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Dynamic Incentive Regulation of Diffuse Pollution

November 18, 2018

Abstract

Diffuse pollution from agriculture and extractive industries reduces air

and water quality and contributes to climate change. We consider a setting

in which a regulator must incentivize unobserved abatement given that firms

have limited liability, and when they can enter and exit. We demonstrate

that a simple dynamic incentive scheme can solve this difficult regulatory

problem: firms pay a constant tax and receive rebates following periods

of low pollution. We apply the model to water pollution from a fracking

operation and simulate the contract to explore the volatility of the firm’s

payments and the costs of limited liability.



1 Introduction

Diffuse pollution results from emissions that cannot be traced to their source. One

of the most significant impacts of these emissions is poor water quality. Runoff and

leaching from agriculture and mining can contaminate surface and ground water bodies

with excess nutrients (such as phosphorus and nitrogen) and toxic substances (such as

arsenic). This contamination increases infant mortality and digestive cancer (Brainerd

and Menon, 2014; Ebenstein, 2012) and is a major threat to natural assets such as

Chesapeake Bay, the Gulf of Mexico and the Great Barrier Reef (GBRA, 2014; EPA,

2009). The regulation of diffuse emissions is complicated by a number of factors. First,

the emissions of any individual source are not observed. Second, ambient, or measurable,

pollution fluctuates with both random weather events and natural emissions and is

therefore stochastic. Finally, in practice regulators are required to take into account

“ability to pay” and are frequently constrained by statutory limits on penalties that

they can levy. The US EPA for example is constrained by maximum limits under the

Clean Water Act, the Clean Air Act and the Comprehensive Environmental Response,

Compensation, and Liability Act among others.

We characterize the primary regulatory problem as one of moral hazard. Moral

hazard arises because emissions are unobservable and because ambient pollution, which

is observed, is stochastic. The regulator (principal) must design the optimal set of

incentives to induce abatement from multiple polluters (firms). The regulator and firms

interact over an infinite horizon subject to the firms’ entry and exit decisions. These

firms are risk neutral but at any point in time they are limited by credit constraints

that are reflected in statutory limits on fines. The regulator is therefore constrained in

that transfers from each firm have a strict lower bound.

We demonstrate that the regulation of diffuse emissions would be feasible via the

combination of two simple incentive mechanisms: a constant tax flow and rebates that

depend on the history of pollution (ambient rebates). The constant tax flow respects the

lower bound constraint on the transfer flow, while the long run incentives provided by

the rebates ensure that firms have sufficient incentive to abate. By leveraging dynamic
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incentives, the regulator is able to ensure that firms abate even if the fines that can be

mandated are severely constrained in the short term.

We employ the continuous-time methods pioneered by Sannikov (2008) to solve the

moral hazard problem. We model the accumulation of pollution as a Brownian motion

whose drift is affected by the firms’ emissions. These firms can be thought of as drilling

sites with runoff that affects water quality. The nature of runoff and leakage means that

contaminants enter air or water at many unknown points, and neither the volume nor

the content contributed by an individual source can be measured. Firms can undertake

costly abatement actions, for example exert costly effort to maintain the integrity of

wells and containment ponds. It is either too costly to verify these actions or they are

unverifiable.

We assume restoration activities are not feasible and consider the special case where

it is optimal for the regulator to keep the stock of pollution constant, so that all active

firms must abate their emissions.1 More generally, one could imagine a setting in which

a social planner must determine the optimal abatement effort and the allocation of

that effort across firms. As long as the damage from emissions is sufficiently high, the

contract we outline will be the optimal solution to this social planner’s problem.

We compare the optimal contract and the firms’ expected payoffs to two bench-

marks: observable emissions and no transfer flow constraint. The setting with observ-

able emissions can be taken to represent the regulation of sources of emissions that can

be monitored; these sources are the focus of the vast bulk of current regulation. In

this benchmark, the regulator levies a tax on any firm that fails to abate equal to the

cost of their abatement. When emissions are not observed, but there is no constraint

on transfers to and from the firm, we show that a firm’s current payoff (i.e., not their

future payoff) is tied to the flow of pollution. If there is an arbitrarily large negative

shock to the pollution stock, a firm may then have to pay an arbitrarily large penalty.

We view this feature of the contract without a transfer flow constraint as unrealistic.

We derive the comparative statics of the effect of changes in the parameters determin-

1 Keohane et al. (2007) study a model in which the regulator is able to restore the stock of pollution
beside controlling its flow by inducing abatement; they show that periodic restoration of the stock
complements abatement of the flow of damages.
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ing the firms’ payoffs on the optimal contract and we apply the model to the problem of

water pollution from a fracking operation, demonstrating the impact of limited liability

on firm entry, exit and the cost of regulation across multiple scenarios.

Our paper intersects two independent literatures. The first is devoted to the regula-

tion of diffuse emissions (see Fisher-Vanden and Olmstead, 2013, for a recent survey).

Within this literature, the closest papers propose incentives that depend on the dif-

ference between the desired and realized aggregate ambient pollution stock. Segerson

(1988) first proposed a combination of per-unit and lump sum taxes and rebates in

a static environment. Subsequent extensions to dynamic and stochastic environments

were then undertaken by Xepapadeas (1992) and Athanassoglou (2010).

As convincingly argued by Karp (2005), there are two important barriers to the im-

plementation of this type of aggregate ambient taxation. First, when the evolution of

pollution is stochastic, the burden of transfers from individual firms may be large and

reasonably viewed as exceeding political or financial constraints. Second, the aggregate

burden of taxes may exceed the social cost of damage and lead to inefficient levels of

entry and exit. Unlike the optimal control models of Xepapadeas (1992) and Athanas-

soglou (2010), we find the contract that solves the regulator’s principal-agent problem

incorporating an exogenously given constraint on transfers from firms as well as firm

entry and exit. Despite the differences in our approach, the mechanism that solves this

problem shares some features of the original static scheme proposed by Segerson (1988).

Unlike Segerson’s proposal, however, in our solution taxation is always lump sum and

rebates are a function of dynamic rather than static performance.

The second literature is concerned with the management of environmental damage

in the presence of firms with limited liability. In the classic set-up a firm with limited

liability undertakes an environmentally risky activity and exerts costly but unobserved

safety care to reduce the probability of some severe environmental harm. A particular

concern of this literature is to what extent the judgment-proof problem can be amelio-

rated by extending liability to financiers and other stakeholders (Pitchford, 1995; Boyer

and Laffont, 1997; Hiriart and Martimort, 2006; Hiriart et al., 2011).2 Our setting differs

2 Empirically, Boomhower (2016) demonstrates that bankruptcy provisions, a form of limited liability,
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in that we consider multiple firms whose unobserved action is abatement rather than

safety precaution and where environmental damages are not limited to severe discrete

events. In this setting, we show that making use of dynamic incentives can alleviate

limited liability constraints in the regulation of environmentally damaging activities.

While others have adopted a principal-agent framework to study the regulation of

diffuse emissions in static environments (Chambers and Quiggin, 1996), we are the first

to do so in a dynamic, continuous time setting with a stochastic pollution flow. The

dynamic incentive regulation we propose is related to, but different from, the incentive

regulation of public utilities (for a survey, see Laffont and Tirole, 1993). The focus of the

literature on incentive regulation is to elicit cost information from a public utility; the

workhorse is a static, adverse selection model in which the public utility is a monopolist

with private information about its cost. We, on the other hand, study a model of

dynamic moral hazard.

Finally, our paper is related to the dynamic principal-agent literature. Dynamic

contracts can differ significantly to those in static settings, yet dynamic models that use

the standard optimal control approach can be intractable once one introduces realistic

features like limited liability and entry and exit. To overcome these difficulties, we

formulate our model as a dynamic continuous time agency problem using the tractable

machinery introduced by Sannikov (2008). The main technical advantage of his methods

is that the optimal contract can be found by solving an ordinary differential equation,

allowing for a detailed description of the optimal contract and for simple comparative

statics analysis.

The paper is structured as follows. Section 2 outlines the model and Section 3

derives the optimal contract. Section 4 contains the comparative statics analysis of

the optimal contract. Section 5 simulates an application of the model to a fracking

operation. Finally, Section 6 concludes.

have implications for firm size and environmental outcomes in the oil and gas industry.
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2 The Model

Consider an environmental regulator and a group of firms . The regulator must design

a contract to manage pollution within a statutory-imposed limit on the size of penalties

or levies and taking into account that firms make entry and exit decisions. Our focus

is on the form of this contract. In general, a social planner ought to choose the path of

abatement and a set of transfers that maximize social welfare by balancing the damage

of pollution with the costs of implementing any level of abatement by any firm at any

point in time. Solving such a problem quickly becomes intractable. Here we study an

important special case when a) each active firm chooses only whether to pollute or abate

all their emissions and b) it is optimal for pollution to remain constant and hence for

the planner to induce all active firms to abate at every point in time.3 Our approach

allows us to focus on the structure of the dynamic incentives and to study entry and

exit; the cost of assuming a binary abatement choice is that we must abstract from a

detailed investigation of the optimal path of abatement.

In this setting, potential firms decide whether to enter the industry and if they have

entered they decide whether to exit. At a random time ti0, firm i gets a chance to enter;

it enters if the total expected value of entry is greater than its outside option R. Firm

i exits at time T i if its expected continuation value of staying in the regulated industry

is below R.4

Let N be the set of potential firms and Nt Ď N be the set of firms that have entered

by time t; Nt is the cardinality of Nt, or the number of firms that have entered by t.

All firms are risk neutral. Firm i generates a profit flow πi; that is, in a time period of

length dt expected profit is πidt. In the absence of costly abatement, the operations of

the firms affect pollution flow.

Polluting firms could be mining operations, drilling sites, or farms with runoff that

3 These restrictions ensure that each firm’s optimal abatement action is independent of the other firms’
actions and of the pollution stock. One can show that abatement is optimal if it is assumed that the
social cost of pollution is sufficiently high. Henceforth, we will maintain such an assumption and view
abatement by all firms that are active as the socially optimal outcome.
4 The assumption that firms do not enter if they expect just to make their outside option R and that
once they have entered they do not exit when they just make R can be easily justified with the presence
of small entry and exit costs.
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affects water quality or with leaks that emit methane and other gases. To fix ideas,

consider an unconventional drilling operation such as hydraulic fracturing of fracking.5

Fracking can contaminate ground water and local water bodies if gases and fluids migrate

from wells and containment ponds (Kuwayama et al., 2015). In a deterministic world

abatement such as well and pond maintenance could eliminate pollution, but due to

random weather events and natural concentrations, actual pollution is stochastic. Firms’

hidden abatement actions only control the drift or expected volume of pollution, they

do not have the ability to control the realized flow of pollution.

Active firms choose whether to pollute or abate. Hence we model firm i at time t

as choosing an abatement action ait P t0, 1u. When firm i abates in a time period of

length dt, it incurs an abatement cost cidt. We allow the abatement flow costs ci to

differ across firms and assume that πi ą ci so that it is still profitable for every firm to

produce while abating. The change in the pollution stock is a function of each firm’s

abatement choice.

We specify the flow of pollution, or change in pollution stock, dYt in the time interval

rt´ dt, ts as:

dYt “ µtdt` σdZt (1)

The actions of the firms determine the expected flow of pollution µt. Abatement in

the time interval rt ´ dt, ts determines the expected change in the pollution stock µtdt

in rt ´ dt, ts. The change in pollution stock also depends on an exogenous shock to

pollution arising from random weather events such as precipitation, that affect the flow

of pollution measured by the regulator; this is captured by the standard Brownian

motion term dZt. Viewing Brownian motion as the limit of a symmetric random walk

and taking ∆ “
?
dt, we can think that, due to exogenous random factors, the stock

of pollution in the time interval rt ´ dt, ts increases by σ∆ with probability 0.5 and

decreases by the same amount with probability 0.5. Thus, σ measures the volatility of

the exogenous shock to pollution.

5 Hydraulic fracturing, or fracking, involves fracturing underground rock and shale formations using
a chemical/water mixture to release oil and gas resources that would be inaccessible using traditional
extraction techniques.
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DefineMt Ď Nt as the set and Mt as the number of firms that have entered but are

not polluting at time t. Firms who have entered include those who are still active and

those who have exited. Firms not polluting at time t are firms who have exited, and

firms who are abating. Thus, the set of polluting firms at time t is Pt “ NtzMt and Pt

is the number of them. The expected flow of pollution µt is given by:

µt “ α pPtq (2)

where αp¨q is an increasing function, i.e, P 1t Ă Pt implies α pPtq ě α pP 1tq, satisfying

αp∅q “ 0, so that if no firms are polluting in time interval rt´dt, ts, the drift of pollution

is µtdt “ 0. If only firm i pollutes then the drift of pollution is µt “ αptiuq “ Ai; that

is, the expected change in of pollution in time interval rt ´ dt, ts is Aidt. While we

do not explicitly model pollution decay, our model is isomorphic to a model in which

pollution decays at rate ρdt and firms abate an amount pAi´ρqdt.6 The firm’s flow cost

of abatement is a function of the level of pollution it abates, given by ci “ λAi.

The regulator observes the change in the pollution stock dYt, but the abatement

choices of firms are hidden by the noise created by the Brownian motion. The higher

the level of volatility σ, the less information the regulator can deduce from the observed

flow dYt. Note that this flow is independent of the stock of pollution Yt; it only depends

on the firms’ abatement actions and random shocks.

The regulator may motivate each firm to abate with transfers and the threat of

shutdown. In each time interval rt ´ dt, ts, the transfer dIit can either be from the

regulator to a firm (dIit ą 0) or vice versa from a firm to the regulator (dIit ă 0). The

next section focuses on determining the form of dIit . Given this transfer, the payoff to

the firm from their abatement choice ait evolves according to:

dΠi
tpa

i
tq “ pπ

i ´ ciaitqdt` dI
i
t (3)

If firm i chooses to abate in time interval rt´dt, ts then the flow of its payoff in the time

6 Pollution decay is an important feature of many ambient pollution problems (e.g., methane and water
pollution).
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interval is pπi ´ ciqdt ` dIit . The regulator is constrained by statute and must ensure

that transfers from the firm do not exceed a lower bound dIit ě ´τdt. This constraint

acts as a limited liability constraint by putting an upper bound on the amount that the

regulator can force a firm to pay at any instant.

If firm i enters at time ti0 then it must be the case that the total expected payoff of the

contract to the firm is greater than its outside option. Let W i
t be firm i’s continuation

value, or the firm’s total expected discounted payoff from time t, conditional on not

having exited (i.e., not having exercised its outside option) prior to t. This firm’s total

expected payoff at time t is the discounted expected value of all future instantaneous

payoffs dΠi
s and depends on its abatement actions over time ais. Taking the continuous

time limit of dt converging to zero, we can write firm i’s total expected payoff at t as:

W i
t “ Et

«

expγt
ż T i

t
exp´γs dΠi

spa
i
sq ` exp´γpT

i´tqR

ff

(4)

where the expectation Et is taken at time t and firms discount at rate γ. This firm exits

at endogenously chosen time T i when they exercise their outside option R (for example

transferring business to another state).

The regulator’s mandate is to keep the expected stock of pollution constant at the

initial level Y0. The regulator uses taxes and rebates in order to maximize a weighted

social welfare function. The regulator places a weight of 1 on the cost of providing

firms with incentives to abate at each point in time, and a weight of p1´ φq P r0, 1s on

the initial discounted payoff, or promised utility level, W i
ti0

, of each firm i. The smaller

weight attached to the firms’ payoff reflects either the greater importance attached to

consumer surplus, or the social cost of raising funds.7 Thus, the regulator’s problem is

to maximize:

b0 “

»

—

–

ÿ

iPN
E0

»

—

–

T i
ż

ti0

´ exp´rs dIis ` p1´ φqWti0

fi

ffi

fl

fi

ffi

fl

(5)

by choosing dIis and Wti0
subject to the transfer flow constraints dIit ě ´τdt and to the

7 Under the latter interpretation, one can decompose the weight attached to the transfers into a com-
ponent having the same weight 1´ φ as the firms’ payoff and the flow cost of raising funds φdIt.
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incentive constraints that it is optimal for each firm i to select ait “ 1 for all t ă T i.

The regulator discounts at rate r ă γ and is thus more patient than the firms,

reflecting the fact that the regulator cares more about future generations than does any

firm.

3 The Optimal Contract

We begin by discussing how the regulator chooses payments dIit . We then go on to discuss

Wti0
- the value offered to a firm when they consider entering. When the regulator does

not observe the actions of the firms that have entered, it must incentivize each firm i to

abate by linking dIit to what is observed, the flow of pollution dYt. Given the repeated

setting, the optimal contract could tie each firm’s payoff to the entire history of pollution

at time t. This makes the regulator’s problem potentially very complex. However, as

first shown by Spear and Srivastava (1987) in a discrete time principal-agent setting, the

principal’s problem can be reduced to a recursive problem with the continuation value,

or expected future payoff, of the agent as a state variable.

As a state variable, the expected future payoff W i
t summarizes all relevant informa-

tion about the entire history of firm i’s actions up to time t – it serves as a dynamic rating

of the firm’s past performance as well as their expected future payoff. If W i
t is a dynamic

rating of past performance, changes in it must be tied to the flow of pollution. Let dW i
t

be the change in promised utility in time period rt ´ dt, ts. We can then think that in

time period rt ´ dt, ts firm i obtains its instantaneous payoff dΠi
t “ pπ

i ´ ciaiqdt ` dIit

and its promised payoff change dW i
t . From the point of view of the regulator dW i

t and

the instantaneous transfer dIit can be viewed as substitute incentive tools to provide

firm i with incentives to abate. The availability of two tools in a dynamic setting proves

extremely important when the regulator is faced with constraints on the instantaneous

transfer.

More precisely, we may view ofW i
t as a performance rating that determines the future

payments to the firm and dW i
t as a change in the expected, contracted payments the firm

is promised to receive in the future, contingent on the pollution state. As we shall see, in
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the optimal contract we can think that the firm holds a pollution derivative with index

W i
t that pays out once its value reaches a pre-determined threshold. Under abatement,

the value of the index W i
t depends purely on changes in the pollution stock which are

driven by random natural fluctuations. In this sense, we can think of the contract as

similar to a weather derivative whose index is a function of ambient temperature, and

that pays out to the holder of the derivative if that index surpasses an agreed threshold.8

3.1 The Tax Rate and the Firms’ Outside Option

Before we go on to specify how a firm’s performance rating evolves over time, we need to

consider the implications of firm exit for the regulator’s problem. When a firm’s abate-

ment action is unobservable and the regulator is constrained by a transfer constraint,

the regulator punishes pollution by lowering the firm’s current performance rating and

simultaneously lowering their promised future transfers dIit . As we shall see, this implies

that firms’ promised payoffs evolve with shocks to pollution, and there is a risk that they

exit if their future promised value falls below their outside option.

The exit of any active firm is privately and socially inefficient as the regulator will

ensure that every firm abates all their emissions (i.e., causes no social damage) and

the firm’s profit net of its cost of abatement is positive. The regulator values the firm,

however the threat of forcing the firm to exit is important to provide incentives to abate

in the vicinity of the outside option. Rather than exiting, the firm could instead decide

to stop abating forever. By doing so firm i could guarantee itself a payoff flow at least

equal to πi´ τ and a discounted continuation payoff of πi´τ
γ . If this discounted payoff is

higher than firm i’s outside option payoff R, then the threat of forcing the firm to exit is

not effective and the regulator cannot prevent the firm from polluting when the promised

utility in the contract falls below πi´τ
γ . To put it differently, to control pollution the

regulator must be able to force a firm to exit or abate. But the regulator cannot push

the promised payoff W i below πi´τ
γ . Thus, avoiding pollution requires that the outside

8 Weather derivatives have been traded in the Chicago Mercantile Exchange since 1999.
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option satisfies the constraint

R ą
πi ´ τ

γ
(6)

At the same time, it must be the case that it is socially beneficial for the firm to enter

and abate forever rather than to take their outside option. Hence it must be the case

that

R ď
πi ´ ci

γ
(7)

We combine these two inequalities in the following lemma.

Lemma 1. A necessary condition for firm i either abating or exiting, but never polluting

is:

τ ą πi ´ γR ě ci (8)

Lemma 1 provides a lower bound on the maximum levy flow set by the legislature.

Specifically, the maximum tax flow τ must be greater than the difference between firm

i’s profit flow πi and the flow value of their outside option γR. For each firm, the

maximum levy flow must also be weakly greater than its cost of abatement. Henceforth,

we will assume that condition (8) holds for each firm i.

3.2 The Evolution of the Firms’ Values

To guarantee that firm i abates, the regulator must ensure that the total benefit that they

receive from abating is greater than the total benefit they receive from polluting. But

the regulator cannot observe firms’ chosen actions, it observes only the noisy signal dYt.

Each firm’s total benefit includes its current payoff and its future payoff. For incentive

compatibility, one or both of these payoffs must be linked to the realization of pollution.

Define the instantaneous reward of firm i in period rt´ dt, ts as pπi´ ciqdt` dIit ` dW
i
t ,

the sum of the instantaneous payoff when abating and the change in their promised

utility.
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Thinking of the promised utility as a perpetuity leads to the intuitive conclusion that,

in the absence of changes in pollution, the instantaneous reward, viewed as a periodic

payment, ought to be equal to γW i
t dt, the discount rate times the present value of the

perpetuity. The next lemma shows that in the optimal contract with random shocks

to pollution the regulator provides incentives to each firm i by tying the instantaneous

reward to the flow of pollution; increasing it above the periodic perpetuity payment

γW i
t dt if pollution decreases and decreasing it if pollution increases.9 In addition, as

a long series of pollution shocks that decrease the firm i’s promised utility is possible,

their promised utility could become as low as their outside option. When this occurs

firm i exits.

Lemma 2. At time t ă T i there is a sensitivity βit of each firm i’s instantaneous reward

to the flow of pollution such that:

pπi ´ ciqdt` dIit ` dW
i
t “ γW i

t dt` β
i
tdYt (9)

where

βit ď ´λ (10)

The instantaneous reward follows this process as long as t ă T i where T i is the first

time at which W i
t ă R.

The proof of (9) is provided in the appendix. Here we prove why (10) must hold.

To ensure that each firm abates, the instantaneous reward must be linked to the flow

of pollution dYt and to the past performance measure given by the promised utility. The

parameter βit governs how sensitive firm i’s instantaneous reward is to the signal dYt.

In other words, it governs how firm i’s present and future payments change with the

observed flow of pollution. To demonstrate that βit ď ´λ we focus on a firm’s incentives

to abate. We look for a Nash equilibrium among the firms, that is, we consider a firm’s

incentives to abate conditional on all other active firms choosing to abate. For incentive

compatibility it is sufficient to derive conditions under which firm i chooses ait “ 1 at

9 The conclusion does not depend on whether the transfer constraint is due to limited liability, or tax
policy.
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any arbitrary moment in time.

At time t a firm i must balance its payoff from deviating today with the reduction

in its payoff tomorrow. The firm wishes to maximize the expected change in W i
t plus

their current payoff. By (9), under the terms of the contract, and assuming all other

firms abate, if firm i chooses abatement, then µt “ 0 and their continuation value will

evolve according to dW i
t `dI

i
t “ γW i

t dt´pπ
i´ciqdt`βitσdZt. If they instead choose not

to abate they gain the avoided cost of abatement cidt but the regulator will lower their

promised utility. The firm’s failure to abate affects the expected flow of pollution, which

becomes µt “ Ai and their expected future payoff changes by d
`

W i
t ` dI

i
t

˘D
“ γW i

t dt´

pπi´ ciqdt`βitpA
idt`σdZtq.

10 The regulator must ensure that the change in the firm’s

payoff from deviating (not abating at time t) is negative; that is d
`

W i
t ` dI

i
t

˘D
` cidt ď

dW i
t ` dI

i
t , or:

βitA
idt` cidt ď 0.

The first term, βitA
idt, reflects the change to the firm’s promised payoff. The second

term is the immediate gain to firm i from not abating, the avoided cost of abatement

cidt. Using ci “ λAi and re-arranging:

βit ď ´λ

Hence, for a positive pollution flow dYt firm i’s promised payoff must fall by at least

λdYt to ensure that firm i abates.

3.3 The Incentive Scheme

Lemma 9 provides a constraint on the two incentive tools that the regulator can use

at any point in time, the transfer dIit and the change in the promised utility dW i
t . As

incentive instruments they are perfect substitutes from the point of view of the firm,

as they enter linearly in the instantaneous reward of the firm. We shall now show that

10 The presence of the term pπi
´ ciqdt in the expression of the evolution of the promised value reflects

the fact that the regulator cannot observe the deviation and hence adjusts the promised value for the
cost of abatement even if the firm shirks.
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they are not perfect substitutes from the point of view of the regulator.

Define Wt as the vector of continuation payoffs for all the firms at time t. In order

to determine the preferences of the regulator over the two incentive tools at her disposal,

we need to characterize the regulator’s expected value from the promised payoffs Wt.

Denote by bpWtq the regulator’s value function; that is, the highest payoff that the

regulator can obtain from a set of contracts that induce all firms to abate and that

provide the set of firms with a profile of promised utilities Wt. Consider also the case

of treating firms separately, dealing with each firm i as if all other firms abate. Denote

by f ipW i
t q the regulator’s value function from firm i; that is, the highest payoff that the

regulator can obtain from a contract that induces firm i to abate and that provides firm

i with promised utility W i
t , under the assumption that all other firms abate.

Lemma 3.

(a) The regulator’s value function bpWq is separable in the firms’ promised utilities

W i; i.e., bpWq “
ř

i f
ipW iq;

(b) The regulator’s value function f ipW iq from firm i is strictly concave in the interval

rR,xW is, where the threshold utility xW i satisfies:

πi ´ ci “ γxW i ` r
´

f ipxW iq ´ p1´ φqxW i
¯

(11)

The proof of Lemma 3 is provided in the appendix.

Lemma 3 (a) shows that the regulator’s value function is separable and can be written

as the sum of the individual value functions f ipW iq for each firm i. Intuitively, this

is because linking the incentive schemes of different firms provides no benefit to the

regulator in our setting. Lemma 3 (b) shows that each value function f i for firm i is

strictly concave for values of the promised utility between the outside option value R and

the threshold xW i. The threshold xW i represents the point at which the flow value of firm

i’s production (profit minus abatement cost) is equal to the flow value the firm derives

from the contract plus the flow value of the regulator net of the value the regulator

obtains from the firm’s profit.
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Lemma 3 allows us to specify the optimal contract and incentive payments. Propo-

sition 1 outlines their form.

Proposition 1.

(a) When firm i enters at time t “ ti0, the regulator chooses a starting promised utility

W i
ti0

, with R ăW i
ti0
ď xW i, where the threshold utility xW i satisfies (11).

(b) The regulator chooses βit “ ´λ as the sensitivity of firm i’s instantaneous reward

to the flow of pollution.

(c) If at time t ą ti0 it is W i
t ă

xW i, then the regulator provides incentive payments:

dIit “ ´τdt (12)

dW i
t “ τdt` γW i

t dt´ pπ
i ´ ciqdt´ λdYt (13)

(d) If at time t ą ti0 it is W i
t “

xW i, then the regulator provides incentive payments:

dIit “ max
!

´τdt, γxW idt´ pπi ´ ciqdt´ λdYt

)

(14)

dW i
t “ min

!

0, γxW idt´ pπi ´ ci ´ τqdt´ λdYt

)

(15)

The proof of Proposition 1 is in the appendix.

Proposition 1 (a) places intuitive bounds on the promised utility W i
ti0

that the firm

is offered when it enters the market. For now we take the starting value W i
ti0

of each

firm i as given; it will be pinned down in the next subsection.

Proposition 1 (b) reflects the fact that an increase in the sensitivity of firm i’s instan-

taneous reward to the flow of pollution increases the volatility of the incentive payments

from the regulator to the firm. As the regulator’s value function is concave in promised

utility, the regulator dislikes variability and hence selects the smallest size of βit (i.e.,

βit “ ´λ) that incentivizes the firm to abate.

The concavity of the value function also implies that for low values of the promised

utility lowering the transfer payment of the firm as much as possible is optimal (Propo-

sition 1 (c)), while for high values of the promised utility it is optimal for the regulator
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to lower the change in promised utility as much as possible (Proposition 1 (d)). The

threshold xW i represents the cutoff promised utility level at which the regulator switches

from using long-run incentives to using short-run incentives. In other words, at promised

utility xW i, the regulator switches from (a) keeping dIit as low as possible and linking

dW i
t to changes in the pollution stock, to (b) keeping dW i

t as low as possible and linking

dIit to changes in the pollution stock.

Figures 1 and 2 depict a stylized example of a regulator’s value function and the

contract linking the firm’s payoff to pollution flow. Consider a decrease in pollution.

The regulator wants to reward firms. They can either reward them instantaneously

with a transfer (dIit ą 0) or they can increase the promised future reward by raising

the pollution derivative that pays out when reaching a given threshold, (dW i
t ą 0). The

cost of rewarding the firm instantaneously is always ´φ, the cost of raising the transfer

dIit . The cost of rewarding the firm in the future is f i
W i

t
which is the shadow price, or

marginal regulator’s benefit, of an increase in the promised utility dW i
t . The regulator

is more patient than the firm, so paying firms sooner rather than later is beneficial.

However, when the stock of future rewards (i.e., W i
t ) is low, the risk of a firm exiting is

relatively high. The regulator can lower the risk that the firm exits by promising future

rewards. Hence when f i
W i

t
ą ´φ in Figure 1, dW i

t is linked to changes in pollution stock

in Figure 2. However, as the stock of future rewards increases, the probability of exit

falls, and the cost of delaying the reward dominates. The threshold xW is exactly the

point at which the cost of using current and future rewards is equal and the regulator

switches from promising future rewards to a current rebate. Hence in Figure 1, when

f i
W i

t
“ ´φ, dIit is linked to changes in the pollution stock in Figure 2. Now consider

an increase in pollution. The regulator wants to punish firms in this instance, but they

face the limited liability constraint. However, the regulator can still punish the firm by

reducing the stock of future rewards. If necessary the regulator will force the firm to exit

because the stock of rewards is not as attractive as the firm’s outside option (W i
t “ R).

Because of the lower bound on the transfer flow that the regulator can charge the

firm, when W i
t ă

xW i the regulator sets dIit “ ´τ , which can be interpreted as a constant
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tax flow. Hence in any time period rt´ dt, ts the firm pays the regulator a constant fee

or flat tax τdt. On the other hand, the regulator never lets the promised utility go above

the threshold xW i
t . When the promised utility reaches the threshold level, the contract

provides flow rebates following negative pollution shocks. If there is a negative pollution

shock in period rt´ dt, ts when the promised utility is at the threshold, the firm obtains

a rebate τdt´ dIit ą 0 in addition to paying the flat tax ´τdt. We call this an ambient

rebate to reflect the fact that firms’ receipt of rebates depend on the history of the flow

of pollution.

To summarize, when W i
t ă

xW i it is cheaper for the regulator to motivate firm i by

allowing the promised utility W i
t to increase. When firm i’s promised utility reaches xW i

it is cheaper for the regulator to reward the firm with a rebate in the present instead of

promising a larger rebate in the future.

3.4 The Firms’ Starting Value and Entry

We now go on to determine the firm’s starting value and their entry decision. At time

ti0 the regulator offers potential entrant i a contract with promised payoff W i
ti0

. Since

f ipW iq is concave there is a unique value W i
˚ that maximizes f ipW iq. The regulator

therefore chooses W i
ti0
“W i

˚ and the firm enters if and only if W i
˚ ą R. Thus, in effect,

if the regulator’s value function for firm i is decreasing in rR,xW is, then the regulator

blocks the firm’s entry by offering a contract that yields the outside option payoff as the

firm’s starting value, but does not cover any, however small, entry cost.

3.5 Benchmarks and Extensions

To highlight the implication of hidden actions in the design of the contracts, we next out-

line the incentive scheme the regulator would offer if the firms’ actions were observable.

We then consider the optimal contract if there were no constraints on the instantaneous

transfers that the firms can be asked to pay and the optimal contract in a static setting.
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3.5.1 Observable Actions

The case of observable actions is a useful analytic benchmark, and also represents the

regulation of point sources, those who are the target of the majority of current environ-

mental regulation. The optimal contract offered by the regulator to firm i specifies a

transfer dIit and recommends the abatement actions ait “ 1 for all t and i. When the

regulator observes whether or not firm i abates in “instant” dt, then it can condition

the payments on the observed action.

If the firm does not abate, then the regulator can fine the firm up to the maximum

amount; that is, it can set pdIit |a
i
t “ 0q ě ´τdt. If φ ą 0, then the regulator loses from

any transfer to the firm and will choose the lowest possible transfer, (dIit |a
i
t “ 0q “ ´τdt.

For incentive compatibility, that is to guarantee that the firm wants to abate, it must

be that the transfer when the firm does abate minus the cost of abating are at least

as large as the transfer when not abating. Formally, it must be pdIit |a
i
t “ 1q ´ cidt ě

pdIit |a
i
t “ 0q “ ´τdt. Again, if φ ą 0, the regulator prefers transfers as low as possible,

so they will pick pdIit |a
i
t “ 1q “ pci ´ τqdt.

Thus the optimal contract will specify pdIit |a
i
t “ 0q “ ´τdt and pdIit |a

i
t “ 1q “

pci ´ τqdt. With this contract, firm i always abates.11 Without lump sum transfers,

then firm i’s promised utility would simply be the discounted value of the flow of profit

minus the cost of abatement and the transfer flow or: W i
ti0
“ πi´τ

γ . An extra dollar

paid by the firm to the regulator costs the regulator 1´φ in reduced payoff to the firm.

The regulator thus benefits from a transfer from the firm; net of any small entry cost to

induce entry, the regulator charges the firm a lump sum transfer that puts its promised

utility at R.

3.5.2 No Transfer Constraint

We now outline the features of the contract in the alternative benchmark case when there

is no constraint on the transfer flow from the firm. A key difference in the contract is

that when there is no transfer constraint, the regulator can make sure that the firm

11 If φ “ 0, then any contract with pdIit |a
i
t “ 1q ´ cidt ě pdIit |a

i
t “ 0q ě ´τdt will induce the firm to

abate and yields the same payoff to the regulator.
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never exits. As outlined in Proposition 2, the unconstrained regulator uses the current

transfer flow to reward abatement and punish pollution. Thus, each firm will have to

pay arbitrarily large fee flows after an arbitrarily large positive shock that increases

pollution. Since such shocks are bound to occur, the optimal contract of the model with

no transfer constraints does not seem appealing or practical.12

Proposition 2. If there are no constraints on the instantaneous transfer flow between

the regulator and firm i, then:

(a) at ti0 the regulator offers the firm the starting value W i
ti0
“ R and pays the firm

any entry cost, so that the firm enters;13

(b) for all t ą ti0 firm i’s promised value is constant at R;

(c) for all t ą ti0 the regulator pays the firm according to the incentive scheme dIit “

pγR´ pπi ´ ciqqdt` βidYt with βi ď ´λ ;

(d) the regulator’s value is rf ipRq “ πi ´ ci ` p1´ φqrR´ γR.

The proof of the proposition is in the appendix.

3.5.3 A Static Setting

Had we adopted a static, or more precisely single-period, version of our model, it would

not have been possible to study entry and exit by firms. The regulator would not have

been constrained by the threat of exit of a socially efficient firm and the promise of future

payments would not have been available as a tool to incentivize a firm to abate. The

only way in which the regulator could have incentivized a firm to abate is by linking their

reward to the pollution generated in the period. This could be accomplished by taxing

the firm the maximum amount allowed by the firm’s limited liability if the pollution

stock at the end of the period is above a threshold and paying a bonus if it is below it.

12 In the environmental, optimal control, literature, it is standard to assume that there are no transfer
constraints, see Karp (2005) for a discussion.

13 The regulator benefits from the firm entering, but it also benefits from reducing the firm’s starting
value. If we do not allow the regulator to induce entry by paying the firm’s entry cost and we maintain
the assumption that the firm does not enter if offered a starting value of R, then the problem has no
solution, as the regulator wants to induce entry and to choose W i

ti0
as close as possible to R.
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One of the main insights of our paper is that in a dynamic setting the optimal

contract also has the simple feature of charging the firm the maximum flow rate and of

rewarding with rebates, but the rebates are tied to the promised utility, a measure of

the industry’s past abatement performance, not the pollution stock.

3.6 Parameter Uncertainty

The optimal contract of each firm depends on parameters of the firm’s payoff that could

be unknown or private information of the firm. It is beyond the scope of this paper

to add the problem of screening for hidden information to the hidden action problem

(pollution abatement) that is the focus of our analysis. It is however useful to point

out the robustness of the optimal contract. First, if there is uncertainty about the true

value of the unit abatement cost λ, then the regulator could guarantee that abatement

still takes place by choosing the sensitivity ´βi of the contract to the pollution flow to

be equal to the highest value in the range of λ. As indicated by (10) in Lemma 2, as

long as ´βi ě λ the firm will abate.

Second, uncertainty about the cost of abatement ci (via either uncertainty in λ or

Ai) and the profit flow πi affects the rebates paid to the firm when the threshold xW i is

reached. Overestimating the profit flow or underestimating the abatement cost means

that the promised utility specified in the contract is higher than the true expected future

payoff of the firm; as a result the firm would tend to exit earlier. To avoid inefficient

exit, it is again advantageous for the regulator to err on the cautious side and choose

rebates for a profit flow on the low side of its possible range and an abatement cost on

the high side of its range.

4 Comparative Statics

In this section we study the impact of changes in the parameters determining a firm’s

payoff on the optimal contract offered to that firm by the regulator.

We look at the effects on the regulator’s value function f ipW iq (i.e., the expected

future accumulation of net tax receipts from firm i) for all possible values of the promised
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utility W i, the effects on the firm’s maximum promised utility xW i (i.e., the threshold

promised utility at which the firm is paid a bonus in case of a negative shock to pollution)

and the effects on the firm’s starting promised utility W i
˚.

Proposition 3. For each firm i the following effects hold.

(a) At all levels of the firm’s current promised utility W i, the regulator’s value is: piq

increasing in the transfer constraint τ , the outside option payoff R and the profit

flow πi; piiq decreasing in the volatility of pollution σ, the discount rate γ, the level

of abatement Ai and the unit cost of abatement λ.

(b) The threshold promised utility xW i is: piq increasing in the volatility of pollution

σ and the profit flow πi; piiq decreasing in the transfer constraint τ , the outside

option payoff R, the discount rate γ and the level of abatement Ai.

(c) The starting promised utility W i
˚ is: piq increasing in the outside option payoff R

and the profit flow πi; piiq decreasing in the transfer constraint τ , the discount rate

γ and the level of abatement Ai.

The proof of the proposition is in the appendix.

An increase in the firm’s profit flow πi has a similar effect to a reduction in the

abatement level Ai. They are beneficial for both firm and regulator, as they reduce the

cost of providing long-run incentives. An increase in the firm’s profit flow or a reduction

in the needed abatement level allow the regulator to reduce the bonus payment to the

firm when the promised utility reaches the threshold xW i and thus make it convenient

to rely for a longer time on long-run incentives by increasing the threshold xW i.

It is not surprising that an increase in the maximum instantaneous transfer τ that the

firm can pay increases the regulator’s value f ipW iq at all levels of the state variable W i.

What is perhaps more surprising is that the increase in τ harms the firm, by lowering

the starting value of the promised utility W i
˚. Intuitively, an increase in how much the

firm may be taxed in each period reduces the cost of providing short-run incentives.

This is also reflected in a reduction of the maximum level of long-run incentives, the

threshold xW i, leading to the firm being paid bonuses earlier. It would seem that firm
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and regulator could both benefit when providing short-run incentives is easier, but this

is not so, because the regulator gains from taxing the firm, irrespective of the incentive

motive.

An increase in the unit cost of abatement λ has two effects; it increases the bonus

that the firm must be paid at xW i and also increases the magnitude of the sensitivity

βit “ ´λ of firm i’s instantaneous reward to changes in the pollution stock. Both effects

have a negative impact on the regulator’s value, which is thus decreasing in the unit

cost of abatement. The first effect pushes towards a decrease in the threshold promised

utility xW i, while the second pushes towards its increase. The combined effect depends

on the curvature of the regulator’s value function and is ambiguous. For similar reasons,

the impact of an increase in the unit cost of abatement on the firm’s starting value W i
˚

is also ambiguous.

The regulator’s value is decreasing in the volatility of pollution σ (consistent with

the concavity of the regulator’s value function), reflecting the fact that this volatility

makes the signal dYt a poorer indication of the firms’ actions, making it harder to

provide the firm with incentives to abate. As pollution becomes more volatile, the

firm’s promised utility also does and thus it is beneficial, in order to delay exit, to raise

the threshold promised utility xW i which triggers bonus payments to the firm. The effect

on the starting value of the firm is however ambiguous, as it depends on changes in the

curvature of the regulator’s value function.

An increase in the firms’ outside option payoff R is directly beneficial to the regulator,

as it increases the regulator’s payoff when the firm exits. It is thus not surprising that

it raises the regulator’s value at all levels of the promised utility to the firm and that it

also benefits the firm by raising the starting value W i
˚. The reason why it reduces the

threshold promised utility xW i is also intuitive. As the firm’s exit is a smaller loss, the

regulator is willing to risk an earlier exit by reducing its reliance on long-run incentives.

Finally, the regulator’s value is decreasing in the firm’s discount rate γ. If the firm

is more impatient, then the regulator’s use of the short-run incentive of a tax in the

present is more costly for the firm and the long-run incentive of future rebates is less
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effective. The firm is also worse off, as the starting promised utlity of a less patient firm

is lower. In addition, since long-run incentives are less effective, relying on them is less

valuable to the regulator and the threshold promised utility xW i also decreases.

5 Numerical Application to Fracking

In this section we use a numerical application of the model to demonstrate how the

limited liability constraint generates inefficiency. There are several ways in which the

transfer constraint is costly. First, firms may not enter. Second, once they have entered,

firms may exit after a series of positive pollution shocks. Finally, because they are

less patient than the regulator, rewarding firms in the future is relatively more costly,

yet the regulator uses future promises to reward current abatement and to manage the

possibility of exit. We provide an example of each of these channels using an application

to water pollution caused by a fracking operation.

The unconventional gas industry, and in particular the practice of fracking, has

been associated with contamination of natural waterways and potable water supplies

(Kuwayama et al., 2015; Hill et al., 2012). We assume that a fracking firm operates

in the vicinity of a waterway and that leakage of flowback water containing bromide

from the firm’s operations can pollute this waterway if there is inadequate monitoring

and maintenance of containment ponds and other facilities. The volatility of bromide is

driven by precipitation and naturally occurring deposits. The regulator can only observe

bromide concentrations at a downstream water quality monitor.

5.1 Scenario Parameters

In Table 1 we outline parameters for four scenarios. In each scenario we consider a single

firm and rescale time such that ti0 “ 0. Henceforth we drop the superscript i. Across

scenarios we assume that the expected impact of flowback water on levels of bromide

ranges from A “ 0.005 to A “ 0.05 mg/L. For reference, Wilson and Van Briesen (2013)

find bromide concentrations of between 0.05 and 0.09 mg/L in the Monongahela River,

a river potentially affected by fracking in the Marcellus shale. The lower bound of the

23



range we assume is lower than the 0.01 mg/L detection limit in that study. The upper

bound of the range is the EPA’s maximum containment load for bromide. We assume

that the volatility of pollution ranges from σ “ 0.025 to σ “ 0.03 mg/L. The standard

deviation of bromide concentrations in the Monongahela River was found to be high:

ranging from 0.04 to 0.09 across testing sites.

The firm’s profit is parameterized to approximate daily net revenue of fracking oper-

ations cited in the media and does not vary across scenarios.14 Similarly, the unit cost of

abatement (λ) is held fixed across scenarios leading to total abatment costs (c) of $195

to $1950. To parameterize the unit cost of abatement (monitoring and maintenance

effort) we assume that it takes one full time employee to reduce pollution by 0.01 mg/L.

We take the average wage for the gas industry in Pennsylvania from the U.S. Bureau of

Labor Statistics to then calculate an approximate unit abatement cost at the daily level

(see Cruz et al., 2014).

5.2 Results

For each scenario we numerically solve for the optimal contract to keep levels of bromide

constant. This provides us with the rebate threshold xW and the regulator’s value at the

threshold fpxW q, both reported in Table 2. The solution to the regulator’s problem also

gives the starting values W0 “ W˚ for the firm and fpW0q “ fpW˚q for the regulator.

We then apply Proposition 2 to calculate expected firm and regulator outcomes in the

case with no transfer constraint.

We start by highlighting the two cases where limited liability inefficiently deters

entry. Table 2 shows that in both Scenarios 2 and 3, the regulator’s value is maximized

at the outside option of the firm and thus the regulator offers the firm W0 “ R.15 Thus

with any small positive entry cost, the firm decides not to enter. The only difference

between Scenarios 2 and 4 is the outside option of the firm. Across these scenarios

at least, the outside option of the firm is therefore critical to firm entry.16 This is not

14 See the Appendix for further detail on these sources and the calculations made.
15 Appendix Figure 6 shows the computed value functions for each scenario.
16 Scenarios 1 and 3 differ in the outside option of the firm and the maximum tax constraint. However
imposing τ “ 721.25 from Scenario 1 in Scenario 3 does not change the entry outcome, hence entry is
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surprising, as a high outside option lowers the cost to the regulator of detering firm entry.

Contrasting these scenarios to the benchmark case of no transfer constraint shows the

loss in total payoffs associated with the existence of limited liability. The total starting

value in Scenario 2 (the sum of the regulator’s starting value and the firm’s starting

value) with limited liability is approximatly 11% lower (9,409 vs 10,588). In Scenario 3,

the loss is approximately 26% (32,846 vs 44,371). As the firm’s expected values are the

same across scenarios, this loss in welfare is experienced solely by the regulator.

When firms do enter, limited liability also results in a substantial net loss, and this

loss is entirely borne by the regulator. Table 2 shows that, in Scenarios 1 and 4, the

firm does better with constraints on the transfers it pays to the regulator. The total

difference in payoffs due to limited liability is approximately 50% in Scenario 1 and over

60% in Scenario 4.

Table 2 reports expected firm and regulator outcomes at t0. The probability of

exit and the volatility of transfers for t ą 0 are also important quantities. To explore

them, we simulate 10,000 Brownian motion paths dZjt , j “ 1, .., 10000. For each path,

or simulation j we calculate the evolution of the firm’s promised utility W j
t and the

transfer flow dIjt . For every t, we then calculate the mean and standard deviation of

promised utility and transfer flows and the probability of exit by t “ 60. Figures 3

and 4 and Table 3 summarize the results.17 In each Figure, the left-hand panel plots

promised utility and the right-hand panels plots the transfer flow. Across scenarios we

plot the path of promised utility and transfers from the same simulated pollution path.

The mean and standard deviation of transfers over time18 are reported in Table 3 along

with the probability of exit.

Scenario 1 provides an example of where limited liability can lead to firm exit. In

Scenario 1 the probability of exit by t “ 60 is 10%, leading to the decline in the mean

promised utility in the left panel of Figure 3. The mean transfer from the firm to the

regulator as well as the volatility of the transfer are significantly higher without limited

not determined by the transfer constraint in this case either.
17 In the Appendix we also plot the mean regulator’s payoff across simulations and the single path of
the regulator’s payoff.

18 For each path j, we calculate the standard deviation of transfers, we then average this standard
deviation to generate a measure of the average volatility of transfers over time.
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liability. This difference in volatility is evidenced by the transfers plotted for a single

path of pollution for the two cases in the left hand panel of Figure 5. For this single path,

the unconstrained transfer from the firm to the regulator exceeds the limited liability

constraint 25% of the time.

In contrast, Scenario 4 provides an example where we observe no exit and the volatil-

ity of the transfers is approximately the same with or without limited liability. Figure

5 shows that the transfers are indeed very similar with or without a constraint on the

transfer. With high pollution volatility, a low outside option and a relatively high max-

imum tax constraint, the regulator maintains the firm’s promised value at the threshold

to minimize the chance of receiving a low payoff if the firm exits. Relative to the no

constraint case this is costly to the regulator and beneficial to the firm.

6 Conclusion

Firms who produce emissions that can be measured are the target of most environmental

regulation. Firms whose emissions cannot be measured also cause significant damage

but they remain relatively unregulated. We study a setting in which a regulator is tasked

with enforcing abatement when emissions from firms cause stochastic pollution.

If the regulator could observe emissions, then it would tax emitting firms. When

individual emissions are not observable but the regulator is unconstrained in its use of

incentives, the regulator charges firms when pollution increases, and provides rebates

when pollution decreases. This implies unboundedly large transfer flows from the firm to

the regulator after arbitrarily large positive shocks to pollution. In practice, regulators

cannot charge unboundedly large taxes but are constrained in the transfers they can

mandate from firms. These constraints realistically arise either from the political process

(e.g., as a result of industry lobbying) or as the result of credit constraints.

Our main contribution is to show that if the regulator faces a constraint on the

size of the tax it can levy, then it can exploit dynamic incentives to induce firms to

abate. To do so the regulator taxes a constant amount in the present and promises

future ambient rebates: expected rebates rise if ambient pollution decreases, and fall if
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ambient pollution increases.

We then use a numerical application to fracking to demonstrate the costs of these

constraints. We show that under constraints on the maximum tax, firm entry is lowered,

the probability of firm exit is raised and the delay of incentive payments, which is

necessary to motivate abatement, comes at significant cost to the regulator.

The mechanism we propose relies on polluting firms being taxed or rebated as a

function of ambient pollution levels, and being incentivized by the use of future rebates

that are contingent on current abatement actions. A reasonable question is whether such

a scheme is practical or politically feasible. The Everglades Forever Act, designed to

reduce phosphorous load into the Everglades Protection Area in Florida, suggests that

it is. Like our mechanism, the Everglades Forever Act imposes a minimum tax on agri-

cultural producers contributing to runoff into the Everglades, and provides reductions

in this tax if aggregate phosphorous reduction targets are met. The scheme also involves

a dynamic component, allowing current reductions to offset future tax payments.
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Tables and Figures

Table 1: Parameters for Fracking Application

Firm’s discount factor (γ) 0.1
Profit flow ($) (πi) 2,500
Unit abatement cost ($) (λ) 39,000
Regulator’s discount factor (r) 0.01
Weight on firm’s utility (φ) 0.5

Scenarios (1) (2) (3) (4)

Abatement level (mg/L) (A) 0.005 0.05 0.005 0.05
Volatility (mg/L) (σ) 0.025 0.03 0.025 0.03
Abatement cost ($) (c) 195 1,950 195 1,950
Outside option ($) (R) 17,288 5,225 21,898 4,125
Maximum transfer ($) (τ) 781.25 5,000 320 5,000

Notes: Table 1 reports the parameters for the application of the model to water pollution caused by

fracking. The top panel shows parameters that do not vary across scenario. The bottom panels shows

parameters that do vary across scenarios.

Table 2: Numerical Solution to Optimal Contract

Scenarios (1) (2) (3) (4)

Transfer constraint

Rebate threshold (xW ) 22,050 5,531 23,120 5,491

Regulator’s value at threshold (fpxW q) 21,026 2,461 10,415 2,835
Firm’s starting value (W0 “W˚) 20,467 5,225 21,898 4,546
Regulator’s starting value (fpW0q “ fpW˚q) 21,595 2,612 10,949 3,246
Total starting value (fpW0q `W0) 42,062 9,409 32,846 7,792

No transfer constraint

Regulator’s starting value (fpRq) 66,269 5,362 22,474 15,812
Firm’s starting value (W0 “ R) 17,288 5,225 21,898 4,125
Total starting value (fpW0q `W0) 83,556 10,588 44,371 19,938

Notes: The first panel of Table 2 reports computed values for the rebate threshold, the regulator’s value

at the rebate threshold, and both the firm and regulator’s starting values under a maximum transfer

or limited liability constraint. The second panel reports starting values when there is no such transfer

constraint. See Table 1 for scenario parameters.
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Table 3: Simulation Results

Scenarios (1) (4)

Transfer constraint

Mean transfer to firm (dI) -105 -4
SD transfer 636 1170
Probability of exit 0.1 0

No transfer constraint

Mean transfer to firm (dI) -576 -138
SD transfer 974 1169
Probability of exit 0 0

Notes: Table 3 reports the mean, standard deviation (SD) and probability of exit by t “ 60 from 10,000

simulations of the transfer payments and firm continuation values for Scenarios 1 and 4. See Table 1

for scenario parameters. The standard deviation measures the average volatility of transfers over time,

it is the mean of the standard deviation of transfer payments in each of the 10,000 simulations.

Figure 1: Regulator’s Value

Notes: Figure 1 depicts a stylized regulator’s value function.
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Figure 2: Contract Values

Notes: Figure 2 depicts the contract that links the firm’s payoffs to the pollution flow. The left panel

shows changes in the firm’s promised value given their current promised value and the pollution flow.

The right panel shows transfer flows to the firm given their current promised value and the pollution

flow.

Figure 3: Scenario 1 Firm’s Expected Payoff and Transfers

Notes: Figure 3 depicts results for simulations of Scenario 1. See Table 3 for the parameter values.

The left panel shows the firm’s mean expected payoff (dark dashed line) across 10,000 simulations of

pollution and a single pollution path (grey solid line). The right panel shows average transfers across

simulations (dark dashed line) and a single pollution path (grey solid line). Single pollution path is the

same across plots. In both plots, dotted lines are the mean of the variable +/- 1.96*standard deviation.
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Figure 4: Scenario 4 Firm’s Expected Payoff and Transfers

Notes: Figure 4 depicts results for Scenario 4. See Table 3 for the parameter values. The left panel

shows the firm’s mean expected payoff (dark dashed line) across 10,000 simulations of pollution and a

single pollution path (grey solid line). The right panel shows average transfers across simulations (dark

dashed line) and a single pollution path (grey solid line). Single pollution path is the same across plots.

In both plots, dotted lines are the mean of the variable +/- 1.96*standard deviation.

Figure 5: Transfers in Unconstrained Benchmark

(a) Scenario 1 (b) Scenario 4

Notes: Figure 5 shows transfers in the benchmark case without a transfer constraint for a single path

of pollution (solid line) and reproduces the transfer from the same pollution path for the model with a

transfer constraint (dashed line). Left hand panel shows transfers for Scenario 1, right hand panel shows

transfers for Scenario 4. Scenario parameters outlined in Table 3.
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Appendix

In all proofs in this appendix, to simplify notation we rescale time when firm i enters

so that with the new time scale ti0 “ 0.

Proof of Lemma 2. Recall from (4) that i’s promised utility, the total expected payoff

firm i receives from choosing abatement from time t after some history of reports and

choices ais, 0 ď s ď t, given that all other firms follow the recommended actions from

time t, is

W i
t “ Et

«

ż T i

t
exp´γps´tq dΠi

spa
i
sq ` exp´γpT

i´tqR

ff

Consider the case where for 0 ď s ď t the firm follows the recommended actions and

abates (i.e., ais “ 1 @ 0 ď s ď t). It is sufficient to show that equation (9) holds for this

case (DeMarzo and Sannikov, 2006). Define

V i
t “

»

–

t
ż

0

exp´γs dΠi
spa

i
s “ 1q ` exp´γtW i

t

fi

fl

Then V i
t is the total past and future expected payoff of the firm from action choice

ais “ 1 @ s P r0, ts. Indeed V i
t “ EtrV i

t`ss; the total past and future expected payoff

from choosing the abatement actions, where the expectation is taken over information

available at time t, is constant over time. In other words, V i
t is a martingale. By the

martingale representation theorem there is a process β̃it such that dV i
t “ exp´γt β̃itdZt.

Differentiating V i
t with respect to t, and using the martingale property:

dV i
t “ exp´γt dΠi

tpa
i
t “ 1q ´ γ exp´γtW i

t dt` exp´γt dW i
t

exp´γt β̃itdZt “ exp´γt dΠi
tpa

i
t “ 1q ´ γ exp´γtW i

t dt` exp´γt dW i
t

dW i
t “ γW i

t dt´ dΠi
tpa

i
t “ 1q ` β̃itdZt

Now, letting β̃it “ βitσ, substituting for dYt from (1) with µt “ 0, and dΠi
t from (3) with
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ait “ 1:

dW i
t “ γW i

t dt´ pπ
i ´ ciqdt´ dIit ` β

i
tdYt

The proof that βit ď ´λ is provided in the text.

Proof of Lemma 3. We first show that the regulator’s value function is separable.

Consider two firms i and j. By Lemma 2, when all firms abate the evolution of the

continuation value dW i
t is correlated with dW j

t through the pollution shock σdZt but

W i
t does not depend directly on W j

t . The regulator therefore cannot gain by linking

the payoffs of the firms and will choose to adjust dIi and dW i independently of dIj and

dW j ; that is, the regulator’s value function is separable in W i
t and W j

t .19

With separability we can focus on the regulator’s instantaneous value from firm i,

rf ipW iqdt. Rescale time so that firm i’s chance of entering occurs at ti0 “ 0 and define

Git as the total regulator’s payoff from firm i up to and from time t, conditional on firm

i entering and not exiting before t:

Git “

t
ż

0

´ exp´rs dIis ` exp´rt f ipW i
t q ` p1´ φqpW

i
0 ´ exp´rtW i

t q (16)

Differentiating with respect to time and applying Ito’s Lemma:

exprt dGit ` rf
ipW i

t qdt “´ dI
i
t ` f

i
W ipW

i
t qdW

i
t `

1

2
pσβitq

2f iW iW ipW
i
t qdt

` p1´ φqrW i
t dt´ p1´ φqdW

i
t (17)

Under the optimal policy dGit is a martingale and hence its expected value is zero. Thus

19 The separability of the value function relies on the assumption that the recommended actions of
active firms (abatement) are independent of the total number of active or exited firms. Without this
assumption, the expected stopping time EpT j

q and the incentives dIjt of firm j may affect firm i’s
recommended actions or incentive compatibility constraint and separability may fail.
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we have:

rf ipW i
t qdt “ ´

`

dIit ` dW
i
t

˘

`
`

φ` f iW ipW
i
t q
˘

dW i
t`

1

2
pσβitq

2f iW iW ipW
i
t qdt`p1´φqrW

i
t dt

(18)

Let xW i be the lowest value of W i ě R such that f i
W ipxW

iq “ ´φ (the value matching

condition). Optimality of the threshold xW i requires that the slope of the value function

f i be constant at xW i; that is, f i
W iW ipxW

iq “ 0 (the super contact condition; e.g., see

Dumas, 1991). Replacing the value matching and the super contact conditions into (18)

and using equation (9) yields the condition

rf ipxW iqdt “ pπi ´ ciqdt`xW i rp1´ φqr ´ γs dt (19)

To prove the concavity of f ipW iq in
”

R,xW i
ı

, it is sufficient to show that f i
W iW ipW

iq ă

0 for all W i such that R ďW i ă xW i. We first show that for R ďW i ă xW i:

rf ipW iq `W ipγ ´ p1´ φqrq ă πi ´ ci (20)

Condition (20) states that the flow payoff of the regulator plus the expected flow utility

of firm i net of the flow payoff of the regulator due to firm i must be less than the flow

value of the firm’s production net of abatement cost. To verify this intuitive condition

we use the fact that f i
W ipW

iq ą ´φ for W i ă xW i and equation (19).

We wish to evaluate rf ipW iq `W ipγ ´ p1´ φqrq for W i ă xW i. Taking a first order

Taylor approximation, for small ∆ ą 0 we have that fpxW i´∆q « f ipxW iq´∆f i
W ipxW

i´

∆q. As f i
W ipxW

i´∆q ą ´φ, it is f ipxW i´∆q ă f ipxW iq`∆φ. Then, letting W i “ xW i´∆,

(20) follows, as it must be:

rf ipxW i ´∆q ` pxW i ´∆qpγ ´ p1´ φqrq ă rpf ipxW iq `∆φq ` pxW i ´∆qpγ ´ p1´ φqrq

“ rf ipxW iq `xW ipγ ´ p1´ φqrq ´∆pγ ´ rq

ă rf ipxW iq `xW ipγ ´ p1´ φqrq

“ πi ´ ci,
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where the second inequality comes from γ ą r and the last equality uses (19).

Substituting (9) into (18), taking expectations and re-arranging, we can write the

regulator’s value function from firm i for W i
t ă

xW as:

rf ipW i
t q “ ´ φdI

i
t ` f

i
W ipW

i
t qpγW

i
t ´ pπ

i ´ ciq ´ dIitq

` p1´ φqppr ´ γqW i
t ` π

i ´ ciq `
1

2
pβitσq

2f iW iW ipW
i
t q (21)

Hence, for R ďW i ă xW i we have:

pσβiq2

2
f iW iW ipW

iq “ rf ipW iq ` φdIit ´ f
i
W ipW

iqpγW i ´ pπi ´ ciq ´ dIitq

´ p1´ φq
“

pr ´ γqW i ` pπi ´ ciq
‰

ď rf ipW iq ` φdIit ` φpγ
iW i ´ pπi ´ ciq ´ dIitq

´ p1´ φq
“

pr ´ γqW i ` pπi ´ ciq
‰

“ rf ipW iq `W ipγ ´ p1´ φqrq ´ pπi ´ ciq

ă 0

The first inequality follows from f i
W ipW

iq ě ´φ and γW i´ pπi´ ciq ´ dIitq ą 0 and the

second inequality follows from (20). Hence for R ďW i ď xW i the function f i is strictly

concave.

Proof of Proposition 1. The regulator chooses dIit and dW i
t to maximize the rhs of

(18), or (21), subject to dIit ě ´τdt and equation (9) in Lemma 2, which can be written

as dW i
t ` dI

i
t “ γW i

t dt´ pπ
i ´ ciqdt` βitdYt.

By Lemma 3, f i is concave for W i
t ă

xW i. Since, by definition, f i
W ipxW

iq “ ´φ (the

value matching condition), when W i
t ă

xW i it must be f i
W ipW

i
t qdt ą ´φ; thus, the rhs of

(18) is increasing in dW i
t and by (9) it is decreasing in dIit . It follows that when W i

t ă
xW i

it is optimal to set dIit “ ´τdt and hence, by (9), dW i
t “ τ`γW i

t dt´pπ
i´ciqdt`βitdYt.

On the contrary, the concavity of f i implies that when W i
t ě

xW i the rhs of (18) is

(weakly) decreasing in W i
t , since f i

W ipW
i
t q “ ´φ. Thus, the regulator is better off by

not letting firm i’s promised utility exceed xW i. This has two implications.
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First, it cannot be that W i
ti0
ą xW i when firm i first enters. Since it cannot be that

W i
ti0
ă R either (firm i cannot receive less than its outside option), it must be that

R ďW i
ti0
ď xW i. This proves part (a) of the proposition.

Second, if at time t ą ti0, W
i
t “

xW i the regulator must make sure that dW i
t ď 0. By

(9) in order to ensure that dW i
t ď 0 at W i

t “
xW i it must be:

dIit “ max
!

´τdt, γxW idt´ pπi ´ ciqdt` βitdYt

)

dW i
t “ min

!

0, γxW idt´ pπi ´ ci ´ τqdt` βitdYt

)

To conclude the proof of parts (c) and (d) and prove part (b) of the proposition, we need

to show that βit “ ´λ.

Since f i is strictly concave in W i
t , f

i
W iW ipW

i
t q ă 0 for W i

t ă
xW i, the regulator will

seek to minimize the magnitude of βit subject to the incentive compatibility constraint

βit ď ´λ. Hence βit “ ´λ and for W i
t ă

xW i (21) becomes:

rf ipW i
t q “φτ ` f

i
W ipW

i
t qpγW

i
t ´ pπ

i ´ ciq ` τq

` p1´ φqppr ´ γqW i
t ` pπ

i ´ ciq `
1

2
pλσq2f iW iW ipW

i
t q (22)

Lemma 4 shows that there is a unique solution to the boundary value problem defined

by (22) with boundary conditions f ipRq “ p1´ φqR and f ipxW iq “
πi´ci´pγ´p1´φqrqxW i

r .

Lemma 4. There is a unique solution to the boundary value problem defined by (22)

with boundary conditions f ipRq “ p1´ φqR and f ipxW iq “
πi´ci´pγ´p1´φqrqxW i

r .

Proof. Consider the family of initial value problems defined by (22) with initial condi-

tions f ipRq “ p1´φqR and f i
W ipRq “ k with k ě ´1. Since it has bounded derivatives,

the value function f ipW iq on the left hand side of (22) is Lipschitz continuous. Then,

by a standard result in the theory of ordinary differential equations (e.g., see Hirsh

and Smale, 1974, Theorem 1, page 162) the initial value problem has a unique global

solution, which is continuous in φ, R and k.
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Any solution of the boundary value problem must be the solution of an initial value

problem with f i
W ipRq “ k for some k ě ´φ. We will argue that there exists a unique

k “ k˚ for which the solution of the boundary value problem coincides with the solution

of the initial value problem. First we will prove a few preliminary claims. The first

claim says that the slope of the solution of the initial value problem with a greater slope

at R has a greater slope at all W i ď xW i.

Claim 1. Let f ip¨; kq be the solution of the initial value problem defined by (22) with

initial conditions f ipRq “ p1 ´ φqR and f i
W ipRq “ k. If k ą k1, then f i

W ipW
i; kq ą

f i
W ipW

i; k1q for all W i P rR,xW iq.

Proof of the Claim. The proof is by contradiction. Let k ą k1; by definition f i
W ipR; kq ą

f i
W ipR; k1q. Suppose that, contrary to the claim, there is a ĂW i such that: (i) f i

W ipW
i; kq ą

f i
W ipW

i; k1q for W i ă ĂW i, (ii) f i
W ipĂW

i; kq “ f i
W ipĂW

i; k1q, and (iii) f i
W ipW

i; kq ă

f i
W ipW

i; k1q for ĂW i ăW i ă ĂW i`δ, for some δ ą 0. First note that (i) and (ii) imply: (iv)

f ipĂW i; kq ą f ipĂW i; k1q. Second, observe that (ii), (iv) and (22) imply f i
W iW ipĂW

i; kq ą

f i
W iW ipĂW

i; k1q, or equivalently,
f i
Wi p

ĂW i`ε;kq´f i
Wi p

ĂW i;kq

ε ą
f i
Wi p

ĂW i`ε;k1q´f i
Wi p

ĂW i;k1q

ε for a

sufficiently small ε. The latter inequality together with (ii) implies f i
W ipĂW

i ` ε; kq ą

f i
W ipĂW

i ` ε; k1q, contradicting (iii) and concluding the proof of the claim.

Define the function:

gipW iq “
πi ´ ci ´ pγ ´ p1´ φqrqW i

r
(23)

Next, observe that, by (19), for the solution f ipW i; kq of an initial value problem also

to be a solution of the boundary value problem it is necessary that there exists a xW i

such that f ipxW i; kq “ gipxW iq and f i
W ipxW

i; kq “ ´φ; that is f ip¨; kq crosses gip¨q at slope

´φ. The next claim shows that such a condition is also sufficient, as the solution of the

initial value problem that satisfies it is strictly concave to the left of xW i and hence xW i

is the lowest value of W i such that f i
W ipW

iq “ ´φ.

Claim 2. Let f ip¨; kq be the solution of the initial value problem defined by (22) with

initial conditions f ipRq “ p1´φqR and f i
W ipRq “ k. If for some xW i it is f i

W ipxW
i; kq ě
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´φ, f ipxW i; kq “ gipxW iq and f ipW i; kq ă gipW iq for all W i P rR,xW iq, then f ipW i; kq

is strictly concave for all W i P rR,xW iq.

Proof of the Claim. Observe that (22) can be written as

r
“

f ipW i; kq ´ gipW iq
‰

“
“

φ` f iW ipW
i; kq

‰ “

τ ´ rgipW iq ` p1´ φqrW i
‰

`
pλσq2

2
f iW iW ipW

iq

(24)

Note that
“

τ ´ rgipW iq ` p1´ φqrW i
‰

ą 0 by Lemma 1. Hence, f i
W ipW

i; kq ě ´φ and

f ipW i; kq ă gipW iq imply f i
W iW ipW

i; kq ă 0. It only remains to show that f i
W ipxW

i; kq ě

´φ and (24) imply f i
W ipW

i; kq ě ´φ for all W i P rR,xW iq. Using a first order Taylor’s

approximation, we have: f i
W ipW

i´ε; kq “ f i
W ipW

i; kq´εf i
W iW ipW

i; kq`opεq. Consider

xW i´ε for an arbitrarily small ε. As the left hand side of (24) is negative and f i
W ipxW

i´

ε; kq “ ´φ` opεq, it is immediate that f i
W iW ipxW

i ´ ε; kq ă 0. An analogous argument

shows, more generally, that f i
W iW ipW

i; kq ă 0 implies that f i
W iW ipW

i´ ε; kq ă 0 for all

W i P pR,xW is, concluding the proof of the claim.

We now show that for k sufficiently large the solution f ip¨; kq of the initial value

problem has positive slope when it crosses gip¨q and hence cannot be a solution of the

boundary value problem.

Claim 3. Let f ip¨; kq be the solution of the initial value problem defined by (22) with

initial conditions f ipRq “ p1 ´ φqR and f i
W ipRq “ k. There exists sk such that for

some xW i it is f i
W ipxW

i;skq ą 0, f ipxW i;skq “ gipxW iq and f ipW i;skq ă gipW iq for all

W i P rR,xW iq.

Proof of the Claim. Using a first order Taylor’s approximation, we have: f ipR` ε; kq “

f ipR; kq ` εf i
W ipR; kq ` opεq “ p1´ φqR` εk` opεq. By choosing k “ sk “ gipRq´p1´φqR

ε ,

we can make sure that f ipR` ε;skq “ gipRq ` opεq ą gipR` εq. Since f ipR;skq ă gipRq,

by continuity of f ip¨;skq there must exists a xW i such that f ipxW i;skq “ gipxW iq and

f ipW i;skq ă gipW iq for all W i P rR,xW iq. To conclude the proof of the claim, we

only need to show that f i
W ipxW

i;skq ą 0, or, taking a first order Taylor approxima-

tion, f i
W ipxW

i;skq “ f i
W ipR;skq ` pxW i ´ Rqf i

W iW ipxW
i;skq ` opxW i ´ Rq ą 0. This follows
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from recalling that f i
W ipR;skq “ sk, xW i ´ R ă ε, and that by (24) f i

W iW ipxW
i;skq “

2
pλσq2

”

rgipxW iq ´ p1´ φqrxW i ´ τ
ı ”

φ` f i
W ipxW

i;skq
ı

.

We now consider k “ ´φ and show that f ip¨;´φq cannot first cross gip¨q at a slope

greater than or equal to ´φ (and hence cannot be a solution of the boundary value

problem). Suppose, to the contrary, that f i
W ipxW

i;´φq ě ´φ, f ipxW i;´φq “ gipxW iq and

f ipW i;´φq ă gipW iq for all W i P rR,xW iq. Then by Claim 2 f ip¨;´φq must be linear

with slope ´φ, as it must be concave and it has slope ´φ at R by definition. However

the left hand side of (24) is negative for W i ă xW i, which implies that f ip¨;´φq must be

strictly concave, a contradiction.

We now conclude the proof of the lemma by showing that there must be a unique

solution of the initial value problem that crosses gip¨q at slope ´φ. There are two cases.

First, f ip¨;´φq crosses gip¨q at a slope less than ´φ. Then by continuity in k of the

solutions of the initial value problem and Claims 1 and 3, there exists a unique k “ k˚

for which the solution of the boundary value problem coincides with the solution of the

initial value problem. Second, f ip¨;´φq never crosses gip¨q. Then it must be the case

that its slope, as W i goes to infinity, is bounded above by the slope of gip¨q, ´γ
r ` 1´ φ

which is less that ´φ. Appealing again to the continuity in k of the solutions of the

initial value problem and Claims 1 and 3, we can conclude first that there there exists a

k̃ for which f ip¨; k̃q first crosses gip¨q with slope approximately equal to ´γ
r `1´φ ă ´φ

and then that there exists a unique k “ k˚ ą k̃ for which the solution of the boundary

value problem coincides with the solution of the initial value problem.

Proof of Proposition 2. Lemma 2 applies. In addition (18) holds, as in the proof of

Proposition 1. Without a transfer constraint the regulator only faces the constraint that

firm i exits when W i
t ă R. Using the same argument as in the proof of Proposition 1,

the regulator’s problem is to choose dIit to maximize the right hand side of (22) without

the constraint dIit ě ´τdt. For the regulator’s problem to have a solution, it must then

be f i
W ipW

iq “ ´φ for all W i ě R. We can thus conclude that the upper threshold on

the promised utility is xW i “ R. Further, if f i
W ipW

iq “ ´φ then the starting promised
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utility is also R, W i
˚ “ W i

ti0
“ R. The regulator keeps the promised utility of firm i

constant at R; that is, dW i
t “ 0 for all t ą 0. Imposing this and W i

t “ R in (9), the

expression for dW i, yields:

dIit “ pγR´ pπ
i ´ ciqqdt` βitdYt (25)

and the regulator is indifferent to βi subject to the incentive compatibility condition

βi ď ´λ. Finally, imposing f i
W ipW

iq “ ´φ and f i
W iW ipW

iq “ 0 and evaluating (22) at

W i “ R yields

rf ipRq “ πi ´ ci ` p1´ φqrR´ γR (26)

Proof of Proposition 3 (a). As shown by DeMarzo and Sannikov (2006) (see their

Lemmas 4 and 6), by using the envelope theorem and differentiating the HJB equation

(22) and its boundary conditions, we can derive expressions for the change in the regu-

lator’s value as a result of a change in the parameters. We first determine the effect of

a change in τ , σ and R, as the signs of these effects are immediate:

Bf ipW iq

Bτ
“ E

»

—

–

T i
ż

0

e´rtpφ` f iW ipW
i
t qqdt | W

i
0 “W i

fi

ffi

fl

ě 0 (27)

Bf ipW iq

Bσ
“ E

»

—

–

T i
ż

0

e´rtσpλq2f iW iW ipW
i
t qqdt | W

i
0 “W i

fi

ffi

fl

ď 0 (28)

Bf ipW iq

BR
“ E

”

e´rT
i
p1´ φq | W i

0 “W i
ı

ą 0 (29)

Note that the weak inequalities in (27) and (28) are strict if xW i ą R.

To see that Bf ipW iq

Bγ ă 0, Bf ipW iq

Bπi ą 0 and Bf ipW iq

BAi ă 0, we use the argument of

DeMarzo and Sannikov (2006). Suppose that firm i were either: (i) more patient, with

true discount rate γ1 ă γ, (ii) had a higher profit flow πi
1

ą πi, or (iii) had a lower

abatement cost Ai
1

ă Ai, but they were offered the contract designed for a firm with
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discount rate γ, flow profit π and abatement cost Ai. Then the firm would be better

off while the regulator would have the same value. This can be seen by noting that the

firm’s transfer dIit at xW i in (14) increases in γ and Ai “ ci

λ and decreases in πi; hence

the firm’s transfer under the “wrong” parameters is higher than needed to maintain

the promised utility flow and incentives for the true parameters. The contract for the

“wrong” parameters is not optimal, as the regulator may reduce the value to the firm

while preserving their participation and their incentive constraints. Hence it must be

that the value to the regulator increases as the discount rate of the firm decreases, the

profit flow increases or the abatement cost decreases.

To show that Bf
ipW iq

Bλ ă 0, we derive the expressions for Bf
ipW iq

BAi and Bf ipW iq

Bλ and use

the fact that the former is less than zero.

Bf ipW iq

BAi
“ E

»

—

–

T i
ż

0

e´rtλpf iW ipW
i
t q ´ p1´ φqqdt | W

i
0 “W i

fi

ffi

fl

(30)

Bf ipW iq

Bλ
“ E

»

—

–

T i
ż

0

e´rt
“

Aipf iW ipW
i
t q ´ p1´ φqq ` σ

2λf iW iW ipW
i
t q
‰

dt | W i
0 “W i

fi

ffi

fl

“
Ai

λ

Bf ipW iq

BAi
` E

»

—

–

T i
ż

0

e´rtσ2λf iW iW ipW
i
t qdt | W

i
0 “W i

fi

ffi

fl

ă 0 (31)

For future use, we also derive the following expressions:

Bf ipW iq

Bπi
“ E

»

—

–

T i
ż

0

e´rtpp1´ φq ´ f iW ipW
i
t qqdt | W

i
0 “W i

fi

ffi

fl

(32)

Bf ipW iq

Bγ
“ E

»

—

–

T i
ż

0

e´rtW i
t pf

i
W ipW

i
t q ´ p1´ φqqdt | W

i
0 “W i

fi

ffi

fl

(33)

Proof of Proposition 3 (b).

44



We can derive expressions for the effect of parameters on the threshold xW by differ-

entiating the boundary condition rfpxW iq `xW ipγ ´ p1´ φqrq “ πi ´ ci with respect to

each parameter. For any θ ‰ r we have:

r
Bf ipxW iq

Bθ
`

”

rf iW ipxW
iq ` γ ´ p1´ φqr

ı

BxW i

Bθ
`xW i Bpγ ´ p1´ φqrq

Bθ
“
Bpπi ´ λAiq

Bθ

which yields, after using f i
W ipxW

iq “ ´φ and rearranging:

pγ ´ rq
BxW i

Bθ
“ ´r

Bf ipxW iq

Bθ
´xW i Bpγ ´ p1´ φqrq

Bθ
`
Bpπi ´ λAiq

Bθ

By Proposition 3 (a), the signs of the effect of changes in τ , σ and R are immediate:

BxW i

Bτ
“

´r

γ ´ r

«

Bf ipxW iq

Bτ

ff

ď 0 (34)

BxW i

Bσ
“

´r

γ ´ r

«

Bf ipxW iq

Bσ

ff

ě 0 (35)

BxW i

BR
“

´r

γ ´ r

«

Bf ipxW iq

BR

ff

ă 0 (36)

From (32), observe that Bf ipxW iq

Bπi ď 1´e´rTi

r and hence

BxW i

Bπi
“

1

γ ´ r

«

1´ r
Bf ipxW iq

Bπi

ff

ą 0 (37)

From (33), observe that Bf ipxW iq

Bγ ě ´
xW ip1´e´rTi

q

r and hence :

BxW i

Bγ
“

´1

γ ´ r

«

xW i ` r
Bf ipxW iq

Bγ

ff

ă 0 (38)

From (30), observe that Bf ipxW iq

BAi ě ´
λp1´e´rTi

q

r and hence :

BxW i

BAi
“

´1

γ ´ r

«

λ` r
Bf ipxW iq

BAi

ff

ă 0 (39)
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Finally, note from (31) that there is no simple lower bound on Bf ipxW iq

Bλ , as it depends

on the curvature of the value function f i
W iW i and hence the following expression is

indeterminate:

BxW i

Bλ
“

´1

γ ´ r

«

Ai ` r
Bf ipxW iq

Bλ

ff

(40)

Proof of Proposition 3 (c).

The optimality condition for the choice of W i
˚ is f i

W ipW
i
˚q “ 0. Differentiating with

respect to any parameter θ gives:

BW i
˚

Bθ
“

´1

f i
W iW ipW i

˚q
¨
B

BW i

ˆ

Bf ipW i
˚q

Bθ

˙

Thus, to evaluate the effect of a change in the parameter θ we need to compare

Bf ipW i
˚q

Bθ with
Bf ipW i

0q

Bθ for W i
0 P rW

i
˚ ´ ε,W

i
˚ ` εs.

First observe that the constant 1 ´ φ in (29) is positive. Since an increase in W i
0

from W i
˚ to W i

˚ ` ε increases the stopping time T i (the time at which W i
t goes belows

R and the firm exits); it immediately follows that
BW i

˚

BR ą 0.

From now on, define pt i as the first time that the process W i
t starting at W i

0 reaches

W i
˚.

Using (27) we may write:

Bf ipW iq

Bτ
“ E

»

—

–

pt i
ż

0

e´rtpφ` f iW ipW
i
t qqdt` e

´rpt i Bf
ipW i

˚q

Bτ
| W i

0 “W i

fi

ffi

fl

There are two cases. Suppose first that
Bf ipW i

˚q

Bτ ą pφ`f i
W ipW

i
˚qq “ φ. Take W i

0 “W i
˚`ε.

Then, since f i
W ipW

iq ă 0 for W i ą W i
˚, we have that

Bf ipW i
˚q

Bτ ą pφ ` f i
W ipW

i
t qq for all

t P r0,pt is and hence
Bf ipW i

˚q

Bτ ą
Bf ipW i

˚`εq
Bτ . Second, suppose that

Bf ipW i
˚q

Bτ ă φ. Take W i
0 “

W i
˚ ´ ε. Then, since f i

W ipW
iq ě 0 for W i ďW i

˚, we have that
Bf ipW i

˚q

Bτ ă pφ` f i
W ipW

i
t qq

for all t P r0,pt is and hence
Bf ipW i

˚q

Bτ ă
Bf ipW i

˚´εq
Bτ . From the two cases we can thus conclude
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that B
BW i

´

Bf ipW i
˚q

Bτ

¯

ă 0 and hence
BW i

˚

Bτ ă 0.

Using (33) we have:

Bf ipW iq

Bγ
“ E

»

—

–

pt i
ż

0

e´rtW i
t pf

i
W ipW

i
t q ´ p1´ φqqdt` e

´rpt i Bf
ipW i

˚q

Bγ
| W i

0 “W i

fi

ffi

fl

There are two cases. Suppose first that
Bf ipW i

˚q

Bγ ą W i
˚pf

i
W ipW

i
˚q ´ p1 ´ φqq. Take

W i
0 “ W i

˚ ` ε. Then, since W ipf i
W ipW

iq ´ p1 ´ φqq is decreasing in W i for W i ě W i
˚,

we have that
Bf ipW i

˚q

Bγ ą W i
t pf

i
W ipW

i
t q ´ p1 ´ φqq for all t P r0,pt is and hence

Bf ipW i
˚q

Bγ ą

Bf ipW i
˚`εq

Bγ . Second, suppose that
Bf ipW i

˚q

Bγ ăW i
˚pf

i
W ipW

i
˚q´p1´φqq “ ´p1´φqW

i
˚. Take

W i
0 “ W i

˚ ´ ε. Then, since W if i
W ipW

iq ě 0 for W i ď W i
˚, we have that

Bf ipW i
˚q

Bγ ă

W i
t pf

i
W ipW

i
t q ´ p1´ φqq for all t P r0,pt is and hence

Bf ipW i
˚q

Bγ ă
Bf ipW i

˚´εq
Bγ . From the two

cases we can thus conclude that B
BW i

´

Bf ipW i
˚q

Bγ

¯

ă 0 and hence
BW i

˚

Bγ ă 0.

Using (32) we have:

Bf ipW iq

Bπi
“ E

»

—

–

pt i
ż

0

e´rtpp1´ φq ´ f iW ipW
i
t qqdt` e

´rpt i Bf
ipW i

˚q

Bπi
| W i

0 “W i

fi

ffi

fl

Here there are also two cases. Suppose first that
Bf ipW i

˚q

Bπi ă p1 ´ φq ´ f i
W ipW

i
˚q. Take

W i
0 “ W i

˚ ` ε. Then, since p1 ´ φq ´ f i
W ipW

iq is increasing in W i, we have that

Bf ipW i
˚q

Bπi ă p1 ´ φq ´ f i
W ipW

i
t q for all t P r0,pt is and hence

Bf ipW i
˚q

Bπi ă
Bf ipW i

˚`εq

Bπi . Second,

suppose that
Bf ipW i

˚q

Bπi ą p1 ´ φq ´ f i
W ipW

i
˚q “ p1 ´ φq. Take W i

0 “ W i
˚ ´ ε. Then,

since f i
W ipW

iq ě 0 for W i ď W i
˚, we have that

Bf ipW i
˚q

Bπi ą p1 ´ φq ´ f i
W ipW

i
t q for all

t P r0,pt is and hence
Bf ipW i

˚q

Bπi ą
Bf ipW i

˚´εq

Bπi . From the two cases we can thus conclude that

B
BW i

´

Bf ipW i
˚q

Bπi

¯

ą 0 and hence
BW i

˚

Bπi ą 0.

Using (30) we have:

Bf ipW iq

BAi
“ E

»

—

–

pt i
ż

0

e´rtλpf iW ipW
i
t q ´ p1´ φqqdt` e

´rpt i Bf
ipW i

˚q

BAi
| W i

0 “W i

fi

ffi

fl

Proceding as before, suppose first that
Bf ipW i

˚q

BAi ą λpf i
W ipW

i
˚q ´ p1 ´ φqq. Take W i

0 “
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W i
˚`ε. Then, since λpf i

W ipW
iq´p1´φqq is decreasing in W i for W i ěW i

˚, we have that

Bf ipW i
˚q

BAi ą λpf i
W ipW

i
t q´p1´φqq for all t P r0,pt is and hence

Bf ipW i
˚q

BAi ą
Bf ipW i

˚`εq

BAi . Second,

suppose that
Bf ipW i

˚q

BAi ă λpf i
W ipW

i
˚q ´ p1´ φqq “ ´λp1´ φq. Take W i

0 “W i
˚ ´ ε. Then,

since λf i
W ipW

iq ě 0 for W i ďW i
˚, we have that

Bf ipW i
˚q

BAi ă λpf i
W ipW

i
t q ´ p1´ φqq for all

t P r0,pt is and hence
Bf ipW i

˚q

BAi ă
Bf ipW i

˚´εq

BAi . From the two cases we can thus conclude that

B
BW i

´

Bf ipW i
˚q

BAi

¯

ă 0 and hence
BW i

˚

BAi ă 0.

Finally note from (28) and (31) that Bf ipW iq

Bσ and Bf ipW iq

Bλ depend on the curvature

of the value function f i
W iW i and thus the impact of changes in σ and λ on W i

˚ are

indeterminate.

Details for the Simulation Scenarios in Section 5

To parameterize profits and abatment costs we use the following information:

• Annual industry revenue 3.5B « 1.6M per fracking well. 20

• Costs of well construction of 5M.21

• Average well lasts 7.5 years.22

• Daily revenue versus levelised daily costs « 2.5K daily profit.

• Average pay in the PA oil and gas industry 142K « $390 per day.

20 http://thetimes-tribune.com/news/pa-gas-drilling-brought-3-5-billion-in-2011-1.1311378
21 http://thetimes-tribune.com/news/pa-gas-drilling-brought-3-5-billion-in-2011-1.1311378
22 http://www.marcellus-shale.us/marcellus-production.htm
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Figure 6: Regulator’s Value Function

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Notes: Figure 6 shows a computed regulator’s value function for each the scenarios outlined in Table

3.
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Figure 7: Regulator’s Value in Simulations, Scenario 1

Notes: Figure 7 depicts the regulator’s value for Scenario 1. The left hand panel shows the mean

regulator’s value. Dotted lines are the mean of the regulator’s value +/- 1.96*standard deviation. The

right hand panel shows the regulator’s value for a single simulation. Parameters for the simulations can

be found in Table 3.

Figure 8: Regulator’s Value in Simulations, Scenario 4

Notes: Figure 8 depicts the regulator’s value for Scenario 1. The left hand panel shows the mean

regulator’s value. Dotted lines are the mean of the regulator’s value +/- 1.96*standard deviation. The

right hand panel shows the regulator’s value for a single simulation. Parameters for the simulations can

be found in Table 3.
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