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ABSTRACT

A theory of superfluidity (S.F.) is developed from first principles 
using two novel concepts, (1) that of a 'superfluid Ensemble' (S.E.Vi.e. 
a 'Restricted Ensemble' constructed from a 'Separable Phase Space' (S.P.S.) 
admitting independent configurations, at least one set of which are 
statistically equivalent. (2) The notion of 'Dynamical Equivalence'
(D.E.), satisfied if and only if (i) all dynamical symmetries are rearranged 
(not broken) for two Lagrangian formulations of the same problem and if (ii) 
the expectation values of all the constants of motion are the same, even if 
their functional expressions are not. The dynamical variables (d.v.) of the 
S.P.S. are defined from the ('q' and 'c' number) fields of the most general 
'Linear Coherent State Representation', more general than those of Glauber 
and Bogoljubov-Valatin combined. Three independent pairs of d.v. are 
obtained.

D.E. is proven for the Ideal Bose Gas and for a non-linear, interacting 
zero order Bose problem (I.Z.O.P.). An exact relation is obtained from the 
action principle, ensuring the cancellation of 'low and high order dangerous 
diagrams'. From this it follows that D.E. for the exact interacting problem 
must be demonstrable at infinite order of perturbation, in the finite volume 
limit. The I.Z.O.P. is posed in the Random Phase Approximation (R.P.A.), 
free from 'anomalous averages' and solved for the three branches of the 
excitation spectrum in a pure state description; the lowest branch is gapless, 
whilst the upper two coincide and show a gap. The standard strategy of 
linearization is found to be faulty.

The partition functions for both superfluid and non-superfluid ensembles 
are obtained for the I.Z.O.P. in the R.P.A. The coincident upper two branches 
(in a pure state description) split into a band in thermal equilibrium for 
the superfluid ensemble,in agreement with an upper band recently observed 
experimentally. O.D.L.R.O. is found in the second reduced density matrix, 
but ruled out in the first. Integral equations are obtained in thermal 
equilibrium - for the I.Z.O.P. in the R.P.A.; which differ, however, from 
those of existing approaches for the same problem. Most existing theories 
of S.F. are in fact shown not to predict superfluid behaviour. The present 
theory is applicable to arbitrary Bose or Fermi systems, whether superfluid 
or not. O.D.L.R.O. is found to be sufficient for SF. No a priori assumption 
is made as to the occurrence of Bose-Einstein condensation, its existence 
being here contingent on the solution of the integral equation; in any case, 
it is not to be associated with O.D.L.R.O. or S.F.
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'The world was so recent that things lacked namesfand to 

mention them they had to be pointed with the finger' ...

Gabriel Garcia-Marquez, from "Hundred years of solitude" 

(free translation)
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§1.1. INTRODUCTION

The theoretical understanding of the phenomena exhibited by ^He below 

the lambda transition temperature can be separated into three broad levels, 

each of which corresponds to particular periods in a chronological sequence 

of developments.

The first level, corresponding to the early days of investigations on 

'Quantum Fluids', was characterized by phenomenological studies - at a 

macroscopic scale - of the hydrodynamic properties of superfluid Ĥe. 

Representative works at this level are those of London (52), Feynman (26), 

Landau (47a) and Penrose (57). These works may be briefly summarized by the 

statement that a superfluid system is one whose dynamic and thermodynamic 

properties in equilibrium must be described in terms of 'macroscopic wave 

functions'. Among the consequences of this fact are the existence of 

additional thermodynamic variables, such as the superfluid density and 

velocity, also that of quantized vortices. One of the main objectives at 

this level was to develop a Two-fluid Model capable of giving a complete 

hydrodynamic description of ^He II in terms of variables potentially connected 

with microscopic quantities.

The second level is a semi-phenomenological one. It relates macro­

scopic, thermodynamic properties - such as the temperature dependence 

of the specific heat, the entropy, the thermal conductivity, etc. - observed 

experimentally, to microscopic properties susceptible to independent measure­

ment (and also derivable from microscopic first principles), such as the 

excitation spectrum for instance. The most outstanding representative works 

at this level are those by Landau (47b). This author initially conjectured 

a two-branch excitation spectrum; the low laying branch was envisaged as 

gapless and linear at small wave vector, k; the upper branch-on the other 

hand - was thought to show a gap at k=0, being essentially flat at small 

k and continuing quadratically at higher wave vector values. This initial
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conjecture was modified in a later work by the same author proposing a 

single-branch spectrum instead. This was assumed gapless and linear in 

the long-wave limit, but showed a relative minima at some finite wave 

vector value. Two different types of 'quasi-particles' were postulated 

by this author, namely 'phonons' and 'rotons'; associated respectively, 

with excitations in the linear region and in the relative minima region. 

Remarkably accurate predictions were obtained for the magnitudes of 

various thermodynamic quantities; the qualitative dependence of the 

excitation spectrum on k was confirmed years later by direct neutron 

scattering experiments (54).

The third level on which the properties of ^He are discussed is a 

fully microscopic one. The objectives at this level are to derive and 

confirm the ad hoc premises of phenomenological and semi-phenomenological 

theories from microscopic and statistical first principles, and ideally 

to construct a unified microscopic theory capable of explaining super­

fluid behaviour - not only in the Bose superfluid, namely 4He II, - but 

in arbitrary superfluids. The work reported in this thesis belongs to 

this microscopic level.

The era of strictly first principle microscopic theories was initiated 

in 1947 by the pioneering work of Bogoljubov (6), followed shortly after 

by the works by Beliaev (5), Valatin and Butler (68), Hugenholtz and Pines 

(40), Zubarev (73), Girardeau and Amowitt (29), Hohenberg and Martin (38) 

and by many otherl ^.The theory of superfluidity was thereby turned into a 

broad body of theory which successfully predicted a large variety of 

phenomena in all three fronts - dynamical, hydrodynamical and thermodynamical; 

furthermore, it validated to a large extent the propositions and conjectures 

of the phenomenological level.

During the sixties there seemed to be an almost universal concensus 

as to the fact that the fundamentals of the problem of the Bose superfluid (*)

(*) see Refs. 10-12,18,20,22,23,32,35,38-40,45,51,55,56,58-60,62,65, and ref. 
therein.



were already understood, despite the existence of the conceptual, methodo­

logical and practical difficulties encountered. It was thought that it 

was only a matter of time until the remaining loose ends could be tied 

up. But the difficulties remained and gradually became worse.

A brief comment on these difficulties will, for the present, suffice 

to illustrate their extent. Firstly, a central element of the theory of 

superfluidity is the assumption of the existence of macroscopic Bose- 

Einstein condensation CB.E.C.) in the interacting liquid. The relative 

magnitude of B.E.C. has reduced through the years and even its very 

occurrence is now being questioned. But in any event the association of 

the condensate with the superfluid is dubious, for nothing prevents 

particles in the condensate from being scattered individually or collecti­

vely, resulting in disorder and dissipation. On the other hand the 

occurrence of a fractionally small condensate invalidates the Goldstone 

linked cluster expansion theorem (32a,40) and the condensate mode (k=0) 

must be completely eliminated - in an ad hoc way - from the dynamical 

and statistical scene if significative results are to be obtained. But 

even then, if realistic interactions (12) are employed and the excitation 

spectrum is chosen as to fit experimental values, a non-condensed fraction 

larger than one is found! (56).

A second difficulty has become intolerable with the passage of time.

The initial simple work of Bogoljubov predicted a gapless spectrum - in 

agreement with experimental observation - and this was confirmed by 

Beliaev using infinite order perturbation techniques and by Hugenholtz and 

Pines using Green's function methods; on the other hand however, a large 

number of authors using a variety of different approaches (18,20, 29, 

32,45,46,51,55,60,65) consistently obtained a gap in the excitation spectrum 

in a self-consistent Random Phase Approximation (R.P.A.). Hence, the 

theory seems doomed to infinite order perturbative calculation and out of
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the reach of simple techniques. A review of self-consistent, mean 

field theories is given in the following section. A similar difficulty 

does not arise in the theory of superconductivity (4,34) developed very much 

on the same lines - except for the non-occurrence of B.E.C. For,the 

observed excitation spectrum for most superconductors does indeed show 

a gap.

A third difficulty of the theory of superfluidity, shared by the 

theory of superconductivity, is that the gauge symmetry present in the 

normal phase description is broken in the superfluid phase; that,is the 

total number of atoms is not a good quantum number below the transition 

temperature. This is not only a conceptual nonsense (in the absence of 

massless bosons carrying away the gauge symmetry) (33b,42) but is also 

against experimental observation.

A fourth conceptual difficulty is the fact that the very origin of 

superfluid behaviour is not clear. The usual argument from which super­

fluid behaviour is predicted is that the entropy is independent of some 

parameter which contributes fractionally to the total average ensemble 

density. However, it happens that the ensemble is constructed such that 

the only configurations are those associated with normal elementary 

excitations, and not with (would-be) superfluid variables; hence the 

notion of entropy does not apply to the latter,which accordingly cannot 

be used as an order parameter. Consequently most existing theories of 

superfluidity (4,6,15,18,20,22,23,29,32,40,43,46,51,55,60,62,65,59,68,73) 

do not predict superfluid behaviour, but impose it a priori.

This thesis is concerned with a non-conventional theory of super­

fluidity free from all the above mentioned difficulties and some others 

that will become clear in due course. The main element of our strategy 

here is that superfluid behaviour should arise - from a theoretical view 

point - solely from statistical considerations, applicable to arbitrary



superfluids, and not from dynamical considerations. It is argued that 

in order to be able to characterize a superfluid both the statistical 

and dynamical problems should be reformulated on the basis of a separ­

able phase space (Ch. 2), such that a restricted ensemble description is 

always possible. This will entail a profound change of viewpoint in the 

formulation of dynamics. In particular, it will be seen that the appro­

priate hamiltonian and number operators are not the usual particle 

functionals, but different operators. It follows from this alone that the 

gauge symmetry is rearranged, not broken. This also results in an 

excitation spectrum which possesses several (three) branches; one branch 

is manifestly gapless, whilst the two upper branches are identical in a 

pure state description and correspond to that repeatedly obtained before, 

showing a gap. Averaged over the superfluid ensemblethowever, these two 

branches split into a band observed in a recent experiment (19, 43).

§1.2. THEORETICAL SURVEY OF EXISTING LITERATURE

(*)This section contains a detailed account of a number of fundamental 

works on the theory of the Bose superfluid, selected on the basis of 

conceptual content, proximity to microscopic first principles and opera­

tive simplicity.

The objectives aimed at in this incomplete review section are:

(i) To provide the non-specialized reader with a fairly complete 

survey of the basic conceptual elements and methods necessary 

for the appreciation of the novel features of the non- 

conventional theory of superfluidity proposed in this thesis.

(*)To give a complete account of the present state of theory is a major 
task, well outside the scope of this modest work. Several compendia 
already embody a number of such theories and the reader is referred 
to them for further information, (see list of compendia references.)



(ii) To emphasize the sequence of development of existing ideas,

(iii) To point out and analyse the unresolved difficulties
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encountered by existing microscopic theories, .avoiding 

technical complexity, however, in so far as it does not 

obscure conceptual understanding.

The theoretical knowledge on superfluid ^He has grown so much in the last 

forty years - both from fundamental developments and as to their implica­

tions - in so many different directions, that a list of references would 

fill an entire volume. Significantly new fundamental innovations have 

seldom appeared in the literature in recent years;on the other hand, 

however, works on further implications of existing theories are still overwhelming 

in number. As to the conceptual aspect of the theoretical understanding, 

the present state of affairs on superfluidity has been compared to the calm 

of a cemetery. On the other hand.Ph.D. theses have been described as the 

transposition of bones from one cemetery to another. A personal aim in 

this work is to try to prove these analogies wrong; to show - in particular - 

that conceptual growth on superfluidity is alive and well.

This review is confined to self-consistent, mean field theories, as 

these already involve all conceptual features involved in more elaborate 

theories,and also because a measure of the failure of these theories is 

more markedly revealed by them. The ommission of more elaborate approaches,

making use of perturbation techniques (5) and/or Green's function methods --- ■

(40,73) or 'S' matrix techniques (4) is regretted, but well documented 

reviews on these already exist ( *). To include these approaches here 

would greatly increase the mathematical complexity and far from clarifying 

the basic concepts would obscure them; besides.they would take considerable 

space.

(*) (see compendia references)



The unification of notation of the works reviewed here poses a 

linguistic problem; it is a compromise which would be resented by both 

the authors and the reader. For this reason the original notation is 

kept with minor modifications, e.g. the Fourier transforms of the inter­

action potential is assumed to exist and is denoted by V(k) instead of V^. 

It should be noted that creation and annihilation operators in the work 

by Valatin and Butler are denoted oppositely to the conventional notation; 

i.e. for V-B 5̂ , are creation and annhilation operators, respectively. 

The name "coherent state representation" is used for both Glauber (first 

order) and Bogoljubov-Valatin (pair) second order representations, whilst 

the names first and second order coherent fields refer to the c-number 

fields involved in these two representations, respectively; however, no 

a priori association of either of these fields with superfluid variables 

is implied. Furthermore no association is (or should be) made between 

Bose-Einstein condensation (either simple or generalized) and the first 

order coherent field.
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A. Bogoljubov's (B) Theory of Superfluidity (1947)

The treatment of the many boson system by B (6) at very low tempera­

tures is the earliest and - perhaps - the most influential microscopic

namely the occurrence of macroscopic Bose-Einstein condensation (B.E.C.) 

and the pairing of particles of zero overall momentum, are incorporated 

- in some form0r another - in almost all subsequent approaches, either 

ab initio or obtained as a consequence. Basic to B is the assumption that 

B.E.C. occurs in the interacting system, a proposition originally due to 

London (52). This assumption justifies what has been called the 

"Bogoljubov prescription" - namely be replacement of quantum creation and 

annhilation operators for the condensed mode, a*, aQ , by real c-numbers 

of the order of N^, where N is the total number of atoms; symbolically,

The above prescription is introduced into the exact equations of motion 

obtained from the second quantized hamiltonian

potential, V(|r|). It is argued that the number of particles not in the 

condensed mode (the depletion) is rather small at sufficiently low tempera- 

turesand iow density,for essentially repulsive interactions, i.e. V(o) > 0;

(*) The notation as to ft differs from the original work and is consistent

work on superfluidity in ^He. The two basic elements of his theory,

i (1.2.1.)A ,

where
lim (No/N) i 0 (1.2.2.)A .

(*)
(1.2.3.)A ,

with that used in the present work; the volume dependence is not dis­

played.
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in this case interactions among depletion particles is neglegible compared 

with their kinetic energy. Within this approximation - known as Bogoljubov's 

weakly excited state approximation-the resulting eqs. of motion for 

condensed and depletion modes are:

ifi3 a = E a 
t o  0 0 (1.2.40A

and

* ® t \  = [ V Eo+NoV(k)]ak +

+ Cao)2V (k)a-k i for k  ̂0 (1.2.5.)A,

respectively, where Eq = NoV(o).

The time dependence of both condensate and depletion variables is 

rescaled by this author; in such a way that the condensed mode is time- 

independent; i.e. new fields b^ are defined as follows:

\  = expi-iE^/Kib^ , for k i 0

a0 = expC-iEQt/h)b

(1.2.60A

(1.2.7.)A

The equations at motion for the new re-scaled depletion operators 

then become

ifi 3tbk = [ V NoV(k) ] bk + b2v(k) b-k (1.2.8. J A

_ifiatb-k = ^ ^ ( W h k  + tek + N0V(k)]b-k C1.2.9.JA .

Mutually conjugate operators £k and and then defined by

5k = Cbk ‘  " lLk l2 ) i (1.2.10.)AC*5

5k = (bk '  Lk b-k)/(1 '  |Lk lZ)1 (1.2.11 OA,

where the complex c-numbers and are chosen as

(*) The notation here is that of the original paper; a more modern notation 

for elementary excitations and c-number fields will be adopted later on.
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IjL]ç = — ---- [Wk-Ek"N0V(k) ] (and similarly for L£) (1.2.120A »

where

\  • < ¥ %  * 2N0V(k)])‘ (1.2.13)A •

Inverting (1.2.10,11)A, i.e.

bk ■ «k * v V « 1 • iLki2)! 

bk ■ <'i * ‘i'-k’« 1 - Ik'2’1

C1.2.140A

(1.2.150A ,

and inserting these relations into (1.2.8,9)A, the eqs. of motion for the 

new "elementary excitation" operators are obtained, namely

This Bogoljubov claims - together with the fact that £'s satisfy the same 

Bose commutation relations, implies that the excited states of an ensemble 

of atoms can be treated as a perfect gas of elementary excitations, with 

an excitation spectrum given by (1.2.13.)Aand whose number distribution 

operator is given by:

Expression (1.2.13.)Ais the celebrated Bogoljubov excitation spectrum. It 

is manifestly gapless and linear in the long-wave limit, in agreement with

Bogoljubov goes on to point out (i) that the overall momentum of the 

ensemble of atoms is the same as the overall momentum of elementary 

excitations, even though (ii) the overall number of excitations is not 

invariant (but a function of temperature, B = 1/KgT, where Kg is Boltzmann's 

constant and T is the absolute temperature); accordingly, the average number 

of elementary excitations is given by

**t£k • "k5k ; -*>Vk * " (1 .2 .160A.

\  = çkçk (1.2.17.)A .

experimental evidence (54)

nk = (A expB(Wk-k .u ) - i} -1 (1.2.18)A ,
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where A=1 is a normalization constant, (iii) The positiveness of n^ entails 

that the modulus of the average velocity u has maximal critical value, 

i.e.

Iu| s min(Wk/|k|) (1.2.19.)

The latter argument holds for a frame of reference at rest with the 

centre of mass of the whole system (condensate plus depletion). Selecting 

now another frame at rest with the elementary excitations - making up the 

depletion in this approximation - one finds that the condensate moves with 

velocity u. Bogoljubov then adds:

'This relative motion goes on stationarily in the state of 

statistical equilibrium without any external forces. Hence 

we see that it is not accompanied by friction and thus 

represents the property of superfluidity.'

The final part of Bogoljubov's classic paper is concerned with the evaluation 

of the condensate fraction and with the establishment of conditions, 

necessary to ensure the validity of his method. These important matters are, 

however, not relevant for the present work. It suffices to emphasise that 

the latter conditions require a lower density than that of real 4He in 

typical experimental conditions, and also strong repulsive interactions.

It is finally concluded by the author that while repulsive interactions 

enhance the condensed fraction; the existence of an attractive part in the 

potential, on the other hand, inhibits condensation.

Bogoljubov's simple microscopic theory has been coimiented on and 

analysed by very many authors, but a number of questions have not found 

a satisfactory answer. It is appropriate to comment upon some of these 

here.

The first criticism which can be raised concerns the actual population

of the condensed mode. A theoretical estimate of the condensed fraction by 
(57)Penrose and Onsager gives about 10$ and several analysis of inelastic



neutron scattering measurements yield a rather smaller fraction of 

about 3*(44>. It has even been argued*'44  ̂ that the data are consistent 

with the complete absence of Bose-Einstein condensation. Also on the 

theoretical side Evans^4  ̂has given an argument ruling out the existence 

of BEC within the hierachy of self-consistent equations for the one-body 

propagator of the interacting system. More recently, however, Hyland, 

Rowlands and Cummings^have proposed a different method of measuring 

the condensate fraction; a number of experiments have been performed on 

such a basis yielding - again - a condensate fraction of a few percent (*).

The present situation as to the existence of an overwhelming conden­

sate fraction is clear, ruling it out, and with it Bogoljubov's weakly 

excited state approximation. As to the occurrence of B.E.C. at all, however, 

there is no conclusive, uncontroversial, evidence. This state of things 

has moved workers in the field to develop self-consistent theories free 

from Bogoljobov's approximation, but yet displaying either simple or 

smeared condensation of some form. Some of these approaches will be 

examined latter on in this section, but before that let us comment upon 

two other features of Bogoljubov's theory. One is Bogoljubov's derivation 

of the excitation spectrum and the other is the resort to Landau's criterion 

of superfluidity ̂ 4^  .

It has been noted repeatedly (1,18,20,29,32,36,40,43,45,46,50,60,62,66) 

that conservation of total number of atoms is not satisfied in Bogoljobov's 

work, due to both Bogoljobov's prescription (1.2.1.)A and the resort to 

elementary excitation operators associated with a representation of states 

such that the number operator N = is not diagonal. A discussion of

this matter will be given later on in this section; for the present let us 

point out that the chemical potential (in a grand canonical ensemble 

formulation) or the Lagrange multiplier (in a canonical ensemble formulation)

f541

(*) See references 1-5 of Ref. 21b.



13

are not present in Bogoljubov's work. On the other hand the rescaling of 

the time dependence of operators - given by relations (1.2.6,7)A - has the 

effect of removing the contribution EQ from the square bracket of (1.2.5.)A 

yielding the square bracket of (1.2.8)A. Such a rescaling is the main 

reason why Bogoljobov's spectrum is gapless. In fact had it not been 

introduced, and the operator H'=H-yN used in the place of H, the result 

obtained for would be

Wk = {(ek-b+E0)[ek-|J+E0+2N0V(k)]}i (1.2.20)A,

U should be evaluated from the normalization condition fixing the average
A a ✓**

value of N (in the G.C.E.)» or from the auxiliary condition u = 3H'/3N (in 

the C.E.), before anything can be said about the existence or not of a gap. 

It is noted,on the other hand>that gapless solution is obtained if q takes 

the value

U = E0 = Nqv (o) (1.2.21)A,

which is the value obtained byHugenholtz and Pines for the chemical 

potential corresponding to Bogoljubov's approximation. The above result 

makes us feel, with Galaziewicz^*^ and o t h e r s , that even though the 

result obtained by Bogoljubov is essentially correct > the method by which 

it was produced is invalid.

Finally it is interesting to point out that it is not clear from

Bogoljubov's work why and how an ensemble of condensed particles moving

with velocity u are prevented from getting disordered by collisions with

other condensed particles and elementary excitations. And in the last

analysis - if that is the case, why not resort to a criterion stating

this explicitly in the first place, instead of resorting to such an indirect

criterion as Landau's, which is so dependent on the shape of the spectrum

and therefore not directly applicable to other superfluids, such as bi- 
(14)excitons for instance.



14

B. Vaiatiti and Buttler's (V-B) Pairing Theory (1958)

The first self-consistent theory of the Bose superfluid was the

pairing model of V-B^^ , developed in close analogy to the theory of
(4)superconductivity • The method proposed by these authors is also based 

on the introduction of collective variables - as in the case with 

Bogoljubov's work - but without introducing the same approximation, nor 

resorting to Bogoljubov's prescription (1.2.1.)A.

The starting point of this approach is the proposal of a trial 

representation of state amplitudes, whose ground state amplitude is 

formally defined as

|*0> = C exptA] i0> (1.2.1 OB ,

A + l gk V k (1.2.2.)B(*) ,

where |o> is the vacuum of the particle representation, i.e. the state of 

no particles. In the summation each pair is to be counted once. It is 

shown [see Ref. (67)] that Bogoljubov elementary excitation operators are 

the appropriate creation and anhilation operators for [4>0>» i.e. £^ and £ 

defined as

« k = (ak-«ka- V ( 1-gk2)l (1.2.3.)B

ek = (V gka-k)/(1_gk2) (1.2.4.)B ,

where g^ = g_^,and satisfy

an orthogonal set of states is obtained by operating successively with £̂  

on |*0>, i.e.
mk -lr 1 Mk.

k / -  " V 1-- V >  5k •• Ek.Ji V (1.2.50B

(*) It is noted that V-B denote creation & annhilation operators by av & a£ 
respectively, i.e. differently from the current notation, where a? 
is the creation operator. Similarly for £ s
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The only two differences from Bogoljubov's work with respect to the

Ref (6) is a complex number) and (ii) that state amplitudes|$> are 

explicitly introduced. With the help of the inverse of (1.2.3,4)B the 

averages of all particle operators can be evaluated in the ground state 

|$0> (or in any other excited state 14>m>, for that matter). The ground 

state average of the number distribution, for instance, is given by

this is the average number of particles in the vacuum of elementary excitations, 

similarly the average for the pair operator is given by

tion values over pair states (1.2.5.)B; hence the diagonal part Hq-XNo - 

where X is the chemical potential - can be written as

where nk = £k£k is the distribution number of elementary excitations and WQ 

is the ground state energy given by

introduction of the variables £k and £k are (i) that gk is real Q.k in

5 hk = Sk2/(1-Sk2) (1.2.6.)B ;

(1.2.7.)B

= <*JaX l *  o>o' k k 1 o' (1.2.8.)B

= ihkC1+hk))i

(1.2.6,9)B entail (1+2hk)2 - (2Xk)2 = 1 (1.2.10.)B .

(1.2.8.)B ;

It is noted by V-B that both the hamiltonian and particle number operators, H and 

N, can be written as HQ+Ĥ  and NQ+Np where H1 and have vanishing expecta-

(1.2.11 ,)B

- ^ {(Ek-x )hk ^ k V V k } (1.2.12.)B .

(1.2.12.)B is the energy of the particle system in the vacuum of elementary 

excitations, where
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Vk “ V *  +I  [V(o)+V(k*0 Ify Cl-2.13.)BC*5

and - 'I v(k_k^Xv'
k' k

and F are fluctuations about mean field averages. 

For the excitation energy they obtain

(1.2.140B

^k = vk(1+2hk)‘l*'2xk (1.2.15.JB •

As to the evaluation of the c-number field, gk, involved in the definition 

of elementary excitation operators, V-B proceed differently from B, but 

obtain an equivalent result, gk is determined in V-B's work from the condition 

that the ground state energy, WQ, is minimal respect to variations of gk; 

this yields the following quadratic equation:

W- "’A n  ■ 0 0.2.16.)B, 

which is> in fact, an integral equation admitting the solution

gk = (vK'“k)/tJk C1.2.170B;
2 2 1where wk = {Vjc -uk } (1.2.18.)B .

Solution (1.2.17)B gives the following expression for hk and xk

hk = n w - i ] (1 .2 .1 9 .)B

3CNJ
\d

*IIX (1 .2 .2 0 .)B .

The ground state energy and the excitation spectrum, then, become

W0 ■
k

(1.2.21 .)B

and Ek = (1.2.22.)B ,

(*) The volume dependence has been omitted and the Fourier transform of 

the interaction potential Vk is written as V(K).



respectively. The integral equations for the Hartree-Fock energy, v̂ , 

and the 'pairing energy', xk, are obtained from (1.2.13,14.)B and (1.2.19, 

20.)B and are given by
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(1.2.23.)B

(1.2.24.)B,

where = e^-x+NV(o)-iÎV(k-k ') (1.2.25.)B ;

where the summations over k" exclude the contribution k'=0 which has been 

written separately.

Up to this point no assumption whatsoever has been introduced as to 

the occurrence of BEC. The chemical potential X is determined from the 

condition oj0=0,i.e. the assumption of a gapless spectrum,and the condensate 

population from

It is argued that if in the infinite volume limit, a singularity occurs in hk 

at k=0 yielding a finite condensate fraction - not necessarily large compared 

with the non-condensed fraction, there will be a non-trivial solution for 

Mk due to the inhomogeneous contribution in (1.2.24.)B proportional to XQ for 

predominantly repulsive interactions % h0.

The latter conclusion has been critically examined by Kobe^6'* who has 

shown that the treatment of the condensed mode as a special case of the 

pairing states leads to inconsistencies; in addition a trivial solution,u=0j 

is found for purely repulsive interactions. Let us comment, now, upon some 

conceptual features of the V-B approach which are particularly related with 

the main strategy of this thesis.

The V-B approach to superfluidity is perhaps the simplest of all self- 

consistent pairing models, and as such, is the best candidate for investigating
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and commenting upon some deep conceptual propositions - other than those 

related to the involvement of Bose condensation - present in nearly all 

first principle approaches to superfluidity and also to superconductivity. 

These propositions are not always put explicitly, but rather introduced 

in an implicit fashion.

The first observation concerns a premise commonly employed involving 

quantum averages in two non-equivalent representations; particle and pair 

representation, for instance. It is often stated that some operators, such 

as the particle number and the particle hamiltonian operators, N and H 

have the same quantum average in their natural-particle representation

as in the pair representation, i.e.

N = <n|N[n> = <$ |N $ >11 m 1 ' m (I)

E = <n|H n> = <*m |H|# > 11 m' 1 m (II) ,

where |n> is a N-particle state and |im> is a pair state of m elementary 

excitations. (I,II) can be regarded to hold either for the ground state 

of the N-particle state, |nQ>, and the ground state of the pair representa­

tion, |® > - which may or may not be the vacuum state U  > - or for

every N-particle state and every pair state.

Propositions (I,II) are not both consequential statements; that is, 

are not both derived from other premises of a more general (or equivalent) 

logical status, but one is a postulate from which the other follows (or 

should follow, rather).

It might be thought that (1,11) are a consequence of the fact that 

the trace is invariant under cyclic permutation,and the fact that particle 

and pair states are related through a canonical transformation, t* = x  ̂; 

that is

(N=) Tr{N> = T r i N y “1} = Trii'V'^} ;

hence taking the trace over particle states one finds
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<n|N|n> CD

and similarly for H and, in fact, for every operator. 

On the other hand, however,

Tr(N} = Tr{t~1T Nt”1t } 
P P p P

where n = Tp^Tp1 = | is the operator for the number of elementary 

excitation. Taking now the traces over particle states one obtains

<n|N|n> = <*m lnUm> CHI),

that is,the number of particles equals the number of excitations! It can 

be shown very simply that relations (I and II) are incompatible in the non-

The above result is a general feature of two non-equivalent representa­

tions of quantum states. Nothing of the kind happens for equivalent 

representations. For the latter representations both sets of elementary 

operators differ by a multiplicative phase only, while for the former 

representations both sets of elementary operators differ by an additive 

contribution and/or a real factor, as is the case for particle operators 

and elementary excitation operators of the pair representation, see (1.2.3,4)B.

The dilemma can be paraphrased in terms of phase spaces, after normalizing 

the particle phase space r = i3^»3 }̂ and the phase space of elementary 

excitations rg = to be number of particles and the number of excitations

trivial case Tp^- In effect, from (1.2.3,4)B it follows that

« m ^ V "  jjO-gjp‘ \g ^ (1+ g i S m l V X >] ;

whiie <4>m lnUm> = j * j £ k5 £ l V  >

hence (I,II) are consistent only if g^ e 0 or = i.
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respectively. While (III) entails that the volume of rp is the same as

the volume of rg, (I) implies that the volume of rp is different (larger)

than that of r .e
The dilemma is resolved by postulating that (I) holds - as is, in 

fact, done implicitly in most microscopic theories - and also postulating 

that (III) does not hold; for, a re-scaling of the volume of re is intro­

duced to satisfy (I). Consequently, pair states are normalized so as to 

satisfy (I).

As to the relation involving the hamiltonian, it will become clear 

later that (II) needs not to be postulated in addition, but it can be 

obtained as a consequence of (I). As a matter of fact (II) must be derivable 

from (I), for there is only one elementary excitation phase space to normalize. 

Should that not be the case, i.e. <n|H|n> t <<p |Hid> >, one would conclude 

that pair states are good to give average number but not average energy and 

such states should then have to be abandoned. The same argument holds for 

all other constants of motion.

Now, as to any particle operator, other than the constants of motion, 

the averages over particle and pair states need not be the same, there being 

no physical reason why they should; as a matter of fact they are not the 

same. The pair of particle operator a^a , for instance, has zero average 

over particle states, but finite average, x^, over pair states. Should 

these averages be the same, i.e. zero, then - again - one must have g. =0.

Summarizing, proposition (I) is a postulate, (II) is (or should be) a 

consequence of (I).

Another premise implicit in all microscopic theories of superfluidity - 

and of superconductivity for that matter - is that the introduction of 

elementary excitation operators of the pair representation, or any other
e*)

coherent state representation (non-equivalent to the particle representation ) 

is nothing more than a change to "normal mode" variables - a practical tool

(*) Two representations related by canonical transformations are non­
equivalent if their number operators do not comnute.
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for readily achieving diagonalization, but which does not affect the 

(hamiltonian) formulation of dynamics, in the sense that the constants 

of motion are considered to be the same functionals but in terms of 

different variables.

The energy and number flunctionals, for instance, are regarded to 

be H and ft either in terms of a's or ?'s. In the particular case of ^He 

H(a ,a) and N(a ,a) commute. After replacing particle by elementary 

excitation operators, however, and introducing the diagonalization 

condition (either explicitly, as in B's work, or through the minimal 

ground state energy condition, as in the present approach of V-B) the
* + A A

remaining part of H(£ ,£) and N no longer commute; in fact, N is non­

diagonal in the pair representation, but H has been 'successfully' 

diagonalized.

This feature is referred to as 'breakdown of the gauge invariance'.

It is generally believed to be an inherent feature arising from the 

involvement of non-equivalent representations of the particle representa­

tion, such as the pair representation. As a consequence of this,one is 

led to the conclusion that the number of particles, whose quantum average 

could be measured with an error of 'less than one particle' (say, for a 

unique system, not an ensemble of systems) in the normal phase(described 

by particle states) cannot be accurately measured in the superfluid phase 

(described, say, by pair states).

The reason why a breakdown of symmetry is brought about in the 

successful event of the particle hamiltonian being diagonalizable in the 

pair representation, for instance, (or any other non-equivalent representation 

of the particle picture) is that no similar cancellation of the non-diagonal 

part of ft is introduced.

The overall breakdown of the gauge symmetry is quite an unsatisfactory (*)

(*) here we are not considering a massless boson carrying away the lost 

gauge symmetry
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conceptual feature of nearly all microscopic theories of superfluidity 

(with the exception of that by Girardeau and Amowitt to be considered 

shortly). The difficulty is not diminished by the fact that one should, 

in fact, consider an ensemble of identical systems involving a large 

number of replicas; in this condition one is bound to get normal deviations 

- of order N  ̂- about the mean average number. For, even if the deviations 

of quantum origin are of the order of the statistical deviations and 

negligible in the infinite number of particles, the conceptual difficulty 

remains (as 'large' as before). Disqualifying the trouble can never 

resolve it.

This conceptually big (but practically small) trouble will be finally 

and conclusively resolved in this thesis. It will be shown that the spurious 

breakdown of the gauge symmetry is just but the tip of the iceberg, the 

remainder of which will be exposed later on. For now it suffices to point 

out that the paradox arises from the erroneous assumption that the hamiltonian 

and number functionals have the same expressions irrespective of the variables 

employed.

Let us now turn to comment upon an even bigger conceptual difficulty 

shared by most existing microscopic theories of superfluidity (5,6,18,20, 

22,23,29,35,40,51,55,60,62,65,59,68,70,73)=(REF) (and of superconductivity (4, 

34)),which threatens the very foundations of their whole theoretical 

construct. This difficulty,which is very simply expressed within the 

present simple framework of V-B's approach,concerns the supposed origin of 

superfluidity itself.

Nothing in the results quoted so far permits any conclusion to be 

drawn as to whether the system under consideration in fact behaves as a 

superfluid. As a matter of fact no reference to an ensemble of pair states 

describing a collection of elementary excitations in thermal equilibrium has 

been introduced. The statistical considerations in V-B's paper are relegated 

to a final brief section, as these follow fairly closely the same lines as the
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superconducting case,developed in more detail in a previous paper by

superfluidity comes about, which is shared by nearly all subsequent 

approaches to superfluidity from microscopic principles (REF).

The statistical operator associated with an ensemble of states of 

the pair representation in thermal equilibrium at low temperature T is 

regarded by V-B to be given by

?k * * * k t l̂e projection operator of a pair state occupied by elementary
1 j

excitations in modes k1f...,k.; w, ,.. w, are the statistical weights 1 J k, k.
corresponding to a Grand Canonical Ensemble, as yet unspecified. CQ is a 

normalization constant introduced to satisfy Tr{UQ} = 1, and given by

The sub index (o) denotes that at low temperature the elementary excitations
*

are 'nearly' free; hence UQ is an approximation to the exact statistical 

operator for strongly interacting excitations.

The ensemble average of the excitations (called by them "phonons" due 

to the fact that they believed the spectrum E^ to be gapless and linear) is

where f^ is to be determined from the condition that the free energy is 

minimal respect to variations of fj.. The free energy is given by

Valatin^ . These considerations seemingly give a clear idea of how

oo

= n (1-uj-1 
k K

(1.2.27.)B .

(1.2.28.)B,

F = W ™  - TS o o  o (1.2.29.)B
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(T)where WQ is the internal energy obtained as the quantum and statistical

average of H, a function of f^ and of the c-numbcr gj.. The entropy is

taken to be

The expression above for the entropy is the usual expression for an 

ensemble of bosons, for which the only configuration is f^ (48), obtained 

from purely combinational considerations. The entropy is independent of 

the family of c-number functions g^, so these c-numbers do not contribute 

to the disorder; they do, however, contribute to the total number of 

particles, thus:

i.e. not only through an additive contribution, but also through a factor 

in the remaining part. Hence, it seems clear that such a system is a 

superfluid since a fraction of the total average number of particles does 

not contribute to the entropy, i.e. is fully ordered. Thus, by construction, 

the above ensemble describes a superfluid.

Minimizing the free energy (or equivalently, Wq (T)) with respect to gk 

the diagonalization condition is brought about at ensemble level. In addition, 

minimizing F respect to f̂ , the following solution is obtained:

So = £[fk log fk - (1 +fk)log(1+fk)]
k

(1.2.30.)B .

(1.2.31.)B,

(1.2.32.)B;

whence is given - via (1.2.28.)B - by

(1.2.33.)B ,

"ith ^  * "kT)<,*2hk>-' (1.2.34 .)B
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The origin of superfluidity is now clear - well, almost clear. The

trouble with the above mechanism for superfluid behaviour is rather

subtle, but demolishing. The superfluid phase is characterized by the

existence of an order parameter associated with a finite fraction of
2 7the total average number of particles. But g^/C^g^ ) cannot be an order 

parameter. For, if it was it should have to be included into the ensemble 

configurations - if not as an independent additive configuration, then at 

least as a factor of a generic configuration - which is not the case for 

V-B. In fact the expression (1.2.30.)B for the entropy corresponds to an 

ensemble for which the only configurations are configurations of elementary 

excitations.

In consequence relation (1.2.31JB cannot be read as: "A fraction of 

the ensemble of particles is fully ordered" - as was advanced before, but

instead must be read as: "The ensemble average distribution of elementary
. 2 2 2 excitations times some quantity [(g^O/d-g.)] plus some quantity [ĝ /
2

(1-gk)] is normalized to the total number of particles". This only points

out at the fact that the volume of the phase space rg = fCk>,?kh  namely

Vol(re) = Tr{^kck>, is different (smaller) than the volume of r = 
lc ^

namely VolCr^) = Tri^a^} = N, and not to the existence of an ordered part 

in the ensemble of elementary excitations, which is the only one involved 

here. So the physical system described above is not a superfluid.

N.B.: No new information is given in the following paragraphs (C) to (I); 

these are included here only for the sake of completeness, as these 

approaches involve either conceptual elements, methods or arguments which 

are either employed or critized in this thesis. The specialized reader may 

well by-pass them and continue in section 1.3. without loss of continuity. 

The non-specialist reader, however, may find this further review helpful 

to appreciate the novel approach contained in this work.
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C. Girardeau and Arnowitt's (G-A) Pair Theory (1959)

(79)The theory proposed by G-A starts by recognizing the fact that 

states of the pair representation introduced by B and V-B are not eigen­

states of the number operator N. They regard this as a defeat, which - 

on the other hand - can be easily remedied. They find that B's elementary 

excitation operators and can be obtained by canonical transformation 

from particle operators, i.e.

£k " UBaK UB1 (1.2.1 .)C

«k ’ V k (1.2.2.)C

where

Ug - exp[J £ âk-k"ak“k^tan^ k̂̂  k^o
(1.2.3.)C ,

and propose new elementary excitation operators - also related to particle 

operators by a canonical transformation U - whose natural states are exact 

eigenstates of N and which are given by

£KG-A) ■u aiu'' C1.2.4.)C

£k(G-A) ' U V ' (1.2.5.)C ,

and the ground state by

|$ (G-A)> = U|n>

where U is given by

(1.2.6.)C ,

U a expli y *Ck)(s;'a a e a;.* ,] 
kfO

(1.2.7.)C.

i|/(k) is a real and even c-number function of k, to be determined by the 

variational principle - as in the case of V-B, and Bq is an unitary operator

defined by

8* = a N-i, 6-i = N‘1a+ =  ̂O 0 0 * 0  0 0 0 (1.2.8.)C,



27

satisfying the following properties

BQ |n> = |n-2> (n>2)

B*|n> = B~1|n> = |n+2>

[«o-V ■

[B0,ak] = iB0.aJ] = 0 for k / 0

The resort to a representation of states such as (1.2.4-6)C is necessary - 

they argue - since total number and total linear momentum must be conserved 

in the many boson problem and must be good quantum numbers.

G-A consider a pair hamiltonian, Hp, given by the segment of the full 

hamiltonian H [as given by (1.2.3.)A] giving finite average over states 

|$(G-A)>, but like Bogoljubov do not introduce the chemical potential (or 

a Lagrange multiplier, for that matter). They then work out the ground 

state energy

Eo E <$o(G"A)l“pl$o(G"A)> (1 .2.1 0OC

by replacing particle operators in Hp by ?k (G-A) and Ck(G-A) and making use 

of normal ordering properties, and going to the thermodynamic limit n-**>, 

vol-x», n/yol = p(finite).

The relationship between particle and G-A's elementary excitations 

resembles very much relations (1.2.10,11)A and (1.2.3,4.)B; for the 

annhilation operator this relation is

Ck(G-A) = (& k~<i» (k) B0a^k)/(1 -<|>2 (k))J (1.2.11.)C

where <j>(k) = tanhi|>(k) (1.2.12.)C.

The ground state energy is the same function of <f> as V-B's is of gk, 

except for the fact that the chemical potential is now absent and that 

summations over wave vector are replaced by integrals appropriate to the 

infinite volume limit. The function (k) is determined by minimizing Eq 

respect to <j> (k). This leads to a quadratic equation whose solution is an

(1.2.9.)C
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integral equation for i(>(k), for which they find limiting solutions as 

k->o and k-*».

The energy of excited states is then evaluated in the usual way and 

in particular, its limiting behaviour as k+o and k-*»; the former is 

given by

“k(G-A) k->o = ^PoVCO+OCk) (1.2.130C

where e = 1,(0)/p0V(o) (1.2.14.)C

1,(0) = (2ir) 5jv(k) [<f>(k)/(1-<j>2(k))]d3k (1.2.15.)C

p = p-(2ir) 3 U 2(k)/(1-42(k))]d3k (1.2.16.JC

and p is the total density.

For k-K> the excitation spectrum u^CG-A) (1.2.13.)C exhibits a gap propor­

tional to the condensate density pQ . However, as in the case of 

Bogoljubov's work the chemical potential was not introduced» and even though 

the G-A state amplitudes are exact eigenstates of the total number operator 

the eigenvalues correspond to precise but unspecified number of particles. 

Some condition must thus be brought in to discard all eigenstates associated 

which particle numbers different from the real total number N - in the 

canonical ensemble; alternatively, a normalization condition must be included 

involving the chemical potential to ensure that the ensemble of states with 

different number of particles yield the correct ensemble average number 

<N>jh = N. In either case a further unknown, p, and a further condition 

(involving p) must be introduced before any conclusive result as to the 

spectrum can be reached.

G-A consider the unphysical result (1.2.13.)C as a defect of the pair 

approximation and suggest that an improved trial representations of states 

involving clusters of three particles might perhaps resolve the difficulty; 

a calculation by Takano^ J confirms this.
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The strategy of G-A as to this problem offers an opportunity to comment 

again on the question of conservation of number. These authors argue - 

with reason - that total number must be rigorously conserved in the super­

fluid phase provided it is conserved in the normal phase - as it is, 

in view of the fact that the exact hamiltonian H commutes with the total 

number operator N. It is questionable, however, whether in order to 

satisfy this property it is necessary to describe the dynamical behaviour 

in terms of a representation of states which are eigenstates of N.

The fact that the resort to a set of eigenstates of N for the purpose 

of describing the dynamical behaviour of 4He is not necessary for number 

conservation, is proven in §3.1 by means of a counter example. The general 

idea is that the constants of motion (associated with the energy and number 

of particles, say) required for a formulation of the dynamical problem in 

terms of a representation of states non-equivalent to the particle represen­

tation (V-B's pair representation, for instance) are not H and N, as in the

particle representation formulation, but are different functionals H 'and N '.
(*)As it turns out H and N are time independent, commute and are diagonal 

in the new representation of states; the pair states, say, then need not be 

eigenstates of N but of N"

D. Hugenholtz and Pines’ (H-P) Field Theoretic Approach (1959)

The problem of interacting bosons at zero temperature was first studied 
(51by Beliaev using perturbation techniques based on a ’S' matrix formalism, 

to take into account the depletion effect rigorously. Shortly after H-P*'40'* 

applied the Green's function method to calculate the zero temperature 

properties of a low-density boson gas, obtaining essentially the same results.

It is recalled that the interest of this thesis is in reformulating 

the many boson problem - originally posed interms of the fields of the particle 

representation - in terms of a non-equivalent representation*"^* and to 

propose a physically meaningful self-consistent approximation. Our interest

(*) both properties may not necessarily be equivalent.
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in field theoretic calculations is thus marginal, and for this reason only 

the latter work is briefly examined; for it is simpler and conceptually 

more transparent than Beliaev's. Our main interests in H-P's work is in 

connection with their treatment of the condensed mode and on the elements 

that eventually led them to the evaluation of the chemical potential and 

to the conclusion that the excitation spectrum is gapless.

H-P start by noting that the ground state for the non-interacting 

Bose system is not a 'good vacuum' with respect to the operators a* and aQ, 

unlike for the Fermi system. For the latter system the non-interacting 

ground state is such that no particle (hole) can be annhilated above (below) 

the Fermi level. For bosons, on the other hand, particles and holes can 

always be annhilated from the fully condensed mode (k=0). i.e. a0 ln>gr t 0, 

a*|n>gr 4 0,for there is no upper limit to the occupancy of any mode.

The above feature - these authors argue - renders invalid the Goldstone 

linked cluster theorem*'33'1'*in the sense that the various disconnected 

diagrams cannot be expressed in terms of their connected counterparts, (in 

the infinite volume and number limit) except in the extremely low density 

limit - that is, within Bogoljubov's approximation. But the presence of a 

large depletion population at higher density spoils the validity of both 

Bogoljubov's approximation and the Goldstone theorem.

As to the elimination of the condensed mode from the dynamical problem, 

H-P proceed as follows. They first replace and aQiT̂  by n^, where Q

is the volume. The resulting hamiltonian fi(nQ) does not commute with
n f _ 1
L a.a, (though the commutator is of order n ). They thus consider the 

k?fo K K
problem of finding the eigenvalue of H(nQ) subject to the subsidiary 

condition <N'> = N-nQi) (1.2.1.)D,or alternatively the problem posed by 

Hamiltonian H (nQ) = H(nQ)-pN (1.2.2.)D without any further condition, 

where nQ is to be determined as to minimize the ground state energy,i.e.

’E
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The ground state |i|jo(no ,q)> and the ground state expectation values of H' 

and N , namely EQ(no,p) and N (no,p) depend upon p, which is determined 

from (1.2.1 OD

n (nQ,p) = n-nQ (1.2.4.)D .

This gives, in turn, an expression for p as a function of nQ for a given 

density n.

E. Luban (L) (1962) Thermodynamically Equivalent Hamiltonian Method

The model developed by in great mathematical detail is based

on a method proposed by Wentzel , known as the thermodynamically equiva­

lent hamiltonian method, successfully applied by the latter author to 
the theories of superfluidity and superconductivity.

The main feature of this method is that the thermodynamic properties

derived from the free energy - obtained from a four linear segment of the 
(*)

full hamiltonian - are the same as derived from a different but thermo­

dynamically equivalent free energy functional,obtained from a quadratic 

hamiltonian. The latter hamiltonian can easily be diagonalized - 

again, by resorting to elementary operators of the pair representation» 

leading to a solvable model, though the solutions are often not unique.

The hamiltonian segment, considered by L (and Wentzel) is the so 

called pair hamiltonian, obtained by neglecting from the full hamiltonian 

Cl.2.3)A all interactions;except for direct, indirect and pair scattering 

terms associated with the contributions 1=0, pH=q and p=-q,respectively. 

The general idea of the method is as follows;

(i) Introduce first new operators and B̂ -, defined as

Bk, s

®k2 * a-kV"k 0.2.20E,

where and are real c-number functions.
(*) namely, the pair hamiltonian



( i i )  Express H as

where

H_ *H°+H C1.2.3.JE ,

(1.2.4.JE *,

and U, fk and hk are defined as

U = -(2V)_1V(o) l ekC-(2V)_1 I V(p-k) 5. 5 
k,p K p v.n2+v k Pk,p?±k

• AV(p-k,^ p
(1.2.5.JE ,

fk 5 Is] k2-u+v-1V(o)[(J 0 - 1 ]  ♦
. J p F

+ v"1 $V(p-k)C_
p^±k p

(1.2.60E ,

hk = V-' r VCp-k)nk
ptk

where V is the volume and S ' = H -H °
P

(1.2.70E ,

(1.2.80E .

The theromodynamic potentials (free energy functionals) associated with H°

and tfp are

ft0 = -6 ^nTr{exp(-6fl°)}

i5p = -0-1*nTr{exp(-B#p)}

(1.2.9.)E

(1.2.10OE,and

respectively.

(iii) In the infinite volume limit (V-*», N-*®, N/V=p finite) Wentzel has 

shown that the thermodynamic properties of ftp are given by ft0 alone, 

provided that £k and nk are chosen to satisfy

3ft°/3£k = 3ft°/3nk - 0 (1.2.11.)E 1
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or equivalently if

A
rX

$II (1.2.12.JE

'k " ^ “ -k* (1.2.130E

where the symbol <...> stands for quantum and thermal average.

The power of this method is notable,for it reduces the statistical 

mechanics of (certain) non-linear problems to that corresponding to a 

linear problem.

Hamiltonian H is brought to a diagonal form by introducing Bogoljubov- 

Valatin-Buttler elementary excitation operators (denoted here by and ctp

ak = uk W - k

ak = V k +V - k  | 

for real c-numbers u^, v^ satisfying

(1.2.14.JE ,

(1.2.15.JE ,

so that a's are also Bose operators. These c-numbers are determined by the 

diagonalization condition

fkuk Y !hk (uktvk] = 0

which has the solution

<  -  H < W ' >

vk ■

2 2 iwhere ek = (f£ - hp

A0In consequence II becomes

¿ ° . ¿ ° * kv k

(1.2.1.6)E j

(1.2.17.)E ,

(1.2.18.)E .

(1.2.190E ̂
where
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or equivalently if

ii V (1.2.12.)E

'k= « W (1.2.13.)E

where the symbol <...> stands for quantum and thermal average.

The power of this method is notable,for it reduces the statistical 

mechanics of (certain) non-linear problems to that corresponding to a 

linear problem.

Hamiltonian H° is brought to a diagonal form by introducing Bogoljubov- 

Valatin-Buttler elementary excitation operators (denoted here by and ak)

ak = V k +vka-k 

ak = uk Y ¥ - k

for real c-numbers u^, vk satisfying

(1.2.14.)E ,

(1.2.15.)E ,

so that a's are also Bose operators. These c-numbers are determined by the 

diagonalization condition

W k ^ V ^ k )  = 0 (1.2.1.6)E j

which has the solution

4  -

7 2 iwhere ek = (f£ - hp 

In consequence fl° becomes

¿° =

(1 -2.17.DE ,

(1.2.18.JE .

(1.2.19.)E ,

where
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y° = y+iICek-fk)

Hence the free energy n° becomes

,,o. -1i« = y°+6''^n[1-exp(-6ek)]

(1.2.20.)E.

(1.2.21 .)E
(*)

From this thermodynamic potential it follows that the average number 
of excitations is given by the well-known relation

<akak> = texPCBekD-1]_1 (1.2.22.)E .
Similarly using (1.2.12 -17) he finds that

Ck = l(Cfk/ek)coth(leek)-1] (1.2.23.)E

nk = *^hk'/ek̂ Cotĥ eGk-) (1.2.24.JE ;

or from (1.2.6,7)E he finally obtains the coupled set of integral equations
characterizing this model, namely

II 2
k2-p+PV(o) +V‘1e0V(k) +

and
+(2V)'1 l VCp-k) ((£JtJcothdee 1-1] 

p*> p p P (1.2.25.)E ,

II¿5* V_1n V(k)-(2V)"1 l V(p-k)(h_/e_)coth(lBe ) 
pPo p P p (1.2.26.)E ,

P0 -P+pV(o)+(2V)"1 l V(p)[(f /e ) [cothflBe )-1]
p*> p p p (1.2.27.)E ,

ho = -C2V)"1 l V(p)(h /e )coth(iBe ) pA> P P P (1.2.28.)E .

This set of equations is completed by the normalization condition

P = U 0/V)+(2V) " 1 l (fk/eJ[coth(l6kek)-1] (1.2.29.)E.
kj*o

(*)It is noted that the only configurations considered to construct such an 
ensemble are the various distributions of elementary excitations, c- 
number distributions not being taken into account, as in V-B's work.
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The main concern of this author was in deriving the above set of equations 

and to search for a solution of it. Our concern however - as mentioned 

before - is not with the actual solution of a corresponding set of equations 

- to be found in §4.4 - but rather in elucidating some conceptual matters 

concerning the formulation of the many body problem itself. For the purpose 

of comparison the information already quoted from L's work suffices; how­

ever, it is interesting to summarize briefly the main conclusions of this 

work, which is one of the most complete and elegant in the field of ^He

Firstly L shows that for a positive definite excitation spectrum e ,̂ 

equation (1.2.26.JE admits the trivial solution hk s 0 for temperatures 

T > Tc* At some temperature T ^ Tc the subsidiary condition is no longer 

satisfied. Secondly, if the kernel, J, of the integral equation for hk has 

only positive eigenvalues- i.e. is a J+ kernel in L's notation

then the only solution for (1.2.26.)E is hk=0; hence the hypothesis of 

ek>0 is untenable i.e. ek must have a zero (at k=o). He illustrates his

idea by showing that a Lee,Huang and Yang hard sphere pseudopotential and

a V-B separable potential both yield a zero in e .̂

Thirdly, B.E.C. is shown to take place for temperatures T < Tc if

eQ = 0 for J+ hemels. This leads him to the conclusion that Bogolubov's

approximation is valid (for the pair hamiltonian) for T < Tc . Fourthly,

in the limit k-*-0 the excitation spectrum does not tend to zero,but to 
2 J[4SV(o)(fQ)+0(k ) ]  where S is the condensate density, i.e. jdm £ k  t  e q  = 0 

but is separated by a gap of the same magnitude as that of G-A. The

models.

i.e. dp dke(k)J(k,p)e(p) > 0 *
Jo Jo

where 9(k) = k2(hk/ek)coth(iBek) ,
+1

and
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remaining part of Luban's paper is concerned with the resolution of the 

system of integral equations below and above the transition temperature, 

characterized by the onset of B.E.C.}and with the evaluation of thermo­

dynamic quantities. These - Luban admits - do not resemble the real 

experimental curves. He concluded by wondering whether the lambda 

transition can be explained on the basis of an independent excitation 

description.

F. Etters (E) (1966) Hierachy of Linear Equations of Motion 

C22)The work of E on the many boson problem is based upon a generali­

zation of the standard Random Phase approximation due to Suhl and Werthamer^^ .

The strategy underlying this method consists in devising an iterative 

procedure leading to a transformation of variables, i.e. from particle 

variables a*,a^ to some others b^b^ satisfying the same commutat ion relations; 

such that the equations of motion are linear; that is

[H,bJ] = to (1 .2 .1 OF •

The canonical equation (1.2.1.)F corresponds to a stationary state bĵ (t) = 

b£(o) expCiû t/fi) and makes reference to a set of states {|s>} for which 

b+ and b are creation and annihilation operators, and which posess a good 

vacuum; i.e. bjJo> = o for all k.

Eq. (1.2.1 OF is, in fact, never satisfied^'*. The problem is to 

devise a suitable succession of operators b £ ^  , b£^ such that (1.2.10F

is approximately satisfied to an increasing degree of accuracy.

For the zeroth order approximation one can take single particle 

operators, i.e. bj^0-* = a£, |s>° = |n>; the zeroth order equation is then

♦ (1.2.20F >



37

where H = I VW  ap-k aq+kapa(
K K>P,<)

(1.2.3.)F,

C1.2.4.)F.

Kp is the exchange term of the Hartree-Fock approximation. The direct 

term contribution is a constant energy and "can be removed" - Etters argues - 

by shifting the zero point energy (an argument similar to Bogoljubov's 

rescaling of the depletion operator's time dependence).

Linearization is achieved in the usual way by discarding the summation 

over the rest of the scattering terms (other than k=0 and p-k=q) and 

neglecting fluctuations about the ground state expectation average of the 

number operator; i.e. only the first term of (1.2.2.)F is kept; the 

linearized equation then becomes

this is the usual standard R.P.A.

Etters continues and argues that: 'A potentially more exact procedure 

... is formulated by performing the most general linearization of [(1.2.2.)F] 

consistent with conservation of momentum'. This he realizes as including 

the pair scattering term p=-q - neglecting the remaining contributions - 

and rewritting (1.2.2.)F as:

(1.2.6.)F;
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where <apa^p> is the average between states of different number of particles 

- <n+2|'*pa*p|n>(!!)j£ indicates, now, the omission of scattering contri­

butions other than direct, indirect and pair scattering. Again,fluctuations

the hamiltonian is a particle non conserving operator (!). Hence one should 

consider state amplitudes containing a mixture of states with a 'slight1 

spread in particle number (!) which is small compared with N; only in this

Furthermore - he adds - for large systems the number operator may still be 

an approximate good quantum number, since it 'approximately' commutes with 

the hamiltonian.
(*)The above formulation of a generalized version of the R.P.A. is not, 

however, the main aspect of interest in Etter's work. The main feature of 

the work under consideration is the setting up of an extended hierachy of 

R.P.A.'s^^, initiated either by the standard or the generalized version^*^ 

of R.P.A. The general idea is this: instead of neglecting trilinear contri­

butions in (1.2.2.)F (as in the standard R.P.A.) these contributions are 

included in the first order iteration by defining first order operators 

b*(”  as

bi m  '  “ i  ^ kg‘ q , B p-kaq*kaq C l.2 .10.)F

where g(q,k)are c-numbers to be determined.

(*) A more precise and consistent formulation of such an approximation is given 
by Anderson (1,2) in connection with the theory of superconductivity.

about and <ajca]c> are neglected resulting in the linearized equation

(1.2.8.)F,

For eq. (1.2.8.)F - E says - one can construct an operator

(1.2.9.)F

where ap and 6p are c-numbers, so that (1.2.1,)F is satisfied. E points 

out that eq. (1.2.1.)F for h* "given by (1.2.29.)F ■"makes sense" only if

way can the existence of finite (non-zero) values of <a+a+> be admitted.
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The first order eq. of motion is then

(1.2.30)F .

The tri-linear term coming from [H,a*] is then transferred to the second

term on the R.H.S. of (1.2.30.DF as 'linear in a+a+a'. The commutator

The latter are 'contracted' to a tri-linear form by neglecting fluctuations 

about the average of and the 'irreducible' five-linear contributions 

are neglected at first order of the hierachy; they are, however, included in 

second order, and so on.
Suhl and Werthamer point out that finding the solution of (1.2.1.)F 

for, say, b * ^  given by

g, h, etc.

The method just described yields essentially exact results in the 

infinite limit, provided that there is a finite region where fluctuations 

are indeed neglegible. The only problem with such an approach is that 

beyond the first few ordeisof approximation it already becomes very 

cumbersome, not to say in the infinite limit of the hierachy; thus, its 

practical use is rather limited. A similar iterative method was proposed 

byUmezawa et ai(S0,66) to deal with a different but somewhat related

[H,a+a+a] when expanded contains tri-linear and five-linear contributions.

(1.2.3DF

is equivalent to solving the coupled system of equations

m  +  +  i[H,a , a ,a = ai a 9 p-k q+k qJ p |
+ +

’pap-kaq-kaq (1.2.32.)F j
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problem,to be discussed later on in this section. Etters' simple 

formulation of Suhl and Werthamer method is included here for the sake 

of comparison. The remainder of Etters1 work is devoted to showing 

that the excitation spectrum for operators (1.2.28)F is gapless and 

linear in the extreme weak-coupling limit, so reproducing Bogoljubov's 

result but without actually introducing the assumption of macroscopic 

condensation, but only a weaker statement »  1 for k < 6, with 6 

macroscopically small, [generalized condensation^0'*]. However his 

result is questionable for the same reason as Bogoljubov's - namely 

the a priori neglect of the direct scattering energy and the independence 

of the result from the normalization condition. Etters finds for the 

excitation spectrum

(1 .2 .3 3 .)F ,
where (1 .2 .34 .)F  j

C1.2.35.)F *

provided that and Bp in (1.2.28.)F satisfy

C1.2.38.JF

(1 .2 .37 .)F
(1 .2 .36 .)F

Etters argues that if

(1 .2 .39.JF

for k < 6, for some macroscopically small 6, then

lim —  = lim 1 
k<6 pk k<6

(1.2.40O F .
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Rewritting <a^a as

ak
<aka-k> ■ - Nk

and substituting this into rip one obtains

nP ■ - V̂(P-»Nk 8^
“kFinally from (1.2.40.)F it follows that —  s 1, where n s
ßk P

if (1.2.39.)F is satisfied

(1.2.41 .)F

(1.2.420F.

-K ; thus

o for k -»■ o ;

in fact the spectrum becomes

“p ' V p * 2KP),! Ct-2*43.)F

for p < 5 o,i.e. in the extreme weak coupling limit of Bogoljubov.

G. Cummings and Johnston (C-J) Theory of Superfluidity (1966, 1968)

The works by C-J^2**̂ and Johnstonintroduced a new element into 

the theory of superfluidity. These authors proposed the notion of first 

order coherence for the Bose superfluid in analogy with the quantum theory 

of radiation, developed by Glauber and Glauber and Tituelar*-31-* in 1963. 

Similar approaches incorporating first order coherence have been proposed by 

a number of authors (13,45,49,59,60,65) in connection with superfluid ^He 

and by Casher and Revzen^^ for the ideal Bose gas.

C-J found the notion of first and second order coherence deeply related 

to the notion of Off-Diagonal-Long-Range-Order (O.D.L.R.O.) in the first 

and second order reduced density matrices, respectively. It was known - 

from the works of Penrose and Onsager*'57'*» Yang^71"* and (later) Fröhlich*'27'*

- that a characterization by means of O.D.L.R.O. encompasses a variety of 

superfluid phenomena in systems of diverse nature, such as fermions (i.e.
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superconductors, ^He, etc) and bosons (̂ He, laser radiation, masers, etc). 

Suspecting a common underlying description for all these systems - 

particularly between coherent electromagnetic radiation and ^He - they 

proposed a new set of trial eigenstates obtained from particle states by 

canonical transformation. The ground state of the trial coherent state 

representation was defined as

k Q> = DT|o> (1.2.1 .)G j

where T and D are Bogoljubov-Valatin's and Glauber's transformations 

respectively, given by

D = n
k

expi[W - k ' V V - k ]

exP [Vk-°kak]

(1.2.2. ) G 

(1.2.30G .

(jj, is a complex, c-number field (as yk) and |o> in (1.2.1.)G is the vacuum 

of particles. Particle operators transform (T+ = T~\ D+ = D-'*) according to

TakT+ = Cak"gka-k)/(1'lgkl2)i (1.2.4.)G

DakD+ = ak'°k (1.2.5.)G,

where gk e (Yk/|Yk l)tgh(Iy^D = g_k* The c-number functions gk> ak and 

their c.c. are determined from the condition that the ground state energy 

be minimal with respect to variations of gk and ak (and their c.c.), i.e.

i i j < * > l v 0 (,-2-6-)G

j i - % |i5|*o> . 0 Cl.2.7.« ,

and similarly for g£ and ok. H is the usual hamiltonian for a collection 

of bosons. The solution of (1.2.6,7.)G are
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superconductors, ^He, etc) and bosons (̂ He, laser radiation, masers, etc). 

Suspecting a common underlying description for all these systems - 

particularly between coherent electromagnetic radiation and ^He - they 

proposed a new set of trial eigenstates obtained from particle states by 

canonical transformation. The ground state of the trial coherent state 

representation was defined as

l*0> = DT|o> (1.2.1.)G,

where T and D are Bogoljubov-Valatin's and Glauber's transformations 

respectively, given by

T = n expi [YkajVk-Yk*a, a_k) (1.2.2.)G
k K

D = n exPtakak-okak] (1.2.3.)G .

crk is a complex, c-number field (as yk) and |o> in (1.2.1.)G is the vacuum 

of particles. Particle operators transform (T+ = T \  D+ = D b  according to

TakT+ = (ak'gka-k)/(1"lgk |2)i (1.2.40G

DakD+ = ak"ak (1.2.50G,

where gk = (Yk/1Yk I)tgh( IYk I) = g_k- The c-number functions gk, c?k and 

their c.c. are determined from the condition that the ground state energy 

be minimal with respect to variations of gk and ak (and their c.c.), i.e.

j i - % |H|V . 0  (1.2.6.)G

j i - C 1 . 2 . 7 . ) G ,

and similarly for gk and ok. H is the usual hamiltonian for a collection 

of bosons. The solution of (1.2.6,7.)G are



43

8k “ (nk"Ek)/Pk C1.2.80G

°k * - « k ^ ) pr v(p)»;vp«k,p

* ' V ^ r ' W v î y : ^  d.2.9.)G,

and similarly for their c.c. (The dash on the simmatoria symbol indicates 

the omission of the terms p=0, k=-r and p=r-k). Ek, and nk are the 

Hartree-Fock energy, the pairing self-energy and the excitation spectrum, 

respectively, and are given by

Ek = Ch^k^/2m)-p+nV(o) +

+ l V(k'-k)<n -> (1.2.10.)G
kVk

and
pk ~ . X V(k'-k)«k-a_k.> = p-

k A

% 5 < i pkiZji

(1 .2 . 1 1 OG

(1.2.12.)G ,

respectively, where n = ¿<nk> and <...> denotes averages taken over vacuum 
state amplitudes <ij)o |... | i|)Q> (and not over particle states).

The ground state energy is found to be given by

<¿>0 5 <*0|H|*0> = - |ti(Ek-nk)+

+ nk |ak-gk°_kl /n-|gk l2)] »

from which it is clear that a non-zero value of ak lowers <H>Q. The 

integral eqs. for this model are obtained as usual by working out the 
average values of Nk = aĵ k and a ^^ as functionals of Ek,Pk and «k > 
and replacing these in (1.2.10-12.)G, i.e.

= I °k 12+1 gk 12/ d  “ I gk I ) = l° k l 2+(Ek-nk)/P k (1 .2 .130G
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<aka-kS = aka- k V (1-|gkl2) = aka-k'Pk/2i2k (1.2.14.JG .

Introducing these values into (1.2.10,11)G, the eqs. for the Hartree- 

Fock and pairing energy become

E. = Cfi2k2/2m)-|j+nV(o)+ V V(k -k)|a./|2 + 
k^k K

+ I  V(k -k) (E, — iJ, '
k A  K k k

and

pk = i  V(k'-k)o]f.o K  - >7 VCk'-k)P.-/2n.'
K k #  k 'K k h  k k

These eqs. together with the normalization condition

N = I<nk> = ^f|ak |2+|gk |2/C1-|gk |2)] (1.2.170G

and eq. (1.2.9.)G - together with the complex conjugate eqs. of (1.2.9,16)G 

- constitute a set of six eqs. for the six variables involved, namely E^,

M, Pk, P£, ck and a£. The involvement of complex variables, gk and g£, does 

not affect much the structure of the integral eq. for the pairing energy 

(as given by V-B, say) and affects nothing in the normalization condition, 

whence a drastic modification of the excitation spectrum is not expected 

from this source. The involvement of an extra pair of functions, and 

a£, however, does affect <nk> and <aka_k> and hence the normalization 

condition's well as the eqs. Ek and the Pk 's. It is also noted that the 

eqs. for the newly introduced variables ck 's are linearly coupled to E^ 

and the Pk's; hence the spectrum might be changed from that obtained in 

other approaches not involving first order coherent fields such as V-B's 

and Luban's.

The hope that the inclusion of first order coherent fields might render

the spectrum continuous, i.e. lim fi = n (=0), has moved a number of authors
k*o k 0

(1.2.15.)G

(1.2.16.)G .
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to pursue further this approach, in spite the immediate failure - in the 

sense that the gap remains, as shown next - and the strong criticisms 

which follow below.

The occurrence of a gap in this modeljand in similar ones (18,45,46, 

59,60,65)?follows in a quite simple way. The eq. of motion for the first 

order coherent function, o(x) - i.e. the Fourier transform of - is 

given by

a«»
<[*(x),H]>0 = 0 (1.2.180G,

where iKx) is the particle annhilation operator in the coordinate basis, 

i.e. o(x) = <ip(x)>Q. From eq. (1.2.18.)G together with the assumption that 

a(x) is a constant, a(o), the following relation is obtained:

[-U+nV(o)+R ]a(0)+P a*(o) = 0 (1.2.19.)G

and similarly for its c.c., where and are defined as

Kk .lvaf-k)<a;-ak.> . I V»'-k)
r  k' H g kH

(1.2.20.JG

Pk = l V(k'-k)<a .a > = l V(k'-k) ---(1.2.21 OG ,
k* k' H g kJ

where <...>j means <0|T+...T|0>, i.e. the average over the ground state 

amplitude of the pair representation. From (1.2.19.)G a solution exists 

if

-U+nV(o)+Kq = ± |PQ| (1.2.220G .

Now, the phases of aQ and Pq are related through (1.2.19.)G, i.e. if

PD = |PQ| exp (2i<|>), then aQ = (±1)^|a0 | exp(i<j>). In consequence they find

lim P. [l (±1)V(k'j0.-o k'+|Pj]e2i* k*0 K k' k -K o (1.2.230G
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lim E, + [l V(k') \ a , |2±|P_ | ] (1.2.24.)G ,
k-° k' K

if ak is symmetric in k, and using

<o|T+D+...DT|o> = <o|T+...T|o>+<o|D+...D|o> 

to relate and P^.

The limiting value, k+o, for the excitation spectrum, can now 

be worked out using (1.2.22.)G for the chemical potential; from (1.2.23,
24.)G these authors obtain

lim n. - (4£ V(kO|o |2 |PJ} 1 (1.2.25.JG
k+o *

which is the same gap found by G-A and L. Whilst this puts an end to the 

hope of a simple successful derivation of a gapless spectrum, it has not 

deterred further developments of the same model ( 18,45,46 ,59,60,65).

More fundamental criticisms, however, can be raised against the very 

involvement of first order coherent states in the Bose problem. A brief 

mention of two of these is appropriate at this stage, in view of the fact 

that the model proposed in this thesis involves such a representation of 

states.

The first criticism against using first order coherent fields to 

describe (at least part of) the order parameter is that it inevitably 

entails a breakdown of the gauge invariance linked to particle conservation 

- in the sense that the system is no longer invariant under gauge trans­

formations of the q-number variables,even though it is invariant under gauge 

transformations of the c-number variables, <a^> = say. This feature, 

however, is not peculiar to first order coherent fields; it also applies 

to the second order coherent fields <a]ca_]c> = gk/(1-|gk| ). However, the 

phase of ak - unlike that of gk - is an observable, whence the gauge trans-
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formation expCis^D , for arbitrary c-numbers s^, alters the

observable properties of the system.

A second criticism due to Evans and Imry ^  is somehow related to 

the first but goes much deeper. These authors noted that random collisions 

over a long period of time change randomly the phases of the particle 

amplitudes, so that its time average is identically zero. On the other 

hand, the ergodic hypothesis equates this temporal average with an ensemble 

average; hence <^> can hardly be finite! The same conclusion as to the 

average of pair amplitudes, however, can be easily avoided since the 

phases of aK and a_^ are thought to be linked; hence a random collison 

changing the phase of â , say, will also change the phase of a_^ so that 

the overall phase of a^a.^ is not changed at random. In consequence both 

temporal and ensemble averages of a^a ^ may be non-zero.

As to the first criticism it will be shown later in this work that 

the gauge invariance is not in fact broken but rearranged. The phase of 

0^ will be shown to be realted to an external velocity field. The 

observable phase of 0 is thus not arbitrary but is determined by the 

coupling to this field.

As to the second criticism it will be shown in §4.4 that 0 is not 

defined as the ensemble average of the particle operator <a^> but by 

different means. The phase of 0 will be shown not to change at random 

by collisions if 0 is associated with the superfluid - due to a global 

property of the fields associated with the order parameter of the super­

fluid phase. However, as it will turn out the first order coherent field 

o is not a good candidate to be associated with the order parameter of the 

superfluid phase; in consequence it will be shown that the ensemble average 

of o is, in fact, identically zero, as follows from the argument of Evans 

and limy.
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The model proposed by - based upon a first order self-

consistent method developed by Umezawa and Umezawa et a l ^ ^  - 

resembles that of C-J and also that of Kobe •

The strategy of the self-consistent method of Umezawa is rather simple, 

even though the algebraic development of the method becomes rather cumber­

some. The general idea is to devise a relationship between particle operators 

and elementary operators a+ ,a of another representation in the form

ak = c<5k,o + dk“k + ek“-k + ” • (1.2.1.)H ,

such that a's are also Bose operators and the particle hamiltonian H - 

given by (1.2.3.)A, as usual - takes the form

H = + QyC“) + w0 (1.2.2.)H

after replacing (1.2.1.)H, WQ is a constant and Qy Ca) is a quantity that 

vanishes in the infinite volume limit.

In order to determine the c-number coefficients c, d ,̂ e^,.... of 

(1.2.1.)H one proceeds by iteration. Initially one devises a zeroth order 

trial in the form of a relation between particle operators and elementary 

operators a^.a^ of an intermediate representation. Let us write this 

relation symbolically as

(zeroth order) a^ = a^GT) (1.2.3.)H.

After replacement of a's by a's in H, an expression of the following form 

is obtained

H(a) = Wo+̂ Ek“k V :HIC“): (1.2.4.)Hj

where :H(a): involves cubic and quartic terms in a, provided that (1.2.3.)H

is a linear relation.



1

49

The diagonalization is effected^*^ in terms of new elementary operators 

V V  t^e so-called 'physical' representation if these operators are
defined as

ak = S’ 1 akS (1.2.S0H ,

where

and

for

S = 1+(-i) :Hj(s):ds

Hj(s) = expC-elsDHjCaj^exptiEj^s]) (1.2.6.)H ,

P 1e'vV, - y < p < 0  for large volume V .

The approach just described is just a perturbative expansion of an integral 

equation^^.

C-M take for the zeroth order trial

ak = V k  - V - k +v *5k,c

ak = V k - V - k +vix\ , 0

(1.2.70H ,

where and x are c-numbers, u and v satisfying i^-vk = 1. The first

order correction to (1.2.7.)H is taken by neglecting powers of higher

than the first in the exact expression ak = ak(a), they find

(first order) aR = V k ' V - k ^ k . o
(1.2.7.a)H ,

-iu,. [oik» :]ds+ivk [a_k, :Hj(s) :]ds

which, after replacement into H, yields

fi ■ " ¿ f  kVk*«;w (1.2.80H,

where Q' + o as V + •>. At infinite order of perturbation Umezawa shows



that Wg -*■ Wo> E£ -*• E^ and -*■ Qv where, again, Qy goes to zero in the 

infinite volume limit.

The beauty of this method can be grasped from the fact that the 

hamiltonian expressed in terms of elementary operators of the limiting 

physical representation is such that non-diagonal contributions vanish 

in the bulk limit (N-*»). Furthermore such contributions also vanish in 

the same limit (V-**>) for the first order trial representation. In 

consequence, these contributions - unlike for V-B or C-J - do not con­

tribute to the thermodynamic properties in the bulk limit. The ugliness 

of this method, however, is apparent from the difficulty of developing 

the expansion series for selected topologies; this is perhaps one of the 

reasons why this method has not made much impact amongst workers in the 

theory of superfluidity (or superconductivity, for that matter).

It is noted that the first order correction does not affect the 

constant W', nor the excitation spectrum, E£, as given in the zeroth order 

correction, hence there is no need, to this approximation, to go beyond 

(1.2.7.)H. It is also noted that this relation is the same as C-J, except 

for a change of sign (for v̂ ) and the fact that the c-number field shift 

is only introduced for the k=o mode,which is proportional to and hence 

rather large. C-M proceed to evaluating the excitation spectrum to first 

order in the self-consistent method and eventually find a gap - the same 

one as found before - for the same reasons as in the case of C-J.

Replacing (1.2.7.JH into H they find

H . j; Bk(

+ IEk“k“k+:H^  :
(1.2.9.)H

k

The contribution :H(ci) : can be neglected, since in first order it yields 

zero in the bulk limit. The coefficients u^, v^, and x are determined 

from the conditions
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A = 0

which lead to the following relations

Cuo " V vÌx("y+V(o)X2‘J0+V(°)+I0) = 0

gk

where gk = x^Ck) -Jk

2

fk = 7ST -K+X2[V(k)+V(o)]+V(o)K+Ik

and

K 2 V H -!k ' V Jk 1 V £v(p-k)u v
P * P V P V V

From these the excitation spectrum takes the form: 

^  ' (£k - Sk»1

(1.2.10. )H,

(1 .2 . 1 1 OH

(1.2.120H

(1.2.13.)H,

(1.2.140H

(1.2.150H

(1.2.16.JH.

(1.2.17.)H,

which can be simply shown to be the same expression obtained by several 

authors before, for the appropriate definition of x, vk and

For non-zero x> the chemical potential is given from (1.2.11.)H , 

introducing this value of p into (1.2.17.)H, these authors obtain

= 2xV(o)J0 1 (1.2.180H

for the k=o mode.

It is interesting to observe that C-M obtain the chemical potential, 

P, from the diagonalization condition involving the - newley introduced - 

(first-order) c-number field x - or a*, aQ for C-J. These conditions are
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A = 0 for C-M and 3<H>o/3aQ = 0, 3<H>Q/3a* = 0 for C-J. It is noted that 

while the latter conditions yield and homogeneous set of two coupled 

equations for aQ and a*, the former gives only one linear equation - also 

homogeneous - for the only real variable x> in both cases, however the 

chemical potential is the same, and the resulting spectrum turns out to 

have the same gap.

This way of evaluating the chemical potential is familiar in the 

context of the theories of superfluidity; however, it is rather unusual 

in other statistical mechanical theories. In fact, p is evaluated without 

resorting explicitely to the su b sid ia ry  condition, fixing the average number 

of particles (in the physical representation) to N in the grand canonical 

ensemble formulation. This method of C-J and C-M cannot be used if x or 

o , a* are not introduced, or if they turn out to be zero; for, A would be 

identically zero (and <H>Q independent of a's). Another case in which this 

method cannot be employed is in the event of x (or a's for C-J) being time- 

dependent dynamical variables. In this event the linear eqs. resulting in 

either approach will not give the chemical potential as a function of known 

quantities, but rather a dispersion relation for the (first order) c-number 

fields in terms of p, similar to the case of the excitation spectrum.

In the event of (first order) c-number fields being time dependent the 

inversion of the normalization condition - to obtain p - cannot be avoided, 

unless at least one point on the dispersion relation for the excitation 

spectrum is known by other means. Against this argument it might be argued 

that, all c-number fields of the theories considered so far are time indepen­

dent; and that there is no immediate reason to think differently. The best 

answer to this counter-argument is that one just gets what one has put in - 

in the first place, and in the present case what one has put in is a time 

independent c-number field and one accordingly gets a gap. The idea of c- 

number time dependence is a central part of this thesis; a justification for



it is most important and will be given in the final section of the present 

chapter.

The possibility of non-trivial solutions for the pairing field for 

x/0 and x=0 respectively, is investigated by these authors, who conclude 

that if only repulsive interactions V(o) > 0 are taken into account, the 

solution corresponding to x^O - which they associate with the occurrence 

of Bose-Einstein condensation - is the only possible one. However, if 

sufficiently strong attractive interactions are taken into account both 

solutions, and x*0> can exist. The 1969 paper by C-M-M considers 

the possibility of two forms of condensation - Bose condensation (in C-M 

ser'-.e of the word) - and pair condensation, in the sense of a non-trivial 

solution of the pairing equation for the quantity

|vck-k1) « ay k » Q&th .

A more modem treatment of these matters - due to Evans and Imry - will be 

given later in this section.

C-M's paper introduces still another element of interest for the 

developments to be reported in this thesis later on. This has to do with 

the relationship between a gap in the excitation spectrum and a breakdown 

of symmetry. These authors start by emphasising that the invariance 

satisfied by the exact particle hamiltonian - under transformation to normal 

coordinates (8,9,37,51 ,69) of the form a^ - i(a]c+q+a]c_q)<5e> where 5e 

is an arbitarily small c-numbers parameter and q is an arbitrary wave vector, 

entails - in general - that the excitation spectrum is gapless and linear 

in the limit k+o. Hence the erroneous prediction of a gap is not only 

against experimental evidence but also indicates that a (hamiltonian) 

invariance has been broken in the process of derivation of the spectrum.
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C-M show th a t  the p a r t ic le  cu rren t i s  not conserved fo r th e ir  model (e xh ib it in g

Bose condensation) and a lso  th a t p a r t ic le  number is  not a w e ll-d e fin ed
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it is most important and will be given in the final section of the present 

chapter.

The possibility of non-trivial solutions for the pairing field for 

X^O and x=0 respectively, is investigated by these authors, who conclude 

that if only repulsive interactions V(o) > 0 are taken into account, the 

solution corresponding to x^O - which they associate with the occurrence 

of Bose-Einstein condensation - is the only possible one. However, if 

sufficiently strong attractive interactions are taken into account both 

solutions, and x*0, can exist. The 1969 paper by C-M-M considers 

the possibility of two forms of condensation - Bose condensation (in C-M 

sense of the word) - and pair condensation, in the sense of a non-trivial 

solution of the pairing equation for the quantity

£v(k-k1) «  a^a^ >>Q&th *

A more modem treatment of these matters - due to Evans and Imry - will be 

given later in this section.

C-M's paper introduces still another element of interest for the 

developments to be reported in this thesis later on. This has to do with 

the relationship between a gap in the excitation spectrum and a breakdown 

of symmetry. These authors start by emphasising that the invariance 

satisfied by the exact particle hamiltonian - under transformation to normal 

coordinates (8,9,37,51 ,69) of the form a^ ■+■ a^ - i(a]c+q+a]c_q)(Se> where fie 

is an arbitarily small c-numbers parameter and q is an arbitrary wave vector, 

entails - in general - that the excitation spectrum is gapless and linear 

in the limit k->o. Hence the erroneous prediction of a gap is not only 

against experimental evidence but also indicates that a (hamiltonian) 

invariance has been broken in the process of derivation of the spectrum.

C-M show that the p a r t ic le  current i s  not conserved fo r th e ir  model (exh ib it in g

Bose condensation) and a lso  that p a r t ic le  number i s  not a w e ll-de fined
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quantum number, and accordingly conclude that a gapless spectrum can only 

be obtained through a theory in which current is conserved, number is well 

defined (i.e. no hamiltonian symmetry is broken) and condensation - in 

either of the two forms single particle or pairs - takes place.

C-M commence their argument by recalling a formal characterization - 

due to Umezawa - of a broken (hamiltonian) invariance. In the coordinate 

basis the density and current are defined (in terms of particle field 

operators) as

p(x) = <fr+(xH(x) (1.2.19 .)H

(1.2.20.)H ,

(1.2.21.)H.

(1.2.220H j

J(x) = -iU+(x)gradx<j>(x)-[gradx(f>+(x)]<j>(x)}

p and j satisfy the continuity equation

3tp(x) + div j = 0

Following Umezawa new operators are defined

A 1 = <t>+(x) + <f>(x)

A2 h 4>+(x) - <f>(x)

B1 = <J>+(x) +(x) + <J> (x) (x)

B2 5 <(>+(x)<j>+(x) - $(x)<t>+(x)

where <j>+(x), $(x) are the Fourier transforms of the particle operators 

a£ and a^, respectively.

For these, one finds the following result

<o|[p(x),A2(y)]|o> = <o|Â (y)|o>6(x-y) ^
1 (1.2.23.)H,

<o| [p(x) ,B2(y)] |o> = <o|B^(y) |o>6(x-y) J  

where <o| is the vacuum of the physical representation; it also follows that
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<o|<f>+(x) |o> = <o|<f>(x) |o> = CA i 0

<o |i))+(x)ij>+(y) |o> = <o|<Kx)<Ky) |o> = CB i 0

Cl-2.24 .)H ,

where C is a constant for - they argue - the system must be invariant 

under displacement of the origin of coordinates. Hence from (1.2.23,24.)H 

upon integration over space they find.

<o|[N,A2]|o> = 2Ca 

<01CN1B2] | o> = 2Cfi
(1.2.25.)H,

these relations they regard as the most compact (and formal) definition of 

(hamiltonian) breakdown of symmetry. It indicates that while the hamil- 

tonian is invariant under transformations generated by the number operator, 

the ground state |o> changes (is not invariant), or similarly, |o> is not 

an eigenstate of N.

Now taking the commutator of (1.2.21)H with A2 or B.,, and calling 

g(k,w) and h(k,w) the Fourier transform in space and time of <o|[j,A2]|o> 

and <o|[p,A2J|o>5or similarly for B2, they obtain:

k'gCk.uO-uhCk.io) = 0

2ir h(k,a))53(k)d3kdw = 2CA

From these it follows that if

(1.2.26.)H 

Cl .2.27.)H .

lim h.g(k,u) = 0 (1.2.2 8.)H ,
k-*o

then lim h(k,u) = 2C6(w) . 
k-K>

This last relation guarantees the existence of a gapless sepctrum^66-*.

The condition (1.2.28.)H means that no flux of particles crosses the 

boundaries, hence current must be conserved to obtain a gapless spectrum,
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however, an explicit calculation of g(k,w) shows that

lim k.g(k,w) + 0 
k-K)

which entails that particles are lost or gained through the boundaries 

(infintely remote). C-M argue that this explains the reason why a gap 

occurs in their approximation.

The rather formal approach of the last part of C-M's paper is very 

interesting for it links - in an elegant fashion - current conservation, 

breakdown of hamiltonian symmetry and the gapless spectrum. On the other 

hand, the occurrence of a symmetry breakdown and non conservation of

current (as a whole) can be tested by simpler means from 

and <o|<(>|o> t 0 or <o| <(><(> |o>  ̂0.

div j (x) d ^ / 0 i

The conclusion reached by C-M indicates that one is doomed to obtain 

a gap unless the symmetry is rearranged and total current conserved, regard­

less of the type of condensation, which must take place - in the opinion of 

C-M - to explain superfluidity.

I. Evans and Imry (E-I) Self-Consistent Pairing Theory

(23)The self-consistent theory of E-I is the latest of the pairing 

models for the Bose superfluid; it is also one of the simplest and con­

ceptually perhaps the clearest of them all. In addition, it is free from 

contradiction - unlike V-B approach - and travels the entire road from 

first principles to the numerical solution of the resulting integral equations 

characterizing the pairing model, for a solvable pseudopotential.

The model proposed by these authors does not incorporate first order

coherence - nor Bogoljubov's prescription - and the equations of motion are
(2)reduced to a linear form through the method of linearization of Anderson ; 

as such it escapes free of the difficulties that arise when first order
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coherence is employed in conjunction with Anderson's Random phase Approxi­

mation (see §3.3). As to the prediction of superfluid behaviour, however,

E-I's approach is open to the same criticism as V-B's work; in the sense 

that would-be order parameter configurations are not involved in the 

statistical ensemble. The only configurations involved in the statistical 

ensemble are those associated with elementary excitations; this is a 

conceptual defect of nearly all theories of superfluidity (6,18,20,22,23,29,68) 

and also of superconductivity (4,34)

The strategy of these authors is to develop anew a pairing model 

devoid of unnecessary ad hoc assumptions as to the occurence of B.E.C., 

emphasizing the role of attractive interactions which - unlike for super­

conductors - arise naturally from the local potential. Indeed, they find 

that the involvement of the attractive interactions is necessary for a 

non-trivial solution for the pairing fields, which these authors identify 

with the order parameter. It is to be noted that E-I do not identify the 

condensate with the order parameter. They do find, however, that the 

existence of a not-trivial solution for the pairing fields does not additionally 

require the occurence of B.E.C.; should this occur, however, it ensures a gapless 

linear spectrum.

The standard technique of linearization should be familiar by now, 

hence it is not repeated here; it will suffice to point out that these 

authors take the following distribution of elementary excitations of the 

pair representation in thermal equilibrium

(1.2.1.)! ,

where the excitation spectrum is

(1.2.2.)! ;

ëjç is the Hartree-Fock energy

(1.2.3.)!,



(1 -2 .401  ,Çk = V̂^ < V q ak+q>
H

and Aj, is the coherence parameter

Ak = IV(q)<a_k_qak+q> (1.2.501 ;

the averages are taken over pair states whose elementary operators are 

related to particle operators through

ak = V k  + vka-k

ak = V k  + vka-k
Hence the averages of number and of pairs are given by 

ev f6E,

nk = 2ËT Ctgh 2 ] -  i h <akak>Th

xk = ‘ 2Ek ctgh
BE,

E <aka-k>Th

(1.2.601 .

(1.2.701 ,

where the following solution for the c-number fields uk> vk has been

used

= i ipr + D  ! |vj = 1 (j3 - 1 } (1.2.801

arg(uk)-arg(vk)+arg(Ak) = 2 m  (1.2.901.

From these results the following set of integral equations is obtained:

V  , i6V?k = ^ (k-k* ) {•jg- ctgh —j- \ - i}

Ak = - l V(k-k') ^  Ctg f2Ek'
~ T

(1.2.1001

(1.2.1101,

subject to the normalization condition
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(1.2.12.)! •

In order to reduce this set of equations to a soluble form E-I

introduce a hypothesis (to be tested a posteriori) involving the occurrence

of a macroscopic B.E.C. In order for n to be an extensive quantity E
° BE 0

must be macroscopically small - they argue; hence ctgh should be 

approximately equal to (2/bEq), whence the population of the condensed 

mode should satisfy

and from (1.2.2-7.)I the chemical potential should satisfy the following 

relation

which is manifestly gapless.

After introducing the chemical potential (obtained from (1.2.14.)I) 

into the integral equations, (1.2.10,11.)I, the following pair of 

equations are obtained.

(1.2.13.)I,

NV(o) ♦ ÇQ - M = |A0 | (1.2.14.)I,

which yields the following excitation spectrum

(1.2.15.)!,

çk = NV(k)+ l [V(k-k')-V(k)]nk .
k'*o

(1.2.16.)!,

\  = -V(k)Sign(A0)(N- l nkJ  - 
kVo

(1.2.17.)! .

Bogoljubov's solution for a repulsive local potential (Vk = positive 

constant, say) is now impossible, as is seen from (1.2.17)1, due to the 

presence of the first term which arises naturally here. However, for
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attractive potentials (or rather pseudopotentials) eqs. Cl .2.16,17.)I - 

together with the normalization condition - admit non-trivial solution 

for Ak .

Evans and Imry then proceed to obtain an expression for the specific 

heat which is in qualitative agreement with Landau's except for a numerical 

factor. Finally, E-I obtain numerical solutions for (i) the excitation 

spectrum for several potentials amenable to numerical analysis, and (ii) 

for the superfluid fraction and the specific heat as functions of temperature,

both of which show fa ir ly  good qualitative agreement with experiment.

(23)A further analysis by Evans and Harris considered the question of 

coexistence of B.E.C. and pairing, taking the hard core radius of the 

potential as a numerical variable; they find that condensate-less solutions 

for the pairing fields are possible.

It is noted that E-I do not identify B.E.C. with first order coherence 

- in the sense of a non-zero average for the particle amplitudes. It is 

argued that first order coherent fields should have identically zero 

ensemble average - according to the argument considered before, concerning 

the ergodic hypothesis. Furthermore, the introduction of these fields 

entails a gap in the excitation spectruii, âs in Refs. (20,46). It will be 

shown later in this work that this is indeed the case. The ensemble average 

of the first order coherent field amplitudes, <<f)jc>y}iermai say, wiH be 

shown to vanish for the "most realistic" superfluid ensemble, constructed 

in 14.4. The ensemble average of |$jJ , however, is shown to be finite.

This turns out to be the case for the particular system under consideration, 

namely superfluid ^He; in general, however, the theoretical possibility of 

<<* (**)’k>Th  ̂® will be shown to be an admisible one, from an argument that 

circumvents E-I's indictment. As to the statement that the involvement of

first order coherent fields entails a gap in the excitation spectrum for 
(*1elementary excitations , it will be shown here that this is indeed the

(*) of the pair representation
(**) this though is not a phonon spectrum
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case! In addition to that, however, the very presence of first order 

coherent fields brings about another branch of the spectrum which is 

gapless and linear. This changes the entire view of the pairing model, 

in that what was a gapless spectrum before now turns out to show a gap, 

and corresponds to an upper branch of the spectrum discovered - by 

accident - in an experiment (19,43) performed after the appearance of 

E-I's paper.

As to E-I's identification of the pairing fields with the order 

parameter it will turn out here to be correct. It will be shown that 

the condensed mode - if it exists at all - is not to be identified with 

the superfluid nor with the first order coherent fields, nor the latter 

with the superfluid. Attractive interactions should also play a central 

role in the theory to be developed in what follows, but the strategy 

underlying the standard method of linearization will be shown to be 

defective, particularly when first order coherence is involved.
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§1.3. Overview of the proposed new theory of superfluidity 

A. Preliminaries

The discussion on dynamics and on thermodynamics - for physical 

systems undergoing a phase transition - has been centred around two deep 

rooted paradigms. The first of these regards all phase transitions as 

signalled by a spontaneous breakdown of dynamical symmetry. The other 

is concerned with the way in which statistical ensembles - describing 

both low and high temperature phases - should be constructed, and the 

nature of the superfluid phase's order parameter. Most conceptual and 

practical difficulties encountered by existing theories of superfluidity 

(6,18,20,22,23,29,32,40,46,51,55,59,60,62,65,68,73) and also of super­

conductivity (4,34) can be traced back to defects of these two paradigms.

It is most important to inspect in some detail these intuitive schemes 

at this stage, to find the unhappy consequences they bring about; and, 

eventually, to replace them by others, more suited to developing a unified 

theory of phase transitions - in general - and of super-responsive behaviour, 

in particular. The most fundamental innovation of the theory of super­

fluidity proposed in this thesis is a change of the basic underlying para­

digms.

Let us consider the dynamical paradigm of a phase transition first.

It is almost universally believed that the onset of a phase transition 

is signalled by a spontaneous breakdown of dynamical symmetry, accompanied 

or not by the emmission of a massless 'object' carrying away the 'lost' 

symmetry (33b). As far as the superfluid and superconducting transitions are 

concerned, the alleged broken symmetry is the gauge symmetry, closely re­

lated to the fact the total number of particles in the low temperature 

phase is not a good quantum number, unlike in the high temperature phase.

For the various magnetic transitions (ferromagnetic, antiferromagnetic, 

spin-glass, etc.), on the other hand, the broken symnetry is associated with
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rotational invariance, and for solid-gas transitions with translational 

invariance.

The breakdown of symmetry is thought to come about - from a micro­

scopic viewpoint - due to the fact that 'the best' spaces of states

describing the dynamical behaviour in either phase are non-equivalent*’ \
4

For He and metallic alloys admitting a superconducting phase the normal 

phase is believed to be best described by states of the (Bose or Fermi) 

particle representation (P.R.). This representation is given by an ortho­

normal and complete set of state amplitudes, (|n>) for all non-negative 

integers n, and by creation and annhilation operators, a^,a^. The low 

temperature phases, on the other hand, are thought to be best described 

by generalized coherent state representations (C.S.R.) , or in simple

cases by a simplified version of a C.S.R. A formal definition of genera­

lized and simplified (linear) coherent state representations will be given 

in §2.3.; it suffices, for now, to point out that either version of C.S.R. 

is given by an orthonormal and complete set of coherent states (|Cn>) and 

elementary excitation creation and annhilation operators, and a ,̂ 

related to P.R. by canonical transformation t (t+ = t b-

Particle representation and coherent state representations are non­

equivalent representations of the same commutation relations*’3,25 ,̂ in so 

far as both a's and a's satisfy the same commutation or anticommutation 

relations (for bosons of fermions, respectively), and their number operators,
n  ̂ A n + -1namely N = and n = = tNt do not conmute in either representation.

Both energy and number are good quantum numbers above the transition; 

that is H and N commute in the P.R. Now, the premise embodying the para­

digm of a broken symmetry is that: "The constants of motion in either 

phase - described by non-equivalent representations of states - are the

(*) The notion of non-equivalent spaces of states will become clear shortly.



same functionals, H and Ñ, for instance". This premise is often stated 

as: Transformation t leaves the hamiltonian invariant, while it changes 

the symmetry of the ground state. In other words, the energy and number 

functionals are H and Ñ regardless of whether these are expressed in terms 

of a's or a's.

It is thought that the hamiltonian must be diagonal in both represen­

tations; that is, the hamiltonian symmetry must be rearranged. For linear 

- or linearized - problems it has been shown, by the authors reviewed in 

§1.2 among others, that H can be very simply diagonalized (in a simplified 

version of a C.S.R.) by selecting the c-number fields appearing in t 

appropriately, so that low order non-diagonal (dangerous) contributions 

cancel out exactly. For non-linear problems, however, exact diagonalization
a f 66")of H can only be achieved in a highly complex C.S.R. - the so-called 

'physical representation' - in the infinite volume limit.

The main feature of the present argument, however, is that having 

succeeded in diagonalizing H in some C.S.R., the number operator, N, remains 

non-diagonal, in view of the fact that the number of elementary excitation 

operator n is diagonal - by construction - in the C.S.R. and [N,n] ¿ 0 

in the same representation. In consequence, the diagonal segment of H 

in the C.S.R. and Ñ do not admit the same set of coherent eigenstates.

The number of particles is not a good quantum number and a gauge trans­

formation is not well-defined. The symmetry associated with gauge invariance 

thus appears broken.

The paradigm just examined, however,is defective, as pointed out before. 

One can realize this very simply by recalling that one basic postulate of 

dynamics is: A given physical system is identified by a Lagrange functional, 

by the group of dynamical transformations (symmetry transformations) leaving 

the lagrangian invariant, and by the expectation values of all the constants 

of motion. In view of this postulate, should two dynamical problems exhibit 

different overall symmetry groups they must correspond to different physical



65

systems'. Should this conclusion be rejected, on the other hand, the 

postulate just referred to must also be rejected, and one should look 

for a different means to identify a given physical system. There is, 

of course, no reason why dynamics should be axiomatized as it is, but 

changing the above postulate is just but changing the subject! Thus 

one rather leaves the postulate as it is and abandons- if one can - the 

paradigm of an overall breakdown of synmetry.

There is still a well-known'3'̂ '1 way in which the postulate and the 

present paradigm can be reconciled, at least as far as a continuous 

broken symmetry is concerned. It might be thought that even though the 

overall symmetry is not broken, but rearranged, the transition is signalled 

by the emmission of a Goldstone boson, which escapes from the massive 

system, so carrying away some symmetry (the gauge symmetry, for instance).

The massive system is then left with an effective broken symmetry.

No logical problem arises in this case; however, in order to support 

this alternative paradigm on physical grounds one must be able to envisage 

independent means of detecting the 'flying symmetry wave', and devize an 

apparatus to measure the massless boson which carries away the synmetry.

Until such an independent methods of detection is produced, for every 

transition explained in this way, the paradigm of an effective breakdown 

of symmetry will remain outside the scope of physics. One could find experi­

mental evidence of an effective breakdown of symmetry - in principle - by 

accurate measurements in both phases of the constant of motion associated 

with the alleged broken symmetry, and by searching for deviations from 

the average value larger than normal statistical fluctuations. This type 

of experiment is not independent of the above postulates; in fact, it would 

predict an effective breakdown of symmetry by defect. Experiments of this 

kind have been carried out for the lambda transition of ^He and for the 

superconducting transition, showing that deviations in number of quantum -
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dynamical origin - if occur at all - are smaller than statistical 

fluctuations - see Ref. (45) and references within - and hence do not 

support the view of the occurrence of a breakdown of the gauge invariance.

The main thesis pursued in this work, as far as dynamics is concerned, 

is that the overall (and also the effective) symmetry is rearranged through 

the transition, without having to postulate or conjecture a 'flying 

symmetry wave'. The strategy here is to exploit the above postulate, not 

only in the sense that the whole symmetry must be rearranged, but also in 

regards to the invariance of expectation values for the constants of motion.

It will become clear that a representation of coherent states is not 

better than the particle representation to describe dynamics of a super­

fluid (in a pure state description, say); for it will turn out that both 

descriptions are, in fact, dynamically equivalent. A C.S.R. description 

will be shown, however, to be better suited for the purpose of statistical 

counting. It will be made clear that C.S. are not necessarily applicable 

only to superfluids, but can also be used to describe non-superfluids.

It will be shown also that the involvement of a C.S.R. does not entail a 

breakdown of symmetry. This occurs in existing theories as a direct 

consequence of the erroneous premise that the constants of motion - H and 

N, say, for ^He - are the same functionals regardless of the representation 

of states. It will be made quite clear that the correct energy and number 

functionals in a C.S.R. description are functionals, H' and N', different 

from H and N. The former operators will be shown to be constants of 

motion, to commute in the C.S.R. and to yield the same expectation values 

as H and N, respectively. Two formulations of the same dynamical problem 

satisfying the latter properties are referred to here as dynamically 

equivalent. Later in this section the questions on dynamics will be 

considered further, but now let us examine the other paradigm concerning 

statistics.
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The paradigm to be considered now can be put as a set of heuristic 

statements giving answers to the questions: How is the statistical 

ensemble to be constructed from a set of coherent states? what is the 

order parameter of the low temperature phase?, and, how does it emerge 

from microscopic and statistical considerations? This paradigm eventually 

conveys an idea as to what superfluidity (or superconductivity) is.

The statements constituting the statistical paradigm of superfluidity 

vary in detail - from one approach to the other - particularly as to the 

nature of the order parameter. That is not so in the theory of super­

conductivity for which the order parameter is almost universally identified 

with the 'pairing fields'. As far as the Bose superfluid is concerned the 

early paradigms of London and Bogoljubov regarded the condensate population 

fraction as the order parameter of the superfluid phase; later, Valatin 

and Butler and Evans and Imry identified the order parameter with the 

fraction of particles normalized by the pairing fields, as in the case of 

superconductors. Still a third option was proposed by Cummings and Johnston, 

Coniglio and Marinaro and Kobe, who identified the order parameter with the 

fraction of particles normalized by the first order coherent fields. It 

must be noted that the condensate should not be identified with the latter 

fields. The condensate is a singularity in the distribution function of any 

fields contributing to the density, not the fields themselves; however, when 

only the mode k=o is allowed to exist for the first order coherent fields - 

as is usually the case - the distinction becomes immaterial. Other options 

combining the former three have also been considered by Coniglio, Mancini 

and Manturi.

Now,as to the question of how the statistical ensemble is constructed, 

the idea leading to an answer is the same in all approaches. All authors 

construct ensembles whose only configurations are all possible distributions 

of elementary excitations. The same applies for the theory of superconductivity.
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C-number field configurations are not considered at all in constructing 

the ensemble; in fact, c-numbers are regarded as variational parameters, 

not as dynamical variables; hence not even in principle could these fields 

be considered for the purpose of statistical counting of configurations.

This alone suffices to disqualify these fields as acceptable order para­

meters; for an order parameter is a measure of the number of configurations 

not contributing to the disorder, i.e. to the entropy. This argument has 

already been elaborated in 51.2.B and will not be repeated; only the final 

conclusion will concern us here, namely - none of the theories reviewed 

in 51.2 predicts superfluid behaviour! The same applies to the theory of 

superconduct ivity!

As to the interpretation of Bogoljubov, this seems not to be disqualified 

by the above argument; for, after all, the condensed mode of elementary 

excitations is involved in the counting of configurations; however, in 

Bogoljubov's theory nothing prevents the particles in the condensate- 

immersed in a thermal bath-to disorder and so dissipate energy, like particles 

in any other mode. Landau's criterion, on the other hand, does not convey 

a reason why the condensate should keep fully ordered and hence behave as a 

superfluid.

The key towards a more satisfactory statistical paradigm of superfluidity
(38)was proposed by Hohenberg and Martinv , who identified the superfluid order 

parameter with the condensate fraction. This interpretation turns out not 

to be correct for the reasons given in §1.2A,B, but their approach towards 

the construction of a Restricted Ensemble (R.E.) opened the way for a formal 

and satisfactory characterization of superfluidity. These authors introduced 

a partition in the phase space - actually a partition of the wave vector axis, 

regarding condensate and depletion configurations as independent. The 

partition function then turns out to be the product of two summations over 

two independent sets of configurations. Such a partition function characterizes 

a Restricted Ensemble. The property of superfluidity then comes about quite
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directly and simply, from the assumption that configurations differing 

only by their condensate population are all statistically equivalent - 

that is, cannot be distinguished by their thermal properties. The 

incorporation of such a hypothesis entails superfluidity, in so far as 

the entropy associated with the condensed mode configurations is identically 

zero, at all temperatures for which a condensate exists. This, in turn, 

implies superfluid behaviour of the fraction of the particles in the con­

densate; for, they cannot dissipate energy without increasing the entropy.

So, individual particles in the condensate becomes locked to one another 

by a global property reflecting their order.

The existence of B.E.C. thus becomes a necessary condition for super­

fluidity in the work of Hohenberg and Martin, but not sufficient; for, the 

premise of statistical equivalence must be validated - in turn . This can be 

shown by proving that the free energy is lower if the condensate is fully 

ordered; that is, comparing the free energy of the superfluid ensemble 

thus constructed with another (comparable) ensemble, equal to the former 

except for the fact that statistical equivalence of condensate configurations 

is not imposed.

This paradigm of Hohenberg and Martin will be adopted and fully exploited 

in this thesis, but free from the special role of Bose condensation as an 

order parameter, and also from any interpretation of the order parameter 

at initial stages. The order parameter will be identified at the end¡ in 

the meantime all possibilities will be considered and left open for future 

decision. The adoption of such an improved paradigm will bring about pro­

found changes in the theory, as to the concepts and methods involved, and - 

most importantly - as to the prediction of the excitation spectrum. These 

matters are considered next.
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B. Statistical Characterization of a Superfluid

The analysis of dynamics and statistical mechanics in almost all 

existing theories has been carried out in terms of the fields of the 

representations involved, either P.R. or the C.S.R. However, the analysis 

is seen to go deeper, to be richer and more general, if the discussion is 

shifted into the context of an abstract phase space r, i.e. the domain of 

a set of canonical dynamical variables, without advancing - for now - any 

reference as to how these variables are defined in terms of the fields of 

one representation or the other. By keeping the discussion at this level 

several questions concerning dynamics and statistics can be treated quite 

generally, and the discussion is seen to apply to either bosons or fermions, 

as well as for classical systems.

An interesting feature about the phase space is the fact that it is not 

only the domain of canonical dynamical variables, but is also the domain 

for statistical counting, and hence provides a bridge between dynamics and 

thermodynamics.

The strategy here is to define a certain separable phase space, rg,

(see §2.2) as the direct sum of a number of independent phase spaces Ŝ , 

such that all ensembles constructed from configurations in rg always 

admit a R.E., without having to introduce - a priori - a partition of the 

momentum axis. The partition function of any ensemble constructed from 

rs will be of the form

Z -1 Î 1 «
c1 c2 CJ ck ck ck

(1.3.1 .)B

where n is the statistical operator (to be specified in §4.4) and the 

summations are over all possible configurations c* in the independent spaces 

S^. An ensemble whose partition function is given by (1.3.1,)B is called 

a Restricted Ensemble (R.E.).



A superfluid (non-superfluid) ensemble is defined as a R.E. for which 

at least one (no) set of configurations c£ is statistically equivalent.

A superfluid ensemble will be shown to give the properties of a super­

fluid in agreement with Landau's two fluid model; in addition, the present 

characterization is analatically refutable (by proving that for a given 

identification of some set of configurations with the order parameter, the 

free energy is not reduced with respect to that of comparable non-superfluid 

ensemble); however, it is not verifiable. For it cannot be proven that 

an interpretation of superfluid configurations gives the least conceivable 

free energy. On the other hand, the present characterization is empirically 

testable, in so far as the critical temperature, Tc, obtained as the 

temperature at which the free energies from superfluid and non-superfluid 

ensembles are the same, can be compared with the actual experimental value

o f  V

Two important features of a separable phase space must be pointed out 

at this stage. Firstly, the usual dynamical problem - in terms of particle 

field operators, say - is not formulated in terms of a separable phase 

space, hence the introduction of rg amounts to a change of variables; say 

from p^, - defined in a non-separable phase space rns= {(p^.q^)} - to

p£, q£ defined in r$ r ® S ,̂ = {(p^r,q£ )}. It is noted that even

though the number of independent variables in rg is larger than in rng the 

dimension (i.e. the number of degrees of freedom) is the same. It is also 

noted that if both phase spaces are to be employed to formulate the same 

dynamical problem, the volumes of rg and Tns, must be the same; and, to be 

consistent with the definition of rg, the 'old' and 'new' variables must be

additively related, i.e. q^ = £q£; p^ = £p£. Secondly, it must be noted
 ̂ x xthat wave-vector labels of separate variables p^ and q^ have been specified 

further by a sub-index i (whenever this is not shown, it is to be read as 

at k). This indicates that p£, q£ are formally defined over different wave-
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vector domains though taking the same numerical values; i.e. p1,q1 and 

p-’.q-’ - for î j - are defined over different domains k^e|K^,kje|Kj,

An important consequence of the first observation is that the number 

branches of the spectrum for a problem formulated in terms of a separable 

phase space may be larger than in terms of a non-separable phase space, 

if the dispersion relations for all the variables are not identical. This 

will turn out to be the case here. As to the second observation, the 

discrimination of wave-vector labels brings about an intrinsic distinguisha- 

bility among the various dynamical objects associated with separate variables. 

This distinguishability is present in most theories in one form or the other, 

but - almost invariably - in an implicit fashion. On the other hand, it 

enables one to end up with a two (distinguishable) fluid model, from an 

initial problem in terms of indistinguishable ^He atoms. Furthermore, this 

feature establishes a selection rule forcing the various objects "i" to 

get excited only to the level of their own dispersion relationas, and 

not to any other level.

One of the advantages of confining the discussion to abstract phase spaces 

is that it is rather easy to abandon the prejudice that the constants of motion 

are associated with the same functionals, regardless of the representation of 

states involved. It becomes clear, for instance, that the number functionals in 

the S.P.S. and the N.S.P.S. are different, namely Ñ' = £ pjjq̂  and Ñ = ju^q^, 

respectively. This without having to specify the representation of states in 

which the two sets of dynamical variables are defined.

It seems clear also that the hamiltonians for the same dynamical problem 

as functionals of two sets of canonical variables, defined over domains of 

different structure, should also be different.

An interesting feature of the definition of dynamical variables of 

separable phase space, in 52.4, is that some of these variables are c-number
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fields. In fact, these fields are regarded here as dynamical variables 

in their own right, not as mere variational parameters, as in existing 

theories. This feature will bring about a profound change of viewpoint 

in the sense that the dispersion relations associated with these fields 

turn out not to be identically zero, but finite and observable. The 

dynamical implications of introducing c-number variables will be considered 

next.

C. Equivalent Formulations of Dynamics from Variables of Separable and 

Non-separable Phase Spaces

Admitting and leaving aside - for now - the conceptual and practical 

advantages of carrying out the statistical counting in an ensemble defined 

over a separable phase-space, and in view of the dynamical implications 

of assigning dynamical character to c-number fields, one must consider 

the question of whether one is justified in thinking that it is possible 

as all to reformulate - on the basis of variables of a separable phase 

space rs - a (generic) problem originally posed, by means of a Hamilton 

functional, say, from a non-separable phase space r.

As a matter of fact for a dynamical problem to be well defined does 

not require of the existence of a hamiltonian, but it does require of the 

existence of a lagrangian. For problems admitting a hamiltonian, both 

lagrangian and hamiltonian formulations of the action principle are equiva­

lent, in the absence of constraint in the domain of lagrangian variables.

The discussion here is confined to such problems.

Now, there is no preferred dynamical language to formulate any given 

problem (of the kind considered here). As a matter of fact any two 

formulations based upon the same lagrangian L, in terms of two related sets 

of variables - defined over domains of the same dimension and hypervolume - 

are dynamically equivalent if and only if: (i) The symmetry group of lagrangian 

invariances is the same, in the sense that for every unitary transformation



74

of coordinates (and C.C.) in one domain leaving L invariant, there is another 

transformation of coordinates in the other domain also leaving L invariant, 

and associated with the same physical properties, e.g. such as displacements 

of the zero of the time or space scales, or gauge invariance, etc.(ii) if 

the number (and nature) of well defined and simultaneously measurable con­

stants of motion is the same and (iii) if the expectation values for these 

observables are the same.

It is noted that the condition that the hamiltonian (or the number 

operator) be the same functional for both formulations was not included 

above, for it is not essential. As a matter of fact if the transformations 

from lagrangian to hamiltonian variables is not in a one to one correspondence 

for the variables involved (separable and non-separable) the hamiltonians of 

both formulations will be different functionals in general.

These defining properties of dynamical equivalence (in the above 

sense) are satisfied if both domains of lagrangian variables are related 

via a unitary transformation. The trouble is that separable and non- 

separable domains are not (and cannot be) related by canonical, unitary 

transformation, so these properties must be tested anew.

The main concern here is to investigate whether it is possible to 

circumvent the trouble raised by the standard formulation of the problem,

in the sense that the operators associated with two conserved and well
(*)defined observables do not commute , namely the hamiltonian and the number 

operator (and also linear momentum). For simplicity of the argument the 

attention will be focused here on those invariances associated to conserva­

tion of energy and total number, a more extensive analysis as to other 

lagrangian invariances following a similar path. Similarly for the sake 

of simplicity a non-relativistic langrangian will be considered. This is 

justified-to some extent - due to the fact that the best known super- 

responsive phenomena occur in a non-relativistic limit; the treatment,

(*) a t le a s t at f in i t e  order o f perturbation in  the f in i t e  volume l im it
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transformation, so these properties must be tested anew.

The main concern here is to investigate whether it is possible to 

circumvent the trouble raised by the standard formulation of the problem,

in the sense that the operators associated with two conserved and well
(*)defined observables do not commute , namely the hamiltonian and the number 

operator (and also linear momentum). For simplicity of the argument the 

attention will be focused here on those invariances associated to conserva­

tion of energy and total number, a more extensive analysis as to other 

lagrangian invariances following a similar path. Similarly for the sake 

of simplicity a non-relativistic langrangian will be considered. This is 

justified-to some extent - due to the fact that the best known super- 
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(*) a t le a s t at f in i t e  order o f  perturbation  in  the f in i t e  volume l im it



however, can easily be extended to the relativistic case.

In order to test whether a formulation in terms of non-separable 

variables is dynamically equivalent to another in terms of separable 

variables, a relationship must exist between these two sets of variables, 

say

5 k -  0.3.1.IC.

This relationship is - of course - only one of the many conceivable; how­

ever, it is a rather simple one, which not only will help to illustrate the 

method but will eventually be (for different reasons) the one employed here. 

From (1.3.1.)C one can express the lagrangian

£(q,4) = 1 I ( q $ k " 4kqk) - H(qk ,qk) (1 .3 .2 .)C

as

LtqCq1) , ^ 1)] = LCq1,^)

To prove that L(q ,q ) admits a hamiltonian at all one defines genera­

lized momenta as usual by p£ = 3L/Sq1 and expresses LCq1,̂ 1) as follows

M q ^ 1) = 1 I . ( p &  - C.C.) - H'Cp1^ 1) (1.3.3JC.
k,i

a

From the action principle one can easily prove - from here - that H' is a 

constant of motion provided, that neither H or H' are explicit functions 

of time, but depend upon it only through q(t), p(t) or q1(t^p1(t).

This method is followed in sections 3.1 and 3.2 for the ideal Bose
4

gas and for the interacting problem of He. The results obtained there 

parallel those of Umezawa^^ and Coniglio and Marinaro*'1̂  to some extent; 

even though the formulations here and there are conceptually different.

Here it is shown that a hamiltonian, H', exists*'  ̂ the separable phase space 

picture for both problems. For the interacting problem, however, the
A

hamiltonian H' is not fully diagonal in the L.C.S.R.; this representation

(*) Different from the particle hamiltonian, H, in general.



turns out to be not elaborate enough as to accomplish the exact diagonali- 

zation of the newly obtained hamiltonian. This parallels the fact that 

the particle hamiltonian, H, is not fully diagonal in the representations 

adopted in Refs. (18,66) ; which are particular cases of the more general 

L.C.S.R. used here.

To achieve diagonalization an iterative scheme must be devized along 

similar lines as that of Umezawa, but not quite exactly like it. The 

general idea of this scheme is to use the non-diagonal segment of W' (or 

of H in Umezawa's method) to generate even more general representations 

of states. At infinite order of such an iterative procedure Umezawa 

obtained the 'physical representation', in terms of which H was shown to 

be diagonal - except for some contributions, Q^, which vanish in the 

infinite volume limit. Here the proposed strategy is the samer J the 

structure of the separable phase space is not changed, by the iterative 

procedure, but only the definition of dynamical variables in terms of the
A

ever more general fields is. In consequence the expression for H1 as a 

functional of generalized coordinates and momenta is not changed, but the 

expression in terms of newly obtained fields is. Hopefully one ends up 

with another physical representation, in terms of which H" should be 

diagonal. It is conjectured that the diagonalization of P'-from the present 

setting-would be more general than Umezawa's; in the sense that terms of 

the form of Qy (i.e. non-diagonal, but neglegible in the bulk limit) should 

not arise. This is due to the fact that in Umezawa's approach only low 

order dangerous (diverging) contributions are cancelled out, namely those 

proportional to linear and quadratic (non-diagonal) contributions in 

elementary excitation operators of the zeroth order trial representation. 

Here, on the other hand, an exact condition of cancellation is obtained and 

employed to obtain fi'. Such a condition is expressed in terms of the 

dynamical variables - not in terms of elementary excitation operators of (*)

(*) but the hamiltonian are actually different.
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the zeroth order trial representation - hence it holds at all orders of 

iteration. Furthermore, it involves not only low order dangerous con­

tributions (proportional to first and second powers in the dynamical 

variables) but also high order dangerous contributions (proportional to 

third and fourth powers). In particular the non-diagonal perturbation 

is free from these dangerous contributions here, unlike in Umezawa's
A

method. For this reason non-diagonal contributions to H' such as Qy should 

not arise here, and diagonalization should be proved in the finite volume 

limit.

Now, as to the number operator in the present scheme, it is noted 

that this functional, N', is determined from the structure of the separable 

phase space. This functional is given as the local limit, k' -*-k, of the 

most general one-object propagator, G(k%k), that can be constructed in

rs, namely

G(k',k) = f o U 1

(1.3.40C .

= K  - . i / Ak i,k

It is noted that contributions of the form p^q^ (for î j) do not arise in
A A

G or N', due to the fact that such contributions make reference to two 

distinguishable objects.

The number functional in the non-separable phase space, rns>is given 

by

N =  jjpkQk (1.3.50C,

thus,from pk = Ipk»qk = £qk it follows that N' and N are not the same 
i K i K 

functionals, i.e.

N = N' - I pjqj
i.J
(î j)

(1.3.6.)C .
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This will prove to amount to a very significant difference. When the 

linear coherent state representation is introduced and canonical variables 

p^q1 are defined in terms of the fields of this representation, it will be 

possible to appreciate that N" is diagonal in L.C.S.R. Furthermore that
A
N' is the diagonal part of N in this representation. Hence if the 

hamiltonian in the separable phase space picture is diagonal in the L.C.S.R.
A  A A

(as is the zeroth order hamiltonian H') the commutativity of and N' is 

ensured.

One can also prove that N' is a constant of motion from the canonical 

equations - properly expressed in terms of generalized poisson brackets -
A A

arising from the action principle, i.e. by showing (H',N'} =0 (1.3.7.)C>

where
,A ni _ t 3A 9 B 9A 9B “ 1 J"  ̂ 1 1i,k  8q 9p 3P aq (1.3.80C,

for arbitrary functionals defined in the separable phase space.

Now, some or all of the new variables p1.q1 may be quantum fields (in 

general there is a good reason - put forward in Chapter Four - for choosing 

q1 and p1 to be all quantum fields if p and q are) ; hence to prove that
A A

H', N' are simultaneously observable (besides being both constants of motion) 

one must show

[H'.N'J = 0 (1.3.9.)C

A A
in addition to (H',N'} = 0, where the commutator refers to the Hillbert 

space of state amplitudes containing a vacuum for the quantum fields in 

(p1fq1),i-e. q£|Co> = 0=<Co lp£ for all k and some i. Both (1.3.7,9)C are 

proven in Chapter Three.
A A

In order to prove that the expectation values of N and N" are the same, 

it will be shown in §2.4 that the normalizing postulate

<n|N|n> = <Cn|N|Cn>
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where |Ĉ > are linear coherent states, entails

<n|N|n> = <C |N'|C >,1 n 1 n '

or in terms of the volumes of the phase spaces rns and rs, Vol(Tns) = Vol(rs). 

Similarly, the same normalization postulate is shown to entail

<n|H|n> = <C |H'|C > ;11 n 1 n

proving that both number and energy eigenvalues are the same in both form­

ulations. This together with the fact that the zeroth order hamiltonian,
A A
H', and N' commute and are diagonal in L.C.S.R.^and - in addition - are both 

constants of motion}suffices to entail dynamical equivalence in the present 

context.

Let us summarize now some of the implications arising in the present 

theory, in comparison with those of the works reviewed in §1.2.

The general ideal of current dynamical theories is that of diagonalizing 

the particle hamiltonian in a non-equivalent representation of the same 

commutation relations. Here the idea is different; one aims at finding the 

hamiltonian for new dynamical objects, other than particles. In the former 

case one finds difficulties in diagonalizing the particle hamiltonian - 

difficulties of the same nature as arise here in diagonalizing H'; one must
A

go to infinite order within a given iterative scheme to get H (there)

or H' (here) diagonal for interacting problems. Eventually one is content - in
A

current theories - with introducing some approximation into the exact H 

(neglecting some non diagonal segment). In this work one neglects some 

contributions from H' in order for this functional to be a diagonal hcmnltonian 

(i.e. depending only on generalized coordinates and momenta, but independent 

of generalized velocities). The main difference is that while the diagonalized
A

particle hamiltonian HQ does not commute with the number of particle operator.
A

The unperturbed hamiltonian (for the new dynamical objects) does commute 

here with the number operator N"
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This entails that from the present view no lagrangian symmetry is broken.

The difficulty as to a broken hamiltonian symmetry,and the way in which it 

is resolved,points out the cause of trouble: Hamiltonian invariance under 

non-equivalent transformation; once one replaces the statement of hamiltonian 

invariance by that of Lagrangian invariance no problem arises.

The standard treatment of the problem - given in the works examined 

in §1.2 - shows two distinctive features: one is that the dynamical objects 

are still regarded as partiales (of which elementary excitations are just 

but convenient variables); the second feature is entailed by the first and 

is that the hamiltonian is actually regarded as the same particle hamiltonian
A
H, which is then diagonalized in a representation other than its natural one. 

However, no similar compensation can be justified for N and leads to the 

pseudo problem of a broken hamiltonian symmetry. If the problem is properly 

formulated from the outset, in terms of new dynamical objects, no problems 

arise at all; furthermore, the notion of anomalous averages does not arise, 

for, the only meaningful averages are those involving variables associated 

with new objects and anomalous averages for these vanish identically.

The involvement of diagonalization conditions in the standard approach 

will be seen to have counterparts also in the present approach. The 

corresponding conditions (enabling here the existence of a hamiltonian) are 

shown to follow from the fact that action principle is redundant in the 

formulation of the problem in terms of separable phase space. The removal 

of the redundancy - which is always admissible on logical grounds - will be 

shown to have the same effect as the diagonalization conditions, i.e. 

compensating some contributions which prevent the existence of a hamiltonian. 

The antecedent of the condition of compensation of dangerous diagrams, 

enabling here the existence of hamiltonian and ensuring in the standard 

approach diagonalization of H, is seen here to arise from the action principle, 

instead of from the minimal ground state energy, as in existing theories.
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The diagonalization conditions in the standard approach involve 

some conditions concerning the coefficients of non-diagonal contributions 

in elementary excitation operators. These conditions concern low order 

powers in elementary excitations, namely linear and quadratic. Here the 

cancellation is an exact one, involving low as well as high order contri­

butions (proportional to cubic and quartic contributions).

This amounts to a notable difference; for, now all dangerous diagrams 

cancel out. The unperturbed hamiltonian, H', as well as the perturbation, 

are free from dangerous contributions (leading to divergencies of the 

perturbation expansion). For that reason it is believed that Umezawa's 

result as to hamiltonian symmetry rearrangement should follow in a more simple 

and general fashion from the present point of view, and also hold in the 

finite volume limit, not only in the bulk limit as it presently stands.

D. Resolution of the Unperturbed Problem in the Random Phase Approximation

A
The exact hamiltonian, H', in the separable phase space is split up 

here into two parts, one diagonal-defining the unperturbed problem - and 

the other non-diagonal, regarded as a perturbation, generating a series of 

representations which hopefully converges to the physical representation.

The unperturbed hamiltonian, obtained in §3.2, is four-linear (not bi-linear 

as in the standard method of Umezawa). From a technical point of view the 

dynamical problem posed by H' is as difficult to solve as the exact problem 

in terms of particle operators. It is recalled that the unperturbed 

hamiltonian should be chosen not solely with respect to its ready solvability, 

but also on the basis of it being a good hamiltonian and diagonalizable in 

the C.S.R. To solve exactly the unperturbed problem posed here one should 

use already infinite order perturbation theory. However, the position 

here is that if the present approach is to be any good - besides resolving 

the conceptual difficulties as to symmetry breakdown and the prediction of
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superfluid behaviour - it must prove that predictions as to the spectrum 

in the standard R.P.A. are in good qualitative agreement with experiment.

The unperturbed problem is formulated in the R.P.A. in section §3.3.

It will become clear that, due to the fact that the problem is already 

formulated in terms of elementary excitations and c-number fields, the 

standard version of the R.P.A. suffices, the generalized version of 

Anderson being not needed at all. In fact the notion of anomalous averages 

which emerges in Anderson's R.P.A. does not appear in the present formula­

tion.

Three excitation spectra are obtained, corresponding to the three pairs 

of dynamical variables associated with the fields of the linear coherent 

state representation employed here (defined in §2.3). The solutions for 

the spectra, obtained in §3.3, are for a pure state description. The 

effective hamiltonian for one pair of variables (those associated with 

first order coherent fields) is seen to be invariant under a certain - 

phonon-like - transformation, proposed by Bogoljubov^’̂ and discussed by 

Hohenberg^^ and o t h e r s , which ensures that the dispersion relation 

for these fields is gapless and linear in the long wave limit. The other 

two branches, corresponding to the other two pairs of variables, are seen 

to be the same and to exhibit a gap - the same gap as obtained by many 

authors before.

The question of rearrangement of gauge invariance and of the coupling 

of all fields to an external field of velocity is considered in section 

§4.1. Gauge transformations in the separable phase space are obtained and 

Lagrangian invariance under gauge transformation is explicitely tested.

The transformation laws for all variables involved are also obtained in 

section 4.2 and the Euler-Lagrange equations of a complete Gauge theory of 

superfluidity are found.



83

Section §4.3. is concerned with the evaluation of the first two 

reduced density matrices, for a unique system in a pure state description. 

It is shown that for such an ideal system (independent of statistics!) 

O.D.L.R.O. occurs in both reduced density matrices independently.

The statistical problem is finally posed in section §4.4. A non­

superfluid ensemble is constructed first from configurations in the 

separable phase space. It is shown that the thermal average amplitude 

of first and second order coherent fields is identically zero in the non­

superfluid ensemble. This entails that no O.D.L.R.O. occurs for this 

ensemble.

Several options of superfluid ensembles are considered, and reduced 

to only one; the other possibilities being discarded as they do not re­

produce experimental results. The remaining option identifies the pairing 

fields with the order parameter. First order coherent fields are seen to 

be identified with part of the normal fluid. A surprising feature is that 

as a result of the peculiar statistical counting the upper two branches - 

which are identical in a pure state description-now split into two separate 

branches defining the extremities of an excitation band. This band very 

much resembles the band discovered by Cowley and Woods^,43), t^ey

attributed to a multi-phonon (and multi-roton) scattering spectrum, i.e. 

to optical modes associated with the gapless (one-phonon) accoustic mode. 

Here, a radically different interpretation - arising naturally - is given.

O.D.L.R.O. is shown to occur in the second reduced density matrix for 

the superfluid ensemble reproducing best the experimental data. O.D.L.R.O. 

in the first reduced density matrix, however, is ruled out. Finally the 

integral equations characterizing the present mean field model in thermal 

equilibrium are given. Due to the difference in statistical counting these 

equations do not resemble previous integral equations given by Luban and 

Evans and Imry. Finally, the condition for the existence of a superfluid 

solution in the above sense is stated.
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Further developments are considered in a final section. Firstly, 

the benefits and difficulties of a more general purely quantum represen­

tation are discussed. Secondly, a coherent state representation for 

fermions is proposed, exhibiting first-order coherence and not open to 

the indictment put forward by Yang^^ . Some conclusions of the theory 

of the Bose superfluid are extrapolated to the theory of superconductivity.

Finally, a coherent representation appropriate to describe ferro­

magnetic and spin-glass phases is proposed. It is conjectured that a 

theory of ferromagnetism, and of spin-glasses, can be constructed along 

the lines of the present theory of superfluditiy, free from a breakdown of 

rotational symmetry. The elements of a classification of phase transitions 

is also discussed here.
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§2. BASIC DEFINITIONS AND NOTATION 

§2.1. Introduction

This chapter is devoted to introducing the definitions of a separable 

phase space, dynamical equivalence and linear coherent state representation 

(L.C.S.R.) together with a brief investigation of the properties associated 

with these definitions. It will also serve the purpose of establishing 

notation for future use.

The notions of separable phase space and dynamical equivalence are 

introduced in §2.2. It is shown there that the main properties of separable 

spaces is that the volume of the whole spaces is the sum of the volumes of 

separate spaces composing it,and that an ensemble constructed from such 

separable spaces always admits restricted ensembles.

As to dynamical equivalence, the general idea is that a given physical 

system is identified through its Lagvangian operator, not by its hamiltonian 

and that a dynamically equivalent formulation of the same problem in terms 

of an alternative set of variables should leave the group of lagrangian 

invariances unaltered; the idea that both formulations must possess the 

same hamiltonian is abandoned. A method for demonstrating dynamical 

equivalence is also given in §2.2.

A L.C.S.R. is formally defined in §2.3. as the canonical mapping from 

the representation of the number of particles. An explicit expression 

linking elementary operators of both representations is obtained, some 

elementary properties of L.C.S.R. are considered and several quantum averages 

of interest are evaluated. A practical limitation of general coherent state 

representation beyond the linear case is also noted here.

The canonical variables of the separable phase space - introduced in 

§2.2. - are explicitly defined in section 2.4. in terms of the fields 

involved in the L.C.S.R. Finally, the question of interpreting some of these 

variables with superfluid variables is briefly discussed.
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52.2. Definition of Separable Phase Space and the Notion of Dynamical 

Equivalence (D.E.)

The present theory of superfluidity is articulated by two concep­

tually different elements. The one is an analytically testable characteri­

zation of a superfluid, developed purely on statistical grounds, whilst 

the other is a reformulation of the dynamical problem free from the 

occurrence of a breakdown of symmetry. The latter is capable of yielding 

predictions concerning the excitation spectrum, which - at finite order 

of perturbation - are in qualitative agreement with experiment, in the 

finite volume limit. The statistical question, however, will be considered 

first leaving the discussion on dynamics to the second part of this section.

A. Separable Phase Space

The characterization of a superfluid proposed here stems from the 

theoretical possibility of discriminating at least two independent sets of 

configurations, from an ensemble of systems*'  ̂defined over the phase space. 

Ensembles admitting such a discrimination are commonly referred to as 

Restricted Ensembles (R.E.).

A R.E. is said here to characterize a superfluid and accordingly 

called Superfluid Ensemble (S.E.) if and only if the thermal average of 

the distribution is an additive functional of at least two sets of independent 

configurations,and if configurations of at least one set are all statistically 

equivalent.

It is rather simple to see that the above characterization of a super­

fluid coincides with the paradigmatic view of a superfluid in Landau's 

two fluid (hydrodynamic) model. In fact, as a result of a statistical 

equivalence, an additive part of the total density is fully ordered; whilst 

all particles - in both the ordered and non-ordered parts - are capable of 

exchanging the available energy, momentum and number; particles in the

(*) of the same or different size
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ordered part, however, cannot turn mechanical energy into heat, ‘ for

they cannot dissipate energy without increasing their entropy.

It is most convenient to normalize the volume of the phase space

sufficient conditions defining a S.E. in terms of properties of the phase 

space itself - on the one hand - and as a rule for counting ensemble 

configurations on the other.

A necessary definitory condition of S.E. is that the ensemble be 

defined over a separable phase space, ?s, involving several independent 

pairs of mutually canonical variables (defined over independent domains 

S^), such that the volume of rg is the summation of the volumes of the 

independent domains, i.e.

R.E's defined over a separable phase space are called additive restricted 

ensembles. A. S.E. is an additive R.E. possessing at least one fully 

ordered part; otherwise is called Non-Superfluid Ensemble (N.S.E.).

It is noted that it is the property of statistical equivalence which 

actually incorporates the superfluid properties of the ensemble; the 

N.S.E. obtained from the elimination of statistical equivalence constitutes 

a pole of reference to test whether it is energetically favourable for a 

given system to evolve into a superfluid phase from a normal phase, or - 

indeed - whether a superfluid solution is possible at all. This question 

will be considered in Chapter Four.

Throughout this work the following phase space will be considered:

( (*) **1to the total number of particles J and to rephrase the necessary and

V o i(rs) = £vo1(S.) (2.2.1 .)A.

(2.2.2.)A

(*) either individually or collectively

(**) either fix or variable, small or large number.
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where are independent phase spaces of the same dimension, but whose 

canonical fields are defined over formally different wave vector domains > 

symbolically

specified further by an index *i’; this indicates that generalized co­

for i/j, i.e. loi i Kj, even though they take the same spectrum of

It is important to note that definition (2.2.2,3.)A is not restricted 

to "q" or "c"-number variables. In fact, these variables will be 

associated with both ’q' and 'c' number fields for the most part of this 

work.

It is rather simple to prove that rg - as defined by (2.2.2,3)A - is 

a separable phase space. The presence of independent fields is already 

ensured by construction and it only remains to prove (2.2.1.)A. For this 

purpose note that the most general one-object functional of both canonical 

variables that can be constructed from is

The number distribution functional in is the local limit, k'+k, of

A generic configuration in is taken - as usual - to be given by the

(2.2.3.)A(*)

where p1 = (q1)+. It is noted that wave vectors k' and k have been

ordinates and momenta q1,?1 and q-1 ,p̂  are defined over different domains

( * * jnumerical values . This distinguishability has already been mentioned.

G}(k',k) = pj. (2.2.4.)A .

G}(k',k), i.e.

(2.2.5.)A .

expectation values of generic number distributions in Ŝ , namely

(*) the symbols p£ etcetera are not defined for î j, and p£ is

(**) determined by boundary conditions.

at k^=k.
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Cl =- Tr{Pk4> (2.2.60A .

The trace is taken over a representation of states obtained as the direct 

product of the various sets of eigenstates of the number operator functionals 

in Sp namely: N = for the quantum fields involved, or any other 

representation related to this by canonical transformation.

The volume of is given by the summation over k of configurations

Cr.» i.e.

voicsp = ycj (2.2.70A

= TriN1} (2.2.80A .

Now, the most general one-object functional that can be constructed

over the whole rg is

Vk'.k) = (2.2.9.)A .

It is recalled that a contribution of the form £ P^q^ does not occur in
i j

Gp since it makes reference to two distinguishable objects. The number

distribution in rs is

Nk ~ Ipkqk

A generic configuration in rg is given by

q  ■ ÎWpjqj)

¡4 (2.2.12JA ,

and hence the volume of rg is

Vo i(rs) = I ck

= ZcJ = l volisi ,
i,k i
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which is the desired condition (2.2.1.)A; or in terms of the total number 

expectation values

N' = Tr{^>

= N̂1 (2 .2 .130A .1

It is noted that (2.2.1.)A is a consequence of the involvement of 

distinguishability in (2.2.3.)A. Should this not be present additivity 

would be lost.

From the above considerations it follows that the partition function 

for an ensemble defined over rg, given by

Z = t Tr(fl) (2.2.14.)A
Ck

where Q is the thermal density operator, is expressible as

z = L  L - - L - -  Tr{«} (2.2.15.)A »
ci cl  cii

which is the well known expression for a R.e / 28,45\  The main property 

of a R.E. is that the (quantum and) thermal average of functionals defined 

over only one space,is independent of the weighted counting of configura­

tion over the other separate parts of the ensemble, i.e.

«A. »  = Tr{£ A. n}/£ Tr{n) (2.2.16.)A .

Should the part of the ensemble-defined over S£ - be fully ordered, then 

(2.2.16.)A reduces to

« A k »  = Tr{Ak R(Uj))/Tr{n(cJ)} (2.2.17.)A ,
&

_£
where the representative configuration Ck is that satisfying the normaliza­

tion condition (if any).
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Consider a superfluid ensemble specified by the set of all statisti-

The corresponding non-superfluid ensemble, on the other hand, is associated 

with the partition function

involving summations over all sets of configurations.

A superfluid solution will be energetically favourable if the free 

energy obtained from Zg is lower or equal than from Zns, i.e. if

transition from the normal to superfluid phases or viceversa. Leaving 

now aside the statistical problem, let us consider next the question of 

whether a dynamical problem formulated in terms of variables of a non- 

separable phase space can be reformulated equivalently in terms of 

variables of a separable phase space.

B. Dynamical Equivalence

cally equivalent configurations, say c£ for i < i. The partition function 

for such an ensemble is

Zs = I l ....Tría}
pil+l „1+2 
K K

(2.2.18.)A.

(2.2.19.JA ,

F -F = -KT ®i(Z/ZJ > 0 n s  ns s (2.2.20.)A

= -KT in Z > 0 o (2.2.21 OA ,

where (2.2.22.JA .

The equal sign determines the critical temperature, signalling the

Consider a quantum system identified by the Lagrange operator
A *

LCq,<\) functional of one pair of generalized coordinates and velocities,
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q, q, defined over a non-separable domain. The dynamical problem is 

completely specified by the group of lagrangian invariances and by the 

expectation values of all the commuting constants of motion. For the 

kind of hamiltonian problem considered here, L can be expressed as

= 1 Itq$k + (Ak)+qkl-H(q,q+) (2.2.1 ,)B ,

where H(q,q+) is the hamiltonian functional of the generalized coordinates 

and momenta q^, p^, the latter being defined through

Pk = 3£/Mk = %  (2.2.2.JB .

The phase space, T ^  {(pk,qk)}, is non-separable.

Consider a set of variables of a separable space linearly related to
A A A
q, 4 and P i°e0

qk ” lqk; ̂ k = ̂ k; pk = £pk (2.2.3.)B̂
A  ̂ 4

this relation enables us to express L as a functional of q , 4 . Let us
A A A

denote by Lns and Ls the expressions for the same Lagrangian, L, in terms
_ A A i  2,

of q, 4 and q ,q , respectively.

The two formulations of dynamics posed by ¿ns and are dynamically

equivalent if and only if (i) the symmetries of and are rearranged, and

(ii) if the expectation values for the constants of motion are the same,

irrespective of the domain of definition of the dynamical variables.

The name symmetry rearrangement was coined by Umezawa*'̂ '* to refer to

a situation in which the same hamiltonian is diagonal in two non-equivalent

representations, i.e. is really hamiltonian symmetry rearrangement. Here

the connotation of symmetry rearrangement is more general, in that it also

incorporates the rearrangement of the gauge symmetry - in particular - and

of all Lagrangian invariances, in general. For simplicity the analysis here

is confined to two lagrangian invariances, connected with conservation of

(*) The hat A on variables p1, q1, 41 is not introduced since some of the 
dynamical variables are c-number fields.
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energy and number; the analysis of other invariances - whether related to

conservation properties or not - should follow a similar path. The

symmetry is rearranged if there is a one-to-one correspondence between

unitary transformations in r and r leaving L and L invariant,iî b ns sr**)respectively. J

£ns *s invariant under transformations shifting the zero of the time 

scale, and under local gauge transformations, amongst other invariances. 

The generator of two such transformations in the non-separable phase space 

are

Ut = exp[iH(t-tQ)/h] (2.2.4.)B

and Ug = exp[i^SkNk] (2.2.5.)B,

respectively, provided that p,q are q-numbers and that H does not depend

explicitly on time; Sk is an arbitrary c-number function, independent of

time, and Nk is the particle number distribution operator. For the kind

of systems considered here, H and N = £Nk commute in the particle représen­
le

tation (or in any other representation linearly related to it by canonical 

transformation).

Non-separable variables transform according to

i-1qk -  qk = UqkU 

Pk * Pk " °Pk0’1

(2.2.6.)B

(2.2.7.)B,

where U is either Ut or U ;̂ qk = qk exp[iuk(t-t0)] for Ut and qk = qk.

. exp[iSnJ for Ug. The invariance of Lng under gauge transformations can 

only be shown in the presence in L of a compensating vector field, A,

(*) Note that due to the fact that^canonical variables are the adjoint of 
each other, i.e.pk=(q1) + , '̂-'Cq̂ ) * , symmetry transformations of
coordinates (at its canonical conjugate) are, in fact, defined from the
phase spaces.
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transforming as A A + const. k.S^ .

These invariances are equivalent to the statements

(dH/dt) = 0, (dN/dt) = 0 (2.2.8.)B,

or, in view of the fact that the hamiltonian is the evolution operators 

of canonical variables as indicated by the Heisenberg equations -

itotpk = [^>Pk]

_±fi9t^k = [H,qk]
(2.2.90B,

it follows that the invariance of Lns under transformations (2.2.6,7.)B 

is equivalent to the statements

(dH/dt) = 0, [H,N] = 0 (2.2.10.)B.

To prove symmetry rearrangement one, must show (i) that the expression 

Ls admits a hamiltonian H', for generalized momenta defined by (2.2.3.)B > 

i.e. that p£ satisfy

pj = 8Ls/3<iJ (2.2.11 O B ,

and that H' is a constant of motion, i.e (dH'/dt) = 0 and (ii) that the 

number operator in rg, namely N', is time independent too, i.e. (dN'/dt) = 0.
A

It is most important to note that (dN/dt) / 0 is not required, for this is 

not the number operator in rs. The condition of time independence of N' 

can be re-expressed as

(H',N'} = 0 (2.2.12.)B,

A *

where (A,B) is the generalized Poisson bracket

{Ä,B} = I 
i,k

3A 9B _ _3A_ 3B 

^k 9Pk ^ k
(2.2.13.)B.

This bracket reduces to a comnutator if all variables p1̂ 1 are q-numbers
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This is not the case here; hence (2.2.12.)B ensures the time independence
A

of N" but does not guarantee that H' and N' have the same set of eigen­

states. This must be proved independently through

[H',N'] = 0 (2.2.140B,

where the commutator now makes reference to the same set of states mentioned 

after eq. (2.2.6.)A.

Now, as to the second property required for dynamical equivalence - 

concerning the same predictions as to expectation values it is noted here 

that the identity must be a strict one, satisfied by individual systems, not 

only at an ensemble level. In other words,

Tr{N} = Tr{N'} (2.2.15.)B

Tr{H} = Tr{H'} (2.2.16.)B

must be satisfied for every sub-system of an ensemble. It is not required 

that higher momenta of the distribution of energy and number be the same but 

only their average values.

(2.2.15.)B can be written as

VoiCi^g) = Vol(rs) (2.2.17.)B

this condition cannot be fixed - a priori - since the variables of r andr ns
rg are related to each other. One must derive (2.2.17.)B as an identity.

As will be made clear in Chapter Three this imposes a limitation on the 

possible definitions of p1, q1 in terms of the fields of certain representa­

tions. For noWjit suffices to point out that (2.2.15,16.)B follow if the 

quantum field in rg are related to those fields in rng by canonical trans­

formation. One can then prove that taking

Tr{N} = <n|N|n> = <Cn |N|Cn> = N (2.2.18.)B ,
A

postulate - where |Cft>= irT̂ |n> are eigenstates of N' - impliesas a
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(2.2.15.)B; similarly <n|H|n> = <Cn|H|Cn> should entail Tr{H} = Tr(H').

It is noted that the number of independent symmetry transformations in 

rg can be larger than in rng. The strategy here is to introduce a link 

among the transformations in separate spaces, so that the numbers of degrees 

of freedom are the same in both descriptions and the overall symmetry is 

rearranged. This matter will be further discussed in §4.2.

§2.3. Definition of Linear Coherent State Representation (L.C.S.R.)

Consider the well known Particle Representation (P.R.), also known as 

representatiaaof the number of particles. In momentum basis P.R. is 

characterized by an orthonormal and complete set of state amplitudes,

(In^), = n for all n, and by particle creation and annhilation

operators a^ and â . The latter satisfy Bose commutation relations

Periodic boundary conditions are assumed and volume is taken as unity, 

momentum is - thus- a discrete label taking any one of the possible values

The generalized version of a C.S.R. is given as the canonical mapping

(2.3.1.)»

tak,ak^ = 0 = [ak,ak'] (2.3.2.).

= 2irn ; n = 0, ± 1,...,±N (2.3.3.),

where N is the total number of ^He atoms (known as a datum).

Single particle states are eigenstates of the number operator

(2.3.4.),

yielding total number as an eigenvalue, i.e.

N|n> = N|n> (2.3.5.).
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where

tg = exp 8g (2.3.6.) ,

6„ = l [(a a++y a+ a*+<5 , a*a*a^+...)-C.C.+ i£ a+a ]
G n o k P P P’l P q P » M  P <\ *■ P.q P q> • ••

(2.3.7.),

where °n> Y n ^  <5 , , etc and their complex conjugate (C.C.) areP p.q P»q.K
complex, time dependent, abelian c-number fields. These are independent 

of each other and also of a^,a^ and satisfy the following very important 

definitory properties;^ ^ is real.
Q II Q 1 XS ?p»q cq , p ’ 5p .p  0 ( 2 .3 .8 .) ,

Y = Y = Y „ „ ( 2 .3 .9 .) ,p .q  q .p -p»-q

i |2„Y Y  ̂ ,  =p .q  p ,q Y *5 „6 > +p .q  p .p  q .p

Yp»p" 6p.q 'V »q(‘1’ 6p>p':) (2.3.10.).

The dash on the summation in (2.3.7.) indicates that multiple counting is 

to be avoided. 6's and other multiple valued c-numbers satisfy similar 

properties as (2.3.9,10.). Such conditions bring about a remarkable 

algebraic simplicity without which advance would be impossible. The 

transformation tg isunitary (in fact 9 = -e, hence rG = rG ). In 

addition, e is the most general polynomial of either a£ (.exclusive) 

or a^ not commuting with ft. A simpler transformation will be used through­

out this work. This is obtained by neglecting all c-number fields from
(**)6 onwards . Such a second order transformation - denoted by -r , comprises 

and generalizes Glauber's^^ and Bogoljubov-Valatin's transformations 

(6,7,67,68) to include also pairs of non-zero overall momentum.

(*) the hat on transformation generators as well as in elementary operators 

is omitted.
(w*)\  -'The simpler version of a C.S.R. obtained from the transformation of P.R. 

according to t is called L.C.S.R.
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The vacuum state amplitude of L.C.S.R. is given by

|Co> = t |0> (2.3.11.)

and the corresponding creation and annihilation elementary excitation

operators by
+ + -1 

ak = TV (2.3.12.)

ak = T3kT‘1 (2.3.13.)

An orthonormal set of C.S. is obtained - as usual - by applying, successively 

the operator on |CQ> i.e.

Ic n> = nk|CQ> (2.3.14.)

where J iw = n . 
k K
The present version of coherent states differs from that of Glauber 

in the sense that all states |Cn> are defined for the same value of the 

c-number fields a, and y, ; in consequence, the set {|C >} is orthogonal 

and complete, not non-orthogonal and over-complete as for the type of C.S. 

employed in the theory of lasers. The reason for resorting to the present 

set - instead of a Glauber-like set - rests on the fact that the kind of 

statistical counting envisaged here is different from that of the so- 

called P-representation. A more detailed discussion of this aspect will 

be given in Chapter Four.

The mathematical complexity of transformations and r is enormous.

The cumbersome algebra involved in the Baker-Haussdorff-Campbell theorem^ 1 

prevents their expression as a multiplication for different wave vector 

modes. In order to evaluate (2.3.12,13) explicitly and exactly, one must 

devise a method yielding the exact result without factorizing t ; this is 

done in Appendix A where the following relations are obtained. (**)

(**) see for instances, A. Messiah, 'Quantum Mechanics' (North Holland Pub. 

Co., Amsterdam, 1964), Vol. I, p.442.
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where

Q
X

* 
+

 

II J ( u ,  a +  -  
q  M « » ' VM a q> + p k

IIo

I ( u v  a  -  
“  k ,q  q Vk , q V + p k

U k , q 1 CM h0 V <lt ,q  *  i ( s k , q ^

v k , q

III t--
\

X
-

'h

à
x

- ) s i n h ( X k )

IIM
X

| x t , k i 2  ■ l Y t , k

(2.3.15.)

*\

(2.3.16.)

\  = (ak^k,t - iak^t,k)[cosh(V - 1i/Xk -

*1 - | tuk,q< * vî,<fq>

(2.3.17.) 

(2.3.18.) .

From (2.3.16.) it follows that JC|uk q |2 - |vk q |2) = 1 (2.3.19.) ,

which, in turn, enables to show that the a's are Bose field operators, i.e.

(2.3.20.)[v  v ] = [v  v ] = 0

[v  al'] “ 6k,k^ (2.3.21.)(‘)

Relations (2.3.15.) are central in this work. From their inspection it 

is clear that they are the most general linear relations between particle 

and elementary excitation operators; furthermore, they admit an inverse, 
namely

+ t* f N it
ak ■ ¿<“k,q“q * 'k.qV * *k (2.3.22.)

ak ' ï<\,q“q * ' M » ?  * *k (2.3.23.)

obvious from (2.3.12,13.)



these relations are obtained by multiplying the upper relation of (2.3.15.) 

by uk t and the lower one by v£ summing over k and using the defining 

properties (2.3.10.), which can be restated more conveniently as follows:

v v,* = I v,p.q k,q 1 k,q' (2.3.24.)

Vp,qVk,q E (Vk , / (2.3.25.)

up,quk,q 5 Uk,q̂ (2.3.26.) .

Should third and/or higher powers of a's be involved in 0 expressions 

(2.3.15.) would be an infinite series as shown in Appendix A. Even in 

this case, however, the first three terms of the series would be those 

of (2.3.15.).

The operator number of elementary excitations is given by

%  = l ak“in = L "k “ £ ukuk (2.3.27.) .

Coherent states |C^ are eigentstates of n yielding the number of elementary 

excitations as eigenvalue, i.e.

n |C = n|Cn> (2.3.28.) ,

as follows from (2.3.5,12-14.).

It can be readily tested that number operators of P.R. and linear C.S.R. 

do not commute, indicating that these two representations are non-equivalent 

representations of the same (Bose) commutation relations, in the sense of 

Araki^ and Umezawa*"^ . From this, however, one cannot conclude - as 

will be shown - that the gauge symmetry is inevitably broken.

The notion of normal ordering satisfied by P.R. is also satisfied by 

linear C.S.R. In effect the properties
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(2.3.29.)

(2.3.30.)

and their conjugate relations, entail (2.3.31.)

(2.3.32.)

(2.3.33.) ,

and their conugates. In particular, the following relations are satisfied

which defines |C0> = r|o> as the vacuum state amplitude of L.C.S.R.

The average of any operator of P.R. can be easily evaluated over 

Linear Coherent States (L.C.S.) by replacing particle operators by elemen­

tary excitation operators according to (2.3.22,23) and making use of 

(2.3.32-34.). Some averages of interest are:

(i) the average amplitude of particles

“k ' V = <co K = 0 (2.3.34.) ,

<Cn|ak|Cn> = *k (2.3.35.) ,

(ii) the average amplitude of pairs

+ vv «.Cnt+1)]k,tuq,tint (2.3.36.)

xk,q " ^k^q^k (2.3.37.),

where nk is the average number of elementary excitations

<Cn|akBk |Cn> = nk (2.3.38.) .
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(iii) The average number of particles

* i''k,qi2<v')1 !N (2.3.39.) .

It is important to note that the L.C.S.R. is defined such that the average 

number of particles is the same when evaluated in the particle representa­

tion as in L.C.S.R. This amounts to rescaling the number of elementary 

excitations (whose number would otherwise equal N).

(iv) The average energy corresponding to the particle hamiltonian

where F involves fluctuations about mean field averages, the dash on the 

summations denotes the exclusion of terms in l=o and p+Jl = q.

It can be readily tested that the above average expressions coincide

H = (2.3.40.)

is given by

A

(2.3.41.)j

(2.3.42.)

(2.3.43.)y

with those of Valatin and Butler*'^ for <j>, = = 0 and v. = u. = 0K K K ,q K,q

The condition

<n|N|n> = <Cn|fl|Cn> (2.3.44.)
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has been used by most authors in the field in a heuristic 

fashion. It ensures that the (normal) phase space's hypervolume is the 

same irrespective of the representation of states employed; such a condition 

is not tautologically satisfied,however; on the contrary its validity - 

taken here (as elsewhere) as a postulate - entails that the average number 

of elementary excitations is re-scaled,in the sense that the identity

<n|N|n> = <C |n|C > (2.3.45.)

is no longer valid. In effect the L.H.S. of (2.3.45.) is equal to N - 

the total number of particles - should (2.3.45.) hold, then = N; 

hence, according to (2.3.38.) <Cn|N|Cn> is greater than N (for |<)>K|2 and 

lvk,ql different from zero). Conversly should (2.3.38.) hold - as is 

the case here - (2.3.45.) cannot be true. The relevance ot this comment 

will become clear in §3.2.
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§2.4. Definition of Separable Phase Space Variables in terms of Fields 

of L.C.S.R.

There are, in principle, several ways in which dynamical variables p1, 

q1 can be defined in terms of the three pairs of canonical fields of 

L.C.S.R. Most authors employing coherent state representations adopt the 

viewpoint that the only dynamical fields are and ; i.e. they define

Pk E ak’ qk " ak (2.4.1.)»
 ̂ A

in analogy with p^, q^ defined over the particle representation as

P k E a k > qk E a k (2.4.2.).

It is clear, however, that the phase space r' = {(p^,qp} is not separable.

Furthermore, the number operator in r ' is n = > “.a., however, if Trin) = N ;k K K

hence from (2.3.39) Tr{N) = <Cn|N|Cn> is larger than N. Thus Tr{N) t Tr(n). 

In consequence the volumes of the phase spaces 1 are not the same.

Presently the following definition is adopted:

Pk - Ivk ,q V  qk E K .q V ^ k  E ^ k
4  4

Pk E K . q V  qk = K . q V  ?  = a *tqkH Q

pk E *k » qk E ^k » ^  = iti3tqk

(2.4.3.).

Provided that and are defined through (2. 3. 12,13) the following 

identities are satisfied

ik -i Pk- ‘ik ■ lik • l4 (2-4-4->.

as anticipated in §2.2.

The number operator in the separable spaces rg is 

(*) Normalized to Tr(N) and Tr(n), respectively.
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N' =k^q ,Uk,q|2V q +|vk,q|2(V q +1) + k k|2] (2.4.5.)

i.e. N' is diagonal in L.C.S.R. It is clear from this that the number
A A

operators N' and N are simply related through

N = N'+ non-diagonal terms ,

where the non-diagonal terms are non-diagonal in both P.R. and L.C.S.R.;
A A

in other words N and N' are the diagonal part of each other in the other's 

representation. From this alone it follows that Tr{N} = Tr{N'}. Let us 

see this in more detail

N = <n|N|n> = <CjN|Cn> (2.4.6.)

and from expression (2.3.39) for <0^|N|Cn> it follows that

N = l [ u, 2n l u k>qi iq
k,q

^k,q '(nq+1) + | (2.4.7.),

Finally, (2.4.5,7) imply, N = Tr(N') = N'. It is noted that any other 

definition - as (2.4.1.) for instance - would render

Tr{N) = Tr(N')

and
<n|N|n> = <Ch |N|Cn>

in consistent.

One interesting observation as to the canonical variables - as defined 

in (2.4.3.) - is that neither of them individually is a boson field, in fact

[V * V J q q̂.Uk,qUk%q'6q,q'

[qk»Pk^ - "q q̂/k,qVk',q'6q,q'

[qk’Pk'i = 0 •

The dynamical objects represented in the space S^®S2 , however, are bosons,
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i.e.

4>4

- y v, v,* ,6 „
q.cf k,q k »q q ,q

or from (2.3.30-36)
= I ^ uk,q|2 - lvk,q!?)6k,k

= 6k,k'

To end up this chapter let us consider the question of identifying the 

superfluid configurations. So far, nothing has been said about this 

semantic question. A common prejudice - shared by the author until fairly 

late stages in this research - is that the superfluid segment of the total 

density must be identified with the c-number segment of ft', i.e.

N = 
normal

l (Id
k,q k,q % q

N E  ̂(lvk qsuperfluid k,q ,q

It is noted, however, that there is no reason why this should be so. In fact,

it will become clear in Chapter Four that for the present definition of

dynamical variables the first order coherent density segment 71 <t>v I ̂ cannot
k K

be fully ordered, otherwise the thermal properties would not at all resemble
4

those of Hell at low temperatures. Only if another different phase space 

is envisaged, namely one including a further pair of first order coherent 

variables i.e.

pk m V

♦ -1 
Ti V ek = Tl“kTl1

3 * 4
Pk ' V  pk

exp p k ak V k 5

where
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satisfying

is it possible to regard either U k|2 or 1^12 (but not both) as part 

of the superfluid. This latter possibility will not be considered in 
this thesis.
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53 Dynamics in a Separable Phase Space (S.P.S.)

This Chapter is concerned with the reformulation, in terms of the 

dynamical variables of a S.P.S., of the Bose problem originally posed 

in terms of the variables of a Non-Separable Phase Space (N-S.P.S.) .

The problem of the Ideal Bose Gas (I.B.G.) is considered first in 

§3.1. It is shown that such a problem admits equivalent formulations 

in terms of the variables of both N-S.P.S. and S.P.S. The canonical eqs. 

of motion in the S.P.S. picture are obtained. The notions of overall and 

relative equilibrium within the S.P.S. is discussed. Finally, the connec­

tion between the present method of reformulation of the dynamical problem 

and the standard method or Bogoljubov and Valatin and Butler is elucidated.

The interacting problem is considered in §3.2. It is shown that the 

dynamical problem cannot be reformulated exactly in the S.P.S. if the 

dynamical variables are defined in terms of the fields of L.C.S.R., but 

only if defined in terms of 'the physical representation*; which is obtained 

by iteration starting from the L.C.S.R. A zeroth order problem is isolated 

such that dynamical equivalence holds.

The zeroth order problem for the interacting case obtained in §3.2. is

a non-linear problem. This problem is posed in the mean field approximation

(M.F.A.) in section 3.3. The three branches of the excitation spectrum are

evaluated on the basis of a pure state description. The lowest branch is

gapless, and corresponds to the dynamical variables p^ = <(>£ and q^ =
1 1  2 2The two upper branches corresponding to the variables p^, q^ and p^, are 

identical and exhibit a gap.

§3.1. The Problem of the Ideal Bose Gas (I.B.G.)

The dynamical problem of the I.B.G. is of importance here - from a 

theoretical point of view - because is the only problem which admits 

equivalent formulations in terms of the variables of Non-Separable Phase
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space (N-S.P.S.) and separable phase space (S.P.S.), defined in terms of 

the elementary fields of the P.R. and the L.C.S.R.^respectively. In order 

to produce an equivalent, exact reformulation of the interacting problem 

in terms of variables of the S.P.S., the latter variables must be defined 

in terms of the fields of a certain, very complex, non-linear representa­

tion of coherent states; and requires of the use of infinite order perturbation 

techniques in order to prove dynamical equivalence.

An analysis of the problem of the I.B.G. here will help to elucidate 

the notions of symmetry rearrangement and dynamical equivalence and to 

expose the conceptual advantages of the present method compared with the 

standard one. It will also help to lay the foundations to approach the 

interacting problem.

The problem of the I.B.G. in a non-separable domain is posed by the non- 

relativistic lagrangian

(3.1.1.) can be regarded as a Legendre transformation from a lagrangian

£ns(̂  = * + c-c*)-fiIBG (3.1.1.)

where H.IBG (3.1.2.),

ek i (ft2/2m)k2 (3.1.3.).

formulation - in terms of q,q and their c.c. - to a hamiltonian formulation, 

in terms of canonical variables pk = qk and q .̂ In effect, defining 

generalized momenta as

(3.1.4.)

one finds (3.1.5.),

hence (3.1.1.) can be written as
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Lns(̂  = 1 + c -c ‘Í-Hibg(P ^ ) (3.1.6.) ,

where Hjg^(p,q) = | eicPjc%  (3.1.7.).

(3.1.6.) effects a transformation from the variables of the non-separable 

domain Dns = ((q^.q^)} to the variables of the N-S.P.S. Tns = ((p^^.q^)}.

The total number of bosons is a fixed number, N; the container is 

assumed to have a unit volume, and to be subjected to periodic boundary 

conditions.

The variables of the non-separable domains are defined in terms of the 

fields of the P.R. as follows:

% = ak’ P k = ak' \  = iTlW  (3.1.8.) ,

this is consistent with (3.1.5.). The number operator in the N-S.P.S.,

r , is ns
N = I P Â  = jj akak (3.1.9.) ,

and Hjgç commute in the P.R., i.e.

[HiBG,N]p.R = I
afi_IBG _3N_ 3HIBG 3Ñ 
3ak aaj' 3ak aa*

= 0 (3.1.10.).

Both lagrangian and hamiltonian formulations of the action principle 

are equivalent in the absence of constraints in DnS or Tns. The canonical 

eqs. of motion from a hamiltonian formulation of the action principle,

5 HjBcdt = ° (3.1.11.),

are
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i!V k  = [ñIBG'Pk] 

lfi3t qk = ^IBG’V
(3.1.12.).

Similarly, the evolution eq. for an arbitrary operator, A, in rns is given 

by

= [h ibg,Â] (3.1.13.)

It follows from (3.1.10,13) that both and Ñ (among other operators) are 

constants of motion, and simultaneously observables in the P.R., with well- 

defined eigenvalues

^  = <nlHIBG n> , n = < n|N|n> (3.1.14.).

It is noted that |n> denotes here a generic n-particle state of arbitrary 

distribution, n^, subject to the condition ¡¡n̂  = n. Hence |n> corresponds 

to several energy eigenstates E™ . Note that no condition has been intro­

duced so far restricting the number eigenvalue, n, to the exact (known) number 

of particles, N.
A A

The constants of motion Hjbg and N generate two unitary transformations, 

Ut and Ug, respectively. These transformations induce a shift of the zero 

of the time scale and a local gauge transformation, respectively. Lagrangian

L is invariant under both transformations (in the presence of Yang-Mills 

compensating field for the latter transformation). Further comments on the 

relationship between conservation laws and lagrangian invariances is given 

in §4.1.
A A

Let us now introduce a change of lagrangian variables, from (¿J,q) -

defined in the non-separable domain D - to (q1.q1), defined in the 
3 . .

separable domain Dg = 0  D^, = {(q£,,q£)J. These variables are related

through

(72)

\  = l^k* qk = ?qk (3.1.15.) (
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The inmediate objective here is to prove that L [q(qX) .¿[(¿j*) ] e 
A i i
¿g(q ,q ) admits a Legendre transformation of the form

¿ s ^ . q 1) = 1 X  ( P ^ . c O - H i B c C p S q 1) 
i,k

such that the generalized momenta, defined through

(3.1.16.),

p i J SV <
satisfy

(3.1.17.) j

Pk = l Pkl
(3.1.18.)

and Pj - qi+ (3.1.19.).

This ensures the existence of a hamiltonian in the S.P.S. picture. 

Substituting (3.1.15.) in (3.1.1.) one obtains

¿gCq1 ,^) = £g(q1 ,4i)-HR (qi .qi) (3.1.20.),

where ^ ( q 1 ,^) s i t  (qiY+c.c.)-HfB G ( q \ q 1+)
i , k

(3.1.21.),

^IBG E ekqk qk i,k
(3.1.22.)

H r  = 0 / 2 )  1 (qj+ xj+c.c.) 

i>j >k

(3.1.23.) ,

and ~>{ I . tkq; (3.1.24.)

' ' i  '  sfifBC/spj (3.1.24'.).

It seems, at first sight, that a hamiltonian docs not exist in the S.P.S.

picture; for, does not satisfy (3.1.17-19.). In effect, L' satisfies

s t ; / 3 4  - (3.1.25.),

A

but due to the fact that HR is a functional of the generalized velocities,
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.1 ; , « a
qk, itself cannot satisfy (3.1.17-19.); hence, HjBG+Hr cannot be 

regarded as a hamiltonian (independent of q^). The very presence of HR

seems to spoil our programme.

The difficulty, however, is only apparent, and its resolution will 

be seen to bring about most important consequences. It happens that the 

action, formulated in terms of the dynamical variables of the separable 

domain, is redundant; in the sense that lagrangian L involves a contri­

bution, Hr, in the form of dynamical constraints

Lagrange (E-L) eqs. for the generalized coordinates obtained from the action 

principle.

To show this, it will be most illuminating to incorporate an external 

force field in order to consider the most general case. In the non separable 

domain the lagrangian in the presence of external force fields is

force field itself; there is no need to introduce this expression, for 

the interest here is on the matter field equations, not with the equations 

for the force field itself. Accordingly Ip will be omitted in the future.

one obtains the following lagrangian in the separable domain picture

where satisfy = 0, and these constrains are identical to the Euler-

(3.1.26.) ,

where Hp = (1/2) ’ " (3.1.27

It is recalled that = qR , expressed in terms of lagrangian variables, 

£ns (3.1.26.) is given by (3.1.1-2). Ip is the lagrangian for the

(3.1.27.).

i • 1 ANow, changing variables (q.dp -*■ (q ,q ), and regarding FR as the 
resultant force acting upon separate spaces, ŝ > i.e.

(3.1.28.) ,
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where

*F * F -F 
£s ■ K  - HR (3.1.29.),

- F
£s 5 £s' * "i (3.1.30.)

"r * Hr - H f (3.1.31.),

where £' and HR are given by (3.1.21,22) and (3.1.23,24), respectively, 
and

«F 5 <'/2) T (pjpj.Fyqj)1 ,K
» ! Cî j) a4j. ■
Hf  5 ('/a l Cp^F2 q£)

1

Note that l1R can be expressed as

;*f

where

pj = xj - P*

-F (ifj3 i'-A --I+ i
hr ' O'2' , l k & & *  "£ <£>

19 J

(3.1.32.)

(3.1.33.).

(3.1.34.)

(3.1.35.).

The action principle in the separable domain is given by the following 

statement:

6i | LTs dt = 0, for i = 1,2,3 (3.1.36.),

where the symbol 6^ indicates independent variation respect to qR or d£, for 

i = 1,2,3; thus, (3.1.36.) comprises six independent conditions. The E-L 

equations for the generalized coordinates obtained from (3.1.36.) are

E(Xjj - Fj>) =■ °, i = 1,2,3 (3.1.37.);

1 2  3that is, the independent E-L equations for q^, q^ and q^ turn out to be linear 

combinations of each other, in fact, identical'.

This feature of the formulation of the dynamical problem in terms of 

variables of a separable domain is to be understood as follows: The lagrang-
A tj A

ian Lg incorporates an additive contribution, - HR, introducing some constraints,
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jnamely = 0. These constraints, however, convey no new information; 

these are, in fact, equivalent to the E-L equations which follow from the
A

action principle in the absence of HR. In other words, the constraints 

are redundant.
A

The removal of the redundancy is effected by replacing, in HR, the

generalized forces, X̂ , by their actual (known) values F̂ , in which case
•N A

= 0 and hence HR = 0. The source of the trouble thus disappears, and
Ap  A p  A A

one is lead to the conclusion that Zr = L' , or L = L' in the absences s ’ s s
of external forces.

A

After the redundancy is removed - by setting HR = 0 - one finds 

that is the hamiltonian in the S.P.S. picture. That is (3.1.16.) 

holds and is given by

^IBG = £ ekpkqk (3.1.38.).1 ,K
Now, in the absence of constraints in Ds or rg, the action principle

A

in the S.P.S. picture can be formulated in terms of the hamiltonian H'jgG, 

leading to the following canonical equations of motion

- ffi3tPk = 9W 3qk
ifi3tqj = 3AiBG/3pj

(3.1.39.).

Defining the generalized Poisson bracket as

(A,B) = l  C O S/3qj)(3B /3pj) -  (3A/3pj) (3B/3qj) ] i,k  or
(A,B) = l  {A,B)i

where

{A,B)i  = |  [(3A /3qj)(3B /3pj) -  (3A/3pj) (3B/3qj) ] 

Equation (3.1.17.) can be rewritten as

(3.1.40.),

(3.1.41.),

(3.1.42.).
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‘lH3tPk " {̂ IBG,pk} 

-iR3tqk = ^iBG,qk}
(3.1.43.).

The evolution in time of arbitrary operators in Ts is governed by 

the following equation of motion:

-ifi3tA = {H'j£G>A} (3.1.44.).

From this equation it follows that H'^ is a constant of motion, and that 

the number operator, N' - given by

is also a constant of motion if and only if

<HiBG’N' } = 0

(3.1.45.) -

(3.1.46.),

This condition can be readily verified by inspection, using the general 

property of Poisson brackets

A A A A

(A,BC) = (A,B)C + B(A,C) (3.1.47.).

The condition (3.1.46.) implies that N' is a constant of motion, 

however, it does not ensure that and N' posses a common set of linear
A

coherent eigenstates. In order to prove this one must show that and
A
N' comnute in the L.C.S.R., i.e.

where

rw' N' 1 =0LniBG’ JL.C.S.R. u

Ĉ ]L.C.S.R. = £ COÂ/S^OB/Sc^) -

(3.1.48.),

- (aA/3.^) (SB/ac^)] (3.1.49.).

This can be easily verified by replacing p£ and q£ in (3.1.38. ,45.) by 

their definitory expressions in terms of ct's and working out the commutator
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(3.1.48.j using

(3.1.50.),

or alternatively - from the knowledge that N' is diagonal in L.C.S.R. -
A

simply by showing that H J i s  also diagonal in the same representation.

of motion and commute in L.C.S.R., suffices to prove that the hamiltonian
A

and gauge symmetries are rearranged. The fact that the eigenvalues of N
A

and N' over particle states and linear coherent states, respectively, are 

the same has already been proven in Chapter 2. Hence, in order to prove 

dynamical equivalence it only remains to show that the traces of and 

^IbG over Particle states L.C.S., respectively, are the same. This
A

is shown very simply by writing as follows:

which completes the proof of dynamical equivalence.

It is interesting to note that the condition (3.1.48.) is more

restrictive than (3.1.46.). It will be convenient to express the

commutator in terms of the Poisson bracket to find out the nature of the

former condition. Using the chain's rule the commutator in L.C.S.R. can 
(*)be written as^ J

*It can be readily proved that the commutators in the P.R. and the L.C.S.R. 

are the same, i.e. [A,B]p p = [A,B]g ^ s R * This *s a general feature 

of any two linearly related canonical representations.

A A

(3.1.51.).

It can be readily tested that p^q^ expressed in terns of either a's or a's 

is non-diagonal in both representations, thus

A

Tr{HIBG> - Tr(HiK.} (3.1.52.),
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CA,B] = I {COrV/SqjjOqj./ac^) 
i»k,k'

• (3B/3qk,)(3qk,/3o£) +

+ OÂ/SpjJjOpJ./So^) •

• (SB/Spj.HSpj.A^)] - 

- C(3Â/Sqj,)(3qj,/3c^) •

• OB/SqjjCSqj./Sc^) ♦

• OÂ/3pj,)(3pj,/^) •

• OB/3pj,)(3pj,/\)]}

The question of ordering does not arise; for, the partial derivatives 

(Sq^t/S0̂ ) > (Sq^t/Sa^), (Sp^i/3̂ ) and (3p̂ ,/3ojc) are all c-numbers; 

working out these derivatives from (2.4.3.) one finds

[A,B] (uJ[(3A/3qJ)(3B/3pJ) -

- (3A/3pJ)(3B/3qJ)] - |vk>k,|2[(3A/3q^)(3B/3pJ) -

- OV3pJ)(3B/3qk)]} (3.1.53.).

A A

From (3.1.42.,48) one finds that sufficient conditions for Hj^ and N' to 

be simultaneously diagonal are

< » « 1 . 1

and WiBG,^)2

= 0 

= 0
(3.1.54.).

These relations state the fact that the number distribution operator in
1 1 1  2 2 2spaces Sj and S2, namely 1^ = p ^ k and Nĵ = P^q^» are constants of motion. 

One can define states of overall equilibrium (o.e.) (inequilibrium
A

(o.i.)) as 3tN' = 0  (* 0), states of relative equilibrium (r.e.) (inequil-
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ibrium (r.i.)) as = 0  (* 0), and states of local relative equilibrium 

(l.r.e.) (inequilibrium (l.r.i.)) as 3tN^ = 0 (* 0). It is clear that 

there can be states of l.r.i. in r.e., which imply o.e.; or states of r.i.
A /\

in a state of o.e. In either case N' is a constant of motion but N' and
A

HJgg are not simultaneously diagonal. In order for the total energy and 

the total number to be both well defined in L.C.S.R. a state of l.r.e. is 

required. As far as the I.B.G. is concerned - in thermal equilibrium, say 

- l.r.e. is satisfied. As will be seen in Chapter 4, however, the 

relative number of 'objects' in spaces changes with temperatures (for 

a certain statistical ensemble). One thus reaches the conclusion that
A /S

[Hjgg,N'] = 0 is not satisfied in thermal inequilibrium. Further comments 

on the notion of relative equilibrium will be given in 13.2., but now let 

us consider the connection between the present approach and the standard 

method of diagonalization of the particle hamiltonian.

The strategy of the present approach is to reformulate the dynamical
/N A * •

problem by introducing a change of lagrangian variables, (q,4) -*■ (q ,q ); 

defined over domains of different structural properties, namely non-separable 

and separable, respectively. The initial aim is to determine whether a 

hamiltonian exists in the S.P.S. picture.

The process of proving the existence of the hamiltonian involves 

the removal of some redundant conditions. It is noted that the removal of 

the redundancies is always justified on logical grounds, without intro­

ducing further assumptions. The removal of redundancies here is an exact 

procedure (not an approximate one), and entails the cancellation of non­

diagonal contributions, which otherwise would appear in HJgG.

The proof of existence of the hamiltonian also leads to its
A

functional expression. HjgG is found to be different from the particle
A

hamiltonian, Hjg^. The difference is given by non-diagonal contributions 

in both representations. H£gG is found diagonal in the L.C.S.R.
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The fact that admits a Legendre transformation enables to define 

generalized momenta; hence, the S.P.S. is well-defined. The functional 

expression for the number operator in the S.P.S., N', is dictated by

structural properties of the S.P.S. One finds that N' is different from
/\

the number operator of the N-S.P.S., N, the difference being a non-linear 

contribution in both representations involved. It is found that N' is 

diagonal in the L.C.S.R. and, accordingly, commutes with H^,. This 

proves symmetry rearrangement. In addition, the total energy and total 

number of particles predicted in both descriptions are the same, provided
A A

that L.C.S. are normalized to satisfy <n|N|n> = <Cf1|N|Cri>. This completes

the proof of dynamical equivalence.

The strategy of the standard approach, on the other hand, is to
a +introduce a transformation of Hamiltonian variables, (p = a, q = a) -*■

A A

Cp' = a , q' = a). On the basis of the premise that the constants of
A Amotion, namely H and N, remain invariant1- 1 (but the ’ symmetry of the 

states' is changed).
A /\ /\

The diagonalization of H(p*,q') is effected in the L.C.S.R. (or 

more precisely, in a representation contained in the L.C.S.R.) by imposing 

certain conditions on the c-number fields involved in the transformation
A /V A A

(p,q) (p',q'). As a consequence of the fact that the P.R. and the

L.C.S.R. are non-equivalent representations, it necessarily follows that 

the gauge symmetry is broken in the standard approach; for, the number
A

operator is thought to be N whatever the variables or the representation 

of states are.

A number of observations need to be made at this stage, in order 

to appreciate the link between both approaches, and the reasons why the 

present method is more satisfactory.

*The substitution II = I I i s  irrelevant as to the discussion of the 

standard strategy.



121

(1) It is noted, in the first place, that no explicit reference as to 

what the dynamical variables are is made in any of the existing theories 

of superfluidity; the identification p' = a , q' = a is made implicitly.
A A A A

(2) The transformation (p,q) -*■ (p',q') leaves the non-separable structure 

of the phase space unaltered.

(3) The question of whether the hamiltonian expressions H(p,q) and
A A A

H(p',q') (after diagonalization) correspond to the same dynamical problem 

(and the same physical system) is never asked in existing treatments of 

the present problem. It is never enquired whether or not H(p' ,q') (after 

diagonalization) is the hamiltonian, and not just a functional of the 

canonical variables ot+ and a.

(4) As far as the I.B.G. is concerned the hamiltonian in the S.P.S. 

picture turns out to have the same functional expression, in terms of 

elementary excitations and c-number fields, as the partíale hamiltonian 

after diagonalization. This is solely due to the fact that the velocity
A

independent segement of is non-diagonal for this particular problem. 

But this is casual. It will be shown in §3.2. that, for the interacting
A

problem, involves a diagonal segment as well as a non diagonal part 

(if first and second order coherent fields are both involved in the 

L.C.S.R.). The strategy of diagonalization of the particle hamiltonian 

fails to give the correct hamiltonian for this problem.

(5) Finally, it is most inport ant to note that the involvement of 

variables of a separable domain is not a necessary element of the 

method of reformulation of the lagrangian problem proposed in this 

thesis. The resort to variables of a separable domain obeys to the need 

for counting independent configurations; that is,for statistical purposes, 

and not from dynamical requirements.
A

One could, of course, define new lagrangian variables as q^, = otj.,
A

= it\3tOj. (i.e. defined in a non-separable domain); and regard the 

c-numbcr fields as auxiliary parameters (tine dependent or not). One



could then proceed to determine whether or not a hamiltonian exists 

according to the method proposed here. The algebra turns out to be 

more involved than for the choice of variables adopted in this work; 

but one finds eventually that a hamiltonian exists for the IBG only if 

the old diagonalization conditions are imposed additionally. The 

redundancy does not occur for this choice of variables.

For the interacting problem, however, the conditions of existence 

of hamiltonian do not coincide with the old diagonalization conditions.

The new conditions involve the coefficients of some diagonal contribution 

as well. This variant, based on the choice of variables in non-separable 

domains, will not be pursued further in this thesis; for, it does not 

lead to the appropriate setting to discuss superfluidity from a statistical 

viewpoint.

413.2. The interacting problem: A model for He

The strategy adopted in this thesis, as far as dynamics is concerned, 

can be phrased as follows: Given a lagrangian formulation of an arbitrary 

problem, in terms of dynamical variables of a non-separable domain, to 

produce another dynamically equivalent formulation of the same problem, 

in terms of variables of a separable domain. Two independent and comple­

mentary aspects of this strategy should be noted.

The first aspect concerns the relationship between both sets of 

variables, {qk»Ak) 311(1 ^ k>Akh  namely qk = E¿ qk, ¿lk = Eĵ ¿ik ; irrespective 

of the way in which these variables are defined in terms of the fields of 

two canonically related representations of quantum states. The idea, as 

far as this aspect of the strategy is concerned, is to prove that if a
A A A

hamiltonian, ll(p,q), exists in the non-separable picture, and if the number
A A A

functional in the non-separable phase space, N(p,q), is a constant of motion 

then, a hamiltonian, H'(p*,q*), exists in the separable picture, and the 

number operator in the separable phase space is also a constant of motion.
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The other aspect of the present strategy concerns the way in which 

the dynamical variables are defined in terms of two non-equivalent rep­

resentations, linked by canonical transformation. As to this aspect the 

objectives are: (i) To derive a relationship between the elementary fields
A A • A A •

of both representations, such that the relations pk = Pk(Pk), qk = qk (q£)
A A • •

become two identities, for the appropriate definitions or p, q, p and q1. 

(ii) To prove that H' and N' are diagonal in the transformed (coherent
A /\

state) representation, provided that H and N are diagonal in the initial 

(particle) representation, and (iii) to prove that the eigenvalues of
~ A A A

H' and N' in the C.S.R. are the same as the eigenvalues of H and N in 

the P.R.

It was mentioned before that the problem of the ideal gas is the 

only problem for which dynamical equivalence can be demonstrated, if the 

variables of the separable domain are defined in terms of the fields of 

the L.C.S.R. It will be shown in this section that the interacting 

problem does not admit an equivalent formulation if the variables of the 

separable domain are defined in terms of the L.C.S.R.

It will be shown that the first part of the strategy outlined above 

can be successfully brought to an end. It will also be shown that the 

number operator N' is diagonal in the L.C.S.R. < It will become clear, 

however, that the hamiltonian in the separable picture is not diagonal 

in L.C.S.R.

The conclusion that the hamiltonian symmetry is broken in a L.C.S.R. 

description does not indicate a limitation of the strategy proposed above, 

it just points at an inherent limitation of the L.C.S.R. to serve as a 

basis for the definition of the dynamical variables. It also suggests that 

a more elaborate, non-linear, C.S.R. should be employed to rearrange the 

hamiltonian symmetry (while keeping the gauge symmetry rearranged). It is *

*This operator is, in fact, the same functional as for the problem of 

the IBG.



noted that, as to the hamiltonian synmetry, the present result parallels, 

to some extent, the results obtained before by Umezawa (66) and Coniglio 

and Marinaro (18). But the consequences as to the gauge symmetry are 

radically opposed. A discussion of the relationship of the approach in 

Refs. (18,66) and the present one is given in this section.

Two roads are open for research in this state of the affair. The 

first aims at a rigorous proof that the hamiltonian symmetry is rearranged. 

This line of research follows essentially the same technique as that of 

Ref. (66). The idea is to devize an iterative procedure to generate a 

series of non-linear C.S.R.'s of increasing complexity, starting from 

the L.C.S.R. as a zeroth order trial. The series of representations, 

hopefully, converges to 'The physical representation', in terms of which 

diagonalization of the separable picture hamiltonian is achieved. The 

interest in this thesis as to a rigorous proof is only marginal. The 

interest here as to this line of research is addressed to isolate the 

generator of the series of representation, and to gathering information 

in support of the conjecture that the hamiltonian synmetry should be 

rearranged in the physical representation proposed here. This is con­

jectured to occur in the finite volume limit, unlike in the proof by 

Umezawa, which requires of the passage to the infinite volume limit to 

achieve the rearrangement of hamiltonian symmetry.

The second option lacks the rigour of the first, but it is rather 

simpler and free from technical difficulty. This option is in the vein 

of current mean field theories, and consists of disregarding to tne non-
A

diagonal segment of H' in the L.C.S.R., as a first approximation. This 

segment can be retrieved at higher order of a hierarchy along the lines 

of that of Suhl and Whcrthamcr (61), reviewed in §1.2. This option will 

be investigated in this work, in some detail. The main objective being
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to show that the approximate dynamical problem thus obtained is dynamically 

equivalent to the exact problem posed in the particle picture, except for 

the fact that the eigenvalues of energy are not identical, but only approx­

imately equal.

Let us now prove that a hamiltonian exists in the separable picture.

The lagrangian identifying a collection of ^He atoms in a box of unit volume, 

subject to periodic boundary conditions, in terms of dynamical variables of 

a non-separable domain, is given by

L = ¿ns(q,A) - (1/2) l (q$k + c.c .) - H (3.2.1.),

A A

where H is a functional of q and its c.c., and explicitly independent of 

time. Defining generalized momenta, as usual, by

ks V i  -  <3-2-2->.
(3.2.1.) can be expressed as a Legendre transformation, i.e.

¿n s(q>^ = 0-/2) I (Pj^k + c .c .)  - H(p,q) (3 .2 .3 .),
A A A

where the hamiltonian H(p,q) is given by

H = I W k  + W  l VCA) PpHV?qip (3.2.4.).

The canonical variables are usually defined in terms of particle field 

operators as follows:

Pk - \> qk E ak (3.2.5.).

Introducing now the change of variables

% = I %> *k = l  X  (3-2 -6.)

into (3.2.1.), or - alternatively -
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% • [ < £ •  Pk -  | P j CJ.2.6.)

into (3.2.3.), an expression for L = ¿s(q̂ ,Â ) is obtained. The situation 

here is slightly more complex than for the problem of the Ideal Bose Gas. 

The interaction segment of the particle hamiltonian can be written as

U = l ppqq (3.2.7.)

with the help of the following notation: The symbol \ ... denotes

(1/2) l vft) ... and the sub-indices of the p's and the q's are p + jj, , 
A.P.q

q - S., q and p from left to right. Substituting (3.2.6) into (3.2.7.) one

obtains 81 terms, which - after some thought - can be written compactly in
(* *)the following combinational form:

where

U = U' + U"

u' = I ( l p V q V  + l p V q V )
- i.j i,j
— r'-

U" = I [ l ( p ^ V q 1 + p V q V )  +
- i,j

I (p1p1q:iqs+ p;ipsq1q1+
i,j,s
p V q V ) ]

(3.2.8.),

(3.2.9.).

(3.2.10.).

The dash on the summation symbol indicates that the super-indices are all 

different. It can be verified through a straightforward but lengthy calc­

ulation that

U "  = (1/ 2) l '  Cp£(3U'/3p£) + (3U'/8qJ)qJ] (3.2.11.).
m,i,,k

Hie above result parallels that of the kinetic segment, using 

(3.1.20-24.) and (3.2.8-11.). Hie functional expression for the lagrangian 

in terms of the new variables is

A
*The symbol ... qxq̂  ... denotes ... qxq̂ ... + q̂ q1 ... , for i * j.
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V q \ < f )  - (1/2) 'l (pJ4 + c.c.) - H' - (3.2.12.)
i ,k

where = q^ (i.e. expressed in terms of lagrangian variables), and

■ X  V k 4  *K,1
(3.2.13.)

"k •. ?' <p&J *
* .j

The generalized forces, and its c.c., are now given by

(3.2.14.).

= + 3«’/3pj (3.2.15.).

Removing the redundancy by replacing X,J and its c.c. by the expression
A

for the external forces (zero, say) one obtains = 0. Thus, (3.1.12.)

becomes a legendre transformation, satisfying

P k 2 » v 5^  ■ i * (3.2.16.).

The functional expression for the hamiltonian in the S.P.S. picture

is

H' ■ X  V &  * <V2> £ *

+ (P̂ Pq-̂ qq^ + V £ Pq - £ ^ ]1»J
The canonical equations of motion are

(3.2.17.)

-ifi3tpj = (H'.pj) (3.2.18.)

- i * tqj - (H'flj) (3.2.19.),

where the Poisson bracket is given by (3.1.40.). It can be readily verified 

(see Appendix B ) that the number operator N', given by (3.1.45.), is a 

constant of motion, i.e.

{H',N'}=0 (3.2.20.).

It can readily be tested that the last term of (3.2.17.) is non-diagonal in 
the L.C.S.R., here it is denoted by T'.
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The search for the physical representation, according to Umezawa's 

method, can be separated into two parts. An intermediate representation 

is devized first, such that their elementary operators, and o ,̂ are 

linearly related to particle operators (The intermediate representation 

is L.C.S.R., say, for the sake of generality.) . The particle hamiltonian 

is expressed in terms of (intermediate) elementary excitation operators.

A relation is introduced ad hoc effecting the cancellation of low order

dangerous contributions, namely those contributions linear and quadratic
• — • A +in a's. Finally the remaining non-linear segment of H(a ,a) is employed

to devize an exponential canonical transformation linking the intermediate

representation and the physical representation.

Here the strategy as to the very formulation of the dynamical

problem is different. As a consequence of this the question here is that
A A

of finding a representation such that H' {not H) is diagonal in it. In
A

the process of deriving H' some redundant conditions had to be removed. 

These conditions are the counterparts of the ad hoc conditions of cancel­

lation of dangerous contributions in Umezawa's method. But the two sets 

of conditions are by no means identical or equivalent. As a matter of 

fact the redundant conditions are expressed here in terms of the dynamical 

variables not in terms of operators of a-particular representation. The 

cancellation then holds whatever the representation involved! On the 

other hand the cancellation brought about by the removal of the redund­

ancies is an exact one; that is, the removal of the redundancy effects 

the cancellation of all dangerous contributions. Not only low order 

ones but also high order dangerous contributions. This amounts to an 

important difference respect to Umezawa's approach; for, the generator 

of the canonical transformation linking the intermediate representation 

and the physical representation is here free from dangerous contributions. 

This is not the case in Umezawa's work. For instance, a contribution of



the form a a a a is included in Umezawa's generator. This contribution 

is a part of the segment p^p^q^q^, which is a part of the redundant
A

conditions, and excluded from the hamiltonian H'.

The canonical transformation linking the L.C.S.R. and the physical 

representation is given here by

A  + A
Op = expT'(<x ,a) , T' being the second tern in (3.2.9.), 

and excludes all dangerous contributions. In Umezawa's work the diagonal-
A

ization of H is achieved in the infinite volume only. This is due to the 

presence of a remaining non-diagonal segement Qv , which happens to vanish 

in the bulk limit. The occurrence of Qv in Umezawa's work is linked to 

the occurrence of contributions of the form a+a+a+a and its c.c. in the 

transformation linking the intermediate representation and the physical 

representation. For this reason it is conjectured here that it should
A

be possible to diagonalize H' in the physical representation, but in the 

finite volume limit.

Another advantageous feature of the present approach is that the 

gauge symmetry is rearranged in the physical representation (in fact it 

is already rearranged in the intermediate representation). The reason
A

for this is that the kinetic energy segment , K', should be diagonal in
A A

the physical representation if H* is diagonal, but K' is diagonal if and
A

only if N' is diagonal (in every representation). According to the 

standard approach, however, the gauge symmetry is broken since N is 

never diagonal in a non-equivalent representation of the P.R., and the 

physical representation is clearly one of these.

An investigation addressed to producing a proof that the physical 

representation exists, and that the exact hamiltonian symmetry is 

rearranged in the finite volume case, is currently in progress. No 

conclusive evidence in this sense has been produced as yet. There is, 

however, strong indication that this is the case indeed. An account of
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the progress in this direction is outside the scope of this thesis.

The conclusions of these investigations are to be presented elsewhere.
A

Confronted with the fact that H' is not diagonal in the L.C.S.R. 

the position adopted in the present work is: To devise a model of the 

exact problem, obtained by discarding the non-diagonal segment, i.e. T', 

and derive observable predictions; to be compared with those of alternative 

approaches based on the standard paradigm, and with experiment.

The interest here will eventually lay in formulating the dynamical 

problem in a, self-consistent, mean field approximation. This is carried 

out in the next section. It is noted that the guide lines to produce a 

linear model from a non-linear one are as follows: (i) identify the 

irreducible terms of the hamiltonian and discard them, namely those 

quartic contributions not reducible to a quadratic form by taking averages 

on a pair of operators; and (ii) reduce all reducible quartic contributions 

to the hamiltonian to a quadratic form by taking averages on pairs of
/S A

operators. It is noted that T' is the irreducible segment of HJ hence 

it is to be disregarded for the purpose of linearization of the dynamical 

problem anyway.

§3.3. Mean Field Approximation (M.F.A.) for the zeroth order problem

The conclusion that emerged in the preceding section indicates 

that one must go beyond the L.C.S.R. in order to be able to diagonalize 

the S.P.S. hamiltonian exactly. Umezawa was lead to the same conclusion, 

as to the inpossibility of diagonalizing the particle hamiltonian in a 

simple linear representation of coherent states, and developed an iterative 

scheme addressed to obtain the physical representation, and, eventually, 

to prove hamiltonian symmetry rearrangement.
C*)The majority of the works on superfluidity, , however, do 

not follow Umezawa's programme, but are confined to a description in 

terms of certain, simple, linear representations of coherent states

(6,20,22,23,29,32,40,46,51,55,59,60,62,69,68,73)



(contained in the L.C.S.R.). It is generally acknowledged that the 

particle hamiltonian, H, cannot be fully diagonalized in such represent­

ations, but most authors are content with diagonalizing the largest
a

possible segment of H; endorsing the belief that the approximate 

predictions obtained from the truncated hamiltonian (as to the excitation 

spectrum, for instance), are very close to the exact predictions obtain­

able from the exact hamiltonian.

The present theory introduces two novel elements in the study of 

superfluidity, namely a lagrangian reformulation (as opposed to a particle 

hamiltonian formulation) and the involvement of dynamical variables of a 

separable domain. The involvement of these two elements in the present 

theory amounts to a significative shift of view point, and calls for a 

simple presentation - in the first place - enabling the comparison with 

existing theories as to the methods and results. The position adopted 

in the remainder of this work - in view of this - is to introduce certain
A

approximations to the exact problem posed by H', of the same nature as 

those approximations involved in existing self-consistent theories; thus, 

making the comparison possible. This will permit to show, in a simple 

fashion, the conceptual and practical advantages of the approach proposed 

here.

Two approximations of different nature are introduced in this section. 

The S.P.S. picture hamiltonian is truncated in the first place, discarding
A

the non-diagonal segment in the L.C.S.R., i.e. T', in the simplest (zeroth
A

order) approximation. The remaining segment of H', namely IT, defines 

the zeroth order problem, and admits a diagonal resolution in the L.C.S.R.

A hierarchial scheme can be envisaged, along the lines of the methods of
A

Suhl and Wherthamer (61) or Umezawa (66), to retrieve T' at higher order 

of the hierarchy. This latter scheme, however, will not be persued here.
A

It is most important to note that T' must be discarded if a
A

description in terms of the L.C.S.R. is persued; for, T' is intrinsically
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non-diagonal in this representation, hence its presence renders the 

dynamical problem unsolvable in this representation.

The other approximation introduced in this section is the well-known 

M.F.A., implemented here on the basis of the L.C.S.R. as a trial represent­

ation. It will soon become clear that the notion of anomalous averages 

does not arise here, due to the fact that the dynamical variables are defined 

in terms of the creation and annhilation operators of the L.C.S.R., over 

which mean field averages are taken. In other words, the M.F.A. employed 

here is the standard version, not the generalized Random phase approximation 

method of Anderson. It will be seen shortly that the above approximation 

effects the linearization of the equations of motion for the canonical 

variables and p^ for i = 1, 2 only, but leaves the corresponding (c- 

number) equations for variables i = 3 non-linear. A further approximation 

must be introduced for the c-number fields to accomplish the linearization 

of their equations of motion. This approximation is the c-number counter­

part of the M.F.A. for q-number fields.

The objectives in this section are: Firstly, to derive expressions 

for the three branches of the excitation spectrum in the approximation 

outlined above. Secondly, to compare the present method and results as 

to the excitation spectra with the method and comparable results in 

existing theories in the same approximation. In order to achieve the 

second aim it will be necessary to develop anew the programme of existing 

theories on the basis of the more general L.C.S.R.

The analysis in this section is confined to a pure state description, 

a statistical description on the basis of a Grand canonical ensemble, and 

the comparison with experiment are postponed until section 4.4.

The starting point here is the zeroth order hamiltonian
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It is recalled that IT is diagonal in the L.C.S.R.^  ̂and that dangerous

contributions have already been removed. As a consequence of this the 

linearized equations for the canonical variables i = 1, 2 will turn out 

to be decoupled in terms of elementary excitation operators, though not

The immediate aim here is to reduce the above set of six non-linear 

equations to a linear form. This is achieved, as usual, by (i) adding 

and subtracting to the R.H.S. of (3.3.3.,4.) a linear contribution, 

amounting to the mean field average of the non-linear terms, (ii) 

neglecting fluctuations about mean field values, and (iii) discarding 

irreducible contributions, namely those contributions whose mean field 

values are zero. Let us illustrate the procedure by considering the non­

linear term in equation (3.3.3.) for i = 3.

necessary decoupled in terms of the dynamical variables p1 and q1 them­

selves.

The canonical equations of motion,

take the form

(3.3.3.)

(3.3.4.).

See Appendix C
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" PiL'Pp^^

Now, it is noted that

^  "tlv V f ' V v v
■Ï |up,tlZ<V>t>!p,q

^  ■ t}t. v;,t'vp.t<“t'»;>

■  \ lv p , t l ZK V  * » Sp ,q

and

Hence (3.3.5.) can be rewritten as 

3
l Vtt)

P?t V“ ) j-l Vlt) tpP*iPk-«qP *
3 3 3

Pk J CV^ VU)]
2
l

j-l Nk-£ + S + I

where

Nk  E <PkC¿ >

(3.3.5.).

(3.3.6.),

(3.3.7.).

(3.3.8.),

(3.3.9.),

S are fluctuations about mean field averages, namely 
2

S 5 j-l (pji V W  PJ*^-*Pj5».° ' l V<0) *

* J l  l £, VU) PP*iPk-»PP5P*t,k - I  V W  (3-3-100 'J”1 VP>* *
and I constitutes the irreducible contributions, namely
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I is discarded at zeroth order within a hierarchy of linearized equations 

of motion, S is neglected provided that fluctuations about mean field 

averages are small compared with the averages themselves. Hence equation 

(3.3.3.) becomes

- “ stPk - 7kPk * l, P p . ^ - i ^  (3.3.12.).P,X,

For equation (3.3.4.) one similarly obtains

“ ¡Vk ■ 7t £  * I v w  (3.3.13.).
P>£

where
2 .

Jk = ek +  ̂[V(°) + V W ] .1 Nk-ji (3.3.14.).
£ j-1

It must be recalled that the averages in (3.3.5.), and in all subsequent

equations, are regarded here as averages over pure (n-elementary-excitation

coherent) states, |Cn>. Later in §4.4. after an appropriate ensemble of

states has been introduced this average will be regarded as quantum and
2 2thermal averages over a Grand canonical ensemble, and ek= (li /2m)k will

be taken as - y, where y is the chemical potential.

The set of two equations (3.3.12.,13.) is non-linear, after replacing 
3 3p^ and qk by their definitory expressions 4>k and (J>k, respectively, this set 

of equations can be recognized as Gross' equations for the "inhomogeneous 

condensate", except for a linear contribution^ - ek)p^ and (Jk - ek)q^ 

respectively, which are the mean field Hartree-Fock energy contributions, 

associated with the interactions between one particle in space S3 and an 

average particle in spaces S-̂ and S2. These 'other' particles, of course, 

where not present in Gross' treatment^’̂ .

Gross has studied the solution of the set of equations (3.3.12.,13) 

in detail, in several approximations, for several model potentials and for 

diverse boundary conditions (35). It is known, (8,9) in particular, that
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the dispersion relation - defined through

Pjfc) = l\(t0)exp[ i(<̂ /fi)(t - t0)]

= qk(t0)exp[-i(<̂ /fl)(t - 10)]

is gapless and linear in the long wave limit. One i appreciate that by 

noting that the effective hamiltonian, H^, from whi (3.3.12.,13.) follow 

- according to

p3}

- « V k  ■  <  <£>

H8 ' p k «  * I Pp.tP ^ vW

This effective hamiltonian is well known (8,9,25,51,69] to be 

invariant under the following infinitesimal transformation

where t is an arbitrary wave vector and 6e is an arbitrary infinitesimal.
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the R.H.S. being regarded as time independent, 
become

Equations (3.3.12.,13.)

- “ W i  ■ Vk3 * > v 4 (3.3.20.)

- “ V i  ■ Jk«k * V &
where

Jk * Jk * | [V(°j * V(k)]N^_,

(3.3.21.).

■ ‘ k * | W o) * (3.3.22.),

Nĵ  being l and

bk ■ | v(«  IP -k .A -J

■ [ v(*> li’k-t'ik-tl 

-  I VU) Njj., (3.3.23.).

The set of linear coupled equations can be decoupled as follows: 

Differentiating (3.3.20) with respect to time, multiplying by (-ifi) and 

making use of (3.3.21.,22.) one obtains

- ^ P k ' Jk'Jk ^  * -

-  M ' V i  * V k >

= (j£ - b̂ )̂ 3 (3.3.24.).

One similarly finds for the equation for q^

= (jj[ “ biSk (3.3.25.).

This set of second order differential equations has the solution (3.3.15.) 

with
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(3.3.26.)

as the dispersion relation in this approximation.

Let us now go back to equations (3.3.3.,4.) for i = 1, 2 and 

linearise them using (3.3.6.,7.,19.) and

for i,j = 1,2 and i * j. is given by (3.3.22.) and the pairing energy 

in space @ S2 is

Equations (3.3.28.,29.) are linear but coupled in the dynamical variables 

of spaces and S2- These equations are decoupled in terms of elementary 

excitations as will be shown later in this section, i.e. these involve 

either creation or annhilation operators of the L.C.S.R. for the same mode.

Now, two types of stationary state solutions of different physical 

nature can be expected to be possible for the dynamical variables. In 

principle the stationary state solutions for the dynamical variables can 

take the following form:

(2.3.27.).

One obtains the following set of four equations

^ + 1 B;,k^

= + 1 BP,kPkp
(3.3.29.),

(3.3.28.)

(3.3.30.).

(Case 1) p£(t) = p£(t0)exp[iu>£(t - t0)/h]

qj|(t) = q£(t0)exp[-ia>£(t - t0)/Ti]
(3.3.31.)
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P^(t) = p^(tQ)explicit - tQ)/ft]

( 3 . 3 . 32. ) .

Another theoretically possible stationary state solution, however, is

The two cases above exhaust all the possibilities. Case 1 corresponds 

to the event in which both dynamical objects, associated with variables 

i = 1 and i = 2, posses positive energy. In Case 2, however, the dynamical

is, are holes of the dynamical objects i = 2 for the former case. The 

latter possibility (3.3.33.,34.), seems rather odd at first sight, however, 

it will be seen shortly that it is not only consistent with the present 

definition of variables, but is - in fact - the only satisfactory stationary 

state solution. But before considering these matters let us consider an 

argument ruling out the cases in which the dynamical objects i = 1 posses 

negative energy.

The argument in question is rather simple. The particle problem is 

one in which the dynamical objects posses positive energy, however, if the 

dynamical variables i = 1 have the time dependence

(Case 2) p£(t) = p£(t0)explicit - tQ)/ft]

q£(t) = q^(t0)exp[-ioo£(t - t^/fij
(3.3.33.)

P^(t) = p^(t0)exp[-iio£(t - tQ)/K] 

\(t) = q^(t0) exp[iw£(t - tQ)/fi]
(3.3.34.).

In either case

(3.3.35.).

2 2objects whose dynamical variables are Pj, and q^ posses negative energy; that
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(Cases 3,4) pj(t) = pj(t0)exp[-iw£(t - tQ)A]

= (¿(tQjexpCiwjJlt - tQ)/h]

for variables i = 2 depending on time either as (3.3.32.) or (3.3.34.), one 

would be lead to the conclusion that the particle system as a whole (i.e. 

the collection of ^He atoms) has negative energy. This can be seen from 

the fact that in the limit

Vk,q - °* \,q * " 0
or

T - 1> + \

one obtains

P k W - P k W = a j c t )

qjct) -*■ qk ( t ) = ak(t)

Pk(t) -*■ 0

qfc) -*• 0

Pkw 0

-*• 0

and such a limit is a theoretical possibility (at least for some modes) 

contingent upon the solution of the integral equations characterizing the 

present model (see §4.4.).

One can convince oneself of the feasibility of a solution of the type 

(3.3.33.,34.) by noting that variables i = 2 - unlike variables i = 1 - are 

defined such that the generalized momenta (coordinates) are proportional to 

the annhilation (creation) operator for the L.C.S.R., in consequence the 

dynamical variables satisfy

(3.3.37.)

(3.3.37'.)

( 3 . 3 . 36 . )
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(3.3.39.)»

as corresponds to dynamical objects of positive energy, and

p£|0> = 0 = <0|q£ (3.3.40.),

corresponding to hole-like dynamical objects.

It is interesting to seek for a stationary state solution for the 

elementary excitation operators as well, in the simplest case. To be 

consistent with (3.3.37.,38) the stationary state time dependence of the 

latter operators should be

From the time dependences (3.3.31.,32.), (3.3.33.,34.) and (3.3.42.) it 

follows that the time dependence of the second order coherent fields for 

cases 1 and 2, respectively, are

<\(t) = o£(t0)exp[iw£(t - tQ)/h] 

o^Ct) = Oj^t^expC-iuj^t - t0)/fi]
(3.3.41.),

idle re

(3.3.42.).

X q ^  = uk,q(t0)exP[i(wk - V (t "

“k . q W  = ^ . q C V ^ P t - i f ^  - < V Ct "
(3.3.43.)

vk,q(tJ = vk,q̂ t0)exPC-i(ü)k + “ q) ( t  '  t0)/fi] 

v^,q(t) = vk>q( V expCiH  + “q ^ 1 " tO )̂ ]
(3.3.44.)

and
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Vk,q(t) = Vk,q(V eXP[Uwk ' Wq)(t " V /hJ 

Vk,q(t) = Vk,qttO)eXpC"i(“k ' V (t ‘
( 3 . 3 . 46 . ) ,

where
e 1 2 _
“k “ \ " ^  = “k (3.3.47.).

Let us now show that the tentative solution (3.3.31.,32.,41.,47.) is 

not possible, for it leads to an inconcistency. Substituting (3.3.31.,32.) 

in equation (3.3.28.) for i = 1 and in equation (3.3.29.) for i = 2, and 

replacing the dynamical variables by their expressions in terms of c-number 

fields and elementary excitation operators one obtains

relations and making use of the defining properties (2.3.24.-26.) one obtains 

the following quadratic equation

2Wk - “k>“k,q\,q * | B;,k(Vk,q)2 * | * 0 <3-3-52"'-

which has the following solution

(3.3.48.)

(3.3.49.).

These relations are satisfied if and only if

(3.3.50.)

(3.3.51.).

Now, multiplying (3.3.50.) by v, and (3.3.51.) by u, adding up the two

lk,q t3-3-53*)

where

2 (3.3.54.)
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- obtainable from (2.3.24.-26.), (3.3.27. ,30.) - has been used.

The excitation spectrum Wj, corresponding to this type of solution

is obtained by multiplying both (3.3.50.) and (3.3.53.) by u, andK,q
introducing the latter into the former, one obtains

However, if one replaces this expression into (3.3.53.) one finds

multiplying this equation by its c.c. and summing over q one finds

which must be exactly satisfied. In consequence the type of solution 

(3.3.31.,32.,41.,47.) must be discarded.

Let us now consider the other possible solution and evaluate the 

excitation spectrum and show that this type of solution is compatible with 

(3.3.58.).

Introducing (3.3.33.,34.) into equation (3.3.28.) for i = 1 and 

equation (3.3.29.) for i = 2, and replacing the dynamical variables by 

their expressions in terms of the c-number fields and the elementary 

excitation operators one finds

(Jk " “k)2 ‘ I lBp,k12 = 0
P y

(3.3.55.)

or finally

(3.3.56.).

or

(3.3.57.);

in contradiction with

(3.3.58.),
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I V k , A  ■ lJk\,q“q * piq P -3-“ -)

- I  V k , A  ’ Ï V k .q « , * I  W q <  •q -* q

The different signs in equations (3.3.49.,60.) must be noted. Again, these 

equations are satisfied if and only if

' W . q  “ Jk^c,q + jjj Bp,kVp,c 

“kVk,q ^kvk,q + ^ ^p.k^.c

(3.3.61.)

(3.3.62.).

Again, multiplying (3.3.61.) by v, and (3.3.62.) by u, , making use ofK,q K,q
(2.3.24.-26.) and adding up the two relations one obtains

2Jk“k ,q \,q  * I W "  * I  W /  '  0

which is the familiar pairing equation. Note the difference respect to 

(3.3.52.). The roots of this quadratic equation are now

, , 1/2
Bp,k)vk,q = {-Jk ± U l ' l  lBP,kl ] }uk,q (3.3.64.).

The excitation spectrum is obtained as before, namely multiplying (3.3.61.

and 64.) by u. , using (2.3.24.-26.), and substituting the former into the K,q
latter; one finds

1/2
“k ■ 1 1 ' V i 23 (3.3.65.).

The minus sign must be discarded to be consistent with (3.3.35.). Introducing 

now (3.3.65.) into (3.3.64.), multiplying the resulting relation by its c.c., 

and summing over q one obtains

l I V  I i\,q r  ■ w k - “k> I I Vp q q

Using now the identity (3.3.58.) and (3.3.65.) one obtains

(3.3.67.).
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1 |BP ,kf2 i i  - » - ( 4  * “i  - w  i  i \ , q i2
or

^ |uk,q|2 = (Jk + V /2“k (3.3.68.).

Replacing this expression into (3.3.58.) one obtains

E |vk,q|2 = (Jk + ~ 1q
or

I |vk,q!2 ‘ tJk - “k>/2“k  (3.3.69.).

The somehow surprising conclusion just reached, namely the dynamical 

objects i = 2 have negative energy, is obtained as a consequence of the 

definition of dynamical variables. This definition, in tum, is necessary 

in order to obtain

Pk = I Pk’ qk = l qk (3.3.70.)

as an identity, so that the volumes of both phase spaces, Tns and rg are 

the same. The average energy in a pure state description, in the M.F.A., 

is then

En -  < C J% |0

' l - Nk> * (3.3.71.).

The ground state energy is the minimal energy subject to the renormalisation 

condition. This is obtained by certain distributions N^°. It is clear that

any excited state corresponds to distributions N^, such that N1 = j N^, such
2 20 *  that N < N , otherwise the excited state energy would be less than the

ground state energy. In consequence tlie observed spectrum would show the 

negative energy branch as a positive energy branch.



Let us now reproduce the standard approach of mean field theories on 

the basis of the L.C.S.R. as the trial representation, and compare the method 

and the resulting excitation spectrum with the method and results obtained in 

this section.

The starting point of the standard approach are the canonical 

equations of motion for particle operators, obtained from the exact
fM

hamiltonianv . These equations are

The above set of equations is then linearized,by taking averages over the 

trial representation, the L.C.S.R. here. The resulting linear equations are

-i M t \  ' Ei A  * Pk  v«

ai3tak ' ' A  * l V(l> V t V k nP >jC

(3.3.73.).

(3.3.72.)

= JA  + i kaP

= Jkak + 1 (3.3.75.),

(3.3.74.)

idle re

Jk = ek + 1 Cv^  + V& ) ]<IW W

and

(3.3.76.)

■ { va)<p ^ pk-i> * l

or, after introducing approximation (3.3.19.)

Bp, k = Bp,k + V p , - k

where B j. and b^ are given by (3.3.30.,23.), respectively.

(3.3.77.),

The pair hamiltonian is employed in some works, but the exact Hamiltonian 

operator will be employed here.



The above coupled set of equations is decoupled by introducing 

the following change of variables

< '  l “k . A  * l Vi,q“q * *k

■i '  l “k,q“q * l Vk,qaq * *k
(3.3.78.).

Here the <p's are regarded as time dependent (for the sake of comparison) 

and the v's are time independent. After some work one finds that the 

equations of motion for the a's are decoupled if the c-number fields 

satisfy the following conditions

■m t* i -  v s + 1 (3.3.79.)

2Jk ^  “k.q3^  Vk,qJ + ^ Bp,klJ Vk,qJ + p VM J ~ °

and similarly for their c.c. substituting (3.3.78.) into (3.3.74.,75.) and 

making use of (3.3.79.,80.) one obtains

-  = v £

ifi3t°k = V k
(3.3.81.),

where the excitation spectrum, W ,̂ is given by

\  - lJk - £lIP>kl2)1/2 <3-3-82-)-

The dispersion relation for the c-number parameters 4»* and <(> has an identical 

expression as W^. Now, these results are different from those obtained 

before in this section. (3.3.82.) contains a contribution in bk which is 

not present in (3.3.65.) and the c-number dispersion relation contains a 

contribution in £|B which is not in (3.3.26.) either. It is most
p P,K

important to compare in detail the above procedure with that developed 

before in order to find the source of disagreement.



It is noted that the standard procedure leading to the derivation of 

introduces the change of dynamical variables after linearization of the 

equations of motion for particle operators. This feature difficults a 

direct comparison, for this purpose it will be convenient to reverse the 

order, and introduce the change of variables before linearization. An 

advantage of this alternative procedure is that the notion of anomalous 

averages does not arise.

A relevant observation here is that the method applied at the 

beginning of this section involves two elements, none of which is present 

in the standard approach, namely the reformulation of the problem on the 

basis of the same lagrangian in terms of two sets of dynamical variables, 

and the separability of the domain of definition of the new variables.
A

The former methodological element enables to ascertain that H' is, in 

rigour, the hamiltonian in the S.P.S. picture, different in general from 

the particle hamiltonian, but yet describing the same dynamical problem 

(but in terms of different canonical variables). The other element 

enables the existence of independent configurations in the S.P.S., allowing 

the construction of a Restricted Ensemble, which permits the emergence of 

an order parameter.

Now, the standard theory does not employ separable domains, but - in 

any event - one must consider the fundamental question: whether the functional
A

obtained from H by replacing particle operators by elementary excitation

operators (of the L.C.S.R., say) is the hamiltonian, functional of the new
. A +dynamical variables, describing the same dynamical problem as H(a ,a); or, *

* +
on the contrary, whether such a functional, H(a ,a), contains additional, 

spurious contributions, which affect the resulting expression for the (only 

one) excitation spectrum, giving an incorrect result.

This question cannot be answered within the context of the standard 

theory. To answer this question one must proceed according to the method
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proposed in this thesis, namely (1) By formulating the problem on the basis 

of the same lagrangian; (2) Introducing the change of variables

(3) To determine under what conditions the new hamiltonian exists, i.e. 

under what conditions

is satisfied, and in the positive case (4) Determining the expression for
A A A

the new hamiltonian H(p',q').

The method outlined above will not be developed in detail here; for, 

the algebraic complexity (measured by the number of additive contributions, 

and independent operations, leading to the conditions of existence of 

hamiltonian) is increased in this case by two orders of magnitude (!) 

compared with the similar derivation in §3.2. Also because - in the last 

analysis - a treatment in terms of variables of a non-separable domain is 

not appropriate for future statistical purposes. We limit outselves here 

to stating the final results, which, on the other hand, can be forcasted, 

due to the fact that even though the dynamical variables in this case are 

not the same as before, the relations (3.3.83.) are the same.

In effect the hamiltonian H(p',q') is found to exist if appropriate 

conditions for the c-number parameters are adopted. The hamiltonian in

are now not independent variables for different values of i, but functionals 

of p',q' (for i ■ 1, 2) and independent of these for (i = 3).

A

(qk - ak’\  - iîi3tak) "■ (qk = V ^ k  = *

related through

’k

(3.3.83.).

(3.3.84.)

A A . A • ^

this case turns out to be the same functional H' (p^q1), but p and q
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The conditions enabling the existence of the hamiltonian are now 

not redundant (for, there is only one pair of variables here), but must 

be stated independently of the action principle. The first pair of 

conditions, involving the first order coherent fields, are

-ih3t<(>£ = 3H'/9<i>k (3.3.85.)

and its c.c. The other two conditions, involving the v's are very 

complicated. However, in the M.F.A. in which they will be used here, 

these latter conditions take a rather simple expression, namely

2J, (T u, )(Jv, ) + y B* (V v, )2 + y B .(Jii )2 = 0 (3.3.86.)k { k,q' £ p,k^ k.q' l p,k^ “k,q;

and its c.c. Equation (3.3.85.) takes the following form in the M.F.A.:

- ih3t<J)* = Jk<|£ + bk<f>_k (3.3.87.)

The difference between these conditions and (3.3.79., 80.) must be noted.

It must also be noted that (3.3.87.) is identical to (3.3.20.), and that 

(3.3.86.) is the same as (3.3.63.).

We are now in a position to explain the cause of the disagreement 

between the spectrum Wk (and the dispersion relation Wk), and the expressions 

obtained through the irethod proposed in this thesis. This is: The standard

method fails to compensate dangerous contributions. In addition, the
/\

contributions arising from the inherently non-diagonal segment of H (or
a  A

of H') in the L.C.S.R., namely T', are not discarded either in equations 

(3.3.72.,73.); as a result of this the former equations (3.3.72.,73.) 

involve some spurious contributions. In order to decouple these equations
A A A A

(after replacing the variables pk and qk by p£ and q£ and then linearizing) 

the c-number 'diagonalization conditions' must also involve some spurious 

contributions, rendering them different from the correct conditions 

(3.3.86. ,87.) which ensure the existence of the hamiltonian of the new



dynamical variables, p£ and q£. The involvement of the spurious contribution 

leads to an erroneous expression for the excitation spectrum - given by 

(3.3.82.)(and for the dispersion relation, also given by (3.3.82.)).

In order to be able to appreciate the truth of the above explanation 

it will be convenient to resort to the following artifice: The change of
A A A A

variables (p ,̂q̂ ) ■+■ (p£>q£) is effected by replacing the former variables 

by p£ and q£, namely

Pk = I PjJ> qk = I (3.3.88.),

regarding p£ and q£ (for i = 1,2,3) not as independent variables, but as

functions of p£ and q£. This artifice will enable to compare equations 

(3.3.72.,73.) with equations (3.3.3.,4.), for which contributions from the
A

dangerous segment and T' have been left out explicitly.

Introducing (3.3.88.) into (3.3.72.) one finds

" ^ t  l Pk = £k l Pk + l. V W C X  Pp+£Pk-^ +1 1 p,J6

+ . 1 . PjUPk-Â  + . Ï c

Now, summing equation (3.3.3.) over i, one finds

-ihat {4 \ K * X vw X1 1 p,X ± 9J

(3.3.89.).

(3.3.90).

From the comparison of (3.3.89.,90.) it is clear that the later two contri­

butions of (3.3.89.) are not present in (3.3.90.).

It is clear that the latter two terms of (3.3.89.) correspond to
A A

contributions arising from T' and the dangerous segment of H 

_
I  l pV W ,
- i.J.s

respectively. Equation (3.3.89.) takes the following form in the M.F.A.
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- lh3t I  i>k ‘  CJk i Pk * |  Bp,kCê  * $

* t ó 3 * [| v P, - k ^  * $  *

(3.3.91.),

where the spurious contributions have been associated in the second bracket. 

It is clear that adding up these two terms one finds

- “ t l  fi ■ Jk l  Pk * £ S;,k [ «j (3.3.92.),

which is identical to equation (3.3.74.), but clearly incorrect for the 

latter two terms in (3.3.91.) should not be included; the one because it 

arises from the dangerous segment of H, and the other because it arises
A

from the segment of H which can never be diagonalized in the L.C.S.R..

Now, if one uses (3.3.79.,80.) equation (3.3.92.) is decoupled, and the 

spectrum (3.3.82.) follows. But in that event equations (3.3.86.,87.) are 

not satisfied, and - in consequence - a hamiltonian does not exist! In 

order to obtain the correct spectrum one must discard the second bracket 

in (3.3.91.). Making use of the conditions ensuring the existence of the 

hamiltonian, namely (3.3.86.,87.), one finds that equation (3.3.91.) is 

decoupled, leading to an excitation spectrum in agreement with (3.3.36.).

The argument above shows the inadequacy of the assumption that the 

hamiltonian is the same functional regardless of the choice of dynamical 

variables. It also shows the failure of the criterion of diagonalization 

of the particle hamiltonian in the C.S.R. (or, equivalently, the criterion 

of decoupling of the canonical equations of motion). Stressing the need 

of formulating the dynamical problem on the basis of a lagrangian, in 

conjunction with the criterion of dynamical equivalence.
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§4.1. Introduction

Four different topics are considered in this chapter. The question 

of rearrangement of gauge invariance - discussed in the previous chapter - 

is investigated further in section 4.2. Explicit expressions for the 

generators of gauge transformations are obtained for both separable and non- 

separable phase spaces. The transformation laws for all the fields involved 

are also obtained. The Lagrange functional is explicitly shown to be invar­

iant under both gauge transformations - in separable and non-separable phase 

spaces - in the presence of a compensating vector field (72), which follows 

the same transformation law in both cases. The compensating field is seen 

to play the rôle of an external (transverse) vector field of velocity. 

Euler-Lagrange equations are obtained for the dynamical variables of both 

formulations and for the external velocity field.

The investigations of sections 4.3. and 4.4. are fairly related. A 

unique system is considered in section 4.3. This unreal system is described 

not by an ensemble of states, but by a pure state. It is shown that O.D.L.R.O. 

occurs in the first two reduced matrices (r.d.m.) independently. It will 

become clear that this is necessary but insufficient to conclude that 

O.D.L.R.O. occurs in real systems, described by a statistical ensemble.

Section 4.4. is concerned with the formulation of the statistical 

problem on the basis of ensembles constructed from the S T.S. A number of 

important results are obtained there; accordingly it will be convenient to 

group them in four numerals.

(1) A non-superfluid ensemble is constructed first. It is shown that the 

thermal averages of the first and second order coherent field amplitudes,

«  <p », «  uv », are identically zero over the non-super fluid ensemble;
2 2even though their corresponding densities, <<|<í>| », « |v| », are finite,



in general. It is shown that O.D.L.R.O. does not occur at all. It is 

also shown that a physical system described by such an ensamble - in some 

temperature region - does not exhibit the property of superfluidity.

(2) All possible identifications of configurations in the S.P.S. with 

'superfluid configurations' are considered in the second place. All 

options but one are discarded from physical considerations, namely because 

the resulting thermodynamical properties resulting from most options are

in strong qualitative disagreement with experiment. The remaining semantic 

option identifies the pairing field density, |v| with the order parameter 

of the superfluid phase. Both the density of elementary excitations <<fijc>> 

and the density of first order coherent field, «|<J>.| 2»  turn out to 

correspond to the normal (non-superfluid) segment of the density distribution. 

The partition function of the physical superfluid ensemble is obtained. Some 

thermodynamic quantities of interest are obtained from it. A physical system 

described by such an ensemble is shown to exhibit the property of super­

fluidity.

(3) The excitation spectra for variables i = 1,2 - found in §3.3. on the 

basis of a pure state description - are shown to split into two branches 

when evaluated in the physical superfluid ensemble, in thermal equilibrium.

It is shown that excitations in between these two branches are possible in 

thermal equilibrium, leading to the observable prediction of a broad band.

This is in good qualitative agreement with experiment (19). The lower 

branch of the spectrum obtained in a pure state description remains unaltered 

in the physical superfluid ensemble description.

(4) The integral equations characterizing the present mean field model in 

thermal equilibrium are obtained, for a superfluid ensemble. These equations 

for the superfluid ensemble do not resemble those obtained by several 

authors before (23,51). This is due to the special kind of statistical 

counting of configurations appropriate to the superfluid ensemble.
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The conditions of existence of superfluid solution - also signaling the 

onset of the phase transition - are obtained. Finally, it is concluded 

that O.D.L.R.O. occurs in the second order r.d.m., but is ruled out in 

the first.

The final section considers further developments of the present 

theory of superfluidity. Three topics are considered there. Firstly, the 

possibility of constructing a purely quantum C.S.R. ; for which c-numbers 

are replaced by q-numbers. Secondly, it is shown that first order coherence 

- and indeed O.D.L.R.O. in the first r.d.m. - is theoretically possible in 

Fermi systems, against a well-known indictment by Yang (71). The strategy 

and results of the present theory for the Bose superfluid are extrapolated 

to fermions. A speculative - and rather surprising - consequence is 

reached concerning the nature of the order parameter of the superconducting 

phase. Finally, the main elements of a new theory of magnetism are proposed, 

along the lines of the present theory of superfluidity. Free from the 

indictment of a breakdown of rotational symmetry and leading to a non­

superfluid ordered phase.

§4.2. Rearrangement of gauge invariance

One of the main features of the theory of superfluidity proposed in 

this thesis is that gauge invariance is not broken, but rearranged. This 

aspect of the theory is investigated further in this section. It was made 

clear in §2.2. that the functional expression for the number operator, in 

terms of the dynamical variables, is determined by the structure of the 

phase space. This is independent of the representation of states employed 

to define the dynamical variables themselves. Later in section 2.4. - 

after defining the variables of the separable phase space in terms of the



fields of L.C.S.R. - it was shown that the number functional N' is diagonal 

in L.C.S.R. The hamiltonian of the separable variable picture, H', was 

obtained in §3.2. It was shown there that N' is a constant of motion, in
A A *

the sense that {H*,N'} = 0. As it turned out, however, H' is not diagonal 

in L.C.S.R. An iterative scheme was outlined in §3.2. to obtain a more 

elaborate representation of states such that the Hamiltonian symmetry is 

rearranged. It was also shown there that N' is - again - a constant of
A A A

motion for the zeroth order problem posed by H'q, i.e. {H'o,N'} = 0; and -
A A

in addition - it was shown that H' and N' commute in L.C.S.R.o
An interesting feature of the iterative scheme proposed in §3.2. 

to produce the physical representation (in llmezawa's terminology), is 

that it does not affect the structure of the phase space, but only the 

definition of the dynamical variables in terms of new fields (of represent­

ations of increasing conplexity). In consequence the functional expressions
A A

for H' and N' in terms of the dynamical variables are not affected by the 

iterative procedure. The method of section 3.2. remains valid at any order
A A

of iteration, and = 0 - in particular - holds as an exact result.

In view of this it is most important to prove that the gauge symmetry is
A

rearranged, by showing that is explicitly invariant under gauge trans­

formations in Ts; without introducing particular fields of L.C.S.R. or 

any other representation. It is noted - on the other hand - that existing 

gauge theories of superfluidity (16,42 and Refs, therin) have been very 

successful in predicting a vast range of hydrodynamical phenomena in a 

direct and simple fashion (as the quantization of circulation, the exist­

ence of vortex lines and the critical value of vorticity, for instance).

These theories, however, appear as incomplete in view of the results obtained 

here as to the rearrangement of the gauge invariance. In fact, all existing 

gauge theories start from the premise that the full gauge invariance - for 

both the normal fluid and the superfluid - is broken. Only a segment of 

the full lagrangian is believed to be gauge invariant. This segment is a
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c-nuraber lagrangian, L^, functional of e-number variables-, which are 

eventually identified with the order parameter of the superfluid phase,

and most often than not - with the condensate. The remaining q-number
/\

segment of the full lagrangian, Lq , is associated with the normal fluid
/s

(and this, in turn, is often identified with the depletion). Lq is 

believed not to be gauge invariant. The rearrangement of the overall 

gauge invariance is accounted by the emission of a Goldstone boson (33b) 

or - more recently - through the Higgs mechanism (see Ref. (42) and Refs, 

therein).

The main goal of these gauge theories is to derive a set of Euler- 

Lagrange equations for the superfluid, exhibiting the correct coupling to 

the compensating field (72). From this equation hydrodynamic equations 

of continuity and current flow are obtained. These theories, however, 

face a strong limitation. The fields associated with the normal fluid 

do not appear naturally in the formalism. This is due to the fact that 

only the superfluid lagrangian segment is thought to be gauge invariant.

In view of this limitation, and in order to be able to produce equations 

of continuity and current flow for the entire system (superfluid plus 

normal fluid), most authors find it necessary to identify the compesnating 

vector field, A, with the normal fluid velocity field; instead of regarding 

it as an external field of velocity, excerted upon the entire system.

The viewpoint here is radically different. The full gauge symmetry 

is shown here to be rearranged, without having to resort to Goldstone or 

Higgs mechanisms. It is most important, then, to construct a complete 

gauge theory on this basis. Such a theory should correctly describe the 

coupling of both normal and superfluid segments to an external velocity 

field, without having to identify - for the moment - normal and superfluid 

variables, and without having to identify the external velocity field with 

the normal fluid's velocity either.
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The objectives in this section are (i) to obtain generators of gauge 

transformations operating in both (separable and non-separable) phase spaces, 

(ii) To obtain the transformation laws for the dynamical variables of both 

formulations of the same problem, (iii) To demonstrate that the Lagrangian is 

invariant under both transformations, in the presence of an external vector 

field, A, transforming according to the same law in both cases, (iv) And 

to obtain Euler-Lagrange equations for all variables of the separable space 

picture and for the compensating field.

It is customary to consider the question of gauge invariance from a 

formulation in coordinate basis. This convention is followed here for the

sake of comparison. The non-relativistic lagrangian associated with a 
4

collection of N He atoms in a unitary volume, in the presence of an external 

field A, is given by

£nsfa»4»c*c0  = 2 | Cq+00q(x) + c.c.]d3x -

- | H[p(x),q(x^Al d3x + xj [curL4(x)]2 d3x (4.2.1.) ,

A /v A
where H(p,q) is the hamiltonian density operator and the latter term in 

(4.2.1.) gives the energy of the external field A, regarded here as a 

c-number. X is a characteristic constant with units of length. The 

hamiltonian is given by

| H(p,q)d3x = ^  | (ift3x - nv4)p(x).(-ih3x - m4)q(x)d3x +

+ \ || p 00 p(y) V(|x - y|) q(x) q(y)d3xd3y (4.2.2.) .

A

It can be readily verified that generalized momenta - defined by P(x) h
A /\ A

SLns/^(x) " is ^  canonical conjugate of q(x), hence the first term of 

(4.2.1.) can be written as

\ | Cp(x) 4 M  + c.c. ]d3x

In the particle picture generalized coordinates, momenta and velocities are
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defined in terms of particle field operators as follows

q(x) = Y(x); p(x) = 4,+(x); $(x) = i M ^ x )  (4.2.3.)

where Y+(x) and ¥(x) are the Fourier transforms of a£ and â , respectively.

(4.2.3.),

The kinematical momentum in the presence of external field A is given by 

(ift<$t - nv4)p(x) and its c.c. by (-ifi6t - m4)q(x), 

m is here the coupling constant with units of mass, in order to render A

Lagrangian £ns is formulated in terms of variables of a non-separable
A A

domain Dns = {¿((x') ,q(x)}. Transformations associated with lagrangian 

invariances operate upon the domain of generalized coordinates q(x) and

separable phase space T . Gauge transformations of the second kind are 

generated by the following exponential unitary operator:

where s(x) is an arbitrary c-number function of coordinates (but independent 

of time, for simplicity). N(x) is the number distribution of particles in 

coordinate basis, namely

The volume of the phase space is noimalized to the total number of particles, 

as usual, i.e. *

*Qne could also consider both A and the coupling constant as quantum fields 

on their own, this very interesting possibility, however, is outside the 

scope of the present simple work.

their canonical conjugate q+(x) = p(x); that is, operate upon the non­

(4.2.4.),

N(x) = T+(x) Y(x) (4.2.5.).

The total number (4.2.6.).
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Volir^J = Tr {jî(x) Î(x)d3x}

= Tr {N} = N
A (4.2.7.).

Now, according to the general rule of transformation theory, quantum fields 

transform as

The later equality is obtained from (4.2.4.) by using the comnutation 

relations

It can be readily verified that - given by (4.2.1.,2.) - is invariant 

under transformation (4.2.8.) if and only if the vector field ¿4(x) transforms 

according to

Now, variables of non-separable and separable domains are related through

The same Lagrange operator in terms of the newly introduced variables is 

given by *

p(x) -*■ p(x) = Uq p (x) Ug1 = p (x) exp[-is(x)]

q(x) q(x) = UG q(x) U^1 = q(x) exp[is(x)] (4.2.8.).

Â(x) -* 4(x) = UG 4(x) U”1 = ¿¡(x) exp[is(x) ]

i4(x) -*• A (x) = ¿4(x) + (fi/m) grad s(x) (4.2.10.) .

î(x) = l qi(x); p(x) = l pi(x); î(x) = \ 4i(x) (4.2.11.)(‘?
i l l

*The super index i is not to be confunded with the imaginary unit, nor 

with the ith power.
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+ X f [curl A(x)]2d3x (4.2.12.),

where the new hamiltonian is

+ 7 l if PXM  p^(x) V(|x - y|) q1(x) q^(y)d3x d3y +

(4.2.13.).

The redundant contribution to has already been removed.

Our immediate interest now is in obtaining a general gauge transformation 

in T . It cannot be expected that the most general generator of gauge trans­

formations in rg be expressible in terms of a single operator, operating 

independently in all three separate spaces. Instead,one is interested in 

three generators bringing about the following transformation

where s(x) is the same arbitrary function for all three pairs of dynamical 

variables. An explicit expression for the generators can only be obtained

terms of the (q or c-number) fields. But this generator is not important 

to know at this state. It suffices to know that the general law (4.2.14.)

‘Even though is not the most general one, this is obtained for three different

however, is not invariant under such a transformation (nor it needs to be, 

for the number of objects in s^ is not required to be conserved).

p1(x) -*• p1(x) = p1(x) exp[-is(x)] 

q1(x) -*-q1(x) = q1(x) exp[is(x)] (4.2.14)

Ax(x) -*-2f1(x) = q1(x) exp[is(x)]

from the knowledge of the definition of the dynamical variables p1, q1 in

(*)is a general gauge transformation in Tsv

- in general - and independent arbitrary functions s1(s). The lagrangian,
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It can be very simply tested - by inspection - that transformation
A

(4.2.14.) leaves invariant, provided that A transforms in the same way 

as before, namely according to (4.2.10.). This proves explicitly the 

rearrangement of gauge invariance.

It will be interesting to investigate now how the fields of L.C.S.R. 

transform according to (4.2.14.). After Fourier transforming the definition 

of dynamical variables in terms of the fields of L.C.S.R. one obtains

q1(x) = u*(x,y)0(y)d3y

q2(x) = v(x,y) 0+(y)d3y (4.2.15.),

q3(x) = 4> (x)

where u*(x,y), v(x,y,) 0(x) and 0+(x) are the Fourier transforms of the u£ ,K,q
k,q
0(x)exp[is(x)], then u(x,y) transforms as

u(x,y) -*■ u(x,y) .= u(x,y)expi[-s(x) + s(y)] (4.2.16);

accordingly v(x,y) must transform as

v(x,y) -> v(x,y) = v(x,y) exp i[s(x) + s(y)] (4.2.17.),

and finally d> (x) transforms as

d>(x) -► d>(x) = 4>(x) exp[is(x)] (4.2.18.).

Note that

transforms according to

(4.2.15.).



This transformation law will turn out to be the most important to bring 

about a curl-free velocity field for the pairing density, which will tum 

out to be associated with the superfluid.

To end this section let us write down the Euler-Lagrange equations 

for generalized coordinates and their c.c.

+ l V(|x - y|) p^(y) q^(x) q1(y)d3y
.j.

+ I V(|x ~ yl) p1(y) q-’(x) q̂  (y)d3y (4.2.16.)
j

+ I V(|x - y|) px(x) pj(y) qj(y)d3y
.j.

+ l V(|x - y|) p^x) p^(y) q1(y)d3y (4.2.17.),
j

and for the velocity field in the Coulomb gauge, div .4 = 0 

X Curl Curl A = ^  £ (pi(x)[grad q*(x)] - [grad p* (x) Iq'“' (x)} -

- I pi(x) qi(x) A (4.2.18.).
l

Equations (4.2.16 - 18.) give a complete gauge theory of the coupling of 

an external field of velocity to the entire fluid in the separable phase 

space picture. Subsequent developments of this theory should now follow 

the same general lines as existing theories. It should be noted, however, 

that normal and superfluid variables have not been specified. This will be 

done in §4.4. It must also be noted that velocity fields arise naturally 

for all three pairs of variables involved, lienee there is no need for 

identifying A with any of them. In fact the velocity fields associated 

with these variables should follow the piloting effect of the external 

field. Whether or not some of these velocity fields follow A coherently.

164
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i.e. curl-free, depends on whether the statistical average enables the 

gauge phase exp[±is(x)] to be finite, or - on the contrary - to cancel 

out due to incoherent thermal collitions. This idea will be developed 

further in §4.4. But now let us consider the question of whether O.D.L.R.O. 

occurs in either of the first two r.d.m.

§4.3. O.D.L.R.O.

A powerful characterization to classify physical systems exhibiting 

coherent and superfluid behaviour on a macroscopic scale was developed in 

the fifties and sixties by Penrose and Qnsager and Penrose*-57-̂,

Yang (71), Frolich (27) and Glauber (31), based on the factoring properties 

of the reduced density matrices (r.d.m.).

During the sixties and seventies Frolich proposed and developed a 

programme aimed at obtaining predictions about the hydrodynamical behaviour 

of superfluids from certain structural, macroscopic properties of the r.d.m. 

- O.D.L.R.O., in particular - without a detailed solution of the many-body 

problem. This very economical programme has been developed further by a 

number of authors since. Hyland and Rowlands developed a closed set of 

hydrodynamical equations for the Bose superfluid (41 ) f Taylor did the same 

for superconductors (64) and Hakcn for lasers (80).

The starting point of all these approaches is the hierarchy of master 

equations of motion for the r.d.m. proposed by Frolich (27), and ansatz 

for the structure of the first few r.d.m., usually the first two. This 

effectively truncates the hierarchy (usually at second order) yielding a 

conplete set of equations. The solution of this set of equations gives 

the structure of hydrodynamic equations in remarkable agreement with 

experiment. This is true for the Bose superfluid, as well as for super­

conductors and lasers.

The above programme was based on the use of density matrices defined 

over a non-separable phase space, associated with the particle picture.
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The aims in this section are (i) to show that the same scheme can be 

developed from a separable phase space picture, with minor change; (ii) 

to show that defining the dynamical variables of Tg in terms of L.C.S.R. 

the anstaz for the first two r.d.m. of Frolich, and Hyland and Rowlands 

is confirmed and generalized, for a unique system described by means of 

pure states (not a statistical mixture).

Let us recapitulate the main basic features of the approach to 

superfluidity based on O.D.L.R.O. (27). From Liouville's equation for
A

the von Neumann density matrix, fi

where H is the particle hamiltonian - given by (1.2.3.)F - and the definition 

of the particle r.d.m., namely

ifi3ti2 = [H,ii] (4.3.1.),

/\

i^Cx.x') = W V  ) Y(x)fi}

n2(x,y;x' ,y') = T r i i V )  Y+(y') ¥(x) ny)n)
(4.3.2.)

etc., the following hierarchy of master equations is obtained:

(4.3.3.)

+ v(|x - y|)]fi2 (x»y;x'»y') + w2 (4.3.4.)

etc., where

-  V(|x* -  z |) -  V (|y ' -  z |) ]n 3( x , y ,z ; x ', y ', z ) d 3z (4 .3.6.)



etc.

The ansatz for the first two r.d.m. for the Bose problem are

^(xjx') = A1(x,x') + <fr* **(x') 4>(x) (4.3.7.),

where A^xjx') ■+ 0 as |x - x'|

Ĉ ,y;x' ,y') = ^ ( x 1) <J>*(y') 4>(x) <|>(y) + $*(x') <J>(x) AjCyjy') +

+ <}>*Cy’) <Ky) A^xjx') + 4>*(x') <Ky) Ax( x ; y +

+ <Kx) Ax(y;x’) + A^xjx') A-^yjy') +

+ Ajfxjx') AjCyjx') + A2 (x,y;x',y') (4.3.8.),

where A2 -*■ 0 if d[(x,y);(x',y')] ->• ».

That is O.D.L.R.O. was assumed in but not in î , for which the 

only factorization is that originating from that in the first r.d.m., .

For superconductors the ansatz is^^

^(xjx1) = A1(x;x’) (4.3.9.)

i22(x,y;x’ ,y') = $*(x ,y') 4>(x,y) + A^xjx') Ax(y;y')

- A^xjy') A1(y;x') + A^x.y ,x',y') (4.3.10.);

that is, O.D.L.R.O. is assumed in 02 but not in î . In fact, it was noted 

by Yang (71) that O.D.L.R.O. in Dj is not possible for Fermi,systems due to 

the fact that a contribution of the form <t>*(x') <J>*(y') <KX) <Hy) “ which would 

occur in 02 - does not have the correct antisymmetry under permutation of 

coordinates x y; for, <j>'s are thought to be abelian functionsv .

*It will be shown in §4.5. that under appropriate circumstances O.D.L.R.O. 

can occur in for Fermi systems.

**An improved ansatz was later proposed by Frolich encompassing O.D.L.R.O.

in ii2 for the Bose problem.
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Introducing the ansatz (4.3.7.,8.) into the master equation (4.3.3.-6) 

and going to the far from local limit, |x - x* | ■*■*>, the equations of motion 

for the first order coherent fields are obtained, namely

- ih3t*(x) - Z2X <Kx) + | V(|x - y|) [*(x) oT(y) +

+ <(.(y) A1(x,y)]d3x (4.3.11.),

and similarly for its c.c., where a~(y) is the total density at the point y. 

Introducing equation (4.3.11.) and its c.c. in the master equation for 

ft̂ (x;x') in the near local limit the equation of motion for A^(x;x') is 

obtained. Writing <J>'s and A^ as their moduli times their phases, and 

separating real and imaginary parts, the equations of continuity and 

conservation of current are obtained. Conservation equations for flow 

of energy and entropy are also obtained from the definition of energy in 

terms of suitably defined velocities, and from the assumption that only 

(and not <)>*<)>) contributes to the flow entropy (41 ).

The programme summarized above can be easily posed in terms of the 

separable phase space (S.P.S.) picture, with minor modification. The 

density matrix, for a start, is different in general (see next section,
A A

ft' instead of ft say). The Liouville equation in the S.P.S. is also different, 

namely

ifi3tft' = (H',ft'} (4.3.12.).

As to the definition of the r.d.m., it is most important to note that 

these are defined as quantum and thermal averages of the n-body propagator 

functional, (^(x.y, ...; x',y', ...) in the N-S.P.S. and G'n(x,y, •••; 

x*,y*, ...) in the S.P.S., say. The thermal average is carried out over 

an ensemble constructed either in Tns or Tg, whose density matrices are 

ft and ft', respectively. That is, the r.d.m. in the N-S.P.S. and S.P.S.
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are defined as follows:

nn (x,y, •••» x'»y’ » •••) = Tr(Gn(x,y, ...; x',y', ...)n) (4.3.13.)

o^(x,y, •••; x' ,y ’ , ...) = Tr(G^(x,y, ...; x\y', ...)n' (4.3.14.),

respectively.

The n-body propagator functionals are defined, in turn, as functionals 

of the corresponding canonical variables, and are very dependent of the 

phase space' s architecture. The first two propagator functionals in the 

N-S.P.S., for instance, are defined as

Gj Cxjx’) = p(x') q(x)

G2(x,y; x',y') = p(x') p(y') q(x) q(y)
(4.3.15).

4. A

Definitions (4.3.2.) are recovered by defining p(x) e 4* (x) and q(x) = 4'(x). 

The propagator functionals in the S.P.S. take a different form, dictated by 

the structure of Tg. The first propagator, for instance, is given by

G{(x,x') E l p1(x') q1 (x) (4.3.16).
1

i i AIt is recalled that contributions of the form p qJ do not occur in Ĝ ; for, 

they make reference to two (distinguishable) objects. Similarly contributions
/"'V

of the form p pJq q , p pJq q do not occur in Ĝ , as they refer to three and 

four (distinguishable) objects.
A

Utmost care must be exercised in defining the G^ for n 2 2, in order 

to avoid inconsistency. It might be thought that as long as these functionals 

are to be defined, and not derived, one is free to choose their functional 

expressions at will. That is not so; for, one is aiming at an equivalent 

reformulation of a given dynamical problem in terms of variables of two 

phase spaces. This strategy dictates a criterion determining the functional
A

expressions of all the G^ uniquely.
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The functional expression of is determined from the following
A

considerations: The interaction term, U, in the particle hamiltonian is 

proportional to the 2-body propagator functional^ 1 only, i.e. all two-body
A

interactions and only two-body interactions contribute to U, namely

U = || V(|x - y|) G2(x,y;x,y)d3x d3y (4.3.17.).

In consequence the (two-body) interaction segment of the S.P.S. picture
A A

hamiltonian, U1, must be a functional of Gj only (a functional of the whole
A

Gj, and not just of a segment of it), namely

U* = || V(|x - y|) G2(x,y;x,y)d3x d3y (4.3.18.) .

Should this not be the case,the two formulations would not be equivalent, 

in so far as the pair correlation functionals, Ĝ  and Ĝ  , must be constants 

of motion in both formulations (and have the same expectation values).

From the inspection of the S.P.S. picture hamiltonian it follows, then, 

that G2 must be defined as

GUx,y;x' ,y' ) = l p1(x') p-’(y') q1(x) q̂  (y) +
. i.j(i*j) . . . .

+ I P1(x ') p1(y') qJ(x) qJ(y) (4.3.19.)
i.j

The last term is non-diagonal in L.C.S.R. (if the canonical variables are 

defined as in §2.4.)» hence gives no contribution to fi2>

The above method can be generalized to obtain expressions for the nth 

propagator functional as follows:

(i) Write down the summation of all variations of

px(x}) ... pj(x̂ ) q^Xj) ... q!i(xn),

involving none, one, two and three different superindices, and sum up over 

all different super-indices from one to three. Note that the sub-indices

In the local limit.
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of x' and x do not indicate the space to which the variables, p and q, 

belong, but indicate two different coordinates (of distinguishable or 

indistinguishable objects).

(ii) Decompose this sum into two parts

functional.

It is clear that the above definitions of r.d.m. make no reference 

to a particular representation of states. If the dynamical variables are 

defined in terms of L.C.S.R. as in §2.4. the following expressions are 

obtained for the first two r.d.m.

a!(x;x') = l fiUk.k') exp[i(kx - k'x')] 
1 kjk

(4.3.20.)

n2(x,y;x',y') = l «¿(k*,q';k,q) exp(i[(kx + qy) -
k,k'
q.q'

- (k'x1 + q'y')]} (4.3.21.),

where

il{(k;k’) = TritAjCk.k') + (4.3.22.),

Ajikjk') = A^(k;k') + A°(k;k') (4.3.23.),

(4.3.25.);
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n2(uk»q;k' *q’) = + $k' .q'$k,q

+ ^k'^kAl ^ ’̂ '^ + ^q'^q^Ckik') +

+ + ^q'*kAl^q;k^  +

where

+ A2(k,q;k',q')]n'}

$k,q  ̂V^q.t 

Kk,q ~ ̂  \ Uk,tVq,tatat

(4.3.26.J,

(4.3.27.),

(4.3.28.)

and

A2(k,q;k',q') - [V.s’V . t ' ^ . A . s V ' W t  ♦
s,s'

+ ̂ ,s'Vq\t'\,sVq,tasat(V <V  +

+ Uk' ,s,vq' ,t,uk,svq,tas,atat,0ls + 

+ uk,,s'vq,,t,vk,suq,tas,asat,at + 

+ vk'fs'V.t'ukfs V at'at0s'°s +

+ vk',s'uq',t'Vk,sui(tVVs'0t] (4.3.29.).

If only quantum averages were involved in the definition of the r.d.m. 

- as is the case for a unique system, described by a pure state (as opposite 

to a mixture of states) - it is clear from the inspection of (4.3.22.,26.) 

that O.D.L.R.O. would take place in both r.d.m.'s, and independently. 

The expression for (in a pure state description) validates Frohlich's



ansatz. The expression for fi2 also validates Frölich's ansatz for the

second order r.d.m., including independent O.D.L.R.O. in il2> It is

interesting to note that a contribution of the form $*$*,«. +k q k,q
qi'i’k^k ^oes not occur in ^2 > 35 could be expected from a structural 

decomposition of • This contribution is proportional to some of the 

redundant terms and its presence leads to inconsistencies. It is 

interesting to note that this contribution - not included in Frölich's
A

ansatzl - corresponds to the diagonal segment of HR (see §3.2,3.3).
A

The irreducible part of namely A2, takes the following form in 

the mean field approximation:

A2(k,q;k',q') = A^(k;k')<A^(q;q')> +

♦ A^(k;q')<A^(q;k')> + A^(k,q;k',q') (4.3.30.).

The first two terms are the mean field values of A2 and the last term A2 

represents fluctuations about mean values. It is noted that the expression 

above is independent of A°.

The discussion so far, as to the occurrence of O.D.L.R.O., has been 

confined to unique systems described by pure states. Real systems, however, 

must be regarded as a mixture of states (an ensemble) associated with a 

collection of identical replicas of the same system (of the same or 

different, but macroscopic, size). In consequence the expressions for 

the r.d.m.'s must be obtained as thermal averages over a suitable statistical 

ensemble. The occurrence of O.D.L.R.O. in this case is not ensured by the 

factoring of the r.d.m.'s in a pure state description. O.D.L.R.O. in D'j 

and/or will occur if the thermal averages of <t>£,4>k and/or 4>£, )qi \ (q> 

respectively,are non-zero for k'*k, q'*q. This will occur if and only if 

the ensemble averages of and/or 4>k ^ are finite; in other words, if the 

statistical weights of the phases of <f> and/or 4> do not add up randomly, 

but coherently. O.D.L.R.O. will take place, then, if and only if two sub­
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systems differing only by the phases of <p and/or $ are thermodynamically

Should that be the case and O.D.L.R.O. take place in either or 

^2 » it is clear that the system will be a superfluid; for, a fraction of 

the ensemble average density will be fully ordered. If O.D.L.R.O. turns 

out to occur in either or and the system is subject to an external 

field of velocity A = Aj + Ay, where Ay and Ay are transverse and 

longitudinal components, i.e. Ay <* grad sCx), the values of and/or

I vv i turn out to be multiplied by a phase factor of the formq K ,q K,q
exp[is(x) - is(x')]. This means that a longitudinal field of velocity will 

be imposed on <j> (x) or $(x - y). Due to the fact that the average phases 

of these fields are finite, a macroscopic curl-free velocity field will 

turn out to be associated to the factoring amplitudes of and 

Finally, it is interesting to point out that the definitory 

expressions for Qj and enable to derive the first master equation of 

motion for from Liouville's equation (4.3.12.), i.e.

In view of the way in which higher order r.d.m.'s are defined, one can 

expect that the entire hierarchy of master equations in the S.P-S* have 

the same form as Fröhlich'shierarchy in the N-S.P.S. with the only 

difference that Dn are replaced by In fact, should that not be the 

case the two formulations would not be dynamically equivalent.

2 2identical, i.e. if |<{>| and/or |4>| are order parameters.

x' - y|) v(|x - y|)d3y (i.e. the Fourier transform of and/or

where
(4.3.31.).



§4.4. S t a t is t ic a l  counting in  the S .P .S .

The discussion on the problem of 4He has been confined so far to 

dynamical considerations on the basis of a pure state description. The 

main concern has been with the question of whether it is possible or not 

to formulate the same (microscopic) dynamical problem on the basis of 

two sets of dynamical variables, defined in domains of different structure 

(separable and non-separabie), expressed in terms of the fields of two 

non-equivalent representations. None of these considerations, however, 

enables to ascertain whether a realistic macroscopic model-system under­

goes a phase transition to or from a superfluid phase from or to a normal 

(non-superfluid) phase.

In order to be able to draw any conclusion at this respect one 

must consider the statistical mechanical problem of a collection of 

macroscopically small subsystems in thermal equilibrium with a large 

reservoir at temperature T. This section is devoted to investigate 

this matter.

The first aim in this section is to construct tuo different, but 

statistically comparable, ensembles on the basis of the counting of 

configurations in the S.P.S. It will be shown, initially, that the most 

general Grand canonical ensemble (G.C.E.) constructed on the basis of 

configurations defined in the S.P.S. always admits a restricted ensemble 

(R.E.). Such an ensemble, without further constraints, is refered to 

here as non-superfluid ensemble. The other ensemble constructed here 

is obtained from the non-superfluid ensemble by introducing a statistical 

constraint. This is a condition stating that some set of the various 

sets of independent configurations in the S.P.S. - is statistically 

equivalent. The resulting ensemble being refered to here as the super- 

fluid ensemble. These two ensembles - superfluid and non-superfluid - 

are statistically comparable in so far as they differ only as to the 

inposition or not of the statistical constraint. One can ascertain,
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then, which of the two statistical descriptions is energetically favourable, 

by comparing the two free energies as functions of temperature.

It will become clear that several different variants of superfluid 

ensembles are theoretically possible, depending on what the statistically 

equivalent configurations are chosen to be from the three sets of indep­

endent configurations in the S.P.S. (or factors of them). After considering 

all these possible 'semantic options' it will be concluded that the only 

interpretation in qualitative agreement with experiment, as to the excitation 

spectrum and the temperature dependence of the specific heat at low T, is 

that for which different distributions of pairing fields, |V, | , are

statistically equivalent.

It will be shown that a macroscopic system described statistically 

by a superfluid (non-superfluid) ensemble does (not) exhibit the property 

of superfluidity, in the sense than an (no) additive part of the total 

ensemble average density is fully ordered; and, in consequence, flows 

without (with) dissipation of energy.

The main prediction to be obtained in this section concerns the 

excitation spectrum. Experimental observation shows a low lying gapless 

branch and also an upper band at about 20°K. It will be shown here that 

the excitation spectra associated with the fields p£ and q^ for i = 1, 2 

splits up into 2N closely packed branches for the superfluid ensemble in 

thermal equilibrium, in qualitative agreement with the experiment (19)• The 

low lying branch, u^,is shown to remain unaltered in both superfluid and 

non-superfluid ensembles, taking the same expression as in the pure state 

description.

The integral equations characterizing the mean field model of 

section 3.3. in thermal equilibrium are obtained for the superfluid 

ensemble.

Finally, the condition determining the onset of the superfluid phase 

and, eventually, the critical temperature is obtained. It is concluded
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that O.D.L.R.O. takes place in the superfluid phase in the second order 

reduced density matrix, but is ruled out in the first.

The type of ensemble one is able to construct in order to describe 

the, macroscopic, statistical behaviour of a given dynamical system is 

conditioned by the structure of the phase space in which the dynamical 

variables are defined, and on which the statistical counting of config­

urations is carried out. The G.C.E. constructed for a dynamical system 

whose variables are defined in a non-seperable phase space, for instance, 

does not admit a restricted ensemble (R.E.), unless an a priori partition 

is introduced into the phase space.

The Grand partition function for a G.C.E. associated to a dynamical
A A

system whose constants of motion, H and N, say, are functionals of N.S.P.S. 

variables is given, as usual, by

Zr = l Trifi} (4.4.1.),
G Sc

where

(2 = exp[-$(H - jiN)] (4.4.2.)

is the density matrix in termal equilibrium at temperature T = (KgB) 1,

Kg being the Boltzman constant and y the chemical potential.

The G.C.E. ensemble for the same dynamical problem formulated in 

terms of variables of a seperable phase spaoe, on the other hand, always 

admits a R.E. In effect, the Grand partition function in this case is 

given by

1 . - 1 1  l  — l  W O ’l (4.4.3.),

4
A

where the density matrix ft* is now given by
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O' = exp[-B(H' - vi'N')] (4.4.4.).

The summations in (4.4.1.,3.) run over all possible (non-equivalent) 

configurations, namely

Cjc = Tr{P k \ } (4.4.5.)

for the non-separable phase space, Tns, and

c j  = T r ip jq j)  (4 .4 .6 .)

for the S.P.S., rg. The summation over configurations in is a product 

of summations, this is due to the fact that the Cĵ 's are indepdendent 

configurations. (4.4.3.) is the general expression for the partition 

function of a restricted ensemble. In the present work d = 3.

The fact that the average number of particles in both ensembles 

(4.4.1.,3.) is the same, i.e.

N = 3<H - pN>/3y (4.4.7.)

N' = 3<H' - y'N'>/3y' (4.4.8.)

N = N' (4.4.9.),

follows from the fact that the volumes of both phase spaces Tns and rg are 

the same.

The strategy underlying the present formulation of the statistical 

problem differs considerably from the standard strategy (4,5,6,15,18,20, 

23,29,31,32,34,45,46,51,55,60,65,67,68). The present paradigmatic view, 

however, being in close connection with Hohenberg and Martin's strategy 

(38), to which the present scheme provides a generalization. Some brief 

remarks on this departure from the standard view are appropriate at this 

stage.
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It was pointed out before that the main element of existing standard 

theories of superfluidity is dynamical. The main interest has been in 

devising appropriate representations of states describing the superfluid 

phase's dynamics; and deriving predictions as to the excitation spectrum 

in agreement with experimental observation. The statistical problem, however, 

has been relegated - to some extent - to a secondary position, in the sense 

that it was believed that this latter problem does not require of additional 

novel conceptual elements for its appropriate formulation. Hohenberg and 

Martin challenged this view. These authors suggested that a superfluid 

should be characterised - in general - exclusively within the statistical 

context, by means of certain necessary and sufficient conditions satisfied 

by certain ensembles (defining a sub-set of the restricted ensembles).

These authors, however, did not rule out the possibility that - in particular 

cases - certain elements originating in the dynamical scene provided sufficient 

(but not necessary) conditions for superfluidity, as the occurrence of Bose- 

Einstein condensation.

The characterisation proposed by Hohenberg and Martin is rather 

simple and conveys a direct prediction of superfluidity, but - on the other 

hand - it does not provide a mechanism by means of which superfluid 

behaviour comes about, and is too dependent on the occurrence of Bose- 

Einstein condensation. The central idea is that the statistical ensemble 

describing a superfluid should incorporate independent configurations (which 

they associated with configurations of the condensate and depletion modes). 

Superfluidity comes about if the entropy associated with a fraction of the 

ensemble is fully ordered, the relative order being measured by an order 

parameter. The fundamental property of superfluid ensembles was then 

associated with the thermodynamic indistinguishability of two statistical 

otadia differing only by the distribution of the superfluid density segment 

(the condensate population).
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The above idea is taken here as the main element of the strategy 

towards a general theory of superfluidity, but the reliance of the 

condensate is eliminated. The notion of separable phase space provides 

the basis for discriminating independent configuration for all modes, 

rendering a partition of the wave vector axis (condensate-depletion) un­

necessary. The consequences of the involvement of the S.P.S. as far as 

dynamics is concerned were outlined in Chapter Three. The most signific­

ative are: the rearrangement of symmetry, the occurrence of three branches 

of the spectrum and the negativeness of the energy v. momentum relation 

for the dynamical objects described by one of the separate parts of the 

phase space.

The main implications of the use of a S.P.S., however, lay on the 

statistical context. It enables to construct two comparable statistical 

ensembles, differing only by the fact that one is superfluid and the other 

is not. The way in which these ensembles are constructed does not provide 

a mechanism explaining how the - otherwise non-superfluid - system of 

particles becomes a superfluid, but gives a criterion of existence of 

superfluid solution, determining - in principle - the critical temperature. 

It is in this respect that the present approach differs from existing 

theories.

Now, the interest in this work is not with the resolution of the 

exact dynamical problem but of a model problem in the M.F.A. The model is
A A

obtained by neglecting the segment T' from H' which is non-diagonal in 

the (new, as well as the old) L.C.S.R. The M.F.A. reduces the zeroth
A»

order hamiltonian H' to a bilinear form. In this approximation the 

density matrix (4.4.4.) is given by

fi' s exp[-g('l a£p£q£] (4.4.19.)( \
i»k

^Equation numerals (4.4.10.-18.), both included, were omitted in error.
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where are given by (3.3.26. ,36.)* except for the fact that is
/f*\ /V A

being replaced by e£ = ek - u'v The fact that H' - p'N' reduces to 

an additive expression in the separate spaces S^, without inter-space 

coupling, entails that

where

Tr{fl'} = n n1 
i

fi1 = exp(-8 | u£c£)

(4.4.20.),

(4.4.21.)

in the present M.F.A. In consequence the partition function Zr can be 

expressed as a product of three factoring partition functions, i.e.

where

Z1 = n l exp(-|3u£cj)

(4.4.22.),

(4.4.23.).

One finds as a consequence of (4.4.22. ,23.) that the G.C.E. for 

the dynamical system in this approximation is seperable into three 

additive,independent parts. This entails that all intensive thermo­

dynamical quantities are the sum of the corresponding contributions in 

the three separate parts of the ensemble, i.e. the free energy is

F = -B"1 in Z (Z = ZG or Zr)

= -B £ in Z1
l

= -B I F1 (4.4.24.).
i

The internal energy is obtained from
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U = -9 In Z/36

= - I 3An Z1/38 
i

* I U1 (4.4.25.),
i

similarly the entropy is given by

S = T-1(U - F)

= T"1 l (U1 - F1) 
i

= l S1 (4.4.26.)
i

and the specific heat by

Cy = 3U/3T

= I SUVST
i

= l c j (4.4.27.),

etc.

Now, it is clear that configurations 4  can ta^e non-integer 

values, in principle. These configurations are now given by

c k ’  J  nq  

i  ■  J  | vk , q | 2 ( nq  * «

i  ■ l \ l 2
where

^q =

(4.4.28.)

(4.4.29.)

(4.4.30.),

(4.4.31.),

in view of the fact that the c-number fields are not second quantized 

fields the 4 ' s can ta^e non-negative, real value. In consequence 

the summations in (4.4.23.) are really integrals, which diverge if the



dispersion relations have a zero, as is indeed the case of î . A post-
2 2ulate of quantization of o-number configurations, \<)>, | and |v, | , isK K,q'

introduced at this stage in order to avert the infrared catastrophe, 

which otherwise would occur. The condition of quantization will be 

adopted in this work as a postulate. The need to inpose this condition 

additionally suggests that the type of representation employed here, 

involving c-number fields, might not be the best suited for statistical 

purposes. An attractive variation of the present representation of 

coherent states, wherein c-numbers are replaced by second quantized 

q-number fields, is briefly considered in the final section of this 

chapter.

The partition function (4.4.22.,23.) as it stands, without further 

conditions, is associated with the non-superfluid ensemble. The partition 

function is denoted by Zns in this case. A closed expression for this 

function can be obtained by carrying out the simulations in (4.4.23.) 

over all possible configurations, i.e.

4  = M

<4-°

= n [exp(-BwJ) - l]"1 (4.4.32.).

The partition function of a superfluid ensemble, an the other hand, 

is obtained from (4.4.22.,23.) if any one set of configurations {c£}, or 

factors of configurations, are statistically equivalent. Several options 

are possible. Let us consider an option which will eventually prove not 

to be appropriate for the problem of ^He, but which will illustrate the 

notion of statistical equivalence and the nature of the superfluid 

ensemble. Let us assume that all configurations are statistically 

equivalent. This semantic option will be shown to amount to interpreting

T |(j>, | as the order parameter of the superfluid phase.
k 3 3 .Any two different configurations 0^(1) and C^(2) may correspond to
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two different dynamical states, but according to the condition of

statistical equivalence any two sub-systems (of different size)

differing only by the population in are indistinguishable as far

as their thermodynamic properties are concerned. In other words, any

two sub-systems (also called a cells) characterized by the same config-

uratxons &K and C£, but by different configuration Ĉ , are in the same

thermodynamic stadium. Let us denote the partition function in this

case by Z (3) = n Z1(3). One obviously has 
s i s

z j ( 3 )  = 4  for i = 1,2 ( 4 . 4 . 3 3 . ) ,

but in order to obtain Z^(3) in this case one must take into account only 

one configuration value C ,̂ this can be any one value (0,N) consistent 

with the normalization condition. One thus has

i.e.

Zg(3) = exp(-e^|<Dk|2)

Zs ®  * 4

(4.4.34.),

(4.4.35.).

One can prove that the ensemble whose partition function is Zg (3)

(Z ) describes the thermodynamic behaviour of a superfluid (non-superfluid) 

by showing that the entropy of at least one (no) part of the ensemble is 

zero. It will be interesting to show this from S^(3) = [Uj(3) - fJ(3)]T_1

- o <4 • t_1 »4 - 41 * °-for ai1 »•
The free energies obtained from Zfis and Zg (3) are

1 | An[exp(-&jî ) - 1], for all i (4.4.36.),

Fg(3) = ijg, for i = 1,2 (4.4.37.),

F)(3) ■ l »¡?V for 1 ' 3 (4.4.38.),
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respectively. The internal energies are

l£s = I - 1) 1, for all i (4.4.39.)

Ug(3) = ujs, for i = 1,2 (4.4.40.),

Uj(3) ■ ji

The average distribution of objects in space is

(4.4.41.).

= - m z ^ /

(4.4.42.)

= (expgw^ - 1) * , for all i 

and

(4.4.43.),

« Î V «  ' <Nk>ns* for 1 ‘ !-2 (4.4.44.),

<N^S(3) • |»k|2, for i - 3 

Finally the entropies are given by

(4.4.45.).

Sîs = T’1 £ {wk<Nk>ns ' B_1 A^expC-emj) " 1]_1> for a11 i 

or simply by

(4.4.46.),

sL  - h  l > 4 ^  *

* (<•£•„, * * 1)] 
and

(4.4.47.),

sg(3) = Sjs, for i = 1,2 (4.4.48.),

Sg(3) = 0 , for i = 3 (4.4.49.).

The last result proves that a finite additive part of the ensemble is 

fully ordered. Zs(3) describes the behaviour of a superfluid as long as



1 I'frjJ * 0. From (4.4.42. ,47.)» on the other hand, it follows that 

Sns * 0 for all i, unless £ <Nk:>ns = 0 for some i. In consequence, Zng 

describes the thermodynamic behaviour of a non-superfluid.

Let us now show that the ensemble averages of the c-number field 

amplitudes, <4>jc>”<q^> and <<!>£> = <P^>, are zero in the non-superfluid 

ensemble and non-zero in the superfluid ensemble. These averages are 

obtained in general from

<<f>k> = J l Tr{<}>kexp(-&^|4.k |2)}/Z3 (4.4.50.)

Sc

or using a familiar artifice in statistical mechanics

«f>k> = ~63inZ3/3û <t>k (4.4.51.).

Now, taking the derivative of J!nZ3 one findsns

< 0 ^ = 0  (4.4.52.);

for, Z3g is independent of <J>*. Now, for the superfluid ensemble average 

one finds from (4.4.34.,51.) that

< V s (3) = *k (4.4.53.).

This result can be obtained in a more direct manner from (4.4.50.).

As a consequence of (4.4.53.) one finds that

Tr{<J>*,*k0'}/Zs(3) (4.4.54.),

i.e. O.D.L.R.O. occurs in the first order reduced density matrix, for

this particular case of superfluid ensemble.

The superfluid ensemble considered so far seems very attractive at

first sight, many authors before have, in fact, conjectured that the first

order coherent field should be at least part of the order parameter (18,
2

20,35,46,59,65). It is noted, in passing, that l |<}>k| ia indeed the
q

2
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order parameter for the superfluid phase described by the superfluid 

ensemble whose partition function is Zg(3). The problem with this 

interpretation is that it leads to predictions in strong qualitative 

disagreement with experiment.

First of all, the objects in the part of the ensemble whose 

partition function is (3) cannot be excited individually, due to 

the global property which amounts to their (collective) order. This 

objects could only be excited collectively. This, however, would 

require a formidable amount of energy, certainly not the amount of 

energy that thermal neutrons, or x-rays, can convey. In consequence 

the gapless branch of the spectrum would not be observed in thermal 

neutron scattering experiments. On the other hand, it is well-known 

that the temperature dependence of the specific heat capacity at low 

temperatures follows the Debye-law, proportional to T̂ . This temper­

ature dependence is obtainable from Z^s, as is well known (e.g. Ref. 

(47)), it is noted that is linear for small values of k (see Gross 

(1966)). However, from Zg (3) one obtains

(cv)s3(3) = auf(3)/3T = 0 (4.4.55.);

for, (3) is independent of temperature. This result is, of course, in
3 2

agreement with S (3) = 0. Thus, if 7 |<fv| is the order parameter, or 
3 kpart of it, the t dependence of Cv is lost. In view of these remarks 

the interpretation of the superfluid phase's order parameter considered 

above must be ruled out and with it O.D.L.R.O. in fij(x,x').

Let us consider now the other possible interpretations of 

statistically equivalent configurations. The case of the sets (Ĉ ) and 

(c£) being statistically equivalent^- is not very appealing. The idea

1 2  2 ♦Note that C£ and have similar expressions in terms of |Vk ^| and nq,

hence should one be statistically equivalent the other should also be so.
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of the various distributions of elementary excitations being statistically 

equivalent is not unconceivable, but is just very odd. This interpretation, 

on the other hand, would lead to the conclusion that the only observable 

branch of the spectrum would be the low lying gapless branch Now, 

recent experiments (19) have discovered an upper band in addition to the 

gapless branch. The presence of this band has been explained phenomenol­

ogically as follows (see Ref. (19) and Refs, within): It is conjectured 

that the broad band is the excitation spectrum associated with the 

scattering of clusters of two or more excitations whose single excitation 

energy spectrum is the gapless branch. The broadening of the upper 

spectrum is understood as the characteristic broadening of multi­

excitation scattering. This explanation is phenomenological in the 

sense that the starting point is an asymptotic formula for the dynamic 

structure factor of multi-excitation scattering, which must be adjusted 

to give the observed position and shape of the band by fitting two 

parameters.

According to this latter interpretation the upper energy spectrum 

is not a band, i.e. a closely packed set of well defined branches, but a 

broadened line. It is clear that the above interpretation of statistically

and cannot be ruled out from the fact that 

it does not reproduce the upper broadened spectrum. However, after 

considering the third remaining interpretation of statistically equivalent 

configuration it will become clear that this latter view is the
4

appropriate interpretation for the problem of superfluid He.
1 2The third interpretation regards a factor of and of Cj. as 

statistically equivalent, i.e. any two configurations c£( l)  and C^(2), 

or Cĵ (l) and

equivalent) if and only if the distribution of elementary excitations, 

q , is the same (different), regardless of the distribution of pairing 

fields, |VW I2 and |U. |2, all of which are statistically equivalent.

C£(2) for that matter, are statistically equivalent (non-

equivalent configurations
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In other words, any two cells of the ensemble characterized by config­

urations C^(l), Cĵ (l), ^  ^  c£(2), c£(2), Ĉ , differing only by the
2 2distribution of pairs, |v, | and |u. | , are in the same thermodynamicK,q K,q

state that is, cannot be distinguished by their macroscopic properties.

The partition function corresponding to this version of a super­

fluid ensemble is denoted by Zg = n z\ The partition function in this
i

case is determined by the summation over different configurations of 

elementary excitations (the only non-equivalent configurations in this 

interpretation), i.e.

z ' - n c n  I exp(-ewk|uM l2y ]
k q nq=o

= n {n [exp(-Bü>k |uk |2) - 1] *} 
k q

(4.4.56.)

(4.4.57.),

Z, - ; I" I B“klVk,ql v ]k q nq=o

• [n exp( 6<\|vk>q| )] (4.4.58.)

and

= n (n Cexp( 3«^ |vk |2) - 1] 1 
k q ,4

• [n exp( |vk q̂ | )]}

Z3 = Z3 s ns

(4.4.59.),

(4.4.60.).

1 2It is most inportant to observe that Zg and Zg turned out to be 

products of partition functions in this case, i.e.

and

z\ = n zj(q) 
s q

(4.4.61.)

Z2 = n Z2(q)z (q)
s q s

(4.4.62.),

where
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and

ZgCq) = n {exp[-ßu£(q)] - l}-1

zjcqj = n {exp[ 0uj(q)] - l}'1

zs(q) = n exp[ etô (q)]

—1 —2u^Cq) and câ (q) are effective excitation spectra, given by

= “klUk,q|2

(4.4.63.),

(4.4.64.)

(4.4.65.).

(4.4.66.)

“k ^  = w klVk,q|2 (4.4.67.).

1 2  2From the fact that Zg and Zg factorize into N and N factors, respectively,

it follows that the separate parts of the ensemble, associated with these
1 2partitions functions, and denoted by Eg and Eg, are the additive super-

(*)position of N and 2N parts, respectively , i.e. in a symbolic notation

EÌ -  Z E^Cq), E2 = I E^(q) + e (q) (4.4.68.),

1 2where Zg(q), Zg(q) and zs(q) are the partition functions of the separate 
1 2parts of the ensemble Eg(q), Eg(q) and eg(q), respectively.

2 2Now, for the same value of k, |u, | and |v, | take - in general -K,q K,q
different values for different q. In consequence the effective spectra 

can take, in principle, N different values each. The part of the ensemble 

l E (q) + E (q) is, thus, the ensemble corresponding to a dynamical system
q S S
whose energy spectrum is a band comprising 2N branches, the density of

2
branches depending upon the distribution of pairing fields ql and

2
|w | • This direct prediction of an upper band is in qualitative agree- k,q
ment with experiment, and is obtained here independently of any consideration 

as to the low lying gapless branch. The band is seen here to be not a

‘Note that q can take N discrete values.
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broadened line, characteristic of the scattering of clusters of single

excitations, but a true band consisting of closely packed lines,

associated with the scattering of single excitations, independent of
fthe excitations associated with the low lying gapless branch. 1

The prediction of an upper band arises here from the conjunction 

of four elements: (i) The involvement of pairing of non-zero overall 

momentum, (ii) The separability of the phase space, (iii) The definition 

of the dynamical variables (and, hence, of the configurations in the 

S.P.S.) such that c-number fields are factors of the dynamical variables 

(and, hence, of the configurationsJ and (iv) The special way of counting 

configurations, avoiding the multiple counting of statistically equivalent 

configurations.

It is the latter element of the present theory that effects the 

splitting of the excitation spectrum, which in a pure state description 

is a single branch. The involvement of this latter element is also that 

conveying the superfluid properties. It is noted that a single branch 

is predicted from the non-superfluid ensemble description. It will be 

argued later in this section that the average number of pairs is zero 

above the transition, in consequence, the width of the band predicted 

in the superfluid phase should reduce with increasing temperature and 

disappear at the transition. But now let us consider two cases of 

interest. Firstly, the case in which the dynamical variables of the 

separable phase space are defined in terms of a L.C.S.R. involving 

pairing of zero-overall momentum only. Secondly, the case of standard 

existing theories in which the phase space is non-separable and the 

c-number fields are not factors of the dynamical variables, but 

auxiliary parameters.

In the former case the dynamical variables are defined as (*)
(*) Dr. W.A.B.v^RaJ^iddressed the author's attention to the fact that neutron 
scattering experiments do in fact show broadened lines; also predicted from 
the pair theory of the dynamic structure factor S(k,w).
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Pk E 5 V k

P k " vka-k’ %  =- V - k
-3 _ 3 _ .* —3 _ 3 _ .
Pk - pk - V  \  = qk - *k

The excitation spectrum takes the expression

'k • {Jk - iBki‘>
2,1/2

where

and
\  ■ ek + J [V(o) + V C4)] I <Pk+£ V ^ >

' E V») < ^ tP?k_t>

(4.4.69.),

(4.4.70.),

(4.4.71.).

(4.4.72.),

(4.4.73.)

(4.4.74.).

remains the same as before. The c-number fields and vk now satisfy

uk = ^k + “k)/2“k (4.4.75.)

|vk |2 = (Jk - WjP/Zt^ (4.4.76.).

1 2The partition functions Zg and Zs take the following form, for the present 

interpretation of the pairing field density | |vk | as the order parameter,

Zg = n [expf-e^u2) - l]"1 (4.4.77.),

Z2 = n [exp( 6<i)k|vk |2) - l]"1 • 

• [exp( emk|vk |2)] (4.4.78.).

It is clear, then, that the upper-branch of the spectrum in a pure state 

description, namely u^, now splits into two effective branches in thermal 

equilibrium, namely

-1 2 
“k = t°kUk (4.4.79.)

and
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\  = ü,klvkl2

or according to (4.4.75.,76.)

(4.4.80.),

= (1/2)(Jk + u^) (4.4.81.)

=»?
\  =-(1/2) (Jk - c^) (4.4.82.J.

The fact that the dynamical objects i = 2 posses a negative energy 

spectrum was briefly discussed in Chapter Three. Further research is 

required to ascertain whether this is observablenand if so^by what 

means.
Now, in the standard, theory the phase space is non-separable and 

the canonical variables are defined as

= o£ and q¿ H (4.4.83.).

The mean field hamiltonian takes the form

H = £ + zero point energy (4.4.84.),
k

in consequence the only partition function that can be constructed in this 

N.S.P.S. corresponds to a non-superfluid ensemble, in the present connot­

ation, i.e.

Z-Jlf Tr{exp(-8Wknk)}
knk=°

= n [exp(-6WJ - l ] ' 1 (4.4.85.).
k K

That is, the effective excitation spectrum predicted from this non-superfluid 

ensemble is only one branch, the same excitation spectrum as in a pure state 

description. Finally, it is noted that this spectrum,Wk,is currently 

interpreted as the gapless low lying branch, while here it is seen to 

correspond to the upper band.

Let us now go back to the 'pairing version' of the superfluid ensemble 

and show that a part of this ensemble is fully ordered, another part is
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partially ordered and the remaining part is normally disordered (i.e. 

fully ordered only at absolute zero temperature). The entire ensemble, 

denoted by Eg, can now be regarded as the additive super-position of three

The number distribution of objects in this part of the ensemble is

Now, it is noted that the dynamical objects in this part of the 

ensemble can only exchange energy collectively with other objects in other 

parts of the ensemble,or the thermal bath, but cannot be scattered 

individually, in consequence the spectrum associated with this part of 

the ensemble is not observed by neutron scattering experiments.

TTie part of the ensemble denoted by Eg is the same as the part of
3the non-superfluid ensemble, whose partition function is Zns. This part 

of the ensemble is known to be fully ordered only at zero temperature 

where the number of objects

Let us evaluate now the remaining distribution of number of objects in Eg

parts, E*, E^ and Eg, say, whose partition functions are II [Zg(q)Zg(q)],
3 3 HII z (q) and Z = Z , respectively. Let us show first that the ensembleq 2

Eg is fully ordered.

The internal energy and the free energy are

(4.4.86.),

in consequence the entropy of this part of the ensemble is

(4.4.87.).

Ns = l CNk3s = 6_1 E 3*n zs ^ /3uk = Xlvk,q!2 (4-4.88.),k q,k k ’

in consequence the physical system described by this ensemble,
1 2  3Eg = Eg + Eg + Eg, will exhibit the property of superfluidity provided that
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k q,k
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1 ( l 1̂  „ | 2<n >1 + | v .  | 2<n >2) q,k q  s  M  q s '
where

(4.4.89.),

< V s  ■ - l]-1
and

(4.4.90.)

< V s  = CeXp^ k |vk,q|2) - 1]_1 (4.4.91.)

are the average distribution of elementary excitations in the ensemble
1 2whose partition functions are Zg(q) and (q), respectively.

The free energy and the internal energy in E* are

Fg - UntexpC-Bu^li^^l2) - l]"1 + 
k»q ’

in[exp( 6mk|vk>ci|2) - l]"1}

and

(4.4.92.),

Us * kiq “k|uk,q|2<V s ' “k|VI<,q|2<V s
(48)respectively. Finally the entropy is given by

(4.4.93.)

Ss Jml cv i tov i " (<V s + 1)to(<V s +1)] 

This can be tested by noting that

(4.4.93.)

F¿/ <n>q = o, for i = 1,2 (4.4.94.)

entails (4.4.90.,91.). From the inspection of (4.4.89.,93.) it is clear 

that only a fractional part of the ensemble E^ is capable of disordering, 

i.e. the specific entropy (i.e. entropy divided by the average number of 

objects) is smaller in E^ than in a comparable non-superfluid ensemble. 

The behaviour of this part of the ensemble, nevertheless, is that of a 

viscous fluid, but with anomalously low viscosity, i.e. N* can be large 

and yet S* can be rather small, if the average number of elementary 

excitations is small.

.
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The specific heat capacity obtained from this ensemble is proportioned
3 3 3to T at low temperature, this is the contribution (Cy) = (C ) .

(Cy)s is identically zero and the contribution (C ) shows roughly an

exponential behaviour due to the gap in the various branches of the 
(47)spectrum. A detailed evaluation of Cy is outside the scope of this work;

for it requires a detailed knowledge of the various branches of the

excitation spectrum, and in order to obtain such expressions a complicated

set of integral equations must be solved first by numerical methods.

Presently we shall be content with obtaining this set of equations but

no attempt of solving it will be pursued in this thesis. An investigation

as to the numerical solution of these equations for simple model potentials,

and the resulting excitation spectra and the thermodynamic quantities of

interest, is currently in progress, the results of this investigation

will be given elsewhere. But before deriving the integral equations

characterizing the present mean field model in thermal equilibrium let

us work out the ensemble averages of the pairing field amplitudes <u^ q>

and <v. >.
k,q
From (4.4.22.,23.,28.,29.) it follows that

<uk,q> = -6"1^ AnZ/3wkUk,q)

^k.q" = e_10£nZ/3V *>q)

For the non-superfluid ensemble one obtains

<u, > = <v, > = 0Tc,q ns k,q ns

(4.4.95.)

(4.4.96.).

(4.4.97.),

and similarly for the averages of their c.c. This result follows from

the fact that Z is independent of u. and v, . For the non-superfluidns *»4 *>4
ensemble, on the other hand, one obtains
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<uM >s - i  I, l  T " “ k / > « s

' uk,q I, I, I, t r l i w ,
<4Ck Ck

' V q (4.4.98.),

where the second equality follows from the fact that the various configurations 
2

of | u, | are statistically equivalent. For <v. > one similarly obtains*■>4 K,q s

^k.q's = Vk,q (4.4.99.).

These results can be obtained from (4.4.95.,96.), i.e.

<Uk,q> = 'e'l3inZs/3u)kUk,q = “k.q (4.4.100.).

For the average of v, , however, one must be carefull not to count twice,K,q
i.e.

or

% , , ’s • i. I, l, TrV W s<4 <4 <4
= eamtn zz (q)]/3w,v* 

q ,4
= gamtn z (q)]/8u.vi

q ,4

= v,k,q
in agreement with (4.4.99.). Note, however, that 

r W ^ / t o ^ q  = 2vk>q

(4.4.101.),

(4.4.102.),

this indicates that the artifice (4.4.95.,96.) must be employed with care 

to avoid double counting.
As a consequence of (4.4.100. ,101.) it follows that O.D.L.R.O. in 

^2 does take place, but not in Op as follows from the fact that
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<(t*k>S = <♦£>. E 0k s (4.4.102.),

which can be readily tested.

It emerged here that the average amplitude of pairs over the pairing 

version of the superfluid ensemble is non-zero, while the average amplitude 

of first order coherent fields is zero. This conclusion was also reached 

by Evans and Imry before, but through a different argument. These authors 

argued that the average <<J>k> (or <<}>£>) must necessarily be zero; for, the 

ensemble average equals the time average over a very long period of time 

(infinite in theory) - according to the ergodic hypothesis (admittedly valid 

in the present case). But, due to the fact that random collisions change 

randomly the phase of the particles (the phases of and a^ in Evans and 

Imry' s work, or the phases of <J>£ and in the present argument), the 

time average is necessarily zero. In consequence the ensemble average 

can hardly be finite. This argument, however, assumes that random 

collisions do change the phases of the field amplitudes (either a^ and 

ak* or ‘He ^  at ran<̂ °m' 0he is quite justified in assuming this in 
the context of the standard theory, where the notion of statistical equiv­

alence is not introduced. From the present point of view, however, this 

assumption does not hold. In fact, individual dynamical objects in the 

ordered part of the ensemble cannot change their phases independently; 

for, if they did they would disorder, against the global property with 

states - a priori - their full order. These objects could change their 

phase collectively; however, it is very unlikely that an individual 

dynamical object in the non-ordered part of the ensemble, or an incoming 

neutron for that matter, changes the entire phase of the totality of 

the ordered objects. They do not have enough energy to do that. It is 

still possible, however, to change the overall phase of the macroscopic 

field amplitude by applying a macroscopic external field of transverse 

velocity, but this is quite another matter. In summary should config-
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2
urations |<|>jj be statistically equivalent, which is a valid theoretical

possibility, the macroscopic phases of the macroscopic field amplitudes 

¡f>£ and are not changed randomly by random collisions, circumventing 

in this way Evans and Imry's indictment.

Here, however, it is found that and <<{>£> should be zero, but 

for different reasons, namely due to the fact that if these averages are 

not zero the gapless branch of the spectrum would not be observed and 

the dependence of the specific heat would be lost, against experimental 

observation.

The same argument given above can be adopted to advocate the non­

zero average value of v, and u, , without having to assume that the 

change of phase of one of the particles of wave vector q, say, is 

followed by a corresponding change of phase of the partner particle of 

the pair (of wave vector k). In fact, the phase of individual objects 

of the pair does not change at all by collisions with other individual 

objects.

It was shown in §4.2. that a change of gauge of external field of 

velocity effects a change of phase of the Fourier transform at v. , i.e.A,q

this phase will turn out to be a macroscopic observable. Later in §4.3. 

it was shown that a segment of the first order reduced density matrix 

takes the form

this contribution was shown to transform under the gauge transformation as

v(x,y) -*■ v(x,y)exp[iS(x) + iS(y)] (4.4.103.),

(4.4.104.)

( 4 . 4 . 1 0 5 . ) .
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In consequence, even though, O.D.L.R.O. does not take place in fij in 

the absence of an external field of velocity, a diagonal part exhibits 

a factorizable phase in the presence of an external field of velocity.

If the domain of integration in (4.4.105.) is finite (not infinite) the 

R.H.S. of (4.4.105.) is a function of x. In the far from local limit, i.e. 

|x - x' | very large compared with the range of the potential, the first 

order reduced density matrix factorizes as

^(XjX') = (|v(x) |expiS(x)){v(x)expC-iS(x') ‘J} (4.4.106.),

from which a one-point velocity field can be obtained, as usual (e.g. 

Frolich (1973)), as

Vg = (R/m)gradS(x) (4.4.107.).

This velocity field is a macroscopic observable in the superfluid ensemble,
2

is a fine grained quantity, as |V(x)| itself, and - in addition - it is 

curl-free, i.e.

Curl Vs = 0 (4.4.108.).

This is currently regarded as the hydrodynamic condition of superfluidity. 

Here it is seen to have its origin in (i) the notion of statistical equiv­

alence, which entails that the phase of v. is a macroscopic observable, 

and which can vary over macroscopic distances, and (ii) the fact that the 

gauge symmetry is rearranged. Should either of these two conditions not 

be satisfied (4.4.108.) would not follow.

Let us now derive the integral equations characterizing the present 

mean field model in thermal equilibrium. These sets of equations encompass 

an equation for the Hartree-Fock energy, Jk , for the pairing fields, Bp^, 

and its c.c. and for the pairing fields, b .̂ This set of equations is 

completed by the normalization condition. From the definition of Ĵ , 

namely
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Jk = "k + J'tvCo) ♦ v(«3 l <p£H l£+4>

one lias

Jk = ek +  ̂Cv(o) + v(£"k)] l {lU£,q|2(exP6a>JlluJi,q|2 - 1) 
Z q

* K . q l W ^ K . q l 2 ' 1)_1 * 11 *
+ (expBu^ - l)"1}

where

l l^.ql2 = (Jk + \ )/2wkq

I lvk,q'2 ' <Jk - “k>'2“k 

The normalization condition is

N ‘ k ? q t|Uk-1|2ieXP" ^ |Uk-<l|2"i r l *

* lvk, q l W e » k|vki(li2 - l ) - 1 *

+ (exp3<ĵ  - l)"1)

The equation for the pairing energy is

bjj = l v(Jl-k) (exp3o>̂  - l)"1 

the other pairing energy is defined as

p  Bp»k " ^ pV^ <PP+*I>k_*>

‘ , j ,p  vM IV m W V s *
+ Uk-l,qv;H,q(<V s  + 1)]

where

<nq>s = (exp6o)pH |up+Jl>q|2 - l)"1 + « p .ft-k_t |vk_M |2 -

<“q>s = ( e x p & ^ . J v ^ q l 2 - l)"1 +exp-Bu>p+jl|vp + M |2 -

(4.4.109.J

(4.4.1100,

(4.4.111.)

(4.4.112.).

(4.4.113.).

(4.4.114.),

(4.4.115.),

( 4 .4 .1 1 6 . )
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where the excitation spectra Wj. and are given by

“ k ■ (Jk - i iBP,ki2)1/2 (4.4.117.)

4 ■ ( jk - »i;>1/2 (4.4.118.).

The resulting set of equations in the present model is much more

complicated than for the standard theory. This is mainly due to (i) the

fact that the u's and v's cannot be eliminated, i.e. replaced in terms of

J. and l |B , | . This is in view of the fact that a summation over q is 
K p P»K
involved in (4.4.111,112.). (ii) The fact that the spectrum associated 

with the pairing energy is now a set of 2N branches. The set of equations 

is not amenable to analytic solution, and even a numerical solution of 

this set of equations is computer time consuming. Some further approx­

imations have been employed in the search for numerical reducing the 

computing time to a reasonable level. A detailed account of the progress 

in this sense is out of the scope of this work, which aimed at laying the 

foundation for the subsequent complete resolution of the problem. However, 

the main simplifications considered in this further work are 

worth mentioning here. Instead of considering the whole set of 2N 

branches one can consider the two average branches, i.e.

“k<av.) = K K >q|2 = (1/2) (Jk + WjP (4.4.119.)

“ k<av*> =- K l Vk,q!2 =_C1/2)(Jk '  ^q
(4.4.120.),

which concide with the two branches of the spectrum in thermal equilibrium 

in the case in which the dynamical variables p£ and q£, for i = 1,2, are 

defined in terms of the fields of the pair representation of zero overall 

momentum. With the help of this simplification (4.4.110.,113.) reduce to
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Jk = ek + | Cv(°) + v(A-k)3{(1/2)c D  + l][expgwj(av) - l]"1 +

+ (1/2) [ ( J ^ )  - l][exp3<^(av) - l]"1 + 1)

+ (exp&u3 - l)"1} (4.4.121.)

= j[ ((l/2)[(Jk/ajk) + l][expgtok(av.) - l]“1 + 

+ (1/2)[(^/o^) - l][exp3to^(av.) - l]"1 + 1)

+ (expgw3 -l)-1} (4.4.122.),

A further simplification is obtained by imposing the condition

u v,* . = u v,* . 6 n 6 .P.q  k,q p,q k,q' p,-k q,q' (4.4.123.),

in which case £ B* , reduces to (after taking the modulus) r, P>K

where
' V I I  l \ , q l  'Uil,q l(2<Y s  + 1)

<ni,>s = texpBwJ(av.) - l]“1 + 

+ [exp3w2(av.) - l]-1 (4.4.124.),

and iBĵl = |B_k k |. Making use of (4.4.111.,112.) one finds that

IBjJ s I v(£-k)(l/2)[CJ?/uh  - l]1/2C2<n£>s ♦ 1)
A *

or from the fact that the spectrum is

= {Jk - |\|2}1/2 (4.4.125.)

in this approximation, one finally obtains

\\\ = (1/2) l v(A-k)(|Bjl|/u»A)(l + 2<nA>s) (4.4.126.).

The resulting approximate set of equations (4.4.114.,121.,122.,124-126.) is
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still rather involved, but at least the v's and u's have been fully

replaced by the unknowns and |B.|. A further elaboration of this

model may take into account the various branches between w£(av.) and 
2

cô Cav.) by regarding the set of discrete lines as a continuum. In 

this event the possibilities of solution for |B̂ | are largely increased.

The final aspect to be considered in this section is the criterion 

of existence of superfluid solution. The description provided by a 

superfluid ensemble will prevail at a given temperature provided that 

the free energy derived from the superfluid ensemble is smaller than 

from the non-superfluid ensemble, i.e. if and only if

ns F à 0 s (4.4.127.).

The equal sign determines, in principle, the transition temperature. Note
2

that the average number of pairs £ | v, | needs not be zero in the non-
k,q k’q

superfluid phase, but the average of the amplitudes v, must be zero. 

However, from the known experimental fact that the upper band lowers in 

the superfluid phase with increasing temperature, and eventually

coincides with the gapless branch at the transition and above, one can
2

guess that 1 | v, | may be zero in the normal phase described by the
q k,q

non-superfluid ensemble.

From (4.4.127.) one obtains the following condition

or
lnfZns/y * 0

Z1 Z2 s Z1Z2 ns ns s s

In the latter approximation this condition is

n [expt-gü^) - l]"2 s n (exp[-&^(av.)]- I}"1 • 
k k

• (exp[-&j^(av.)]- I}"1

(4.4.128.).

( 4 .4 .1 2 9 . )

which can be solved for 8 once and are known.
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§4.5. Further developments

This section is concerned with a brief examination of some questions 

which can provide a refinement as to the representation employed in this 

work, and an extension of the present theory as to its application in 

other fields.

Three topics will be briefly considered here. The first concerns 

the feasibility of defining a purely quantum representation of coherent 

states, whereby c-numbers are replaced by q-number fields. The use of 

such a representation, in order to define the dynamical variables of the 

S.P.S., looks very attractive, in principle; for, it would enable to 

dispose of the postulate of quantization introduced, a priori, in the 

preceding section. It will become clear, however, that the definition 

of such a purely quantum representation is not without problems, the most 

restrictive of which will be shown to be that the expressions for the 

elementary operators of the new representation in terms of particle 

operators is an infinite series in increasing powers of particle 

operators, if the second order coherents (c-number) fields are replaced 

by second quantized fields.

The second topic considered in this final section is the theoretical 

feasibility of defining the L.C.S.R. (involving first order coherence) for 

Fermi fields. An endictment due to Yang (71) rules out the possibility of 

O.D.L.R.O. in the first reduced density matrix; for, this was shown to be 

inconsistent with the characteristic antisymmetry of n-body distribution 

functions, for fermions, under permutation of coordinates. It will be 

shown here, however, that if the L.C.S.R. for Fermi systems is appropriately 

defined O.D.L.R.O. occurs in Oj (in a pure state description at least) and 

no contradiction arises.

The third aspect considered here is the general applicability of the 

present programne to arbitrary systems. This will be argued in view of 

the fact that the present theory does not rely on particular premises
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holding for He only, but is based on notions of general applicability, as 

dynamical equivalence, separability of the phase space and statistically 

equivalent configurations. Two examples are briefly considered to illustrate 

this idea, on rather speculative grounds. An outline of a theory of super­

conductivity is proposed along the lines of the present theory, in the first 

place. As far as dynamics are concerned it is argued that the problem of 

a superconductor can be formulated on the basis of a L.C.S.R. description 

such that the symmetries are rearranged, not broken as in the standard 

theory. As to the statistical problem a rather surprising conclusion is 

anticipated: the order parameter should be associated with the first order 

coherent fields (!) (entailing the occurrence of O.D.L.R.O. in if a 

prediction of the excitation spectrum in qualitative agreement with 

experiment is to be drawn. This interpretation is significantly different 

from the usual one in standard theories which identify the order parameter 

with the pairing fields.

The second example considered here is that of a collection of N 

localised spins, at fixed sites of a crystal lattice, interacting according 

to the Heisenberg model. A first coherent representation is defined for 

this problem. The questions of microscopic symmetry rearrangement and 

macroscopic symmetry breakdown are discussed. The difference between 

superfluid and non-superfluid (partly) ordered phases is also briefly 

discussed. Finally, some interesting applications to other problems, 

requiring further research, are also mentioned.

An investigation as to the theoretical possibility of defining a purely 

coherent representation of states, whereby c-numbers are replaced by second 

quantized fields seems attractive; for, it would enable all the dynamical 

variables of the S.P.S. to be q-number fields, and all configurations of 

the S.P.S. to be quantized from the outset. This is more in line with 

the usual formulation of the many-body problem. This extension, however, 

is by no means straightforward. In fact some deep difficulties arise,

4
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which prevent a simple extension. The main difficulties are considered 

here.

Consider a first order coherent transformation of the form

A

= expQ^ (4.5.1.),

where the exponent is given by

®i ' | K * k  ‘ «k“k> <4-s-2-)-

a£ and a^ are, as usual, Bose-particle creation and annihilation operators, 

and and 4^ are the corresponding elementary excitation operators of a 

certain, unspecified, representation of states. Let us assume that these 

latter operators satisfy Bose-like commutation relations, i.e.

$ <j>+ - $+ $ = ef^e^^ô 
V k '  ek ek' °k,k'

*k*k' ‘ W  = 0 (4.5.3.),

where e^ is a real number.

The elementary excitation operators of the new, purely quantum, first 

order coherent representation are

\  ■  v i f t 1

“k " W l 1
or from the result of Appendix A

“k = \  + nIi Cn/nl
where C are the successive commutators defined as

(4.5.4.),

(4.5.5.),
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Cj_ = [0,^]

C2 = [G.q] (4.5.6.).

Si -= [° ’Cn - l ]
The expression (4 .5 .5 . )  can be evalutated from definition (4 . 5 . 6 . )  using 
(4 . 5 . 2 . )  and the commutation relations for the a's and the $'s. One finds

.n»+
■7n+l

“2n

= -C-ek) n = 0,1,2,...

= C-ek)naJ, n = 1,2,3, ...
(4.5.7.)

thus

c£ = a^cos(e^2) - (4^/e^//2)sin(e^2) 

\  = akcos(e£/2) - ($k/ek//2)sin(ek//2)
(4.5.9.),

These expressions reduce to the familiar expressions

“k = \  - *k

ak

1/2

(4.5.9.)

in the limit ek 0, in which case 4>k and $k become abelian c-numbers & ^k ■ 

The commutation relations for the new elementary excitation operators 

are

Cotk ,ak'] = Ccos(ek/2)cos(ek{2) +

sin(ek/2)sin(ek{2)3¿k>k, (4.5.10.),

k,k'

(*)that is, the a's are also Bose operators. It has been assumed that

(*) As also follows from (4.5.4.)
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tak»  ̂~ 1 ̂ = ^»^k' J = ^»^k' ̂ 55
Now, the question is: To what representation of states do and 

4^ belong? If one allows = 1 one can regard the 4>'s as operators of

the particle representation, though formally defined over different domains 

as the a's (i.e. by introducing an a priori differentiation between the 

coordinates (or wave vectors) of two groups of otherwise indistinguishible 

particles). Should this be the case, then, by operating with the second 

relation in (4.5.8.) on the vaccuum of the particles one would find

ak |0> = 0 (4.5.11.).

But, on the other hand, the following relation is also satisfied

ok |C0> = 0 (4.5.12.),

where

|CQ> = T1|0> (4.5.13.).

In consequence either the vacuum of the new representation is not unique, 

i.e. |0> * |CQ>, in which case is not a good vacuum state, or the two 

representations i|Cn>) and {|n>) are identical, i.e. |CQ> = |0> which 

implies that = I. Clearly the resulting representation is not 

appropriate for our present purposes in either case.

On the other hand the 4>’s cannot be elementary operators of the new 

C.S.R. ; for, one cannot formulate a definition by employing the very 

notion to be defined. In any case, should this be allowed, one would 

conclude

ak |CQ> = 0 (4.5.14.)

by operating with the second relation in (4.5.8.) upon |CQ  ̂which together

with
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ak|0> = 0 ( 4 . 5 . IS . )»

would lead to the conclusion that both representations are identical.

Note that the vacuum of the particle representation is unique by 

definition.

The only remaining possibility is for the 4>'s to be the elementary 

operators of a third representation (non-equivalent to the other two).

A more elaborate analysis would show that the $'s cannot be related to the 

a's or the a's by canonical transformation, so this purely quantum coherent 

representation would be of no help for the present programme; for, in 

order to prove that the volume of both phase spaces are the same, the two 

representations of states must be related through a canonical transformation.

Leaving this difficulty aside, for the moment, let us show that the 

difficulty with a second order coherent representation is even worse.

Consider the transformation

where the g's are also Bose-like operators, satisfying similar commutation 

relations to those of the 4>'s. Now, the successive commutators, Ĉ , do 

not form a ciclic series in this case, but a series in increasing powers 

of particle operators,

C3 would give a contribution proportional to the particle operators to the 

fifth power, and Cn a contribution proportional to the a's to the (n+2)th

T = 
2

( 4 . 5 . 1 6 . ) ,
where

( 4 . 5 . 1 7 . ) ,

( 4 . 5 . 1 8 . ) .

power.
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Therefore the relation = a^(a) is an infinite series in increasing 

powers of particle operators. This is what happens for the partly-c- 

number C.S.R. for third and higher orders. Thus for a purely quantum 

C.S.R., a second order representation is already untractable.

Let us consider now the question of how to define an appropriate 

L.C.S.R. for Fermi fields, such that first order coherence is involved, 

and yet no contradiction arises. Let us reproduce, first of all, Yang's 

argument against O.D.L.R.O. in 0^ for Fermi systems. Should O.D.L.R.O. 

occur in ftp i.e.

%(x;x') = ♦Jfr'^x) + A^x.x') (4.S.19.).

The second order reduced density matrix would take the following expression 

n2(x,y;x',y') = ^ ( x ' H J C y ' ^ M ^ C y )  +

(̂ JCx'Dd)-,̂  Cx)A1Cy;yt) - ^(x'^fyJA^x-.y') +

+ ^ ( y ' ^ i y M ^ x ' )  - ^ ( y ' ^ M A ^ x ' )  +

+ A^x jxOA^yjy ' )  - A ^ x j y ' ^ C y j x ' )  +

+ A2(x,y;x',y') + <(>2(x' ,y')<j>2(x,y) (4.5.20.),

where <f>2 is present if intrinsic O.D.L.R.O. occurs in 02, independently of 

O.D.L.R.O. in fy.

Now, 02 must be antisymmetric under permutation of coordinates 

x j y or x' j y1, i.e.

n2(x,y;x',y') = - 02(y,x;x',y') =

- - 02(x,y;y’,x') =

- o2(y,x;y',x') (4.5.21.).
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Both A2 and ^  are, presumably, antisymmetric under permulations of 

coordinates. Thus, the last eight contributions to are manifestly 

antisymmetric; but the first contribution is not. No provision is 

taken within the context of Yang's argument ensuring the antisymmetry 

of ♦!(x,)$Jly')$1(x)$(y); for, these c-number fields are regarded as 

abelian, and to regard them differently would be difficult to justify 

in this context. However, it is clear that the resolution of the 

difficulty is brought about by regarding the first-order coherent fields 

as antisymmetric. This property can be built in rather simply through 

an appropriate definition of the L.C.S.R. for Fermi operators.

Consider the canonical transformation

A

TF = expQp (4.5.22.),

where

(4.5.23.) .

[ck,ck'^ " 6k,k'

Cck,Ck,] = °

[<£•<£.] = °

(4.5.24.),

and fj, and are c-number fields satisfying

(4.5.25.)

fkfk' + fk'fk = 0
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gk,q " ' gq,k (4.5.26.)

The resulting expressions for the elementary operators = TpC^T”1 and 

6^ = TpÔ Tp'*' in terms of particle operators and can be obtained in 

the usual way, after some work one finds that the inverse reaction takes 

the form

°k = + l Vk,qBq + *k

ck = VHc = l  vk,qBq + *k
or even more generally

°k = l (uk,q6q + Vk , q V  + *k 

Ck = l (uk,q6q + + *k

(4.5.27.)

(4.5.28.),

+ *if a contribution i J h, c, c, is included in 0p. The u's and v's cank,q ,q
be shown to satisfy the following identity:

and
\ K  q|2 + IXq|2 =l

"k.q = V

Vk,q = ”Vq,k

(4.5.29.),

(4.5.30.),

The <}>* s now satisfy

^k^k' + ^k'^k = ^

W  + M k  = 0

m  + K A  = 0

(4.5.31*.).

It can be easily tested that (4.5.29.,31.) imply that the B's satisfy 

Fermi anticommulation relations
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(4.5.32.).

This representation can be used to define the dynamical variables 

of the S.P.S. The expressions for the reduced density matrix (in a pure 

state description) in terms of the dynamical variables is the same as in 

§4.3.; but, due to the fact that the field operators satisfy different 

inner product relations, the actual expressions for the Fermi case differ 

in signs respect to the expressions for the Bose case. The first two 

reduced density matrices in this case are

antisymmetric respect to permulation of variables, which implies that

fi, (x;x') = I (k;k')expi(kx-k'x') 
1 k,k' 1

(4.5.33.),

i^fkik') = ,̂<t)k + A^k.k') (4.5.34.) ,

ß2(x,y;x',y') = I n2(k,q;k',q')expi[(kx+qy) -

- (k'x'+q'y')] (4.5.35.) ,

n2(k,q;k',q') = q +

(4.5.36.),

where A., A,, 4> and K are defined as before in §4.3., but now v. is 1 l
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4>, = -4> ,k,q q,k

Â k.qjk’.q') = -A2(q,k;k',q') = (4.5.37.);

-A2(k,q;q',k') =

A2(q,k;q\k')

and the first order coherent fields satisfy (4.5.31.). In consequence ft2 

is manifestly antisymmetric under permulation of coordinates, and yet 

O.D.L.R.O. takes place in

The implications of the theoretical feasibility of first order 

coherence in Fermi systems are far reaching, and enables to see the problem 

of superconductivity and superfluidity in 3He on a new light. It will be 

interesting to extrapolate the results obtained here for the problem of 

^He to the case of superconductors.

The structure of the effective phonon mediated electron interaction 

is the same as the inter-Helium-atom interaction. In consequence the 

results of section 3.2. apply to the case of a superconductor. As to 

the results of section 3.3. the only difference expected as to the 

excitation spectra is a change of sign. For superconductors one should 

obtain

This is due to the different commutation relations satisfied by the a's 

and the 6's.

Now, a surprising consequence arises in the statistical context. 

Should one regard the pairing field as the order parameter (as in the case

and
(4.5.39.).

(4.5.38.)
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of the Bose problem] the spectra would split into a number of separate 

branches, which are not observed experimentally. It thus seems as if the 

order parameter cannot be identified with the pairing fields'. The only 

remaining option is to identify the order parameter with the first order 

coherent fields. In such a case the upper two branches remain identical, 

as in a pure state description. And the lower branch does not appear in 

photon scattering experiments, leading to a prediction in qualitative 

agreement with experiment.

The present analysis is, of course, rather speculative and further 

research is required to be able to support this conclusion on a more 

reliable basis. An investigation in this direction is currently in 

progress.

Let us now consider another problem of a different nature, namely 

the problem of magnetism. Some systems of spins, interacting via 

Heisenberg exchange interactions, exhibit a transition to a magnetic 

phase, ferromagnetic, antiferromagnetic or heliomagnetic, depending on 

the nature of the interactions and the geometrical array of the localized 

spins at the sites of a periodic crystal.

At a macroscopic scale the onset of the low temperature phase is 

marked by a breakdown of the rotational symmetry. In the sense that, as 

far as the magnetic properties are concerned, the system is rotationally 

invariant under the full group of continuous rotations in the paramagnetic 

phase. In the magnetic phase, however, a finite fraction of the spins 

become aligned, bringing about a finite macroscopic value for the magnet­

isation. In consequence the macroscopic system is invariant only under 

rotations around the axis of magnetization. This happens as a consequence 

of the fact that the order parameter of the magnetic phase is a vector, 

namely the magnetization. The above macroscopic characterization, however, 

is not the only possible one. In fact one can characterize a macroscopic 

system in thermal equilibrium by the number of independent variables required
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to specify the thermodynamic state of the system, and use the name 

'number of symmetries' to designate the latter. In this case one should 

conclude that the number of macroscopic symmetries is larger in the 

ordered phase than in the paramagnetic case; for, an additional variable 

needs to be determined, namely the magnetization, in order to specify 

the state of the system completely. But the conflict here is just a 

matter of linguistics, not of physics.

The real conflict arises when the breakdown of rotational symmetry 

is thought to occur not only at a macroscopic (statistical) level, but 

also at a microscopic (dynamical) level. A large number of authors 

support the idea that the breakdown of rotational symmetry of a 

macroscopic level is a manifestation of a breakdown of a microscopic 

symmetry. In the sense that the number of constants of motion are 

different for two formulations of the same problem in terms of two 

sets of states, believed to give the best dynamical descriptions in 

the paramagnetic and ferromagnetic phases, say. This is a belief 

analogous to that supporting the standard theories of superfluidity 

and superconductivity.

It is usually overshadowed that while there is no reason to rule 

out a macroscopic breakdown of symmetry, there is a fundamental require­

ment that the overall microscopic symmetry should not be broken, but 

rearranged. Note that this requirement does not rule out the emission 

of Goldstone or Higgs bosons. Hence in the absence of empirical evidence 

as to the real occurrence of a dynamical breakdown of symmetry accompanied 

by the emission of a particle carrying the remaining symmetry for the 

magnetic problem, one should look for a theoretical treatment whereby 

the overall symmetry is rearranged. The theory proposed in this thesis 

comes handy in this respect.
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Most existing first principle treatments of the problem of a 

collection of spins parallel current theories of superfluidity to some 

extent. As to the question of the microscopic antecedent of the macro­

scopic breakdown of symmetry, for instance, and as to the treatment of 

the statistical problem of the low temperature phase.

It is often stated (53) that the breakdown of rotational symmetry 

- in the ferromagnetic phase, say, is a consequence of a breakdown of 

dynamical symmetry at a microscopic level. It is commonly thought that 

'the dynamical descriptions' of the paramagnetic and ferromagnetic 

phases are not equivalent, in the sense that the 'ferromagnetic rep­

resentation of states', unlike the 'paramagnetic representation of spin 

states', incorporates a prefered direction. In consequence, an infini­

tesimal transformation amounting to an arbitrary rotation (i) leaves 

the hamiltonian invariant, (ii) transforms a paramagnetic state into 

another of the same energy, but (iii) transforms a ferromagnetic state 

into another of different energy (unless the rotation is about the 

preferred z-axis of the latter representation). This, microscopic, 

paradigm is the same as that prevailing in standard theories of super­

fluidity and superconductivity and amounts to the ascertion that the 

overall number of constants of motion (which are good quantum numbers) 

is less in the ferromagnetic representation description (in a pure 

state) than in the paramagnetic description.

In order to illustrate the similarities of the treatment of the 

statistical mechanical problem of, say, ferromagnetic and superfluid 

phases it will be interesting to consider the statistical problem of 

a collection of spin-waves. The spin-waves are the low lying excit­

ations of a dynamical system of localised spins interacting via 

exchange-dipole interactions (83). It is customary, in dealing with 

this particular problem, to introduce a transformation to project the 

well-known isospin representation into a Bose representation, according
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to the Holstein-Primakoff transformation rule (84 ). This approximate 

method amounts to formulating the dynamical problem of a collection of 

N spins as the problem of an unspecified number of 'spin deviations'

(from the ground state configuration). The approximate description of 

spins in terms of bosons holds if the number of spin deviations is 

smaller than the total spin, this is certainly the case at low temp­

eratures, but the notion of spin-waves looses meaning at higher temp­

eratures, much below the transition temperature.

A striking similarity with the problems of superfluidity and 

superconductivity arises when the dynamical problem of a collection 

of spins is formulated in terms of the Holstein-Primakoff representation. 

The approximate spin hamiltonian in terms of Bose operators, a^ and a^, 

creating and destroying, respectively, a unit of spin deviation is (after 

discarding non-linear contributions)

This hamiltonian is 'brought to a diagonal form' by introducing a 'change

The diagonalization of H is obtained by selecting vk and v£ appropriately. 

The excitation spectrum obtained (in a pure state description) is in 

qualitative agreement with the experiment. It is interesting to note 

that the observed excitation spectrum of spin-waves is nearly a quadratic 

band, showing a gap.

The thermodynamic properties of a collection of spin-waves in 

thermal equilibrium at low temperature are obtained from the partition

+ (4.5.41.),
ak = V k  + V - k

where

°k " lvk!2 = 1 (4.5.42.).
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function ( 83)

1 = 1 Tr{exp(-(SH)} (4.5.43.),
\

where the summation is carried out over all possible distributions of 

elementary excitations, = 

of spin-deviations, = Tria^a^}. This procedure is entirely analogous 

to that followed in the standard theories of superfluidity (68) and super­

conductivity. (3, 34 and Refs, therein).

It is most important to note that the entire ensemble describing 

a collection of spin deviations is different, more general in fact, that 

the ensemble whose partition function is (4.5.43.). The partition function 

for the former ensemble involves also a summation over configurations 

associated with the order parameter, namely the magnetization. It has 

been shown in §4.4. how important it is to perform the summation over 

all configurations, not only those associated with the non-ordered part 

of the ensemble.

The above observations as to the aledged microscopic breakdown of 

symmetry, and the partial treatment of the statistical problem suggests 

that a new light could be brought to understanding the present problem 

from the standpoint of the theory proposed in this thesis. The interest 

on this problem in this work is only marginal. The final part of this 

section investigates the possible formulation of the spin problem in 

terms of variables of a separable phase space, and introduces a C.S.R. 

for spins, in terms of which the new dynamical variables are defined, 

such that a dynamically equivalent formulation is possible. The 

discussion here is rather informal and aims only at laying the tent­

ative foundation for future research.

Consider the Heisenberg hamiltonian

Tria^a^}, not over the possible distributions
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H = I
i.j

J. .S..S. i»J 1 J

where is the vector spin operator at the location r. 

lattice. J. . are two body interactions depending on 

Let us define the dynamical variables as

Pi “ -̂Pxi’Pyi’Pzî  “ ^xi’̂ yi’̂zî

’ ' ’a ’

A qxi s .
~X1III•H

O
'

V =
-y i

qz i Szi

A A A

The hamiltonian H(p.q) can now be written as

H =
i.J

and the Lagrangian as

Note that

Lns = (1/2) I + c*c*) “ H (P*^

Pi - qi = 3ins/3qi

Now, defining new dynamical variables defined in

Pi = 1 Pi* <*i = i V  ^  = lm m m

where m = 1,2, the lagrangian becomes

L = (1/2) l (pj5j + c.c.) - H* - Hr 
i,m

(4.5.44.),

in a crystal 

|r±-rj| only.

(4.5.45.)

(4.5.46.)

(4.5.47.).

(4.5.48.),

(4.5.49.).

(4.5.50.). 

separable domains 

(4.5.51.),

(4.5.52.),

where



222

I

where

» ' ( M 1) = - i ji i
i,j 1,3 m J J

- (m*n)
Hr = (1/2) l (p^A? + c.c.) 

i,m,n

(4.5.53.)

(4.5.54.),

A? = - + 3H'/3p?l ni l (4.5.55.).

A a

This shows that H' is the new hamiltonian and HR is a redundant condition.
A

The volumes of the phase spaces Tns 5 {(p^,q.)} and Tg = @ S^,
a a m=1

Ss = {(P^.q^)} are

and
Vol(rns) = l T rii-.J .)

Vol(T ) = l  Trip^.q™} 
i,m

m=l 

(4.5.56.) 

(4.5.57.),

respectively.

Now, the dynamical variables of the N.S.P.S. are defined over the 

standard isospin representation, namely the representation defined by the
A A A

elementary operators S^, S  ̂and and the set of simultaneous eigen-
A A A A A A A A A

states of = £ S^S^, S z ~ \ and H(p,q). Let us denote such a set 

of states as (|pn>). This is of course for an arbitrary choice of axis. 

Note that

Vol(r ) = Tr{S2) (4.5.58.).

In order to define the variables of the S.P.S., rg, one must employ a 

representation of states involving two additional fields. Such a rep­

resentation should have in addition a prefered direction for the z-axis.

A first order coherent state representation for a collection of spins 

1/2 have been recently introduced (63) to treat the Ising model. An 

extended version of this representation could be used to define the 

dynamical variables of the S.P.S. and to prove dynamical equivalence.
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This attractive looking transformation is given by

TM = n exP0M (4.5.59.)

A

0V-; = 5 - (S • + iS .) - Ei(S . - iS .) Ml l xi yiJ xi yiJ (4.5.60.),

where ^  and are complex c-numbers. An investigation as to the 

application of the programme of this thesis to the problem of magnetic 

systems is currently in progress. The aims are to prove the dynamical 

equivalence of the formulations of the problem of a collection of spins 

in the separable and non separable pictures, such that the dynamical
A A 1

variables are defined in terms of the fields R . = T.S .T„ ,xi Mxi M *

construct two comparable ensembles, one of which is partly ordered at 

finite temperature. This latter ensemble should describe the properties 

of the low temperature magnetic phase. The magnetic phase will not be 

a superfluid phase in so far as the dynamical variables (and hence the 

configurations in the phase space) are not defined in real space but in 

the spin space. The spins, in fact, are fixed to the rigid lattice so 

there is no flow of spins.

It is too early, of course, to advance any conclusion as to the 

real advantages of producing alternative treatments for the general problem 

of phase transitions on the basis of the programme proposed in this theory. 

But if one takes into consideration the present state of the less elaborate 

theories of super-responsive and condensed behaviour, as the theory of 

excitonic matter and pion condensation, for instance, the hope of a 

unified theory looks attractive enough as to consider it seriously. On 

the other hand, if one takes into consideration the fact that the best 

known theories are invariably based upon the old paradigm of a broken 

microscopic symmetry, as the theories of superconductivity and the theory 

of lasers, for instance, the crossed examination of these theories becomes

,-l and and A second aim is to
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a matter of urgency.

The present programme suggests a number of lines of further research. 

Within the realm of the microscopic theory of spin-glasses a treatment in 

which the (magnetic) second order coherent fields are the order parameters 

looks very attractive, and a theory of ^He incorporating the notions of 

first and second order coherence (in the particle sense) and/or first 

order coherence (in the magnetic sense) look very interesting to explain 

the numerous phase transitions exhibited by this system at low temperature.

Ch the other hand, the availability of a theory of superfluidity 

freed from the incumbence of Bose-Einstein condensation as a necessary 

ingredient, seems suited to study the behaviour of physical systems of 

complex structure (neither of Bose nor of Fermi nature) displaying 

'coherent phenomena', as excitonic matter, pionic matter or confined 

quarks^ ̂ .
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§5. Summary and Conclusions 

§5.1. Summary

A theory of superfluidity is proposed from dynamical and statistical 

first principles. The underlying strategy is that superfluidity - from a 

theoretical standpoint - should come about purely from statistical 

considerations, being inpossible to characterize a superfluid system only 

from considerations as to its dynamical behaviour, or the representation 

of states in terms of which the dynamical variables are defined.

As far as statistical mechanisms are concerned the main element of 

the present theory is a characterisation of superfluid and non-superfluid 

ensembles. This characterisation enables to prove that macroscopic 

systems, in thermal equilibrium at finite tenperature, described by the 

former ensemble does posses the property of superfluidity and the latter 

does not. The only difference between these two ensembles is that 

certain configurations of the former ensemble are statistically equivalent. 

The comparison of the free energies obtained from these two ensembles 

provides a criterion of occurrence of a phase transition and determines, 

in principle, the critical temperature. The notion of statistical 

equivalence of configurations contributing fractionally to the density 

conveys the property of superfluidity from a theoretical standpoint.

The construction of a superfluid ensemble,and of a comparable non­

superfluid ensemble,requires of the possibility of constructing a 

restricted ensemble, involving at least two independent configurations
4

in the phase space. A central notion in this work is that of separable 

phase space. It was shown that any ensemble constructed on the basis 

of the counting of configurations in a separable phase space is a 

restricted ensemble. A S.P.S. involving three separate parts was 

constructed, it was shown that the overall volume of the S.P.S. is the 

sum of the volumes of its separate parts. The notion of separable
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phase space adopted in this thesis incorporates the notion of coordinates 

of distinguishable objects, this suffices to obtain the general expression 

for the one-object propagator operator in the S.P.S., purely from the 

structural properties of the S.P.S. The interpretation of certain config­

urations in particular as the superfluid configurations, among the 

various possibilities, is left here until the latest possible stage, 

unlike in standard theories for which the 'semantic input' occurs at the 

very beginning. The main difference between the present theory and the 

standard theories of superfluidity, as far as statistics is concerned, 

is that the configurations associated with the superfluid are taken into 

account here for the derivation of the partition function. This enables 

to prove that the superfluid ensemble posseses the property of super­

fluidity, and, by comparison with the corresponding non-superfluid ensemble, 

conveys a criterion of existence of superfluidity. The statistical ensemble 

in standard theories, on the other hand, does not take into consideration 

the various (c-number) configurations. The partition function is cons­

tructed as the statistically weighted summation of configurations of 

elementary excitations. In other words the ensemble considered in 

standard theories is only a part of the entire ensemble, namely the 

part associated with the non-superfluid segment of the ensemble. As 

such if the entire ensemble corresponds to that a superfluid it does 

so a priori, i.e. no proof can be advanced as to the superfluid behaviour 

of the system or otherwise.

The main innovation of the present theory on the dynamical front is 

the notion of dynamical equivalence of two lagrangian formulations of the 

same dynamical problem. This notion encompasses the ideas of symmetry 

rearrangement and expectation value invariance. The former condition 

requires the group of lagrangian invariances to be the same, regardless 

of the structure of the domain of definition of the dynamical variables 

(separable or non-separable) and also irrespective of the representation
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of states in terms of which the dynamical variables are defined. The 

latter condition requires the expectation values for the constants of 

motion to be the same, the identity of the volumes of the phase spaces 

in particular. The notion of dynamical equivalence is central in this 

theory, and its demonstration constitutes the tautology supporting the 

present formulation. The use of such a strategy is the main difference 

respect to existing theories of superfluidity, which are based upon the 

assumption that the constants of motion are the same, regardless of 

what the dynamical variables are, or how these are defined in terms of 

the fields of certain representation of quantum states. The satisfaction 

of the properties defining dynamical equivalence makes it inpossible to 

discriminate any dynamical difference between two formulations, while 

for the standard theory two formulations in terms of two non-equivalent 

representations are non-equivalent, and distinguishable by their 

different number of symmetries.

The proof of dynamical equivalence of two formulations in terms 

of variables of separable and non-separable domains is carried out in 

two stages. The first stage aims at proving that given a lagrangian 

in terms of dynamical variables of a non-separable domain, such that 

an explicitly time independent hamiltonian exists, and such that both 

the hamiltonian and the number functional are constants of motion, there 

is a set of dynamical variables of a separable domain, linearly related 

to the variables of the non-separable domain, such that the same 

lagrangian in terms of the separable domain variables admits an explicitly 

time independent hamiltonian, and such that the new hamiltonian and number 

functional defined over the S.P.S. are also constants of motion.

In order to produce the first part of the proof one needs to consider 

only two abstract sets of dynamical variables, without having to define 

them in terms of the fields of two canonically related representations of 

states. It was found that the first part of the proof of dynamical
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equivalence can be carried out for both the ideal Bose gas and the inter­

acting problem. It was shown that the dynamical problem in the separable 

domain picture is posed redundantly. The hamiltonian of the S.P.S. 

picture is obtained after removing the redundant condition. It is found 

that the hamiltonians of the N.S.P.S. as S.P.S. pictures are different 

functionals. Similarly it is found that the number functionals in the 

N.S.P.S. and S.P.S. pictures are also different functionals. Finally, 

it is shown that, if the hamiltonian and number functional in the non- 

seperable domain picture are both constants of motion, the hamiltonian 

and number functionals in the separable domain picture are also constants 

of motion. This is shown by using the Poisson brackets as dynamical 

brackets in both cases.

The second stage of the proof of dynamical equivalence requires of 

the definition of both sets of dynamical variables in terms of the fields 

of two related representations of states. It is noted that in order to 

define the variables of the seperable phase space one must employ a 

representation involving three independent pairs of fields. Furthermore 

both representations of states must be related such that, after defining 

both separable and non-separable domain variables in terms of the fields 

of both representations, the linear relationship between the two sets of 

variables becomes an identity.

The non-separable domain variables are defined from the fields of 

the Bose particle representation. A general linear representation of 

coherent states was defined in Chapter 2, the variables of the seperable 

domain were defined in terms of such L.C.S.R. The L.C.S. are normalised 

such that the average number of particles in the particle representation 

is the same as the average number of particles in the L.C.S.R. This 

entails that the volume of the N.S.P.S. is the same as the volume of 

the S.P.S. It was shown in diapter 2 that the number operators in the 

N.S.P.S. and S.P.S. are diagonal in the P.R. and the L.C.S.R., respectively.
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This together with the fact that both functionals are constants of motion 

entails that the gauge symmetry is rearranged. In addition the identity 

of the volumes of the phase spaces implies dynamical equivalence as to 

the number conservation.

Dynamical equivalence as to energy conservation can only be proved 

in rigour for the ideal Bose gas, if the dynamical variables of the 

separable phase space are defined in terms of the L.C.S.R. In this case 

it is shown that the hamiltonians in the N.S.P.S. and S.P.S. pictures 

are diagonal in the P.R. and the L.C.S.R., respectively. This together 

with the fact that both functionals are constants of motion and yield 

the same average values in their corresponding representations entails 

dynamical equivalence.

For the interacting problem the exact hamiltonian of the S.P.S. 

picture is not diagonal in the L.C.S.R. In order to prove the rearrange­

ment of the hamiltonian symmetry one must employ a more elaborate, non­

linear, representation of coherent states; the physical representation 

of Umezawa, say. It was conjectured in Chapter 3 that one should be 

able to demonstrate the hamiltonian symmetry rearrangement in the finite 

volume limit. This is conjectured in view of the fact that all the 

dangerous contributions to the S.P.S. hamiltonian have been cancelled in 

the process of removing the redundancy. In consequence the hamiltonian 

segment generating the series, (hopefully) converging to the physical 

representation, is free from dangerous contributions, unlike in Umezawa's 

treatment.

The problem of interacting ^He was considered in Chapter 3 in a 

mean field approximation. This approximation consists of discarding the 

non-diagonal segment of the S.P.S. hamiltonian in the L.C.S.R.,and neg­

lecting fluctuations about (pure state) average values of the three 

independent number of objects of the present theory. Three brandies of 

the spectrum were obtained. The lowest branch is gapless and the upper
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two branches coincide and show a gap. The occurrence of several branches 

of the excitation spectrum in a pure state description is an inherent 

feature of the formulation of the dynamical problem in terms of dynamical 

variables of a S.P.S. The fact that the lowest branch of the spectrum is 

gapless follows from the fact that the affective hamiltonian associated 

with the first order coherent field is invariant under Bogoljubov's 

phonon-like transformation. The fact that the upper two branches show 

a gap follows from the gapless nature of the lowest branch, and a general 

relationship between the three expressions for the spectrum.

It was shown that the standard criterion of diagonalisation of the 

particle hamiltonian in the C.S.R., adopted in all standard mean field 

theories, leads to error if first order coherence is included. The 

source of the error comes from the failure to cancel high order dangerous 

contributions, and the inherently non-diagonal segment of the particle 

hamiltonian in the C.S.R. The gapless branch, on the other hand, does 

not appear in existing mean field theories, due to the fact that the 

c-number fields (particularly the first order coherent fields) are 

regarded as time independent variational parameters, instead of truly 

dynamical fields, as is the present theory. It becomes clear from the 

present analysis that the gap in the excitation spectrum obtained by 

many authors before is not in error, but indicates that the excitation 

spectrum obtained corresponds to an upper branch.

The rearrangement of the gauge invariance was explicitly shown 

in Chapter 4. Transformation laws were obtained for all the fields 

involved, and the Euler-Lagrange equations of a complete theory of the 

coupling with an external field of velocity were obtained. Expressions 

for the first two reduced density matrices were obtained in a pure state 

description. It was shown that O.D.L.R.O. occurs in both reduced density 

matrices, confirming Fröhlich's ansatz.

The statistical problem was considered in §4.4. An additional 

postulate of quantization of c-number configurations was introduced.
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A non-superfluid ensemble was defined. It was shown that such an ensemble 

describes the thermodynamic behaviour of a non-superfluid. Several semantic 

options were considered as to the interpretation of the statistically 

equivalent configurations. It was shown that all the theoretically possible 

superfluid ensembles describe the thermodynamic properties of a superfluid. 

The possibility of the first order coherent fields being regarded as the 

order parameter was ruled out on physical grounds. The only realistic 

option remaining was that of the pairing fields being associated with the 

order parameter.

It was shown that if the distribution of pairs are all statistically 

equivalent the coincident two upper branches, in a pure state description, 

split up into a band comprising 2N branches in a mixed state description, 

this being in excellent qualitative agreement with experiment.

It was shown that, for the above interpretation, O.D.L.R.O. occurs 

in the second order reduced density matrix, but not in the first. It was 

also shown that, in the presence of an external field of velocity, the 

superfluid segment flows with longitudinal (curl free) velocity. The 

exact integral equations characterising the mean field model in thermal 

equilibrium (and also an approximate set) were obtained. The criterion 

of occurence of a phase transition to a superfluid phase was proposed.

This can be applied after the set of integral equations is solved 

numerically. This solution will also provide the expressions for the 

excitation spectra as a function of wave vector, and will eventually 

determine whether Bose-Einstein condensation occurs or not. It is noted 

that the existence of B.E.C. is contingent to the solution of the 

integral equations. B.E.C. can take the form of a singularity in the 

distributions of first order coherent fields, in the distribution of 

elementary excitations or in the distribution of second order coherent 

fields. Only in the latter case the condensate should be associated with 

the superfluid.
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Finally it is shown that Fermi systems can exhibit O.D.L.R.O. in 

the first reduced density matrix without contradiction. It was conject­

ured that the present theory can be applied to a variety of systems as 

superconductors and magnetic systems, for instance.

§5.2. Conclusions

The main conclusions obtained in this thesis are listed next in 

order of appearance.

1. The fields to be identified with the order parameter must be 

dynamical variables, or factors of dynamical variables, defined 

in the phase space.

1.1. Variational parameters are not suited to play the role of order 

parameters.

2. A restricted ensemble is required to characterise a superfluid 

ensemble.

2.1. The phase space must be separable in order to be able to construct 

a restricted ensemble, without introducing an a priori partition in 

the phase space.

2.2. rg, as defined by (2.2.2.,3.)A, is a separable phase space.

2.3. The number functional in the S.P.S. is N' = l p£q^.
k,i

2.4. The partition function of an ensemble constructed from the S.P.S.
A -I „

takes the form Zr = I ... I Tr{il}, where Ĉ , ..., are independent

configurations and Q is the statistical operator.

3. A dynamical problem is identified by the group of lagrangian 

invariances and the expectation values of the constants of motion.

4. The relationship between elementary excitations of two representations 

related through the canonical transformation T = exp l (°kak + ̂ k.p^p 

- c.c.) is linear. The inclusion of third or higher powers of a+ in 

the exponent leads to an infinite series in powers of particle 

operators.
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4.1. The P.R. and the L.C.S.R. are non-equivalent representations of

the same commtation relations, i.e. C^.aJ,] = [a^oj,] = 6R k, & [N,n>0.

4.2. The quantum averages of ak, j^a , N and H in the L.C.S.R. are 

given by (2.3.35.,36.,38. and 41.), respectively.

4.3. The conditions <n|N|n> = <Cn |N|Cn> and <n|N|n> = <Cn |n|Cn> 

cannot be satisfied simultaneously, unless T = 1.

5. The linear relation between variables of the N.S.P.S. and S.P.S., 

given by (2.4.4.), is an identity if the dynamical variables of 

the S.P.S. are defined as in (2.4.3.).
A

5.1. The number operator N' is diagonal in the L.C.S.R.

5.2. <n|N|n> ■ <Cn|N|C^> implies <n|N|n> = <Cn |N' |Cn>.

6. The dynamical variables of the separate parts of the S.P.S. are 

not Bose fields, but the dynamical variables for the entire phase 

space are.

7. The formulation of the dynamical problem in the S.P.S. picture is 

redundant.

7.1. The redundancy is removed by replacing the generalised forces by 

the known values of the external forces.

7.2. The functional expressions for the hamiltonians in the N.S.P.S. and 

S.P.S. pictures are different.

7.3. The difference is given by the dangerous contributions.

8. The S.P.S. hamiltonian for the ideal Bose gas is diagonal in the 

L.C.S.R.

8.1. This hamiltonian is a constant of motion as well as the number 

operator in the S.P.S.

8.2. The expectation values of the hamiltonians of the N.S.P.S. and 

S.P.S. pictures over the P.R. and the L.C.S.R., respectively, are 

the same, i.e. <n|H|n> = <0^|H' |Cn>.
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8.3. The formulations for the problem of the ideal Bose gas in the 

separable and non-separable pictures, defined in terms of the 

L.C.S.R. and the P.R., are dynamically equivalent.

8.4. The equations of motion for the problem of the ideal Bose gas 

are given by (3.1.43.).

9. The commutators in the P.R. and the L.C.S.R. are the same.

9.1. Commutators and Poisson brackets are related through (3.1.53.).
2Q For the interacting problem the S.P.S. picture hamiltonian is 

not diagonal in the L.C.S.R.
10.1. The perturbation series generated by the non diagonal segment,

A

T, is free from dangerous contributions.

10.2. A dangerous contribution is diagonal, namely (J><t>uv*a+a and its 

c.c. This contribution fails to be cancelled by the criterion 

of diagonalisation, leading to an error.

10.3. The zeroth order hamiltonian is a constant of motion, and its 

expectation value in the L.C.S.R. is approximately the same as 

the expectation value of the particle hamiltonian in the P.R.

10.4. The Poisson bracket of the zeroth order hamiltonian and the
A

number operator in the S.P.S. is zero, i.e. N' is a constant of 

motion.

10.5. The zeroth order problem in the S.P.S. is (approximately) dynamically 

equivalent to the particle problem.

10.6. The equations of motion for the interacting zeroth order problem are 

given by (3.3.3.,4.).

11. The standard linearisation procedure linearises the equations of 

motion for the fields i = 1,2 but fails to linearise the equations 

of motion for the field i = 3.

11.1. The equations of motion for i = 3 are Gross' equations plus a linear 

mean field contribution from the pairing fields.

11.2. The effective hamiltonian for the fields i = 3 is invariant under 

Bogoljobov's phonon-like transformation, ensuring that the
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dispersion relation is gapless and linear in the long wave limit.

11.3. The dispersion relation for is given by (3.3.26.).

11.4. The pairing fields are time dependent.

11.5. The excitation spectra for the fields i = 1,2 are given by (3.3.65 .).

11.6. The equations of motion for the fields i 3 1,2 are decoupled in the 

a's.

12. A gauge transformation in the S.P.S. is given by (4.2.14.).

12.1. The lagrangian (4.2.12.) is invariant under the gauge transformation 

(4.2.14.), if the vector field transforms as (4.2.10.), i.e. in the 

same way as for a gauge transformation in the N.S.P.S.

12.2. The Euler-Lagrange equations of a complete theory of the coupling of 

the entire system with an external field of velocity are given by 

(4.2.16.-18.).

13. The Liouville equation in the S.P.S. is given by (4.3.12.).

13.1. The first two reduced density matrices of the S.P.S., in a pure 

state description are given by (4.3.20.-29.).

13.2. The first two equations of the hierarchy of Frolich master equations 

are invariant under change of phase space Tns -+■ rg.

13.3. The first two reduced density matrices factorise in a pure state 

description.

13.4. Contributions of the form and 4>k, >q'<Jytq do not occur ^
14. The partition function for a non-superfluid ensemble is given by 

(4.4.3.).

14.1. The macroscopic behaviour of a system described by this partition 

function is that of a non-superfluid.

14.2. If c-number configurations are allowed to take real values the 

partition function diverges.

14.3. The statistical operator in the M.F.A. is given by (4.4.19.).

14.4. The partition function in the M.F.A. is the product of three 

partition functions defined in the separate spaces of fs.



236

14.5. The thermodynamic quantities are the sum of their corresponding 

magnitudes in the separate parts of the ensemble.

14.6. The free energy, internal energy and average number distribution 

from the non-superfluid ensemble are given by (4.4.36.), (4.4.39.) 

and (4.4.42.), respectively.

14.7. The entropy for the non-superfluid ensemble is given by (4.4.47.).

15. The configurations cannot be statistically equivalent.

15.1. O.D.L.R.O. does not occur in QJ.

15.2. The only interpretation of the superfluid configurations in 

qualitative agreement with experiment is that for which the 

various distributions of pairs are statistically equivalent.

15.3. O.D.L.R.O. occurs in

15.4. The partition function for the pairing interpretation of the 

superfluid ensemble is given by (4.4.56.-60.).

15.5. A physical system described by a superfluid ensemble exhibits the 

property of superfluidity.

15.6. The excitation spectrum for the fields i = 3 in thermal equilibrium 

is the same as in a pure state description.

15.7. The two upper branches - which coincide in a pure state description, 

except for their sign, split up into two bands comprising 2N branches.

15.8. The normalisation condition for the pairing superfluid ensemble 

are given by (4.4.113.).

15.9. The integral equations characterising the mean field model in 

thermal equilibrium are given by (4.4.110.-118.).

15.10. The condition of existence of superfluid solution is given by 

(4.4.127.,129.).

15.11. In the presence of an external field of velocity the superfluid 

segment of the density will sustain a longitudinal velocity.
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16. Fermi systems can show O.D.L.R.O. in the first order reduced 

density matrix.

16.1. The present theory should be applicable to arbitrary systems 

undergoing a phase transition.
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Appendix A

Derivation of the relations between particle operators 

and elementary excitation operators

Consider the unitary transformation

T = exp0

where

0 = y fa a+ - a a + y a+a+ - y* a a + if a+a )‘  p p  p p  ' p . qp q  'p.q p qq.p p.q q p-
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(A.I.),

( A . 2 . ) .

The dash on the summation symbol indicates the omition of double counting. 

°p. Yp q and their c.c. are c-numbers, satisfying the following defining 

conditions

lar I°-p '’ S .q  çq.p’ S . p

Y = Y = Y'p.q 'q.p '-p.-q

Y Y*. , = IY I , if p' = p, q' = qp.q p .q 1 p.q1

= 0, otherwise

(A.3.).

Hie elementary excitation operators of the linear coherent state represent­

ation are defined as follows

“k* ■ T\ T_1 ■ \  * W - \ ]T'1 

\  ■ TakT_1 ■ ak * CT>ak]T"1
(A.4.).

The aim in this appendix is to obtain explicit expressions for (A.4.), 

Expanding T in powers of 0 one finds

T = l (l/n.')0n 
n=o

(A.5.),

one then finds that
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CT.aJ] = £ (1/n!) 0m° c / n-m<>-1) (A.6.),
n=l in =0

viie re

Cj_ = C0,ak] (A.7.),

Shifting Cj one place to the left for every term of the summation over 

mQ (except for mQ =0, of course), by using

... G ^ e 7 ... = ... 0^x”1^C10^y+1  ̂ ... + ... 0ix_1)C20y ... (A.8.),

where

C2 = [O.Cj] = [0,[0,C1]]

one finds

, “ n-1 mo-1 m ,__
CT,aJ] = I (1/n!) £ £ +

n=l m„=0 m.O o 1

+ 0mic20(n-mi-2;)]

Shifting now and C2 one place to the left one obtains

00 n-1 mo-1 mi-1 _ , m
[T,a£l = £ (1/n!) £ £ £ [0m2C10(n"m2"1) +

K n=l mo=0 m^O m2=0

+ 0m2C20(n"m2_2) + 0m2C30(n'm2_3)]

where

C3 = [0,C2]

(A.9.),

(A. 10.),

(A.11.),

(A.12.),

Proceeding in the same way until all the Cj 's are placed on the extreme 

left one finds the following expression

CT.ajt] ■ £ (1/n!) £ F(n,j)C.0(n-^ (A.13.).
K n=l j-1 J

Now, it is to be noted that the successive shifts of Cj (Cj) produce
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terms involving C2 (Cj+p  situated in all possible relative positions.

In consequence F(n,j) is just but the number of combinations of n elements 

taken (n-j) by j; that is

F(n,j) Cn’/jI(n-j):3

Thus

00 n
CT.ajJ] = l l (C./j:)C0(n"j)/(n-j)!]. 

n=l j=l J

Changing variables, i.e. n' = n-j, one finally obtains

rr.aj] = l l (C./j I) (0n'/n'!) 
K n'=0 j=l J

= I [ C. (k)/j I ]T
j-1 3

where

(A. 14.).

(A.15.J,

Cj(k) 5 [6, ... j times ... [0,a^l ...] (A.16.).

Introducing this result in (A.4.) one obtains

+ (Cj/jO (A.17.).

Now, for the present expression for 0 one finds

c l «  -  - < ° J  *  l  W  * i |  C „ ,k a ;  ( A .1 3 . )

c2(k> ■ 1 I {p.kCl(P) ‘ | tA'19')•

where (A.3.) has been employed. From (A. 18., 19.) one finds that the Cj s 

satisfy a cyclic property, namely

C2n+1(k) = xkncl(k); n=0’1’2’
(A. 20.)
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where

Hence

C 2 n (k) = x£n-2C2(k); n = 1,2

xk = |  lxp,kl- lXp,kl2 5 I V k '2 '  V

°k ' \* J o  C2n*l/2n*1); *

* lC2n/Zn! *n=l

= aj + [C1(k)/Xk] l x2n+1/2n+l) 1 + 
n=0

+ CC2(k)/xJ][ l (X2n/2n!) - 1] =

= ak + [C1(k)/Xk]sinh(Xk) +

+ [C2(k)/X2][cosh(Xk) - 1]

From (A.18,19.) and making use of (A.3.) one finds

c2(k) -  (ck l vt>k - io j I St>k) *

* xk <

Using this result and (A. 18.) in (A.22.) one finally obtains

°k = q “k.q^ '  \ vk,qaq + pq
where

“k,q 5 “ sh(Xk>5k,q * i«k,q''Xk)sinh(Xk) 

vk,q 8 (’'k,q/Xk>Slnh(Xk)

(A. 21.) 

(A.21'.)
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(A.22.).

(A. 23.).

(A.24.),

(A.25.) 

(A.26.)

and
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Pk = l Yt.k - i0k \ *

• [cosh(Xk) - 1]/X* -

" (a^/Xk)sinh(Xk) (A.27.).

Similarly for one finds

a. = y u? a - V v. a+ + p (A.28.).
k q *1 q k»«l «1 «1

It is noted that from definition it follows that

I ' ¡ Y q l 2 ‘ I'k.ql2) ' “ * 20k) *

* < q - lvk,q|2W ]sinh2' V  '

= 1 (A.29.).

Now multiplying (A.24.) by u , and summing over k, (A.28.) by vj*q,K K,q
and summing over k and adding up these two one finds

\ ' | k * l''k.q^ *

and similarly for a

(A. 30.)

where
aq = l  “k.q^ + l  Vk,q“k + ^q 

*q " £ “k.q1̂  + £ ^ . q ^

(A. 31.),

(A.32.).

Now, upon the adoption of definition (A.l.,2.) and the same 

definition for the variables i = 1,2,3 adopted before we obtain the 

following identity

Pk = l Pk’ \ s l \
(A.33.).
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Appendix B

Proof of {H*,N'} = 0o (B.l.)

The zeroth order hamiltonian and the number operator in the S.P.S. are 

given by

Ho = X  £k h \  + 1 .1 p V q Vi.k  - i , j CB.2.)

and

N' = l PkÌi,k k K
(B.3.).

The kinetic energy constribution K' = £ ek?k\ can eas:*-1>r s*10Wn to
i.k

satisfy

{K\N'} = 0 (B.4.),

i.e.

{K',N,} - l ek CipJqJ, +k,k'
i.i'

+ Pk,tpk V  qk'}]

= X  ek(Pkqk '  P k i  = 0k .i
A similar proof for the interacting part is more elaborate, but straight- 

forward.

(1/2) l v(A) l P̂p+S,Pq-S,qqqp ’ ?k qk } = 
p,£,q,k i.j.i'

■ (1/2) [  »CM l [ f p L p j - ^ .  £*£ *p,*,q,k 1 .J»1

+ Pk' {Pp+¿Pq-i.qqqp ’ qk'}]



(1 2)
p , M , k Vl°  4k*P4j*i' *

* ?p*;rq-iqp \  ^k.q^i.i'

Pk Pp+l^^^.q-^j.i'

S~\

Pk Pq-tSq^k.p-H^i.i'•*

' cl/2) p i„v(t) A <*•«*-«# *
* Pp.;Pq-i^ •

- Pq-iPj+t^ ‘

- P ^ P q - * ^
Now, the first and last contributions cancell out because p V q V  = 

p^p^q^qj. Changing variables for the third therm, i.e. p q l + -*■ 

one finds that the second and third terms also cancel out, thus (B.l.)

is satisfied.
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Appendix C

The zeroth order hamiltonian is diagonal in the L.C.S.R. In order 

to prove that FT is diagonal in the L.C.S.R. the defining properties (A.3.) 

of the c-number fields will be exploited.

The kinetic energy contribution is clearly diagonal in the L.C.S.R.,

i.e.

K' = l ek C|4k |2 l ( K >q|2 + lvk ,q |2) V q  + l |VM |2] (C-10K q (4

is manifestly diagonal.

The proof that the interaction term is also diagonal is more 

elaborate, but straightforward. The interaction term is

The contribution i = j = 3 is a c-number, hence diagonal in the L.C.S.R. 

The contributions i = 3 , j * i o r j = 3 , i * j  have the following form

but from the defining properties of the pairing fields, ensuring momentum 

conservation, it follows that

u' = l I, p V q V (C.2.).

which is manifestly diagonal.

Now, for i,j * 3 one has contributions of the form
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* * + ++ v* „ v „ , v v jOt a, a a, + pH,a q-Jl,b q,c p,d a b e d

(C.4.)•

Now, due to the defining properties of the c-number fields the first 

contribution is non-zero if and only if a = c, b = d or a = d, b = c so 

this contribution is diagonal in the L.C.S.R. The second contribution 

is non-zero if and only if a = c, b = d or a = d, b = c. Again, the 

second contribution is also diagonal. The third contribution is non­

zero if and only if a = b, c = d or a = c, b = d, thus this contribution 

is also manifestly diagonal. It can readily be tested that the remaining 

contributions are also diagonal. So IP is diagonal in the L.C.S.R.
A

The fact that T' is not diagonal in the L.C.S.R. can be readily 

tested by inspection, i.e.

ï Ï
— a,b,c,d

(C.5.),

which is manifestly non-diagonal.
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