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Summary.

Given a ring R and a monomorphism aR->- R, it is possible to
construct a minimal overring A(R,0) of R to which a extends as an
automorphism - this was done by D.A. Jordan in [163. Chapter 1 presents
this construction, and the remainder of the thesis is devoted to the study

of the ring A(R,a) and its applications.

Chapter 2 deals with the ideal structure of A(R,a) : the prime, semi
prime and nilpotent ideals are examined, and it is shown that if nil left
ideals of R are nilpotent, then the nilpotent radical of A(R,a) is nil-
potent. It is also shown that if R has finite left Goldie dimension n ,
then the left Goldie dimension of A(R,a) cannot exceed n - however, an
example is constructed to show that the ascending chain condition on left

annihilators need not be passed from R to A(R,0)

In chapter 3, several aspects of A(R,a) are studied under the
assumption that it is left Noetherian, and a question raised by Jordan in
[16] is settled by an example where R is a ring of Krull dimension 1 ,
but A(R,a) does not have Krull dimension. Examination of the Jacobson
radical of A(R,a) , and a proof of the fact that maximal left ideals of
left Artinian rings are closed, then leads to a generalization of a result
of Jategaonkar, which states that if R is left Artinian, then
“-1(J(R)) - )(R) -

Chapter 4 first finds a condition on R equivalent to A(R,a) being
a full quotient ring, and then finds a regularity condition on R which
is equivalent to A(R,a) having a left Artinian left quotient ring in the

case where R is left Noetherian with an a-invariant nilpotent radical.
Finally, A(R,a) is applied to the skew Laurent polynomial ring

R[x,x"\a] where a is a monomorphism, to obtain sufficient conditions

for RCx.x’1,«] to be semiprimitive, primitive, and Jacobson. Also,

equivalent conditions on R are found for R[x,x \o] to be simple.
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Conventions.

All rings will be assumed to have unity, but need not be commutative.
All modules over a ring R will be taken to be left R-modules unless
otherwise stated - the notation RM will signify that M is to be
regarded as a left R-module, while MR is the corresponding right-handed

notation.

The letter a will always denote an injective ring endomorphism such

that a(l1) =1 ; a will not be surjective unless specified otherwise.

If S£R then a_1(S) will denote the set {r e R | a(r) e S)

The abbreviations acc and dec stand for ascending chain condition
and descending chain condition respectively; "dim M' will mean the

Goldie dimension of the module M.

IN will denote the natural numbers {1,2,3,...} , INQ will denote

the set INu {0} , and Z will denote the integers.

If f:R #T is a function and S £ R then the restriction of f

to S will be denoted by fj$ .

If p is a property such that "left p" is not the same as "right p"

then to say that "A is p" will mean A is both left p and right p .



INTRODUCTION

In this thesis, the general situation we shall be concerned with
is that of a ring R, with a ring monomorphism a:R -mR , which will

not be assumed to be surjective.

The fact that a is not surjective makes it very difficult to
study the effect that it has on ring-theoretic properties of R : some
problems, which may be solved immediately in the case where o is an
automorphism, suddenly assume much larger proportions when a is not

surjective.

For instance, it is clear that if a is an automorphism, and
r e R is regular, then o(r) is regular. This is, in general, false
when a is assumed only to be a monomorphism, although it is known
(see [13]) to be true provided that R possesses a left Artinian left
quotient ring. Another striking deviation from the automorphism case

is that, given a left ideal | of R, a(l) need not be a left ideal.

It is evident, therefore, that automorphisms are much easier to
handle than monomorphisms, and it is with this in mind that D.A. Jordan
[16] constructs a minimal overring, denoted A(R,a) , of R, to which
the monomorphism a extends as an automorphism. This construction, along
with the important elementary facts about A(R,a) as proved by Jordan,

is presented in chapter 1.

Chapters 2, 3 and 4 are all concerned with the study of the ring

A(R,a) , and how its properties are related to the properties of R .



In some ways, A(R,a) is well behaved, but in other ways it can be
extremely difficult to handle - for instance, as will be seen in
chapter 1, if R is left Artinian, then so is A(R,a) , but on the
other hand, there are easy examples which show that it is possible for

R to be left Noetherian, but not A(R,a)

Chapter 2 deals with several ideal-theoretic questions about
A(R,a) which were not considered in [16] - here it is shown that
if R has finite left Goldie dimension, then so does A(R,a) , but
an example is produced to show that the ascending chain condition on

left annihilators does not persist on passage from R to A(R,a)

Although, as noted above, the left Noetherian condition can often
fail in A(R,a) even when R is left Noetherian, in [16], Jordan
found conditions on R which are equivalent to A(R,a) being left
Noetherian. It is the purpose of chapter 3 to study A(R,a) under

these assumptions.

Chapter 4 examines two aspects of the quotient ring problem for
A(R,a) , with the object firstly of finding conditions on R equivalent
to A(R,a) being a full quotient ring, and then of discussing when

A(R,a) has a left Artinian left quotient ring.

Part of the underlying approach to chapters 2 and 4 is that every
attempt is made to get around the bad behaviour of A(R,a) - thus,
rather than assuming that A(R,a) is (for example) Noetherian, it is

preferred to assume that R is Noetherian, and then to work towards the



same result. The best examples of how this approach can work are
the study of the nilpotent radical of A(R,a) , in chapter 2, and
the part of chapter 4 dealing with left Artinian left quotient rings.
Unfortunately, this ideal cannot always be attained, and it will

occasionally be necessary to assume that A(R,a) is left Noetherian.

An interesting application of A(R,a) occurs in the area of skew
Laurent polynomial rings. These have been studied (in the case where
a is an automorphism) by Jordan in [15] and [17] and by Goldie and
Michler [7], who showed that R[x,x ”~,0] could be used to solve certain
problems in group rings. The applications of A(R,a) depend upon the
observation that, given a monomorphism on a ring R, R[Xx,x \o] =
=A(R,a)[x,x \a] , where the a appearing on the right is an auto-

morphism of A(R,a)

Thus, once the relationship between R and A(R,a) is sufficiently
understood, the existing theorems about R[x,x \a] , where a is an
automorphism, nmay be extended to include the case where a is only a
monomorphism. This is done in chapter 5 with the results in [15] and

[17] on primitivity and simplicity of R[x,x ~,a]



CHAPTER 1

PRELIMINARIES.

This chapter contains virtually all the known results which will
be needed in the work ahead. First, ring-theoretical generalities,
such as terminology and localization, are discussed, followed by two
more specialized topics: the skew Laurent polynomial ring R[x,x \a]

and the overring A(R,a) - the central object of the thesis.

In general, proofs will only be included if they are not readily

accessible in the literature.



81. Terminology.

In this section, general ring-theoretic terminology is standardized,

and will apply throughout.

A subring S of aring R is said to be nil if each element of S
is nil potent, i.e. if for all x £ S, there exists nelIN with
Xn =0 . S is said to be nil potent if there exists n £IN with

Sn =0, and is said to have index of nilpotence n if Sn =0 f Sn ~ .

The nil potent radical N(R) of R is thesum of all the nil potent
left ideals of R ; it also coincideswith the sum of all the nil potent
right, or two-sided, ideals of R . Although in general N(R) need not
itself be nil potent, certain chain conditions may be imposed to ensure
that it is - for instance, Levitzki's theorem (corollary 1.8 of [3]),

states that if R is left Noetherian then N(R) is nilpotent.

If NR) =0, i.e. R has no non-zero nilpotent one-sided
ideals, then R is called semiprime; R will be called prime if for

all ideals A and B of R, AB =0 impliesthat either A =0 or

B=0. Anideal | of R will be called prime if R/l is a prime
ring, and | will be called semiprime if R/l is a semiprime ring.
The Jacobson radical, J(R) , is the intersection of all the

maximal left ideals of R, and if J(R) =0 then R is called semi-
primitive. It should be noted that J(R) coincides with the inter-

section of all the maximal right ideals of R .

The centre, C(R) , is the subring of R given by

C(R) =(r cR | sr =rs for all s £R}



An element ¢ of R is said to be left regularif rc =0
implies r =0, rightregular if cr =0 implies r =0, and

regular if it is both left and right regular.

If 1| is an ideal of R then c ¢ R is (left or right)
regular modulo I if r+l is (left or right) regular in the factor
ring R/l . Theset of regular elementsof a ring R is denoted by
CR(0) , and theset of regular elements modulo | is denoted by
CR(1) . The symbol 1 (I) (resp.CR(l)) will be used to denote the
left (resp. right) regular elements modulo | , and the subscript R

may often be omitted in situations where there is no ambiguity.

An R-module M is said to be Artinian if it has descending chain
condition on submodules; M is said to be Noetherian if it has ascending
chain condition on submodules. Thus, a ring R is called left Artinian
if it has descending chain condition on left ideals, and the terms right

Artinian, left Noetherian and right Noetherian are defined similarly

for R .
If R is a Noetherian (i.e., left and right Noetherian) ring,
then a left ideal | of R is said to be an Artinian left ideal if |

is Artinian as a left R-module. The sum of all such left ideals,
denoted A , is itself an Artinian left ideal. In fact, A is an
ideal, and by Lenagan's lemma, ([3], corollary 4.2) which states that
an ideal of a Noetherian ring is Artinian as a left ideal iff it is
Artinian as a right ideal, A is the unique largest Artinian left or

right ideal of R . It is called the Artinian radical of R .



An R-module M is said to have finite Goldie dimension if there
does not exist an infinite direct sum of non-zero submodules of M ;
M is said to be uniform if it is non-zero and any two non-zero sub-
modules of M have non-zero intersection. A submodule E of M is
said to be essential if E has non-zero intersection with each non-zero

submodule of M .

If M is a module of finite Goldie dimension then the maximal
length of a direct sum of uniform submodules is well-defined (see lenta

1.9 (b) of [3]), and is called the Goldie dimension of M

If S £ R then the set t(S) ={x eR | xS =0} is a left ideal
of R, called the left annihilator of S. A left idealof the form
JI(S) will be called an annihilator left ideal. Right annihilators

and annihilator right ideals are defined similarly.

A ring R is called a left Goldie ring if R has finite left
Goldie dimension (i.e., pR has finite Goldie dimension) and R has

ascending chain condition on annihilator left ideals.

Finally, a ring R is said to be left primitive if it has an irre-
ducible faithful left R-module, and an ideal | of R is said to be

left primitive if R/l is a left primitive ring.

82. Localization and Quotient Rings.

Let S be a multiplicatively closed subset of R consisting of

regular elements.



Then a left localization of R at S is an overring S
of R such that
(i) each element ofS is a unitof S R ;
(ii) each element ofS""R can bewritten inthe form s V,

where s eS and r e R .

It is well-known (see for example, p.118-119 of [12]) that S “R
exists iff S is a left Ore subset of R - i.e., foreach s eS and

re R, thereexists s eS ,{ c R such that s~r* r*s

If S is the set of all regular elements of R, and if S is a

left Ore subset, then S ”R is called the left quotient ring of R .

In general, a ring is called a quotient ring if each of its
regular elements is a unit. Note that if Q is the left quotient ring

of aring R, then Q is a quotient ring.

The following result is standard, and will be referred to later on.

1.1 Theorem:

Let R be a ring, S c R a multiplicatively closed left Ore sub-
set of regular elements. If Q and T are left localizations of R

at S, then Q is isomorphic to T .

Proof:

See p.119 of [12].



1.2 Definition:

(i) A prime ideal P of R is said to be left localizable if

C(P) is a left Ore subset of R .

(ii) Aring R is said to be local if R/JR) is simple

Artinian.

The following theorem is standard.

1.3 Theorem:

Let R be a prime, left Noetherian ring, P a left localizable

prime ideal. Then C(P) ¢ C(O) , and if Rp denotes the left local-

ization of R at C(P) , then Rp is a local ring with maximal
ideal RpP .
Proof:

Denote by | the set (r c R | cr =0 for some ¢ e C(P)}
Then, using the fact that C(P) is a left Ore subset of R, it can
be shown that | is an ideal of R . Since R is prime, if | s

non-zero then it is essential as a left ideal, so by Goldie's theorem
(theorem 1.10 of [3]), | -contains a regular element. This is clearly
impossible, so 1=0 - therefore C(P) ¢ C10) . To see that each
element of C(P) is also left regular, let ¢ e C(P) and consider
the chain z(c) ¢ i(c®) ¢ ... ¢c t(cn) c ... . Since R is left

+
Noetherian, there must exist k a 1 with t(ck) :t(ckl) . Let r «R



be such that rc =0 .

Since C(P) is a left Ore subset of R , there exists r§ e R

k kL
and ¢ e C(P) such that r~ =7r . Thus, r.|C =0, and
i £ ,(ck+l) =,(ck) . Therefore ~r =0, and since cl £ C(P) c ¢'(0)
(from above), r =0, and c is left regular. Therefore C(P) £ C(0)

Now consider Rp . Since Rp is left Noetherian, the increasing

chain Rch'1 £ Rch'2 £ ... of left ideals must terminate, for any

¢ £ C(P) . Therefore, for some k2 1, RpPc k =RpPc (k+ , and

hence RPP ZRFI?C"’\ . Thus RPP is an ideal of

oo

In fact RpP is a quasi-regular ideal, since for any c¢ ”a e RpP
(where c e C(P) ,aeP), 1-c"a =c’\c-a) , and both ¢ ™ and

c-a are units of Rp . Therefore RpP £ J(Rp)

To see that RpP isthe only maximal ideal of Rp et X be

an ideal of RP which is not contained in RFI)D

Then X nR|P (since Rp(X nR) =X) , and if <R R/P
denotes the natural surjection, <X n R) is a non-zero ideal of the
prime Noetherian ring R/P , so by Goldie's theorem <X n R) contains
a regular element of R/P , i.e. (X nNnR) nC(P) +& » so X =Rp .

Thus RpP is the only maximal ideal of Rp , andl(Rp)= RpP.

Now, R/P embeds inRp/RpP by means, of themsp r+P Zer+RpP
If c+P is a regular element of R/P, i.e. if c e C(P) , then
c + RPP hasinverse c¢c"' + RE)Pin RP/RPP ;furthermore each  element

of Rp/RpP is of the form (c + RpP)”"\a+ RpP) where c e C(P) and



and a e R . By theorem 1.1, Rp/Rpp is isomorphic to the left

quotient ring of R/P , which by theorem 1.28 of [3] is simple

Artiman.

Therefore, Rp/J(Rp) is simple Artinian, and Rp is local.

1.4 Definition:

Let R be a semiprime left Goldie ring, M a left R-module.
Then the singular submodule Z(M) is given by ZM) =ineM | cm =0
for some c¢ e C(0)>

The reduced rank p~M) of M is defined to be the Goldie

dimension of M/Z(M)

Remark:

(i) The fact that Z(M) is a submodule of M is a consequence

of the left Ore condition on C(0)

(ii) Note that it is possible for the reduced rank of a module to

be infinite.

The definition of reduced rank is now extended from the semiprime

case as follows.

1.5 Definition:

Let R be a ring such that the nilpotent radical N of R s
nilpotent and R/N is a left Goldie ring. If k z O is such that

¥
N =0, then the reduced rank of a left R-module M is defined by



k"Il i i+i
or) = E PRANQUIWNI+ M)

where =R and the reduced ranks on the right are calculated as

in definition 1.4.

The next two results provide an alternative definition of the
reduced rank of a module, which is used frequently in the literature.

Here, the composition length of a module M will be denoted by L(M)

1.6 Lemme

Let R be a semiprime left Goldie ring with left quotient ring Q ,
and let M be a left R-module. Then the kernel of the homomorphism

=M+ Q8R M given by <M =1 Qm is the singular submodule, Z(M)

Proof:

See Proposition 2.1, p.130 of [2].

1.7 Lenmme

Let R be a semiprime left Goldie ring with left quotient ring Q,

and let M be a left R-module.

Then dim(M/Z(M)) =L(Q fIR M) when either side is finite, and

dim(M/Z(M)) is infinite iff LQ fiR M is infinite.

Proof:
Consider the exact sequence O -mzZ(M) -“mM mM/Z(M) 0 . Since,

by corollary 3.32 of [19], Q is a flat right R-module, the sequence



- 10 -

0 QOR Z(M) “mQ ORV “mQ OR M/Z(M)- O

is also exact. But QOR zZM) =0 , which leaves the exact sequence
0 “mQ ORM “mQ OrM/Z(M) 0 ; therefore QORM and Q OR M/Z(M) are

isomorphic as left Q-modules.

It is therefore sufficient to prove the result for the case

where M is torsion-free (i.e., ZM) =0)

Let M be a non-zero torsion-free module, and suppose it contains
a direct sum Ml©" ©Mn of n non-zero submodules. Then, the

sequence

O—.©..©M,—)-¥,©..ﬁM M -“m0
n-1 n n

is exact, therefore so is the sequence
0- QOr(ML =..«Mn_1) v Q Or(M1 ©...© Mh) HQORWVh * O .

Furthermore, none of the tensor products appearing are zero, since

M is torsion-free, and by lemma 1.6.

This gives rise to a chain
0/Q0 "N ©..© M-1) j| QOr(M1L ©..© M) £ Q ORM .

Repeating the procedure now for the sum ©..© Mnj , and so on,

yields a chain

«Vi ;" A »NBYpeee UV H eooe"'»)



of length n of distinct Q-submodules of QOR M .
Therefore, dim Ms L(Q ORM) . (1)

Now, assume that Q OR M contains a chain

O*A £A27~ ... "Ahc QORM

of distinct non-zero Q-submodules.

Since Q is semisimple Artinian, each is a direct sumeand
of A.#1 (by theorem 4.3 of [19]), so QOR M contains a direct sum

B1 ® ... 8 Bh of non-zero submodules.

By lemma 1.6, M nmy be considered as an R-submodule of QOR M .
n
Clearly, the sum B.nM isdirect. In fact, each B. nH is

non-zero, for let c"* Oa be anon-zero element of B, where a ¢ M

Then, c(c.1 1a) =1i aeB. nfl (from lemal.6), and10a

is non-zero since M is torsion-free.

Therefore, M contains a direct sum of n non-zero submodules,

and

dim M 2 L(Q OpM)

In view of (1), the proof is complete.

The next important result of the section is the following:

1.8 Theorem (Warfield [21]):

Let R be a ring with nilpotent radical N . Then R has a left



Artinian left quotient ring iff (i) R/N is left Goldie;
(11) N is nilpotent;
(iii) p(RR) is finite;

(iv) C(0) =C(N)

Proof:

Use lemma 1.7 together with theorem 3 of [21].

83. Primary and Artinian Rings.

Let R be a left Artinian ring with Jacobson radical J(R)
Then R/J(R) is a semisimple Artinian ring, and by theorem 1.8 of
[6], has only a finite number of minimal ideals. Each minimal ideal is
generated by a unique central idempotent (by theorem 1.6 of [6]), and

these will be called the semiprimitive idempotents of R/J(R)

The purpose of this section is to show that if f e R is such that
4¢f) is a semiprimitive idempotent of R/J(R) , where $:R R/JR) is
the natural surjection, then fRf s a primary ring. It will also be
shown that a primary ring is isomorphic to a full matrix ring over a
completely primary ring. Primary and completely primary rings are

defined in definition 1.9.

Both these results are well-known, and they provide a useful method
for proving results about left Artinian rings: first prove the assertion
for completely primary rings, then for matrix rings over completely
primary rings, and finally for left Artinian rings, using the fact that

fRf is primary.



- 13 -

This method will be used in chapter 3, as will the results about

idempotents and matrix units which appear in this section.

1.9 Definition:
A left Artinian ring R will be called completely primary if
R/J(R) is a division ring. R will be called primary if R/JR) is

simple Artinian.

Note that if R is a completely primary ring then J(R) is the

unique maximal one-sided ideal of R .

1.10 Theorem:
A primary ring is isomorphic to a full matrix ring over a completely

primary ring.

Proof:

Let R be a primary ring. Then R/J(R) is simple Artinian, so
by the Wedderburn structure theorem, R/J(R) = M(D) where D is a
division ring. Now, by theorem 1, p.55 of [11], R = M(B) where

B/J(B) =D . Thus, B is a completely primary ring.

1.11 Definition:
A subset (e.. | i,j =1,...,n> of aring R is called a set of

J n

matrix units in R if re. =% and elj ckl * eU s)k = where sjk

is the Kronecker delta.

1.12 Lemma:
Let R be a ring which possesses two sets of matrix units

l1Js1,..,s} and f~ | k,t *i,..,t) , such that the rings



- 14 -

e~Re”~ and fkk Rfkk are completely primary, for each 1s i ss ,

1 skst

Then s =t and there exists a unit u of R such that

fij =u leiju » for =1"**s e

Proof:

See [11], theorem 3, p.59.

Recall that an idempotent element of a ring is said to be primitive

if it cannot be written as the sum of two non-zero orthogonal idempotents.

1.13 Lemme:
Let R be a ring with two sets of primitive orthogonal idempotents
S t
{e, 1'i =1,..,s} and if, 1j =1,..,t> such that =ze =1= ETf, ,
1 J 1= 1 =11
and the rings e1RF. and fJ.RfJ. are completely primary, for 1si s s ,

1sj st

Then s =t and if the fj are suitably ordered, then there exists

a unit u of R such that u"~u =, for all i =I,..,s

Proof:

See [11], theorem 2, p.59.

1.14 Lemme:
Let R be a left Artinian ring, and let e be a primitive idem-

potent of R . Then eRe is a completely primary ring.
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Proof:

To show that eRe is left Artinian, let (In)n=Q a descending
sequence of left ideals of eRe . Then, (RIn)n>0 is a descending
sequence of left ideals of R , therefore RI® =R I for all Kk
greater than some null. But since In £eRe for all n20,
eRel* = eRelk+] for all k2m, ie. 1 =Ilk+ for all k2m,

and eRe is left Artinian.

D
Therefore, PP is a semisimple Artinian ring. |If it has a
proper left ideal | , then by [6], theorem 1.12, | is generated by
an idempotent e~ . Thus, with +$ denoting the natural surjection,

<t =e| + (< -e) , and ej and $(e) - e] are orthogonal
idempotents. By proposition 5, p.54 of [11], there exist orthogonal
idempotents e and e~ of eRe such that e =43 , $(e)-e-| = $(eQ)
and e +eN =e .

This contradicts the primitivity of e , therefore no such left

ideal | exists, and eRe is completely primary.

1.15 Theorem:
Let R be a left Artinian ring with Jacobson radical J(R) , and

let e c R be an idempotent. Then J(eRe) =e J(R)e =eRe n J(R)

Furthermore, if e is such that $(e) is a semiprimitive idempotent
of R/J(R) (where < is the natural surjection) then eRe is a primary

ring.
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Proof:

The first assertion is standard - see proposition 1, p.48 of [11].

To prove the second assertion, denote <t¢ by e and consider

the megp <(i:eRe “me R/J(R)e given by i|<(ere) =e(r+IJ(R))e

Since e(r+J(R))e =ere +J(R) , is the restriction to eRe of
the natural surjection from R to R/JR) , and is therefore a well-
defined ring homomorphism. It is clearly surjective, and has kernel
eRe n J(R) . By the first part of the theorem, eRe n J(R) =J(eRe) ,

therefore =e R/JR) e

Since e is central in R/JR) , e R/JR)e =R/JR)e , and since
e is semiprimitive, R/J(R)e is a minimal ideal of the semisimple
Artinian ring R/J(R) . Therefore R/J(R) e is a simple Artinian ring,

and eRe is primary.

84. Skew Laurent Polynomial Rings.

Let R be aring, a:R-mR an automorphism, and x an indeterminate.
Then the skew polynomial ring R[x,a] is defined to be the set of poly-
m

nomials of the form I r.x (mz O, r. e R) equipped with the usual
i=0 1 1

addition for polynomials, and multiplication subject to the rule

xr =a(r)x , where r eR .

It is easily seen that the set {X1}*™ is a left Ore subset of
R[x,a] , so as in 82, the left localization of RCx.a] at

exists; it is called the skew Laurent polynomial ring and is denoted
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by R[x,x-1,a] . Since a is surjective, each element of R[x,x 1,0]
m i

may be written in the form I r.x where nmeZ.
i=n 1

This ring has been studied by Jordan in his paper [15], in which
he finds sufficient conditions on R for RLx,x \o] to be semi-
primitive, primitive and Jacobson. Recall that a ring R is said to be

Jacobson if each prime ideal is an intersection of primitive ideals.

He also finds, in [17], necessary and sufficient conditions for

R[x,x_1,a] to be simple.

It is the purpose of this section to present all these results:
in chapter 5 they will be generalized to the case where a:R “mR is a

monomorphism, not necessarily surjective.

1.16 Definition: ([15])

An ideal | of R is said to be an a-ideal if a(l) =1 . An
a-ideal | of R is said to be a-prime if for all a-ideals A,B of
R, ABE£ 1 implies either A£1 or BE£ I . R is said to be a-prime

if O is an a-prime ideal.

1.17 Proposition:
If R is left Noetherian and a-prime then R[x,x \a] is semi-

primitive.

Proof:

See proposition 2 of [15].



1.18 Definition: CI5]

(i) The automorphism a is said to be stiff on R if for all

non-zero ideals | of RCxx \a] , I nRf O.

(ii) a is said to be rigid on R if the mapping O from the
collection of ideals of RCx,x ~,0] to the collection of a-ideals of

R given by 0(1) =1 nR is a bijection.

(iii) R is said to be a-primitive if there exists a maximal left

ideal M of R which contains no non-zero a-ideals of R .

(iv) R is said to be aG if it is a-prime and the intersection

of all the non-zero a-prime ideals of R is non-zero.

1.19 Theorem:
If Ris a-primitive and a is stiff on R then RCx,x \a] is

left primitive.

Proof:

Theorem 1 of CI5].

1.20 Theorem:
If R is left Noetherian, R is aG and a is stiff on R

RCx.x* 1~] is left primitive.

Proof:

See theorem 2 of [15].

1.21 Remark:

In his paper [15], Jordan shows that theorems 1.19 and 1.20 are

, then
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logically independent, and that R[X,x \o] can be primitive without

R being a-primitive, or without R being aG .

1.22 Theorem:
If R is left Noetherian and a is rigid on R then R[x,x ,a]

is a Jacobson ring.

Proof:

See theorem 5 of [15].

1.23 Definition:

The automorphism a:R R is said to be inner if there exists a
unit ¢ of R such that, for each r e R, a(r) =c Vc . It is said

to be power-inner if, for some n 20, an is inner.

1.24 Theorem:
Rtx,x’\a] is simple iff both the following hold:
(i) R has no proper a-ideals,

(ii) a is not power-inner.

Proof:

See theorem 1 of [17].

85. Definition and Basic Properties of A(ft,a)

Let a:R “mR be a monomorphism, not necessarily surjective. As



mentioned in the introduction, the object here is to construct an
overring A(R,a) of R , to which a extends as an automorphism,

and which is minimal among all overrings of R with that property.

The first step is the construction of the skew polynomial ring
R[x,a] , which is defined (as in section 4) to be the set of all poly-

nomials of the form ir.x1 with the usual addition, and multiplication
i1

governed by the rule xr =a(r)x

As in section 4, the set {x1}.~ is a left Ore subset of RCx.a] ,
so it is possible to form the skew Laurent polynomial ring R[x,x ~,a] -
however, since a is not surjective, the elements of RCx.x’1,a] are
finite sums of elements of the form x ~rx1 where i,j £IN and r e R .

Note that multiplication is now given by xr =a(r)x and rx 1 =x ~(r)

Now, A(R,a) is defined to be the subring (x’rx’Iri R . i~O) of
R[x,x_1,a] . To see that A(R,a) is indeed a subring, all that is
necessary is to observe that, for any n£IN, i *0 and r c R,

and x"JsxJ are elements

of A(R,a) , then

;'isXj =X (i+]))Cq (r) +al(s)] xi+J £A(R,a)

and (X irxi)(x"Nsx”) =x“™+an(r)a*(s) xi+J £ A(r,a)

Thus, A(R,a) is a subring of R[x,x_1,a]

The monomorphism a is then extended to A(R,a) by defining

a(x"'rx’) =x_ia(r)x’ . Since, for any i 20 and r c R ,



a(x*Ni+1V Xi+1l) =X (i+1)a(r) xi+l =x'V x1 , a is actually an
automorphism of A(R,a) . No confusion should arise from the fact that

a denotes both the monomorphism on R and its extension to A(R,a)

Now, if S is another overring of R to which a extends as an
automorphism, then A(R,a) may be embedded in S by the nmep
X’Vx1-a_1(r) . Thus, A(R,a) is, up to isomorphism, the minimal

overring of R to which a extends as an automorphism.

The next few results, all of which appear in Jordan's paper tl63,

summarize some of the elementary properties of A(R,a)

1.25 Proposition:

An element xX'Vx1 of A(R,a) is regular iff for all n*O0

an(r) is a regular element of R .

Proof:

Assume x Vx1 is regular, let n* 0, and let s e R be such
that an(r)s =0 . Then (X’VX1)(x‘/N+n’s x1+n) =x ™M+W n(r)s x1+n =0 .
Hence X ™M+V x1+n =0, therefore s =0 and an(r) is regular.

Conversely, if an(r) is regular in R for all n* 0

(x’Vx1)(x"VxJ) =0 for some j 20, s £R, then

, and

Xx"(1H)al(r)al(s)x1l+ =0, which means that <»Vr)a (s) * 0 » and
therefore that s =0 , since al(r) is regular and a is a monomorphism.

Hence, X Jsx)J =0, and x'Vx1 is regular.

1.26 Corollary:

A(R,a) is a domain iff R is a domain.
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Proof:

Clear, from proposition 1.25.

_1|—\

1.27 Proposition:

An element x Yx1 of A(R,a) is a unit iff for sone n ™0 ,

an(r) is a unit of R .

Proof:

If x Yx1 is a unit of A(R,a) then, for some s« R and j 20,
(XY X" )(x"Isx)) =1 . Therefore x/~NI+J” (r)ai(s)x1+ =1, so

aJ(r)ai(s) =1 . Similarly, aYs)al(r) =1 , and a”r) is a unit of R.

The converse is similar.

1.28 Proposition:

If R is commutative then A(R,a) is commutative.

Proof:

This is a direct consequence of the definition of multiplication in

A(R.a)
1.29 Remark:
Consider the skew Laurent polynomial ring A(R,a) [x,x \a] , where

a denotes the extension to an automorphism of A(R,a)

Since A(R,a) is a subring of Rtx.x’Ya] , it follows that
A(R,a) tx.x"1,a] £ R[x,x_1,a] . But since R is a subring of A(R,a) ,

and a extends from R to A(R,a) , R[x,x Ya] =A(R,a)[x,x ,a]



Using this observation, in chapter 5 the results about skew
polynomial rings presented in the previous section will be generalized

to the case where a is not necessarily surjective.

86. Chain Conditions in A(R,a) .

In order to examine chain conditions and ideal-theoretic properties
in A(R,a) , it is clearly necessary to determine how a left ideal of

A(R,a) is related to the left ideal structure of R .

Let | be a left ideal of A(R,a) . The best way to visualize |
in terms of R is to define, for each i 20, aset |I. £R by
, i
putting I|I. =(r £ER | x rx el} . Then, | is given by the union

Il = Ux-Yx1, and the sequence of subsets (l.). n of R has some
i;=>0 1 11u
special properties.

Firstly, since forany i 20 and r e R ,x irxi =x N+1%a(r)xi+l ,
it is clear that r e. iff a(r) e l.+j - inother words,
a”""*(I"+H) = 1j = This provides the motivation for the following definition:

1.30 Definition: [16]

A sequence (M)-j>g subsets of R such that for all i 2 0,
a-1(I-j+i) = called an a-sequence.

Now let r,s c I, forsome i 20 . Then XVx’ and Xx isxi are
elements of | , and since | is a left ideal,x ’(r-sjxl1 e | , whence
r-s e l. . Also, if t e Rthen, since | is aleft ideal of A(R,a) ,
(x'1tx1)(x"1rx1l) =x'VX1£1I1 , so tr e~ and ~ is a left ideal

of R . Furthermore, since (Il-j)- j is an a_secluence* - N
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for any n* 0, and since IMn is a left ideal, Ran(1”) £ li+n -

Again, because (I")~qg ’'s an a-sequence, a n(Ran(I™)) £ 1

so that U a"n(Ran(l.)) £ e e Hence the following definition arises:
1

n*0 1

1.31 Definition: [161

A left ideal | of R is said to be closed if Ua-n(Ran(l)) s |
n*0
Thus, given a left ideal | of A(R,0) , there exists an a-sequence
(I.)... of closed left ideals of R such that | = U x M.x . This
11-0 i20

correspondence is now made more precise.

1.32 Definition: [16]

Let (1iNi&0 and ('Vi*O be a_se(luences closed left ideals

of R . Then, define a relation “s" on the set of a-sequences of

closed left ideals of R by putting * (J-piro iff Fi £ 70

for all i * 0 .

It is clear that "s" is a relation of partial order.

1.33 Theorem:

There exists an order-preserving bisection, r , from the partially
ordered set of left ideals of A(R,a) to the partially ordered set of

a-sequences of closed left ideals of R, given by

r(l) =(1~"~qg where ~ ={reR | xVxle 1}
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The inverse map, A , is given by

for any = U x1I x1

112U 2Q

Again, b

ajchis also order-preserving.

Proof:

173Th
See theorem 4.7 of [16],

1.34 Proposition:

If | is a left annihilator ideal of R then | s closed.
Proof:

See lemma 4.2 of [16],

The following result gives an important method of constructing

a-sequences of closed left ideals.

1.35 Proposition:
Let 1,] be closed left ideals of R . For each kaO, let

p.(I) = U a'n(Rant+k(l)) . Then
K naO

(i) p. (1) 1s a closed left ideal for all kaoO ;

@i) is an «-sequence;

(iii) pk(pn(1)) “ pk+m(l) for all ~Q e

(1v) 1f | ~J then Pk(l) ~Pjll) f°r all k20 =



The inverse map, A , is given by

*((IiW  =i"0 XV

and is also order-preserving.

Proof:

See theorem 4.7 of [16].

1.34 Proposition:

If | is a left annihilator ideal of R then | is closed.

Proof:

See lemma 4.2 of [16].

The following result gives an important method of constructing

o-sequences of closed left ideals.

1.35 Proposition:
Let 1,J be closed left ideals of R . For each k20 , let

p. (I) = U a"n(Ran+k(1)) . Then
K n*0

(i) Pk(l) 1s 3 closed left ideal for all kaoO ;
(ii) (pk(1))k20 1s an a-sequence;

(ill) PK(PIN(1)) - Pk+m(l) for all km * O ;

(iv) if 1 ~J1 then Pk(l) £PkQ) f°r k20 .

Proof:
(1). (11) : proposition 4.4 of [16];
(iii) : proposition 4.5 of [16];

(v) : lemmma 5.1 of [16].



1.36 Proposition:

Let 1¥ an “-sequence of closed left ideals of R .
Then for all i,k * 0, Pk(li) £ L+ .
Proof:

See proposition 4.6 of [161.

It is now possible to establish the first result about chain

conditions in A(R,a)

1.37 Theorem:
If R is left Artinian then A(R,0) is left Artinian.

Proof:

See [161, corollary 5.3 and theorem 5.2.

Having seen that the left Artinian condition is preserved on passage
from R to A(R,a) , the next property to look at is the left Noetherian

one. This is much less convenient.

1.38 Definition: [16]

An a-sequence (I™)~qg of closed left ideals of R is said to be

stable if there exists n * O such that for all i * n, (V. =*iH *
Note that the condition p-|("*) s ~+} for i * n is equivalent
to the condition pi(ln) =li+n for all i 20 , by proposition 1.35.

1.39 Definition:

The pair (R,a) will be called left Jordan if
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1.36 Proposition:
ible.

Let (1n)4>0 an a-secluence closed left idea! r
Then for all i,k * 0 , pk(li) £ l..+k

-dan"  will
Proof:

See proposition 4.6 of 116i.

It is now possible to establish the first eom. ' :
1t Noetherian iff R is left Jordan.

conditions in A(R,a)

1.37 Theorem:

If R is left Artinian then -t~* a * on may
Proof:
See [16], corollary 5.3 and tH
: (cf example 5.9 of [16]).
Having seen that the le*t , "' v ; ir the

from R to A(R,a) , th- next

one. This is much less

to be the K-algebra endomorphism such that
1.38 Definition: Hi

, and let <y> denote the ideal generated by y
An a-sequens;
..Thea asjly een that the sequence (IjL>n given by
stable 1f the® q 1
I. = <w» for each i 20 is an a-sequence of closed (left) ideals.
Note tint " pH1 an

N n .,
But forvAjach n >0, Ra (<y>) £ <y >, and since a (y) =y
ti ' . 'mquenct Hi)i

by theorem 1.40, A(K[y],a) is not Noetherian.

Iff» SV



1.36 Proposition:

Let be an a_se(luence °f closed left ideals of R .
Then for all i,k * 0, Pk(li) £ I+ .
Proof:

See proposition 4.6 of [161.

It is now possible to establish the first result about chain

conditions in A(R,a)

1.37 Theorem:
If R is left Artinian then A(R,a) is left Artinian.

Proof:

See [161, corollary 5.3 and theorem 5.2.

Having seen that the left Artinian condition is preserved on passage
from R to A(R,a) , the next property to look at is the left Noetherian

one. This is much less convenient.

1.38 Definition: [16]

An a-sequence (INJ.~gq of closed left ideals of R is said to be

stable if there exists n 2 0 such that for all 1i n, Pj(I™) = In4 .
Note that the condition pj(lj) mli+1 for all i 2 n is equivalent
to the condition pi(In) mli+n for all i 20, by proposition 1.35.

1.39 Definition:

The pair (R,0) will be called left Jordan if
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(i) R has acc on closed left ideals and

(ii) every a-sequence of closed left ideals of R is stable.

Remark:
If no confusion arises, the phrase "(R,a) is left Jordan" will

often be abbreviated to "R is left Jordan".

1.40 Theorem:

The ring A(R,a) is left Noetherian iff R is left Jordan.

Proof:

Theorem 5.6 of [161.

The following example shows that the left Noetherian condition may

easily be lost en route from R to A(R,a)

1.41 Example: (cf example 5.9 of [16]).
Let K be a field, and let KCy] be the polynomial ring in the
indeterminate y over K . Note that KCy] is a commutative, Noetherian

ring.

Define a:KCy] K[y] to be the K-algebra endomorphism such that

2
a(y) =y , and let <y> denote the ideal generated by vy

Then, it is easily seen that the sequence (I">q 9*ven
I. =< for each 1*0 is an a-sequence of closed (left) ideals.
nH on+ . n 2n
But for each n* 0 , Ran (<y>) £ > > and since a (y) =y ,

it is clear that y { a n(Ran\<y>)) . Thus, the sequence

is not stable, so by theorem 1.40, A(K[y],a) is not Noetherian.
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The final result is perhaps surprising, in view of example 1.41.

1.42 Theorem:
If R is a semiprime left Goldie ring then A(R,a) is a semi-

prime left Goldie ring.

Proof:

Corollary 7.4 of [16].



CHAPTER 2

THE IDEAL STRUCTURE OF A(R,g).

As was shown in the work of Jordan [16], in order to study the
left ideals of A(R,a) , it is necessary to analyse the a-sequences

of closed left ideals of R .

In this chapter, the a-sequences which give rise to prime, semi-
prime and nilpotent ideals of A(R,a) are isolated, together with the
a-sequence that corresponds to the nilpotent radical of A(R,a) . These
results are then used to obtain weak conditions on R which ensure that

the nilpotent radical of A(R,a) is nilpotent.

Similar techniques are then applied to subrings, rather than left
ideals, of A(R,a) to show that if R has the property that all nil
subrings are nilpotent with bounded index of nilpotence then A(R,a)

has the same property.

By examining the a-sequences r(lk) (k e A) , where (lk | ke a}
is a collection of left ideals of A(R,a) whose sum is direct, it is
shown that left Goldie dimension cannot increase on passage from R to
A(R,a) . However, an example is then constructed which shows that the
ascending chain condition on annihilator left ideals need not be passed

from R to A(R,a)

First of all, a new correspondence is introduced, which is sometimes
easier to apply than the a-sequence method. This is the correspondence
between the collection of a-invariant left ideals of R and the collection

of a-stable left ideals of A(R,a) , and will be quite useful later on.
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81. ot-Invariant and a-Stable ldeals.

2.1 Definition:

Let R be a ring, a:R <R a monomorphism. Then a left, right,

or two-sided ideal | of R is said to be a-invariant if <) £ |
| is said to be a-stable if | is a-invariant and a (l) £ |
For the purpose ofthe following theorem, let A denote the

collection of a-stable left ideals of A(R,a) , and let 8 denote

the collection of a-invariant left ideals of R .

Note that "a-stable left ideal of A(R,a)" means a left ideal

which is stable under the automorphism on A(R,a) which extends a

from R .

2.2 Theorem:

Let | be an a-stable left ideal of A(R,a) , J an a-invariant

left ideal of R .
Define K({) ={r« R|] xVx1el for some i 2 O}
G(J) =(x"ax1 | ael ,i *0}

Then (i) K(I) « 8, G(J) e A; GB A and KA »8 are order-

preserving maps;

(ii) &K =id. and ICG() = U a'n(l)
u * u O

Proof:

(i) First note that K(I) =1 n R . Indeed, it is obvious that



I nRE k() . |If, on theother hand, r £ K(I) ,then xVx1 £ |
for somei * 0 . Since a(l) £ I, a (x 'rx1l) el , or
XN(rjx1 £1 , thatis, r £1

Thus K() =1 nR , so clearly K(I) is a left ideal of R,

with o (K(1)) £ K(I)
Now consider G(J) .Clearly, 0 £G() andif a£] ,i2 0,

(xMax1l) + (x'M-ajx1) =0, so that each elementof G(J) hasan

additive inverse in G(J)

let Tr£R,j 20 and b £l

Then (x*'W) + (x~axl) =x" N+"~[al(b) + al(a)]xi+] , and since
J is a-invariant, a”b) £J) and an™@) £J , whence G(J) is closed
under addition.

Similarly, (x'Jrx]))(x~axl) =x'~+H"a’(r)al(a)]xi+) , and
since the left ideal J is a-invariant, a”~(a) £J , so that G(J)

is a left ideal of A(R,a)

To see that G(J) is a-stable, let x”ax1l £ G() , where a £
Then afx”ax1l) =x”"afajx1l , which is an element of G(J) since J s
a-invariant, whence a(G(J)) £ G(J) . On the other hand, it is clear
(by definition of G(J)) that x M+*ax’+ € G(J) . But

a(x‘ N+l Naxl+l) = x ax’ , and therefore a'~Gil)) ¢ G(J)

It is obvious that G and K are order-preserving.



(ii) Since K() =1 nR , GgK() =G(I nR) , so that
GaK(l) = (x laelnR, i 20} . If x"ax* £ GK(l) where
af£l nR, then a ”™a) £1 since | is a-stable; thus x”axlE£ |
On the other hand, if a £1 , say a =x Vx1, then al(a) €I
since | is a-stable, whence r £1 n R, and a £ G(l n R)

Thus, GgK(l) =1

Now let r £ KgG() . Then r =x ~x1 forsome a £ and

i 2 0 ,i,e. al(r) =a , and r £ Ua'n(J)
nsO

If r£ Uan(@) , then a~r) £J for some i s 0, and

therefore XV ~*Jx1£G(J) . But x~(rjx1=r , SO

r£G(U) nR=KIG(U) . Thus ICG() = Ua'n())
=0

2.3 Remark:

(i) If I and J are right (or two-sided) ideals in the above

theorem, then the same method of proof shows thatG(J) and K(l) are

also right (or two-sided) ideals, and that G and K have the same

properties as those asserted in the theorem.

(ii) Although K(I) was only shown to be an a-invariant left
ideal of R, it is in fact a-stable. To see this, let r ¢ R be
such that a(r) e K(I) . Then x ~a(r)x £ GgK(l)=I, by part (ii) of

the theorem. But Xx"7a(r)x =r , whence r £ 1 n R =K(l)

The next result gives a very useful property of the a-sequences

which correspond to a-stable left ideals of A(R,a)



2.4 Proposition:

Let | be an a-stable left ideal of A(R,a) , and denote r (I)
by (lH)isO e Then !i =X for all i= 20 =
Proof:

Without loss of generality, assume i >j . Let r £1. , so that
X'Vx1l« | . Since | is a-stable, al J(x Vx1) e I, i.e.
-V-J~rx1el , and therefore xJrx] el . So Ii£1_

i

Now, if rel. , then Xx”rx™» e |l , and since | is
j-1(1) £ 1 , Therefore, XM1(X’ " rx™M)x1~e |, i.e. X!
and re 1. Thus |. =1Ij
Remark:

In view of theorem 2.2 and the importance, already shown, of closed
left ideals, it would be interesting to know whether there is any
relationship between the closed left ideals and the a-invariant left
ideals of a ring. The following proposition begins to answer this

question.

2.5 Proposition:

Let R be aring, and let | be an a-stable left ideal of R .
Then | is closed.
Proof:

Let n* O . Then a“n(Ran(l)) £ a‘*n(RI) since | is a-invariant,
therefore a n(Ran(l)) £ | since | is a-stable. So | is a closed

left ideal.



In general, an a-invariant left ideal does not need to be a-stable
in order to be closed. For example, let R =K[y] where K is a field

and y an indeterminate, let a:R + R be the K-endomorphism of R

such that a(y) =y2 , and let | be the ideal y R . 2
Then | is a-invariant and closed, but it is not a-stable, since
y *a_ 1l

Note that in this example, by 1.41, R is not left Jordan. In
the case where R is left Jordan, the following theorem shows precisely

which a-invariant left ideals are closed.

2.6 Theorem:

Let R be a left Jordan ring and let | be an a-invariant left
ideal of R . Then | s a closed left ideal iff | is a-stable.
Proof:

If 1 is a-stable, then | is closed, by proposition 2.5.

Conversely, suppose that | is closed. Then a’l1(l) is also

closed. To see this, first note that for n =0, a n(Ran(a ~(1))) =a 7(I)

since a"~(l) is a left ideal.
Now assume that for some k 2 0 , a k(Rak(a "*(1))) s a \1)
Then o° <k+1,(Rak+1(a’ 1(1))) =a'(k+1)(Rak(a(a'l(l))))
¢ a-<k+1>(Rak(l)) Since ato'V)) £ |

» a * V k(Rak(1)))

Ca_l(l) since | is closed.



By induction, U a n(Ran(a ~(1))) za ™1) and a (1) is
moO

closed. Note that the above argument did not require R to be left

Jordan, nor | to be a-invariant.

Now, for each k 2 0 , consider the sequences )i >0

ideals of R, where

| for i =k
Tki p._k(l) for i uk
a_(k_i)(i) for 0~i sk
and is as defined in proposition 1.35.

So the sequences look like:

(Wir0 : I p3(l) P2(1) P3(1)
Alin O : a"l(l) I PAI) P2(1)
(2invo 220 ari) I P(1)
and so on

By proposition 1.35, (Jo i is an a*se<luence of closed left

ideals. Furthermore, the sequence (dQi®i=0 ’'s a descend’n9 one* To

see this, let r ep.(l) for some i 21, so that an(r) c Ran+i(l)



for some n20 . Since | is a-invariant, an+1(l) ¢ an¥~ (1)
so that an(r) e Ram ~1) , and r e a n(Ran+™ ~(1)) £Pj_j ()

(Note that Pqg(l) =1 . since | is closed.)

As was shown above, a ~(1) is closed, and applying that argument

4
inductively shows that a (1) is closed, for all k20 .

Since | is a-invariant, (a n(l))nfo ’'s an "ncreas'"n9
sequence and this, together with the fact that (Joi =0 is a
decreasing sequence, shows that ( 2)i>0 is a decreasin9 sequence,

for each k 20 .

Therefore, ((J. .). n) is an increasing chain of a-sequences
1u kO

of closed left ideals of R .
By theorem 1.33, (A(. .). n) is an increasing chain of left
ksO

ideals of A(R,a) . Denote the left ideal MJki)i>0 by Jk » and

let J denote the left ideal u .
k*0 K

We now want to find the a-sequence r(J)
Let XVx1€J for rcR,i 20, andlet k20 be such that
x_irx’ elJk . Then r e , by definition of Jk , and by uniqueness

of the a-sequence r(Jk) < Since each (dk”N>0 ’s a descending

sequence, it must be true that J. . £ Ua n(l)
KL nsO

Thus, r(J)i, (i.e., the ith term of the a-sequence r(J)) is

contained in Ua n(l)
n*0



On the other hand, if re Uan(l) then r e a’n(l) for some
mo

m=>0 , so that r e Jm,8 . But Jm,8 :Jm'-i-i,i' . Thus

X Vx’ elmr=] |, and ua"n(l) c r(J).j
Therefore, r(J). = Ua n(l) for each i 20
1 =0

But R is left Jordan, so A(R,a) is left Noetherian, therefore
there exists i 2 0 with =y

Since r(J,) = (J,fi)i20 . equating the term of the
a-sequences r(J) and r”~ ) gives

I = U a'n(l)
=0

Thus, a ~NI) c | and | is a-stable.

2.7 Remarks:

(i) Not all closed left ideals are a-invariant, even in the left
Jordan case. For example, let K be a field, a:K =K a monomorphism
which is not an automorphism, and let R =K 0 K. Define a:R ‘mR by
a(x,y) =(y,o(x)) . Then R only has two proper ideals, 4 and g

where ¥ =(0,K) and I~ =(K,0) . Both I and I~ are closed,

also a"~(j2) =1j , and a’~(-|) =Ilg . Thus there are only two
distinct proper a-sequences of closed ideals: 1, lg, Ij, or
i2« 1-j, 12» ... . both of which can be seen to be stable. Thus, R is

Jordan, but clearly neither ~ nor ”~ is a-invariant.



(ii) On the other hand, a—inva&)iant ideals need not be closed.

For example, consider the ringR = n R. where, R.=R, = Z the

1=l 1 L

ring of integers, and R*=(Q , the rational field, for i~ 3

Define a:R R to be the monomorphism such that
a@N .an.an. ===) = (a| ,a| ...) , and let J denote the

ideal (2z, 2z, ¢ , 0, Q,...) of R . Clearly J is a-invariant.
But a(J) ={(alta2,a3,...) | a1l =a2 ; alta2,a3 £w.; ai £9d
for i =>4} ,
Ro(J)) =(@2Z, 2Z, H 0, ....) and

therefore a ~(Ra(J)) =(2z2,z2, P, Q ...) il

Thus J is not closed. Note that
(2,0,0,...), (2,22, 0, 0 ...) , (2, Zz, Q 0O, ...)

etc., is an infinite ascending chain of closed ideals, so that R is

neither Noetherian nor Jordan.

82. Prime and Semiprime Ideals.

The aim of this section is to determine precisely which a-sequences
of R give rise to prime, and semiprime, ideals of A(R,a) . In order
to achieve this, we define a sort of term-wise multiplication of
a-sequences; once this is done, the characterization of the prime and

semiprime ideals of A(R,a) is quite convenient.



(ii) On the other hand, a—invaogiant ideals need not be closed.

For example, consider the ringR = n R. where, R=R, = 2 the
1=l 1 1
ring of integers, and R* =1) ,the rational field,for i 23
Define a:R -mR to be the monomorphism such that
a@" .ag.aj....) =(j.aj,a2,a3>...) , and let J denote the

ideal (2z, 2Z, Q, Q, Q,...) of R . Clearly J is a-invariant.
But a(J) ={(a~.a™.an,...) 18~=82; 3 2,32 eTL; & «(
for i =>4} ,
Ra(J) =22, 2Z, 6 Qe ) and

therefore a ~Ret(0)) =(22,2, @ Q ...) t ]

Thus O is not closed. Note that
(2, 0, 0, ...) , (2,2, 0,0 ...) , (2,2, S 0, ..))

etc., is an infinite ascending chain of closed ideals, so that R is

neither Noetherian nor Jordan.

52. Prime and Semiprime Ideals.

The aim of this section is to determine precisely which a-sequences
of R give rise to prime, and semiprime, ideals of A(R,a) . In order
to achieve this, we define a sort of term-wise multiplication of
a-sequences; once this is done, the characterization of the prime and

semiprime ideals of A(R,a) is quite convenient.



First of all, it is necessary to find those a-sequences of

left ideals of R which produce two-sided ideals of A(R,a)

2.8 Definition:

A right ideal |1 of R is said to be a closed right ideal if

Ucfn(an(l)rR) c 1

2.9 Proposition:

Let (li)d~o an “_setluence closed left ideals of R .
Then A ((l1.)~qg) is an ideal of A(R,a) iff each |. is a closed
right ideal.

Proof:

First assume that | = is an ideal of A(R,a) and
let j,k 20 .

Then (X"~ jXJ)(x’ N +k™RJ+k) ¢ | since | is an ideal,

i.e. x'(j+klak(lj.)Rxj+k c i

or ak(l.)R c¢ lj+k

But 1S an *“'Sequence, therefore

a k(ak(lj)R) £ 1j » for each k z 0 .

So IJ. is a closed right ideal of R, for each j i O .



Conversely, assume that each |, is a closed right ideal. By
theorem 1.33, | is a left ideal of A(R,a) . Let i,j so and let
r,s e R such that xVxlel - i.e., re ro*

- i - _ L

Then (x rx Wx ASXN) = X< S)Xi+] e
Since (r) . 4 which is a right ideal of R , anr)«l(s) « li+j
thus Ix’Vx1)(x‘jsxJ) el , and | is an ideal of A(R,a)

The term "closed ideal" will be used to refer to an ideal of R

which is closed both as a left and as a right ideal.

2.10 Definition:

Let A, B and P be left ideals of A(R,a) and denote the
a-sequences r(A) , r(B) and r(P) by (A.)™ , (B.).sQ and
(Pi)i >0 respectively.

Then the product of r(A) and r(B) , denoted r(A)r(B) , is

the sequence (A..B.)~qg of left ideals of R .

The notation r(A)r(B) s. T(P) will mean that, for each i 20 ,
AiBi £ Pi *

Let r(P) be an a-sequence of closed ideals of R . Then, r(P)
is said to be prime if, given any two a-sequences [r(A) and r(B) of
closed left ideals, r(A)r(B) c r(P) implies that either r(A) c r(P)

or r(B) c r(P)

Remark:
It is not claimed that the product of two a-sequences is again an

a-sequence.
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The following result, which characterizes the prime ideals of
A(R,a) , will be needed to prove theorem 3.9, which concerns the

localization of A(R,a) at a prime ideal.

2.11 Theorem:

An ideal P of A(R,a) is prime iff the a-sequence r(P) of

closed ideals is prime.

Proof:

First, assume that r(P) is a prime a-sequence of closed ideals
of R . By proposition 2.9, P is an ideal of A(R,a) . Let A, B
be left ideals of A(R,a) with AB £ P, and let r e A.B. for some

ii0. Then r = 2 a~ where x 'ax cA and x b eB for

k=1I,..,n

But x Vx1= Iél(x Vv % ) (x ’\bkxl) £AB , so that r e (AB)1 ,
and consequently AB. £ (AB).. for each i 20.

Now, AB £ P, therefore r(AB) s r(P) , and so AN E£P~ -
i.e. r(A)r(B) £ r(P) . Sincer(P) is prime, either r(A) £r(P) or
r(B) £r(P) , and applying 4yields that either Ac p or Bc p.
Thus, P is a prime ideal of A(R,a)

Conversely, assume that P is a prime ideal of A(R,a) , and
let r(A) and r(B) be two a-sequences of closed left ideals of R
such that r(A)r(B) £ r(P) . By proposition 2.9, r(P) is an a-sequence

of closed ideals of R .

Let r ¢ (AB for some i z O .
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By o A "
Then x Ir>|< e AB , i,e. X Irlx =1 (x—lka.x]'k )(xl\k b.>l<\k*)
k=l k k
-i i, -,
where x Ka™~ ke A and Xx x e B for k=I,...,n

Let j =max{ik,jk | k=I,.,,n)

Then

i S n J-ik J-lk 7 -
X X =X Za k(3k)a kb ) X

k=l k k 1
1.e.
k=l
n i+j-i i+j-j
and hence al(r) = Za k(ak)a k(bk) =
k=1 k k
Since ak e A. and (A. is an a-sequence,
i+j-i,, i+j-j,.
(ak) <Aik+i+H-ik =Ai+j * Similarly, a (bk) * B.+
Thus aj(r) e Ai+J Bi+J , and since T(A)r(B) cr(P) , aj(r) e Pi+J

But ( P . i s an a-sequence, so that r e Pi

So, (AB)£ P~ for each i 20 , whence r(AB) ¢ r(P)
Applying Ayields ABc p and since P is prime, either Ac P or

Bc P .

But this means that either r(A) cr(P) or r(B) cr(P) , and

r(P) is a prime a-sequence.
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2.12 Corollary:

A(R,a) is a prime ring iff there do not exist two non-zero

a-sequences of closed left ideals of R , whose product is zero.

Proof:

Put P =0 in theorem 2.11.

2.13 Example:

Let R and a:tR R be as in 2.7(i), that is, R =K 8§ K where
K is a field and a(x,y) = (y,c(x)) where aK K is a monomorphism
which is not surjective. Then the only two proper a-sequences of closed

ideals are

(0.K) , (K,0) , (O.K)

and (K.0) , (OK) , (K.O)

Since their product is zero, corollary 2.12 shows that A(R,a) is

not a prime ring.

2.14 Corollary: (cf 6.1 of [16])
If R is prime then A(R,a) is prime.

Proof:

Let (A)"Q and be twO a_se(luences closed left

ideals with A™. =0 for each i 20 .



Since R is prime, one of the sequences, say (A"),>0 ’° must
admit an infinite subsequence (A. ) with A. =0 for all k~O .
"k k=0 'k
Let i =0 . Then, there exists k2 0 with i~ >i , and
therefore A. =a'—'|’§(A. ) =0 .
1 'k
So A =0 for all i * 0, and by corollary 2.12, A(R,ct) is

a prime ring.

We now turn our attention to the semiprime ideals of A(R,a)

2.15 Definition:

An  «-sequence r(P) of closed ideals of A(R,a) is said to be
semiprime if for any a-sequence r(A) of closed left ideals of R ,
r(A)n£ r(P) for sore n e M implies that r(A) £ r(P)

Note that the multiplication of a-sequences in the above definition

is as defined in definition 2.10.

2.16 Theorem:

An ideal P of A(R,a) is semiprime iff the a-sequence r(P)

of closed ideals is semiprime.

Proof:
First, assume that r(P) is a semiprime a-sequence of closed
ideals, and let A be a left ideal of A(R,a) which satisfies

An £ P for sore nelN . By proposition 2.9, P is an ideal of A(R,a)



Let 120, andlet r e (A.)n (where  (A. =r(A))

Then
m
where each
a.. £A1, ie. X"N-x1£A, for I =1l,..,n and k =1,...m
m
8o xLrxl=x
Hence (A.)n £ (An)i . Now, An £ P implies that (An). £ Pi

for each i 20 and therefore that (A.)n £ P. for each i 20
But r(P) is a semiprime a-sequence, therefore A. £ P. . or
r(A) £ r(P) . Applying A then yields that A£ p, and P is a

semi prime ideal of A(R,a)

Conversely, assume that P is a semiprime ideal of A(R,ct) and

let (A.),..q & an a-sequence of closed left ideals of R such that

(AN £ Pi forall i 20, andsome n £N .
Let r e (An)i for some i 20, i.e. XVx1£An, and
x_lrxl -7 Ix j Ik3 _\ﬁJ&k(V\)/(v j2k %ZKY---{yjnk yd nk.
J,L Jfil

where x anx £A for i -1,..,n and Kk« I,...m



Let j =
Then Xx VX
Za
k=
so that al(r) = za (a,,,) .- =a
g
But since a . e A a
J ik
for each i =1 ,..,n and k =
Since (Pi)isO is an a-sequence,
this means that r e , and therefore that (An)* ¢ for all i 20 .

Now, applying A gives An CP , and since P is a semiprime

ideal, Acp so that r(A) c r(P) .

Thus, r(P) is a semiprime a-sequence.

2.17 Corollary:

A(R,a) is semiprime iff there does not exist a non-zero a-sequence
(Ai)i>o closed left ideals of R such that for sone neIN, (A™nh =0

for each i 20 .

Proof:

Put P =0 in the theorem.
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2.18 Corollary: (cf proposition 6.1 of [16])

If R is semiprime then so is A(R,«)

Proof:

Let (Ai)1>Q be an «-sequence of closed left ideals of R
with  (A)n =0 for some nelIN and all i j O . Since R is
semiprime, AX* =0 for all i >0, so by corollary 2.17, A(R,a)

is semiprime.

2.19 Example:

Let K be a field, o:K -mK a monomorphism which is not an
automorphism. Let R be the upper triangular matrix ring (g|)< Ié)

and define «:R + R by

C > = K k2
a o) = o(k-1) o(k2)
K3 0 o(k3
r
| be the ideal o of R.
Then the sequence (AMN~>g where A* =1 for all i 20 is a

2
non-zero «-sequence, but | =0 . By the argument prior to definition

1.31, | is closed as a left ideal of R .

By corollary 2.17, A(R,«) is not semiprime.

53. Sums of Ideals and Goldie Dimension.

Given a collection (Bk)kcA of left ideals of A(R,a) , it would

be useful to know how the a-sequence of the sum | B. compared with
kcA K



the a-sequences of the individual Bk's

That question is investigated in this section, along with a

closely related one; namely, when is such a sum direct?

The result about directness is then applied to show that if R
has finite left Goldie dimension, then the left Goldie dimension of
A(R,a) cannot exceed that of R . In the light of this result, it
would be interesting to know whether the ascending chain condition for
annihilator left ideals is preserved on passage from R to A(R,a) ,

and example 2.25 shows that this is, in general, not the case.

The work concerning the a-sequence of a sum of ideals will be

used in the next section to study the nilpotent radical of A(R,a)

2.20 Proposition:

Let (Bk)keA be a collection of left ideals of A(R,a) , and

denote the a-sequences r(Bk) and r( | Bk) by (B~-j~g and
keA

(Ai)i2q respectively.

Then, for each i >0, A = Ua'n( £ (B.). )
1 =0 keA K 1+n

Proof:
First let re Uan( £ (Bu).,_) for some i >0 .
n>0 keA K 1"
So, for some ns 0, an(r) = i where x ™ +n"bkxi+n e Bk

keA

for each keA, (and only a finite number of the bk's are non-zero).



Therefore, X-(i+n™ n(r)xi+tn = E x-(i+n>b X(i+n>e E B
keA K keA K

But X (i+n)an(r)xi+n = x Yx1 , so r £A] , ad

ua"n( E (B.). )cA foreah i 20.
n*0 keA K 1+ 1

Now let reA - i.e. x'Irxi e EB and x Yx1= Ex khbxk
1 keA K keA K
where xljkb"xY e Bk for each keA.

Let j =i +max{jk | ke A and bk ~ 0>

Then x'Jaj'1(r)xj =x'j E al Jk(b. )xJ

keA
ie. al iy = ea Kok .
keA
But since bke (BK)j , a - (bk) e (BK)j and therefore
aj'vV) e E®B).
keA K]
Putting n =j-i , this gives a (r) e E (B.). and so

keA K 1n

A =U«"(E®B) )
1 M0  keA K1

Remark:
(@ ( E (Bk).jH))N2Q is in fact an ascending sequence of left ideals
keA

of R, foreach i 20 .
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Indeed, for any naO , let an(r) e z (Bk)n
keA

Then an(r) = Zb where x"“1+nokxi+n e Bk (again, only
keA K

finitely many of the bk's are non-zero).

Therefore, ant\r) = z a(b.) and
keA K

x-1, W | >«(bk)x1tn*' = x-(i *n>bkx1*n . Bk ,

hence “(k) < (Bk),w i = °r X <«'("*,><Kk”™ (Bk)L nt,) m

The next result shows when a sum of left ideals of A(R,a) is

direct.

2.21 Proposition:

Let (Bk)keA be a collection of left ideals of A(R,a) , and

denote the a-sequence r(Bk) by ((Bk)i)i =0, for each keA

Then, the sum Z B, is direct iff for each 120, the sum

keA K
Z (B.) is a direct sum of left ideals of R .
keA K 1
Proof:

Assume there exists u O with Z (B.) not a direct sum of
keA K |

left ideals of R .

Then there exists a finite subset {1,..n> of A and Ot rke (B



for k=1,...,n such that
n n .0 i
zr. =0 i.e zZx r.x =0
k= « k=l K
But x v.x* e B for each k =1,..,n so the sm ZB, is not
K K keA K
direct.

Now assume that z B, is not direct. Then there exist non-zero
keA K

“Jb Ju
elements x  rkx of Bk, for k =1,..,n say, such that

2x‘h r. X =0 .
k=1 K

Let j =maxijk | kK = 1,..,n}

Then ZX_J(IJIJIYK(r. ! =0, ie. Za K(r.)=0.
k=1 * k=1 K
J-Jk
But since rke (BK)j , a (rk) e (Bk)™ , and since a is
a monomorphism, a (r™) 40 for each k = 1»«.»n

Thus, z (B.). is not direct.
keA K J

2.22 Corollary:

A(R,a) has finite left Goldie dimension iff there does not exist

an infinite collection ((Bk)4)t20 of non-zero a-sequences of closed
keA



left ideals of R such that 2z (B) is direct, for each u O,
keA k

Proof:

limiediate from proposition 2.21.

2.23 Corollary:

If R has left Goldie dimension n <® then A(R,a) has left

Goldie dimension at most n .

Proof:
If possible, let (Bk)-|<k<nH be a collection of non-zero left

ideals of A(R,a) whose sum is direct.

Each ( =r(Bk) ) is a non-zero a-sequence, so for
each 1sk s n+¥l, there exists z2s 0 such that if z =2z then

B~M”™  fO. This follows becauseif no such 2z~ exists, then

Bk)«.)juO has an infinite subsequence q with B~ =0
(( i q

for all i i O ,and as in the proof of corollary 2.14,this implies

B™MN”™ =Ofor all zs O .
Let Z =max{zk | 1s k s n+1}

Then (BMN™Nf O for each 1s ks nfl and by proposition 2.21,
nl
z (B.) is direct. This is impossible since R has left Goldie
k=l K1

dimension n .



2.24 Example:
(O]
Let S be aring and let R be the product n S. where
i=l 1
S. =S for all i21.

Define a:R R by a(sl1,s2,s3,...) =(s],s],s2,s3,---) ,

and for j s 1, let ¥ be the ideal of R which has S in the

j™1 co-ordinate and zero elsewhere - e.g. 12 =(, S, 0, 0, ...)
Consider the a-sequence ((B ~ )~ where (B~ =Ilk+H+l , so
that the a-sequence I°°k's like
(0,0,5,0,0 ...) , (0,0,0,s,0,0,...) , (0,0,0,0,5,0,...) etc.
()]
Clearly each 1. is closed, so that, for all | z O , z (B,)
J k=l K1

is a direct sum of non-zero closed ideals of R .
By corollary 2.22, A(R,a) has infinite left Goldie dimension.

In view of corollary 2.23, attention is now turned to the other
Goldie criterion: the ascending chain condition for annihilator left
ideals. The following example shows that it is possible that R has acc
on left annihilators, but that A(R,a) does not. The ring R concerned
was used by Kerr [18] as an example of a ring with acc on annihilators

but with no bound on the lengths of chains of annihilators.

2.25 Example:

Let K be a field and let



be a collection of commuting indeterminates.

Let a :

KCvI

The action of a

y2i y22
y3l y32
- 'n . \
y4l  y42

KEYI

be the

Now consider the ideal |

{Y3, yljyik

Clearly,

Also, any element of a(KEY])

k On(D jn(2)

| i,j,k £M

a(l)y =1

On(p)

yizj2'"V p

k f j>

where

= li.j £in,j £ i>

y44

K-monomorphism such that

can be represented by the array:

of KEY] generated by

k ¢ K and

,j4z 2 for

is a sum of terms of the form

-1,



Y = ' 1) €« . j s i>

be a collection of commuting indeterminates.
Let a : KCY] KLYl be the K-monomorphism such that
T yu> -

The action of a can be represented by the array:

y2l $22

. N - N .
y3l y32  y33
- N - Nk. N

y41 y42 y43 -y 44

Now consider the ideal | of KEY] generated by

{3, yajyik | i,j,k ell  kft j> -

Clearly, a(l) s |

Also, any element of a(KCY]) is a sum of terms of the form

Qn(l) ~(2) “N(P)  where ke K and irjr 22 for
iljl 12j2 ** Vvp



So if f e K[Y] and &(f) £ 1 , then
N i N N
30 Va”%'dmmemrh-'- "ikt
where £ S(K[Y]) for each m, I , and none of the

V V fmV V Kk* is eual tO 1 «

Thus,
-1
A~ ma b “InC-1 "Ine -1, f "I
+Z a_ll ,
| VV-V'V-V
So f£1 and &'~(l) ¢ | - whence | is &a-stable.

Therefore, & defines, in a natural way, a monomorphism

. KEY] KEY]
a L ———— —_————
[ I

-——=" will be denoted by R , Y will denote the image of Q
|

in R, and Yis will denote the image of Yis in R .

The relationships thus created between the (y”) nay be summed
up by saying that, in the above array, the product of any two distinct
terms in the same row is zero, as is the product of any three terms in

the array.

The following argument, due to Kerr [18], shows that the ring R



has acc on annihilator ideals. It achieves this by explicitly

determining the form of all the annihilator ideals of R .

First, it is necessary to establish some notation. R can be
given a graded structure by making all the elements of Y homogeneous
of degree 1, and all the elements of K homogeneous of degree O .
SO R =Rqg9 Ri 8 Rg where R consists of all the homogeneous
elements of degree i . The set Y forms a basis over K for R,
and the set fyhj"y.kp | either i "k , ori =k and kt i) forms a

basis over K for RE.
Let Yn denote the set iynj | j s n} , for each nelN .
The precise form of all the annihilator ideals is summarized by

the following:

Summary:
There are three separate cases to be considered. Let S c R,

and assume that S f {0}.
(i) If S f RjR then*(S) = O ;
(ii) If Sc RRand ScR™ then i.(S) = RJR ;
(iii) If Sc RRbut SiRE theneither t(S) =Rg
or there exists neN and a subset T of Yp such that t(S) =TR +R

Proof:

(i) Note that (R*R)» =0 , and that if f i RR, then f
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has a non-zero constant term and is therefore regular. Thus, if
Si RJR then *(S) =0 .

(ii) Clearly R4R c t(R2) c ji(S) . Also, since any element

lying outside R4R is regular, t(S) =Rj4R .

(iii) Here, it is necessary to find £(f) where f e RJR but
fi RR. Let g« R be such that fg =0, and write f and g as

suns of their homogeneous components:

f =f0+fl +f2 and 9 =90 +9 +92 =

Since fc¢c RR, fQ =0 and since g is not regular, gQ =0 .

So fg = (f1+f2)(g1+g2) = . Let f, =1 a..y.. and let
ij 3
so that
+ | s s
i ,j okt 1j"ki,jrirkt
i<k
The second term is zero because y~y”~ =0 for j / k, and the

other two terms give:
aljb-jj =0 for all (1)

0 for all i.j.k.t with itk . 2
and aijbkt + aktbij oralt 1 with @)



Since f i R2, at least one of the ai. (say anm) , must be

non-zero.

From (1), brmm =0 and from (2),

a.b +a b.. =0 for all i,j with i ~n.
1Ij m mij

Thus, b*.J. =0 for all i,j with i ~n; in other words,

ge rmR+|§ where T =Y \y .}

Now, if {a >
vV p i*p-q

is the set of all the non-zero ai._.'s

then applying the above to each a
PP

gives

9° pM V @p' * Rz)" (P=LV p.p)R+ R2
=TR + where

T, denotes the set nT
p=l pp

Thus, if S=RWR but St R2, then

4(0S) = n4(f) = n (T-R +R9) =( nT,R +R,
fes fes T c f«s

C

where nT,cY for some newW - if

nT, =% then 4(S) =R~
feS f n

feS T c

This completes the proof of the assertions appearing in the above

summary.
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It is now easy to see that R has acc on annihilators. Let
J  be a non-trivial annihilator ideal other than R™R . By the above
results, =TR+R8 where T c Yn for some nelN. But T is a
finite set, so J can only contain a finite number of distinct
annihilator ideals. This shows that R has descending chain condition
on annihilator ideals, and since R is commutative, R also has acc

on annihilator ideals.

Now consider the ring A(R,a) . The process of forming A(R,a)

mey be thought of as extending the previous array as follows:

X2 yﬁx x'lyn X

X2 yﬁ*x'ly?fx y3l

-2 2» -1 \ \ ,

X yaix x  y3ix y3i y2
N *.i X X N

X y41X y3l y32y 3

'S Sy 4l'SsNy42Ssy43SS4y44

Consider, for m2 0 an element of the form X'nym#l

Then, (x 'X 1.17)2* 0 but for n 20 with nt m

,mn
"X (mEn“mynH . 1)an(ymH, 1) X

- X (m)v,

< YHHTH ,1+n¥ nmHHL 1+ .

=0 . (©)



Notice that the elements appearing here are precisely those

occupying the same row as y” in the array.

Now let Bn ={x ngm#i J¥n| m2 n} , for each n 20 . Since

Bn 2 Bn—l—l for all nsoO, certalnly t(IBn) £ ‘;(Bn+f' . But from

W' xnymd 1x" e *(BrH> but x"V 1,/ i *<B> m
Thus, (*(Bn))n>0 1S an infir>ite ascending sequence of annihilators

of A(R,0)

84. The Nilpotent Radical.

The aim of this section is to determine in complete generality the
a-sequence of the nilpotent radical N of A(R,a) , and to use this
information to establish weak conditions on R which ensure that N

is nilpotent.

In view of the fact that N is the sum of all the nilpotent left
ideals of A(R,a) , the approach used is first to determine the
a-sequences which correspond to nilpotent left ideals of A(R,0) , and
then to use proposition 2.20 to find the a-sequence which corresponds
to N . This a-sequence is itself showmn to give rise to a nilpotent
left ideal of A(R,a) in the case where every nil left ideal of R s

nilpotent.

2.26 Definition:

An a-sequence r(A) of closed left ideals of R is said to be

nilpotent if there exists neN with r(A)n =0 .

a&!



2.27 Lemma:

A left ideal A of A(R,a) is nilpotent iff the «-sequence

r(A) is nilpotent.

Proof:
Denote the «-sequence r (A) by (A™MN™>qg and assume it to be

nilpotent - i.e. r(A)n =0 for some nelN
Let x Kakx K« A for 1* k* n .

Then N x a,x ko x! rq]al—lk(a.)xI where
k=l K k=l K
i =max(ik | 1s ks n . But x '« 'RBakx =x 'Sk « A, so
a € f°reach 1s ks n. Since A? =0 ,

n 1-1
na K@ )=0. Thus A =0 and A is a nilpotent left ideal
k«l k

of A(R,a) .

Conversely, assume that A is a nilpotent left ideal of A(R,a)

and let n « N be such that An =0 .

Let r =a”2 eee an where x lakxl e A for some i 20, and

each 1s ks n.

o e n i -
Then X 'rx m nNx" axlcA =0, and therefore r =0 .
k=l K

Thus (A.)n =0 and r(A) is a nilpotent «-sequence.

2.28 Theorem:
Let N denote the nilpotent radical of A(R,a) and let (N™"g

denote the a-sequence r(N)
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Then, for all i *0, N = uUan( E@®)) where
1 n*0 ke Kn

{((Bfcli)il e~ N the collection of all nilpotent a-sequences

of closed left ideals of R .

Proof:

N= EA* where {Ak | k € A} is the collection of all nilpotent

left ideals of A(R,a)

By lenma 2.27, there is a one-to-one correspondence between the
collection of nilpotent left ideals of A(R,a) and the collection of

nilpotent a-sequences of closed left ideals of R .

By proposition 2.20, then,

N = Ua'n(E(@®B.) ) foreah i 20.
1 O kcA K1"
But a(N) and a'~(N) are both sums of nilpotent left ideals of
A(R,a) , so that a(N) £ N and a_1(N) £ N; thus N is a-stable.

By proposition 2.4 then, N N, for all i,j 20, and

x
N. = Ua'n(E (B.) ) for each i 20 .
1 nsO keA Kn

2.29 Example:
Let R, a:R »R and | be as in example 2.19, so that

R =(q £) where K is a field,

where ctK & K is a non-surjective monomorphism, and | is the ideal



(g q) . Then, 1 is a closed left ideal, a'~(l) =1 and 1| is

the only nilpotent left ideal of R . Thus, the only nilpotent

o-sequence is (l.)~g where |I. =1 for each i >0 .

By theorem 2.28, N =A(N.).>0 where N. = Ua n(l)
11 1 =0

Thus, N= Ux'V =0(l)
i*0

2.30 Theorem:

If R is a ring such that each nil left ideal of R is nilpotent,

then N(A(R,a)) is nilpotent.

Proof:

Denoting N(A(R,a)) by N, theorem 2.28 gives

N = Ua"n( Z B.) ) where
1 n*0 keA Kn
{(BK)i | ke A} is the collection of nilpotent a-sequences of

closed left ideals of R .
Since each (B.) is a nilpotent left ideal, E B.) is a nil
k' n kcA Kn
left ideal, for each n £0 .

Now let r ea™n( E B.) ) . Then an(rym=0 for sone melN ,
keA K n

i,e. an(rm) =0, and rm=0 since al is a monomorphism. Thus

vuo'n( E (B.) ) is a nil left ideal of R , therefore it is nilpotent.
tuo keA Kk n

Thus, (N”~-q is a nilpotent a-sequence, so by lenma 2.27, N is

nilpotent.



2.31 Corollary:
Let R be a ring which satisfies any of the following:
(i) R is a left Goldie ring ;
(ii) R has acc and dec on annihilator left ideals ;
(iii) R has Krull dimension.

Then N(A(R,a)) is nilpotent.

Proof:
(i) By Lanski's theorem (C3D, theorem 1.35), nil subrings of a

left Goldie ring are nilpotent, so the result follows by theorem 2.30.

(ii) By the theorem of Herstein and Small ([3], theorem 1.34), nil
subrings of a ring with acc and dec on left annihilators are nil-

potent, and theorem 2.30 finishes the proof.

(iii) By theorem 5.1 of [10], nil subrings of a ring with Krull

dimension are nilpotent, so theorem 2.30 yields the result.

Remark:

Note that conditions (ii) and (iii) do not themselves persist on
passage from R to A(R,a) . Example 2.25 shows that it is possible for
R to have acc and dec on left annihilators, and for this condition
to fail in A(R,0) , while example 3.15, which originally appeared in

[16], shows that Krull dimension can also be lost.

It is not knonn whether R being a left Goldie ring ensures that

A(R,a) is left Goldie.



85. Nil Subrings.

In the previous section, it was shown that certain weak chain
conditions on R are sufficient to make the nil potent radical N of
A(R,a) nil potent. The object here is to use a similar approach
to obtain conditions on R which would ensure that nil subrings of
A(R,a) are nilpotent. For instance, it turns out that this is the

case if R is a left Goldie ring.

To establish the main result, it is first necessary to find a way
of identifying, in R, the subrings of A(R,a) , and then to be able

to determine which ones are nil and which ones are nilpotent.

Recall that if S is a nilpotent subring of R, then the index

of nilpotence of S is the smallest integer k for which S =0 .

2.33 Lemma:

There is an order-preserving bijection, with an order-preserving
inverse, from the partially ordered set of subrings of A(R,a) to the

partially ordered set of a-sequences of subrings of R .

Proof:

First note that the collection S of subrings of A(R,a) is
partially ordered by inclusion, and the collection A of a-sequences
of subrings of R is partially ordered by the relation s , given by

(Ai>U0 ™ Bi=1*0 iff Ai £Bi for each 1*0 =

Let SeS and for each i 20, put S. ={r sR | xVxle?)



Then (S”).~q is an a-sequence of subrings of R . Indeed, r «
by definition means x Yx’ e S, and X Yx’' =x NY(r)x’+*, so
that r e iff a(r) £ . So (S"™)">qg is an a-sequence. Now
let r,s e . Then, x'Yx1, x’sxleS , therefore x ’(r-s)x1
and X'Ysx1 £ S, since S is a subring of A(R,a) . Thus r-s £
and rs £ , whence is a subring of R for each i * 0, and

(Si)i>Q £A . If this a-sequence is denoted by r(S) then clearly

r:S A is order-preserving.

Now let (S.).if, £EA and let S denote the set UXx'Y.x1 .

112U i*0 1
Then S is a subring of A(R,a) . Indeed, if X Yxl , xJsx)J £S,
then
X YX1-XYX] =x <IH>(«) (r)-«1(s))x 1+
and (XYXi)(x YXY =x"+]Y Mrjal(s)x1+ .

Since r £Si and (S.).2Q is an a-sequence, al(r) £ Si+" .

Similarly, a’(s) e Sy , and since Si+j is a subring of R,
aYrJ-aYs) and al(r)a’(s) both lie in . Thus, S is a sub-
ring of A(R,a) . If S is denoted by A((S”)1li0) then it is clear

that AIA s is also order-preserving.

To show that the two meps r and A are mutually inverse, let
(S"~q be an a-sequence of subrings of R , and let S be a subring

of A(R,a)

Denote the a-sequence r(A(S”™)~g) by (T™N™g and let r £ T.

for some i i O. Then, X"YX  €;,(S™"L™ le. X YX’ =xYxn for
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some j 20 and some s « Sj . Therefore, x (1H)an(r)x1+ =
=x"'(i+j)al(s)xi+j , whence a”(r) =a”s) eS.H , so that r e ,
and T. £ S. . The reverse inclusion follows directly from the

definition of r and A ; consequently TgA = id"

The fact that, for any subring S of A(R,a) , S £ A(r(S)) also
follows straight from the definition. On the other hand, if
X'Vx1l e A(r(S)) then X Vx1 =xlJsx] for some j 20 and s e

(where r(S) =(S~~), so x'Vxl eS , and AQY =id5

2.34 Lemma:

Let S be a subring of A(R,a) and denote r(S) by (S.)™g

Then
(i) S is nil iff is nil for each i >0 ;

(ii) S is nilpotent iff there exists k >0 such that

k
Sj =0 for each i i O .

Proof:

(i)y If S is nil and r e for some i 20, then x'VxlesS
and there exists n 2 0 such that (x Vx1)1 =0 . But this means
rn =0, so that S. s nil. Similarly, if each is nil and
x'Vxl eS, then r e S. and is therefore nilpotent. Clearly x Vxl!
is also nilpotent, and S is nil.

(ii) The proof of lemma 2.27, applied to subrings rather than left

ideals, works here.



2.35 Theorem:

Let R be a ring which satisfies:

(i) Each nil subring of R is nilpotent;

(ii) The set of indices of nilpotence of subrings of R is bounded.

Then nil subrings of A(R,a) are nilpotent.

Proof:
Let S be a nil subring of A(R,a) . By lemma 2.34, (S..).~
( =T(S)) is an a-sequence of nil subrings of R , and by condition

k
(ii) of the theorem, there exists k e IN with =0 for all i ~0.

By lemma 2.34, S is a nilpotent subring of A(R,a)

2.36 Corollary:

If R is a left Goldie ring, then nil subrings of A(R,a) are

nilpotent.

Proof:

By theorem 4.4 of [20], nil subrings of left Goldie rings are
nilpotent, of index not greater than k(dim R+ 1) where dim R is
the left Goldie dimension of R and k is the index of nilpotence of
the left singular ideal Z(R) of R . Theorem 2.35 therefore gives

the result.
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CHAPTER 3

LEFT JORDAN RINGS.

The study of the ring A(R,a) is greatly aided if it is assumed
to be left Noetherian - in other words, if R is assumed to be left
Jordan. In this chapter, several aspects of A(R,a) are studied

under that assumption.

The aim of the first section is to study the left Jordan condition
itself; in particular to show that it is stable under the formation of
matrix rings, polynomial rings and localizations when the new rings are
equipped with appropriate injective endomorphisms. The first result of
the section, easily deduced from 1.37, states that any left Artinian
ring, with any monomorphism, is left Jordan, so it can be seen that the

class of left Jordan rings is wide enough to warrant further study.

Localization is then examined in more detail, and in particular
it is shown that if R is a commutative local ring, then so is A(R,a)
Also, in the case where a can be extended to a monomorphism ap on
the localization Rp , where P is a left localizable prime ideal,
certain conditions are found under which A(Rp,ap) ney be viewed as

the localization of A(R,a) at a prime ideal.

Section 3 moves on to study Krull dimension, and relates the Krull
dimension of A(R,a) to the set of closed left ideals of R . There
follows a slight diversion, where the left Jordan condition is tempor-

arily dropped in order to answer a question asked by Jordan in [161:
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if R is Noetherian of Krull dimension 1, does A(R,a) necessarily
have Krull dimension? The answer is in the negative, and is provided

by example 3.16.

In section four, the a-sequence of the Jacobson radical of A(R,a)

is determined in terms of maximal closed left ideals of R, and in
section five, maximal left ideals of left Artinian rings are shown to

be closed.

Finally, these results are combined in order to generalize a
result of Jategaonkar, which states that if R is left Artinian, then

a \j(R)) =JR) , for any monomorphism <*R R .

81. The Left Jordan Condition.

3.1 Proposition:
If R is a left Artinian ring and a:R R is a monomorphism,

then (R,a) is left Jordan.

Proof:
Since R is left Artinian, A(R,a) is left Artinian, by theorem
1.37. By Hopkins' theorem (C6], theorem 2.10), A(R,0) is left

Noetherian, i.e. (R,a) is left Jordan.

Notation:

Given a ring R and a monomorphism o0:R %R , denote by a the
monomorphism on Md(R) (the full nxn matrix ring over R) obtained
by letting Me Mn(R) have (i.j)-entry r”j , and defining a(M) to

be the matrix whose (i.j)-entry is -

{m



3.2 Theorem:

If (R,a) is left Jordan, then so is (Mn(R),a) , for any

nelN.

Proof:

The first step is to show that Mnh(A(R,0)) is isomorphic to
A(Mn(R),a)
Let B « Mh(A(R,a)) . Then there exists i * O and a matrix

B' e Mn(R) such that

B = B' X (where Mn(A(R,a))

is regarded as a subring of Mh(RCx,x \0])). A matrix B*‘ which
satisfies this condition will be called a B-matrix of order i
Clearly, there is at most one B-matrix of order i , for given
i 20 and B e Mi(A(R,a))

To show that a B-matrix of order i exists for some i * O ,
write the (j.k)-entry of B as Bjk =x JK5jkx"’ where ik * 0
and a.,, e R for j,k =1,...,n . If i =max{i.. | j,k =1,..,n)

then Bjk =x_io “k(ajk)x® and

B = xx;1 B* x1 where
-, i i
X X
BJ\'( =a Ak(ajk') . So B' is the B-matrix of order i



Now attempt to define a mep iliMn(A(R,a)) AM (R),a) by
=x 1Bix1l where i >0 is such that the B-matrix of order i

exists; B is the B-matrix of order i

To show that * is a well defined map, let B and B be

B-matrices of orders i and j respectively, so that
-
X1 8
X1 - o
B T
e X o s *J
_ o ._I

Writing the (M)-entry of Bi as bkA , and the (M)-entry

Of Bj as ckll gives

x\ / = xJck,xJ
and so X' (I+j)aj (bw )x1+H =x' (i+j)ai (ckA)Xi+]j for all
kK. =1,..,n . Thus, al(bkA) =al(ckhA) , therefore alJ(B”) =ai(BJ.)

Now, x'YXx1=x-(i+%J(B.)xi+j =x_(i+j)al(B.)x1+H =X jB.xj ,
J J

so that Y is well-defined.

To see that ® is a ring isomorphism, let B,C e Mh(A(R,a)) ,

and denote their (k,~-entries by BkA and CH respectively. So

Bkii. =x k bkix kd and Ckt =x ki<klix k* where bkli,ckt e R and

lki « jk* are integers for M =1,...n . Let i =max{ikAjKk, t.I,..

-i i'ife« i
Bk* =x *“ (bk*>x (1)

Ck* a X' ial - (2)

, N}
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Hence, (B+C)k?

and ~(B+C) =x DX where =a "Nb~™) +a ki(C|()

But from (1) and (2),

ijiB) =x V x 1 where a 3)

and *(0 =x'Vx1 where a (4)

Thus, * is additive.

To show that < preserves the multiplicative structure, note

that (1) and (2) above yield

for k,t =1,..,n .

But from (3) and (4) above, ip(B)ip(C) =x'1D'D"x1 and since

D'D" =D, ip is a ring homomorphism.

Now assume ip(B) =0 for B e Mh(A(R,a)) . Then, x 1B™1 =0 ,
where B is the B-matrix of order i . By definition of B |
Bi =0 implies B =0 . Thus Y is injective. It is clear that *

is surjective, so Mn(A(R,a)) =AMn(R),a)

Now, if (R,a) is left Jordan, then A(R,a) is left Noetherian,
and therefore so is Mn(A(R,a)) . By the isomorphism above, this means

AMn(R),a) is left Noetherian, so (Mn(R),a) is left Jordan.
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Notation:

9%
Given a ring R and a monomorphism a:R -mR , a will denote
the monomorphism obtained on RCy] , the ring of polynomials in one

indeterminate over R , by defining

2(n§0yn" ) = rpafoyn -

3.3 Theorem:

If (R,a) is left Jordan, then so is (R[y],a)

Proof:

The first step is to show that A(R[y],a) =A(R,a)Cy],

Let f e A(R,a)[ly] . Then f = Ex_'kr.x'kyk where each r,e R ;
k=0 K K
n _e i-i. ..
or f=1x"a K(r.)xy where i =max{i. | k =0,..,n}
K K

Now, regarding A(R,a)[y] as a subring of R[x,x \ol][y] , f
may be written as
f = Qx_]i«l_b jy kll.
k=0 K
Thus, f can be written in the form x'V'x1 where i a O and
f' e R[y] . Clearly, for given i and f , f' is unique - it will

be referred to as the f-polynomial of order i

Now, attempt to define a map 4:A(R,a)[y] *A(R[y].a) by putting
ij/(ff mx’V'x1l where i is such that the f-polynomial of order i

exists, and f' is the f-polynomial of order i



*

To show that * is well-defined, let f.. and fJ. be the f-

polynomials of order i and j respectively, and write
K k
f, = In a.ykK, fe» ran.yK
1 k0 k J k=0
Then f = 9 (x_{/x’\ly*k = rzn(x_jb.xj)yk .
k=0 K k=0 K

Comparing coefficients gives n =m and x ™ x 1 =xJbkx for
each k =0 n . Therefore, Xx~(i+"U (ak)xi+] =x (i+JV (b Kk)xi+"

or al(ak) =al(bk) .
But this means that al (f") =a1(fj) , so that

XW oy ax—(i+J)3J(f1)x1+j :x-(i+j)2:1(fJ)xi+j =x'jfj(j , and*

is well-defined.

To show that * is a ring homomorphism, let f.9 6 AR,a)[y],

with f= M x kaxky and g= P x5 xJk)y Let
k=0

k k=0

i =max{ikl k | k =0,..,n}

o ~k "¢ Ik
Then, f+g = | (X KaxK+x \x )y
k=0 k
oo—p il i k
= E X EI.(a k(@a. ) + a k(b,))xy
k=0

k
nooi-it 1-jk K
so *(f+g) =x'V.x' where . £ (a k(ak)+a  k(bk))y
" k=0 K

i i Kk n o -i i k
But since f M x Ia"'lﬁ(a.)x'y and g Ix a k(b,)xy |,
k=0 * k=0

*(H) + *(@ » *(f+g) . €))
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Now, to look at the multiplicative property of <, fg can be

2n -i i -j j .
written as fg = Z 1| z X pa xp)(x Vx qg)lyK
k=0 p+a= P q
2n . i-i i-j .
= Zx-1[ Z a P(a)a q(bllxV
k0  prok P q

so that </(fg) =x V where h is the polynomial given by

2n i-i i-j .
h=E E a p()a qb )yK
k=0 p+g=k p q

From (1) it can be seen that 4(f) =x'V~Axl where

f. =

Da'-™@ X : and that 4@ =x'gx' where g = la'-TKp y*
= K 1 1 k=0 K

Since g™ =h, it is evident that 4>(fg) =4'()4<(@) , so

that 4< is a ring homomorphism. It is clear that 4 is bijective.
Thus, A(R[y].,a) mA(R,a)[y]

Now, if (R,a) is left Jordan, then A(R,a) is left Noetherian
and by the Hilbert basis theorem ([22], Voi.l, theorem 1, p.202) so
is A(R,a)ly] . By the above isomorphism, this means that A(R[y],a)

is left Noetherian, i.e. (R[y],a) is left Jordan.
Next, the behaviour of the left Jordan condition is examined when
R is localized at an appropriate prime ideal.

To be specific, let R be a prime, left Noetherian ring and let

P be a left localizable prime ideal of R which satisfies a(C(P)) c C(P)



Then, as in theorem 1.3, the set

I =(r £ER | cr =0 for some c e C(P))

is an ideal of R , and since R is prime, | is essential as a
left ideal if it is non-zero. In that case, by Goldie's theorem,

| contains a regular element, which is clearly impossible.

Thus | =0 and a mey be extended to a monomorphism ap on
the localization Rp by defining ap(c_1r) =a(c)_la(r) where r e R,

c e C(P)

3.4 Theorem:

Let R be a prime, left Noetherian ring with a le ft localizable

prime ideal P which satisfies a(C(P)) c C(P)

Then, if (R,a) is left Jordan, so is (Rp,ap) <=

Proof:

Let S denote the set _U x V(P)x’ £ A(R,a) . Since a(C(P)) c C(P),
and since, as in theorem 1.3,IAOC(P) consists of regular elements of R,
proposition 1.25 shows that S consists of regular elements of A(R,a)

The fact that a(C(P)) ¢ C(P) also ensures that S is a multiplicatively

closed set.
Let x Irxle A(R,a) and xlJcx) e S .

Since C(P) is a left Ore subset of R, and since a(C(P)) c C(P) ,
there exist non-zero elements M e R, ¢ e C(P) such that

rhal(c) =ciaj (r)



But this means that x'Mi+~r7a’ (Cc)x™MH =x"~+ c,a™(r)x1H

and therefore (x ™ +\Vjx’+V)X = (X’ N+, X IHMX"VXT .

Since x (i+j)CiXi+j e S , A(R,a) has the left Ore condition
with respect to S, and it is therefore possible to form the left
localization S "~A(R,a)

Now consider the ring A(Rpsap) . Since R is a subring of Rp
and a =a A(R,0) is a subring of A(Rp,ap)

If x'ex” «S, then ¢ "« Rp and (x 'c M)(x ~cxl) =

X 'cx™M)(x 'c x) =1, so that each element of S is a unit of
A(Rp,ap) =

Furthermore, any element of A(RP,aP) has the form x 1c” rx’

where ceC(P) and reR. But x "7 Vx1l =(X 'ex’) X Vx1 .
Thus, A(Rp,0ip) ney be identified with the localization S~"A(R,a)

Now, if A(R,a) is left Noetherian, then so is S""A(R,a) and

therefore so is ARp,<Xp) . Hence, ("“prap) "s left Jordan.

3.5 Remark:

The same method as that used in the proof of theorem 3.4 can be
used in the more general case where R is any ring with an a-invariant,
multiplicatively closed subset T of regular elements, which satisfies
the left Ore condition. In this case, a again defines a monomorphism

ajiRj -mRy , and if (R,a) is left Jordan, then so is (Ry,ay)
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82. Localization.

In view of theorem 3.4, the question arises as to whether, given
an appropriate localizable prime ideal P , is a local ring,

and if it is, how it is related to A(R,a)

The first result of this section shows that if R is a commutative
local ring, then A(R,a) is always local, and then the problem of
relating A(Rp,0ip) to A(R,a) is solved in the case where R is a
commutative domain: in fact, A(RP,aP) can be viewed as a localization
of A(R,a) at a particular prime ideal. For the definitions and basic

properties of commutative localization, refer to chapter 3 of C13.

Finally, an analogue of these results is proved when R is a prime,

left Noetherian, left Jordan ring.

3.6 Proposition:

Let R be a commutative local ring, a:R <R a monomorphism.

Then A(R,a) is also a local ring.

Proof:

1k
Let x rkx e A(R,a) for k =1,..,n and assume that

g x—ikr. xlk is a unit of A(R,a)
K*1 K
Thus, if | mmaxii. | k =1,...n) then x'(Bat="Kr yx'
K k=l *

is a unit of A(R,a) and by proposition 1.27, there exists m2 0
n i-i. n  m+i-i.

with anm( E a Krr.)) * Ea K(r. ) a unit of R . If none of the
k-1 K k=l K
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UHH-i, Mmi-i.
a K(r. ) a unit of R, then a ArANR - M where M s
n rm-i-i.
the unique maximal ideal of R , which implies that ( z a K(r. )R= M
k=l K
Clearly this is impossible, so there exists kg £ {l,..,n} such that
m-+i-i.
a (r ) is aunit of R .
By proposition 1.27, this means that is a unit of
A(R,0)

Now, let Mj and M2 be two distinct maximal ideals of A(R,a) ,

and let M e but m| i

Then nil A(R,a) + M =A(R,a) , so there exists n2 £ M2 ,
a £ A(R,a) such that nmMa +n2 =1 . Since n™a £ , the above
argument shows that n2 must be a unit, whence M2 =A(R,a) and

A(R,a) is local.

Notation:

If P is a prime ideal of aring R , then T(P) will denote

the set {r £ER | a~(r) ¢ P for all k2 0} .

If SE£R, then S' will denote the set-theoretic complement

of S .

3.7 Theorem:

Let R be a commutative domain, and let P be a prime ideal of

R satisfying a(P') £ P' . Then



(1) T(P) is an a-invariant prime ideal of R ;
(ii) G(T(P)) is a prime ideal of A(R,a) ;

(iii)  A(Rp,ap) :A(R’OE;(T(P))

Proof:

(i) It is clear that T(P) is an a-invariant ideal of R .
To show that it is prime, let ab £R with ab e T(P) , and assume
u
that a | T(P) . Then, there exists k20 with a(a) /P, and

since a(P') £p' , this means an(a) i P for all n 2k .

But an(a)an(b) =an(ab) £ P , whence an(b) £P for all n 2k
Since a(P') =P' , an(b) e P forall 0Os nsk, so b£T({P) and
T(P) is prime.

(ii) Let S denote the multipiicatively closed subset

U x V'x1 of A(R,a)
o)

Then x’Vx' £S iff there exists k 2 0 such that ak(r) i P .
Indeed, assume that x Vx1« S for some i 20, r s R . Then, for

some j 20,

where s e P' |
i.e. X*(I+IN (r)x i+) =x tl+),«i(s)xi+j , so that an(r) =a’(s)
Since a(P') £P , aj(r) | P .

u
On the other hand, if a (r) £P' then, forany i 20 ,

X- (i+k)ak(r)xi+k £ S , i,e. X'VX1£S .
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Thus, S' ={x Vx1 | i ~0; an(r) « P for all ks 0}

- G(T(P))

Since S =G(T(P))* is multiplicatively closed, G(T(P)) is a

prime ideal.

(iii) Since S is a multiplicatively closed set, it is possible

to form the localization S ~A(R,a) =A(R,a)G™ p~ *

Now, regarding A(R,ct) as a subring of A(Rp,Op) , it is evident
that each element x 'cx of S (c e P1) has an inverse, x ’'c ™x1 ,
in ARp,<*p) , and furthermore, any element x 'c Vx1 of A(Rp»ap)
(r £ER, c e P1) can be written in the form (x ’ex’) (X Vx’)

By theorem 1.1, A(Rp,ap) =A(R.a)6(T(P))

3.8 Example:

Let R =KCy] where K is a field and y is an indeterminate,

and let a be the K-endomorphism of R such that a(y) =y

Let P be the prime ideal generated by y . Clearly a(P') £ P1,
and in this case a(P) £ P so that T(P) =P . By proposition 3.6,

A(K[y]lp,ap) is a local ring and by theorem 3.7, it is isomorphic to

A(K[y],a)G(p)

In the case where R and A(R,a) are not necessarily conmutative,

the following result provides an analogue of theorem 3.7.

3.9 Theorem:

Let R be a prime, left Noetherian, left Jordan ring with an



a-stable, left localizable prime ideal P .
Then (1) a(C(p)) c C(P)
(ii) G(P) is a left localizable prime ideal of A(R,a)

(iii)  A(Rp,ap) 5 A(R,a)G(p)

Proof:

(i) Since P is an a-stable ideal, a may be used to define
a monomorphism a : R/P %R/P , by putting a(r+P) =a(r) +P . Now,
if r eCP), then r+P is regular in R/P . But R/P has a simple
Artinian left quotient ring, so by proposition 2.4 of C13],

a(r+P) =a(r)+P is also regular in R/P . Thus a(r) e C(P)

(ii) To see that G(P) is a prime ideal, consider the a-sequence
r(G(P)) , and denote it by (I.JAg . Since G(P) is an a-stable

ideal, . =1. for all i,j 20, by proposition 2.4.

Thus, for each i 20, 1 =Ilg =G(P) n R, but by theorem 2.2,

GP) nR= Uan(P) , and since P is a-stable, |. mP for all
n*0 1

i sO .
Now let (A0 ax* (®i)iaO e two a_se(luences closed left
ideals of R such that A™B. ¢ I. for each i >0 . That is,

ABN =P and since P is a prime ideal, either A~c P or B c P

for all i 20 .

Since R is left Jordan, there exists m=>0 such that, for all

1 e PI<Ai) =AiH and pj(B”) =Bi+~ . Assume, without loss of



generality, that Am£ p . Then, for all n=0,1,..,m,

a"(nfn)(A ) c a-(m-n)/p) =p so that A. £P for i =0,1,..m.

Also* Amtk = pk(Am)

U a"n(Ran+k(A ))

mo
c U a'n(Ran+k(P))
140}
c p forall k=*O0, since P is a-stable.

Therefore, (A.)i2Q 5 r(G(P)) and r(G(P)) is a prime a-sequence
By theorem 2.11, G(P) is a prime ideal of A(R,a)
To show that G(P) is left localizable, let S be the subset

U x 1C(P)x* of A(R,a) , and let xncxle S, where c e C(P)
i~O

If X'Jrx™ e A(R,a) is such that (X"~rx”™)(x 'cx1) e G(P) , then

X (i+j)aV)al(c)x1lH £ G(P)

and by theorem 2.2, <J(r)an™(c) e KgG(P) =P .

But a(C(P)) <C(P) , SO J(c) e C(P) , whence al(r) €P .
Thus x-<IH> .V)x 1+ e G(p) = or X rx» 6 G(P) =

So, S £ *C(G(P)) , and a similar argument on the right gives
S £ C*(G(P)) , so that S £ C(G(P))

On the other hand, let x”cx1 e C(G(P)) and assume that rc e P

for sone r e R .



Then, (x Vx1)» ~x1) e G(P) for any i £0,

i.e. X Vx1 e G(P) and therefore

r e KgG(P) =P , again by theorem 2.2.

Thus, C(G(P)) ¢ U x 1 'CiPJx1, and a similar right-handed
i~0

argument gives C(G(P)) ¢ Ux ~'(PlJx1, whence S =C(G(P))
ia0

The proof of theorem 3.4 shows that A(R,a) has the left Ore

condition with respect to S, so G(P) is left localizable.

(iii) The proof of theorem 3.4 also shows that S is a multi-
piicatively closed set of regular elements of A(R,a) , so it is
possible to form the left localization S ~A(R,a) , which has been

shown in (ii) above to be the same as A(R,a)"pj

But as in the proof of theorem 3.4, S"~A(R,a) may be identified

with A(Rp,ap) . so that A(Rp,ap) - ARR,a)G(P) *

Remark:
The isomorphism given in theorem 3.9 (iii) above shows that

A(Rp,ap) is a local ring, since G(P) is prime and left localizable.

3.10 Example:

Let K be a field, o0:K “mK a monomorphism which is not surjective,

and define o0,:K[y] Kly] by



Mg(kcyd) and define a:R -mR by

h(y) k(y) a-,(h(y)) al(k(y))

Since A(K,a) is a field (by proposition 1.27), (K,a) is left
Jordan, and by theorem 3.3, so is (K[y],a”) . By theorem 3.2, R s

left Jordan too. R is also prime and left Noetherian.

Let <y> denote the ideal of K[y] generated by y , and let

<y> <y>\

p = I . Then P is a prime ideal of R, a(P) s P, and
<y > <y

since o0 is a monomorphism, a \p) £ P , sothat P is a-stable.
Recall that an ideal | of aring R issaid to have the left

AR-property if for each left ideal K of R there exists n elIN with
Kniln&£ ik . The ideal | is said to have the right AR-property if
for each right ideal K of R, there exists nelIN with KnInc Kl
If each ideal of R has both the left and right AR-property, then R

is called an AR-ring.

By corollary 11.8 of [3], any coirmutative Noetherian ring (in
this case, KCy]) is an AR-ring, and it is well-known ([3], Corollary
11.6) that a full matrix ring overan AR-ring is again an AR-ring. So
Mg(KCyl) is an AR-ring, and by atheorem dueto P.F.Smith ([3],

corollary 11.12), which states that any semiprime ideal of a left and
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right Noetherian AR-ring is localizable, P is localizable.

Theorem 3.9 therefore applies, and gives A(Rp,ap) =A(R,a)g”pj

83. Krull Dimension.

Even in the case where R is assumed to be left Jordan, Krull
dimension does not behave well on passage from R to A(R,a) . This
is illustrated by example 3.14, which shows that it is possible for R
to have Krull dimension i (for any non-negative integer i) , but
for A(R,a) to be a field, and therefore to have Krull dimension zero.
This example first appeared in Jordan's paper [16], and the object of
the first part of this section is to explain these examples by relating
the left Krull dimension of A(R,a) to the set of closed left ideals

of R, in the case where R is left Jordan.

The second part of the section is really a diversion, in the sense
that the left Jordan assumption on R is temporarily discarded. It
is devoted to answering the following question, which was posed by

Jordan in [16].

If R has left Krull dimension zero, then it is left Artinian, so
by theorem 1.37, A(R,a) is left Artinian and therefore also has left

Krull dimension zero.

However, example 3.15 shows that it is possible to have a
commutative, Noetherian domain R of Krull dimension 2, with A(R,a)

not having Krull dimension at all.



The question to be answered, then, is what happens when

Kdint*R =17

Example 3.16 answers this by giving a commutative, Noetherian
domain R of Krull dimension 1, and a monomorphism aR-*- R , such

that A(R,a) does not have Krull dimension.

For the definition and basic properties of Krull dimension, refer

to CIO].

3.11 Proposition:

Let C denote the collection of closed left ideals of R, and

define a relation on C*IN by (I,n) < (d,m) iff pm1) =Pn()) -
Then ~ is an equivalence relation on C xIN .

Proof:
It is clear that ”~ is reflexive and symmetric. To see that it

is transitive, assume that (I,n) n (Jym) and (Im) ~ (K,i) , so

that
Pr(I) = pn) and pt(J) = PmK) .
Applying p~ to both sides of the first equation gives
Py ) = Prag()) and applying p, to the second equation gives
b~ * 35-

Thus, p™ 1) 3 Pmn(K) and applying «’m gives Pt(0O 3 p,(k) =

again by 1.35. Thus (l,n) « (K,t)



3.12 Proposition:

Let S denote the set of equivalence classes C * NQ , and
define a relation s on S by

c(l.n)] * c@,n)] if PmI) £ PnQ))

Then s is a partial order on S .

Proof:
It must first be shown that s is well-defined. Assume that

- ,n,) v (I,n) and (*m.) v (J,m) with pm(l) c p,(J)

Since pn(l-)) =P (1) » applying p ~ gives

prm+HmM 1N prgm()

Since p ~) =Pm () . applying pp + gives

W o+ iw 3 pmamrn(d) ©

Now, (2), (3) and (4) yield PPﬂD-IDHn/h"- pmn, +NAIA *

and applying a*(m+n) to this gives,

by proposition 1.35,  pgg(1,) ¢ Py (J})
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Thus < is well-defined.
It is clear that £ is reflexive.

To see that < is antisymmetric, assume that [(I,n)] < C(O,mU
and C(J,m)] £ C(l,n)] . Then pm(l) s pn(J) and pn(J) ¢ pn(1) ,

i,e. p,(J) mPm(1) and C(I.n)] =[(.m)]

Transitivity may be proved in the same way as it was for n in

proposition 3.11.

3.13 Theorem:
Let R be a left Jordan ring.

Then Kd'm«{R,ajA(R’«) =Kdm S , where S is equipoed with

the partial order £ .

Proof:

Let C(l,n)] e S and define an «-sequence (lj)j~*Q of closed

left ideals as follows:

a_(nj)(l) j <n

=< 1 p=n
Pj.nd) i >"
Note that (1) is closed for j <n , and Pj-nd) is

closed for j >n since (lj)j>o ’'s an «-sequence of left ideals,

by proposition 1.35.



Thus, a stab”e «-sequence of closed left ideals
with In =1 , so that a ideal of A(R,a)
Denote the left ideal obtained in this manner by <H(l,n)] , so that

p is amgp from S to L , the lattice of left ideals of A(R,a)
ii is order-preserving, because if C(I,n)] s [(J,m)] then

P(l) £ Pn(J) , but *[(I,n)]Bthh = Pn(l) , and *[(J,m)lmn = Pp())

so that £ <HI(,m)]Jm+Hn, where (“C(J.m)Di)iatO denotes r(*[(J,m)]).

Now, for O s j <mmn ,

and for all j sl

S mc(e’em)W j -

By theorem 1.33, then, ip[(l,n)] c ij=>[(J,m)]

Since any a-sequence of closed left ideals of R is stable,

is surjective.

To see that i is injective, let | , J be closed left ideals

of R such that ipC(l,n)] =ipdJ,m)] for some nm >0 . Then by



1.33, <]i[(,n)]. =4[(J,m)].j for all i =0, and in particular,
AL (1 *n)Imin =~ (I»m)Imin gives onm(l) =op(J) , so that
[(Ln)] =[0,m)]
The inverse bijection, ~ , is also order-preserving. Indeed,
let 1,] be left ideals of A(R,a) with | cJ , Since R is left
Jordan, both a-sequences (l-j))9~g and ~"i®i>0 are sta™e- Let
n 20 be such that, for all i an, PjCl§) =1i+~ and P|@.j) ="+ -
Then il»[(I ,n)] =1 and < ,n)] =1
But by theorem 1.33, IpcJn , hence Pn(ln) £ Pn(Jn) * and

C(In»n)™ * [(Jn.n)] » so iji'l is order-preserving.

Thus, Kdim” ajA(R,a) =K dm S

3.14 Example: (Jordan, [16])

Let K be a field, and denote by R the polynomial ring
K[x-jli=i in a countable number of commuting indeterminates.

Denote by R the localization of R at the multiplicatively
closed subset xjNj=i+l and ai N 4 the
K-endomorphism such that (XN =x™ for all j 21 . |If
denotes the quotient field of K[xJ.]j>+ , then R. may be identified
with  Sj[x”....Xj] , which by proposition 9.2 of [10], has Krull

dimension i

But, for each i >0, Ri does not have a proper closed ideal.

So CxIN={O.R"} xIN, and clearly for any nm cIN , pn(0) = pn(0)



and pn(Rf) =pm(Ri.) . Thus S consists of only two elements, and
therefore has Krull dimension zero. By theorem 3.13, K dim A(R.,a®) =0

for each i ~0 .

Remark:

Turning away now from the left Jordan setting, the following example
shows that it is possible to have a ring R of Krull dimension 2 , and
a monomorphism a:R “mR such that A(R,a) does not have Krull dimension.
By proposition 3.1, left Krull dimension zero (that is to say, the ring
R is left Artinian) is preserved onpassage from R to A(R,a), and
example 3.16 fills in the gap, first noted by Jordan in [161, at Krull
dimension 1 by showing that it is possible for R to have Krull

dimension 1 but for A(R,a) not to have Krull dimension.

3.15 Example: (Jordan, [16])

Let K be a field and let R = K[y] , the polynomial ring over K

in one indeterminate. Let a:R + Rbe the K-monomorphism such that

<y) vy
Now consider the ring A(R,a)[t] where t is an indeterminate,
n { n ;
and extend a to RCt] by defining a( z f.t ) = Za(f.)t . By

= i=I
the proof of theorem 3.3, A(R,a)[t] =A(R[t],a) , and since by 141
A(R,a) is not Noetherian, by proposition 9.1 of [101, A(R,a)[t]
cannot have Krull dimension.
By proposition 9.2 of [10], Kdm RCt] =2 , but A(R[t],a)

does not have Krull dimension.



3.16 Example:

As in the previous example, let R =K[y] and let a:R *R

2
be the K-monomorphism such that o(y) =y . Note that R is a
commutative, Noetherian domain of Krull dimension 1. It will be

shown that A(R,a) does not have Krull dimension.

Let <yn> denote the ideal of R generated by yn , and let
n be an even integer. Then clearly a(<ynn//2>) c <9> . On the

other hand, if f e R is such that a(f) « <yn>, then

o(f) =yn(lcryl) where ™ e K and each i is even (since nH
has to be even). Thus f =y~EC.-y1™2) e <yn> , and therefore
-1, n, n/2 1

STy S =<y >m - (D)

Now let n be an odd integer. Then clearly
nmtl

a<y ~ > £ 9n+1>£ <yn> . But if f e R is such that o(f) ¢ <n>,

then a(f) =yn(lc.y1l) . Again, each n+i must be even, and since n
5
is odd, each i must be odd. Thus, a(f) =yn+(lc..y”) , so that
n+ i-1 n+l 1
~7~ ~7~ ~T
f=y ) « <y =

This, combined with (1) above, yields, for any n elN

<yn/2> n even

a N<yn>) =+ (2)
n+

<y n odd
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Next, let k £ and let Iy denote the set

ly ={(n0=nl,..,nk) ell\}(-'-1 nQ=1 and for all 1si <k

either m=2m~ or n. =2n._"-1}

.eIN, a nmp IN by
coand o =2fk. 1(n)-1 for

lg and NE ZK put

<y”i> for O0si sk
‘o

& " > for i ak+1

where N = (nQ,nl,..,nk)

By (2), ((Bn s an a_secluence ideals, and by the
argument prior to definition 1.31, each (BN k)™ is closed. By
theorem 1.33, it therefore defines an ideal of A(R,a) , which will

be denoted by BN k .

The collection {B™ k | k elINg , Ne Zk) of ideals of A(R,a)

will be denoted by X .

It is now claimed that given BN k , BN k e X with

Bm .

5Bm . , there exists an infinite descending chain of ideals
II,K r Ni»Ki



in X between k and k
Indeed, since B~k f BN =k , there exists m=> k+k, such

that (Vv m * ~.k~Am e (Theorem 1.33 shows that
(Bn K)i ~ Bn kN f°r ii0 - andif nosuch @ exists>

then (B~ ky* =(® k). for all i 2k , so that
a"J((BN,k)i) =a"j((BNL,kl1)i) for 311 O0sJ 51 i vyielding
BNk = B\] k1)-

mo m
Assume that (BNfkkm=<y > and (B ~ ~ vy >

Since m2k +kl , BNKM =< > and (B ~ )~

Define



- 97 -

Since my2 MMl , 2 <2 <2mg-l so that

(BNK\N+1 P ANAKAM+| A A kam +|  and because fk is an

increasing function for each k £IN ,

Hence, BNk £

The process can be repeated for bn k ~ BN k * and rePeated

application yields the required infinite chain of ideals in X between

BNk and B

Now assume that A(R,a) has Krull dimension. Then by lemma 1.1
of C101, the A(R,ot)-module 1/) has Krull dimension, for any ideals

I ~J of A(R,a)

Let | ,J eX be such that I~J] and Kdm I/)] =minCK dim A/B
A~ B, ABe X} .A s shown above, there exists an infinite descending

chain (lj)j*o ideals in X with J ~ 1 jj | for each j 20 .

By the definition of Krull dimension(as in CIO]), there must exist

k2 0 suchthat forall j 2k, Kdim(lj/lj+) <K d*n -

This is a contradiction, so A(R,a) cannot have Krull dimension.

54. The Jacobson Radical.

The behaviour of the Jacobson radical on passing from R to A(R,a)

is not at all straightforward. For instance, examples 3.17 and 3.18
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below show that it is possible for either of the rings R or A(R,a)
to be semiprimitive, but not the other. However, it is then shown
in proposition 3.19 that if J(R) is a-invariant, which is always
the case when R is left Artinian (by lemma 1.1 of £131), then

A(R,a) semiprimitive implies that R is semiprimitive.

Attention is then turned to the Jacobson radical of A(R,a) under
the assumption that R is left Jordan, with the object of calculating
its a-sequence in terms of closed left ideals of R . The method used
is similar to that employed in the previous chapter to study the nil-

potent radical of A(R,a)

First, those a-sequences which give rise to maximal left ideals

of A(R,a) are determined, and then it is possible to find the

a-sequence of the intersection of all the maximal left ideals - i.e.
the a-sequence of the Jacobson radical. In fact, if (J-j)-j>0 denotes
the a-sequence of J(A(R,a)) , then J* s given by the intersection

of all the maximal closed left ideals of R .

Finally, this enables some of the behaviour of semiprimitivity

on passage from R to A(R,a) to be explained.

3.17 Example: (Jordan, [16])

Let B be the formal power series ring KCCx”]]™ in a countable
set of commiting indeterminates over a field K, and let R be the

commutative polynomial ring B[Xd]



Define a:R R to be the K-algebra endomorphism such that

°(xi) =x4+ for all i 20, and let | be the ideal of R
generated by {x..}..« . Then a \l) =1, and a(ll c 0, so
forall ael , 1-a(al is a unit of R (by, for instance,

theorem 2, p.131 of vol.ll of [22]).

Now consider the a-sequence where ~ =1 for all

i 20 . If x'Vx1€A((Il)ia0) , then r « | and

1-XxVXx1l=x"+(1 -a(r)x'+ , so by

proposition 1.37, 1 - x’Vx1 is a unit of A(R,a) . Thus A ((li)">Q

is a quasi-regular ideal of A(R,a) , so A(R,a) is not semiprimitive.

In general, by theorem 4, p. 12 of [11], for a ring R which has
no nil ideals, J(R[t]) =0 . Here, B is a domain, so B[xQ] =R

is semiprimitive.

3.18 Example:

Let S be the polynomial ring KCx- e” in an infinite number
of commuting indeterminates over a field K, and let a : S %S be
the K-monomorphism such that a(x®) =x”~ . Let P be the ideal
generated by (x . | i al} , i.e. P=1x. . Then P is a

i=l
prime ideal of S .

Let R denote the localization of S at P . If ftS-P

then a(f) { P, so a extends to a monomorphism a:R * R by defining
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o(fg =a(f)a(g) ~, where feS and g£S -P .

Now for any f e S , there exists n £I1l such that ~(f) { P -

therefore, for all fg ~e R, there exists n £IN with an(fg"”) a

unit. By proposition 1.37, A(R,a) is a field, therefore semi-

primi tive.

But R is a local ring with unique maximal ideal PR (by [1],

chapter 3), which is therefore the Jacobson radical.

Remark:

Note that, in example 3.18, J(R) is not a-invariant. The

next result shows that if J(R) is a-invariant, then such examples

(i.e. with A(R,a) semiprimitive but R not) do not exist.

3.19 Proposition:

If the Jacobson radical of a ring R is a-invariant, then

(1) G((R)) cI(A(R,a)) ;
(i) If A(R,a) is semiprimitive then so is
Proof:

(i) By theorem 2.2, G(J(R)) is an ideal of

R .

AR,a) , so it will

be sufficient to show that G(J(R)) is left quasi-regular.

Let x 'ax’ £G((R)) with ac J(R) . Then,

there exists



¢ £R with c¢(l-a) =1, so that x ’'cxl(l-x~ax1) =1, and

G (J(R)) is left quasi-regular.

(ii) Intersecting both sides of (i) with R gives

G({(R)) nRc JA(R,0}) nR or, by theorem 2.2, U a'n(J(R)) c
naO

JA(R,0)) nR . Thus, if J(A(R,0)) =0, then J(R) =0 .

From now on, R will be assumed to be left Jordan, but J(R) will
not necessarily be a-invariant. Note that the ring R in example

3.18 is left Jordan, but J(R) is not a-invariant.

3.20 Definition:

A closed left ideal Mof R is said to be a maximal closed left
ideal if it is not strictly contained in any proper closed left ideal.
Remark:

Clearly, if a maximal left ideal happens to be closed, then it is a
maximal closed left ideal. Also, if a maximal left ideal M of R s
o-invariant, then R/ o~~(M) =M, so o M) =M and by Deposition

2.5, M is closed.

However, example 3.18 shows that even if R is left Jordan, it is

possible that none of its maximal ideals are closed.

3.21 Lemma

Let R be a left Jordan ring, M a left ideal of A(R,a) and

denote the a-sequence r(M) by (M™)"q =
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Then M is a maximal left ideal iff there exists k 2 O such

that, for each i i k, H. is a maximal closed left ideal of R .

Proof:
First, let k 20 be such thatfor all i 2k , N is a

maximal closed left ideal of R , and assume that there exists a left

ideal 1 of A(R,a) with Mp | ™ A(R,a)
Then, there exists i 20,rer such that x'Vx1 ¢ | but
xVxl/M; ie. re |I. but ri . Foreach j2o0 |,

al(r) « li+j . but if al(r) €M+j , then r e since (Mj)
is an a-sequence. This is impossible, so an(r) e 1j. but

aj(r) i MH. for all j 20 .

By theorem 1.33, M.+H. ~I. .~ R for all j 20, which con-

tradicts the definition of k . Thus, M is a maximal left ideal.

Conversely, assume that M is a maximal left ideal of A(R,a) and,
if possible, that for each N elIN there exists k 2 N such that

is not a maximal closed left ideal of R .
Since R is left Jordan, there exists eIN such that, for all
j 20, M =Pj(mn ) and by assumption, there exists p 2 with
Mp not a maximal closed left ideal. Thus, there exists a closed left
Ideal 1 _ with R3 L 3M
P f Pr P
By the proof of theorem 2.6, a"~(lp) is a closed left ideal for

all j =I,..,p , and since (M~)~q is an a-sequence, c a~p"” (Ip)

for j »0,..,p
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Now since Mo 1 , by proposition 1.35 p~Mp) ™ p™(Ip)

for all j >0 . Thus the following a-sequence is obtained:

o"(P_i)(1 ) for Osi sp
*j —

~i-p~p) for 1 2P
kv

with the property that (11)la0 } <M >i>0 *

Applying A shows that M cannot be a maximal left ideal.
Thus, there exists N eIN such that for all k >N, is a maximal

closed left ideal.

3.22 Lemma:

Let {(1~ .)i>0 | k £X} be a collection of a-sequences of closed

left ideals of R, where X is an indexing set. Then

(i)

(nKkK 's an a_sequence of closed left ideals of R;
keX K1 120

1) NV (im W ' d&x 'k.iha) -
Proof:
(i) Let i 20 . To show that nl, . is a closed left ideal
ki-X KL

of R, let n>0.
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Then a'n(Ran( n I. .)) ¢ a‘'nRen(l., .)) for all k€X
ksX K’ ’
£ 1K.i for all ks X , since
each I. . is closed. Thus an(Ran( nl. .)) ¢ nl .
Kl kex KA kix K
Now, a_i1(n L . ) = na"l(l. .,)
keX K2+l  KkfX KA 1
*n L., so that
keX
(n L. .). n is an a-sequence of closed left ideals of R .
kfx Kl 12U
(ii) Fix j >0 and let reT ("™ a(ltN)i20). , i.e.

I £ 41 .Y>q for all k£X . Since the maps r and A are
mutually inverse (theorem 1.33), this means r £ I'K*J' for all k £X

and r( nA(l. i)i Qi £ nl ..
kfx K3l 120 k£X K,J

On the other hand, if r £ nl. . then xJrx) £ n a(l. OD.
kfX keX 0

r € r(kEXMIk‘i)ii0))

Notation:

The collection of all the maximal closed left ideals of R will

be denoted by M .
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3.23 Theorem:
Let R be a left Jordan ring and denote by (J. ) the
a-sequence r(J(A(R,a)))

Then J. = nM , forall i sO.
1 mm

Proof:

It wasshown in lemma 3.21 that a left ideal M of A(R,a) is
maximal iffM. is a maximal closed left ideal, for all i greater

than some Kk « N .

It is now claimed that, given any j , ki O and any maximal closed
left ideal | of R, there exists a maximal left ideal M of A(R,a)
such that M. =a 7(I)

To seethis, define an a-sequence as follows. Put
Mj+k =1 and NI =a”~N+k'l~() for i =0,..., j+k . By the proof
of theorem 2.6, each a “~V+k ~ (1) is closed, and Mj =a k(I)

If pj(l) is not a maximal closed left ideal of R then, since

R is left Jordan and therefore has ascending chain condition on closed

left ideals, there exists a maximal closed left ideal N which contains

PL(I) =

By proposition 1.35, a ~(pi(l1)) =1 =M+ , SO a_l(N) 2 I
But a_l(N) is a closed left ideal, so maximality of | gives
a’™N) =1 , and the next term in the a-sequence (M)”o be

defined as Mj+Ha™ =N
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The procedure can then be repeated for pj ) , obtaining

a maximal closed left ideal such that a_I(Mj+k+2) =M +H=i =
Continuing the process yields an a-sequence (M-).2q of closed

left ideals such that a’k(l) =M. , and if i >j+k then M

is a maximal closed left ideal. By lemma 3.21, M =a((M™)"qg) is

a maximal left ideal of A(R,a) , and the claim is proved.

Now, for any i s O ,

J = ( n M
M a maximal
left ideal
of A(R,0)

n M where r(M) = (M.). n, by
M a maximal
left ideal
of A(R,0)

lemma 3.22(ii). But by the claim proved above, for any k 2 0 and

I 611, there exists a maximal left ideal M of A(R,a) with
Mj =a_k(l) . By lemma 3.21, every must be of that form, so
J - n a’k(l) . - (D
1 k*0
leM
Now, for each k 20 , let Ak be the collection of all maximal
a-sequences closed left ideals of R such that, for all

i 2k, M is a maximal closed left ideal. By lemma 3.22(i), the
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The procedure can then be repeated for P-|(Mj+k+H) , obtaining
a maximal closed left ideal M+k+2 such that a"~(Mj+t2) =M+k+l *
Continuing the process yields an a-sequence (M.).~“q of closed
left ideals such that a_y(l) =Mj , and if i 2 j+k then
is a maximal closed left ideal. By lemma 3.21, M =a((M™)"qg) is

a maximal left ideal of A(R,a) , and the claim is proved.

Now, for any i 2 0,

M a maximal
left ideal
of A(R,a)

= n M. where r(M) =(M.).~g , by
M a maximal
left ideal
of A(R,a)

lemma 3.22(ii). But by the claim proved above, for any k2 0 and

Il eM , there exists a maximal left ideal M of A(R,a) with
M =a‘k(l) . By lemmma 3.21, every must be of that form, so
J. * na k() . - (1)
1 ksO
IcM

Now, for each k 20, let Ak be the collection of all maximal
a-sequences (Mj)” q of closed left ideals of R such that, for all

i 2k, M is a maximal closed left ideal. By lenma 3.22(i), the
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sequence (lkj)j>0 9iven by

.= n M. for each j 20

is an a-sequence of closed left ideals of R : let |k be the left

ideal of A(R,a) so obtained.

Then 1k is a—stable. Indeed, let r e Ikﬂ. for some j s O .
P
Let (Mi}iso € Ak = and define a new a-sequence (Nj)i>0 by Puttin9
Ni _ MM for each i 20 . Then (Mi)-jsO e Ak and N. =|\/j+1
But r « Ik so re N. =N+ , whence r e lkj H , and
*k,j~ 1k,j+l

Now, for any x"Jrx]J e Ik, i.e. r e jkj,
a"l(x'w ) =x"N+lvx™l e Ik since Ik = |kj +l « ™us
a_l(lk) £ Ik, and since R is left Jordan, the ascending chain
I~ ~ an(lk) - - °n(lk) ~ must terminate» giving
a(lk) =1k , and so |k is a-stable.

By proposition 2.4, lkk=1kQ for all k20 but

M and na ‘(M
sk new ko nvem ™M)

n*k

Thus, from (1),

J, = nM
1 MeM
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3.24 Corollary:

If R is a left Jordan ring such that the intersection of all

the maximal closed left ideals is zero, then A(R,a) is semiprimitive.

Proof:

By theorem 3.23, » =0 for all i 20 .

3.25 Corollary:

If R is a left and right Jordan ring then the intersection of all
the maximal closed left ideals is the same as the intersection of all

the maximal closed right ideals.

Proof:
Since the Jacobson radical is left-right symmetric, the right-
handed version of the above work shows that each term of r(J(A(R,a)))

is given by the intersection of all the maximal closed right ideals.

3.26 Examples:

(i) Consider the ring R of example 3.18. R is left Jordan,
and the only closed left ideal, apart from R itself, is O . By

corollary 3.24, A(R,a) is semiprimitive, as was seen in example 3.18.

(ii) Let K be a field, a:K -mK a monomorphism which is not an

automorphism. Let S =K[y] and define <T:S‘mS by

a 2fy'y = Bayyl . Then s is left Jordan, by theorem 3.3.
= 1
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S
Now define with a:R -mR defined
S
«(s™ a(s2)
by Sl s2  _
0 <3 0 a(s3)
Since the mep in the proof of theorem 3.2 restricts to an isomorphism

between A(MNn(S),a) and M(A(S,a)) where Mnh denotes the upper

triangular matrix ring, (R,a) is left Jordan.

The maximal left ideals of R are

11} J 0 S
s s ) .
= an = 0 s
10 g 1

of which is a-invariant and therefore closed, by the remark following

definition 3.20.

Theorem 3.23 therefore gives J(A(R,a))» =1 n

55. Maximal Left Ideals of Left Artinian Rings.

This section has two objectives, the first of which is to show that
maximal left ideals of left Artinian rings are closed. If R is a left
Artinian ring with Jacobson radical J(R) then, as was seen in section 3
of chapter 1, the semiprimitive idempotents of R/J(R) are defined to
be those central idempotents of R/J(R) which generate minimal ideals.

It was shown in theorem 1.15 that if (f~ | i =1,..,n) are orthogonal



no

idempotents of R such that {<j>(f) | i = are precisely

the semiprimitive idempotents of R/J(R) ($ being the natural
surjection), then f.jRf.j is a primary ring, for each i =1,..,n

By theorem 1.10, a primary ring is a matrix ring over a completely
primary ring, and the three-step method of proof described in section 3
of chapter 1 will be used here. Thus, maximal left ideals will first
be shown to be closed in completely primary rings, then in primary
rings, and finally in left Artinian rings. Note that the phrase "each
maximal left ideal is closed" is taken to mean that the maximal left
ideals are closed under any monomorphism a:R R . Also, note that

if M is a maximal left ideal which is not closed, then for some k ~ 0 ,
Mp a'k(Rak(M)) , so that 1 « a‘k(Rak(M)) , and since o(l) =1 |,

l1e Ra (M) . This fact will be used frequently.

The second aim of the section is to use theorem 3.23, which gives
the a-sequence of J(A(R,a)) , to generalize a result of Jategaonkar

[13] which states that if R is left Artinian then a ~(J(R)) =J(R) =

Specifically, the generalization is that the left Artinian condition
on R ney be replaced by the assumption that R is left Jordan, and
that maximal left ideals of R are closed. Observe that by the first
part of the section, a left Artinian ring satisfies these conditions.

An example is provided to show that this is a genuine generalization.

In this section, $ will denote the natural surjection from R

onto R/JR) , and T will denote the identity element of R/J(R)



3.27 Proposition:

If R is a completely primary ring and M is the unique maximal

left ideal of R, then M is closed.

Proof:

Since M =J(R) and R is left Artinian, M is nilpotent.
Therefore an(M) is a nil subring for any nz 0, so an(M) £ M.
Hence Ran(M) £ M, and since a n(M) is a nilpotent left ideal,

a’n(Ran(M)) £ M, and M is closed.

Notation:

Let S be a completely primary ring, and let i,n eIN . Then
will denote the maximal left ideal of Mh(S) obtained by insisting
that the entries in the ith column are elements of J(S) , the other
entries being arbitrary. K. will be called the i standard maximal

left ideal of Mn(S)

3.28 Proposition:

Let S be a completely primary ring, and let M be a maximal left
ideal of Mn(S) . Then there exists i eIN and a unit u of Mn(S)

such that M= K.u

Proof:

First, consider the case where S is a division ring, and let M

be a maximal left ideal of the simple Artinian ring M1(S) . By
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theorem 1.12 of 0], M=Mn(S)e for some idempotent e of Mn(S)

The idempotent element 1 - e is primitive, since the fact that

therefore that Mnh(S)(l-e) is a minimal left ideal.

By lemma 1.10 of [6], e =e2 +e~ ... +ek where the e. are
mutually orthogonal, primitive idempotents, so with e =1l-e

1l =er +e2 + ... +ek and again the e are mutually orthogonal.

Now let if. | i =1,..,n} be the standard primitive orthogonal
idempotents for Mn(S) (i.e. f is the matrix with 1 in the
(i,i)-entry and zero elsewhere). By lenmas 1.13 and 1.14, there exists
a unit u of Mn(S) such that, reordering the f~ if necessary,

ei =uV~u for all i =1,..,n ,and k =n .

Then, M =M(S)e2 9 ... 9 Mn(S)ek
= (Mn(S)f29 ... 9 Ma(S)fk)u
=K.u for sore 1l si sn.

Now consider the case where S is completely primary, and let M
be a maximal left ideal of Mnh(S) . Since (by theorem 3, p.ll of [11])

J(IMn(S)) =M1(J(S)) , there is an isomorphism
2Mn(S/J(S)) . Let 4> denote the natural surjection from
* J(M,.(8))

M,,(S) to and let A denote the nmap 40eMn(S) »M(S/I(S))
J(Mn(S))
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Then X(M) is a maximal left ideal of Mn(S/J(S)) . Since S/J)(S)
is a division ring, XM) =K.U where is the i~ standard
maximal left ideal of M1(S/J(S)), and u is a unit of M(S/J(S))

But since units can be lifted over nil ideals, there exists a unit wu
of Mn(S) such that X(u) =I1T, and clearly X ~(K.) =

,  Where

K. is the ith standard maximal left ideal of Mn(S)

Therefore, *K-ju) = and
MS X-1(X(M)) » X"1~ u) 2 K.u

By maximality of M and K.u , this implies M =K.U

3.29 Lemma:

Let ue R be a unit, M any subset of R, and assume that
1€ Ran(M) for some n~ 1. Then 1e R(uga)n(M) where u:R = R

is defined by a/(r) =u ru

Proof:
The proof is by induction on n . Assume that 1« Ra(M) . Then

1=£ra(m®) where r. eR and nue M, and 1= £u V~Au)(u a(m)u) e
RuCa(M) so the assertion holds for n =1

Now assime the conclusion to be true for n1 , and assume

leRan(M) , i.e. 1=£rra0™) for rm «R mj e M. Then

an_l(u) =£ rian(mi)an_Il(u) , and since an_l(u) is a unit, with

inverse an’\u’”) ,
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> n-1

Tt )a”tml.ia (uy

{ g™ (u)/_1 r.la n-1 wya"

i
So 1=5Stn % ) V~c»n \u)an\u “a(m™Mu) e RaP \uga(M))

By the induction hypothesis, 1 e R(UgCi)n"(Uga(M))

i.e. 1£RULCIDHNM) , and the result is proved.

3.30 Lemma:

Let R be a left Artinian ring with Jacobson radical J(R) ,

and let (e. | i =1,...,n) be a set of mutually orthogonal primitive
n_ f—
idempotents of R/J(R) such that ie =1.
i=1
If ig. |i =1,..,n} is any set of mutually orthogonal, non-zero

n
idempotents of R with Eg. =1, then each g. is primitive.
i=l 1 1

Proof:

Assume that, for some 1s ks n, gk is not primitive.
Then gk =gk =gk +gk where gk and ¢j| are non-zero, orthogonal
idempotents.

Since g =gkgk and ¢gj| =gkgk , forany 1si sn with it k,
gj™i * (@MgjiNgi =o , and similarly gj~ =0 .
Thus {g1,.. »gk.!»gk*9k*gk+le**gn> is a set of NH non_zero mutually

orthogonal idempotents.
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Since R is a ring with unity, J(R) cannot contain any idem-
potents, so the set {«(g1),...Kgk IM(gEM(gjl).*(k+1).= =.*(In)>
consists of ntl mutually orthogonal, non-zero idempotents of

R/J(R) , where $:R “mR/J(R) denotes the natural surjection.

But this means that R/J(R) can be written as a direct sum of
n
ml non-zero left ideals, and since R/J(R) = 8 R/J(R)e. (each
i=l
R/J(R)ei being minimal), this contradicts the Krull-Schmidt-Azumaya

theorem ([4], theorem 6.12).

3.31 Theorem:

Every maximal left ideal of a primary ring is closed.

Proof:
Let R and S be isomorphic rings, TaR “mS an isomorphism,
and let M be a maximal left ideal which is not closed under the mono-

morphism a:R —+R .

Then ip(M) is not closed under the endomorphism 1 of s.
Therefore, by theorem 1.10, it is enough to prove the result for rings

of the form Mn(S) where S is completely primary.

Now if M is a maximal left ideal of M (S) , then by proposition
3.28, M=Ku for some 1l s i sn and some unit u of M(S)
u
If M is not closed, then for some k21, 1e M(S)a (M) , or

1e Mh(S)ak(K.u)
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Thus, 1 e Mn(S)a™(K.j)a™(u) , which means that 1 e M~SJan~K.) ,

so is not closed either.

It is therefore sufficient to show that the standard maximal left

ideals of Mn(S) are closed,

Let (e*\]. | i,j =1,..,n} be the standard set of matrix units
for M1(S) - i.e. e~ is the matrix whose (i.j)-entry is 1 , but
has all other entries zero. Since, for each i =1,...,n , S =e™M (S)e”".,

all the rings e”M (S)e~ are completely primary.

But (a(e”) | i,j =I,..,n> is another set of matrix units for
M (S) , so the set ia(el.l.) | i =1,..,n> consists of mutually orth-
n n
ogonal non-zero idempotents, such that | a(e..) =1

Vs>

Since =M(S7)(S)) (as in the proof of proposition 3.28),
J(Mn(S))
M (S)
and since S/J)(S) is a division ring, ———— is a simple Artinian
J(Mn(S))

ring and there exist primitive, mutually orthogonal idempotents

(gi 1i =1,..,nt of Vll— with Zzg. =1. By lemma 3.30,
JIMn(S)) i=I
a(e”) is primitive, for each i =1,..,n

Therefore, by lemma 1.14, a(e...)Mn(S)o(e”) is completely primary

for each i =1,..,n , and by lemma 1.12, there exists a unit u of

Mn(S) such that e”j =V*(e”j) ' “or each = -
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Now, for each i =1I,...,n , define anmgp 1>:5S+S by
<|Ns) = &JQO(SE"))" where se”~ is the matrix with s in the
(i ,i )-place and zeros elsewhere, and (m).~ denotes the (i,i)-entry
of the matrix m . Then <. is a ring homomorphism. Indeed, for

s.t eSS,
Ne(S+t) = (UOa((s+t)eii))ii

= (uQa(seii +teil))il
= (uQatse”) + uQa(teii))il since u is additive,

= (UWOo(seii))ii + (UO(teil))ii , so *1

is additive. Also,

\(st) = (uoa((st)e..))..

v (V (seiiten ))fi

= (uQa (seii )ubbt(teii ))ii since uQa is a ring

homomorphism. But since Uga(e”) =e”

V (sell) " ifdo(ellsell>" en V (seil)eii * so that V (seii}
is a matrix with zeros everywhere except possibly the (i,i)-position,

for any s e S .
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Thus (iOa(seli)ilCa(teii))il =(~(se..)).. ("~ (te..))..
and ip. is a ring homomorphism.

It is injective because if ~-(s) =0 , then since every entry
. N
of the matrix UQa(se”™) except possibly the (i.i)-entry is zero
anyway, \, _ coiis _0 . since UgO is a monomorphism, ser =o ,
hence s =0, and *| is injective.
Let M be the jth standard maximal left ideal of Nh(S) and,
if possible, assume that UgGM) £ M. Then for some me M, u(m)

has a unit of S appearing in the jtfl column - say (u$(m))r\} is

a unit of S . But e, me M, and upa(e. =e. u-aim since
Ip g me) ip o )«
Wa(e..) =e.. for all i,j =I,..,n) , and e. u@m) has a unit

of S appearing in its (j » )-place.

Therefore, in order to show that UgaM) ¢ M, it is sufficient

to show that for any me M, (uQa(m))J.3 cannot be a unit of S .

Now, for any me M,

JJ 33"

Since il{J is a monomorphism of the completely primary ring S ,

and n}U e J(S) , proposition 3.27 shows that i%(nju) cJ(S) , and is
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therefore never a unit of S .

Thus, UgciM) ¢ M, and for any ka O, 1i M(S)(Uga)™M)
¥
By lemma 3.29, 1i Mnh(S)a (M) for any k >0, and by the comments
at the beginning of the proof, every maximal left ideal of a primary

ring is closed.

3.32 Lemma:

Let R be a semisimple Artinian ring, M a maximal left ideal
of R, and e £R an idempotent. Then either eMe =eRe or eWe

is a maximal left ideal of eRe .
Proof:
Assume that eMe \ eRe .

Since R is semisimple Artinian, there exists a left ideal K

of R such that R =MO K (by lemma 1.9 of [6]).

Therefore eRe =eMe + eKe - ().
It is claimed that eKe is a minimal left ideal of eRe . Indeed,
let X be a non-zero left ideal of eRe with X c eKe . Then RX is

a left ideal of R, and O f RX £ Ke .

Since K is a minimal left ideal, the ngp if*K » Ke given by
if*(k} » ke has kernel either K or 0, and if ker i*=K then Ke =0 ,
which implies from (1) that eMe =eRe . This contradicts the earlier
assumption that eRe eMe , therefore ker if =0 and Ke is a minimal

left ideal of R .
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Thus, RX =Ke and since X £ eKe , eReX =eKe . Therefore

X =eKe and eKe is a minimal left ideal.

Now this means that either eKe n eMe =0 or eKe n eMe = eKe
The second alternative is impossible because it would mean eKe £ eMe
and, from (1), that eRe =eMe . Therefore eKe neMe =0 , and
the sum at (1) is direct, showing that eMe is a maximal left ideal

of eRe .

3.33 Theorem:

Every maximal left ideal of a left Artinian ring is closed.

Proof:

Let R be a left Artinian ring, let M be a maximal left ideal
of R, and let |i =1,..,n} be the semiprimitive idempotents
of R/JR) . By lemma 1.10 of 6], each 7. may be written as the

sum of mutually orthogonal primitive idempotents, and these may be

numbered such that, for 0 =kg < <... < =m ,
7i =1 ei )
j=ki-1+4 ]
where each e is a primitive idempotent, for each i =1,..,n

Since R/J(R) (which will be denoted IT) is the direct sum of the

_ n

ideals generated by the 7. , 1 = z7.r. for r. elIT . Since the
1 ”

7. are orthogonal, this gives 71 T7Ir' , whence .Zl7i =1, and

e. =1.
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By proposition 5, p.54 of [11] then, there exist orthogonal

idempotents {e® | i =1,..,m} of R such that 4=(.) =?. for
m
each i = , and Il e. =1 . By lenma 3.30, each e. must
i=l1
be primitive.
K
Putting f. o for i =1,..,n gives a set
]
{f~ ]1i =1,...,n) of orthogonal idempotents of R such that
n
Ef. =1 and *(f.) =7. , for i =1,..,n
i=l1 1 1

It is now claimed that, for some 1si s n, f™Wf. is a maximal

left ideal of the subrin% fini of R .

Indeed, there exists 1 s i s n such that 7R 7 is a maximal
left ideal of 7{/! Z., otherwise, by lemma 3.32, 7.jV| 7;J: 7j? 7J for

each j =1,..,n , so that 7.,e 7.R 7..for each j =1,..,n . Since
J 3¢ 7F 73 J
each 7J is central, and since M is a left ideal of 1?2, this means

that 7~ e FT for all 1sj s n, and therefore that 1e M.

The natural surjection <=R -mR/J(R) , when restricted to f*Rf* =

has image 7.R 7. and kernel f*Rf.j nJ(R) =J~"Rf~) (by theorem 1.15).

Thus -i— - =f.R 7,. By theorem 1.15, J(f.i{f.)1 =f1,J(Rl)f, 1£ f.le. ,

and the image of is 7~ 77, which by the preceding paragraph
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f.Mf.
is a maximal left ideal of dR f.. Therefore is a maximal
J(f.RF.)
f.Rf.
left ideal of — -
J(f.Rf.)

Hence, f.Mf* is a maximal left ideal of fjRf. and the claim is

proved.

Now, it is clear that (a”~) | i =I,...m} is a set of mutually

m
orthogonal idempotents of R with [ «(e.) =1, so by lemma 3.30,

-)
i=l 1
each a(e”) is primitive.
By lemmas 1.13 and 1.14 therefore, there exists a unit u of R
and a permutation it on d,..,m} such that uUa(eI) =e-|--|-(|) , for

each i =1,.. m.

If p denotes the period of it , then (uQd)p(e”) =e~ for each

i =1,...m
u
Now assume M is not closed, so that for some k >0, 1e Ra (M)
By lemma 3.29, 1 e R(uOa)k(M) - (2

Let g be the smallest integer such that pg * k .
Applying (Uga)p™M k to both sides of (2) gives
1 £ R(i0a)Pg(™M) - (3) =

The monomorphism (Ugo)p will be denoted by e , so, multiplying

both sides of (3) on the right by f* gives f* e Req(Mf®) , since
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=f~- e Therefore,

f. =Ir.Bg(m.f.' where r. eR, m «M
[ I J v J J
Multiplying on the left by f.. gives

ft m -Isfi*jfi>-

Since f. is central in R/JR) , f.r. =r.f. +a. where
i \Y 1] Joi J
a” e J(R) , for each j , so

fi = !figrjfl + a‘])6q\gmjfi) where a. e J(R)

<VWVi> *w V i:
-?(firjfi)B *jiaj6 - slnce

B(f.l_) =f.l . Since a, e J(R) , the second summand is an element of

fNR)N =J(f~ARFA)  (by theorem 1.15) and since f~ is the unity of

fiRfi » fi ' ~ialBqmi)fi =z(firjfi)Bq(finjf.) is a unit of f.Rfi
J J

Therefore, the maximal left ideal f.jMr of the primary ring f..Rf.
is not closed under the monomorphism B . This contradicts theorem 3.31,

so M must be closed.
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3.34 Theorem:

Let (R,a) be left Jordan, such that each maximal left ideal

of R is closed under a . Then, a"\j(R)) =J(R)

Proof:
Let (~).j20 denote the a-sequence of the Jacobson radical of

A(R,0) . Then by theorem 3.23, J. = nM where M is the collection
1

of all maximal closed left ideals of R . But since each maximal left

ideal of R is closed, M consists precisely of the maximal left ideals

of R, and therefore J» =J(R) for all i * 0 . Since ) =0
an a-sequence, a~"(J(R)) =J(R) , and the result is proved.
3.35 Remark:

In lemma 1.1 of [13], Jategaonkar proves that if R is a left
Artinian ring and a:R mR is a monomorphism, then a ~(J(R)) =J(R)
By proposition 3.1, a left Artinian ring is left Jordan, and by
theorem 3.33, all the maximal left ideals of R are closed. So

theorem 3.34 contains Jategaonkar's result as a special case.

To see that theorem 3.34 is a genuine generalization of the left
Artinian case, it is only necessary to note that there exist rings R
and monomorphisms a:R R such that (R,a) is left Jordan, each
maximal left ideal is closed under a , but R is not left Artinian.

The following example gives such a ring.
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3.36 Example:

Let K be a field with a monomorphism a:K “mK which is not
surjective, let S =K[y] where y is an indeterminate, and define

a:S mS by a(zfV) =2Zo(f.Jyl . By theorem 3.3, (S,a) is left
il i 1

Jordan. Let P denote the prime ideal of S generated by y . |If
f6S is such that f t P then a(f) i P, so a extends to a
monomorphism a:R #*R where R is the localization of S at P .

By theorem 3.4, (R,a) is left Jordan.

By chapter 3 of [1], R is a local ring with unique maximal ideal
PR. If f £PR then f =Ef.(g~h”) where f. « P, h. £Pl and
gj £S . Therefore, a(f) = za(f*)a(g.. )a(h..) ~e PR since a(P) £ P ;
SO PR is a-invariant. By the remark following definition 3.20, PR
is closed.

However, R is not Artinian since it has an infinite descending

chain (ynR)” 4 of ideals.
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CHAPTER 4.

THE QUOTIENT RING PROBLEM FOR A(R,a).

This chapter is concerned with two aspects of the quotient ring
problem for A(R,a) . The first part of the chapter deals with con-
ditions on R equivalent to A(R,0) being a full quotient ring, the
second part with the question of when A(R,a) has a left Artinian left

quotient ring.

It is straightforward to obtain a characterization in terms of
elements of when A(R,a) is a quotient ring, but the main object here
will be to obtain an element-free condition. This is done under the
assumption that R is left and right Jordan, and uses a theorem (13.10
of [33), of Stafford, which states that a Noetherian ring S is a full
quotient ring if and only if r(A) ni(A) ¢cJ where A denotes the
Artinian radical and J denotes the Jacobson radical of S . The
assumption that R is left and right Jordan enables the a-sequences
which correspond to Artinian left ideals of A(R,a) to be determined,
and this is combined with the work on the Jacobson radical of A(R,a)

in the previous chapter to yield a Stafford-like criterion on R .

Recall that an Artinian left ideal of a ring R is a left ideal
which is Artinian as a left R-module, and also that a module has finite

length iff it is both Artinian and Noetherian.
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51. A(R,a) as a Quotient Ring.

4.1 Proposition:

If R is a quotient ring, then A(R,a) is also a quotient ring.

Proof:
Let x Vx1 be a regular element of A(R,a) . Then by proposition
1.25, gn(r) is a regular element of R, for each n20 , and

therefore r is a unit of R .

Hence, x'Vx1 is a unit of A(R,a)

Remark:

The converse clearly does not hold. Indeed, let S =KCx].
where K is a field and the x* are indeterminates, and let
a:S mS be the K-endomorphism such that a(x.) =x.+H . Let R be
S localized at the set K[ x.and extend a from S to R in the
obvious manner. Then R is not a quotient ring, but A(R,a) is a field

by proposition 1.27.

It is easy to obtain an element-wise condition on R which is

equivalent to A(R,0) being a quotient ring:

4.2 Proposition:

A(R,a) is a quotient ring iff for any r e R such that an(r) is
regular for all nz O, there exists nuO such that am(r) is a

unit of R .



- 128 -

Proof:

If A(R,a) is a quotient ring, then all its regular elements are
units. Thus, if an(r) is a regular element of R for all n 20 ,
then x'Vxl1 is a regular element of A(R,a) , by proposition 1.25,
for each i £0 . Therefore x Vxl is a unit of A(R,a) , or by

1.27, an(r) is a unit for some m~O0 .

Conversely, if xVxl e A(R,a) is regular, then an(r) is
regular in R for all n 20, so there exists ms 0 with am(r)

a unit. Thus, x Vxl is a unit, and A(R,a) is a quotient ring.

The aim here, however, is to obtain an element-free characterization

of when A(R,a) is a quotient ring.

4.3 Definition:

An a-sequence (17)..~ of closed left ideals is said to be bounded
if sup{s(i) | i 20} <» , where s(i) denotes the supremum of the

lengths of chains of closed left ideals contained in 1~ .

4.4  Lemma:
Let | be a left ideal of A(R,a) . Then
(i) I has finite length (as a left A(R.a)-module) iff

(11)i>0 s 3 bon<ed «* Sequence;

(ii) In this case, (I,)i>0 is a stable «-sequence.

Proof:

First assume that | has finite length, say n , as a left



A(R,a)-module. Suppose that, for some k 2 0, 1~ contains a chain
of closed left ideals of length greater than n , i.e.
'k 10?2 )1\ - %on.l =0 -

Then, for any i 20 , by propositions 1.35 and 1.36,

2 pl<ty =pi<J0> p pi(JIN £ o0 1 =0 *

Now, for j =0 ,..,n+l , let (Kj*)50 be the “'Sequence of

closed left ideals defined by
a"(k’l)(Jj) Osi sk
‘i-k(Jj) *sk e

If the a-sequence (K-j).j>0 ’s denoted just as , then

(Hw < 0=>KI >" - >KknH =0"
and applying A gives a chain
I 2 A(Ka) fA(K,) 1 ... ~ A(Kn+l1l) =0

of length at least n+l , consisting of distinct left A(R,a)-submodules

of |

This contradicts the fact that | has length n .
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Before proving the converse of (i), it is convenient to prove (ii),

namely that a bounded a-sequence of closed left ideals is stable.

Let (1.)~2qg be a bounded a-sequence of closed left ideals, and
let n =supis(i) | i 20) . Since (s(i))j2g is a sequence of non-
negative integers, it must attain its supremum; therefore there exists
N 2 0 such that 1~ contains a chain of n closed left ideals, i.e.

IH=010~? Ll ? } Ln =0 -

Let ki O and suppose that I[N+t pNIN) proposition 1.36,

this means that PK(IN) £ INKK so that |IN+k contains the chain

W | Bk{LO>]| »k<LI> % eee 2°k<Lr>*"° =

But this chain has length mn+l , contradicting the fact that

supis(i) | i * 0} =n .

So, for any k* 0, INKk =PKk(IN) , and (I~~~ qg is stable.

To prove the converse of (i), let (I-j)40 be a bouncled »-sequence
of closed left ideals and suppose supfs(i) | i * 0} =n . If possible,
let

I " JOfJi? -= fJml 30 be a chain

of left ideals of A(R,a) , of length n+l

Let (Oji)i> denote the a-sequence r(Jj) for j =0,..,n+l
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For all j =0,..,n+1 , (j-j)-j2g 1S a bounded a-sequence, since

(li)i>0 is bounded-

By (ii) then, the a-sequences (17)~ and (J..).2q are all

stable, and there exists N a O such that, for all kaoO,
Pk(V =Jj,N+ for all j =0"""nH - - 0)

Suppose there exists 0 s j s n such that n

Then for all 0s ks N, a~(r) =Q n) and “or at
k*° , Pk(JjN) =Pk(Jj+i,N) = By (1), this means that JjM =Jj+Iji
for all i a0, i.e. Jj =JjH , which is impossible.

Thus, for all j =0,...,n , JjN BJj+I>N, so IN contains the

chain of closed left ideals

IN=JONpJINMIJNP f Jn+lN =0 *
This contradicts the fact that supis(i) | i a 0} =n
Therefore, | has finite length as a left A(R,a)-module.

Remark:

Note that the above result did not require R to be left Jordan.

4.5 Example:

Let S be a subfield of a field K and let R = n R.1 where
ie Z
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Rj =S for i <0, and R. =K for i >0.

Define a:R -mR by (a(r))™ =r._i where r e R and r. denotes
4L

the i co-ordinate of r , for all i «2
Let | be an ideal of R and identify R with the ideal

(_0,0,R.,0,0,....) where R. appears in the i*h place.

If | intersects an infinite number of the R, say (R n)n>g >
On the other hand, if | only intersects a finite number of the
k
P+ sy (R.) , then | =1 R. and the longest possible
1,n n= n=l 1,n

chain of closed ideals contained in | has length k .

Note that | intersects k (< ») of the R. iff a"~(l) intersects
k of the Ri , so an a-sequence (l..)~q is bounded iff 1Q intersects

only a finite number of the R™ .

Let 8 denote the collection of bounded a-sequences of closed left

ideals of R, and let M denote the collection of maximal closed left

ideals of R .

4.6 Theorem:

Let R be a left and right Jordan ring. Then A(R,a) is a full

quotient ring iff

n naj*(j) nr(1j)) ¢ n M.
VeM
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Proof:

First note that since R is left Jordan, a left ideal | of

A(R,a) is Artinian iff it has finite length as an A(R,a)-module. Thus,

by lemma 4.4, | is Artinian iff r(l) is a bounded a-sequence.

Assume that the condition holds, and for i 20 denote by EL the

set

n n a'J(*(ai(l.)) nr(ai(l.)))
<kW 8 J

Let r e B. and let | be an Artinian left ideal of A(R,a)

Then r e n

(1)) nr(a’(17™)) where (l.).>n =r(l)
™o J J

Let xKsxX e | for some ki o . Then

ak(r) e *(«1(1k)) n r(al(1k))

so that (x-1rx’)(x’ksxk) =x ~ +knrak(r)al(s)x1+k

=0 since s e I~ .
Similarly, (x"ksxk)(x Vx’) =0 , and therefore c (i(l) nr)n
for any Artinian left ideal | of A(R,a) , therefore B® £ (i(A) n r(A)"

where A denotes the Artinian radical of A(R,a)

On the other hand, if r e (¢((A) nr(A)then, clearly

r e (t(l) nr(l))™ for any Artinian left ideal | of A(R,a)
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Consequently, if x"ksxk e | then (x‘ksxk)(x'Vxl) = (x'Vxl)(x'ksxk) =0,

and therefore a' (s)ak(r) =ak(r)a| (s) =0 . But this means that

ak(r) e (I™) nr(a’(1~)) for all k>0, and therefore r €
Thus = (il(A) n r(A)).. for each i =0 .
Consider the ideal a(A) of A(R,a) . Suppose it contains an

infinite descending chain (J~ )~ of left ideals. Then, applying

gives a strictly descending chain (a-1(Jk))k=Q of left ideals contained
in A, contradicting the fact that A is an Artinian left ideal. Thus
a(A) ¢ A, and similarly it can be shown that a~"~(A) ¢ A . Therefore,

A is an a-stable ideal of A(R,a)
Now let x Vx1 e t(A) nr(A) . Then
(xX’Vx’jA =A(x"lrx1) =0, whence
aix'Vxla(A) =a(A)a(x_lrx’) =0 . But a(A) =A ,

so I(A) nr(A) is a-invariant. A similar argument shows that

t(A) nr(A) is a ~-invariant; hence it is a-stable. By proposition

2.4, Bj =Bj for all i,j sO, so B =Bq , i.e.
B = n n a'j(»(,) nr(l.))
jsO ] 1

Now, by theorem 3.23, if J denotes the Jacobson radical of A(R,a)
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then J. = nM forall i 20, so that B. £j. for all i >0 .
1 MM 1 1

Applying A to both sides then gives ((A) nr(A) cj

By Stafford's theorem ([31, theorem 13.10), A(R,a) is a full

quotient ring.

Conversely, assume that A(R,a) is a full quotient ring. Then,

by Stafford's Theorem, A(A) nr(A) cj . it was shown above that
Bg m (;(A) n rfA)~ for all i 20, so applying r to both sides,
along with theorem 3.23, gives BB £ Mn"M .
4.7 Example:

Let S = * w=iere K is a field, a the K-endomorphism
such that a(x..) =x” , and let R be the localization of S at the

set KCx.].»

Extend a to R by defining, for s e S and c¢c e KCx~.™ |

a(sc ™) =a(s)a(c) ™.
Now consider the full 2*2 matrix ring M(R) ,

rlr2 atrar
and define a2:M2(R) M2(R) =
r3 r4a a(n3) °(r4)
By proposition 1.27, A(R,a) is a field, so (R,a) is left and
right Jordan, and by theorem 3.2, (M2(R),a2) is left Jordan. A “right

handed" version of theorem 3.2 shows that (M2(R),a2) is also right

Jordan.
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Denote by | the left ideal 9) of MgR) . Since | is

ag-stable, it is closed by proposition 2.5. Now assume that | strictly

contains a non-zero closed left ideal h  and let (b O~e *

with a /0. Since ~ is a left ideal, g™ q) = g) s H

so b nmay also be assumed to be non-zero.

If nelIN is such that both on(a) and an(b) are units of R

" n(a)_1l 0 a O

then Oai%] 8) = ag and since |4 is closed,
0 0 b O
0, T
0O 0~ 1~
L 0 0 so the fact
Similarly, 1 0
0 an(b) 1

that 1j is closed gives (lj g e”n

Thus, (R °) £ 1 , which contradicts the assumption that |, is
R O 1

strictly contained in |

This means that | cannot strictly contain a non-zero closed left
ideal, so that the (~-sequence (I"~g defined by |. =1 for all
i z0 , is bounded.

Therefore,

n n a"t() nr(l)) £ n a () nr(l))
w 3 3 j*0

c £(1) nr(l)
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But t(l) =0, so theorem 4.6 shows that AMVS),flOis a full

quotient ring.

Another way of seeing this, without referring to theorem 4.6,
is to note that A(R,a) is a field, and by the proof of theorem 3.2,
AiMgtRl.ag) =MgCAIiR.a)) , which is Artinian and therefore a quotient

ring.

§2. Artinian Quotient Rings.

In view of Small's theorem ([31, theorem 2.3(c)), which states that
a left Noetherian ring S has a left Artinian left quotient ring iff
Cs(0) =Cg(N(S)) , one way to approach the problem of when A(R,a) has
a left Artinian left quotient ring would be to assume that R is left

Jordan, and then to work with the regularity condition C~R aj(0) =
=CA(R,a)(N) =

However, there are other versions of Small's theorem which do not

require S to be left Noetherian, and the object here is to use one

of these variations (theorem 1.8) to avoid the necessity for R to be

left Jordan.

Specifically, R will be assumed to be left Noetherian, which by
corollary 2.31 immediately means that A(R,a) satisfies condition (ii)
of theorem 1.8, namely that N(A(R,a)) (which will just be denoted
by N) is nilpotent. In addition, R will be assumed to have an

i»-Invariant nilpotent radical - this assumption is not very restrictive,



as there are no known examples of a left Noetherian ring whose nil-

potent radical is not a-invariant, and this remains an open problem.
The main consequences of the assumption that N(R) is a-invariant

are that MUIB) can then be shown to be a semiprime left Goldie ring,
N

and that A(R,a) can be shown to have finite reduced rank, as a left
A(R,a)-module. Thus, conditions (i), (ii) and (iii) of theorem 1.8 are

satisfied automatically.

Finally, again using the a-invariance of N(R) , the regularity
condition can be translated to R , to obtain the final result: if R
is left Noetherian with a-invariant nilpotent radical, then A(R,a)
has a left Artinian left quotient ring iff C~(N(R)) =C™0) . Here,

O~N0O) is the set {r e R | al(r) e C™MNO) f°r j 50}

The main result is then applied to an example which is not left

Jordan.

4.8 Proposition:

Let R be a left Noetherian ring with nilpotent radical N(R) ,

such that a(N(R)) ¢ N(R)

Then G(N(R)) =N where N denotes the nilpotent radical of

A(R,a)

Proof:
By theorem 2.2, G(N(R)) is an ideal of A(R,a) , and by

Levitzki's theorem (corollary 1.8 of [3]), N(R) is nilpotent. To
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show that G(N(R)) is nilpotent, let k 20 be such that N(R)k =0 .

-, i
Let xJaf(J e G(N(R)) where aJeN(R) and iJ>O, for

each j =1,..,k
k -i. . k -
Then I x JaxJ = nx a “a.)x' where i =max{i.,i,,.., 1. >
j=I J j=I J 1 z k
ko= .
=x"1na J(a.)x'
j-1 J

= 0 since a" e NR) ,
N(R) is a-invariant, and NR)™ =0 .

Thus, G(N(R))k =0, and G(N(R)) =N.
Now, NnR is a nil ideal of R, so by Levitzki's theorem, it

is nilpotent, and therefore Nn R c N(R) .

By the proof of theorem 2.28, N is an a-stable ideal of A(R,a) ,

so by theorem 2.2, NN R is an a-invariant ideal of R .

Applying G therefore gives G(N nR) ¢ G(N(R)) , but by theorem

2.2 this means N £ G(N(R))

Remark:

Any commutative ring R has an a-invariant nilpotent radical,
since in that case N(R) consists of all the nilpotent elements of R .
Also, the result of Jategaonkar ([13], lemma 1.1) shows that left Artinian

rings have a-invariant nilpotent radicals.
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49 Lemma

Let R be a left Noetherian ring such that N(R) is a-invariant.

Then A(R,a)/N is a semiprime left Goldie ring.

Proof:
Let k be such that N(R)k =0 , and let r £a \ n(R)) . Then
«(r*) =a(r)ke NRk =0, so rm =0 and a ~(N(R)) is a nilpotent

ideal of R . Thus, a ~(N(R)) ¢ N(R) , and N(R) is a-stable.

Since N(R) is a-stable, it is possible to define a ring mono-

morphism a : R/N(R) mmR/N(R) by

o(r +N(R)) =a(r) +N(R)
Now attempt to define a mep ijj:A(R/N(R),a) *=A(R,a)/N by
(r+N(R))x’) =x_1rx™» + N .

To show that 4= is well-defined, let r,s £R be such that
X'j (r+N(R))xj =x'1(s+N(R))x1 .

Then X"(i+j)ai (r+N(R))xi+j = x* (i+1])iTj (s+N(R))x1+ ,
i.e. aV+N(R)) mal(s+N(R))
or aV)+N(R) =aj (s)+N(R)

Therefore, <l(r)-a”(s) £ N(R) and

x-(i+j) (al(r)-oj (s))x1+] £ G(N(R))
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But by proposition 4.8, G(N(R)) =N, so that x'"'rxJ-x'isxi e N,

and < is well-defined.

To show that is a ring homomorphism, let r,s e R and i,j i O .

Then

AX'VANWIXT + x'j (s+N(R)xJ )
=KAx' (i+])[aj (r+N(R)) +al(s+N(R))]Ixi+j)
= <Pp(X(i+') (al (r)+ai (s)+N(R))xi+1J)
= x"(1#)) (@) (N+ai(s))x 1+ + N
=(x’Vx1+N + (x’Jsxd +N) , so K is

additive. Also

+(x_i (r+NiRJx1.x_J(s+N(R))x'3)

=1t),(x'(i+j)ar (r+N(R))ai (s+N(R))x1+J)
=*(x_(1+j)(aj (r)al(s) + N(R))xi+])
=X"(1H)aj (r)al(s)x1+ + N

= (X’VX™N + N)(x "sx» +N) , so i is
a ring homomorphism.

To show that is injective, assume x Vx1e N . By proposition

4.8, x'Vx' « G(N(R)) , and by theorem 2.2, r t G(N(R)) n R = U a n(N(R)).
nsO



Since N(R) is a-stable, this means r e N(R) , so < is injective.
It is clear that & is surjective, hence p is an isomorphism.
Now, since R is left Noetherian, R/N(R) is semiprime left

Noetherian, and by theorem 1.42, A(R/N(R),ci) is semiprime left Goldie.

But since p is an isomorphism, A(R,a)/N is semiprime left Goldie.

4.10 Lemma:

Let R be a left Noetherian ring, and let J be an a-stable left

ideal of A(R,a) . Then A(R,a)/) has finite Goldie dimension.

Proof:

Assume that A(R,a)/) does not have finite Goldie dimension. Then

J S K and the sum 2z — is direct.
f o1 i=0 J

If (Kij)j>0 den’tes the «-sequence r(K”~) and (Jj)j~.Q denotes

the a-sequence r(J) , then by theorem 1.33, J.J£ K.J. for all

i,j *0 . It is now claimed that for each j 20 , the sum
i=0 J.
J
Indeed, for j * 0 let (for i =0,...,p) be such
P P i i
that Erf tJ. =0, Then so that xJ ¢ r.x] e ,
i=0 1 J i=0 1
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But since r. mK~”™ | X * K., and directness of the sum
» K. .
E — means that xlJr.xJ el , i.e. r. cJ. foreach i =1I,..,p
i=0 J 1 1 ]
® K..
so the sum e — is direct.
i=°
Now, since J ~ K. , for each i i O there exists i z O with
°* j Kiz

o

Furthermore, if r e Kll— Ji then x_nrx e KI -J , i.e.

x ( +knak(r)x +k e K. - J , Consequently, ak(r) e ,Hk - ).+ for

all k >0 ; so for each i >0 there exists zn >0 such that
K. u
forall i 2zn, — $0.

J,

. . N« n
Therefore, there exists jQ2 O such that -j— $0

jo
. . k™M
By the above argument, there exists >Jqg with -+ fo
jl
Ko )1 KjL
and ---- f O . It was shown above that the sum — +—— is direct.

Jjl il jl

This procedure can be repeated indefinitely to yield, for any

n*0, adirect sum

"sis , "int 0 g A of non-zero
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submodules of R/vh (1.
n

But J is an a-stable left ideal of A(R,a) , so by proposition
2.4, 1Jj = for all i,j >0 , and in particular, Jj =Jg=1J nR

for all j s 0.

Therefore, from (1), given any n s O there exists a direct sum

of non-zero
JnR JnR JnR

submodules of R/JnNR .

But this contradicts the fact that, since R is left Noetherian,

R/INR is Noetherian and therefore has finite Goldie dimension.

411 Lemma:

Let R be a left Noetherian ring with N(R) a-invariant. Then
p(A(R,a)) <<% , where p denotes the reduced rank of a left

A(R,a)-module.

Proof:

First, note that by corollary 2.31, N (the nilpotent radical of

Then, the reduced rank of the left A(R,a)-module A(R,a) is given

by
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k-1
P(A(R,a)) 120 AR ) (nV nl+l)

where the reduced ranks on the right are calculated over the semiprime

left Goldie ring _  (See definition 1.5.)
N
It is therefore sufficient to show that P A(R.g) (nV nl1+l) s
N
finite, for each i =0,.., k-1

Consider the set C.\;I;))Oij(N) (which will be denoted by C(N)
« P
from now on) and let ¢ £C(N) , a £ A(R,a) with a(c)a £N
Then ca \a) £a \ n) =N since N is a-stable, by the proof of

theorem 2.28.

Thus, a*\a) £€N , or a £a(N) =N, so that a(c) £ C'(N)
A similar argument shows that a(c) £ 'C(N) , therefore a(C(N) c C(N)
If the argument is repeated using a' instead of a , it yields that

a_l(C(N)) ¢ C(N)

Now consider the singular submodule Z(nV n’+") of the A(R,a)/N-

module n’/N”~ . Then, by definition,
Z(N1/N1+1) = {r+NI+l | cr £ NI+l for some c¢ £ C(N)>

=ANn’+ where AN =(r £ | cr e for

some ¢ £ C(N)} .
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Let r « . Then cr e n"+ for some c e C(N) , so that

a(c)o(r) £a(N1+1) =N+ and a"¥(c)o“l(r) £a'](N1+1) = NI+l
But a(C(N)) =C(N) , so a(c) and a \c) are both elements of
C(N) , consequently a(r), a~\r) £Ai , and Ai is an a-stable

left ideal of A(R,a)

By lemma 4.10, NL/A* has finite Goldie dimension, for each

dim N/A. <» for each i =0,..,k-I

Notation:
Denote by '(0) the set {r £R | an(r) £ 'C~0) for each
ns 0} , by C('](O) the set {r £R | an(r) £ C&(O) for each n * O}

and by 0~(0) the set (V(0) n '0~(0)

4.12 Theorem:

Let R be a left Noetherian ring such that N(R) is a-invariant.
Then A(R,a) has a left Artinian left quotient ring iff

@(0) =Cr(N(R))
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Proof:

First note that, by corollary 2.31, N is nil potent; by lenta

4.9 j—" is a semiprime left Goldie ring, and by lenma 4.11,

A(R,a) has finite reduced rank as a left A(R,a)-module.

Denoting the sets N(0) and c/\(r a)(N by C(O) and
C(N) respectively, it is claimed that C(0) =C(N) iff

Ca(0) =Cr(N(R))

Indeed, as in the proof of lemma 4.9, the fact that N(R) is
a-invariant means it is a-stable, so it is possible to define a
monomorphism  cT:R/N(R) #=R/N(R) by a(r + N(R)) =a(r) + NR) . But
R/N(R) is a semiprime left Noetherian ring, so by Goldie's theorem,

it has a semisimple Artinian left quotient ring. By proposition 2.4 of [13]

“(CR/N(R)(0)) - CR/N(R)(0) = 50 that “(cr(n(r))£ cr(N(R)) *

Now let x_lrx® e C(N) and let s e R be such that rs e N(R)
Then x'Vsxl e G(N(R)) =N by proposition 4.8, i.e. (x Vx1)(x ~x1) e N .
Therefore x"*sx’ e N, and s e G(N(R)) nR =N(R) , by theorem 2.2

and since N(R) is a-stable. Hence r e CR(N(R))
Similarly, it can be showmn that r e 'CR(N(R)) , so that

C(N) £ U x_iCD(N(R))xi
uo K

Conversely, let r e C,(N(R)) , let i zO and let s eR,

j i 0 be such that (x’Vx1)(x’JsxJ) ¢ N. Then
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x-(148)Q (rjal (s)xI+] e N=G(N(R)) , so by theorem 2.2,
al(r)al(s) e G(N(R)) n R=N(R) . Since o(CR(N(R))) £ CR(N(R)) ,
al (r) e CR(N(R)) , and therefore ~(s) £ N(R) . Consequently

XN 1+jlal(s)x1H =x"jsx) £ G(N(R)) =N, and x'Vxl £ C'(N)

A similar argument shows that x Vxl e 'C(N) , so x Vxl e C(N)

i.e. U x"1Cd(N(R))x1 = C(N)
i>0 R

By proposition 1.25, U x’c (0)x1=C@©) , and it is now clear
i >0 a

that C(0) =C(N) iff C (0) =CR(N(R))

By theorem 1.8, A(R,a) has a left Artinian left quotient ring

iff C(0) =C(N) , i.e. iff Ca(0) =Cr(N(R))

Theorem 4.12 leads to the following corollary, which is a partial

converse to corollary 7.3 of [161.

4.13 Corollary:

Let R be a left Noetherian ring with a-invariant nilpotent

radical N(R) , satisfying either of the following conditions:
(i) a(CR(0)) £ CR(O) ;

(ii) R has a Noetherian quotient ring.
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Then A(R,a) has a left Artinian left quotient ring iff R

has a left Artinian left quotient ring.

Proof:

If R satisfies condition (i) then C(]_(O) zqf()(O) , so the proof
of theorem 4.12 shows that OR(0) =CR(N(R)) iff C(0) =C(N) = By
Small's theorem (theorem 2.3 (c) of [3]), R is a left order in a
left Artinian ring iff CR(0) =CR(N(R)) , and by the proof of theorem

4.12, A(R,a) is a left order in a left Artinian ring iff C(0) = C(N)

If R satisfies condition (ii), then by theorem 7.2(ii) of [16],

a(CR(0)) S CR(0) » i.e. R satisfies condition (i).

4.14 Example:

Consider the K-algebra endomorphism a:K[y] “mK[y] such that
o
o(y) =y and let R =M., (K[y]) , the 2x2 upper triangular matrix

ring over K[y] , K being a field.

flf2 O(fm) o(f2)
Define a:R R by a
0 a(f3)
=° f3
0 K[yl
Then R is left Noetherian, and N(R) = is clearly
0 0
a-invariant.
~fl f2
To find CR(O) , let r = eR. 1f f, O then r



is annihilated on the right by the element for any
fl f2

gl e K[y] , hence C/0) £ { £R | flt 0
0

Similarly, if f3 =0 then r is annihilated on the left

00 flf2
by for any g3 e K[y] , so that 'CR(0) £ { 0 f. © RIf. t O=.
0 g3 3
fl f2
Thus, CR(0) = *CR(0) n CE£(0) £ { 0 ER | 0 f3> (1)
f,
”fl f"2
Now, let be such that f§ t O~ f3 and let
0 f,
91,92'93 6 KCy]
fl f2 9l 92 flol  f192 + f2g3
Then
o T 0 g3 0] 393
4 —

0 01, 8. R.0.

Similarly,

Afl 92f3 + 912

0 g3f3

0 iff o «g3ngp=0-

Thus, e? a e CR(0) and from (1)
1



- 151

f, f.
above, Cp0) ={ 1 = £RIf. fO0 f,}
0 3
Since “(CR(0)) ¢ CR(0) , Ca(0) =CR(0)

To find Cr(N(R)) , consider the factor ring R/N(R) , which
Kly] ©O
is isomorphic to the subring of R via the mep
0 Kty]
T —
E O n
i F +NR) i 0_
0 f3 o f3
KCy] 0
The regular elements of are those of the form
0 KCyl
for fi t Ot fj , so that the regular elements of R/N(R) are those
: fl 12
having form +N(R) for f] f Of f3 . Hence
f.
anNR) ={ ' T2 eriflfosta
o 7,

Consequently,

By theorem 4.12,

It should be noted that

isomorphism

restricts to an isomorphism ~:Mn(A(R,a))

iloM (A(R,a)) = A(Mn(R),a)

(0) =CR(N(R))

A(R,a) has a left Artinian left quotient ring.

(R,a) is not left Jordan. Indeed, the

in the proof of theorem 3.2

A(Rn(R),a) where WMh
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denotes the nxn wupper triangular matrix ring.

Thus, in this example, A(R,a) =M (A(K[y],a)) . By example
1.41, A(K[yl,a) is not Noetherian, hence neither is K2(A(K[y],a))

so that (R,a) is not left Jordan.



- 153 -

CHAPTER 5.

APPLICATIONS AND EXAMPLES.

As was seen in chapter 1, it is possible to study several
properties of the skew Laurent polynomial ring RCx,x'\a] when a
is an automorphism. Specifically, Jordan C153 found conditions under
which RCx,x ,a] is semiprimitive, primitive, and Jacobson. These
results appear in chapter 1 as theorems 1.17, 1.19, 1.20 and 1.22. In
[17] he found necessary and sufficient conditions for R[x,x’\a] to

be simple (see theorem 1.24).

The aim of this chapter is to generalize these results to the case
where a is assumed only to be a monomorphism. This is achieved by
using the fact that, as seen in remark 1.29, A(R,a)[x,x"\a] =RCx,x"\a] ,

and that a:A(R,a) *A(R,a) is an automorphism.

As in [15], two separate sets of conditions are found which are
sufficient for R[x,x"\o] to be primitive. Since they are logically
independent (as shown in [15]), for the case where a is an auto-

morphism, they are logically independent here too.

The final part of the chapter gives two examples which arise from
earlier work. One is an example of a ring R and a monomorphism a:R *R
such that a(CR(0)) i CR(0) » the second is an example where A(R,a) s
a commutative domain, each factor ring of which is uniform, and yet

A(R,a) does not have Krull dimension.
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First, we extend the definitions of section 4 in chapter 1 to

the case where a is only a monomorphism.

SI.  Primitivity and Semiprimitivity of R[x,x \a ]

5.1 Definition:

Let R be a ring, a:R %R a monomorphism. Then, an a-stable
ideal | of R is called a-prime if, for all a-stable ideals A,B

of R, ABE£ | implies that either A£ 1 or BE |

R is called an a-prime ring if O is an a-prime ideal.

5.2 Proposition:

If P is an a-prime ideal of A(R,a) then P n R is an a-prime

ideal of R .

Proof:

Let | and J be a-stable ideals of R . Then G(I)G() £ G(1J)

Indeed, any element a of G(I)G(J) has the form

n -i . i. -k. K.
a:__zl(x JaJ.xJ)(x JbJ.xJ) where aJ.eI,bJ.eJ , and
1., k, i O for each j =1,..,n
100 !
Let k =maxtij.kj |j =1,..,n) so that
Fn k-i. k-k.
a =x Zza J(aja J<bj>] «
Lm 1
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k-i .
But | and J are a-stable, therefore a J(a.)t |l and

k-k.
a J((bj) £) foreach j =1,...,.n , hence a e G(l))

Now let P be an a-prime ideal of A(R,a) and let 1,] be
a-stable ideals of R with J £P nR . By remark 2.3(11), P nR

is an a-stable ideal of R .

Then, by theorem 2.2, G(lJ) £ G(PnR) =P , and by the above,

G()GQU) £P . But P is a-prime, G(I) and G(J) are a-stable

(by theorem 2.2) so eitherG(l) £ P or GQU) £P , i.e. either

G(l) nREp nR or GU) nREP N R. Since | and ] are a-stable,
G(l) nR=1 and G(@U) nR=J , whence P nR is a-prime.

5.3 Theorem:

Let R be an a-prime, left Jordan ring. Then RCx,x ,a] is

semiprimitive.

Proof:

Let 1,] be two a-stable ideals of A(R,a) with 1J =0 . Then

clearly (I nR)J nR) =0, and, by remark 2.3(ii), I n R and J nR
are both a-stable ideals of R . Since R is a-prime, either | nR =
or J] nR= 0. Applying G toboth sides yields, by theorem 2.2, | =0
or J] =0, sothat A(R,a) isan a-prime ring.

Since R is left Jordan, A(R,a) is left Noetherian, and by
proposition 1.17, A(R,a)[x,x"\a] is a semiprimitive ring. Thus

R[x,x"\alJ =A(R,a)Cx,x"\a] is semiprimitive.
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5.4 Corollary:

R is a-prime iff A(R,a) is a-prime.

Proof:

If R is a-prime then, by the proof of theorem 5.3, A(R,a)
is a-prime.

On the other hand, if A(R,a) is a-prime, then 0O is an a-prime
ideal of A(R,a) , and by proposition 5.2, 0 is an a-prime ideal of

R . Hence R is a-prime.

5.5 Examples:

(1) Let K be a field, aK-*~ K a monomorphism which is not
surjective, and define a:K®K-»-KOK by a(x,y) =(y,a(x)) . The
only proper ideals of R=KO0O K are (0,K) and (K,0) , neither of
which are a-stable. Thus R is a-prime, but not prime, and is left

and right Jordan because it is Artinian, by proposition 3.1.
By theorem 5.3 then, R[x,x’\a] is semiprimitive.

(ii) If R is a simple Artinian ring and a:R “mR is any mono-
morphism, then R[x,x’\a] is semiprimitive. Indeed, since R is
prime, it is a-prime, and since R is left Artinian, it is left Jordan,

by proposition 3.1. By theorem 5.3, R[Xx,x”\a] is semiprimitive.

5.6 Theorem:

Let a:R R be a monomorphism such that
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(i) There exists r e R such that for each nk 20 ,

an(r) £C(R) and an(r) - ak(r) £ CR(0) for n/ k ;

(ii) There exists a maximal a-sequence (M~"q of closed left
ideals of R such that, for any non-zeroa-stableideal | ofR

there exists i 20 with It
Then R[x,x"\a] is left primitive.

Proof:
Condition (i) implies that a is stiff on A(R,a)
Indeed, let r £R satisfy (i) and let a £R , j H

Then rx"Jax)] = x'Jal (r)ax)

= x Jaal (r)x» since a”n(r) £ C(R)

= x"JaxJr

Thus, r £ C(A(R,a)) . Also, since for any n,k 20, (n " k),
an(r)-ak(r) £ CR(0) , ak(anm(r)-r) £ CR(0) forall m2 1 . By
proposition 1.25, am(r)-r is a regular element of A(R,a) for each
m2 1, so by lemma 1(i) of [15], the automorphism a:A(R,a) mA(R,a)

is stiff.

Condition (ii) implies that A(R,a) is a-primitive. To see this,
assume that M is a maximal left ideal of A(R,a) which contains a non-
zero a-stable ideal J of A(R,a) , and denote the a-sequences r(M)

and r(J) by and respectively.
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Since J is a-stable, by proposition 2.4, J.. =Jg for all
i >0, i.e. J. =)l nR forall i sO.
Since J ¢ M, applying r gives r(J) =r(M) , i.e.
J nRc M for all i <0, so that r(M) does not satisfy condition

(ii) of the theorem, J n R being an a-stable ideal by remark 2.3 (ii).

Therefore, there must exist a maximal left ideal M of A(R,a)
which does not contain a non-zero a-stable ideal - i.e., A(R,a) is
a-primitive.

By theorem 1.19, A(R,a)[x,x \a] is left primitive, hence

RCx,x"\a] is left primitive.

5.7 Corollary:

A(R,a) is a-primitive iff R satisfies condition (ii) of the

theorem.

Proof:

If R satisfies condition (ii), then A(R,a) is a-primitive,
by the proof of theorem 5.6.

Conversely, assume that A(R,a) is a-primitive, and let M be
a maximal left ideal of A(R,a) which contains no non-zero a-stable
ideal. Denote the a-sequence r(M) by (M~™)~ and if possible, let

I be a non-zero a-stable ideal of R with | = for each i s 0O .

Since | is a-stable, by proposition 2.5, | is closed, so the

sequence (~)~q where ~ ==* for i *0 is an a-sequence of
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closed left ideals of R . Evidently, A(L).>0 is an «-stable
ideal of A(R,a) , and since | £ IV% for all i 20, ¢(1.). Acm
via) -

contradicting the fact that M does not contain a non-zero a-stable ideal.

Thus, for any non-zero a-stable ideal | of R, 1i M for some

i ~0.

5.8 Examples:

(i) Let K be a field, K[y] the ring of polynomials in the
indeterminate y , and let a”:K[y] = K[y] be the K-algebra endo-

morphism such that a~(y) =y

Let Q[y] be the quotient field of K[y] , i.e. the field of
rational functions in y , and define 0:QCy] Qly] by

a(f/g) =«1(0/70,(g) . Then a is a monomorphism on QCy3.
Now let R =QCy3i QCy3 and define a:R + R by a(x,y) =(y,a(x))

The only proper ideals of R are (QCy3,0) and (0,QCy3) , both
of which are annihilator ideals and therefore, by proposition 1.34,

closed. Thus, the only proper a-sequences of closed ideals are

(M 1= 39 (iiao  where
= (QCy3,0) for i even
(0.Qcyl) for 1 odd ;
and = (0.QCy3) for i even

(QCy3,0) for 1 odd.
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Both are maximal a-sequences and neither (Q[y],0) nor

(0,Q[y]) contains a non-zero a-stable ideal of R .

Thus, condition (ii) of theorem 5.6 is satisfied; consequently
A(R,a) is a-primitive.
. 3 2
Now consider the element (y ,y~) of R.

. 3 2 3 2(n+1/2)
If n is odd, then <*(y ,y ) * (y , Yy )

2 3.2(n/2n | 2.27n/2),

i‘ff n is even, men an(y?’,y ) =y

Thus, an(ys,yz) - ak(y3,y2) has a non-zero entry in both the
first and the second places, for n ™~ k , and is therefore regular,
for all nk 20 with n~ k.

By theorem 5.6, the skew Laurent polynomial ring R[x,x \a] s
left primitive.

(ii) Note that, since R is Artinian in the above example, it is
left and right Jordan. The following is an example where R is not
(left) Jordan.

Let K be a field, S a subfield of K, and assume both to be

of characteristic zero.

s (i<0

Define R = n R. where R m NN Eq) and de”™ ne

aiR + R by (a(r))® =r.where r. denotes the itfl co-ordinate

of the element r of R, for all 1eZ
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For each i s O , denote by M the ideal of R obtained by

putting R =0 in the product. Then M. is a maximal ideal and,

for any nelN, Ran(M.) =M¥n . But a nM.+n) =i-T , so is

closed for each i ~0, and (M.).~q 1S an a*sequence of closed

ideals. By the first part of the proof of lemma 3.21,
require R to be left Jordan), (M™M)7~g is a maximal

closed ideals.

Now let | be a non-zero a-stable ideal of R ,
with jth component rJ non-zero. If j * O then

then a ~(r) i My .

r

(which did not

a-sequence of

and let Otr el

i I\/B and if j<O

Thus, |t Mj for some j 20 , and condition (ii) of theorem 5.6
is satisfied, i.e. A(R,a) is a-primitive.
i for i <O
Now let r e R be defined by r. = -
itl for i i O
Then, an(r) - ak(r) is regular for all nk s 0O with nt k.

Theorem 5.6 now shows that R[x,x’\a] is primitive.

To see that R is not Jordan, for each j 20 let A, be the ideal

J

, where 1« R( for 1lsj . Then (A)j>g an infinite

0 for 1 >j

ascending chain of closed ideals of R .

5.9 Theorem:

Let R be an a-prime, left Jordan ring such that

(i) There exists r « R such that, for each nk >0, with
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n”~k, an(r) e C(R) and an(r) - ak(r) e C™O)

(ii) The intersection of all the non-zero a-prime ideals of R

is non-zero.

Then R[x,x’\a] is left primitive.

Proof:
As in the proof of theorem 5.6, the first condition implies that

a is stiff on A(R,a)

Now let {Px | x e A) be the collection of all the non-zero
a-prime ideals of A(R,a) . By proposition 5.2, for each x e A ,

Px n R is an a-prime ideal of R, non-zero by theorem 2.2.

Thus, (n P)nR = n (P nR)/ O, and consequently,
XeA A XeA

n P. /0. Therefore, by corollary 5.4, A(R,a) is an aG-ring,
XeA A
and by theorem 1.20, AiR.alJCx.x"l,a] is left primitive, i.e.

R[x,x_l,a] is left primitive.

5.10 Corollary:

A(R,a) is an aG-ring iff R is an a-prime ring such that the
intersection of all the non-zero a-prime ideals of R is non-zero.
Proof:

By corollary 5.4, A(R,a) is a-prime iff R is a-prime, and by
the proof of theorem 5.9, if R is an a-prime ring with the inter-

section of all the non-zero a-prime ideals non-zero, then A(R,a) s
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an aG-ring. It is therefore sufficient to show that if A(R,a) is

an aG-ring, then n P ~0 where {P. \ Xe A} is the collection
XeA A A

of all the non-zero a-prime ideals of R .

Let PA O be an a-prime ideal of R, and let 1,] be a-stable
ideals of A(R,a) with 1) ¢ G(P) . Then, (Il nR)J nR) £1J nRc¢

G(P) nR , and by theorem 2.2, G(P) n R =P , since P is a-stable.

But by remark 2.3 (ii), | nR and J n R are both a-stable ideals

of R, so either I nRcP or JnRcp.

Applying G then yields that either | £ G(P) or J £ G(P) ;

thus G(P) is a non-zero a-prime ideal.

Now, if n P* =0 then since P =G () nR for each XeA,
XeA

n GP.)nhR=(n G(P.)) hR=0. But n G(P,) is an a-stable
XeA A XeA A XeA

ideal of A(R,a) , so by theorem 2.2, G(( n G(P. )) nR) = n G(P.) =0 .
XeA XeA

This contradicts the fact that A(R,a) is an aG-ring.

5.11 Theorem:
Let R be a left Jordan ring and let r e R be such that
(1) for each n”~ 0O, an(r) e C(R) ;

(ii) for each n >0 there exists k a 0 such that

an+k(r)-ak(r) is a unit of R .

Then R[x,x_l,a] is a Jacobson ring.
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Proof:
As in the proof of theorem 5.6, condition (i) implies that

r e C(A(R,a))

k
Condition (ii) implies that for each n>0, a (an(r)—r) is a
unit of R for some k * O, so by proposition 1.27, a(r)-r is a

unit of A(R,a)

By lemma 1(1i) of C151, a is rigid on A(R,a) , and by theorem

1.22, A(R,a)[x,x_l,a] =RCx.x"l,a] is a Jacobson ring.

5.12 Examples:

(i) Let F be a field, a:F *%F a ring monomorphism which is not
surjective, and assume that there exists an element r of F which
has an infinite orbit under o . (For example, the element y in the
field of rational functions in y , under the monomorphism o of
example 9 has an infinite orbit.)

Let R* Mi(0 for n 21 and define a:R mR by (a(s) ~ =a(si?)

where Si denotes the (i,j)- entry of the matrix s

Since R is simple Artinian, example 5.5(ii) shows R[x,x \a]
is semiprimitive, but in fact R[x,x \ol s left primitive.

Indeed, since R is a simple ring, it is both a-prime and has the

property that the intersection of all the non-zero a-prime ideals is

non-zero. R is left Jordan because it is left Artinian, by proposition
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Also, for any nk * O ,

an(r)-ak(r)

£ C(R)
and for n/ k ,
r i o _ ak [ ) 0 an(r)-ck(r) Q
0\ 0
r r

0

an(r)-ak(r)

e CR(0) Since on(r) f ck(r) ,

r having infinite order under a .

By theorem 5.9, then, R[x,x_l,a] is left primitive.

(ii) Let Fi be a field for each i =

I,..,n , aNiF.. ‘mF. a

monomorphism which is not surjective, and r* e P* an element with an

infinite orbit under . Extend each a,

to a monomorphism & on

M (F.) in the same way as in example (i) above.

ki
Let R*M (F.) i .. iM (F ) and define a:R “mR by
ki1 kn n
a(sits2,..,sn) = (ai(s)),«2("2)»* *>an("p)) °
_ 8 p
Denote by r the element V t I’é o »eee
O °
I\ i
Clearly ak(r) is central for each kaO, and for all k¢t 1,

ak(r) - r is a unit of R .

By theorem 5.11, R[x,x \a] is a Jacobson ring.
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52. Simplicity of Rrx,x ”~,a]

By theorem 1.24, if a:R ZmR is an automorphism then R[Xx,x \a]
is simple iff R has no proper a-ideals and a:R %R is not power-
inner. In this section, the ring A(R,a) is used to extend this
result to the case where a:R %R is a monomorphism - i.e. a is not
necessarily surjective. In fact, R[x,x \a] is found to be simple
iff R has no proper a-stable ideals, and a is not a power-inner

automorphism of R .

By regarding R[x,x_l,a] as a graded ring, with nth homogeneous
component A(R,a)xn for each n «Z , it can then be seen how nmuch

simplicity remains when the power-inner condition is dropped.

5.13 Theorem:

Let a:R “mR be a monomorphism. Then R[X,x \a] is a simple
ring iff

(1) R has no proper a-stable ideals and

(ii) a is not a power-’nner automomhism of R .

Proof:

If | is a proper a-stable ideal of R then, by theorem 2.2,
G(1) is a proper a-stable ideal of A(R,a) . Also, if J is a
proper a-stable ideal of A(R,a) , then by remark 2.3(ii), J n R

is a proper a-stable of R .
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Therefore, condition (i) is equivalent to A(R,a) not having
any proper a-stable ideals. In view of this, and since
R[x,x”"\a] =A(R,a)[x,x’\a] , by theorem 1.24 it will be
sufficient to show that a:R %R is a power-inner automorphism iff

a:A(R,a) mA(R,a) is a power-inner automorphism.

If a:R =R is a power-inner automorphism then A(R,a) =R and

the fact that a:A(R,a) “mA(R,a) is power-inner follows trivially.

Conversely, assume that a:A(R,a) » A(R,a) is power-inner, and
let ntIN , x"irxi e A(R,a) be such that an(s) = (x’Vx’jsfx Vx1) 1

for each s e A(R,a)

By 1.27, it may be assumed that i is chosen so that r is a
unit of R .

Now, an(x"lrx1l) =x’Vxl and since (by definition)
an(x’irxi) =x’ian(r)xl , aO(r) =r

Using the fact that (x Vx'™*) 1 =xV ~x , a similar argument
shows that an(r"~) =r"

Let k21 be such that kn 2i , and let s e R . Then
a"(akn_'(r)'sakn_I (r—l)\)\ =akn(r)'aI (s)‘akn(r*l) =ral(s)r-1 , since
both r and r ~ are fixed under all .

* -1 i —j - -
Therefore x Ial’(akn I(r)'sakn '(r 1))x1 x*Va’(s)r V

(x"Vx)x"a'(s)x'(x V \

< (s)
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Thus, for any s e R, akn \r)s(akn ’(r)) ~=an(s) , and

a:R mR is a power-inner automorphism.

Remark:

It was shown in [16] that a:R “mR is an inner automorphism iff

a is inner on A(R,a)

5.14 Example:

Let K be a field, K[x ™.z the polynomial ring in the

indeterminates {xX* | i e2} and let R be the localization of
KCxiJie 2 at the set K[xi 120" *

As before, define a:R ‘mR to be the K-endomorphism of R such

that a(x.j) =xi+i , for all i «2

Then R has no proper a-invariant ideals, and a is not even

an automorphism. By theorem 5.13, R[Xx,x \o] is simple.

Recall that a ring R is called a graded ring if it is a direct

sum of additive subgroups Rg (where q e2) such that for q,p e2 |,

Vg EV» '

An element is said to be homogeneous if it belongs to Rq for some
g e2 and homogeneous of degree q if it is non-zero and belongs to Rq
Each element f of R can therefore be written uniquely as a sum of

homogeneous elements; these are called the homogeneous components of f
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Clearly, if a is an automorphism, then R[X,x"”~,0] nay be
regarded as a graded ring, with homogeneous component RN =R

for gem .
Now, in the case where a is only a monomorphism,
R[x,x"\a] =A(R,a)[x,x"~ ,a] so R[x,x \a] may be regarded as a

graded ring with g homogeneous component AfR.oJx*"

An ideal | of a graded ring R is said to be homogeneous if
f e | implies that each homogeneous component of f is also an element
of | . The following result about homogeneous ideals is standard.

5.15 Lemma:

An ideal | of a graded ring R is homogeneous iff it is generated

by a collection of homogeneous elements.

Proof:

Theorem 7, p.151 of [22] (Vol. 11).

5.16 Theorem:

R[x,x”"\a] has no proper homogeneous ideals iff R has no proper

o-stable ideals.

Proof:

It is sufficient to show that R[x,x \a] (which will be denoted
by T) has no proper homogeneous ideals iff A(R,a) has no proper
o-stable ideals, for as shown in the proof of theorem 5.13, this is

equivalent to R having no proper a-stable ideals.
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Assume that T has no proper homogeneous ideals, and if

possible let J be a proper a-stable ideal of A(R,a)

Since J consists of homogeneous elements (of degree 0), TIT
is a homogeneous ideal of T , by letmm 5.15. It is clear that TIT

is non-zero.

k
If 1 £TIT then 1=z t.j,s. where s.,t. ¢ T and
i=l 111 1
el)] for each i =I,..,k . For each i =1,..,k , write
t. =z t. and s, =1 s. where t.. and s.. are the hono-
i ni,n 1 i,m i,n i.n

geneous components of t. and s of degree n and m respectively.

Then 11 <¢ m>

=z lit. j,S. m.
i=l nm 1,n 1 1m

Each term in this sum is homogeneous of degree mtn , so if
p M
k
! £ tI n j'l i,m =0
=t o miep ’
i.e. lzjjl z ti,l“lj'l Si,r?
so that 1 = i r. xnj.q. nx‘n (1)

i
1=l n 1,n 1 1,n

where rin. £AR.a) .~y " =tln and g<nNX*n =si



But j°~gj n£J foreach i =I,..,.k , and for any ncZ

-n

Thus, 1 £1J) . Since J is a proper ideal of A(R,a) , 1 ~TIT ,

and TJT is a proper homogeneous ideal of T .

Conversely, suppose that A(R,a) does not have a proper a-stable

ideal, and if possible let J be a proper homogeneous ideal of

R[x,x_l a]

Let 04f el . Since ] is homogeneous, each homogeneous
component fn of f s also an element of J . Let m«2 be such
that f_$0 .

Then x“I” eJ nA(R,a) , so J nA(R,a) is a non-zero ideal of

A(R,a) , and since J is proper, 1i J nA(R,a)

Now, if r el nA(R,a) , then a_l(r) =x1rx e] nA(R,a) and
a(r) =xrx'l eJ nA(R,a) . Thus J nA(R,a) is a proper a-stable

ideal of A(R,a)

83. Examples:

The purpose of this section is to present two examples which arise

in a fairly straightforward manner from previous work.

The first, a modification of example 2.25, is an example where

the image of a regular element under the monomorphism a is not
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necessarily regular. By [16], theorem 7.2(ii), this means that the
ring in question, which is commutative, does not have a Noetherian

quotient ring.

The second example uses the ideas of example 3.16 and lenta 4.10
to give a case in which A(R,a) is a commutative domain, every factor
ring of A(R,a) is uniform, and yet A(R,a) does not have Krull

dimension.

5.17 Example:

The following is an example of a ring R and a monomorphism

a:R #R such that a(CR(0)) t CR(O)

Let K be a field and let Y ={y”~ | j,i elN, j s i] be a
collection of commuting indeterminates. Let R be the polynomial
ring K[Y] , and let S:R +R be the K-endomorphism of R such that

for all i,j cIN with j si

As in example 2.25, the action of a can be represented in the

array:
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Now let | be the ideal of R generated by the set

i I 1*M «IN, k4 *} e

Any element g of | is a finite sum of polynomials of the
form fy-jkni, (i.k.i eIN, k$i, feR) so a(g) is a finite sum

of elements of the form £ (f)yi+l >kHyi+i,Hl *

Thus, | is a-invariant.

Now let f € R be such that a(f) e | . Since a(R) =K[Z] where
Z = |i,j a2 ,j s 1 cY , a(f) « K[Z] and a(f) is a finite
sum of terms of the form gy~y™ where g e K[Z] , i,k,z =2 and
kfi

Therefore, f is afinite sum of terms of the form
hyl*IjK" PY1%] 50" where a(h) =g . Thus, f « | and | is S-stable.

Now let R =R/l and define a:R ‘mR by a(f+l) =a(f) +1
Since | is a-stable, a is a monomorphism.

If y.. denotes the image of y»j in R, then y”~ s regular.
But a(y-li) =y22 which is annihilated by . Thus a(C(0))E C(0)

Notice that by [16], theorem 7.2 (ii), R is a commutative ring

which does not have a Noetherian quotient ring.

5.18 Example:

The following is an example of a commutative domain R, Noetherian

and of Krull dimension 1 , with a monomorphism a:R < Rsuch that the
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ring A(R,a) is a commutative domain, every factor ring of A(R,a)

is uniform, and yet A(R,a) does not have Krull dimension.

Let R be the ring of formal power series KJ[[y]] in one
indeterminate over a field K, and let a:R ® R be the K-monomorphism
2
such that o(y) =y
By corollary 2, p.131 of [22] (Vol. 1l1), the only proper ideals
of KJ[[y]] are those of the form <yn> (i.e. the ideal generated

by yn) for nelN . - (1).
Thus, R is a commutative, Noetherian domain of Krull dimension 1.

By corollary 1.26 and proposition 1.28, A(R,a) is a commutative

domain.

Let | be a proper ideal of A(R,a) , and assume if possible

that there exists ideals J,K ~ | such that the sum K/l +J/1 is
direct. - (2.
Denote the a-sequences r(K), r(J) and r(l) by (K.)i=0 »

(Ji)i20 * and < =i"0 respectively.

Then, as in the proof of lenmma 4.10, the sum /n /1™ s
direct, for all i 20 .

Since | ~ K, there exists j 20 , r €«R such that
X' rx) e K- 1, ie. r € = Similarly, since | /] there

exists t20,seR with sel] -1
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Then, c¢/(r) e a%K.) ¢ K. , but a”r) kI. , otherwise
J J *% J"
r £1j , since (1li)i>0 is an a-sequence. Hence «»(r) <Kin -1J+1
d similarly, j .

and similarly, cj(s) £ S ljt

Therefore K+t g is a direct sum of two non-zero

1j+ li*t
submodules of . But from (1) above, R/l is uniform. Thus,
R/lj+r
no direct sum such as (2) can exist, i.e. hi*1*) is uniform, for
|

any proper ideal | of A(R,a)

Now, consider <yn> where n is even. Clearly, <yn~> c a l(<yn>

Furthermore, if | ¢ <n2+> then yn2 i | , and since

yn/2 € a l(<yn> , | / a_l(<yn> .

Also, if 12<yn2~> then yn2 ~e |l and a(yn2 *y° 2i <>

Thus | $a N<yn>) .
By (1) then, a \<yn> =<n”™2> for n even.

On the other hand, if n is odd, it is clear that

<yn+l/2>£ a* N<yn>) , and a similar argument shows that
-1, n n+l/2
a sy 3 =< >.
Thus, R
<V £ for n even
Ol(yn>) =
<Yyn+1/2> for n odd

Now, the argument of example 3.16 may be followed precisely, to

show that A(R,a) does not have Krull dimension.
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Further Questions.

1)

2

Given that R is Noetherian, is it possible to define the Artinian
radical in A(R,a) ? In other words, does the sum of all the
Artinian left ideals of A(R,a) form an Artinian ideal? The problem
here seems to be that, without A(R,a) being left Noetherian, it

is difficult to see where the Artinian left ideals of A(R,0) come
from - this is because the Artinian left ideals no longer necessarily
coincide with the left ideals which have finite length as A(R,a)-

modules.

If the Artinian radical of A(R,a) could successfully be defined,
then it may be possible to obtain a Stafford-like result superior to

theorem 4.6.

Also it could happen that the theorem of Ginn and Moss ([3], theorem
4.14) which says that if R is a Noetherian order in an Artinian
ring, then the Artinian radical is a direct sutmand of R , works in
A(R,a) without assuming that A(R,a) is Noetherian. The fact
(corollary 7.3 of [16]) that if R is a left order in a left Artinian

ring then so is A(R,a) , is encouraging here.

If R is a left Goldie ring, is A(R,a) a left Goldie ring?
Example 2.25 shows that the ascending chain condition for left
annihilators can be lost on passage from R to A(R,a) , but in

this example, R has infinite Goldie dimension.
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If R is left Noetherian, is the nilpotent radical N(R)
a-invariant? Indeed, is the Jacobson radical J(R) a-invariant?
The result obtained in theorem 3.34 appears to indicate that IJ(R)
may be more relevant than N(R) in any attempt at generalizing
Jategaonkar's result (lemma 1.1 of C133) for left Artinian rings.
It also may indicate that chain conditions in A(R,a) have more

bearing than chain conditions in R.

In theorems 5.7 and 5.10, two logically independent criteria are
found for the skew Laurent polynomial ring R[x,x \a] to be
primitive. Two very similar conditions, also logically independent,
are known to be sufficient for the Ore extension RCx,6] to be
primitive, where 6:R mR is a derivation. (See theorems 1 and 2

of [14]).

In their recent paper [8], Goodearl and Warfield show that if
RCx,6D is primitive, then one of the above mentioned conditions on
R must hold. This is done by exhibiting two types of faithful,
irreducible RCx,6]-modules, each of which corresponds to one of the
conditions on R, and then showing that these are the only types
possible. In view of the striking similarity of primitivity-type
results for R[x,S] and R[x,x \o] , (compare [14] and [15]), it
is possible that this approach may work for R[x,x \o] , where

a:R R is an automorphism. The theory of A(R,a) could then be
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used to extend this to the case where otR #R is a monomorphism.

Goodearl and Warfield [9] have studied the Krull dimension of

RCx,6] , and this may also be useful if applied to R[x,x \o0]

(5) Homological properties for A(R,a) have hardly been mentioned at
all. Fields C5] has shown that if a:R “mR is a monomorphism,
then the left global dimension of R[x,a] cannot exceed 1 + tgd(R)

ngd(R) being the left global dimension of R .

It would be interesting to aim for some similar result in A(R,a)
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Terminology Index.

aG-ring 18
a-ideal 17
a-invariant 30

a-prime a an automorphism 17

a a monomorphism 154

a-primitive 18
a-sequence 23
a-stable 0
annihilator left ideal 4
AR-ring &6
Artinian left ideal 3

module 3

radical 3

ring 3
8 132
bounded a-sequence 128
centre 2
closed ideal 40

left ideal 24
right ideal 39
completely primary ring 13
essential submodule 4

G(1) 30

Goldie dimension
ring
graded ring
homogeneous component
element
ideal
index of nilpotence
inner automorphism
Jacobson radical
ring
Jordan ring
K(1)
left annihilator
left quotient ring
local ring
localizable prime ideal
localization
M
matrix units
maximal closed left idec
nil subring
nilpotent a-sequence
element
radical

subring

168

168

168

169

104

101



Noetherian module
ring
power-inner automorphism
primary ring
prime a-sequence
ideal
ring
primitive ideal
idempotent
ring
product (of a-sequences)
quotient ring
reduced rank
regular element
rigid automorphism
semiprimitive idempotent
ring
semi prime a-sequence
ideal
ring
singular submodule
skew polynomial ring

skew Laurent polynomial

ring

standard maximal left
ideal
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13

oo 8

N

14

o o

26

111

stiff automorphism
torsion-free module

uniform module

10
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