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ABSTRACT: Multivalent glycomaterials show high affinity toward
lectins but are often nonselective as they lack the precise 3-D presentation
found in native glycans. Here, thiolactone chemistry is exploited to enable
the synthesis of glycopolymers with both a primary binding (galactose)
and a variable secondary binding unit in close proximity to each other on
the linker. These polymers are used to target the Cholera toxin B subunit,
CTxB, inspired by its native branched glycan target, GM-1. The
secondary, nonbinding unit was shown to dramatically modulate affinity
and selectivity toward the Cholera toxin. These increasingly complex
glycopolymers, assembled using accessible chemistry, can help breach the
synthetic/biological divide to obtain future glycomimetics.

Many bacterial and viral pathogens exploit carbohydrate-
binding proteins (lectins) as part of their infection

cycle. This includes viral glycans binding to host cells,1

bacterial lectins modulating biofilm formation2 or cell
adhesion,3,4 or secreted toxins which are glycan-binding in
their mode of action.5 With the increase in antimicrobial
resistance6 there is an urgent need for new therapeutics and
diagnostics which are not based on the traditional small-
molecule approach. Glycans typically have weak affinities to
lectins (carbohydrate binding proteins which are not enzymes
nor antibodies) in mM range. In contrast, due to the cluster
glycoside effect, multivalent presentation of glycans on, e.g.,
polymers, particles, or surfaces gives a nonlinear increase in
affinity, such that sub nM affinities can be obtained.7−10 Hence
there are significant opportunities in the design of multivalent
glycomaterials as prophylactic treatments and biosensors and
for understanding the glycome.4,11−17

The cholera toxin (CTx) is a lectin produced as a virulence
agent by Vibrio cholerae and binds via its adhesive subunit
(CTxB) to the GM-1 glycan on the surface of human gut
epithelial cells, with more than 1 million cases/year globally.18

Galactosylated multivalent systems have been studied as
decoys for CTxB, using polymers,19−21 dendrimers,22 protein
scaffolds,23 and a picomolar-active pentavalent calix[5]arene.24

These examples are all homogeneous materials bearing a single
glycan/functionality, but Worstell et al. found that CTxB
binding to GM-1 surfaces is enhanced by the addition of
fucose, which was not thought to have affinity for CTxB.25

Dimeric fucose has also been shown to competitively inhibit
CTxB binding to epithelial cells.26 While there is significant

evidence for high affinity binders to CTxB (and other lectins)
selectivity still remains a challenge; most lectins have off-
specific affinity for other glycans, and any glycan can bind
several lectins, especially for monosaccharides which lack a
complex 3-D structure required for a match.27

Richards et al. and Kiick et al. have demonstrated that
modulation of the galactose-backbone linker length enabled
modulation of the relative affinity of galactose polymers to
CTx, based on accessibility of the ligands into the deep binding
pocket of CTx.19,21 Bundle and co-workers have developed
galactosylated multivalent scaffolds with increased affinity by
introduction of additional functionality to target the allosteric
N-acyl-neuraminic acid binding site in CTxB28 with aromatic
residues found to enhance affinity.20 Fieschi and co-workers
have developed small-molecule and low valency compounds to
selectively target DC-SIGN (dendritic cell-specific intercellular
adhesion molecule-3-grabbing nonintegrin) without cross-
binding to the Langerin lectin, which is essential for HIV
antiadhesives.29,30 Hartman and co-workers and Percec and co-
workers have demonstrated that heterogeneous glycopolymers
(with more than one glycan) can show surprising increases in
affinity due to a combination of spacing and steric blocking
effects.31−33 In short, a homoglycopolymer may not always be
the most avid binder, nor the most potent inhibitor, and hence
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exploring more chemical space using heterogeneous glycopol-
ymers may enable selectivity to be introduced.
Advances in controlled reversible-deactivation radical

polymerization and bio-orthogonal34 (click) reactions enable
easy access to a wide range of architectures and hence
opportunities to modulate affinity. Becer et al. have shown that
changing from flexible to rigid35 or linear to star shapes has
profound effects on glycopolymer binding of DC-SIGN and
dendritic cell cytokine production.36,37 The introduction of
selectivity toward relevant lectins is essential to enable
translation of these exciting materials.
We report here the synthesis and lectin binding properties of

glycopolymers obtained using thiolactone chemistry.38−40 This
functional group enables one-pot, two-sequence reactions on a
single monomer unit, to allow the linker chemistry in proximity
to the primary binding unit (galactose) to be modulated. Using
a combination of inhibitory assays and biolayer interferometry
we demonstrate that the selectivity and affinity of glycopol-
ymers can be tuned through introduction of secondary
functionalities and show that the total binding capacity, not
affinity, correlates strongly with inhibitory activity.
To introduce variable carbohydrate density on polymer

backbones, the reactive precursor, thiolactone acrylamide
(TLAm), was copolymerized with N-hydroxyethylacrylamide
(HEA) using RAFT (reversible addition−fragmentation chain-
transfer) polymerization (Figure 1). The molar ratio of TLAm

was varied from 5 to 20% to ensure a soluble polymer was
obtained but with sufficient valency for cluster glycoside

enhancement.8,19,41 All polymers were analyzed by SEC, 1H
NMR, and FTIR analysis (Table 1).
The reactive thiolactone precursor polymers were glycosy-

lated in a one-pot, two-stage process.38 Thiolactones were first
ring-opened by addition of benzylamine or glucosamine
(secondary binding units), releasing the thiol group which
could then react with β-1-O-allyl galactose tetra-acetate
(primary binding unit; Supporting Information for synthesis)
by “thiol−ene” radical click chemistry.42 The acetate groups
were quantitatively removed by sodium methoxide, followed
by dialysis, and confirmed by FTIR spectroscopy. By using this
strategy, a panel of doubly modified glycopolymers intended to
mimic GM-1 was established. The number of galactose/chain
is in Table 1. A longer, hexyl, linked galactose was also
synthesized and used (see below for discussion).
With this diverse panel of variable carbohydrate density and

secondary units glycopolymers in hand, their potency to inhibit
the binding of CTxB and RCA120 (Ricinus communis agglutinin
which also has affinity for terminal galactose43) was evaluated
by a fluorescence-linked sorbent assay.19 Fluorescently labeled
lectins were incubated with a serial dilution of each polymer
and then tested for binding to a galactose-modified microtiter
plate. Less fluorescence indicated more inhibition. Fitted
binding curves and extracted MIC50 (minimum inhibitory
concentration) values are shown in Figure 2, in terms of
[Galactose] to ensure fair comparison “per binding site”.

Addition of increasingly high concentrations of the
glycopolymers resulted in more inhibition of the toxins as

Figure 1. (A) Synthetic methodology. (i) RAFT polymerization, (ii)
ring opening of thiolactone, and (iii, iv) thiol−ene click and
deprotection. (B) Polymer design concept to mimic GM-1-branched
structure.

Table 1. Thiolactone Acrylamide Containing Polymers

code TLAma (%) [M]:[CTA] (−) conv.b (%) composition (−) Mn(theo)
d (g mol−1) Mn(SEC)

e (g mol−1) Đ (−)
P1 5 100 95.2, 99.5 93 (HEA), 5.0 (TLAm) 11 500 8100 1.34
P2 10 100 93.2, 98.2 86.9 (HEA), 10 (TLAm) 11 600 9700 1.29
P3 20 100 76.3, 84.0 61.1 (HEA), 16.8 (TLAm) 9700 9200 1.26

amol % TLAm monomer. bConversion by 1H NMR (the first value shown is percentage conversion of HEA; second is for TLAm). cComposition
of polymer based on conversion of each monomer. dTheoretical Mn from feed ratio. eMn from SEC using PMMA standards.

Figure 2. Inhibitory potency of glycopolymers using a fluorescence-
linked sorbent assay. Inhibition curves for 5% density polymers
against (A) RCA120 and (B) CTxB. Extrapolated MIC50 values
(corrected to total galactose concentration) for polymers against (C)
RCA and (D) CTxB.
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expected. Against RCA120 (which has a surface-accessible,
relatively unhindered, galactose binding site) there was little
impact of changing the secondary unit from glucose to benzyl
with MIC50 < 0.1 mg mL−1 observed. In dramatic contrast, the
benzyl-modified glycopolymers were very poor inhibitors of
CTxB binding, with essentially no inhibition (which does not
necessarily rule out binding; see below). The glucose-modified
polymer was a potent inhibitor with μM MIC50 values in terms
of [Galactose], which is nM in [polymer] (due to their
relatively high molecular weight). The lower density polymers
(5%) were more potent inhibitors than higher density ones
(20%) on a per-galactose basis. Nonlinear relationships
between galactose density and CTX inhibition have previously
been reported on both rigid21 and flexible glycopolymers,19

and one of the most potent inhibitors reported had only five
galactose units but perfect symmetry matching with CTxB.23

Per-sugar affinity gains are obtained by matching the spacing
between binding pockets and controlling accessibility as is seen
here.
The lack of inhibitory activity for the benzyl modification

was surprising, as introducing aromatic groups near galactose
to target an allosteric site in CTxB has proven beneficial.20,28

However, this requires precision placement of individual
ligands which might not occur here, and the benzyl unit
could simply be acting as a steric block. A simple docking study
was conducted using the “Swissdock” server to probe if the
repeat unit could access the CTx binding pocket. This
suggested that the linker could extend sufficiently deep into
the pocket (12.7 Å) but would be subject to significant steric
requirements if on a polymer backbone and did not show any
favorable interactions. To probe the interactions in more
detail, biolayer interferometry (BLI) was employed. BLI
enables label-free evaluation of binding interactions and is
similar to surface plasmon resonance (SPR).44 Lectins were
immobilized onto the BLI sensors using conventional NHS/
EDC coupling. The polymers were studied in a dose-
dependent manner against the lectins, and results were fitted
using a heterogeneous sites model (Figure 3).
Figure 3A and B shows example BLI binding curves for

glucose and benzyl secondary substituents. In both cases there
are clear association and dissociation phases, and dose-
dependent responses in total mass bound are observed. The
glucose-modified polymers showed a steeper association phase
and overall larger Δmax (mass bound). Figure 3C shows the
total mass captured (Δmax) by the surface-immobilized CTxB
per polymer. For all galactose densities, polymers with glucose
as the secondary unit showed significantly increased binding
compared to the benzyl. Our postpolymerization synthetic
strategy ensures these differences are not biased by Mw
differences and hence are due to the ability of the polymers
to bind to the CTxB. Interestingly, the Δmax values correlated
with the MIC50 values (Figure 2), suggesting that the total
extent of binding is the most important descriptor of inhibitory
potency rather than just affinity, along with the ability to bind
multiple sites simultaneously.45,46 Drug residence time, rather
than affinity, has emerged as a key target in small-molecule
drug discovery, supporting this design approach.47 Estimates of
the dissociation constant were made from the fitted BLI curves
(to a heterogeneous site model) which suggests that the
glucose polymers had lower overall affinity, but this is biased
by the plateauing effect at low concentrations and low mass
captured, so is only an estimate. Extracted values are tabulated
for completeness in the Supporting Information but due to the

heterogeneity and incomplete fitting were not considered
further. To reiterate, the aim here was to develop inhibitors,
and the BLI enabled a link to the observed MIC testing.
Analysis of the CTxB binding site depth showed that the

allyl linker was only just long enough to probe into it, which
might explain the observations above. Therefore, a longer
linker, β-D-1-O-hexyl-galactose tetra-acetate, was synthesized
and incorporated into the same precursor polymers, with both
benzyl and glucose secondary groups to give a linker that can
probe up to 16.5 Å, rather than 12.7 Å. BLI was again
conducted, and the total mass captured is plotted in Figure 4.
This increase in linker length did not modulate the total mass
captured significantly, with the same trends seen as for the allyl
linker, suggesting both had equal access. This suggests the
secondary units are modulating the overall sterics, rather than
binding to any defined allosteric sites (as the change in spacing
would change this). These inhibitory assays and BLI results

Figure 3. Biolayer interferometry analysis of glycopolymers binding to
CTx. Example binding curves for Glc (A) and Bzl (B) side chains
(total polymer concentration). (C) Maximum mass of glycopolymer
bound (Δmax) in biolayer interferometry assay. (D) MIC50 [galactose]
from fluorescence-linked inhibitory assays versus Δmax.

Figure 4. Effect of linker length on total mass captured as a function
of linker length for polymer library against CTxB.
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together demonstrate that by using accessible and modular
chemistries the affinity and selectivity of multivalent glycopol-
ymer antiadhesives can be tuned by proximal modification of
the key binding motifs, in addition to the well-explored impact
of polymer molecular weight and branching.
In conclusion, we have taken advantage of the modular and

versatile thiolactone functionality to develop more complex
glycopolymers bearing both primary glycan ligands and also
secondary units to modulate the selectivity of these materials
toward lectins implicated in disease. A library of polymers were
synthesized with systematic variation of their glycan density
and secondary group, and these were evaluated in a
competitive binding assay. This analysis revealed that low
density glycopolymers were the most active (lowest MIC50).
Furthermore, addition of secondary groups proximal to the
galactose enabled complete switching off of the activity versus
the cholera toxin, while retaining all activity against RCA120,
and is a rare example of a glycopolymer with selectivity.
Biolayer interferometry revealed that the total mass of
glycopolymers bound by the lectin correlated strongly with
the observed inhibitory activity which will help the design of
new inhibitors for application in biosensing or antiadhesion
therapy.
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R. J.; Renaudet, O.; Reymond, J.-L.; Richichi, B.; Rojo, J.; Sansone, F.;
Schaf̈fer, C.; Turnbull, W. B.; Velasco-Torrijos, T.; Vidal, S.; Vincent,
S.; Wennekes, T.; Zuilhof, H.; Imberty, A. Multivalent Glycoconju-
gates as Anti-Pathogenic Agents. Chem. Soc. Rev. 2013, 42 (11),
4709−4727.
(9) Dam, T. K.; Brewer, C. F. Effects of Clustered Epitopes in
Multivalent Ligand-Receptor Interactions. Biochemistry 2008, 47,
8470−8476.
(10) Mammen, M.; Dahmann, G.; Whitesides, G. M. Effective
Inhibitors of Hemagglutination by Influenza Virus Synthesized from
Polymers Having Active Ester Groups. Insight into Mechanism of
Inhibition. J. Med. Chem. 1995, 38 (21), 4179−4190.
(11) Spain, S. G.; Gibson, M. I.; Cameron, N. R. Recent Advances in
the Synthesis of Well-Defined Glycopolymers. J. Polym. Sci., Part A:
Polym. Chem. 2007, 45 (11), 2059−2072.
(12) Won, S.; Richards, S.-J.; Walker, M.; Gibson, M. I. Externally
Controllable Glycan Presentation on Nanoparticle Surfaces to
Modulate Lectin Recognition. Nanoscale Horiz. 2017, 3 (2), 106−
109.
(13) Otten, L.; Richards, S.-J.; Fullam, E.; Besra, G. S.; Gibson, M. I.
Gold Nanoparticle-Linked Analysis of Carbohydrate-Protein Inter-
actions, and Polymeric Inhibitors, Using Unlabelled Proteins; Easy
Measurements Using a “simple” Digital Camera. J. Mater. Chem. B
2013, 1 (20), 2665−2672.
(14) Marin, M. J.; Rashid, A.; Rejzek, M.; Fairhurst, S. A.; Wharton,
S. A.; Martin, S. R.; McCauley, J. W.; Wileman, T.; Field, R. A.;
Russell, D. A. Glyconanoparticles for the Plasmonic Detection and
Discrimination between Human and Avian Influenza Virus. Org.
Biomol. Chem. 2013, 11 (41), 7101−7107.
(15) Huang, M. L.; Cohen, M.; Fisher, C. J.; Schooley, R. T.;
Gagneux, P.; Godula, K. Determination of Receptor Specificities for
Whole Influenza Viruses Using Multivalent Glycan Arrays. Chem.
Commun. 2015, 51 (25), 5326−5329.
(16) Kanai, M.; Mortell, K. H.; Kiessling, L. L. Varying the Size of
Multivalent Ligands: The Dependence of Concanavalin A Binding on
Neoglycopolymer Length. J. Am. Chem. Soc. 1997, 119 (41), 9931−
9932.
(17) Kitov, P. I.; Sadowska, J. M.; Mulvey, G.; Armstrong, G. D.;
Ling, H.; Pannu, N. S.; Read, R. J.; Bundle, D. R. Shiga-like Toxins
Are Neutralized by Tailored Multivalent Carbohydrate Ligands.
Nature 2000, 403 (6770), 669−672.
(18) Reidl, J.; Klose, K. E. Vibrio Cholerae and Cholera:Out of the
Water and into the Host. FEMS Microbiol. Rev. 2002, 26 (2), 125−
139.
(19) Richards, S.-J.; Jones, M. W.; Hunaban, M.; Haddleton, D. M.;
Gibson, M. I. Probing Bacterial-Toxin Inhibition with Synthetic
Glycopolymers Prepared by Tandem Post-Polymerization Modifica-
tion: Role of Linker Length and Carbohydrate Density. Angew. Chem.,
Int. Ed. 2012, 51 (31), 7812−7816.
(20) Jones, M. W.; Otten, L.; Richards, S.-J.; Lowery, R.; Phillips, D.
J.; Haddleton, D. M.; Gibson, M. I. Glycopolymers with Secondary

ACS Macro Letters Letter

DOI: 10.1021/acsmacrolett.8b00825
ACS Macro Lett. 2018, 7, 1498−1502

1501

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acsmacrolett.8b00825
http://pubs.acs.org/doi/abs/10.1021/acsmacrolett.8b00825
http://wrap.warwick.ac.uk
http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00825/suppl_file/mz8b00825_si_001.pdf
mailto:m.i.gibson@warwick.ac.uk
http://orcid.org/0000-0001-7727-4155
http://orcid.org/0000-0002-8297-1278
http://dx.doi.org/10.1021/acsmacrolett.8b00825


Binding Motifs Mimic Glycan Branching and Display Bacterial Lectin
Selectivity in Addition to Affinity. Chem. Sci. 2014, 5 (4), 1611−1616.
(21) Polizzotti, B. D.; Kiick, K. L. Effects of Polymer Structure on
the Inhibition of Cholera Toxin by Linear Polypeptide-Based
Glycopolymers. Biomacromolecules 2006, 7 (2), 483−490.
(22) Branderhorst, H. M.; Liskamp, R. M. J.; Visser, G. M.; Pieters,
R. J. Strong Inhibition of Cholera Toxin Binding by Galactose
Dendrimers. Chem. Commun. 2007, 5043−5045.
(23) Branson, T. R.; McAllister, T. E.; Garcia-Hartjes, J.; Fascione,
M. A.; Ross, J. F.; Warriner, S. L.; Wennekes, T.; Zuilhof, H.;
Turnbull, W. B. A Protein-Based Pentavalent Inhibitor of the Cholera
Toxin B-Subunit. Angew. Chem., Int. Ed. 2014, 53 (32), 8323−8327.
(24) Garcia-Hartjes, J.; Bernardi, S.; Weijers, C. A. G. M.; Wennekes,
T.; Gilbert, M.; Sansone, F.; Casnati, A.; Zuilhof, H. Picomolar
Inhibition of Cholera Toxin by a Pentavalent Ganglioside GM1os-
Calix[5]Arene. Org. Biomol. Chem. 2013, 11 (26), 4340−4349.
(25) Worstell, N. C.; Krishnan, P.; Weatherston, J. D.; Wu, H. J.
Binding Cooperativity Matters: A Gm1-like Ganglioside-Cholera
Toxin b Subunit Binding Study Using a Nanocube-Based Lipid
Bilayer Array. PLoS One 2016, 11 (4), No. e0153265.
(26) Wands, A. M.; Cervin, J.; Huang, H.; Zhang, Y.; Youn, G.;
Brautigam, C. A.; Matson Dzebo, M.; Björklund, P.; Wallenius, V.;
Bright, D. K.; Bennett, C. S.; Wittung-Stafshede, P.; Sampson, N. S.;
Yrlid, U.; Kohler, J. J. Fucosylated Molecules Competitively Interfere
with Cholera Toxin Binding to Host Cells. ACS Infect. Dis. 2018, 4
(5), 758−770.
(27) Wang, Z.; Chinoy, Z. S.; Ambre, S. G.; Peng, W.; McBride, R.;
de Vries, R. P.; Glushka, J.; Paulson, J. C.; Boons, G.-J. A General
Strategy for the Chemoenzymatic Synthesis of Asymmetrically
Branched N-Glycans. Science (Washington, DC, U. S.) 2013, 341
(6144), 379−383.
(28) Tran, H.-A.; Kitov, P. I.; Paszkiewicz, E.; Sadowska, J. M.;
Bundle, D. R. Multifunctional Multivalency: A Focused Library of
Polymeric Cholera Toxin Antagonists. Org. Biomol. Chem. 2011, 9
(10), 3658−3671.
(29) Ordanini, S.; Varga, N.; Porkolab, V.; Theṕaut, M.; Belvisi, L.;
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