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Globe-hopping

Dmitry Chistikov Mike Paterson

December 7, 2018

Abstract

We consider the grasshopper problem [1] on the sphere. We find a
lawn (subset L of the spherical surface) with the following properties:

• its area is half of the area of the sphere,

• it is antipodal, i.e., every point of the sphere is in L if and only
if the opposite point is not in L, and

• the probability that a grasshopper’s jump stays in L is strictly
greater than that for the lawn S consisting of the southern hemi-
sphere.

Let the sphere have radius 1 and the jump size be θ. All distances here
are spherical (determined by the length of great circle arcs). Assuming
θ ∈ (0, π/2), our results hold if θ/π is irrational or if θ/π = p/q
where p, q ∈ N, the fraction is irreducible, and p is even. If p is odd,
our results may or may not hold depending on the specific values of
p and q; in particular, jumps of size π/q, q ∈ N, present an open
problem.

1 Construction of the lawn

We now show how to construct the lawn L. Given θ, take a point on the
equator of the sphere and take a sequence of consecutive jumps of size θ
round and round the equator. Take a second sequence starting from the
antipodal point and continuing with the sequence of antipodal points to the
first sequence. Let n = n(θ) be the number of points in each sequence.
Draw circles of sufficiently small radius r = r(θ) around these 2n points such
that there are no overlaps. Our lawn consists of the southern hemisphere
with these circles added for the first sequence and removed for the second
sequence. In other words, we modify the hemisphere to fill semi-circular caps
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Figure 1: Caps and cups for θ = 1.2 and θ = 6π/13

above the equator and remove semi-circular cups below the equator, creating
antipodal cogs akin to the construction in [1].

The choice of the number of pairs of points n = n(θ) and the radius
r = r(θ) depends on whether the number θ/π is rational or irrational, and
we consider several scenarios. Figure 1 shows the positions on the equator of
caps and cups for two values of θ.

If θ/π is irrational, we pick n sufficiently large so that cos θ < 1 − 1/n.
If θ/π is rational and has the form p/q where p is even and the fraction is
irreducible, we pick n = q. In both cases the two sequences of points satisfy
the following conditions:

(i) all points in the two sequences are distinct,

(ii) in each sequence, the distance between every pair of successive points
is θ, and

(iii) no jump of length θ can link two points of different sequences.

If θ/π = p/q with p even, these sequences form two cycles of n points each.
If θ/π is irrational then, in each sequence, the two jumps of length θ away
from the sequence for the first and last point go to a point on the equator
that does not belong to either sequence.

Note that although the value of θ is the distance between two consecutive
jumps in the sequence, caps and cups may well be closer to each other than θ
because the sequence can wrap around the equator. However, once we have
fixed these sequences of points, we can pick r > 0 small enough that
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Figure 2: Spherical triangle

• circles of radius r around these 2n points do not overlap,

• in these two sequences of circles (for caps and cups), there is no jump
of length θ that would join any two points belonging to circles from
different sequences, and

• every jump of length θ from a circle either goes to another circle in the
same sequence, or does not touch any of the circles.

We can then make r > 0 even smaller as needed, assuming r → 0 when
convenient.

2 Preliminaries

We recall some basic formulae in spherical geometry. Using the notation in
Figure 2, where a, b, c are (great-circle) lengths and α, β, γ are angles, we
have the sine rule:

sin a

sinα
=

sin b

sin β
=

sin c

sin γ
, (1)

the cosine rule:

cos a = cos b cos c+ sin b sin c · cosα, (2)

and, in particular,

if α = π/2 then cos a = cos b cos c. (3)

The next formula follows easily:

if α = π/2 then tan a cos β = tan c. (4)
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For points on the sphere, it is convenient to use pairs of angles (φ, ψ)
based on (longitude, latitude), where φ is the azimuthal angle and ψ is the
elevation or copolar angle. We take the radius of the sphere to be unity, so
a typical point on the surface with spherical coordinates (φ, ψ) has cartesian
coordinates (x, y, z) = (sinφ cosψ, cosφ cosψ, sinψ), where the z-axis passes
through the poles.

For B and C points on the sphere, the dot-product of their cartesian
coordinates gives their angular distance. In Figure 2,

B · C = cos a. (5)

Finally, we recall the notation for the cosecant function: csc a = 1/ sin a.

3 Analysis of the construction

Our main result is the following theorem.

Theorem 1 Suppose θ ∈ (0, π/2) and θ/π is either irrational or equal to p/q
where p, q ∈ N, the fraction is irreducible, and p is even. Then the probability
that a grasshopper’s jump stays in the lawn L is strictly greater than that for
the lawn S consisting of the southern hemisphere.

We analyse the difference between jumps on a hemisphere and jumps on
our lawn L. Denote by A, U and S, the caps, the cups and the southern
hemisphere respectively. Note that L consists of S with A added and U taken
away. The set of successful jumps from L to L can be classified as jumps
from S to S plus jumps from A to S and vice versa, plus jumps from A to A,
but minus jumps to or from U . These latter are jumps from U to S \ U and
vice versa since our construction ensures that no jump is possible between A
and U . We account for jumps involving U as jumps U to S plus jumps S to
U minus jumps U to U , since these last were counted twice. In symbols we
may express this as:

y
LL =

y
SS +

y
AS +

y
SA+

y
AA− (

y
US +

y
SU −

y
UU).

For subsetsX, Y of the spherical surface, we denote by
y
XY the probability

that the grasshopper starts at a point in X and ends up at a point in Y . For
a sequence of caps corresponding to distance θ and a corresponding antipodal

sequence, we define the following quantities:
y
aa is the probability of a jump

from one particular cap to another particular cap distance θ from the first,
y
uu for the corresponding probability for cups,

y
aS for the jump probability
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between one cap and S,
y
uS for the corresponding probability for a cup,

y
SS

for the probability of a jump from S to S, and finally
y
aN for a jump from a

cap to the northern hemisphere. We define
y
Sa and

y
Su similarly. It is easy

to show that, for all X, Y ,
y
XY =

y
Y X. (6)

By symmetry we find that

y
aa =

y
uu and

y
uS =

y
aN. (7)

A U S

A (2n− 2) · y
aa 0 n ·

y
aS

U 0 (2n− 2) · y
uu n ·

y
uS

S n ·
y
Sa n ·

y
Su

y
SS

Table 1: Classification of jumps

We summarise the total probabilities in Table 3, where n is the number
of cap—cup pairs. If the sequences of caps and cups form two independent
cycles (i.e., if θ/π = p/q with p even), then 2n− 2 is replaced by 2n. Using
equations (6) and (7), we have

y
LL−

y
SS =

y
AS +

y
SA+

y
AA−

y
US −

y
SU +

y
UU

≥ 2n ·
y
aS + (2n− 2) · y

aa− 2n ·
y
uS + (2n− 2) · y

uu

= 4(n− 1) · y
aa+ 2n · (

y
aS −

y
aN).
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Figure 3: Jump geometry

In Figure 3, we show two successive caps C0, C1 of radius r, whose centres
O0, O1 are at distance θ from each other, and a sample point P in C0. For
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jumps from P towards C1, β1 and β2 are the angles between the latitude
through P and the direction of jumps to the equator at Q and to the circum-
ference of C1 at R, respectively. We see that β1 ≥ 0 always, but it is possible
that β2 < 0, for example, if P is close enough to the point S in Figure 3.

Lemma 2 The circle of possible jump destinations from P intersects the
upper semicircle of radius r centred at O1 exactly once, so R is well-defined.

Proof We first note that the point Q always lies within the diameter of
C1. If Q were to the left of this diameter then the point on the equator at
distance θ to the left of Q is to the left of C0. Since r < θ (i.e., the radius
of the jump circle is greater than the radius of C0), the point Q has distance
less than θ from any point in C0, contradicting the location of P . The case
where Q is to the right of C1 yields a similar contradiction more easily.

Since the jump circle around P intersects the equator exactly once to the
right of P and this intersection is within C1, the jump circle intersects the
circumference of C1 exactly once, and so R is well-defined. �

We see that

y
aa =

∫
C

(β1 + β2) ds,

y
aS =

∫
C

(π − 2β1) ds,

y
aN =

∫
C

(π + 2β1) ds,

where ds is a surface element of a cap C. So,

y
LL−

y
SS ≥ 4(n− 1) · y

aa− 2n · (
y
aN −

y
aS)

=

∫
C

4(n− 1)(β1 + β2)− 8nβ1 ds.

To prepare estimates for these integrals we first find probabilities for a
sample point P in a cap. In the following lemma we use the notation given by
Figure 3, i.e., u and v are the azimuth and elevation (longitude and latitude)
of P relative to the centre of C0 and r is the radius of the cogs.

In the next lemma and everywhere below, the constants in our O(·) no-
tation depend on θ, but not on n, and we let r → 0.

Lemma 3 For 0 < θ < π/2,

(i) β1 = v cot θ +O(r3),

(ii) β1 + β2 =
√
r2 − u2 csc θ +O(r2).
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Proof Let us first prove that β1 and β2 are both O(r). Observe that u, v
are O(r). Notice that π/2 − β1 is an angle in the right-angled spherical
triangle PDQ. Hence by equation (4), sin β1 = O(r)/ tan θ = O(r), and so
β1 = O(r). Next, by the sine rule (1) for the spherical triangle PRQ, we
have sinRQ/ sin(β1 + β2) = sin θ/ sin PRQ, and so sin(β1 + β2) = O(r),
since the points R and Q are both inside a circle of radius r. Therefore,
β1 + β2 = O(r) and β2 = O(r).

We now prove parts (i) and (ii) of the lemma. We take as origin for spher-
ical coordinates the point O1 in Figure 3. Then P has spherical coordinates
(−θ+u, v) and cartesian coordinates (− sin(θ−u) cos v, cos(θ−u) cos v, sin v).
Let Q be the point with spherical coordinates (q, 0) on the equator inside C1

at distance θ from P . Then QD = q+ θ−u and from equation (4) we derive

sin β1 = cos QPD = tan v cot θ = v cot θ +O(r3),

which implies part (i) of the lemma.
Let R be the point with spherical coordinates (ψ, φ) on the circumference

of C1 at distance θ from P . Then

P.R = cos θ, (8)

cos r = cosψ cosφ, (9)

from equations (5) and (3).
We observe that ψ and φ are O(r). In Proposition 5 below, we solve

equations (8) and (9) to find that

ψ = u+O(r2)

and, using the spherical law of cosines (2) for the triangle PQR,

β1 + β2 =
√
r2 − u2 csc θ +O(r2),

which establishes part (ii). �

We can now compare the probabilities
y
LL and

y
SS.

Lemma 4 For 0 < θ < π/2,

y
SS −

y
LL > 0 if n > 1/(1− cos θ)

and r is sufficiently small.
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Proof To make comparison easier, it is convenient to combine the con-
tributions from a pair of points. For any point P we define its mate P ′.
When P has coordinates (u, v) relative to the centre of C0, P

′ has coordi-
nates (u, v′) = (u, SD − v), where cosSD cosu = cos r (see Figure 3 and
equation (3)). If β′1 and β′2 are the angles corresponding to P ′, then

β′1 = (SD − v) cot θ +O(r2) and β′1 + β′2 = β1 + β2 +O(r2),

from Lemma 3.
We show in Proposition 7 below that the equation cosSD cosu = cos r

implies

SD =
√
r2 − u2 +O(r2).

For any integrand β,∫
C

β ds =

∫∫
C′

β cos v du dv,

since the area of an element ds is cos v du dv, and where

C ′ = {(u, v) | cosu cos v ≥ cos r,−r ≤ u ≤ r and 0 ≤ v ≤ r}.

Note however that cos v = 1−O(r2).
When we combine the integral for a sample point P with the integral for

its mate P ′ we get

2
y
aa =

∫
C

(β1 + β2) ds+

∫
C

(β′1 + β′2) ds

=

∫∫
C′

(β1 + β2) cos v + (β′1 + β′2) cos v′ du dv

=

∫∫
C′

(
2
√
r2 − u2 · csc θ +O(r2)

)
du dv.
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Similarly,

y
aN −

y
aS =

∫
C

2β1 ds+

∫
C

2β′1 ds

=

∫∫
C′

2β1 cos v + 2β′1 cos v′ du dv

=

∫∫
C′

(
2
√
r2 − u2 · cot θ +O(r2)

)
du dv.

As it is easy to check that W =
∫∫
C′

√
r2 − u2du dv = Θ(r3), meaning that

W = O(r3) and r3 = O(W ), we conclude that

y
LL−

y
SS = 2(n− 1)(2W csc θ +O(r4)− 2n(2W cot θ +O(r4))

= 4((n− 1) csc θ − n cot θ)(W +O(r4)).

and so
y
LL−

y
SS > 0

for sufficiently small r, provided that

(n− 1) csc θ − n cot θ > 0, i.e., cos θ < 1− 1/n.

�
Theorem 1 follows from Lemma 4.

Remark The calculations above can be performed for any θ; the reason
the case θ/π = p/q, p odd, presents a challenge is that our construction does
not produce a valid (antipodal) lawn in that case.

Auxiliary propositions and proofs

Proposition 5 ψ = u+O(r2).

Proof Apart from the fact that ψ, u→ 0 as r → 0, we will only rely on equa-
tions (8) and (9) from page 7 and the expressions for cartesian coordinates
of P and R:

R = (sinψ cosφ, cosψ cosφ, sinφ) and

P = (− sin(θ − u) cos v, cos(θ − u) cos v, sin v).
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Substituting the latter into equation (8) gives

− sin(θ−u) cos v ·sinψ cosφ+cos(θ−u) cos v ·cosψ cosφ+sin v ·sinφ = cos θ.

With the help of equation (9) this can be rewritten as

F · tanψ +G · sinφ = H

where F = − sin(θ − u) cos v cos r = − sin θ +O(r),

G = sin v, and

H = cos θ − cos(θ − u) cos v cos r = −u sin θ +O(r2).

Rearranging the terms and squaring gives

G2 sin2 φ = (H − F · tanψ)2.

We can now express sin2 φ in terms of tanψ using equation (9) and the fact
that 1/ cos2 ψ = 1 + tan2 ψ:

(F 2 +G2 cos2 r) · tan2 ψ − 2FH · tanψ + (H2 −G2 sin2 r) = 0.

It can be verified that the discriminant of this quadratic (in tanψ) equation
is O(r4), and the two possible roots are

(tanψ)± =
u sin2 θ +O(r2)±

√
O(r4)

sin2 θ +O(r)
,

both satisfying tanψ = u + O(r2). Since u, ψ → 0 as r → 0, we conclude
that ψ = u+O(r2). �

Proposition 6 Let y and z satisfy y ≥ 0, y + z ≥ 0, and z = O(r2d) for
some d > 0 as r → 0. Then

√
y + z =

√
y +O(rd).

Proof Assume without loss of generality that z ≥ 0; then

(
√
y + z −√y)2 ≤ (

√
y + z −√y)(

√
y + z +

√
y) = z,

and therefore
√
y + z −√y ≤

√
z = O(rd). �

Proposition 7 SD =
√
r2 − u2 +O(r2).

Proof The equation cosSD cosu = cos r implies

1− cos2 SD =
1

cos2 u
· (cos2 u− cos2 r) = r2 − u2 +O(r4).

We now apply Proposition 6 with d = 2 to conclude that sinSD and SD are
both

√
r2 − u2 +O(r2). �
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