x/ |1 . Consider the map DGAR™i0} -¢ LCRm ,Rn).

Then for any x,y, DG(gxMgy) 1is independent of 8 > O.
(ii) Denote by §idn™{0} »R the map &) = 1°9 |IX|]l- Then

the derivative Dt ]| > {0} % L(IRm,R is given by DiMx)y

From this we see that Dij>©<) (gy) is independent of g > O.

Proof

(@) Immediate from the derivative:

DG Yy = v, - X<X,y>

iMI INE
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(i) We have "(x) =J log <x,x>. The result follows from

this using the chain rule. /

Lemma 4.1.2

Take any x e RM0} and denote by £.(0D) x the solution,

starting from x, of the linear SDS (X,z) on Km.

(@) Then the stochastic process GEt (Wx (which we will
denote by nt (W)xX) is the solution, starting from G(x), of

the SDS (X,z) on Sm , where X(X) = DGOOX(X)-

(i) The stochastic process V£ ()x in R is driven by
nt @x according to the equation
d(sHEW)X) = <nt WX, x(nt x> o dz™iw), i.e.

ft

WX = px + ] <n (WX, A(_(W)x)>ds
o s

+ 1[0 N, <AAX, Y(nS W)x)> o dBS @ -

Converting to an Ito equation, and putting <y,A(Y)> = A(Y),

<yftY(y)> = V(Y), [)\/?(X) = DG(X)Y(X), we have

IKEWx = "Xx) + AGQs Wx)ds + Y (ns (WX) dBg @

[ 1 DY[ns@)X] (Y(hs (W)x)ei]ei]ds.



—_46-

Proof

Note first that the (partial) flow £t(@) is a
diffeomorphism whenever we can define it (see Carverhill
and Elworthy [4)), and since (X,z) is linear, we have
g (WO = 0 a.s. Therefore if x €]JRm™{0}, then
5 (Wx € IA.{0} a.s.

(@) Transforming via GdR™iO} ® Sm , using the Ito formula,

we have
d [Gf,fc () x] = DG (~t (w)x) .X ("t (0j)x) o dzt (w).

By Lemma 4.1.1 () and the fact that X is linear, this RHS

is equal to

= DG(NEM)X) X ("EGx) o dzEQ) ,
and the result follows.
(ii) Again by the lto formula,
d@J:Ct @Dx] = DGIEL (W)X) - X(St (@X) o dzt W)

<t WX, X("t@®@X)> o dzEQ)
</t (i0)x, CTfo(o)x>

by Lemma 4.1.1 (ii)-
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Also, by linearity of X, this last expression is equal to

<nt Wx, XMt @WX)> o dzt i), and the result follows. /7

Theorem 4.1 (Khas™minskii®s Formula [17])
Consider the situation of Lemma 4.1.2.

() Then the Lyapunov number , E Hlim I/t log JE- x|

is given by

lim v/t {A(h QDY
0 0

in %
*»2 E DY[ns (Wx] LY (ns (u)x)cidei)ds.
\/ N
A, Y, Y as in Lemma 4.1.2)

(ii) Suppose (X,z) 1is non-degenerate on IRmn, i.e. iIf x /0
then Y(X) € L.ORn,Rn) is surjective. Then (X,z) is a
non-degenerate SDS on Sm N and there exists a unique

- - m-1 0
invariant measure p on S for é(](,z). Also,

XGw) o m-1 PO

,n » %
¢XE DYMDI®e.Je-} dp(y) ,
i=1 11

for a.e. W) e Sm~1 x ft
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Proof

() Using the formula of Lemma 4.1.2 (ii) for

it (Wx = log BEt@)x]] , it suffices to prove that

lim 1/t Tt Y(n @)X) dB W) = 0 a-.s.
tto JO S

Tt %
For this, we will show that 1 \?(p Wx) dB @)
Jo s S

(= ct@)x, say) is a time changed Brownian motion.

By the Ito formula,

(Ct-(W)X)2 2 j [r @x] Y(p_=@wy) dB
o s

st n 7 _
Z (p(w)x)e.) ds.
=1 s 1

+

Define o0:[0,°°) x ft « [0,J by

fs
o(t,u) = Min {s suwchthat ] ZY(n @@x)e.) dq = &
Jo i=1 q 1

if such an s exists, or < otherwise. (Note that since the
integrand is non-negative a.s., o(t,w) 1is non-decreasing a.s.).

ro(t,w) n -
Then J . El Y(ps(uj)x) dBS = t, and (so(t,io)' m -t

is a martingale. Also, ’\011,®|(oj)x is a martingale. Thus,

by Levy"s characterisation, ro(t io) (W)x is a Brownian motion,

8t@ say.- (See Elworthy [b ], pp 80-84).
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From this we deduce that

i n
N |
1=

2
1:(w)x =B _. - , where p(t,io) = 1(Y(nS (cn)x)el.) ds.

pit,WJ)

N

N 2
Now, £ (Y(y)e.j is continuous over y € S* , and therefore
i-1 1

bounded, say by N. Therefore p(t,w) < Nt a.s.. Also,
vt % @0 a.s. as t+ « (See Mckean [li], p-9 , there-

fore 1/t Wx E v/t B ,a.s) ®*0 a.s. as t +®, and

PoVvtl £()>
we have the result.

ot
(i) That (X,z) non-deaerate implies ()0(,2) non-degenerate

follows because for x f 0, DG(X) is surjective. The formula
for A follows from part (i), using the Strong Law of

Large Numbers (Proposition 1.2.3). /

4.2 An Analogous Formula to KhasIminskiils for an SDS on

a Smooth Compact Riemannian Manifold

In this section we give an analogous formula for the
Lyapunov numbers (defined in Theorem 2.1) for a smooth SDS
on a smooth compact Riemannian manifold M of dimension m.
Our technique is analogous to that of Section 4.1 (i.e.
KhasIminskiils), and we will use the same notation for some

of the corresponding concepts.
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Thus, we will denote our SDS on M by (X,z), X{) o dz =
A(y)dt + Y(y) o dB, where B is a Brownian motion onJRn.
Also, we will denote the flow of (X,z) by 5t(w). Correspond-
ing to the system of Section 4.1 we take the derivative
SDS (6X,z) on ™, whose flow is TEt(W) and which we define
in Proposition 4.2. We define the Lyapunov number X (; for

v £ T by lim 1/t ||TEEQ@)VIL , if this limit exists. (Thus,

the Lyapunov spectrum at (x,w) C M x il is the collection of
these limits for v € TXM-)
Note that in this section, (X,z) need not be non-

degcneratc. In fact, (X,z2) could be a deterministic system.

Proposition 4.2 (See Elworthy [£] Chapter 7, Section 8E)

For each e € IR’, v € T"M, put 6X(v)e = a o TX(V)e,

where a:TZM —’iTZM is given over charts by
att x R" X" xR =y x JT xR X

x,u,v,w) (CAATR) I

2
Then 6X ( )e:TM = T M is a vector field over TM and
(<BX,2) is an SDS over TM (called the derivative of (X,z2)),

whose flow is TEt (W).
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Proof

Express 5X over a chart <»U \Y
Suppose that for each e €Jn, XC(= X( )e) is given over the
chart by x + (X®(X)). Then TXe is given by
x,v) A0 ) LV,DXN XDV) , and 6Xe is given by
x,v) @ (X,V,X® () ,DX® V) -

Denote by 322} the extension of XZP to all of E.\; so that
it is smooth and has bounded support. Denote by ££(co) the
flow of (Xt,z). Then for each x £ U, iPDE WX) = C\UD<I>X) a.s.
until the exit time QD of "(wjx from U. (This follows from
Elworthy"s definition of the solution to (X,z). To get it
from ours, consider the coordinate functions of $ separately,
and use Lemma 5.1 of Carverhill and Elworthy [iF ).

Now, by [if] Remark 4.2, the solution to the SDS (6)7'(i ,Z)
Gf-(x,v) >V, Xa(x), DX’é(x)v)) is D£’Z‘(W)(x)v. Also,
until the exit time t, W), this is just T<]>.'I'£Z (W)uy, where
uy € TyM and Rr(uy) = (X,V) -

Thus, until the exit time Tt (W), the solution to (6X,z)
starting from uy € TyM is just TEt () (uy), and the result
follows. /
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Lemma 4.2.1 (CF. Lemma 4.1.1)

Put T°M = TM™ x {0} (@.e.TM without the zero section.)
Denote by SM the unit sphere bundle over M. Take any x € M,
v £ T;M, M C TVT°M and denote the horizontal and vertical conponcnts of
ybyy ,y . Take y to lie in T™M via the natural

_ . _ S
identification TVTM = TXM-

(O] Denote by G - T°M & SM the radial projection

GV =v/ V1 .

Then the map TG:TT°M » TSM is given by TG(y) = DG tv) (ybD
(@, where G 1is the radial projection T°M = S M

Tm
LMD X X X
(i.e. the map of Lemma 4.1.1(D) and m, :TM & TM is multi-

+

plication in fibres by 3.

(i1) Denote by T:T°M &R the map ¥() = log |MI| - Then
dt :TT°M + E is given by dv () = <v,y1>
v,Vv>

Proof
@ Now, y 1= LA t-0 ' wrere Y* a vertica” curve in
T°M, 1i.e. a curve which lies iIn T°M, and where y (@ = v.

If y* is identified with u€ T M, then we can take
y*(t) = v+tu. Also, G(v +tu) =G(v) + t DGx (W)n +o(t).

Since TG(Y?N) is defined by G(C (t))] , We see that
t

TG(y*) = DGX (VY.
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m jn 1 U )
Also, y = ®1 , where y is a horizontal curve
dt t=0
in T°M with y»0) = v, i.e. a parallel translation of v
along a curve iIn M. For such a curve, ||yH(t) I = ]1v['i ,

i.e. is constant, therefore G(yH(t)) =yH(t)’\, Iv: Em@/ v )YH

and TG(YH) =T
m(/ Ml )

(if) Denote by Q:T°M w 1R the map v 4 ||]v]|2 - Then

dQ(y ") = 2<y,y*I>. (To see this use the characterisation of
Y1 in part (i)). Also dQ(y™) = 0, since length is preserved
by parallel translation. Thus, dQ(y) = 2<v,y™> and the result

follows using the chain rule. /7

Lemma 4.2,2 (CF. Lemma 4.1.2)

Take any x € M, v € T°M and consider the stochastic

process TAfwlv € TM.

(@) Then the stochastic process GTE (w)v in SM (which we
will denote by n< @)v) is the solution, starting from

* o
G(v), of the SDS (X,z) in SM, where X(V) = TG.6X(V).

(if) The stochastic process t.T* (Wv in IR is driven by

nt (W)v according to the equation

d¥.-Tr,tWv]l = @fF.eXx(nt@W)v)) o dzfc,
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D

T.TC.(w)v = &£WV) + d*f.6A(n (W)v)ds
+ ,.6Y(n (WV) o dB @
o S

Converting to an Ito equation,ﬁand putting A(V) = <v,oX(v) >,

Sé(v) = <v,6Y(v)*>, TG.6Y(V) = Y(v), we have

f
¥TE. @V = YWV + !t X(n_(u)v) ds
10

ft v
+ 1 Y(n (o) dB W)
JO S
€ n % %
{1 dY[Y(n (Wv)e.]e.} ds.
2 0 =l s

Proof
We prove this analogously to Lemma 4.1.2, by transform-

ing the SDS (6X,z) via G in part () and T in part (ii).

(@) For this we need the standard result:

Suppose N1, N.; are (Ffinite dimensional) smooth manifolds
with C2 SDS"s (Y.,z), (Y¥2,z) defined on them. De lote the
solutions to these by n*(w)y. (v £ N™). Suppose that
the following diagram commutes for each e, where F:N1 #aN2

is a smooth map:
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TF

TN > TN 2
A A
Yﬁ
N > N
1 E 2

To prove this, take any g:N2 R, and put h = g O f:N1 &R
Then by definition of the solution to (Y*,z), we have for

each y £ , that
taw =ney + 8 idivg
h(nt(Wy) = hy) + dh OY~rigiwjy) o dzgM .
Also, since h = g o f and the diagram commutes, we have
g(F(h-Wy) = g(Fy)) + ;
u

This is so for any g, therefore f(nt (wW)y) is a solution to
(Y2,2) starting from f(y), and the result follows by the a.s.
uniqueness of the solution.

For part (i), we will show that the following diagram

commutes for each e:
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TG

TT°M > TSM
1
TG-<9@.SM
T°M > SM
G

For this it suffices to show that TG.6X.G 1 is well defined
and equal to TG.6x |sm, i.e. that TG.6X(gv) is independent
of g > 0.

From Lemma 4.2. 1(i),

TG.6X(@v) = DG (BX(gVv)A) + T 6X(gv) @-
X m(/ IMI D

The first term in this RHS is independent of g > 0 by Lemma
4.1.1() (N.B. 6X(v)* is linear over v 6 T"M). To deal
with the other term, note that T expressed in coordinates

mg
is given by

(xiv, yx/Yv) @ (X. Bv, yx, syx),

so that T (5X(gv)) is given hy
m@/ IMI )

& v+ & g/ gl X9, DXCAgV/ 1BV ),

which is independent of g > 0. The second term in the RHS

being zero follows from this because T maps horizontal
mg
(vertical) to horizontal (vertical), so that T (¢S =T (Y.
B 6
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(i) Transforming the SDS (6X,z) for TEt(WvV via % IR,
we have
st
H*.TCe@w)v FN» + df.eX(TC. WVv) odz ().
Jo t s

(In fact, this follows from our definition of the solution
to (6X,2).)

We must show that dy.6X.G 1 is well defined and equal
to d-i'.flx!aM.,
From Lemma 4.2.1 (ii) and the linearity of 6X(v)L over fibres,

i.e. that df.BXiBv) 1is independent of 8 > O.

we have

dv.ex(gv)  <Bv» BX(V)S
<Bv, Bv>

and the result follows. /

Sketch of an Alternative Proof

The key facts for this lemma are that TG.6X(8v) and
dt.6X(Bv) are independent of 8 > 0. We can prove these
facts without using the horizontal-vertical decomposition,
by expressing these things over charts for M. We do this
below: this is more elementary but less geometrical than

the above.
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Uu=*v is a chart, over which Xe is given

by x » (x,X%(x)). Xe = X(-)e.) Then over the corresponding

Suppose @ :

chart i1 Q) V x JRm, 6Xe is given by
™
,Vv) @ (VL XN(X), DXe()V).

Now, from the Riemannian metric on M, induces an
inner product on the image of each fibre Hi(w 1)) = £O»)} *0®
(any y € Uc M.) For each (X,v) € V x JRa, denote this by ||vlIx

Over the chart, G and y are given by
G, :(x,v) a X, W/ ]1v]l)< ) and qu:(x,v) - log |MI - Therefore
P
TG and df are given by
TGN (L VLYX W) - GV v, yx,
Dx»(X,V)yXx + DVH(X,V)yV)
and
dy ( x, v,yx, W) - \ pxE(x>v>yx + <v" VX
<V, V>X <V, V>X
where H(x,v) = v/ |MI « and E(X,v) = Vv,V

Thus, TG.6Xe (in the chart) sends (X, Sv) to

X, Bv/6h v , X8(X)V, DxH(x ,Bv)IX®(x)

+ DVH(X,BVv)DX®(x)(BV)) -
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The term DVH(x,gv)DX%J;; ™) (@v) is essentially the same as that
in the linear situation (Lemma 4.1.2 (i)) and it is independent
of g > 0 for the same reason. The term D™H(X,gVv) 8x) is

new, but since H(x,gv) 1is independent of g > 0, this term is
also.

Also, d4>.6Xe (in the chart) sends (X,gv) to

%D E(x,gv)X(%(X) L Sov. DX%(X)(QV)PX

<Bu, gv>x <gu, gv>X

The second term iIn this expression is essentially the same
as that in the linear situation (Lemma 4.1.2(ii)), and is
independent of g > 0. The other term is new, but since
E(x,gv) 1is quadratic in g, DXE(x,gv)X%(x) is also, and this
new term is independent of g > O.

So in the nonlinear case, we get some new terms in
our expressions, but these new terms do not prevent the
analysis from going through. In fact these terms are related
to the curvature of M and can be expressed in terms of the
Cristoffel symbols. The horizontal-vertical splitting
corresponds to taking "normal®™ coordinates about a point in

M, in which the Cristoffel symbols vanish at that point. /7

Theorem 4.2 (CFf. Theorem 4.1)
Take any x C M, v £ T°M. Then t”e Lyapunov number

A(v,w), 1if it exists, is just
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st % 1 n

lim 1/t {A(n (WVv) +2 dY[L(Y(h (w)v)e.Je.} ds.
S 1

) = Jq z i=

v y )
A, Y, Y as in Lemma 4.2.2)

Proof

Using the formula of Lemma 4.2.2(ii) for log |l Wva,
it suffices to prove that

ft
lim /¢t - Y(h (WwdB =0 a.s. .
0 JO S S

For this, as in the proof of Theorem 4.1 (i), note that

ft ~ v
’ Y(nS (<d)v)dBS is a time changed Brownian motion Bp i oy w,

where p(t,w) Also, since

n » 2
2 (Y(y)e™) is continuous over y C SM, it is bounded, say

by N, and we have p(t,w) < Nt a.s. /4

Notes

(@) Even if the SDS (X,z) iIs nondegenerate, (Oéo(,z) may be
degenerate, so we do not have a direct analogue of Theorem

4.1 (ii). However, it might be possible to express the Lyapunov
numbers in terms of invariant measures for (X,z) which are
ergodic in the sense of Yosida [ ] Chapter 13. See Appendix
B Sec*-io" 2. Mote that this would actually give the existence

of the Lyapunov numbers independently of our Chapter 2-
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(i) The vertical components 6A(V)\ ¢YIV)*1 are just the
covariant derivatives VA(X)v, VY(X)v. (v £ TXM>e To see this
note that the connection map K:TTM -mTM given by the Riemannian
metric is just projection along the horizontal component onto

the vertical component. Over a chart if, K is given by

<X,V,YX ,W) Gy + N e <YX V) >»

where r@ is the local connector. Now, VA(X) is defined to be
K-TXA, so that over the chart * we have VA(F.J(x)v = DA@(x)v +
N D). Expressing {Afv)1l = K.6A(v) over the chart

gives the same expression, because r (X) iIs symmetric.

4.3. Lyapunov Stability of Certain Stochastic Perturbations

of Deterministic Dynamical Systems

In this section we consider a stochastic perturbation
of a smooth deterministic dynamical system with vector field

F, defined on a smooth compact manifold M. We take the
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perturbation to be the smooth nondegenerate SDS (X£,z),

where

XEQ) o dzE = eY(y) o dBE + [eA(y) + F(y)]dt

(Bt a Brownian motion in &), and we will denote its flow
by ¢Nco) iIn this section. Also, we will denote the unique
invariant measure for (X ,2) by pf .

We must assume that as e tends to zero, the invariant
measure p£ concentrates on a Ffinite set of hyperbolic
fixed points of the flow The question of when this

assumption is valid is studied by Ventsel and Freidlin [16]-

They show that it is valid for certain perturbations if

the co-limit sets of are all hyperbolic fixed points.

Note that at a hyperbolic stable fixed point xq of
we can define the Lyapunov spectrum of Ruelle [K] and it is
equal to the real part of the spectrum of VF(xqg), and 1is
therefore strictly negative. To see this, observe that at the
fixed point xq, F(xy) = 0, therefore over a chart -,, VF(xQ)
is yiven by DFM(xy).

The theorem of this section says that under the above
assumption about pc , for sufficiently small e > 0, the SDS
X! ,z) is Lyapunov stable. Its proof relies on the formula

of Theorem 4.2 for the Lyapunov numbers.
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Lemma 4.3

Suppose all the eigenvalues of the linear map LdRm #7Rn
have strictly negative real part. Then there exists an inner

product << , >> on JRm in which

<<Lv,v>> < 0 for all v € {0}.

Proof

| This inner product is the Lyapunov function for L.

See Arnold [3. ], p- 146. /

Theorem 4.3.

Consider the SDS (XE,z) defined above. Assume that

as e tends to zero, the invariant measure pC concentrates

on a finite set x*,...,x of hyperbolic fixed points
of (i.e. if D is a closed subset of M which does not
contain , then pCQ) %0 as z %0) .

Then if t > 0 is sufficiently small, the SDS (Xe,2)

is Lyapunov stable, i.e. for a.e. (X,w), sup {Ar< }
VES M

is strictly negative, where Xe. = 1im I/t ||TEe@)v Il -
"t B

Proof

Applying Theorem 4.2 to (Xe,z) gives the formula



w.w) = kim vt [ F(nM(w)v)ds

t n
+ lim e/t Mrig @)v)ds - lim e/2t 1z dY [Ye(rig(OVv)eilei ds,
=0 0 i=1
for v £ SxXM. Here, F(v) = <v,6F(W/¢G = <v,yF(v)>, and

. v v oo F )
similarly for A and Y, Y() = TG.6Y(Vv), and nMiii) v is the

solution of (X ,2) on SM.

Now, at the stable fixed points x®,...,x , the eigenvalues
of VF(X) have strictly negative real part, therefore by Lemma

4.3 there exists an inner product on T M in which F(v) <0
xi

for all v G SX M. We can assume that the Riemannian metric
T

does give these inner products on T M. With this choice
1

a
of Riemannian metric, define C:M *1R by C(X) = max {F(V)},
VESXM
and put max CxD}Y =q <0,
i=1,...,p
Now for v € SxM, n nE(to)v = ~"(u)x, where rr:sM + M is

\ e Cc
the bundle projection, therefore F(@"(W)V) < C(F;M@))X)- Thus,
lim FigWwvds < lim [ CE; Wx)ds = CX® dpL®
Tt =M JO S XEM

Also, from the assumption on pl, we have

Lim Ce dp* & < -

e+0 XEM
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Therefore for any « > 0, if e > 0 is sufficiently small

(say 0 < e < ei ) then the Tfirst term in the above formula

for A is less than -q + t.
V.0 a
To deal with the other terms, note that
n £
max  {JA@)] +i |1 dY[YG(v)e.Je. |}
e€[0,CI] i=1
vesM

(= K say) is finite. Therefore the sum of these terms is
bounded by eK for e € [0,e.], and choosing e > 0 sufficiently

small we can ensure that the sum is less than t, and

.w) V/4

Note

Propositions 3.1.1, 3.1.2 may be regarded as applications
of Theorems 4.2, 4.3 to a situation in which the last two

terms vanish in the formula for above.

AoV oy
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APPENDIX A : REGULARITY ESTIMATES ON THE DERIVATIVES OF THE FLOW

Here we establish the estimates which are needed for
Chapter 2. In Section A.1 we prove some general estimates on
flow derivatives and in Section A.2 we give the specific
results which we require.

Note that in Section A.1 we discuss Ito systems, although
for Chapter 2 we need results about Stratonovitch systems.
However, any Stratonovitch system can be converted into an
Ito system with one degree of differentiability less, so that
the HS+2 system of Carverhill and Elworthy [*#] can be

1 _
1to system. Also, since all the trans-

converted to an H
formations involved are linear, the techniques of [if]

Chapter 3 can be adapted to Ito equations and we can deduce
that if the Ito system 1(X,z) is Hs+1, then the flow exists
and is HS. (¢ >m/2 + 1). This is because the lifted SDS

I(§<\,z) is lthen C and therefore has a c°® solution.

A.1 Estimates for Partial Derivatives of a Stochastic Flow

on a Bounded Domain in JRn.

In this section we work with an HS+1 Ito SDS 1(X,z)
(G > /2 + k), supported on a bounded open set U c JRn.
Using the techniques of [It] Chapter 3, we can deduce that
the flow £ exists and is HS, and hence Ck. We will suppress

9 Tfrom our notation in this section, and restrict attention
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to a finite time interval [0,TJ.
Our main result is Proposition A_.1.2. Its proof is

adapted from lkeda and Watanabe [£7], and works by induction

using a Stochastic equation for the derivative. The equation
for the derivative is established in Lemma A.1.2 and
Proposition A. 1.1 enables us to make the inductive step. We
also require some standard estimates, which we present in

Lemma A .1. 1.

Lemma A.1. 1
Consider the set 6 of stochastic processes Bt on the

, , _ _ _ 2
time interval [0,T], which are continuous in the £ norm,

i.e.
E[ IBtl12] <» for t 6 [0,T] and
ELIBE-B J|2] 0 as s =t
Take to be a Brownian motion on IR + drift dt. Then

(O) 3 g >0 such that for all B 6 B, t € {0,T], we have

t t 2
Bs dzs|BJ <6 E[ |IBs ds.
0

(i) 3y > 0 such that for all B € B, we have

ds.
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Proof

(@) See Elworthy [t], Chapter 3, Corollary 3.

(it) Easily obtained from Elworthy [(]., Chapter 4,

Estimates 5C. /

Notes
(@) We must have Ito integrals and not Stratonovitch in

Lemma A.1.1.

(i) Throughout, we mean by [J=|| the Euclidean norm on E ;
2
In [t], Elworthy takes || ]| to mean the £ norm, i.e. if

f 6 £(ft,K) then he puts |l = / IFI2 dP = /E[|F|2]-

Proposition A.1.1
Suppose nt(X) is a stochastic process for each X in
the bounded open set U c Em, and suppose

EL sup B <=9 W]1and sup ELIINFIl )
t£(0,T] te[0,T]

are each bounded uniformly over x € U.
c
For each x 6 U, consider the stochastic equation in R

Ct® = nt® + Y Cs<x)) dzg/

where Y:R° —’bL(I{]+l ,PO) is Globally Lipschitz, i.e. there
exists L > 0 such that JIY() - YO < LlIx-y]l|l for all
X,y £ 3RA.
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Then the solution £ (X) satisfies E[ sup llc. &3l 1*
t t£]0

2
sup  EL Jlc-GO | 1 each bounded uniformly over x € U.
t€[0,T]

Proof

This is an adaptation of the usual existence proof for
the solution of a stochastic integral equation. See Elworthy
[6 1, Chapter 5, Theorem 1C; Gikhman and Skorohod (7 ], 86,
Theorem 1.

For each x € U, define

e = m., & =n™x) + Y ¢9)zg,-..,

if ® =nt® + Y(;:g?(x))dzs.

Put sup EL 0 & :°C0 2] = k&),
t€[0,T]

[ sup Hc2) - 1i°O)Il 1 = MX)-
t€[0,T]

Then by Lemma A. 1.1, K(X) < 3 EL IlYot )11 ]dt,
MOCY <y  ELIYnfe®) I Jdt.

Also, since Y is globally Lipschitz, we have L1 such that
YOO N2 < 1R2(IxIl 2 + D for all x £E5,, and denoting
max {L,L'} again by L, we have E [ IY (t®)F?7 <
L2EMMInt® 12 + 1], Therefore K(x) and M (x)are both bounded

uniformly over x £ U.
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Now, E [ n+1 n ,,%

* E[ll [Y(Cy) - Y(C""1) dzs|2]

<3 E[ NY(c”) " Y(Cg~1)n2] ds
(Lemma A.1.1)
< 8L E[ IUJ] - c""1]|]2]1ds,

and iterating, we obtain

F[IKEA" 121< @2 2" ep iw

0 (n-1)
< ky--Tn KX

This holds for each n > O.

Also for n > 1, E[ sup |[k?+1 ~ C?]] 1
tC[0,T]

<Y E[ WIY(cT) " Y(Cr-1)M2! dt

YL2 (3L2)n~1 Tn~1 K(x)
(n-1)!

- c°1)2] ds
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From the convergence of ZJJ:{—I—Q we deduce that of

4 M -
ny * nzﬁ (cg* C) to the solution g,() of the equation,

1/2
in the norm sup E and we see that it is bounded
t£[0,T]
igLNp. n
uniformly over x € U. From the convergence of Z--*" -— we
see that E  sup 1~ () is bounded uniformly over x £ U. /

Lemma A.1.2

Consider the Hs+l I1to SDS 1(X,z) supported on a bounded
open domain U c ®m, where s > m/2 + k, and take p < k. Then

the derivative DPEt(X) €LGRn,... ,Rn; Em) of the flow exists

for each x £ U, and satisfies the equation

rc
> = 1dQGO DA(Xor )X dz

Thus, for any v»,...,v £E , we have
DPEE(X)(VL, ..., v ) =DpM(X)(vL, ..., v )

t P
72} - 1 11
i=l Partitions UM ...,Urof Da(@s&)DPD £ ™...»v. o),

{v*,...,v }, such that . _ .
D™Mseol v o s,

Sam,Uk * «1'— Vv[nJ)
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Proof

% C
Consider the lift I()g,z) of 1(X,z) 1in defined as in
Carverhill and Elworthy [W]. (Except that our systems are
Ito, not Stratonovitch) . The flow f in pA is a solution to

the equation

X(Ct) dz£

Now, consider the differentiation map

DP1pR w SPRE A&, - A

defined by IPf : x #DPF,(X). This is continuous and linear,

therefore transforming £ via Dp, using the Ito formula, we have
DPEt =DP Id + | DP(X,Cs) dzs.

Transforming again via the linear map

ev, : Hf_RORm;tG%m,..- ;lg];ﬁ]'))
= ER ,-- R KH)
gives
rc
DPC.(X) =DP Id + DPCXC ) dz
t in
The second part follows by transforming again via
"V1'eso' pH

and applying the Leibnil formula. /7
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Note

Lemma A.1.2 works equally well for Ito and Stratonovi”‘ch

systems.

Proposition A_.1.2

Consider the HS+1 SDS 1(X,z) supported on the bounded
open domain Uc JRn. (s > m/2 + k), and with flow

Then for a = ( a a m), || > 0,]a] < k, we have

e Su d E
L[Je [OF,)t] e an Eﬁg"oﬂ |I’l§)l(‘,;1 €t N2

both bounded uniformly over x € U.

Proof

Induction on |a]
If Ja] = 0 the result is clear since a.s. £t (X) never leaves U.
Choose p < k and assume the result for all a with |a] < p.
Now Fix a with Ja] = p-
%
Substituting (€.j,---(€j, €2,...,e2, .... 8?112:’&#3 for

N, ...,v ) iIn the equation of Lemma A.1.2 gives an equation
for £.(X) €K . Having made this substitution, take any

term in the sum on the RHS, except that for i = 1. We can express

this as
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11 v
DIX("g (X)) 3 3 v. Ss
3x ax
where each Vk is a subset of containing | | elements.

For this term,

i [Ux| 1°i
t T
e’ IMXGC®) _ LL 75® s Vi e ds
i I°i
e [ m'x (s ) - E vi s.ixurj
3x
U
T a1 ! 2 4s.
see*l1- VT CsII

Now, the First factor in the RHS of this inequality is bounded
uniformly over x € U, because X 1is Ck+1. The others are
bounded uniformly by the inductive assumption. Thus, the
LHS 1is bounded uniformly. So applying Lemma A.1.1 to each term

in the RHS of the equation for 3la" £f(X) except that for i1 = 1,

we have that 3x
U1 Wil
su D1X(CS (X
Lteto 1] SN W9 s avi 5®
dz
and
uil
sup E DIX(F ) dz

t€[0,T] Vi
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over x € U. Thus

rc /aloi
DX(¢ &) ____
Jo S " 3xa
where nt (*) satisfies the conditions of Proposition A_1.1.
Taking this last equation with that for f, (k) itself
gives

1 r N
a (x), (X)j = "x,nt (x)]

o sy, pxrunal2lal uyyy dzs.

Since X is Ck+1

and DX is linear, we see that this equation
satisfies the conditions for Proposition A.1.1, and the

result follows from that. /7

Note

- - +2
The conclusion of Proposition A.1.2 follows for an HS

Stratonovitch system, because such a system can be converted

to an HSL 16 system.

A.2. Regularity Estimates for Chapter 2
In this section we deduce from Section A.1l the estimates
which we need in the proofs of Chapter 2. Recall the definitions

of the C:b and ° norms on the space of (suitably smooth) maps
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U »JRn (U a bounded open domain in JRn):

C Il Pdx

la Ik xEU ax
(dx denotes Lebesgue measure.)

N.B. We have previously been working with the Hilbertian
norm H5, which corresponds to 1 = 2 in Hg here. We need
to consider the H' norm in this section. Also, we need

the following very general version of the Sobolev embedding

theorem (See Palais (it], Section 9):

in Ck (U,1Rn).
We work with Stratonovitch systems in this section.
The first proposition gives the basic estimate for
part (@ of the proof of Theorem 2.2.1. This estimate

corresponds to Ruelle”s condition 5.1.

Proposition A.2.1
Suppose the Stratonovitch SDS (X,z), supported on U c JRn
is of class +" (s> 3Ww/2 + k, k> 1.) Denote the flow by

£t(W) and take T > O.
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Then

sup [ICt (“)Il k dp~> < -
1
wen tefo.,t]

Proof.

The flow 5fc(W) is H®+2 and hence Cr, where r = s - m/2 +
by the Sobolev embedding theorem with p = 2. By Proposition

A.1.2, we have for |a] < r that

3 1T
sup I —y Gx L dPWw)
te(0,T] 3x
wen

is bounded uniformly over x € U.

Therefore

sup lIct@ dP (w)

wen t€ [0,T] C H1
sup | i ct(Wx Ik dP (w)

\ Llaj<r ! 1
«g t6]0°'T| Xeu
< £ dP(w)dx < ®
lal<r X£U wen

By the Sobolev embedding theorem for p = 1, we have
HAN(UMR) continuously embedded in Cr m  (U,1IRn) and therefore

in Ck U,JRn), and the result follows. /7
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Then
sup lie W . dP(w) < =
lw€n tefo ,t] t cK
Proof»

The flow 5fc(W) is H®+2 and hence Cr, where r = s - m/2 +
by the Sobolev embedding theorem with p = 2. By Proposition

A. 1.2, we have for |a] < r that

3l
sup I — vy C @l dP(w)
t£[0,T] 3x

is bounded uniformly over x € U.

Therefore
Zug It Il dp(
wen t€L0.T] H,
f sup 1 fo £ (Wx|ldx] dPw)
lwen tel0'TI lal<r xeu  3x

U L L tPHin['$ V-»eH FOW&="

By the Sobolev embedding theorem for p - 1, we have
HA(UR ,@ continuously embedded in Cr m  (U,JR ) and therefore

in Ck U,JRn) T and the result follows. //
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The next proposition gives an estimate for the inverse
of the derivative. This is needed in part (2 of the proof
of Theorem 2.2.1, to ensure that the Lyapunov spectrum

does not contain - .

Proposition A.2.2.

Consider the situation of Proposition A.2.1. Denote

by Inv the inversion map in GLCRn). Then
Inv [DGT (W) x] I dP(w) dp (X) < «

XEU
Proof.

Denote by {£(W) : 0 < t < T} the flow of the backward
system (X,zV) on [0,T]. (See Carverhill and Elworthy [\ J»
Section 5.4). By [ ] Lemma 5.4, £~(uy) and T (@) are inverses
a.s., therefore a.s. we have for all x £ M that
InV[DET W)X] = D[edJ(uM U T WXx) -

Now, the flow is and therefore Cr(r = s - /2 + D
and by the analogue of Proposition A.1.2 for (X,zv), we have
for eacha with |Ja] < r, that

LA giiw)x] |2 dPui)
wEfi 3x

is uniformly bounded over x £ U.
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Therefore dP(w) <»

IUj(u) HZK dP(U) < «
wen

and hence

f ]
; sup 1|DCj(«o)y] | i) <
J y£U

(N.B. k > 1).

The result follows by substituting y = £T (W)x in this

last expression so that

DA(wW)yY = Inv[DAT (ia)X] /4

The final proposition allows us to go from discrete tim®
to continuous time in Theorem 2.1. (Part (3 of the proof. )
The result is similar to that of Proposition A.2.2, except
that we need the sup over [0,T) of the integrand. For the
proof we express Inv[DE~N(w)X] as a stochastic integral ad

use Lemma A.1.1.

Proposition A.2.3

Consider the situation of Proposition A.2_1.

Then
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sup _ log IIDE- W] E @ dp (AP @)<»
Jxeu >wen t€[0,T] GL ORn)

Here by £tT(@) we mean CT W) o @ 1.

Proof

Note first that this integrand is a.s. not negative.

Now,

DKET@MW J FtWx) = [PET@EoX] o Inv[DCt (W)xX] ,
so that

sup log IDE _ @)X E @Wx) 1l
€ [0.7] 11

< sup log+ UIDE_ @Dl + sup log+ JInvDE. WX] || -
t€[0,T] t€[0,T]

The Ffirst term on this RHS is p O P-integrable by Proposition
A.1.2, therefore it suffices to show that the other term is
also. (This term is similar to that of Proposition A.2.2,

except that we have sup in it.)

t€[0,D

Now,
thjwjx = f DX(£S W) (DES Wx) odz gul .

(See t 1, Remark 4.2).
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Transforming this via Inv, we have

re
Inv[DE. @D)X] = D Inv@r @) - DXEC wx) (O Wx) o dzc

Inv DF, @)X] -DX(F ()x). (Id) o dzc

(N.B. D Inv(S)T = - s"1 0 T 0 s“1))

Write this equation in Ito form:

Inv[DC;f wx] = - J@ Inv[D(;S(io)x].DX(rS @)x) o dzc

t
S(w,s) ds.
<0

Here, SU,s) is the Stratonovitch correction term: it is a
combination of the terms Inv[DEc W)X] , DX (E W)X , DZX(’\S @»)
Now,
sup Il First term on RHS JdP (W) -.dp X
Xeu wen te[o,T]
T

< sup IDX Il -y f
X€U JIx€U ms=C

(Lemma A.1.1(i1))

and this last expression is finite because X is C and by
Proposition A.2.2. (Actually, we need this result uniformly
over t € [0,T].)

To deal with the term

this we need the fact that X is C*. //
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APPENDIX B ; INVARIANCE OF THE LYAPUNOV SPECTRUM

We saw from the proof of Theorem 2.1 that the Lyapunov
spectrum is invariant under the map 4s:M * fi -aM * fi. Also
we conjectured that for nondegenerate systems the Lyapunov
spectrum is constant for a.e. (ui) £ M * fi. In this Appendix
we investigate the invariance of the spectrum. We give two
approaches: the first is to study the map and to look at
ergodicity properties with respect to the measure pQP on
M x fi; the second is to study the limits given by the formula

of Theorem 4.2 for the Lyapunov numbers.

B.1 Ergodicity of the Map $

Proposition B.1¥

Consider the nondegenerate SDS (X,z) of Chapter 2, and

take a version W) of its flow. Choose any s > O.
@ Then for a.e. (x,w) 6 M xfi we can define the maps
SoM x fi BN x fi; S OCGW) = E  Gx. 65 @),
Os :C(R>0,W) COR>0,M); Os(F)(® = F(s+D),
S:M x fin CdR>0,M); Sx,u>) = {Path t &£ Wx},

and the following diagram commutes:
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COR>0 ,M) ---> COR>0,M)

(BF Gg as in Chapter 1.)

(if) Take any Q -measurable set A in CGP>0 M) . (QP—Markov

measure. See Section 1.2). Thenp OP[S O] QP (OB

Proof

(@) Immediate from Proposition 1.2.1.

(i1) It suffices to prove this when A is a cylinder set.

Thus suppose,

A = {f € COR>OMM) : Fitr €

1l

[EEY
°
[Se]

Then
S~1(A) = {Lu)iEt (WX € Bi; 1 =1,...,p)

and we must show that this has p© P-measure equal to the
expression of Section 1.2 for Qp(A).

By Fubini®s theorem,
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p 0P O] C () dp(x), where
XEM

C =PoCt Wx £B1 ; i =1,...,p}.
i

In terms of transition densities,

C® .. ) . .
3.6, LX) L1£R Pt/ 1 Pt2-t1(x1 dx2)
_tp—l
To see that C)dp(x) is equal to the expression of

XEM
Section 1.2, note that since p is Invariant,
.. ) dp(G) = dp(x™). /#/
mxEM ?t
Since 0Og is ergodic with respect to the measure Q(, we
see from Proposition B.1 that if S is a.s. injective, then
$ is ergodic with respect to p O P, and the Lyapunov spectrum
is constant. A reasonable conjecture is that S is a.s.
injective if and only if the noise dimension n is equal to
the dimension m of M. However, if this is so then the map
Y:M x IPh & TH is a diffeomorphism and M is parallelisable.

Thus for example on the 2-sphere we cannot have such an SDS.
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B. 2. Study of the Lyapunov Spectrum via the Formula of

Theorem 4.2

The formula of Theorem 4.2 gives the Lyapunov number

Xjv J as an ergodic average

Al - = Lim W/t Ireg(n (io)v)ds,
VW Jo S
where nt (W)v is the solution to the SDS (X,z) on SM, starting
from v, and g:SM >R is a continuous function. Thus, a study
of the ergodic properties of the Markov process given by &2
might tell us about the Lyapunov spectrum.

Yosida ([14] Chapter 13) gives a Krylov-Bogol ioubov
decomposition for Markov processes, which enables us to take

*

disjoint subsets { : p an ergodic measure for (X,z) on SM}

of SM, such that U U has full measure with respect to any
W

invariant measure for 3"(,2), and for each p, p(U) = 1. Also,
wc see from Yosida that for any ergodic measure p on SM, we
have for p O P a.e. ,u») £ SM k D that the ergodic average
above is equal to ] g(w) dp U -

Thus, the formula of Theorem 4.2, and the work of Yosida,
enable us to deduce the existence of the Lyapunov numbers
A’\v 5 and their a.s. independence of u £ R for p-a.e. v € 9\,
where p is any measure on SM which is invariant for (X,z2).

The Lyapunov numbers are also a.s. invariant over the

sets
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{U an ergodic measure for (X,2)}.

To study their space invariance we might study these sets.
With (Oéo(,z) we can associate a control system (See Strook
and Varadhan [0 J) and it is reasonable to look for a
relationship between the control sets of this system and
the sets U(. We conjecture that the control sets are the
closures of these sets.

Note also that for any measure p on SM which is invariant
for (X,z), we have w(@) = p, where w:SM @M is the bundle
projection and p is the invariant measure for (X,2).
Therefore the assertions concerning (X,z)-invariant measures
tell us something about the spectrum for p-a.e. X 6 M.

The Lyapunov spectrum at (x,m) € M «jl is the set
{X, . v £ S M}, therefore to study it we need results
about all v € S for almost all x € M. It might be possible
to get such results from the above by looking at the control

sets and bearing in mind the logarithmic rule: IF

AQUW) > A@ @) then for a * °* WG h3Ve AawBv,u)) = X (U,u)*
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