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Symplectic Geometry has proved a powerful method in extending the
knowledge of the classical theory of Hamiltonian mechanics without external
variables. In this thesis these methods are applied to a class of
Hamiltonian systems with controls in order to answer fundamental questions

arising from Systems Theory and Classical Mechanics.

The theoretical aspects of this thesis deal with the extension of the
Lie algebraic results of Engel and Lie on nilpotent and solvable Lie
algebras, respectively, by the introduction of symplectic structures. It
provides revealing results on the internal structure of symplectic vector
spaces acted on by nilpotent or solvable Lie algebras. Then, using the
methods of Kostant and Kirillov, these results are globalized to look at
nilpotent transitive actions on simply connected symplectic manifolds

and the consequent internal structures.

This theory is then applied to realizations of finite Volterra series
with the additional property that the realization is Hamiltonian. These
realizations are knowmn to have an underlying nilpotent structure. A
canonical realization is found and then shown to be closely linked with

the theory of interconnections.

Finally, the concepts of complete integrability on free Hamiltonian
systems is put into a feasible framework for Hamiltonian systems with
controls which have an associated nilpotent Lie algebra. It is found
that it is still possible to integrate these systems by quadratures but

the structure is now much more complex.



Chapter 1

INTRODUCTION

Hamiltonian systems have been studied since early in the 19t/1
century starting with the equations of planetary motion. In more recent
times there has been a great revival of interest in this area of Classical

Mechanics with the advent of Symplectic Geometry, see for example [1], [2],

However, the systems investigated in the above texts are free systems
i.e. with no external variables. Hamiltonian systems with controls and
their corresponding properties of controllability and observability are
a much more recent development, [3], [4], This thesis aims to develop
further the control theoretic aspects of this research to include an
extension of the realization results of Crouch [5] to Hamiltonian systems.
Also, it introduces a generalization of the classical complete integrability
results of Arnold [2] to allow for the greater complexity of structure

present in control systems.

Realization Theory
In the linear case it is well knom that if the input-output nep has

the form

ot
y(t) W(t - o™ u (cn) d»

where u(*) is a dm- valued input function and y(*) is a R - valued

output function and the Volterra kernel Wsatisfies

W(t - al) - H(t) G (al)

with W, H and G continuously differentiable maps, then it has a

realization given by the linear system



X = AX + Bu x(0) = X
y = &

Wihere xe R n’ AE R nxn’ Ee a nxm’ €e 8 a(n

and conversely.

In Brockett and Rahimi [6] it is showmn that if the Volterra kernel

M (t - a®) =- W(©” - t) then the realization is of the form

a(®) “ aQ. P() =M
where A, B, C, a, B are appropriately dimensioned matrices.

This is called a Hamiltonian system as it consists of Hamiltonian

vector fields on (R”™n, J) where J is the usual symplectic form

If Hamiltonian functions are given by
H=j g Cg +j p Bp + p' Aq
Hu =p'a + qB

using standard notation (1.1.1) can be rewritten as

a = (3/3p H+uH))\N p- - (3/3gHeuH)



Notice that if u = 0 then this is exactly the form of Hamilton's

equations.

The realizations considered in this thesis are a generalization of

this linear case to that given by linear analytic systems of the form
X=yx) +1 u. Xn
xe M w

yX(t) u‘ll(x) (1.1.2

where each vector field is Hamiltonian and all the data is real analytic.

In Brockett [7] conditions are given for finite Volterra Series of

the form
et
y(t) wo(t) + (t, y u (op dox
o
n o ftog
+i=:||' W+ (t'Ol«--«ai+)u(al)” *u(ai +l)dai +-*-dal
-0'0..

to have linear analytic realizations.

Work done jointly by the author and Dr. P.E. Crouch give the further
necessary and sufficient conditions for the realization to be of the

form (1.1.2).

Liouville's Theorem
As has been already mentioned the problem of planetary motion or the

so called Kepler problem was one of the earliest known examples of a



Hamiltonian system. This is the problem of the motion of a particle in
the gravitational field of a fixed point mass. It is modelled by the

following system

V> c (»°, J (1.1.3)

1 2
where H(q,p) ) a>0 some constant

X = (@™ ~2* g3' pi’ p2° p3~' are the canonical coordinates of position

and nmonmentum on with

Liouville's theorem, as presented by Arnold [2] gives conditions for the
existence of a structure preserving ng ¥ : R2n mR2n such that the
Hamiltonian function H in the new coordinates (I‘_’r.”"’ln' Al,...,An) on
R is of the form H(l, (® = H(l) so the Hamiltonian vector field is

H

31| constant (1.12.4)
These are the action-angle coordinates and in particular it is the

case that the system (1.1.3) satisfies these conditions and thus under

ib(1.1.3) is integrable by quadratures. This high-lights the importance

of choice of canonical coordinates for determining the solution of a system.

In Liouville's theorem on free systems the underlying structure is
abelian. With the introduction of controls this structure is normally lost.
As a first step to find a generalization of Liouville's theorem with controls,
nilpotent structures are considered and conditions sought for the existence
of canonical coordinates for which the control system is integrable by

quadratures.



Notation
The following notations will be used throughout this thesis

assuming real analytic differentiability unless otherwise stated

R The real numbers
Rn n - dimensional Euclidean space
MMn) n - dimensional connected manifold
™ Tangent bundle of M
T*M Cotangent bundle of M
TxM Tangent space to Mat x
*
T>< M Cotangent space to Mat x
V(M) Set of all vector fields on M
nk (m) Set of all k-forms on M
(M2tl,w) 2n - dimensional connected symplectic manifold

with symplectic form u

cM Ring of real valued functions on M
Diff (M) Group of diffeomorphisms of M
Pl p.c Class of piecewise constant functions on

[0, «) taking values in Rm



Chapter 2
SYSTEMS THEORY AND MECHANICS

This chapter contains the fundamental concepts and results that are
needed in this thesis. Amplification of these can be found in Crouch [8]
for systems theory and Abraham and Marsden [1] for the appropriate areas

of Symplectic geometry.

2.1 Nonlinear Systems Theory

The class of system considered throughout this thesis is defined by
the following equations.
r

fix) +1 u g X x(0) = xox e M
i-1 1 1

X
1l

y = h(x) 2.1.1

r
where the associated vector fields f + £ oug® f°r anY (°N>eee*™r)e £ C,

are complete analytic vector fields on Mh, an n-dimensional real analytic

q

connected manifold, and h is a R' valued analytic function on M

Since the associated vector fields are complete,solutions to the
above equations are defined on [0,T] for all piecewise constant controls
uon [0,T], and all positive times T. Sussmann [9] enables an extension
to include measurable controls. However, piecewise constant controls,

ue TLGp ¢ shall be used throughout,

For the case where the Lie algebra of (2.1.1) is finite dimensional,

denoted by



Palais [10] guarantees that L consists of complete analytic vector

fields on M

All Lie algebras throughout this thesis associated to systems of
the form (2.1.1) are assumed to be finite dimensional unless otherwise

specified.

Definition 2,1.1 A distribution A on a manifold Mis the assignment to
each x e Mof a subspace A(x) of T"M, A is said to be a d< Knu", w
distribution if it is spanned by a family D of (f vector fields i.e. if
A(x) is the linear subspace of TxM spanned by the family (X(x)} with

X e D for every x ¢ M

A is said to be m-dimensional if A(x) has dimension mfor each

X € M

Definition 2.1.2 AC - distribution A is involutiveif the vector fields
X, Y e Athen [X, Y] e Ai.e. X(X), Y(X) e AX) = [X, Y](X) £ A(x),

X c M

Definition 2.1.3 A submanifold N of Mis said to be an integrable
submanifold of Aif T"N = A(X) Vx e N, and a maximal integral sub-
manifold of A is a connected integral submanifold of A maximal for the

relation of inclusion.

Further, A is integrable if through every point of Mthere passes

a maximal integral submanifold of A.



Theorem 2.1.A (Nagano [11]). An analytic involutive distribution is

integrable.

-
Theorem 2.1.5 (Frobenius [12]). A CGD constant dimensional involutive

distribution is integrable.

The associated vector fields for system (2.1.1) are the vector fields
X k-----» f(x) +1 wu.g.(x) for each fixed ue c assumed

throughout to be complete, and denote the set of associated vector fields

by F.

The group G (semi-group V) of F is defined to be the sub (semi -)

group of diffeomorphisms of Mof the form

G = (g £ DiffM) : g - YXi (ti)o...oYX(tn)’
Xle F,tl*- R, n e Z+>
SF = (g e Diff(H) : g =
X £ F, t. £ R+, n e Z+4},
where yxl(t.l) is the flow of )&£ F.

Definition 2.1.6 A linear analytic system is said to be accessible if

SF(X ) has nonempty interior in M, Vx ¢ M



The following theorem, Krener and Hermann [13], gives algebraic
conditions for accessibility as well as a proof of importance in a later

chapter.

Theorem 2.1.7 A linear analytic system is accessible if and only if

dm £ (x) =n=dim M W e M

Proof Let x € Mand U a neighbourhood of x. An open set V of Mis
constructed such that V< Uand each point vt V« S (X) - S system
semi-group- is joined to x by a trajectory of the system remaining in U.
In fact a sequence of submanifolds Vj of dimension j are constructed with

these properties as follows:

For j = 1 choose ¢ F such that XA(x)?i0 and let (t,x) -* y”~(t)x
be the flow of X~ Choose e > O such that Y~ (cM)xe U for O $t" <e
then = {y™MtM)x : 0 <t" <e) is a submanifold of dimension one which

satisfies the requirements. V. is now constructed by induction.

Suppose Vi satisfies the above requirements and is defined by
i

Vi o= Yj-I1(tj-1D0...0YI(th)x : Y -1 ... Vo oe

an open subset of the positive orthant in where

(t,x) #YK(fM)x is the ff°w °f a vector field X» £ F

Now if j < mfind ch Fand v t V, such that X. (V)<A TV,

J-1 J v j-1°
If this was not Possmle FV fc Ivvj-I' Vv t Vj-l’ and so [, (V)CTij—l*
W ¢ which implies that the distribution defined by J. has

dimension 5—1 on Vj l,<: u which is a contradiction. It follows that



10.

the mgp (t© tn) WY j(tj)Q ran”™ on some °Pen
subset of the positive orthant of R* Thus by restriction if necessary
it can be assumed that the range V. of this nmgp is a submanifold of M
of dimension j with the required properties. The desired set V can now

be taken to be V™

Conversely, if for x e Mit is assumed that r = dim XL (x) <dim ™M« n
then there exists a maximal integral submanifold N of dimension r passing
through x. Using Nagano's theorem 2.1.4 clearly the reachable set Sf (x)
of the system from x is contained in N and so cannot have non-empty interior
in Mwith respect to the topology on M Therefore the system cannot be

accessible, which is a contradiction.
Q.E.D.

Denote the reachable set from Xy at time T 5 0 by R(T, xo), it is
defined to be the set of all points x*e Msuch that there exists a
piecewise constant control u(*) on [0, T] and corresponding solution

x(*) on [0, T] such that x(T) = x .

The reachable set from Xy denoted by R(xo) is defined by

R(XO) * U R(T,xo)
T50

Notice that S _(x) = R(x.).
"o o}
Definition 2.1.8 A linear analytic system is said to be strongly
accessible if for each x ¢ M there exists a T > 0 such that R(x, T) has

a nonempty interior in M
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Let S denote the ideal of J generated by {g .~ ,

S has codimension one or zero in L

Corollary 3.4 Sussmann [14], shows that S(x) has constant
dimension on M if the system is accessible and the following theorem,

Sussmann [14], is a characterization of strong accessibility.

Theorem 2.1.9 A linear analytic system is strongly accessible if and
only if dim S(x) =n=dmM Vx e M In this case R(x, T) has non-

empty interior in MVT > 0.

An immediate corollary from the proof of theorem 4.3 in Crouch [5]
for systems which are strongly accessible and such that S = £ is the

following

Theorem 2.1.10 Given a strongly accessible linear analytic system of

the form
I
x - £ + N uigi x(0) =xq, x e M 2.1.2
i-1

such that S is a finite dimensional nilpotent Lie algebra and S = L

Then there exists an analytic diffeomorphic change of coordinates such that

(2.1.2) takes the form

r

fl ‘.:!- Ui 8\ z1(0) =0
I_
]

f2(z1} +i_:!- Uigl2(zl) z2(0) =0
r

Zj©) - 0

%3 fj@I....,3-1> olotisv 20 js 30

. r

T, 2m1 -1 Yo nfPpe e Omiy 21O - O
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where f~, g\ are vector valued polynomials of the components of the

"™ m
vectors z. C R , £ n. =n, being the dimension of the state space.
1 i“1 1

If a linear analytic system is accessible then G, the connected Lie
group corresponding to L the Lie algebra generated by the system, acts
transitively on M, the state space. By a standard result, Helgason [15],
Mis therefore analytically diffeomorphic to the homogeneous space G/G

o

where G is the isotropy group
o}

&x ={g € G: g.xo - xq}
o

If the system is strongly accessible the connected Lie subgroup
N of G, corresponding to S also acts transitively on M, and so Mcan be

expressed as a homogeneous space N/N
0

A number of concepts of observability will also be required

throughout this thesis.

Definition 2.1.11 Two points xq, x» ¢ Mare said to be indistinguishable

if the input-output nmeps for the system initialized at xg and x* are equal

for all u(e)c JLILp.C. .

Definition 2.1.12 A system is said to be observable if xqg and x*e M

being indistinguishable implies xg = x~.

Definition 2.1.13 A system is said to be weakly observable if for all
states Xo e Mthere exists a neighbourhood U of Xo' such that if

¢ U is indistinguishable from x» then xq “ x™.
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Let £ mdenote the smallest linear subspace of C(M) containing the
functions h#, and closed under Lie differentiation by elements of

L . Thus”™ consists of all linear combinations of the functions.

The following theorem is found in Krener and Hermann [13],

Theorem 2.1.14 A linear analytic accessible system is weakly observable

if and only if

TX M» d1I(x) = (@@dx(x) :ic )& }, Ve Mwhere TX*M is the

cotangent space to M at x.

Given two systems £ and with the sanme control class and output
space, x" e and x™ fc are said to be indistinguishable if
hl 08I"XP = h2 082" where 8~ Gy and g8 e & is obtained using

the sane piecewise constant control as the one involved in g™

Definition 2,1.15 ~ and ™ are strongly equivalent if every state in
is indistinguishable from some state in and conversely.

For further results on strong equivalence refer to Goncalves [16].

2.2 Basic theory of Classical Mechanics

Most of the work in this thesis depends on a knowledge of Symplectic
Geometry. This section presents the basic concepts. Good references

for a more extensive survey are Abraham and Marsden [1] and Arnold [2].
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Definition 2.2.1 Let V be a vector space and w a non-degenerate two form

on V. Then the pair (V, a) is said to be a symplectic vector space.

A globalization of this gives the following definition.

Definition 2.2.2 Let Mbe a manifold with a nondegenerate closed two
form w defined on M The pair (M, w) is said to be a symplectic

manifold, wis often called a symplectic form.
The non-degeneracy of w guarantees that Mis even dimensional.

One of the most fundamental examples of a symplectic manifold is
the cotangent bundle of a manifold i.e. M=T Q. This has a naturally

defined symplectic structure as follows:

Let TV : T*Qi—> Q be the cotangent bundle projection. Define the 1 - form

0in T*Q by
0@ () = agTt, ()

where x e T aTO and 7 * denotes the push forward.
Then the natural symplectic form o is given by u = -dO.

The symplectic manifolds throughout this thesis are assumed to be

finite dimensional unless otherwise specified.
Locally, the above forms can be written as
n
0 -7 p. dg.
i=I

n

0 mk, dai * dpi



where ql gq are coordinates on Q and (q] ﬁ , p1 . pn) are

. . TA
canonical coordinates on M=T Q.

Definition 2.2.3 Let (M u?®) and (M- be symplectic manifolds.

AC - mapping f : Mi—is called either symplectic or a
*
symplectomorphism if f =“q"

The definition of locally symplectic follows obviously from the

above.

Definition 2.2,4 Let (M, to) be a symplectic manifold and K £ (~(M).

The Hamiltonian vector field X on Mis defined by
i (X"to = dH

where i(X?)to is the inner product of X" and to.

Locally, this corresponds to

i =1,+,n
= 1. n
where (?'—il . 1qn' pl ) pn) are canonical coordinates on Mand
n
u-1 dg Adp .
i-1

These are Hamilton's equations

15
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Note that H is called the Hamiltonian function of the Hamiltonian

vector field X~

Hamiltonian vector fields yield an important example of a
symplectomorphism. For if is a Hamiltonian vector field on (M, u) then

its flow y(t) is a symplectomorphism.

A weaker version of Hamiltonian vector field is a locally Hamiltonian
vector field on (M, w) which is a vector field X on (M, u) such that for
every x e. Mthere exists a neighbourhood U of x such that X restricted
to U is Hamiltonian. An equivalent form of this is that L& = 0, where

L"g is the Lie derivative of u with respect to X

£
Definition 2,2.5 Let (M, w) be a symplectic manifold and f, g £ C (M)

then the Poisson bracket of f and g is given by

if, g0 - wXf, Xg)

In canonical coordinates (q,I qn, Pi e Pn) on (M, w) this is
given by

_ oo 3f

if, =139 3pi 3Pi  3qt

Proposition 2.2.6 The real vector space C(M), together with the Poisson

bracket {, } forms a Lie algebra.

A number of mathematical identities will be required repeatedly.

These are listed here,
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(i) f*da=df*a f:MF->M
(iii) Lxa=diX) a + iX)d a, Xe VM)
. . . Lo

(iv) f a diffeomorphism, f Lx a = Lt.*-l f a

(v) [Xf, X] = Xf g} on (M, u).
Proofs and further details may be found in chapters 2 and 3 of
Abraham and Marsden [1],

Ore of the main theorems in Classical Mechanics, and certainly one
which has attracted much attention in recent years, is one associated

with Liouville and Arnold. The form it is stated in here follows

Arnold [2].

Theorem 2.2.7 Let (M, w) be a 2n - dimensional symplectic manifold, and

consider the system

x(0) =xg, xc M (2.2.1)

Suppose there exists n - functions f. f on Min involution

Qeee9

with the n - one - forms df* linearly independent at each point of
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M‘Tc)" Then
(i) Nl"(’c) is a n - dimensional submanifold of Minvariant
under the flow of the Hamiltonian vector field on (M, co).
(i) I f is compact and connected, then it is diffeomorphic

to the n - dimensional torus Tn.

(iii) There exists canonical coordinates (I’l,...,ln’ 100 .>4>n)
on (M, u) such that H=H(In I ) called the action -

angle coordinates.

(iv) The canonical equations with Hamiltonian function H can be

integrated by quadratures.

An excellent proof of this theorem ney be found in Vinogradov

and Kuperschmidt [17].

Throughout the field of Classical Mechanics and Symplectic Geometry
much work has been done on finding systems of the form (2.2.1) which have
n - functions in involution or perhaps fewer functions in involution but
n - functions which commute with H under Poisson bracket see Nehorosev [18].
Much work has also been done in this area using the methodology of
Kostant [19], Souriau [20] and Kirillov [21], see for instance Guillemin

and Sternberg [22] or Marsden and Weinstein [23].

The basic difference between this and the work presented in later
chapters is that commuting Hamiltonian functions under Poisson bracket

are no - longer considered. The following example shows that for control
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systems the underlying structure is much more complex.

Example 2.2.8 Consider the linear analytic dynamical system on

4 2
(R, &d- dp.) with Hamiltonian functions defined by
~ -1 1A 1

” nN1o2
H - P1+ 2 P2

SO X - Xyix) + u u(x) X(0) = x0 X e (RA, u)
X “ (q1, g2,P1,P2)"
That is g~ =1 + u qiC=) * g°
1 2
q2 =J ql q2(0) = g2 (2.2.2)
Pi » -p2gl P]_(0) - P°
P2 =0 p2(°) - P2

the Poisson brackets of the Hamiltonian functions are found as follows,

3H 3H 3H u 3H

2
.y
L P
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H, H, H) = pg = {H {H, H}

All other Poisson brackets vanish.

Notice that although H and do not conmute under Poisson
brackets the system (2.2.2) can still be integrated by quadratures and

further the level surface

N={x £ R : f(x) =0 for all f such that

hiL <V W is a 2 - dimensional submanifold of the

~co ™

symplectic manifold (R , g described by Pl SAP = 0.

Also, on calculation of the Lie brackets of I ,1 spans the

tangent space of N at each point of N since

r 1 r3s 3, 12 3, 371
[N\, X1 = /391 * /3q~ gl ;3g2" P2ql ~pj

3, 3,
ql /32 " P2 /3pl

Ao ~73q, , ol "3g, - P2 "P1 N

n2 u

So Xy (x) and [X~ [X~ XAJI(x) span TN, V x € N, all other Lie
u u u

brackets vanish, so by theorem 2.1.7 this system is not accessible on

4
R but it is on the level surface N.

It is this type of generalization of Liouville's theorem that will

come under investigation in Chapter 5
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Chapter 3

GENERAL THECRY CF NILPOTENT STRUCTURES

ON SYMPLECTIC MANIFOLDS

This chapter begins with a section investigating the presence of
nilpotent and solvable structures on a symplectic vector space extending
the classical Lie algebraic results of Engel and Lie. The second section
then considers a globalization to symplectic manifolds of the above. The
appropriate conditions are found on a sequence of involutive distributions
for the existence of canonical coordinates which have the same properties
as found in section one. Finally, in the third section the existence of
such sequences of involutive distributions is investigated using the

techniques of Kostant [19] and Kirillov [21].

3.1 Hamiltonian Endomorphisms

This section investigates the new properties which arise when a
symplectic structure is placed on the classical theorems of Engel and

Lie, see Humphreys [24],

Let J_be a Lie algebra. Define a sequence of ideals by

Ll1=£ , i-2 - [A.*.],.... tk = [L, Lk1]

Recall that L is said to be nilpotent if f n m O for sone n.

If L is any Lie algebra Xe L is ad-nilpotent if ad\ is a
nilpotent endomorphism, i.e. (ad”™)n =0 for some n. If each element of
a Lie algebra /. is ad-nilpotent it is said to consist of nilpotent

endomorphisms.



22.

Proposition 3.1.1 Let L be a Lie algebra.

(i) I f is nilpotent then so are all sub and quotient algebras
(i) If I./Z(E) is nilpotent, so is L , where Z(jL) is the centre of J.

(iii) £ nilpotent, L t O ® Z(/_) JO.

Theorem 3.1.2 (Engel) Let V be a non-zero finite dimensional vector

be a subalgebra of gl(V) consisting of nilpotent
endomorphisms. Then
(i) is nilpotent

(ii) There exists a vector v i 0 in V such that X. v = 0 for all X££ .

(iii) There exists a basis e in V such that all the endomorphisms

Wi [
Xc jL are expressed by matrices with zeros on and above the

diagonal.

It ia part (iii) of Engel's theorem with vector space replaced by

symplectic vector space that will be of particular interest.

First some notation,

Definition 3.1.3 |If Vis a vector space then a flag in V is a sequence

of subspaces

0=V <= Ve=...£=V <=V -V
o] 1 n-1 n

such that dim V. » i.

If X£ End(V) and X. \L <= then X is said to stabilize the flag.
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In terms of flags theorem 3.1.2(iii) could be rewritten as, there

exists a flag in V such that 1 .VI cz Vr-r' Since Vi-l Vl’ [_ stabilizes

the flag.

Definition 3.1.A Let (V, W be a symplectic vector space, then a linear
mapping X e L (V, V) is infinitesimally symplectic with respect to the

synplectic form w if

w(Xv, v') + u(v, Xv) =0

for all v, v' e W.

Denote the set of all linear mappings in L(V,V) that are infinite-

simally symplectic with respect to w by sp (V, w).

Infinitesimal symplectic linear mappings are often referred to as

linear Hamiltonian mappings.

An ordered basis can be chosen for V such that the matrix of g is

where, if dmV =2n, | is the n x n identity matrix. Thus definition

3.1.4 says that Xe sp (V, J) if

XJ +IX =0

if and only if X =
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The matrix is said to be a Hamiltonian matrix.
If X X are infinitesimally symplectic their Lie algebra
reoey N
t. = {Xl,... ,Xn}L.A. is said to be a Lie algebra of Hamiltonian

endoraorphisms i.e. it is clear that each element of f, is infinitesimally

symplectic. In fact sp(V, w) is a Lie subalgebra of gl(V).

Definition 3.1.5 Let (V, w) be a symplectic vector space and Uc V

a subspace. The ur-orthogonal complement of U is the subspace defined

by
U ={v £ V:u(v, uy =0 Vut U

Uis said to be

(1) isotropic if U< LJ i,e. cou, u)y =0 Vu, U c U
(ii) co-isotropic if U «=11 i.e. w(u, u') =0¥uvi=> ut U

(iii) Lagrangian if U is isotropic and has an isotropic complement,

i,e. V=U ® U where U is isotropic.

The following two propositions the proofs of which appear for

example, in Abraham and Marsden [1], are of continual use.

Proposition 3.1.6 Suppose U~X, <= V are subspaces
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X
(i) u2 = K *= u
X U X
() g1 0 vz 1 * U

(iii) dimV = dim + dim

) XX
V) v w i

(V) (uln ty -
Proposition 3.1.7 Let (V, w) be a symplectic space and U <= V a subspace.
Then the following statements are equivalent:

(1) U is Lagrangian

.. X

(i) uU=uU

(iii) Uis isotropic and dim U = —dim V.

Note that (iii) can be rephrased by saying that Lagrangian subspaces

are maximal isotropic subspaces.

Lemma 3.1.8 Let ( be a Lie algebra of Hamiltonian endomorphisms on a
symplectic vector space (V, w), and let U, Wbe subspaces of V such that

L : U%t—» W Then,

Proof.Let X £ i_ . Since consists of Hamiltonian endomorphisms X is

infinitesimally symplectic, and therefore satisfies

wX vx, v2) + «(v» Xv2) -0 VVj, v2 tV
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Let v t I\/i(, ueU

uX v, u = - w(v, Xu =0

since X u e Wwhich implies X. vt U .

Q.E.D.

Theorem 3.1.9 Let ( be a nilpotent Lie algebra of Hamiltonian endo-

morphisms on a 2n - dimensional symplectic vector space (V, d). Then

there exists a chain of isotropic subspaces of dimension i
{0} =V, A A
where is a Lagrangian subspace, and

|_ Y v i 1$iin
J .
Moreover, V~, and so there exists a flag of the form
{o} V1,=...cVnl Vn n1

with stabilizing the flag.

Proof. By Engel's theorem there exists an j 0in V such that

JL. =0. Set “ R an.
Thus L V1 c—>0 <:=-V1. Since V1 is one dimensional it is
obviously isotropic with respect to (V, w) i.e. , and from

lerma 3.1.8
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L DY e >vi
Proceed by induction. Assume that is an i-diraensional isotropic

subsPace of V with 7/ : Vli———>Vl_I = VI then 7/ : Vi. \--->\/i..

Consider the reduced space Vi /Y =|W.. Now, since L: V|>— >VI

L .on . #i* .
and jL : , induces an endomorphism on W., Moreover, since
/_ is nilpotent, by proposition 3.1.1., is nilpotent on W..
Thus, there exists 0 j* iﬁ C V\{ such that J . 6f\+| Let
a.+" be a representative for 63._‘91 in \f& V. Then
i
L e M

Define VI+T = vI +R :11_+|__, so /_: |¥.| F 'VI <= VI+I and L : VI+F Vil

by lemma. Claim is isotropic i.e.
Vi TRo v FRA)
But (V. + R <£+l) = A\ (R a™+l) by proposition 3.1.6 (ii),

. X , Ju
Bg construction R al._ﬁ C. VI SO Vi Cz (R a|+')
In particular, since V.C V, , V~cz VW fl (R a™) and
since Ra. +1Cl (R a.+1X, R a.+] <= H Ra.”

Thus,

Vi -vi ¢£1.1 =

Vi.i
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Hence the claim is proved and is isotropic and i+l - dimensional.

By lemma 3.1.8 since f : VI t—>V1.‘1 then f : Y._ v i—->V|.

Proceed until Vn is reached, which will be maximal isotropic since
dim Vn =% dim V, and therefore by proposition 3.1.7 is a Lagrangrian

subspace. Also since VI ct: Vn = Vr>1(«r: \/\*— there exists a flag

{0} =V n1 Vn = Vnc 1 L«=V,
withdimVlzi 0%$i $n
a
dim V, = 2n-i O£i Sn

such that jL stabilizes the flag.
Q.E.D.

This theorem shows that there exists an ordered basis on

V, eqi,...eqn , @PI....... Cpn say, such that
N 6pi spans Vi 1 Si Sn
and
6P1 ....... 6pn. \ ... 6gi+1 sPans vE&» 1Si Sn- 1

In coordinates relative to this basis theorem 3.1.9 says that each

X c[ can be expressed by



where Q = Q and N is a strictly lower triangular matrix, N,Q e Rxn"

For example, consider a free system of the form

X = X(X) X0) = xq , x e (R

9 X=(qp..--,q ., P PR’
"ith X ¢ (—" —») L n ]-,, H
(ql,--.,q n’ ply,--.,pn) canonical coordinates with respect to the above

basis.

It is a Hamiltonian system with Hamiltonian H given by,

g=(ql.... gn)’ P=(pl..... Pn)"
So
2n
X =Xy (x) x(0) - XQ, x £ R, J
Equally, it is possible to choose an ordered basis e e
qi ....... \Y
e e on Vsuch that e e spans V.
PJA """" Pn L g[ L
e e e e spans V. and express each element X
ql ....... \Y V * "' Pi+l 1

in coordinates relative to this basis as,

where N is strictly upper triangular matrix, P m P', N, P « S."*It*

then for a typical free system the Hamiltonian function is

29.



H*-i p' Pp+p Ng

where (q,p)' = (g™....... g, pN,...")" are the canonical coordinates
relative to the symplectic basis e e e e
ql ....... \Y% P1......... pn’'

Example 3.1.10 Suppose the state space is the symplectic vector space

(R4, w) with canonical coordinates (q',q%,pl,PE) and

gl = u ax(o)
q2 - gqx + ugx o O;

(3.1.1)
PL = - p2 - up2 PL(0)

P2 m-~ (2 P2(0)

This system is obviously Hamiltonian
X = \ x(0) ;

X = (91, g2, PL, P2’

1 2
then H- p”~ +J g2’ Hu ° PL + P2i

So h =ql 3/3q2 "' P2 3/3pr q2 3/3P2

'Pi + g ;392 P2 VI
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(3.1.1) can be rewritten as

Introduce new coordinates
% =0 Po = UPIL

qo(0) - 1 PQO) =1

let x » (qo, a; > 9y PO, Pl* P, then (3.1.1) becomes

o O O O 0 O 0O 0 0 O 0
O 0 0O 0 0O O 1 0 0 O 0
O 1.0 O OO 0O 1 0 O 0
X + u
0O 00O 0 0O O 0 0O 0-1 O
0O 0 0O 0 01 0O 0O O O O
0 0 -1 0O 0 O O 0O O 0 0 O
A B

The Lie algebra 1 - {A, B)I a is nilpotent and the subspaces

in theorem 3.1.9 correspond to






In theorem 3.1.9 the dimension of each subspace was one greater than

the previous subspace. The question now
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addressed is to whether a

similar result is obtained when this is not necessarily so.

Theorem 3.1.11 Let (V, w) be a symplectic vector space and

L
{0} :Vo<: Vi

a sequence of subspaces contained in V.

basis of the form,

<..<V =V &=V
n n n-

X

I o=V Y,
i o]

Then there exists symplectic

eﬁﬁ»***»e%" » ea4§_»*-~»e§1? reeeX a!"l»***» ﬁi’
1 2 n

enl eD eD2 eD2 eDn eDn
1 rl rl 2 n

such that

e _1* 'epl spans VI 1$i $n

Pi i
and

epY, ke 297?....... eqj+l ... eqi+l spans V. 1 { i <n -

ri+l
Proof. By definition 3.1.5(iii), since is Lagrangian there exists a
Vr'1 such that V = Vn ®Vr'1 and Vr'1 is a Lagrangian subspace. Furthermore
let v' e V' then the nmep i(v')uj|I defined by v io : V 'e— , is
n vn

obviously an isomorphism, since ker w —{0}

to that of Vn*. Thus V can be rewritten

and dimension of

as V-V 9V*
n n

is equal

1
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If e e is any basis for Vn' take the dual basis for Vn* and
coey
let e e be the isomorphic basis of V', then e e ,e e
Pl pn n LY \ pl" . Pp

is a symplectic bases for (V, w). In this basis w can be represented by

the matrix

Now proceed by induction. Find a basis for V,, say eAi eAl
i Pl1neeey P »
1

which are of course, linear combinations of the e s. Orthonormalise
pi

using the Gram-Schmidt process using the Euclidean metric, and then denote

the resultant basis for Vi by e | e i -

Now find a vector e.9I such that e|5?£ V, but e.o 4 V,. Again use the
> i 2 jr 1

Gram-Schmidt process to ensure e | e i e 9 is Euclidean orthonormal.
Pl....... prJ P1

Repeat this for a vector e|-32 Cc span {Vl, epz_)* Continue this until
2 i

an orthonormal basis for V2 is found. The samre procedure is repeated

for VA»eeern*

Now let
e"iﬂ_:JeH 1ijin, Iskir. .Isiin

Clearly,

1 *
epl. JePy/ 0
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since e N s are linear combinations of the e 's which have this property.

Similarly,

e Jev =0, since

g.
ei = Jel and J'' J J =J
q. p.
J J
Nowei' Jek = ei' ek » these are zero unless i =k and j =i
qj Pi Pj PI

by construction.
Q.E.D.

If the Lie subalgebra L of gl(V) over an algebraically closed field

F is solvable then the classical theorem in the literature is Lie's theorem.

Recall that a Lie algebra /. is solvable if it satisfies N o=f,
f (k) = [éi(k_l), t(k_l)], k > 1 and there exists some integer n such

that N =0.

Proposition 3.1.12 Let ~ be a Lie algebra.

(1) I f is solvable then so are all sub and quotient algebras.
(i) If | is an ideal of and JL/I and | are solvable then so is/..
(iii) If 1 and J are solvable ideals of then I +J is a solvable ideal.

Lenma 3.1.13 Let V be a non-zero, finite dimensional vector space and

I- a solvable Lie subalgebra over an algebraically closed field F of
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gl(V). Then V contains a conmon eigenvector, v, for each element of £ .

i.e. Xw = X(X)v, V Xef£. where X J - ->F.

Theorem 3.1.14 (Lie) |If jl is a solvable subalgebra of gl(V), {0} j Va

finite dimensional vector space, then stabilizes some flag in V.

Replace the finite dimensional vector space by a finite dimensional

symplectic vector space to obtain.

Theorem 3.1.15 Let (V, w) be a symplectic vector space of dimension 2n.
If I_ is a solvable Lie subalgebra of Hamiltonian endomorphisms contained

in gl(V) over an algebraically closed field F, then there exists a sequence

of isotropic subspaces of dimension i
\%
{0} Vo < n1 n

with Vn a Lagrangian subspace, and

1Si £n.
Moreover, I_ and so there exists a flag of the form
* \Y,
\Y, \Y =
{0} V0 < V.1<: 1 n n

and jt. stabilizes the flag.
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Proof. Identical to the proof of theorem 3.1.9. Let i Obea

common eigenvector of all elements ofL , which exists by lemma 3.1.13.,

and consider the subspace =F is isotropic since it is one-
dimensional.

Again proceed by induction. Assume is an i—dimensional isotropic
subspace of Vwith f : Vt S V. then by lemma 3.1.8. / Vl >————>V|".

Consider the reduced space ML = \L /V. and the induced Lie subalgebra
of endomorphisms, on VL. By proposition 3.1.12. {_+ is solvable and

therefore there exists a commmon eigenvector 0 i 6|_+| e V\f such that
Q +

ool I + .
X TAX) S™MHMY VX < Let be a representative for
8r+'1 in vr€ cz V then define

Vi +1 VI * Fai +1

and then L : V. +1 i-—-bX construction.

That \L+1 is isotropic follows exactly as in theorem 3.1.9. Again,
stop the procedure when is reached. is isotropic and dim Ww =i dim V

= n and therefore \h is a Lagrangian subspace of (V, u).

Use of proposition 3.1.6(i) and lemma 3.1.8 completes the flag which

is stabilized under £ .

Q.E.D.

Essentially, this theorem says that there exists an ordered basis
for (V, w) such that each element of £ can be expressed by a matrix

of the form relative to the basis,

where S, QC FnXn

Q>Q and S is lower triangular
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3.2 Canonical coordinates

In a globalization of theorem 3.1.11 one would assume the existence

of a sequence of involutive distributions of the form

{0} = Aoc A.lcm "'<:An—1<: An

on a symplectic manifold (M, w with

X
A = A VX LM

then find conditions for the existence of canonical coordinates

1 1 2 n 1
’ .,p™ ) on Msuch that locally

1 n n
1

is spanned
1

A _is
n
n

This is the goal of this section.

Definition 3.2.1 Let (M, w) be a symplectic manifold and i : Li— >M beX

an immersion. We say L is an isotropic (co-isotropic) immersed submanifold

of (M, w) if

T i T L T... .Mi i ropi -i ropi
( X|) ( X) et 3007 is an isotropic (co-isotropic) subspace

for each x ¢ L
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The same terminology is used for submanifolds of Mand for sub-

bundles of T over submanifolds of M

A submanifold L ¢ Mis called Lagrangian if it is isotropic and

there is an isotropic subbundle E <= 'IML such that Tm|L =TL9 E

Note that i : L'—*M is isotropic if and only if i*w = 0, and also

if L <= Mis Lagrangian then dim L :—2i dim M and (TXL)*" = TXL, Vxe L

Proposition 3.2,2 Let (M, w) be a symplectic manifold and L << Ma
submanifold. Then L is Lagrangian if and only if L is isotropic and
dmL =i dmM

A number of preparatory results are required before the proof of the

main theorem in this section can be given. The first says that symplecto-

morphisms preserve Hamiltonian vector fields.

Theorem 3.2.3 (Jacobi) Let (M?, u?™ and (MM, be symplectic manifolds
and p : Mi— » 2 a diffefomorphism. Then is symplectic if and only
if for all He CM»), C A~ \ ..
0

The following interpretation of this theorem will be used repeatedly.
Suppose X]e and Xg are Hamiltonian vector fields with Hamiltonian functions
f and g respectively, on a symplectic manifold (M, w) Let (t, X)i--——»y(t)x

be the flow of X~ (x), then since the flows of Hamiltonian vector fields are

symplectic Jacobi's theorem says,

Y<- 0 *Xg (*(t) x) * Xg(y(t) (X)
The following results are standard to Symplectic Geometry and can be

found for example in Abraham and Marsden [1] and Guillemin and Sternberg [22],
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Theorem 3.2.4 (Darboux-Weinstein) Let N be a submanifold of the

symplectic manifold M, and let a® and i0® be two non-degenerate closed

two forms on Msuch that u | =<0 | . Then there exists a neighbourhood,
0 N 1 N
U, of N and a diffeomorphism f : Ui—*M such that fI'N =id and f* Wl = uo.

This extends the classical Darboux Theorem which is the above theorem
when N is a point. It then states that if two symplectic forms agree on
the tangent space at a point, then, up to a symplectomorphism, they agree

in a neighbourhood of a point.

The case where N is a Lagrangian submanifold is of particular interest.

Corollary 3.2.5. (Kostant) Let L be a Lagrangian submanifold of a
symplectic manifold (M, to). Let L also be regarded as the zero section

of T*L and let too be the natural symplectic form on T*L. Then there exists
a neighbourhood, U, of L in Mand a diffeomorphism h of Uinto T L such

that h]T =id and h* b = © .

Definition 3.2.6 Let (M, to be a symplectic manifold. A polarization of
Mis an involutive distribution A of Msuch that A(x) <= ™M is a Lagrangian
subspace for all x £ M

The above type of polarization is usually referred to as a real
polarization in the literature, it will be the kind most used in this
thesis.

The fundamental example of a polarization is the foliation of a cotangent

bundle by its fibres. In fact,
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Proposition 3,2,7 (Kostant-Weinstein) Suppose A is a polarization of a
symplectic manifold (M, u) which is transverse to a Lagrangian submanifold
L. Then there is a symplectomorphism, f, of some neighbourhood, U, of L
in Monto some neighbourhood, V, of the zero section of T*L carrying the

leaves of 6 onto the fibres of T*L.

On T L there is a naturally defined one form, OL’ such that qL = - dGL
is a symplectic form on T L. This form OL can be characterised as
(i) “ don~ = (ii) i(X) 0~ =0 if Xis tangent to the cotangent
foliation and (iii) © i.e. 0" restricted to the zero section
vanishes. By proposition 3.2.7. if Ais any polarization of a symplectic
manifold (M, w) which is transversal to a Lagrangian submanifold L then
locally, about L, there is a uniquely defined one form B satisfying

(i) d0 =w (ii) i(X)0 =0 for X lying in A and (iii) 6 0.

Let (M, g be a 2n- dimensional symplectic manifold and suppose

there exists a sequence of involutive distributions on M of the form

such that they satisfy:

(1) An is a polarization of Mwhich is transversal to a Lagrangian
submanifold L in M
This immediately implies that each A., 1 i i { nis isotropic in

the sense that

AN(x) CA Ar(x) m (An(x)) d (ANX)) , V. x* M
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(2) there exists Hamiltonian vector fields on M

x 1 X1 ey X, X such that X,,., «x1 Ry eq.. X1
1 r 1 N r.
1 n \Y i

spanAI for 1$i Sn.
(3) o ﬁ(for all k Ji
(4) there exists mHamiltonian vector fields Xl""" Xmon M such that

Xl(x)....,Xm(x) spans TXL Vx ® L

and PG, XTE A U i{m Xt

1 Skin

Theorem 3.2.8 Let (M"m m be a symplectic manifold in which there exists
a sequence of involutive distributions satisfying (1) - (4) above.

Then there exists canonical coordinates

al,....q1 ... q?.ceenne. q" , Pi....... p".***»p” ) on a neighbourhood,
1 ri n n
U', of L in Msuch that 3/3p*....... 3/3P* ... 3/3J........ 3/gP* spans V

Proof. As the analysis performed here will be local, Mcan be identified
with T*L on application of corollary 3.2.5. Fix xe L < M= T*L and
let (U, 9 be a chart in T*L, x e U on which there exist canonical

coordinates Qm P,e. Pr)n' Thus
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The necessary p coordinates are first constructed. Introduce

the mep

t : §m b > I(An’ x) (I (An, X) the integral submanifold of

An through x) defined by

: (plo... pn n"* >YI"pI"o...oYr1’\1|"\0...©

n, n n,n.
Y1l P1 o...oan(prn)x

Let p. “ (P ,.--sP  ceeeenn [ PP ,0...,0
pl (IDi p DA . )

Now using exactly the same argument as in the proof of Krener's
theorem 2.1.7 along with condition (2) a neighbourhood U ct U with

X e U is obtained such that for 1 $i $n,

p.,___*ili(p.) is a diffeomorphism onto U f\ I(A”, X), where I(A"f X)
is the integral submanifold of Ai through x. These are the required
p coordinates.

Let v. be the flow of , 1$i £ mand define the nep

5 : RRm<----PU <= Mby i(q, p) m v(Q)otfp) where

>«> " V V 0...0W
Claim. (a) J is a diffeomorphism of some neighbourhood of the origin

in R"monto some neighbourhood U d UC H,

(b) J is a Hamiltonian vector on U

*

o | for 10 j Sri

1Si Sn
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Suppose these claims are valid for the moment and proceed to prove
the theorem.

Define the coordinates qj.. 1$i $n, 1i i $ " by

dqj “if/gpi)  (ifY) (3.2.1)
for then if this were true

Il u=1 dg™ Adpj .

For (3.2.1) to be valid the following must be checked.

(1) dqj* (8/5)@ 0. That is (J*u) (S/dprh 3/8%b =°> Bu

“ (5.8 am” f 3/ngb 0 since by (c) £X3/dpj < A1 which by

assumption is isotropic for 13 i 3 n*

(ii) d (i(3/ani)) (5*w) =0
3

Since then i( /_ i) (® u) can be expressed locally, by the derived
Sni
derivative of some function.

For this Cartan’s identity is required i.e.
Ix w = di(X)u + i(X)dm, X c VM), wt «k(M)
so d( i(8/3rPj) ($*up

=La < 5% -jif/~n) d ((5*w))
/P J
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but d J do = 0 since u is closed. Also

But from (b) ip n = X is a Hamiltonian vprtor fipld onU' thusL u“ 0

(iii) f u =u, clearly dd = 0 and non-degeneracy follows from (a).

coordinate system satisfying the conditions of the theorem, since they

are now seen to be equivalent to (c).

Now it just remains to prove claims (a), (b) and (c).

(a) Proof. Differentiating the expression for jj and evaluating at C = O,

p = 0 gives
alxi A4 p) - X (X)
(0,0)
/3% = (¥
3/3p] p) (0.0) 3

These vectors span T™ by construction, now on application of the

inverse function theorem the result is obtained.

(b) Proof. Since

y(4) (P) (3.2.2)



it is necessary to evaluate ¥

This is equal to

where X* is the Hamiltonian vector field on Mwith Hamiltonian
J

H*.  Then by Jacobi's theorem

. i(y* . (- ) e
i P XH’jI (yj_i ( B l) X can be expressed by

“)] e >j>

Thus (3.2.3) can be written as,

46

function
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let k’j : *—» R'mbe defined by

therefore (3.2.4) can be written as

(f (<I»p)
HjO fo kjo f_1

which is a Hamiltonian vector field on U".

(c) Proof. Again proved by differentiation and repeated use of the

Campbell-Baker-Hausdorff formula.

3/3p1 f(i. p) 3/3p1 (>((p))
j J

But

3/3pl *(p) m 3/ /_ (yJ<p1>0...0\ (pd > -x)

] J 1 n n
Y1<P1> *Yj-1(Pj-1}*X (Yj-1 ~Pi-1)o...oYL (“Pl>y)
where y =y* (Pi“o...oYr “Pr X
n n

But by the Campbell-Baker-Hausdorf formula and condition (3) this

is seen to be contained in A”. However, by condition (4) it is clear

that on further application of the Campbell-Baker-Hausdorff formula

that y(i) 4. ez A.. Further, since J is a diffeomorphism on U it



48.

follows that

3/§p5 1(.p =5 3/8133

M, p)
spans G (4. P) 1SjSr.,, 1iiSn

in a neighbourhood U' of x e L in M
Q.E.D.

A generalization of theorem 3.1.9 to symplectic manifolds would
involve searching for a sequence of isotropic distributions and the
existence of a Lie algebra consisting of Hamiltonian vector fields on

a symplectic manifold (M, w) which in some sense stabilizes the sequence.

Let it be a Lie Algebra of Hamiltonian vector fields on a symplectic

manifold (M, u) i.e. L = {X» ,....X~ > A Suppose there exists a
nl m

sequence of involutive distributions satisfying the conditions of

theorem 3.2.8 and let

qu»...»q:’ )'»-..,qn- (qp( ..... qp)\
= I n

1V _ . n\
pl 'p/;;i)" *=-PR = (PP _ pry)

and also let f(q*,...,pn) 3/ p. represent
1 rn 3 J

T SIS L2 N LY R RSN Ly N

n n i

, for 1$j ( n
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Then, locally

. 3
Ai is spanned by /0 P,

A2 is spanned by 3/gP’\ 3/gp2

An is spanned by 8/gPI> 3/gP2.......

This can be used to give the following generalization of theorem

3.1.9.

Theorem 3.2.9 Let (M, w) be a symplectic manifold. LetL be a Lie

algebra consisting of Hamiltonian vector fields on Mand suppose

{0} =A <= A<= .. <=A . <= A
[o} 1 ni n

is a sequence of involtive distribution on Msatisfying the conditions

of theorem 3.2.8. with local coordinates as described above.

If each Xjj& Ji with Hamiltonian function H satisfies
[V A]<= At 1iiin (3.2.5)

then locally each H has the form

H' PI,fl(gl)+',,+Pn'fn(ql ....... vV +Q@l........ \%

Proof. Locally (qi ......... n’pl”""pn) are canonical coordinates on M

and each Hamiltonian vector field X on Mcan be expressed by



" 3 3. *H

ANh Vi 3qi

Consider the case i 3 nin (3.2.5) and, without loss of

generality, calculate

Xij, f d/3Pj] , f : RIN— »RJ . | {1 n}

analytic map, N=£ r .

50.

k-1 k
r, , d, i rv ® 3, al a3, co. =m
[xh* f V !il " lIJ:1 ”:*i N " IFni Vi *£ V le
y (SSL 21 37 EL 21 3/
F " 3Pi Pi
- f' 32H 3, A f'32H 3, ‘N
P3P /i 39.3p. /PiJ (3*2<6)
32H C o
<3*2.5> => 3;73) w os [ I | n
13
= His linear in p
thus H=1 p! fi (q1,...,gn) + Q <gx,-.e,gqn>e
i=I
For the case i = n -1 it is obvious from (3.2.6) that (3.2.5) implies
S 0 1$j Sn-1

3gn3pj



ee»% 1) + p,fn (Gl»***»qn) +

Proceed by induction.

k+1 n
H—1:Iil Pifi <«i....... W i=k+2 pifi(qi ....... \%
+Q(at,....an) 3.2.7)
then consider [Xy, Ak] <= A . By calculation (3.2.6)
) =0, 1*j Sk<i Sn
[
which by (3.2.7) implies
k n
h=boph (g e L pt Mg gt 4 Q[0
i=l 1 1 1 * i=k+l 1
as required.

Continue this procedure until i=1

required result.

Assume [X7?, AN <r A+ implies
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in (3.2.5) which then gives the

QED

Essentially this theorem says that systems of the form

m
(x) +_I u.ic_(x), x e (M, w

X = 1It,
“I i-2 1 i

x(0) = XQ

With £ “ (XiJeoern. \ LA
1

and satisfying the above conditions,

can be integrated by quadratures.
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Example 3.2.10 Consider the following system on the symplectic manifold

(R2M 0>, dq * dp)

X = Xjjix) + u Xn (x) x(0) =x x ¢ R~”™ {0}
u

where x = (q, p)'

Wherei’—i:—lﬁ +)}%|

herefor e,
3,
H = p3/3:1 : a)

3 N~ 3

/2 2)3/2 (973 + P73
(P +q

Let L = (xc R2 {0} :3} %) +l—%| = constant}

Obviously L is a Lagrangian submanifold with tangent space spanned by

3, 3

Let A,l be spanned by q 3, , p 3,
+

22 /. 2 2
p1q 3q p +q

2 -i
vector field on Rn.{0} with Hamiltonian function tan p/q.

that A" is transversal to L.

Changing to polar coordinates gives

Ap 3 Haml'Ttonian

It is clear



p=rcos 0

qg=rsino

dqg A dp = (sin 0 dr + r cos 0 do) A (cos 0 dr - r sin 0 do)
:rcoszodoAdr-rsin odrAZdo

do A d(r2/n

2
Let $=r /™ 1 = 0 then

H (I, P>
Hu (I, < =sin |

a symplectic change of coordinates. Thus

I =1 I0) - 1,

P=- ucos I <K°) = &
Obviously integrable by quadratures and satisfies
X, AX] <= A vxe L

where L = {X~ N >>A>
u

Notice /_is solvable and S the ideal in L generated by XH is
u

nilpotent i.e.
S» { cos ! 3/, sin | 3/3 LtA>
In fact S is abelian.

This leads into the investigation of the existence of such

distributions as described in this section.



3.3 Existence of Sequences of Involutive Distributions.

In the previous section the existence of a sequence of involutive
distributions was assumed and conditions found for a particularly
interesting set of canonical coordinates. Here, it is shown by the use
of concepts developed by Kostant [19], Kirillov [21] and Souriau [20],
how by the introduction of a nilpotent structure that the above objects

arise naturally.

The main references used in this section will be Abraham and

Marsden [1], Guillemin and Sternberg [22] and Wallach [25].

Definition 3.3.1 Let (M, w) be a symplectic manifold. It is called a
symplectic G - space if Gis a Lie group which acts on Mby diffeo-

morphisms such that if

(9. x)

(3.3.1)

Furthermore (M, w) is called a homogeneous symplectic G - Space

if Gacts transitively on M

Throughout the rest of this section Gwill be assumed to be a

connected Lie group unless otherwise stated.

Define

ds (X) (f) (x) =d_  (f (exp - tXxj), T e CM
dt
t°o

54.
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which gives a ngp from £ to V(M), where X£ L , the Lie algebra

associated to G

It can be shown that db is a Lie algebra homomorphism i.e.

[d* (X), dO(Y)] = & ([X, Y], VX Ye [

By (3.3.1) dO(X) is a locally Hamiltonian vector field for all

XEE . However, if

do(X) ct Hm (M, 1)

where Ham (M, u) is the set of all Hamiltonian vector fields on (M, to),

then with this further condition (M, to is called a strongly symplectic

G - Space.

Definition 3.3.2 Let (M, to be a strongly symplectic G- space. A lift,

X, of dO : £. k-——-»Ham (M, w) is a Lie algebra homomorphism

NOET Np— » C(M)
such that
0 + R + CM ®» HamM, to 0



Homogeneous simply connected symplectic manifolds can be completely

classified, as in Wallach [25], with the aid of co-adjoint actions.

The adjoint representation is a nmegp from the Lie group G to the
isomorphisms of L, the Lie algebra of G, i.e.

A G- > Aut (jL) defined by

Ad X=d gexthg'l

Ads is called the adjoint operator. More importantly, the co-

adjoint is defined by
ft A i
adt P Vg £ G
9

Ad* f (X) =<f, Ad i X>, f £ L* XE£ i,
9 g

where < , > denotes the duality pairing.

Also, note that Ad™ is a Lie algebra homomorphism for all g e G.
Let O be an orbit of Gacting on /" i.e. O =Ad*f, f £ /L.
0 has the manifold structure of G/G*where G* ={g £ G: Ad* f = f}

Define an action on 0 by G as

0(g, f) - Ad*f, VI £ 0, Vg £ G

Also note that Tf 0=t/ Lf where jl? -{Xe JL: do (X) (f) =0}
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Lemma 3.3.3 Define a skew form X, V) = - f (X YD, X YE ¢L

f £ , then is a bilinear form with kernel

Thus B” induces a non-degenerate 2-form w(f) on L/L”™ and hence

gives a non-degenerate 2 - form on T" 0 defined by

w(f) (do(X)(f), da(¥)(f) = - f (X, Y]

Hence, define w, e fin(O) by U, QAdé‘f)) Kda(X) (Adgf), da(Y) (Adgf,)
= - Ad*f ([X, Y]), for g £ G f £ O

Suppose a lift exists on a symplectic G-space (M, w) then the
action $: G x M <-——-- m Mis said to be Poisson. (M, u) nmey then be

referred to as a Poisson G-space.

Theorem 3.3.4 (0, wV is a symplectic manifold and the action

o0: GxO0 -» 0 is Poisson with lift given by

X(X)f = f(X), Vi t 0.
Let (M, u) be a Poisson G-space. Fix x e M then there exists a

linear mapping

T(X) -> AX)(x)
so x(x) : 1. <—>R
and thus r : M>»-—-- » E,

This is usually referred to as the nmonment nmap. It acts as a mgp

which intertwines the action on Mwith the coadjoint action on £*.
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In the situation of theorem 3.3.4 t : O —-—» / * is the inclusion

Lenma 3.3.5 If x : M

€ then
g o
This is equivalent to saying that x is Ad - equivariant.
Definition 3.3.6 If (M, and (MY, an) are Poisson G-spaces with

moment meps x™ and x” respectively then a morphism is a smooth nep

f [ such that f* = and r~of = .

Theorem 3.3.7 (Kostant-Souriau) Let (M, u) be a homogeneous Poisson
G-space with noment mep x. Then x(M) = 0 <=</,* is an orbit, x is a

morphism from (M, u) to (0, uq) and a covering nep.

Corollary 3.3.8 There is a bijection between simply connected

homogeneous Poisson G-spaces and co-adjoint orbits.

It is not always the case that a lift exists for a given Lie Algebra
L. Normally Lie algebra cohomology provides necessary conditions for
existence and uniqueness. Here, however, an alternative method is
considered for the specific case of interest. Further, it it always

possible to extend the Lie algebra L to gain a lift, as will be shown.

*

i*, .
Suppose t : M1- >L Is a nmoment ngp on a symplectic G-space

(M, w). Let O be an orbit of G acting on £ and set
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Let x £ N0 and f = x(x). Define

W = (dT)“1 (X) (TfO).

Assume Ng is a smooth manifold at x, so

at x. By definition

TX)(X) = XX (X), VXt L.

Let Z Vx then the value of

is the tangent space

dt (5) e L* on Xc 1 is dX(X)(X)(5) = u(X)(X™x~, O

Let a : Gx O+ 0 be the action on O defined by

o(g, f) = Adgf

do(X)(f) is the tangent vector to O at f, X £ [,

do(X) (f) ¢ Tfo.

Thus 5 € V if there exists aY C such that

u(x) (Xx(x), 0 - do(Y)(f)(X), ¥X C L

i.e,

(3.3.2)

59.
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Now
Kb« » ¢V T“A(\<»Ra «0»TEV
From (3.3.2.) if X ,v. e then dcr(Y)(f)(X) =0, V Xfc i.
By definition of jtE = {X C : do(X)(f) = 0} thus =in(x) where {_ £(X)

is the corresponding subspace of the tangent space of Mat x.

Theorem 3.3.9 If & : Gx Mi—> Mis a nilpotent transitive action on

a symplectic G-space (M, w) then this action is not Poisson.

Proof. Assume the action is Poisson, so there exists a noment ngp

*

t : M1-—-->1. . Since the action is transitive VX =XT M Vxe M

which imrplies that VX = {0}.

Let Z(l) denote the centre of ¢i.e.

Z(i) =(XEL: [X,Y=0 WEU

since do(X)(f) =d Ad* f
dt exp"tX  t=0
= - ad*f
thus da(X) (f) (Y) = -ad*f(Y) = <f, [X, Y]>
andl ={X d t : da(X)(f) = 0}.

If X € Z(£) obviously X C as do(X)(f)(Y) =<f, [X, Y]> =0, VYe L.

Thus {0} = ="N(x) = Z(iXx},¥ xc M

So Z(£) = {0} which contradicts proposition 3.1.1.

Q.E.D.
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Now
Vet IXAKS <> ¢ Vo T Omx)« - 1oVSE V™
From (3.3.2.) if XWv. e then dcr(Y)(£)(X) =0, V Xfc I,
By definition of ~ = (X £ L : do(X)(f) = 0} thus = £/N(x) where f_ "(x)

is the corresponding subspace of the tangent space of Mat x.

Theorem 3.3,9 If p: Gx Mi—> Mis a nilpotent transitive action on

a symplectic G-space (M, u) then this action is not Poisson.

Proof. Assunme the action is Poisson, so there exists a moment ngp
t : M3--->i . Since the action is transitive Vx :XTM Vxe M

Ji
which irr}plies that VX = {0}.

Let Z(iL) denote the centre of ¢i.e.

Z(I) =(xe L: [X, Y] =0 WE£U

since da(X)(f) ° gt Ad exp-tx f =0
thus da(X) (f) (Y) = -ad*f(Y) = <f, [X Y]>
and - {X £ £ : da(X)(f) =0).

If X € Z(E£) obviously X C £ as do(X)(f)(Y) = <f, [X, Y]»> =0, VYC L.
Thus {0} =\ ° = Z(iXx},V x e M

So Z(£) = {0} which contradicts proposition 3.1.1.

Q.E.D.
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It is possible to avoid this problem by extending the Lie algebra

as follows

If X ....... X is a basis for £ and d<f>(>?) = X’; Let Y, (Xi) = Hi

L

ra m
and define yQ (£ a*HJ - £ a*yQX.), Va*s R

Then WQ :L *>CM and (x) = d<KX).
o

1 f were a Lie algebra homomorphism it would be a lift. Assume it is

not a lift and let

A
L-Lxr

and define

(X, 1), (Y, s)] =([X, Y], 6 (X, Y))

where 6(X, Y) = {pQX), yQY)} - yQ ([X, Y] (3.3.3)
Then ¢ is a Lie algebra. Define

A 1) (x) 2y () (x) +t
then {A(X, t), A(Y, s)} ={y_(X), y (Y)}

- yo([X, Y]) +3(X, )

thus Ais a Lie algebra homomorphism.



Let Gbe the connected simply connected Lie group with Lie algebra
f.. Let Hbe the connected subgroup with Lie algebra{(0, t) : t e R}

then &/H is the simply connected Lie group with Lie algebra/. Let

v : GHi—=aG

be the covering nmap.

Let p : G«>G be defined by p(g) = v(g H).

Then G acts on Mby g.x = p(g).x, x € Mand \ : L 3--*CM) is a lift.

In this case, see Wallach [25] for example, there exists the

following.

Theorem 3,3.10 If (M, w) is a simply connected homogeneous G-space,
then there exists a 6 of the form (3.3.3) and f C so that the monment
mep X : Mi—~jL is a morphism from (M, w) to (O, and a covering
map, where 0 = Ad0£f.

Essentially theorems 3.3.7 and 3.3.10 allow all work to be done on
the coadjoint orbit and then by use of the noment mep restated on the

symplectic manifold (M, u).

The nilpotent case is now considered in depth using the work of

Kirillov [21].

Definition 3.3.11 LetL be a Lie algebra and let f e £*. Then a
polarizing subalgebra of £.for f, sometimes called a polarization of f,

is a subalgebra-P1 of J/satisfying,
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(i) f([Md)-o
(ii) If V<= L is a subspace so that f([X, Y]) =0 for X, Ye V

and V then V =4j\.

In general there does not exist a polarization for f for all Lie
algebras. For nilpotent Lie algebras, however, there exists polarizations

for arbitrary f e £*.

Let Vbe a finite dimensional real vector space. Let B: VX V i—» R
be bilinear and skew-symmetric, although not necessarily non-degenerate.

If Wis a subspace of V, set

W ={ve V:Bv,w=0, Vwe W
Then

dim W+ dim V\? = dmV + dim (Va QA W since for v ¢ V, set
v(u) = B(v, u), let C(v) =v then C: V n

X
ker C=W . Thus, dimV = dim W- dim W H V") + dim W

A subspace W of V is said to be isotropic if

BI\'NXW:0 i,e. HC 7/

A
If Wis maximal as an isotropic subspace then V c: W hence

2 dm WS dmV + dmV . More precisely, see Wallach [25],

Lerma 3.3.12 If U<= Vis an isotropic subspace, then Wis maximal

isotropic if and only if

i X
dim w* A (dim V + dim V)
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Lenma 3.3.13 Let V'cz V be a subspace of codimension one.
Let N ={v C V' : B(v, v') =0 Vv ' ¢c V'l If <= V' then V*
is of codimension one in N'. |If W< V' is maximal isotropic in V"',

then Wis maximal isotropic in V.
Proof. If VI CZ V' then since
VX ={v g V: B(v, u =0, VueV}

it can rewritten as ={vecV B, u=0 Vue£ Vic N (3.3.4)

Let X £ V be so that x <£V'. Thenit is claimed V =IS where

N ={v.e N : B (x, v) =0).

Let e V then e N' so BCv V') =0 from (3.3.4) and Btv®, x) =0
sovicCc '8 . IfvtsS. , B(x, vy =0, V=V +Rx. Alsov cN so
B (v, V) =0=B(v, Rx+V') = 0 =B, ) =0=v C V,

So claim is proved.

So dim (N'/Vir ) { 1. But since N' m V'X with respect to the vector
space V' there exists a non-degenerate 2-form on V/V'"* = V'/N' and so
the dim (V'/N') is even. Also, dim (V/V* ) is even. Thus
dim V/v* - dim V'/N’'

* dim V- dim vV - dm V' +dim N

dim V- dmV' + dmN' - dimV

= 1 +dim N'/v*

is even, and since dim (N'/V~) $ 1it follows that dim (N'/v* ) “ 1.
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By lemma 3.3.12, Wis maximal if and only if dim W= j(dim V + dim v*")
thus, -J(dim V + dimV ) =#m|((dim V-1) + (dim VX + 1)) =-|(dim V' + dim N')

= wf(dim V' + dim V' )

Hence the result.
Q.E.D.

Lemma 3.3.1A Let [be a nilpotent Lie algebra. Suppose that the centre

of I, z(£), is one dimensional. That is,

Z(Ej = (Xt | : [X,1} - 0}

and dim @) “ 1.
Suppose that RZ = Z(Jj . Then there exists X, Ye / such that

X, Y] =2 and if

S=WCL:I[Y,W=o0

then S is a codimension one subalgebra of JL

Proof. By Engel's theorem 3.1.2 and by considering the adjoint

representation of £ i.e. ad™ : ¢i—>£, L can be decomposed as,

i-i, = = 1»)

a sequence of ideals with and dim/”™ = i.

Since dim Z(£) =1 * Z(£) =
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Let Y C ;2 be such that

i2=RY + RZ

If Wt L , then

adyY = W, Y] =f(W)z, f : £ >* Rlinear. Claim f f 0, since
if f-0[WRY +RZ] =0 VWe £=RY + RZ c Z(£) which

is a contradiction, since dim ZCO = 1.

Let X e ( be such that f(X) = 1. Then

S=Wc i : W VY] =0}

Then S = ker f

Hence dim£. = dim S + 1
Q.E.D.

Theorem 3.3.15 [Kirillov [21]] |If £ is a nilpotent Lie algebra and

f ¢ L\ then there exists a polarization of f.

Proof. The result is proved by induction on the dimension of I f

dim £ = 1, then £ is a polarization of f is immediate from the definition.

Suppose the theorem has been proved for all nilpotent Lie algebras
of dimension f n- 1and dm£ mn. Let Z(£) be the centre of £, choose
f, a real linear functional on £ such that Z(£) dc ker f, and denote
Z (¢) the subspace of Z(Jj consisting of all Zg such that f(ZQ = 0.

Clearly Zo(£)c= ker f so,

dim z°C" £ dim (ker f) .
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Consider then

Z(L)
dim zZ(L) =l +dim (ker f]z")

i 1+ dim Zo(g,)

= dimZ () i dimZz@1) - 1

Case 1 : dm2Z (¢) i 1= dim Zj[.) 5 2. So there exists Y £ Z(£
such that f(Y) =0, Y f 0. Then f defines an element of

f. Let J"be a polarization of f. Obviously it is possible

to choose RY £ -~"TV. < and if A under the canonical map, then

it can be shown that is a polarization of f as follows.

Set Bf (X, X2) = - f ([Xx, X2]), VXj, X2 e

Clearly, ~.is isotropic for B?, since Y C Z(£). If&c: Vwith V an
isotropic subspace of ¢, relative to B then Ve>V ~ funder the
canonical mgp and V is isotropic for B Hence by definition V =

But RYc iv hence V =

Case 2 : dim ZO((;) =0 = dim Z(;) 5 1. The only case not yet covered
is dim zZ(i) = 1

Let Z(£) =R Z, f(2) 1. Let X, Y C ¢be such that [X, Y] =Z and

s={wc t:|[y,w=0}

as in lemma 3.3.14.
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It has already been seen that dm S =n- 1. Let ft < Sbe a

polarization for fjs. Again, set Bf (X®, X2> = - f([X®, X2]).

than it is claimed, L =Wt i. : W, fL) =0} C. S

Since t =RX®S and if W= ¢ X+s,c & R, s * S, and Wt then
Bf (c X+s,Y) = c¢bBf (X,7Y) +Bf (s, V)

=-cf (X, Y] +f ([Y, s])
=-cf (2 +f (0
=-cC , YE t

Hence ¢ =0. Thus Wc S which implies £ C S. Now lenma 3.3.13 implies
that 4\is a polarization for f on

Q.E.D.
Corollary 3,3.15 If ftis a polarization with respect to f then Ad’-ft.is

a polarization with respect to Ad&f.

Proof. Clearly <Adgf, [Adév, Ads = 0 since Adg is a Lie algebra
homomorphism and ~is a polarization of f. So it is sufficient to she

that Ad ft. is maximal isotropic,
g

Suppose Wis maximal isotropic at Ad™ then Ad™-i Wis isotropic at

f which implies that

Ad -1 W<= fvor WCT Ad8-\X/.
g

« Ad ft.is maximal isotropic.
8 Q.E.D.

Obviously £ - {X£ A : <f, [X, Y]> =0 VYe £} is a subalgebra
contained in £ since <f, [X, Y]> =0 ¥X Yt EN

Let
a : Gx 0<»0
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as before with 0 = Adg,;f, for sone fixed fc JL.

The following lemma can be found in Kirillov [21].

lermm 3,3,16 | f i s a polarization at f£ in the nilpotent Lie algebra

i and O is the orbit in £% containing f, then

dimiv.= dmt - dim 0 (3.3.5)

This lemma along with theorem 3.3.14 says there exists a Lagrangian

subspace of T£0, f e O since (3.3.5) implies

dimiv/Ef = dim (dim£ - dim /f) - dimt£
=i dimt ~j dm¢f =j dim¢/qf

So this subspace is given by

do(to(f) c: TfO.

Note is a nilpotent Lie subalgebra of £. Also it is knowmn that

vImv (tE€+ vhy" V < jL, therefore it is possible

to construct the following sequences of quotient algebras,

i0) NEEAJEEC - A f +n/i0f (3.3.6)

where -ft1 =ft, -ft = [ft. ftl *]. fcT 1 “

(3.3.7)
{°} "~f/E C +Afl) A i

whe '-f, o' - LT 0.
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It is worthwhile observing that the proceeding theory is valid
whether sequence (3.3.6) or (3.3.7) is used. However, the calculations

are performed for (3.3.7) as they will appear in chapter 4.2.

It is now possible to construct a sequence of isotropic distributions

as in theorem 3.2.8. But first some notation.

Let A be a distribution on (0, u®) then it is said to be G-invariant if
Ad* AC A Vgt G

Lerma 3.3.17 On the Poisson G-space (0, uq) there exists a sequence of
G-invariant isotropic involutive distributions, if Gis nilpotent, of the
form

{0} = 40C A:LC' L<= An—i d An with An Lagrangian.

Proof. Define A, O0i i £n by
A. (Ad*f) = do (Adg(/.fOLn_i+1 +1 f)) (Ad*f)

note ker do (Ad*f) = Ad Vge G f £ 0, thus A, (Ad*f) is
g g £ 1 8

isomorphic to Adg ({ In~~+ L then from (3.8.7)

A, (Ad*f)e= A , (Ad*f),Vge G f e O
i g i+l o]

Which defines the sequence of distributions
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Since L is nilpotent [£1, £ d £ 1+ by induction i.e.

£, £ by definition for all j, suppose [EL , £~]cg 1*i-1

then [£ I,t "j can be rewritten using the Jacobi identity as
[ £j]  t[£,£]j], £i_1] + [£. [£i_1.1 j] ]

c Ei+j ¢ [E£,£i+j_1]

Also do and Ad® are Lie algebra homomorphisms so A£ is involutive,

for let X, Ye £ fft£ n“1+1 +£f then
do (Ad Ad*f), do (Ad_Y) (Ad*f)] = do(Ad X, YINAd*f
[ (8>0(8) (8)(8)] (8([ ](8)

< A (Ad*).
i g

For G-invariance it is necessary to prove that

Ad* A<= A,ge G I.<iin
S* 1 1

i.e. Ad* A (Ad* flcr A (Ad* f), 1£i £n
g™ 1 1 M2

lety e £ ,xe £ EAEn 1+l +tf, & S2* g

Ad*  do(Ad X) (Ad* ) (V)
81 g2 S2
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Ad  da(Add X) (Ad*
g 92 g

f, [Ad X Ad Y]

- <f. Ad X, Ad Y]>
°2 °2 &IA

- <f, Ad Ad [Add Ad X Y]>
82i 8li 81 s2

-<Ad . f, [Ad X, Y]>
94 91

da (Ad , X) (Ad _f) (V)
91b 9h%

therefore since Y was arbitrary

Ad A (Ad f)C A (Ad* 1)

gt~ 1 @2 1 8182
as required.
The fact that each A, O0iiSn-1is isotropic and A" is Lagrangian

follows from theorem 3.3.14, corollary 3.3.15 and lemma 3.3.16.
Q.E.D.

Observe that A™ is a real polarization of (0, wg) in the sense

of definition 3.2.6
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For the case m question, an orbit 0 in 1 given by O * Ade, for

sone f £ IC the invariant two form, df, is given by
df(x, v) = - <f, [X, Y]>,

see chapter 5.3 of Guillemin and Sternberg [22], and the invariant
polarization on the orbit through f corresponds to the subalgebra

constructed above.

As the two-form on O is invariant under o®, V g G,

*

i,e. o w -u, df is equal to u_.
g o o o}

The next proposition due to Kostant, see Guillemin and Sternberg [22],

is of particular importance.

Proposition 3.3.18 Let f be a one-form on M, a symplectic manifold such
that its symplectic form is given by df = u and such that the set

{x : f|x = 0} is a n-dimensional submanifold, L. Then L is Lagrangian and
there is a unique polarization defined on Min a neighbourhood of L which

is transversal to L and whose associated one - form is f.

Lemma 3,3,19 The sequence of distributions defined on a homogeneous
strongly symplectic G-space (0, wo) in lenma 3.3.17 satisfy the conditions

(1) - (3) of theorem 3.2.8.

Proof. Take the Lagrangian submanifold L to be that constructed in
proposition 3.3.18 and the sequence of distributions are then that of

lemma 3.3.17. By assumption da(X)cHam (O, - Hamiltonian vector ,
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fields on O - and thus by (3.3.7) and transitivity there exists

Hamiltonian vector fields.
da(Ad Y1) (Ad*f),... ,da(Ad Y1 Ad*f),...,
( g I)& ) ( ] L) ( d )
da(Ad Y*) (Ad*f)....... da(Ad Y1 Ad*f
(Ad YY) (Ad*) (Ad YL) (Ads)
which spans (Ad*f), Vg€ G 1£i £n

and so condition (2) is satisfied. Condition (3) follows immediately from

the facts that da and Ad™ are Lie algebra homomorphisms and
[Z.\Lj]lc /-i+j <=jLj. j ~i
Q.E.D.

Before investigating condition (4) some results from Kostant [19]

are required.

Definition 3.3.20 If Mand N are manifolds and §§ : Mi—N is an analytic

map, X £ VM), Y e V(N) Xis said to be i - related toY if

g X (x) * Y(id/X), Vxe M

Lemma 3.3.21 If p: Mvw* Nand X* is tp- related to YA, i =1, 2

then [X~ X2] is - related to [Y™ Y2].

Proposition 3.3.22 (Kostant [19]). Let (M, w) be a simply connected

homogeneous symplectic G- space with a Poisson action

£: Gx M »M



] X
Fix x,;e M Tet x : M—>0c £ be the moment mep with 0 Ad Lt (x,)

and Poisson action on O given by

o0: Gx0 i—» O

a (g, f) = Ad*f.

Then d $ (X) is x - related to do (X).

Proof. Need to show that xXd3> (X) (x) =do (X) t (x)

By definition do (X) (f) 0 gt~ (exp - t Xif) 4de ¢ (£)
t

Yy A
Let Y € £ and define v : Rby YW (f) =<f, Y>
then do (X) (f) (ipY) = iXx ~ (3.3.8)
since
d
do(X) (f) @) dt Y (exp - t X.f)
t=o0
d_ <exp t X.f, >
dt
t=0
= -<X.f, Y¥>
=-<f, [X, Y]>
= Y1

By the definition of the noment nmep i.e.

t(x) (X) = X(X)(x)

then tX (t(x)) m X(X)(x)

75
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Let v = <0(Y) (x)

then v OX = t do(Y) (x) (0X)

- ACLY. X)) (x)
So  do(Y) A (X) = {A(Y), A(X)} = A(LY, X]).
But A([Y, XI)(x) = x(x) ([Y, X])
=o[Y> Xi T(x)
Thus v OX = 0~ ' X1 T(x) V XcE_
= dp(Y) (x)0X = da(Y) (t(x))0X (by (3.3.8))
= t* do(Y) = da(Y)

Hence result
Q.E.D.

So by lenma 3.3.21 it is immediate that

[t* dO(X), t* dO(Y)] = T*[d<KX), dO(Y)].

From theorem 3.3.9 it is necessary for nilpotent group actions to
go to the extension in order for a Poisson action to exist. Kotice

that the extended Lie algebra t described after theorem 3.3.9 is nilpotent

if L is nilpotent.
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Theorem 3.3.23 If (M, w) is a simply connected symplectic manifold with
a transitive Poisson action by the connected nilpotent Lie group G, with

nilpotent Lie algebra , given by

¢ : GX Mi—>M

¢ (9, X) =4y (9), X (3.3.9)
where p: G=>G and $: Gx M m -> Mthe action given by
¢(exp tjXx exp t"XNjX) =exp t exp tN . X
0...0 0...0
where X~,...,X"c£_ . Then there exists a sequence of distributions
on Msatisfying the conditions (1) - (4) of theorem 3.2.8 and theorem

3.2.9.

Proof. Take the sequence of distributions constructed in lenma 3.3.17
and then take x*_l Alwhere t is the moment map, t : Mi—O0C E*.
By proposition 3.3.22 x* ~ can be taken through the brackets and the
validity of conditions (1) - (3) of theorem 3.2.8 follow trivially from
lemma 3.3.19.

G- invariance i.e. g ™ (x™» M AN)C x» N AN follows from lemma

3.3.5. Since,

X ¢—=Ad~ x, Vg € G
o g go

-> X, Yg*X* Ai :Adé?*. {k(z& V g c Gby lemma 3.3.17

“> * <1 Gi> <=T1 0 v8t G

Then by application of the Campbell-Baker-Hausdorff formula i.e.
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®
exp - t X Y (expt Xx) =£ tl1 ad*VY (x) and (3.3.9) it
i=o 1;

follows that G- invariance is equivalent to

,XHET-

Condition (A) of theorem 3.2.8 now follows trivially by G- invariance
and transitivity since each X 1 f k f n of theorem 3.2.8 is a Hamiltonian
vector field and X* e 1£i Sn

Q.E.D.

Similarly the existence of polarization for solvable Lie algebras
have been studied by Auslander and Kostant [26], For this it is necessary
to introduce complex polarizations. The questions arising from solvable
Lie algebras will not be gone into in full detail but an interesting lenma
found in the above paper will be stated for the purpose of application

in the next chapter.

Let £ be an arbitrary Lie algebra over R and let G be the corresponding

connected Lie group. As before define the alternating bilinear from on

by
Bf (X, Y) =-<f, [X Y]>, fel * X Yet and
i ={X*1 :Bf (X,Y)=0 VyYyfct }
Definition 3.3.24 Let £ conplex-

valued linear functional A polarization at f is a complex sub-
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and” . is invariant under Ad
t (e}

i) d*c/(~dR A

(iii) <f, [£,&.]> =0

(iv) {v is a Lie algebra o ffc

can be reinterpreted as a maximal isotropic subspace of

i f* relative to BI .

Let G be a connected, simply connected solvable Lie group with
Lie algebraf and let S denote the nil-radical of £ i.e. maximal
nilpotent ideal off. , with Lie group N then the following lemma is

proved in Auslander and Kostant [26],

Lemma 3.3,25 Let N be a simply connected nilpotent Lie group and let S
be it's Lie algebra. Let Aut S be the group of all Lie algebra auto-
morphisms of S so that Ad™ is a subgroup of Aut S. Regard Aut S as
operating by contragradience on the dual S*. Let fc S*. Assume F

is a group and ahomomorphismP—Aut S is given (so that F operates on
S and S*) such that (i) the commutator subgroup F* meps into Ad™ and
(ii) F. f =f. Then there exists a polarization ~ at f which is

invariant under F.

Essentially this lemma can be used along with all the preceding
theory on the construction of sequences of involutive distributions
to extend to a special case of a solvable group action on a symplectic

manifold which will be of importance in the next chapter.
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Chapter 4

HAMILTONIAN REALIZATIONS COF FINITE VOLTERRA SERIES

Chapter 4 uses the theory developed in chapter 3 to find necessary
and sufficient conditions for the existence of Hamiltonian realizations
of stationary finite Volterra series. Then using the structure of
chapter 3.3, section two contains a canonical coordinate realization for
minimal linear analytic Hamiltonian realizations as well as an algorithm
for computing the Volterra kernels if such a system is given. In the last
section it is shown that such realizations are closely related to the

concept of interconnection as found in electrical network theory.

4,1 On finite Volterra Series which admit Hariltonian realizations

This section begins with a brief review of the work of Brockett [7]
and Crouch [5] on nonlinear systems whose input-output behaviour is
represented by a Volterra series - in particular linear analytic systems

and finite Volterra Series.

So the type of system investigated here is of the form (2.1.1) with
the relevant conditions as described in chapter 2.1. The formal Volterra

series will be written as

ft
y(t) =wt) +  W(t, u (o™ g~ +

uG”nN u (02) daz do®
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Theorem 4,1,1. (Brockett [7]). Given T > 0, 3 e > 0 such that for all
i . . T
locally integrable u satisfying Ju (s)] ds < e, the following Volterra

series converges uniformly and absolutely on [0, T] to the input-output

mgp of system (2.1.1)

y(t) =WwW)t) +1 | W u (@\JdcK .. .dan
i=

for unique analytic kernel functions

t, o. — P W.(t, al........ a.)

A series terminating with the term involving the rth kernel is

called a finite Volterra series of length r.

In Krener and Lesiak [27], the kernels are shown to be given

inductively by the equations

V\(/Jl (t, x) :hl gy, (t) %)

y 13, — i_
w (t, a1 .......... an, X) —Yt (- ar) . gj (yi(% ) X)
Jn
Jo...Jn-I
(Wn—l (t, O™  e*an ™y ) (4.1.2)
where : Rx M—>Mis the flow of fc V(M).

|
The kernels include x e Msince each initial state defines an input-

output mep and so the kernels depend on these initial states.
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In the case of a finite Volterra series Brockett [7] gives
necessary and sufficient conditions in order that the finite Volterra

series has a linear analytic realization.

The kernel (t, e a is said to be separable if it can be

expressed as a finite sum

If the component functions Yj are differentiable then it is called

differentiably separable.

Further, it is said to be stationary if

that is the kernels satisfy

a) =0 (4.1.3)

A linear analytic realization is said to be stationary if f, g and

h do not depend explicitly on time and f(x(0)) - O.

Theorem A.1.2 (Brockett [7]). A finite Volterra series has a

(stationary) linear analytic realization if and only if the kernels are
(stationary and) differentiably separable if and only if it has a

(stationary) bilinear realization.
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Further in Brockett [7] for the bilinear realization

X = AX + u B x x(0)=x0

y =Clx X e Rn

it may be assumed that the subalgebra generated by the matrices ad”™(B)
is nilpotent. In fact the bilinear realizations constructed there are

K
such that the matrices adA(B) are strictly lower triangular.

As has been already mentioned, many physical systems evolve on a
symplectic manifold, Abraham and Marsden [1] and Arnold [2] being two
of the more recent texts which treat this subject from a Symplectic
geometric view point. In both these texts only free systems are
considered. This then motivates the investigation of linear analytic

systems of the form

x =X (X) +u (x) x(0) = xq x 6 (M to
y = g(x) (4.1.4)
where and X* are complete analytic Hamiltonian vector fields on a 2n -

dimensional analytic connected symplectic manifold (M, g) .

The question to be answered here is under what conditions on the
kernels of a stationary finite Volterra series does there exist a

realization of the form (4.1.4) and conversely? See Crouch and Irving [28].

Recall that the Poisson bracket of functions on a symplectic manifold

(M, m is given by

_ _ 4.1.5
(@ b) -wWX_, X) 3 X (@ . ab CCM ( )



Theorem 4.1.3 (Crouch [29]) For the system (4.1.4)
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V\Il,] (t, 0 ,:-s0 x) = {...{h(t), h(oi)}, h(az)...}h(on)}(x) (4.1.6)

AN (t, alt x) = (h(t), h(al)}(x)
where h(a)(x) = gQyf(a)(x), yf(a) the flow of Xf
Proof. From (4.1.2) and Jacobi's theorem 3.2.3

Wh (t' °l....... V x) " Xgoyf(an) (X) (V I (t’ °1........ V 1’ x))
which by (4.1.5) becomes

w(x) (Xw  (x), Xb(a j(x)) = iwn_1(t>-«wan_1I»x), h(an)(x)}

n-1 n
So for n = 1 applying Jacobi's theorem to (4.1.2) it becomes
(h (t), h™)} (x). The result now follows easily from induction
using the above.
Q.E.D.

In Crouch [5] the following bracket operation applied to Volterra

kernels was given, defined inductively by



These relations are used to give the following necessary condition.

Lemma 4.1.4 The Volterra kernels of a Hamiltonian system (A.1.3)

satisfy the following for n 3 0O

Wh VIi-°n"'x (4>1*7)
= (q+1) V\(](t, al....aq, %H R X) for 1 <q $n
Proof. The proof is by induction ongq. By (A.1.6) for q =1

Wh ([t» 0 j, a2...an,x) =W (t, al, a2...an,x)

- V\./q (all , t, ai...an,x)
={...{h (1), hiaj™)} h (02)...} h(an}(x)
- {...(h (ap, h (1)} h (an)...) h(an}(x)

=2{...{h (1), hCan} h (a2)...} h (on}(x)

by the anti-symmetry of Poisson brackets™ 2  (t,

Assuming (A.1.7) is true for q then by definition and induction

85.



Wi ([...[t, ~...VilV2-V X

(@) W, (t. a a,x)

1 aq aq+i... n

- Wh (Og+1,[...[t, '1]— °ql¥g+t2— °n'Xx)

By (4.1.6) and the Jacobi identity, applied to Poisson brackets,

it is clear that

Wh (t, or ..ar[ar+1, V 2 ]Jar+3--‘antX)

={...{ h (1), h™)},...}, ( Mar+l, h(ar+2}}...h(an}(x)

Then by repeated application of the Jacobi identity

Wi (VLI 1], (g 2 - 2n-x)

e ({h (1), b (og).h @)h), @y, )b hi(o )HX)

g+l

This verifies (4.1.7) for g+1, and hence result.

Q.E.D.

To prove the converse some results are required from the theory
of permutation groups and their associated group algebras. These

results were proved in Crouch and Irving [28] by Crouch, where they

86.
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can be found in detail. For the purpose of this thesis these results
will only be stated in order to give a proof of the main theorem, the

consequences of which will be used in a later section.

Let Sn+* denote the symmetric group on (n+1l) letters {O,1....... n}

and R+* the space of (n+l) - tuples (ao, Ao ar?’ then the action

of € on R 5 given By

PV ai....... an) " (ap(0)* ap(I)....... ap(n))

Let An+~ be the group algebra generated by Sh \ and Fn * the

. n+1
space of real valued functions on R

(a0’ al ....... an) ‘-------- >E (V. °1...... an)>

A+l is represented as an algebra of linear operators on Fn+l by

setting (pf) (on) = f(p(an)) for pc S+l and all = (aQ, al»..*,°n)

Further, Ak+l may be considered as a subalgebra of An+* for k < n,

by defining the action of Ak+l on Rn+l to be that obtained by fixing
§<+1 . .
Let p e be the permutation defined by the cycle
k+1
(k, k-1......... 1,0), for ki 1 and set Pq to be the identity in S

If p ¢ Ak+l considered as subalgebra of Am-;' then

Pk <0V V fik+l,,,,,0n) “ (ak °k-r,,00 °k+r,*°n)
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Lemma 4.1.5 |If 8n = (Do—pr)gJ 7p,,)...(po—R )G An+l

Now let B*' '3,,,c - for a, b,...,c belonging to some index set -

be the function

Na(o O) YB (a|)Y C(ak)

and set WM '5" |C = 8" B® '3***c> then

Theorem 4.1.6 If V\rl1 (ao, ai--_ an,x) is a differentiably separable

kernel satisfying the conditions of lenma 4.1.4 then

N a.b....c
V\{q (ao,al...an,x) =1 V\Al 1 1(ao"'r’10 ,X)
for differentiable functions Ya yF 1Si SN Moreover, this is
| .

uniquely defined.

Now with the aid of lenma 4.1.5 and theorem 4.1.6 the main result

may be proven.

Theorem 4.1.7 A finite Volterra series in which the kernels 1$n$r,
satisfying the stationarity condition (4.1.3) has a symplectic realization

in the form of system (4.1.4) if and only if
(i) The kernels are differentiably separable

(ii) The kernels satisfy condition (4.1.7) of lemma 4.1.4, that is

WA([...[t,a]]...cqlag+l...anx) (g+1) WA(t, C1 X); 1SqSn
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Proof. Implication follows from theorem 4.1.2 and lemma 4.1.4

Conversely, if the kernels are differentiably separable then by
Brockett [7] the Volterra series has a bilinear realization. It therefore

follows that the kernels nmay be written in the form

(4.1.8)

RXS for some s > 0. This sum

for suitable ¢, b”™ e Rj and AN c
may be split into minimal groups still having the form given by the
right hand side of equation (4.1.8), and also satisfying condition
(4.1.7). Clearly each group is also differentiably separable. Select
one such group and apply theorem 4.1.6 to see that it must be expressible

in the form,

for suitable functions yl...yn- This is the sum of 2n terms, with each
term constructed from the product of the functions
Alt
Let y~(t) =c! e 1£i 3n. Now a realization of the

input-output nep

it o

0 0 (4.1.9)

is constructed
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With replaced by

Yn(t * ffl) VI (al1* a2*“ -Yl(an -1-0n) (4.1.10)

the above input-output nep realizes the following system, see Brockett [7],

gx = Aigi + bxu g0 =0
g2 - A29q2 + b2c| gxu gq2(0) =0
qn = Anqn * bnc}]—l (r:llw—lu qn(O) =0
Y1 = % fn

Now, consider the composite system obtained by adjoining these

equations to the equations

PI =A* Pl + b’ p2u AL (0) =0
p2 = A2 P2 + C3 P3U P2(0) =0
= ! P =
pn An pn + cnu n (0) 0

This composite system nmay be expressed as a Hamiltonian system

by defining the Hamiltonian functions.

H(g, P) " PL A~ +...+ P; Angn

Hu(g, P) - Pi \ +c; gnec gxb' 22 gp | Pn



If q £ R and [ n = N, the following system on R2N
i=l 1 -

coincides with the composite system above.

g =Ag +uNg +bu q@) =0
(4.1.11)
-p= + uN'q + cu p(0) - 0
y2 =b'p +c'q + p'Ny
where
2N

With respect to the canonical symplectic structure J on R™  this

is a Hamiltonian system, since

91



92.

3H (g, p)' + 3 (q, p)
q“ 3P

1
©
|

=3 (q, p) + 3 (q, p)
3

y2 = Hu (gq>

It now remains to show that the input-output ngp of system (4.1.11)

coincides with that in equation (4.1.9). Note that the output function

in system (4.1.11) contains the term c'qg =c¢_q_ = Yy and so the

n'n
input-output mep of system (4.1.11) contains a term with Volterra kernel

given by equation (4.1.10). It is an easy calculation to check that if

b'r+1 dr+1 and c;’ ﬂr are viewed as outputs of system (4.1.11) then
ft fC
o Jo
u(ar) .. .u(al)dar...do™
ft fo
o
“<Vr)— u@hdv r %1

where YK(°)= "YM(-O).lt follows that y,(t) is a Volterra series

with one term involving n iterated integrals of u, and associated
Volterra kernel constructed from a sum of terms, each of which is
in turn constructed from a product of all the functions Y~...Yn«

It follows from Crouch [30], that the contribution of the term



93.

qr b Pr+i» 1 £r i n- 1 is exactly nl/r'. (n-r) 1 such terras.
Thus the Volterra defining y2(t) as a Volterra series consists of
n-1
1+1 n'./r. (n-r)). +1=2n
r-1
such terms. As system (4.1.11) is Hamiltonian, lenma 4.1.4 and the
uniqueness of theorem 4.1.6 imply that the input-output rmep for system

(4.1.11) coincides with the input-output nmep in equation (4.1.9) as claimed.

The proof is completed by noting that given a finite Volterra series
satisfying the hypothesis of the theorem, it may be split into a finite
number of terms, each of which is realizable by a Hamiltonian system of
the form given by system (4.1.11). Obviously, the composite system is
still Hamiltonian, and realizes the given finite Volterra series.

Q.E.D.

System (4.1.11) may be rewritten with the introduction of two new

variables gQ and pQ as

0O o 0
0 0 o
0 0
+u 0 -c 0
0 0 -A
-C 0 0
*%* * * 1 * *
y=p N g +yqgq Q9
q (0) =1 Pq(0) =p (4.1.12)
o]

where N* “ ~°  °on



System (4.1,12) has the same input-output nmep as system 4.1.11,

since

p* N*g* +j ¢* Qq=(p"p) "0 0 ~gn

= (p"bl p'N) (qc 0 .04g*ch

ok
-P~c +PNg + 2 gnGygo * 1]qucnqn

- i =1
pibi  PNa ¥ e 9o

:y2
So system (4.1.12) is exactly the form found in chapter 3.1

if the Lie algebra (adj B} A is assuned to be nilpotent. Here,
of course, the matrices are block diagonal or block lower/upper

triangular whereas before each was an individual element. LTiere

94.



Example 4.1,8 Consider the system

qL = +u gx (0) = o

q2 =92 + uqi q2(0):0

1
o

mPi=P1l+up2 P2 (0)

1
o

-P2-p2+u P2 (0)

y =p2qi +Pl * g2

on the symplectic manifold (T'R%, [ dg. A dp.)
~ izl 1 1

This is clearly a Hamiltonian system i.e. it is of the form of

equation (4.1.4), with Hamiltonian functions given by

f=p"! + p2gq2
g ® p2gx + px + g2

and Xf =qgx /jgr+q2 | 2% pl "3l “ p2 ~3p2

Xg ' 3/%l + ql 3/32" P2 /P " 3/P2

is the ideal of L generated by

95.
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Xg = 3/ +ql 3/32' P2 3/P1 ' 3/3F2* /x| + 3/3P2*

3, , ~3, 3, 3. 3. 3.
g2 A3PIF nsgl o AgP2” fSg2 APl

* *
which is obviously strongly accessible since dim S(x) = IXX B’ ¥x £ XR2
and thus by Van der Schaft [31] weakly observable. Note also that Sis a

nilpotent Lie algebra.

Since,
_t t-o0

gx(t) = e lu (°i) dal
0
ft 1t -

g2(t) = e a2 u (a2 u (cN) da2 doL
0O O
t - 02

PI(t) = u(a,) u(a™ da2 dcn
"0 O

p2(t) =_i e (t 0Ol) u (0l) dax
‘o

the Volterra series has the form

-t ot
y(t) (e“(t - a2)+et_ff2 - ea2°l - eal~a2u (02>u (0" do2 dolL
o o
SO V2(t, aj. 51X g2t T2 eo2vel - era2

which is seen to satisfy condition (A.1.7) of lemma 4.1.4 as follows
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=W (t, Ol, 02 - W (o1, t, ff2)

« ea2t + et-a2 - eaZ'al - e°l“°2

_eaz2cl _ e°l-02 + ea2-t +et_02

= 2 (eff2.t + et_a2 - e02"°| - e01"°2)

2W2 (t, v . 02

A =e([t,, a1]., @2) - W2 (@2t

2W2 (t, ov, a2) - W2(a2, t

W2 (az, v t)
o (037
2W2 (t, ar, a2 - €T Z—ei,‘(
+ et—aLI + et—a% 3-(e0(z)'t e tChi eoi-t

3 W2 (t, an, a2) as required



98.

4.2 A Canonical Realization

In Crouch [5] dynamical realizations of finite Volterra series are
investigated. In particular canonical coordinate charts are chosen to
express strongly accessible, observable linear analytic realizations of
finite Volterra series. Here the work of chapter 3 is applied to find

realizations of the above type which include a symplectic structure.

Sussmann [9] guarantees the existence and uniqueness of minimal
realizations i.e. for analytic systems accessible and observable
realizations. However, for Hamiltonian systems the following observations

from Goncalves [16] must be made.

Let Gbe a connected Lie group and suppose there exists a Poisson
action of Gon a strongly symplectic G-space, (M, w). Note that (M, u)
is strongly symplectic if for example Mis simply connected. The fact

that the action is Poisson neans that there exists a monent ngp t.

Let (£, xq) represent an initialized analytic system of complete
vector fields on the symplectic manifold (M, w), and let O be the orbit
in¢*, the Lie algebra of G, of t(x0) by the coadjoint action of G.

Let (£0. t(xo))be the corresponding system on the co-adjoint orbit.
Then with strong equivalence as defined in chapter 2.1 it is proved

in Goncalves [16],

Theorem 4.2.1 (£Q, t(x0)) is strongly equivalent to (£, xq), and

moreover it is an accessible Hamiltonian system.

It is noted in [16] that is accessible but may not be observable
or weakly observable. However, the following theorem may be found in

either Goncalves [16] or Van der Schaft [31].
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Theorem 4,2.2 If I is strongly accessible it is weakly observable.

The following results are to be found in Crouch [5], and will prove

useful throughout this section.

Lemma A.2.3 Given a strongly accessible realization of a finite Volterra

series of length n then

(i) The Volterra series has length n when evaluated at any point

in the state space M

(ii) The kernel depends only on the time parameters t, <”,...,0%,

not on the state x ¢ M

Theorem 4.2.A Given a strongly accessible weakly observable realization
of a finite Volterra series of length n, S is a nilpotent Lie algebra,
with a descending central series of length less than or equal to n, and

the Lie algebra £, is solvable and finite dimensional.

Recall that Sis the ideal inlit generated by the vector fields
gxX--- Srof (2.1.1).

Since the systems under consideration are strongly accessible, the
connected Lie subgroup N of G, corresponding to S, acts transitively on
M and therefore Mis analytically diffeomorphic to the homogeneous space

N/NX where NX is the isotropy subgroup
o} o}

\ ‘ £ N: 8 Xo' Xo}

As N is nilpotent this is a nilmanifold. For further details of
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this point see Helgason [15],

Ore of the most important theorems in Crouch [5] states,

Theorem 4,2,5 A strongly accessible observable realization of a finite
Volterra series has a state space which is diffeomorphic to a Euclidean

space.
This shows that the underlying manifold is simply connected.

Finally from [5],

Corollary 4.2,6 A strongly accessible analytic realization of a finite

Volterra series is observable if and only if it is weakly observable.

Now the results of chapter 3 are utilized to find a canonical
realization of a linear analytic Hamiltonian strongly accessible,

observable realization.

As N acts as a nilpotent transitive action on Mby strong
accessibility and theorem 4.2.4, then theorem 3.3.9 says it must be
extended in order to meke the action Poisson i.e. let N be the nilpotent
connected Lie group of the Lie subalgebra S = S x Further note that
(M, w) is always strongly symplectic as Min this case is simply connected

by theorem 4.2.5.

Recall that the extended action was defined as follows, let

and if g i N,x cM then the action is

g. X « p(g) -x
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So obviously N acts transitively on M

A particularly interesting case of when accessibility and strong
accessibility are equivalent is found when considering the concept of

stationarity of linear analytic systems as described in Brockett [7],

Consider a linear analytic Hamiltonian system of the form

X
1

Nx) L u X (X) x e (M w
i-1 u,
1

x(0) = Xy

yl=H, () (4.2.1)

where (M, w) is a 2m- dimensional symplectic manifold.

Then it is stationary if X~(xg) = 0, which is equivalent to
expt Xjj*x0 = x™ where expt X" is the flow of X~ By Sussmann [32] it
then follows that dim S(x) = dim £ (x), ¥ x e Mand thus accessibility
and strong accessibility are equivalent.

Furthermore, if this system is lifted to the corresponding system

- N "W

on (0, weo) it too has this property, since if 3£ S, let X*£ S

then by definition of the action it follows that
expt Xj. p(expt X .x0 = expt Xh.xq X

so by Ad - equivalence (see lenma 3.3.5)
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=T t
t (xo) o exp X

where a : N x O i----> 0 as in chapter 3.3. Differentiating gives

do (X?) (f) =0 as required.

Thus from theorem 4,2.1, theorem 4.2.2 and the fact that a
stationary finite Volterra series which admits a linear analytic
Hamiltonian realization is such that the linear analytic system is

stationary, see Brockett [7], then the following corollary holds.

Corollary 4.2.7 A stationary linear analytic Hamiltonian realization
of a stationary finite Volterra series on a symplectic manifold (M, w)
is strongly equivalent to a minimal i.e. accessible and observable

stationary linear analytic Hamiltonian realization on (O, wo).

The remainder of this section is mostly concerned with systems of
the form (4.2.1) which have nilpotent Lie groups associated to them,
and to which the results of chapter 3.3 apply. There are basically
two cases to be considered. The first corresponds to the case where
the system is strongly accessible andt = S. The second case corresponds

to the system being strongly accessible but £ ¢ S.

First an in depth consideration of the case S« on a strongly
accessible, observable linear analytic Hamiltonian realization of the

form 4.2.1 of a finite Volterra series. Theorem 4.2.5 gives S nilpotent
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and theorems 3.3.23 and 3.2.9 give rise to the following coordinate

sys tem.

Let ... 9n, ) be canonical coordinates on the symplectic

gi =ql....... \%

'_ﬁ.
-
o
1

pi

then the realization can be given by

4 - (ax) 9 (ax)

4an " n (v - eeV 8n (V — qro

- 3fi _. 3f* 3f*
P1  3q Pi +.e54 31 pn 3gx

r .t N L1y

I u &l Bt
+i-11%‘5B1

“ #) = 3fh P_ e > o+ | M p
=— u -
m 30n n n 111 éqn n
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where x = (qi .......... , pI ....... ) x(0) I:x0

“dH=P[ N \Vi +*0 S ... a.)

yl =Hu =Pi gi (ql)+'" +Pn 8 (ql ....... vV + 8 (ql........ \%

where A and are analytic functions in g”,...,qj, 1$j $n and

f and gl are analytic functions in .......... -
o 0 Al ,An

In fact under further scrutiny the following theorem is obtained.

Theorem 4.2.8  Any strongly accessible observable linear analytic
Hamiltonian realization of a finite Volterra series which satisfies
condition 4.1.7 of lemma 4.1.4 and such that S =1 has a canonical
realization as follows, let (g”,...,qn> p”,...,p ) be canonical

coordinates on the state space (MYm, to) where

a, = gq™....... q* . isisn

Pe, “ e p* . 1si sn

then the realization is expressed by

ql = fl

a2 - f2 (ql) g2
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@.2.2)

set x = (@ v piv i?n)f then x(©©) = X

H= P\ £ 4 p2 12 @DV o fy (@DA5ty 4+ fo (g o dn)

$=H, prsi+P2a@ *Ph 9 (@l....... gread> + go(ql.......gn)
where f and ; are analytic functions in g s .., 1Sj$n
o
and fo and g% are analytic functions in R Also
n

2T r. = 2n the dimension of M
i=I

Proof. Construct the coadjoint orbit on S* = as described previously.

From lemma 3.3.17 the involutive distributions on (0, uqg) were

constructed from a sequence of quotient algebras of the form

.c Ins + S/ (4.2.3)

The above sequence (4.2.3) can now be used to rewrite the sequence

of distributions as follows
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= * *
A] (Adécf) An (Adgf) a Ai (Adgf) Vg£EN
where A, (Adgf) is defined by da(Ads(Sn 1~ + SR)) (Adsf)
[
Let X£ S, Y £ Snl+l + Sf

so Y =Yx +Y2where YE< Snl1+1 , Y2£ SE

Now do(Adg Y2) (Adé[f) = 0 by definition of

Sf ={X £ S : daX)(f) (Z2) =0, V Z £ s} alternatively Y2 e Sf if

<f, [Y ,Z>=0,VZE S (A. 2.4)

Thus <Adgf, [Ad- Y2, Z]>

=<f, [Y2, Ad-Z]>=0 by (4.2.4) so Ad.Y2 e ?Ad*f

Hence [do(A%—X), do(Adg Y)j (Ad8f)

[do(Ad- X), do(Ad- Y] (Adtf)

do(Adg [X, YE]) (Ad*f) e do(Ad™ Sn_1+2) (Adgf)

- A1_1 (Adé(f) V ge N

R I A
Thus if Yc -h OS + Sf then by N - invariance on A" and the

above calculations
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lda (Ad. X), T 1da (Ad. Y)] (Adtf
[x_ (8 )_8( )](é)

’
*

=T1 [daAdz X), da(Ad, V)] (Adtf)

*

e t *(A A\ A 'JiAd-f)) Vge N (4.2.5)
* n 1-1 g

So by construction there exists a basis of Hamiltonian vector fields
da(Ad- Y'l) (Ad*f),. ,,da(Adg. Yr:D (Adjf), ,.,da(Adg.Y”)(Adgf),.,

g
da(Ad. Y1) (Adif), 1%$i Sn

g r g

which span Al (Adgtf), Vg € Non (O, 100). Let da(YI.) ,do(Ym) be the

Hamiltonian vector fields, which exist by transitivity, that span the

involutive distribution transversal to An'

Notice that it is possible to construct canonical coordinates on
(0, ug) similar to that on (M, to in theorem 3.3.23 by simple application
of the moment nep t, i.e. the condition

tV xj'E T*°\

was required, let x”1 da (Yfg = X and x~1 da (Y”) = X then

[da (Y), da (Y)le A

and there exists canonical coordinates
(a, m Reve-P ) on (0, @) such that

PL....... 3 P A 111 Sn



where
gi = (9*,...,.q* ) 1£i £n
1£i £n

B, o= (Px....Pr )

Observe that da (AdJ() (Ad*f) = Ad=  da(X) (f)
8 g oY

da (AOC) (Ad-f) (2)
g 9

*

<ad s - Adg-f, z gt N, ZE£L
9

- <Ad-f, [Ad-X, Z]>
g g
<f, Ad-1 [Ad-X, Z]>
g g
- <f, [X, Adz1 Z]>
<a “f, Adé-I >
Ad:  da) () @)

thus

[da(Ad-X) (Adtf), da (Ad- YA) (Adtf)]
Ad- . [da (X), da (Y)](f)
g * J

Also from the construction of the proof of theorem 3.2.8

da (YD(F) - 3, E}

(4.2.6)

108.
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and by invariance
AdA da (Y*) i
g * 3 (f) = 3/&}

i.e. Adl | = Adl * X~i (f) - X~i Ad* (Ad*f)
9 \/?’p' J jo g1 6

= 3/3bj

where X.i is the Hamiltonian vector field of
aj

So as da (X) e Ham (0, w), locally

[ Irk T - ]
1=1 k=l 3z 3p*
c span i3/ - 3/ - } (by 4.2.5)

After straightforward computation exactly of the form of theorem

3.2.9 with

Xg-=da (X) it is seen that

" Pi h (ql....... qi-1> + fo(ql........ qrn>
similarly for H . Now using the noment mep X, canonical coordinates
(g™........ af , pl....,p” ) can be found on (M, w) with H = x*H and

n n
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then

and also

as required.
Q.E.D.

Theorem A.1.3 gave the following formula for calculating the Volterra

series of a Hamiltonian system of the form (A.l.A) i.e.

Wh (t* °1....... VX = (Mh-l(tr el 7T -on_1. x), h(on)(x)}

(t, o™, x) = {h (t), hio~"Kx)

where h(0)(x))= gQyf(o)(x)

By use of the Campbell-Baker-Hausdorff formula and known identities
of Hamiltonian vector fields on symplectic manifolds this can be rewritten
in a form more amenable for calculation. The Campbell-Baker-Hausdorff

formula is given by

Yf(-0) . X (y (0)x) =1 ol ad* X (x)
fox g f o T 8
where ad = Xg, ad’;(r Xg = adle [Xf, Xg]J and yf(t) is the flow

of Xf Also note,
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DXL XD - X o

Now {h (t) (x), Mo™) (x)}

igQYf (t), gQYfO™)} (x)

"wooxXV (<t) U) eV f(0i>Ix))

ux) (yf(-t)* xg (Yf(t) x), Yf(-Oj)* Xg(Yf(ol) Xx)

® o j
=1 | 1°1 w(x) (ad®_ Xo (x), ad*_ X* (x)) (4.2.7)
i=zo j:O JTIT Xf g ... ~xf -g
The following detailed example of a strongly accessible, weakly
observable linear analytic symplectic realization of a finite Volterra

series shows the relevant computation.

Example 4.2.9 Consider the following system on (R4 | (g dpe)
i-1 1
gx =u gt ©
('12:qI2+qI+U qz(o)
pX W (2q1+Dp2 + g2 pl (0)
- s qi 02 (0

y (q9.p) ®mpx+p2
2
Here f - (gx + g~ p2 + g~ 2

g“Pl +P2



and
xf e «T * 1>V @1 *» m2sap, =M1 4 A Ap.
X *
¢ an "V
This system is strongly accessible since
, Xf] - <2~ * 1 - 2p2 */,Pi
Xg . Xf] ) p i a2
"V Dg,Xe[l] -2~
[XF . Dg* X1l - 20
Do, IXF Do, xfIll =2 /3Pi
and thus S = {ad\//(f , Xg LA is such that dim S(x) =dim TR V x e

and S is nilpotent.

It is weakly observable either by simple computation to check the

algebraic conditions of Krener and Hermann [13] i.e.

dg = dpx + dp2

dLX8="d*2q + p2 + q2 + qIn

=- (20x dp2 + 2p2 dgx + dg2 + dg”

112.
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dL[Xg,Xf] 8 =" d (2p2 + 2

=- 2 dp2
d L[xf[xg,xf]] 8 =d (2ql}
= 2 dql_
and from this it is clear that dim d”~.(x) = dim V x ¢ and

thus the system is weakly observable. Alternatively, it is easy to
show that a Hamiltonian system of the form (4.1.4) is strongly accessible

if and only if it is weakly observable from the observation that if he”

and d h=d{f, h) =w ([X* XY)

where u : X i—» w(X, ). Thus if {ad , Xg} spans so does d>£ For

L.A,

further details see Van der Schaft [31]. Moreover, if such a system is

weakly observable by Crouch [5] it is observable.

The following computations of Poisson brackets are required

{f, & =(2qL + p2 + "2 +ql

{f {f, g}} - ax(2q1+ 1
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{ {f, g}, if{f, g}}} =0

These are needed to calculate the Volterra series for this system.

W (t, x) =g (YE (1) X)
WL (t, x) ={h () (x), h (c?) (x)} (4.2.8)

where h(o) = g’™y™ (0)
Using (4.2.7), (4.2.8) becomes
O o )
1 | " a* w@adr X, ad* X) (x)
>° J=0 JT-J. f 8 f 8

Now u (Xf, X) ={f, g} andoj(Xf, [X, XY ) = {f{g, h}}
so (4.2.8) =a_ u(X , ad X) (x)
1 g xf g

+t u(adAr Xg' Xg) (x) + to% w(ad X * ad&g&) (x)
2 1 1

+ t2. w@d2 X, ad X) (x) +...
| xf g xf 8
A

= a,l * (x8. ada£ X8) (x) +t u(adA£ Xs' X8) (x)

(all other terms vanish)

- 0™ (2p2+ 1) +t (2p2 + 1)

(t - ax) (2p2 + 1)
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By (4.2.8)

w (t» A °2>x) = fWj U, °1>x) | h (<0 (x)}

u(x) (Xwi(t, 0l)(x)> \ (02 (x))

Again using the Campbell-Baker-Hausdorff formula this can be rewritten as

@.2.9)

—E o « t S d
A oW (t a »a\)l(f Xg) (03]

\ "2 (t - ai> /ag2
iwlt g} =0

Wt {f, g}} =2 (t - op

fwx, (f, (f, gh}} - O

Computing (4.2.9)
W2 (t, o1> a2, x) =2a2 (t - ap
Hence the Volterra series for this system corresponds to

ft
y(t) (2p2 + 1) (t - u (op dor

+ fol 5 4o (t - op u (a2 u (op do2dan

(0] (0]
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Notice that (t, o™, x) does depend on the state variable but
W (t, o, , X) does not. This is as expected from lemma 4.2.3 as
S is given by
3/ . 3i
S 2gx + 1) -
(2q ) 2P 3P! 3p2’
)
2ql Ko}
L.A.

3
which has step length 2i.e. ad® =0 V X C S

Further observe that is spanned by the Hamiltonian vector fields

[Xg, XE] and [X [XfF[X Xf]]] and  is spanned by [X [Xf[X Xf 11].

Corollary 4.2.10 With the same conditions as theorem 4.2.7 but with

S IL and stationarity assumed then the canonical realization is of

the form.
1
ql “ Algl gl
_ . i
92 = A2 + f2(qi) 2(ql>
+ 1 u r
e B2 R))

gn =Vvn + fn(ql...... V> gn L™y jx



s w8 3f 3
— oot — +—
P 2 3x Pn T 3gx
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i
2 Py +..,.+39n p_+ Sg%
i=l ey S 3l
1 3ql q
pn=A'n[;)n +°fo +£ . u Bo
. =l S
n n
X “ (gXeurnnnnn gqR. PX........ Pn)\ x(0) = XQ
H=P1V | +P2 (A2 + f2 (ql}) +---+ K (Angn + fn (ql ....... Vi> >
+ fo (ql ....... \%
gl =Hu =P1lgl +P2g2(ql} +” *+ Pn (ql ....... V 1}
+ 8o (ql....... an}
1ii$r

Proof. Follcws on application of lemma 3.3.25 by letting F “ expt 3"
«

where is the free vector field on (M, w), x(z ) =f so Ad f =
expt X,

follows from Ad - equivariance as previously shown. Also as the
w
commutator in this case for F = expt obviously vanishes, expt )2% is
a valid choice for an F which satisfies the conditions of lemma 3.3.25.

Furthermore,

f



and so clearly

ad~ : S1>---—-» Sl.
1

Now can be interpreted as those vector fields which vanish at f,

thuws

so  at : S1+ ew-> SI + S, (4.2.10)

A sequence of distributions satisfying the conditions of theorem
3.2.8 can now be found exactly as in the previous case using the

polarization of lemma 3.3.25.

As in theorem 4.3 of Crouch [5] there is a decomposition of

G =V Nwhere V is the one parameter subgroup with generator such

"y v o O KU K \ - X \ * s-

So as above

> sl + 4211
a% =S +Sf si+S, ( )

which is seen to be a linear endomorphism from Crouch [5],

Thus using the same basis for (Ad_f) as in theorem 4.2.8.,

(4.2.11) gives that

lib.



[da(Ad- X. ), da(Ad—Y.}] (Ad*f)
9 < g J 9

=@My v 7 s adie

i rk
= da (Ad- il | Y*)) (Ad~f)
k=l Ji=l

Thus, with the introduction of canonical coordinates as in

theorem A.2.8 on (0, “Q > this becomes

S ARV SN

3Ps 3PJ
| \
I_ 2 7 alJs 1Si Sn
k=l £71 £y
1Sj Sr
constants.

where g = (9”,...,,9" ) p = (p**,...,p" )
n n

As the other vector fields belong to S their structure is determined

by theorem 4.2.8. The required structure is obtained by observing that

H=t*H = i* (Hx + H2)

with f “ 0 by stationarity.
Q.E.D.
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4,3. Interconnections

In this section the systems of 8 4.1 are shown to be intimately

connected with systems that arise in the theory of electrical networks.

The results here depend on a system theoretical framework described
by Willems [32] and Van der Schaft [33], The basic motivation behind
this approach is that it is often difficult to determine which space is
actually the input space and which the output. Hence the following

definition.

Definition 4,3.1 A differential system in state space form is described
by:

(i) analytic manifolds X, W

(ii) an analytic bundle it : Bi— >X

(iii) an analytic mgp f : Bi—» TX x W for which the diagram

X commutes.

The system itself is defined by £ = {(x, w) : Ri—X x W: X
absolutely continuous and (x (t), w(t)) e f(w ™ (x(t)) a.e.}
and vi 11 be denoted by £(X, W, B, f).

Obviously analyticity in the above definition may be replaced by a
less stringent assumption but that is not necessary here.

To neke such a system Hamiltonian the appropriate extra structure

must be added to give,
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Definition 4.3.2 A Hamiltonian system in state space form is described by:

commutes

(i) (M, ) is a symplectic manifold of dimension 2n.

(i) (W, it ) is a symplectic manifold of dimension 2m

It can be seen, see for example Abraham and Marsden [1], that TM x W
can be nmede into a symplectic manifold by defining the symplectic form

to be

D=it"c U- &¢ ue on TMx W
where u is the induced symplectic form on the symplectic manifold ™
constructed from M, that is as u is nondegenerate it defines a bundle
isomorphism w from T™ to T*M by setting

w(X) = iX)w for X e ™

AL . . m A
as T Mis symplectic and has a naturally defined 1- form 9 then u 9
is al-form on TMand let w=dw* 9 which is now clearly a symplectic

form on T™M

Definition 4,3.3 If £M, W, B, f) is a system with M and W symplectic

manifolds then it is said to be (i) full Hamiltonian if f(B) is a
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Lagrangian submanifold of (TM x W, fi) and (ii) degenerate Hamiltonian
if there exists a full Hamiltonian system £ (M, W, B', f') such that

f(B) is a submanifold of f' (B1).

Definition 4.3.4 Let (M., oE) i=l...... k be symplectic manifolds. Then
(WAX...XWA, o u™+...+u* oY is a symplectic manifold. An interconnection

of (Wl')l'—’l is a submanifold | CZ V\ix. .XW, . An interconnection is

k
full (degenerate) Hamiltonian if | is a Lagrangian (co-isotropic) submanifold

of (VAX. .0xXWK, o w®+...+u* ujp.

After a number of restrictions are placed upon the above definition
it is shown in Van der Shaft [33] that Kirchhoff's laws are a special type
of interconnection. Also in Van der Schaft [33] it is shown that the

following theorem holds.

Theorem 4.3.5 Let T. (IM'i V\/I |B| f.) i=l..... k be Hamiltonian systems

interconnected by a Hamiltonian interconnection I ¢ W™x...xWA. Then the

resulting system is a Hamiltonian system

M. . XW> WIX. . X0k , Bf, fi)-

Proof. The product system is constructed given by

I (MIx...xMk, Wix...xWk, Bx, fx) of the systems ~ (ME, ., B., ff),
i=l.... k. Let x = (QN....... XN C MX ..xfA. Since tk : B> > are
fibre bundles there exists neighbourhoods lhc 1L of x* such that

it.* (LlJ.) TU' 1x F.l, F. is the standard fibre, Bx is now defined locally

1
as itx : (UjX. .. xUk) x (FIx...xFKk)i—>UjX. ..xUk.
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Next define fx :XB ’_*T(M,X'}'X,\Q) )fW I2(...xW locally as fx = (f ... f).
Obviously if y[ (NIL , \uN’iB' ; ff) are Hamiltonian then

y (M. XN, WAX...XWAE BA, f ) is Hamiltonian either full or degenerate.
Also the interconnected system must satisfy f_r (IBT) cz fX g(B ). Thus

definition 4.2.3 gives result. QE.D.

The main result of this section may now be given.

Theorem 4.3.6 A stationary linear analytic symplectic realization of a
stationary finite Volterra series can be decomposed into a set of linear

Hamiltonian systems with a full Hamiltonian interconnection.

Proof. Theorem 4.1.7 gives the conditions on the Volterra series for a
stationary linear analytic symplectic realization to exist. Furthermore
it is clear from the constructions given in the proof of theorem 4.1.7
that a Volterra series has a stationary linear analytic symplectic
realization if and only if it has a stationary bilinear synglectic

realization. This bilinear realization is in the form of system (4.1.11) i.e.

g =Ag +uNg +bu q@©) =0
-p =A'p + uNp + cu P(©O) =0
y =b'p +c'q +p'Ng
H/\* ° T '0
where A I/\\ : N = 2 o
o\v ’ Vv N
\ S \%
A 0] b cl.0

n nnl



with

bl 0
- C = -
0
0 Cc
i n

Pn
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This can be decomposed into n linear Hamiltonian systems as follows,

= Axgx + blull, qi(0) »

" Px* Alpl+ clR PI(0) =

~2= A2g2 +b2U* q2(0) =

- P2 A2P2 + C2W2* P2(0) “

interconnection | satisfying

u2 *u 1
1 y2
2 3

O%

Pn
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i-1
Ul=U y2

_ i+1
=u y.

n n-1
ui =u y?

with the usual symplectic form on W™x.,.xW” given locally by

dy™ A duj + dy™ A du® +...+dy”™ A duj + dy™ A du”. So on | this fora is,
with the usual assumption that u e ,

u d%x A dy% +u d)}z A dyzl +u dy>2< A d)%z +u dy% A dy§+...+ u dyX A dya'1

+u dyh'l dy" = 0.

Hence | is a Lagrangian submanifold since it is described by 2N
constraints on a AN - dimensional symplectic manifold and hence a full
Hamiltonian interconnection.

Q.E.D.

Schematically this can be represented by
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A similar decomposition procedure nmey be obtained for a linear
analytic Hamiltonian realization of the form appearing in Corollary A.2.9.

For simplicity assume only one control then this system nay be written

as n - linear Hamiltonian Systems of the form
! 0 1
© i = A + ~0) = gn i
ql xgx + v gqn0) =ag™ yi rl ql
i
- Pi =alpx + U Pj/0) =P* 5 I 0 pl
- rl
‘2 0 1
© g2 =A202 +V 920 =92’ yl 2 \%
2. 1 o0
- P2=A2P2 +V P20 =p2* y2 P2
L r2
n 0] ~-n
Ah *v gn° =V yi ° Il’n gn
n 0] n
Arf1|°n+V Pn° -V y2 ly 0 Pn

where Ir is the g x r™ identity matrix with interconnection 1
1

satis fying
k 1
U1S3M > VK G {I»... 1.._ 2 <*rn}
k 1
w 3V/3kyq

K 2g gv/xy2
ul

k 2 _

uo — 3V/3ky2

k u?_ m 3V/3kyn

k n .
VY



where ur'l(ﬂu"g ....... uld, 1{i $n
1ijsz2
i A ri iv
i © o<yi... \
and
" 2' , /71, n' , 1 n-lv /1 n.
v = yi f2(y2) "« vyl fn y2.... y2 ) fo (y2*,,,,¥y2
; ' 1 n-1 1
UM gx+yx o2 (yﬁ)+...+ yI' gn G2.. y2 ) + g0 B2 VD))
The symplectic form on is given locally by,
P YT det vdve U
yl- u tay
s k=l d U2
and on this form | vanishes since
|1 #.d
. + y2 - -k i
{=1 k=l 2 yo-
O % Y {s /32v ,u J§x32V ) ,ki_ J
|=1|k=I sI=I j'g'l &§ | {&J)Sll dyr dyi +'|é T .3Jy§ dyi - dy
n rn n r
Lo P s ~2 - am
J= k2l os3l j=1 \nsy2 doyd
32V Kl J s
i J s dy2 « dy2
ay2 3y2

is clearly zero as the wedge product ( ,,

12b

) is anti-symmetric.
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Furthermore, as V\{ = R4 i_ 1%$i $n and | is described by
Q

d r. =\ dim Wx...xWY constraints | is a Lagrangian submanifold
=1 3

and thus, by definition, a full Hamiltonian interconnection.



CGOVPLETE INTEGRABILITY OF NILPOTENT SYSTEVS

In this chapter a generalization of the concept of a transitive
abelian group action on a Lagrangian submanifold of a symplectic manifold
as in Liouville's theorem [2] is found by considering a nilpotent group
action which is the first stage to a control theoretic version of
Liouville's theorem. It is shown that such systems can also be

integrated by quadratures.

5.1 Integrability of Hamiltonian Systems

In this section a feasible framework is constructed in order to
look at families of Hamiltonian vector fields on a symplectic manifold
(M, w) which have a nilpotent Lie algebra structure. This, in some sense,
extends the classical case of complete integrability as given by Liouville'

theorem where, essentially,abelian Lie algebras are of interest.
First, however, the symplectic vector space case is investigated.

Let (V, u) be a 2 n - dimensional symplectic vector space and

QZ gl(V) a Lie subalgebra of Hamiltonian endomorphisms. Assune

« {vec V: H\) =0 for all Xye £ 1is an isotropic subspace
of V, and Wis a Lagrangian subspace of V transversal to the level surface
U i.e. idJ M f {0}. VI can be extended to a Lagrangian subspace, W,

as follows. If is not already Lagrangian then
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4 - X
It is claimed that U < + W for if Cl + W = & W<=u

= (o = ju
= N wC U so lxn W = {0} = A\ W= {0} = dim Jn
= dim Uj 3 n
which is a contradiction.
So there exists av e U\ v + W Let *U + £v then
dim = dim + 1. All that is now required is to prove that

is isotropic. So suppose

w £ O W = w=v*+ Xv with c = XV =w- c + W

but v 4t +W so X =0, this implies that we A\ W= {0} ==w=0.
In fact this automatically proves that Wis transversal to U, as well as
{2 being isotropic.

Continue by induction until Umis reached with dim Um= n =zidim V.

Let W= Umwhich is a Lagrangian subspace.

Proposition 5.1.1 Let (V, w) be a 2 n - dimensional symplectic vector
space with Wand W as above. Suppose X». Wc Wand X2 WC W,

\Y X"t £ and that the restriction Xl of X’\I .V XyI ££ , to Wis a
nilpotent endomorphism on W. Then there exists a symplectic basis of V

such that in canonical coordinates relative to this basis each X £ £

can be expressed by

Xh =/N 0
\o -Ny

where N £ Rwn is strictly lower triangular.
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Proof. By Engel's theorem 3.1.2 there exists an ordered basis for W, say
e ,...,e such that in coordinates relative to this basis each X can be
ql an

expressed by a strictly lower triangular matrix. Then, as in theorem

3.1.11 a complementary basis rmey be found on W, say e ....... e such
P1 pn

that (e ,...,e , e ,...,e ) is a symplectic basis on V.
a4 a, P "N
Let (qi.,...,qn, pi,...,pn) be canonical coordinates relative to

this basis then each X* takes the form

H a b a, b, c, d« R

as each X*<4.£ is by assumption infinitesimally symplectic.

Let (0, w)' £ W, then since X. Wc W, V X~ ejf.

Xij. (0, w)' = ~a D bw
c d .dw.
which implies b 5 0. Thus X* ‘a 0

and so H=p'a g +j g'c q.
But H=0onW so c =0onW &
and thus on V. Hence, X = /a @)
Vo -a
But X restricted to Wis strictly lower triangular, thus a = N

H

which gives the result.
Q.E.D.
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The following example introduces the concept of transitivity of a
nilpotent Lie group on a Lagrangian subspace of a symplectic vector space

as well as providing an example of proposition 5.1.1.

Example 5.1.2 Consider the following bilinear Hamiltonian system on

4
(R , J) with canonical coordinates (g, g”, p”, P2)

u
and H = P2QJ* = P2a» + P™» This can be expanded as,
gn0O) =0
gz (0) - o
(5.1.1)
Px (0) =0
p2 =0 P2 (0) =0
Now consider the level surface given by
Since and all other brackets vanish, L may be

described by p» = p2 =0. Thus L is a Lagrangian subspace of R and
further the restriction of the vector fields@ £ Lto L span L everywhere

and are nilpotent.

Furthermore, b}j introducing, the new coordinates Ay P - (5.1.1)

can be rewritten as in chapter 4.2 as,
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o 0 O 0O 0 O 0O 0 O 0 0 o @
qo0 o)

0 0 O 0O 0 O 1 0 O 0O 0 O
ql ql
o 0O 1 o 0 0 O g2 * U 0O 1 O 0O 0 O 42
0O 0 O 0 0 0 p, 0O 0 O 0O 1 O Ro
pi 0O 0 O 0 0 -1 ol 0O 0 O 0 0 -1 ol
:) 0 O 0O 0 O p2 _o 0 o 0O 0 O P2

\Y, vV,

on (RG, JG) with canonical coordinates (qQ, q”~ 2> Pq, p~ P2),

'3\ and initial conditions qQ0) = 1, ¢* (0) = g2 (0) = O,
k-1,

PO (0) =p°, px (0) =p2 (0) =0
Now it is necessary to pass to the extended level surface on

of L on R* in order to neke a comparison with proposition 5.1.1 where

U={ve RB:H (V) =0V Xet £e= (X", X} A}

Now H = p2 ot
Hu = P2gl + Plqgo
and {H6, H6} - - p,”™ with all other Poisson brackets vanishing.
So is an isotropic subspace described by p* “ p2 “ 0. In this case

the obvious extension is a Lagrangian subspace Wis



135.

W= (vC R6: H (v) =0, v X¥e e 6 and p = 0}
i 0

which may be described by p =p* = p* = 0.

Obviously theorem 5.1.1 can be proved with nilpotent replaced
by solvable and assuming the field over the Lie subalgebra £ cz gi. (V) is
algebraically closed, then by using Lie's theorem 3.1.14 each element of

[ has the matrix representation

*h S o\ where S C R is lower triangular.

.0 -sy
The next part of this section considers a globalization of the above.

Let { , Xij ,...,Xji } be a family of Hamiltonian vector fields on a
. 0. 1. m.. . .
2 n - dimensional symplectic manifold (M, w). Denote by£ the Lie algebra

generated by these vector fields i.e. = X~ Xn L XN n

and suppose its corresponding Lie group is given by G

Let expt X" represent the flow of the Hamiltonian vector field on M

VX £ . Define a group action on Mas follows

$:GXMi—»M

# (exptl XHo...0 expt™ X7, Xx)

= exptl X"o0.,.0 expt™ X~/.x

Consider the level surface

z
1
-~
x

£ M: H(x) =0, V Xh }



136.

For the rest of this section N is assumed to be a Lagrangian

submanifold of M

By Kostant's corollary 3.2.5 in a neighbourhood U of Nin M Mcan
5 ## # o . . . .
be identified with T N. As the results in the remainder of this section

are local, without loss of generality, Mis assumed to be T*N.

Let (q1 ....... “ptop e n) be canonical coordinates on T*N.

N can be thought of as being the zero section and thus defined by

Let A be a polarization in T*N transverse to the Lagrangian

submanifold N. By proposition 3.2.7 locally A is spanned by

Therefore the corresponding condition here to that of X W< W

in theorem 5.1.1 is

Xii, Al d AV Xi (5.1.2)

Proposition 5.1.3 Each Hamiltonian function, H, of a Hamiltonian vector

field on the symplectic manifold (T*N, satisfying (5.1.2), locally
n
has the form H=\ p ~ ~ ... gR) + fQ (g-"........ gR

Proof. It is sufficient to perform the following calculation with

respect to the canonical coordinates (ql,...,qn, p/....... PR



137.

r? 3H 3 OH 3 £ )3 -
. A Ap - T@- p
3p: 1R 1% 90y 3d, P /apj.
2 3/ £ A 3, 3H 3f 3 3H
-1 VvV g @ WL g P39 TS g
Aby (5.1.2) 1$j3j Sn
This implies 3 H 0, VvV 18Si, Jin
3p.3p.
R 2Ps
= His linear in each p®, 1i i Sn.
n
“> H*“ 1 Pifi ... VvV + fo (ql........ \
i=1 Q.E.D.

This structure does appear naturally as the following proposition

found in Abraham and Marsden [1] shows.

Proposition 5.1.4 Let expt ~ be the flow of a Hamiltonian vector field

X on a symplectic manifold (T*N, u ), where aN - \ dg, A do” locally.
H .

1=
Assume that expt Xjj : T*N i---—-—- >T*N preserves the fibres of T*N, then

locally the Hamiltonian function, H, is given by

H=1 pf. (qlt....qn) + fO <1!l....... qn>*
i=1
However, by assumption each H* 0 on Ni.e. on P™,,,=Pn = ® which
implies f (q_........ H) “0on N, and since it only depends on the q.
r o] 1

coordinates, on T*N. So each H=p'f (q) where g - (gx....... qR)’

p *» (p”,.. =,Pn)' for all £ £
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Again these structures appear quite naturally as the next proposition

from Abraham and Marsden [1] shows.

Proposition 5.1.5 Suppose expt is the flow of a Hamiltonian vector

field X on the symplectic manifold (T N, uij, and further assune that

it preserves the natural 1- form QN. NS T dON' Then, locally, H
n
is of the form H:‘)| Pl’fl (q1 ....... 'n)'

1=
The following structure theorem on nilpotent Lie algebras of

Matsushima [34] is of importance.

Theorem 5.1.6 Let Gbe a connected simply connected nilpotent group
with corresponding Lie algebra/Z . Then a basis X........ of/ can be
chosen which has the property {X™+7,...,X?} is an ideal of {X”,...,X"}
for i =1,...,n- 1, and hence every element in G nay be written uniquely
in the form expt~X~...expt™ XA

The Hamiltonian vector fields on M such that each Hamiltonian

function H=p'f (q) can be decomposed as follows, let

\ mh*xi

*H2 - x2 + x2

3
K =11 (it 8m) 3730+ - +fn(ql ....... gn) 3~ 2
n 3f|
| p k =1, 2
=i Kk . 3p.
J
. . . L . 3 3
A is the involutive distribution spanned by / ....... A and

vl Fn
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let An be the involutive distribution spanned by then

notice that
1*» *2] £ V [V X2] C A* [X1' *2] C A

and [Xx, X2] £ A

LetE= {X», ... A corresponding Lie group G which is
assumed to be nilpotent and acts transitively on N. Thus by Matsushima's

theorem 5.1.A there exists a basis X Xn such that each element in G

PR
can be expressed by
expt.,l )1( ..exptn Xn.
Let Xy t N then by assumption N : = expt,l Xlo...oeXPtn Xn' X,
Also since X™(X),... ,X(x) spans T™N, V x e N by transitivity, a
dual basis WI to X] can be chosen, i.e.
u (Xj) = 6_.j on N, 1ii, j Sn such that u spans T~ N,
i i
VxeN, liiin

Lenma 5,1.7 Let 6 be the natural 1- form on T*N, given locally by

n
p,dq,, and let w be the extension of u, defined by
o P i |

w.(X, ) =u. (X.) where each X} satisfies the above conditions.
17 1 J J

<3

n
Then Y p.d =
15T f 1=

YA

i
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Proof. It is only necessary to consider An' since both forms vanish

*

on the complement i.e. on A. Also, since = (x),.., .X%ix) spans TW,

¥ x e N, it is sufficient to consider the Hamiltonian vector fields

\ Lo *h * Thus
3H.
- B . (5.1.3)
le|dq| (v j iip P 30
and
\ , . (5.1.9)
1=1 ih 5XH.>1=1 j 3 Jif <V H "»i
n . n
ButsinceH.={ pI f’l\(q),H=L1pI3H
} i':ll b s 3p.
Thus (5.1.3) and (5.1.4) are equivalent.
Q.E.D.

Notice that under poisson bracket considerations that

Xr (ly ={iy H.} and that this vanishes on N i.e.
j X

XH, (V
J

thus the flow of each X £ does indeed stay on N.

Since G is a nilpotent transitive Lie group action on N the coordinate

system of Crouch [5]. Theorem 2.1.10 can be used to reparameterize the

g - coordinates on N,

That is

(A, G Ems (Meeery)
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where

= constant

¥« f2 Up

L " f,<h_.__W

where £1 are polynomials in the | - coordinates.
In 17™....... I coordinates X is given by
fl 781+ f2(y  /31.+,,,+fn (I1...... In-1) 31 (5,1,5)

Now introduce coordinates 4>,... & such that I| 9

T''n n | n
form canonical coordinates on a neighbourhood of T*N. The aim is to show
that there exists a local symplectomorphism from (qI,...,qn, pl,---,pn)
| - <)I>,»... ,$r} ]

mm

If His a Hamiltonian function on TEN with X* = X + X as before and

X as in equation (5.1.5), then H nmust be of the form

H- 2 ¢« Nf2(V +- +n (11.... W + fo (I j...... V
Locally N is defined by <#=.. «“4n - O thus fQ (I™,...,!) - 0O on
T N since it only depends on ., 1{ i ( n.

Theorem 5.1.8 Let (U, Yu) be a chart on X N with canonical coordinates

(g”i... »gn» PX........ Pn>and Xoe U- Let (v*V * Xo C V be a chart

on T*N with the above canonical coordinates (17....... > 4. .



Then, after suitable restrictions of U and V there exists a local

symplectomorphism f : U'i—>V', U cr u, Vcz V.

Proof. It is sufficient to prove that

As
n.
H=0d¢ ¢ d,.
j-i 3 3
Ij- n n
u h. =y I (5.1.6)
i=l 1 1 =l j.q
Ais° dij(\ ) m 5 . ] [ R vV P
$j
Thus, as wk (X7) = @k’
n
di. = vy u f1 (l1.......1. .) (56.1.7)
J i«l 1 J 1 J 1

Combining (5.1.6) and (5.1.7) gives result.

QE.

The above structure can be understood more fully with the aid of

an example.
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Example 5.1.9 Take as the state space (T*R4, w) where u = £dl . A d™

i=l 1
....... *4» .. ) being canonical coordinates on T*R4.
Suppose X =X1 + 1 ue ™ X(0) =X, xe TR4 where
o i=I H 0
H = *|
Hl = *2 + XI*3
h2- *3+ U
H3 =
et Vg
xhl= Mm2+xi /Ai3“ *3 »
\ n + X2 Bl4' 4 N2
h,- 4,
ut N~ = <*H0-v 1 V2— Y3}L.A.
It is clear that £ is a nilpotent Lie algebra since
[XH **H 1 = 3/313* *hi “ 3/314 and 311 °ther brackets

vanish.



Let

N is

with

Thus



Hence,

*1 dIl “ “1 Hi
%2 dl2 w2 H- VI dI2
B dI3 cugp 1 %31 d12- M X2 dI3 +* *1V 12

v4 di4="“4¥ +Uh dI3' +4 h X2dI2

Let p, = 48 ) g1 P2-V 2(11qdi2” 49
then din = «IHI
«2 «2'W2HZ‘ y|
A3 dI3 =U3H3 + Ul + y2
o dld At A2
S if O- 0, - “Mt ?22=Ul+y g~ *2
4 4
*0 and so | 4 dli
& . i=
But each ¢ dly =B wj » ¢ (. ¥

This example illustrates the difficulty of calculating the

coordinates in general, since the terms are not

necessarily closed, this nekes integration normally impossible.
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