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CHAPTER 1. Auslander-Reiten Theory.

Let A be an associative finite dimensional k-algebra,
k an algebraically closed field, and denote by mod A (mod Aop) the
category of all finite dimensional left (right) A-modules. Let Ind(A)

be a set of representatives of the isomorphism classes of indecomposable

objects of mod A ; we shall frequently ignore the distinction between
a module and its isomorphism class and this will be reflected in the
notation.

For M,N objects in mod A , (MN)A will denote the space of

A-morphisms from M to N and we shall frequently write this as (M,N)
A morphism e e (M,N) is projective if there exist a projective module P

and morphisms el , 9" such that the diagram

commutes. Write P(M,N) for the space of projective morphisms from M
to N. Let (H,N) denote the quotient space (M,N)/P(M,N) and let

e =e + P(M,N) , e e (M.N)

Define the stable category mod A to be the category whose objects

are those in mod A and whose morphisms are (M,N) . For A,B finite-
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dimensional k-algebras say nmod A, mod B are stably equivalent if

there exists an equivalence of categories

F : mod A mod B .

Let modpA be the (full) subcategory of mod A whose objects are

those in mod A having no projective direct surrmands. Let Indp(A) be

a full set of representatives of indecomposable objects in modpA . Clearly

mod A , modpA are stably equivalent.

For Me mod A let RM (zM) denote the radical (socle) of M and
set Hd(M) =M/RM . In addition let P(M), I(M) denote the projective

cover, injective hull of M

Finally, for MN e mod A , we write M|N if there exists a section
8 e (M,N) and a retraction <4>e (N,M) such that <8 = 1M . That is,

M is isomorphic to a direct summand of N .
1.1 Definition.
An A-map 8:V + U is irreducible if

) 8 is neither a section nor a retraction.

(1) Given the diagram



Introduction.

Representation theory has seen some new developments recently with
the application of Auslander-Reiten theory. Given a finite dimensional
algebra A , one can construct a directed graph called the Auslander-Reiten
(A-R) quiver whose vertices are the isomorphism classes of indecomposable
A-modules. In addition there exists certain non-split short exact sequences
called A-R sequences which are closely linked with the A-R quiver.

In Chapter 1 we outline this theory including a technique for
constructing A-R sequences by J.A. Green [Gr 3]. In Chapter 2 we look
at group representation theory concentrating on blocks of cyclic defect
group. In particular we are able to construct the A-R quiver for such
a block and the A-R sequence for the indecomposable modules.

In Chapter 3 we look at some of C. Riedtmann's work ([RI], [R2]) on
abstract quivers and coverings of A-R quivers. In Chapter 4 we combine
all these ideas to obtain results on blocks of cyclic defect group. In
particular the composition factors (see [Ja] for example) for each
indecomposable module are determined and a result concerning the Grothendieck
group is obtained ([Bu2]).

A-R sequences for blocks of cyclic defect group have already been
studied and we refer to [Re] and [GaR] for details concerning both the
composition factors for modules and the A-R sequences.

In Chapter 5 we look at the group SL(2,pn) . Recently there has been
a lot of interest in this group, including work by K. Erdmann on certain
filtrations of projective modules [EI] and periodic modules [E2]. Me look
at the simple periodic modules and construct the connected quiver components
containing them, using certain pullback techniques. In this way we obtain

infinite families of periodic modules of arbitrary large dimension.



Some work has been done on periodic modules in Auslander-Reiten
quivers (see [H], [W]) and indeed the shapes of the quiver components

containing periodi c modules is predicted.



either 9' s a section or 6“ is a retraction.

It is an easy consequence of the definition (see [AR2] 2.6(a))

that an irreducible map is cither a monomorphism or an epimorphism but

never both. In particular if e e (VW) s irreducible, V ™~W.
..m n
Let VWcmod A, V =J3_V. , W=JI+xW. with V. ,W. ¢Ind(A)
i=l 1 i=1J 1 3

Given 9 £ (V,W) we can express it as amatrix 9™) » 9jje (v=W) -

Define

@) RV,W) ={9 £ (V,W)|9J..* is not an isomorphism for any lIsian, lIsjsn)

and

(2) R2WW) = s R(Z,W)R(V,Z)
Zfilnd (A)

1.2 Lemma ([Ri] 120)

For VW £ nmd A, 9 £ (V,W) irreducible implies that
9 £ R(V,W)\R2(V,W) . Furthermore if V,W £ Ind(A) then 9 s irreducible

iff 9 £ R(V,W)\R2(V,W) O

Define the space of irreducible maps to be

) Irr(V,W) =R(V,\W)/R2(V,W) V.W £ Ind(A)



1.3 Lenma ([AR2] 528)

Let F:mod A **mod B be an equivalence of stable categories. Let
6 e (VWW)A such that 0/0 and * e (FV,FW)B such that F(e) =*

Then e is irreducible iff Y is irreducible.

Proof.

We only need the result for V,W e Indp(A) so we will prove this

restricted case referring to the proof in [AR2] for the general case.

We claim that P(V,W) ¢ R2(V,W) . Let 4 e P(V,W) . Certainly
* i (VW)\R(V,W) otherwise V or W would be projective. I f
£e R(V,W)\R2(V,W) then 4 is irreducible by 1.2. Since <e P(V,W)

there exists a projective module P such that the following diagram

Vo> W

commutes for some V1 e (V,P), € « (P,W) But * is irreducible so

either 1s a section or Is a retraction. In either case either
VIP or W|P which implies V or W 1s projective, a contradiction

which establishes our claim.

Consider e as given in the lemma. Then e e R(V,W)\R2(V,W) by

1.2 and by the above remarks we can say that e & R(V,W)\R2(V,W) . Since



we have an equivalence F:mod A mod B it follows that Ye R(FV,FW)\
R2(FV,FW) and so * « R(FV,FW)\R2(FV,FW) since P(V,W) c R2(V,W)
Therefore 4 is irreducible by 1.2. A similar proof gives the reverse

implication.

O
1.4 Definition.
The Auslander-Reiten Quiver Q(A) , of an algebra A , is the
directed graph whose vertices are the elements V e Ind(A) . An arrow

Vi*W is defined iff there exists an irreducible map e:V & W. To
each arrow we attach an integer ny w =dimklrr(V,W) . In the case

nv w=1 we delete this number.

We remark that Q(A) is finite iff A is representation finite.
Also there are no loops V-3 in Q(A) by the remarks following

definition 1.1.

Define the stable quiver Q(A)S to be the directed subgraph of
Q(A) obtained by removing all projective vertices and their attaching

arrows.

1.5 Proposition.

Let F : mod A mod B be an equivalence of stable categories. Then

Q(A)S - Q(B)$ and nv=w - nFV=FW for all V,W « Indp(A)

Proof.

This follows iirniediately from 1.3.



1.6 Definition.

An Auslander-Reiten (A-R) Sequence is a short exact sequence

(s.e.s.)

M 0 --—>N E-SU M—->0

satisfying the following conditions.

(a) M,N e Ind(A)
(b) (M) is non-split.

(c) If i e (X,M) is not a retraction then there exists

h e (X,E) such that i = goh

Condition (b) implies that M is non-projective and N is non-
injective. Gabriel's expository paper [Gal] (sections 1-3) and
Auslander and Reiten's [AR1/2/3] contain many details on the theory and

properties enjoyed by these sequences, a few of which we give below.

Note.

An A-R sequence is often referred to as almost split.

1.7 Theorem ([ARID 8&4)

Let M e Indp(A) . Then there exists an A-R sequence



AM) : O+ N+ E+M+ O

which is unique up to isomorphism. n
For such a sequence we denote by tM the module N , called the
Auslander-Translate of M .
We will explain, briefly, how the A-R sequence is constructed

introducing various 'machinery' from homological algebra as we go along.
To start with, given M e modp(A) , let e:P(M) # M be a projective
cover for M . Define the Heller Operator n by ftM:= Ker(e) . This

is uniquely defined up to isomorphism and the s.e.s.

O+!IH+PM — >M -0

1s a minimal projective presentation (m.p.p.) of M . Define contra-

variant functors

(*),D : mod A & mod AON™

by

M: >MAa , DM » (MKk)k

The right A-module action is given by



(fay(m) =f(am) , ac A, me K, f e DM

and (fay(m) =f(m)a , atA.niiM.feM,
Let

P P,

P —>P,O 0

be a m.p.p. for Me Indp(A) and apply (*) which is left-exact to

obtain

0 4 M* —2-> p* — 1~ P* - Coker(p*) O

Applying the functor D which is exact we obtain the exact sequence

4 » DM 20
where TrM: = Coker(pp . The module DTrM is the Auslander-Translate
M .

Suppose A is symmetric. That is there exists a linear map
a:A 4 k such that the bilinear form <> : A»A & k given by <ab> = a(ab)
is symmetric and non-degenerate. (In particular, a() / 0 for any left
(or right) ideal J of A) . It follows that (*) , D are isomorphic
as functors under the map f s*aof

, fe M . Therefore, (4) becomes

the m.p.p.



0+A +p] M0

and we deduce the following.

1.8 Proposition.

Let A =KkG , the group algebra for some finite group G . Then

for M e Indp(kG) ,

tM = n2M

Proof.

The result follows from the above remarks since kG is a symmetric

algebra. (Define a e DkG by a( I \ g) =\ )

geG 9 1 0
We now turn to the construction of A-R sequences. In CAR1] 84,
the following condition is given for a s.e.s. to be almost split. Let

™M O+tH+E+M+O0

be a s.e.s. with M« Indp(A) given by x « Ext™"M.tM) . Then (M)
is almost split if 0t x e E(Ext™(M,xM)) considered as an (M,M)-module.
So to determine (M) one has to compute the 'Ext' group, determine Its
is difficult

socle and then construct the corresponding pushout. This

to do in practice and alternative methods have been put forward by M. Butler
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[Bui] and J.A. Green [GR3], We look at the method described in CGR3]
which involves looking at certain pullbacks. Recall the definition of

a pullback; given B,C,D emodA , 0 e (B,C) , ite (D,C) the diagram

B
D ir » C
can be completed thus:
1> E PB =B
PD e
o = k — D C

where

E = {(b,d) £ Bj"ple(b) = Tf(d)}
Here; K = Ker(w) , PQ,PD are the natural projections, u(k) = (0,k)
and i is the inclusion map. E is sometimes referred to as the pullback
of (C,9,if) . Notice that if 1Im(e) s Im(ir) the top Une of the diagram

can be completed to form a s.e.s.

Consider the completed pullback



00— > tM ---—-- >E ——- > M - >0
0 ———- > TM --—-> DP1 -g— > DPq --——- > DM* %0
Pi
where Im(e) s Im(Dp*) . For such a e e (M,DP*) , Green defines a
k-1li near mep
TO:EndA(M) - Kk

such that the sequence (M) is almost split iff

(5) TO + 0

(6) TQ(R(ENdA(M)) =0

Furthermore, such a e can be chosen such that

) Ker(e) is a maximal submodule of M (Ker(e) <-M)

We describe this construction for A a symmetric algebra with

associated k-map a:A k . Recall that DM « M, DPqg =PQ gnd

DPi =Pl in this case.



Since Pg is projective we may write

PO = U AN =AS] 9 ... 9 Asm

where = (0....... [T 0) , ei a primitive idempotent. Given

0 £ (M,Pg) define

....... tm) £ I[I(DM)e.

by setting t. = ¢ where £ DPQ is given by ~(asj) =« (a)

Finally, put ci =P0(s—j) and define, for n £ Endft(M)

(8) TO(n) =~ (n(cl)) + ....... + tm(n(cm))

We now look at the connection between almost split sequences and

A-R Quivers. Given an almost split sequence

A(M) 0 * tH E-2-=> M- 0
v aj
we write E = Ij E,i . E. £ Ind(A) pairwise non-isomorphic and
1-1 1 1

TRV L RPN 1} ..., fitr9)
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(1) ‘°>g-fn) »e °°°t§£n)}

where e (tM,E)) 9~ e (E,M) for 1sisn,1sjsa,

By [AR2] (2.15) f.g are irreducible and by [AR2] (2.5) fj\), gJ(’)

are irreducible for al; 1sjsn, 1sj s . Therefore the almost

split sequence A(M) gives rise to the subquiver

where al =n~~™ =n£ =M by [Ri] (120).

Call such a subquiver a mesh. If, for some 1s 1sn, E. 1s

projective, call the subquiver a projective mesh.

Conversely, given M e Indp(A) , define
(€)) H+ « (V e Ind(A)|there exists an arrow M & \>
and for N « Ind(A) such that N is non injective, define

(10) N - {U e Ind(A)|there exists an arrow U N)
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Then, see for example CRi] (120),

(11) («t)+ = WM
and there exist maps f e («eM,JJ_ E E,M) , ge (JI_ E EMM)
EeM EeM
such that
0+xM — =>J L e"™ -3~> M—> 0

EeM-

is an almost split sequence.

In passing from Q(A) to the stable quiver Q(A)s we observe that
the non-projective meshes are preserved whilst the projective meshes
lose their projective vertices and attaching arrows. One is frequently
in the position where the stable quiver is known so, to recover the full

quiver, one needs to place the projective modules in the correct mesh.

From now on we shall assume that A is a symmetric algebra. In

particular, a module P 1s projective iff it is injective.

Let P e Ind(A) be projective and simple. Suppose there exists an
irreducible map e:P + M. Since P is simple e is a monomorphism and
by the Injectivity of P , e 1s a section which contradicts 1.1(1).

Similarly there is no irreducible map xp:N P . Hence P occurs as an



isolated vertex in

restrict ourselves,

1.9 Lemma.

Q(A) and plays no significant role. W shall

then, to non-simple projective modules.

Let P e Ind(A) be projective and non-simple. The only irreducible

maps to and from

Proof.

Suppose e:M
monomorphism.  |f

factorisation

Since neither e

are the natural maps ii:RP P and tr:P + P/rP

P is irreducible. Since P is projective 0 is a

M~ RP then Im(9) <RP and we have a non-trivial

RP

nor i are sections e is not irreducible. Therefore,

take M * RP and suppose there exists a factorisation
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such that 9° is not a section and e" is not a retraction. Since i

is a monomorphism, so is e‘ , whilst 0" is not surjective since P

is projective. Hence Imfe") = Im() =RP . Define ijcNRP by
<) =0"(n) for ne Im@O') and (n) =0 otherwise. Then pe' =1,D
and so e' is a section, a contradiction. Therefore i s irreducible

as required.

The case ir:P P/zP is similar.

1.10 Theorem.

Let P ¢ Ind(A) be projective and non-simple and denote by {P> ,
the projective mesh in Q(A) containing P . Then {P} gives rise to

the almost split sequence

0 RP % P9 RP/ZP # P/zP + O

Proof.

By 1.9 and earlier remarks, {P} gives rise to an almost split

sequence of the form

O+RP +P» X+ P/zP h O

for some X e mod A . Consider the pullback
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0 -—--- >RP —— >E ———- > P/EP -——- >0
1 1 le
0 -——-—-- >RP ——* P >P >p/zp ——- >0

where ir.P “mHd(P) (= P/RP) is the natural map and we identify Hd(P)
with IP s P . Referring to CGR31 a 0 can be found such that the top

line is an almost split sequence, and by (7) we may choose 0 such that

Ker(e)<- p/zp . Therefore Ker(e) =RP/ZP and Im(e) =zP . Let P =Ae

for some primitive idempotent in A . W may assume that:

Q:P/ZP > Hd(P)

e + EP ———» e +RP

and so ir(e) =e(e +2ZP) . Therefore, w(ae) =e(ae + EP) for all a « A

Consider the pullback

E={(a) (P i P/ZP |ir(p) =6()>

which is generated as an A-module by Ker(ir) = Ker(e) and (e,e + zP)

Consider the A-map

iDE P , ip(p,q) »p



Since P is projective and ip is surjective, ip is a retraction;

hence E = POKer(i]J<) . However,

Ker(i(i) = {(0,q) e P O P/eP} = Ker(e) = RP/eP

as required.
|

In the next chapter we look at the group algebra case, in particular
at blocks with cyclic defect group, and apply some of the results of this

chapter.



CHAPTER 2. Representation Theory.

Let G be a finite group and k an algebraically closed
field of characteristic p such that d |G] . Let B be a p-block
of G with defect group D of order pd =q . Finally let Hs G
such that Ng(D) s H and let B be the unique KkH-block associated to

B under the Brauer Correspondence.

We will want to take advantage of the Green Correspondence which
exists between certain quotient categories of mod kH and mod kG
Here, however, we will only be interested in the situation which gives
rise to an equivalence of stable categories and therefore we shall only
outline the correspondence in this case. For further details we refer

to [GR2] which contains a summary of the definitive paper [GR1].

2.1 Definition.
Let G be as above, HsG, let Ue mod khH , Me mod kG and define

fM emod kH , gU e nod kG as follows. Write

1 M =fMflP

2) UG =gU « Q

where P,Q are projective, fM,gU are projective free and are all

uniquely determined up to isomorphism by the Krull-Schmidt Theorem.



From now on let D be cyclic and set H = Ng(Dg) s NQ(D) where

Dg is the minimal subgroup of D . The following is then a corollary

of the Green Correspondence.

2.2 Theorem.

Let B, B, D be as above with D cyclic of order q and let

M « Indp(kG) , U e Indp(kH) . Then:
(a) fM e Ind (kH) , gu e Ind (kG) and
9(fM) =M , f(gu) 2 U .
(b) Uc md B iff gll ¢ mod B

Mc mdB iff fM £ mod B .

() n(fM) = f(nM) , 0(gU) = g(nv)

2.3 Corollary.

There exists an equivalence of stable categories:

f: mdB & nod B .

Proof.

By 2.2 f gives a 1-1 correspondence of objects. For each

ME£modB , let



PM : Mh- fM . iM: fM- M

be the natural retraction, section respectively. For M/N e nod B ,

0« MN) , let fe =pNoOJHo ift . This induces a natural k-isomorphi
(M,N) = (fM.fN) , O - fe

In a similar fashion, one can define
g : mod B & mod B

such that fog = 1 B, gof «I™ g as required.

2.4 Definition (CP] 233)

Let H be a subgroup of G having a p-block b with defect group

D of order g . W say that b is (q,e)-uniserial if:

(a) b contains, up to isomorphism, e simple modules

S| (el *{0,1,..,e-1}) where e|qg-I

(b) There exists a full set of projective indecomposable modules

{T. | 1 e 1} such that:

(D y*7) *sl.



<[>

(ii) Ti lias a unique composition series
Si Si+l Si +2 Si+q-I
where, for j e 7Z, Sj: =Si where j = i+ae
aeZ

(iii) There exists a full set

(Ti=a | i e 1 ,a =1......... qr

of indecomposable modules for mod b where each

a unique composition series

In particular, Ti =Ti>q , Si = 1 and

Ti,a/R(Ti,a) " S1 -

i (L, let T =T. where j ; 1 mod(e)

..J'»a 1,a

The following can be found in Dade's paper [D].

Tl»a

has



2.5 Theorem.

Let B, B, D be as in 2.2. where e

is the inertial index of B and

Proof.

We sketch the proof referring to Dade's paper [D] and the later
publication CGR2] for more details. Let (i e 1) be the

projective indecomposable, simple modules respectively numbered such

that T~/RTi =Sj . Dade shows that there exists n e kD such that

ng =0 and for each i e I ,

(5) T. >T..n >T™M2  .ceeneann... >T..nql >0

is the unique composition series for Tl . If we set TI a =T1/Tr.na

then {Ti a li el ,a=1,..,9} is a full set of indecomposable modules.
Green shows in [GR2] that for each i e I ,

where the indexing is taken module e . It follows that the composition

series (5) satisfies 2.4(i1) which proves the theorem.

Let lja~» T] a=na . By (6) it follows that for a =1,..,q



™ Tia) = TrXa,a-a

®) RTINS

If we consider the m.p.p.

0]
we see that,
T(a) X T,

® F ) i+a,g-a
which implies that n2T. =T. . since g = 1 mod(e)

Finally let be the primitive idempotent corresponding to T.
That is =B~ . Then eja =e§J +T™M° cT. g is a generator for
T as a B-module.

1l,a

2.6 Theorem.

The A-R sequence A(T™ a) is given by:

0 Ti+l,a Ti,a+l « Ti+1,a-1 Ti ,a 0



where, for a =1, T.jH is the zero-module.

exist irreducible maps

91 : Ti,a - Ti-l,a+1 a=1,...,q-1

where e,l is the inclusion map obtained bX Ti
and $2 is defined by 02(eijol) =ei a +

given in (8).

Proof.

Consider the m.p.p.

O-nrypa- 14a¥T1-Tja -0

and the pullback

0™ Tl+l,a - E(9>- Tl,a - O

(101)

1 i ie

0- Ti+l,a - Tl+a? T1- Tl« - O

where Im(e) s Im(ir)

Furthermore, there

and the

= tP m
a |-]},a+l v '

isomorphism



By earlier remarks (7) in Chapter 1 there exists a e such that

Ker(e) <= Ti=a and the resulting s.e.s. is almost split. Uniseriality
Of Ti,a forces Ker<9) =RTjxg =Tjly = Given 9" e (Tggx,T») with
Ker(e') = RT\ , it follows from Schur's Lemma that e* =s.e for

some s e k since Im(e) is simple. Thus the resulting s.e.s.

via EE@) Ty O

is isomorphic to the one in (10') and is thus almost split. We may now

assume that

Here Ker(e) = RT.>a ¥ Ti+1 ™ by (7) and 1Im(e) =Tjg-1) =r(Ti)

To determine irrT™ & > we want such a map with Ker(ir) = T™+1

Let ir be given by ir(e.+a) =e..na . Then Ker(r) - TN'"* - T<H

by (7) and the pullback is given by

E(e) ={(uiv) . Tija e Tl+a>q | e(u) * *(v)}

Now

71AmM0) =/ V iq1) =Tig +) * T by (D)
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so E(0) can be considered as the pullback

E®) - 1
1 i
Ti,atl Ti
where ir'(ei=a+1) =er nq1l . Therefore

EO) ={(u,v) e Ti a 0 Ti>a+lle(u) =t (Vv)} =E say.

let * 6 <Tl.a+rTl.«> be 9iven b* e(=l.«+D) " ei,a whereby e =it
Define a map

*:E + Ker(e) ®Tiza+l

(u,v) % (U—<».(v),Vv)

Since e(u-*(v)) =e(u)-ir'(v) =0 we see that * 1s | well defined

B-map which is clearly Injective. To show that t is onto, consider

(ei,a,ela+l> e E'

oela-eletl> =<la' *<el.«+H>el «H> = <'el,«+l>

and so *(B(el=a.el=a+l)) =8 (0,.~) =(O0.T,~) . Similarly, for
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(ei > n=0) e E .

$(B(ei,a‘n,°)) = B(ei,a,n,0) = (Ker(9).0) -

Hence 4 is also onto and so

E(e) = E =Ker(e) 9 T.
©) ) V I ,a-1 ®Ti ,a+l

as required.

We now compute the irreducible maps »e2 . One can embed

Ti+l,a in Ti,a+1l by the 1083 ei+l,a ™ ei,o+I1'n so the "»nomorphism

in the A-R sequence

11+1»a i a

1s given by el+l 8 1+ (0O.e,8a+rn) . But *(0™ >atln)=(-e”™ .n.e”™ .n)

e Ker(e) 9T which 1s mapped to the element >((_el/-l\-{fa-|’ ,el a .n)

1*a+!

g Tl+l ,a-1 ®T1l,a+1l # There’ore the map

f:T1+l,a "mTl+l,a-1 * Tla+l

el+l,a 'm(_el+l,a-I'el,a+In)
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is irreducible by CAR2] 2.15. Now f = ("1*2)T wilere

fl<ei+l,«> *“ -ei+l,a-1 and f2<ei+lcc> ej,o+In and so fI*f2 are

irreducible by CAR2] 2.5. Hence .02 as given in the statement of

the theorem are irreducible. The case 82;T. E | '\' I is covered
1,9 ,q—

by 1.9 since T. is projective and . . .
1*H Ti,q-2 " Ti / (Ti,q)

2.7 Corollary.

dimklrr(Ti,a’'Ti,a-1=> " dimklrr(Ti,a*Ti-l,a+H> =1
Proof.
Since T, + =>T4H+ >a_i occur with multiplicity one in the middle
term of A(T™ a) , the result follows from the remarks made in Chapter 1
(1.8-1.9).

One also deduces that A(T101) gives rise to the mesh

am™2,....,q9-l a *1.



The A-R quiver is then the union of all such meshes and is

given below:

This is not quite the whole picture. Since we defined Tj. a = Ti a
for j =1mod () , (J eZ, i £ 1) 2.6 implies that there exist
Irreducible maps ej a ®Te j a . Therefore we have to 'glue' the

edges of the graph (10) together and the resulting cylinder is the full

A-R quiver Q(B) . We shall discuss this 'glueing' in more detail 1n

the next chapter.



The stable quiver Q(B)S is the shortened cylinder obtained by
deleting the top row of vertices (Ti g's) and their attaching arrows.

For such a (g.e)-uniserial block, write:

Q(g.e) =Q(B)S

2.8 Theorem.

Let B be a kG-block with cyclic defect group D with |D] =q -

Then,
Q(IB)S = Q(g.e)

where e is the inertial index of D .

Proof.

Let Hs G be as in 2.1 and let B be the kH-block corresponding
to B . Then Q(B)S =Q(g,e) , where e 1s the Inertial index of D,
by the above remarks. Since mod B , mod B are stably equivalent by
2.3, QB) =0Q(IB) , by 1.5 and the result follows.

S S 0

2.9 Corollary.

Let ng»o e IndP( B) be the Green Correspondent of T-!L,a , some



a/c . Then A(%Ti .0|) is

oTi H ,a gTi,aH ®gTi+,a-1 ®P - gT1.3

where P is a (possibly zero) projective module.

To recover the full quiver Q( IB) we need to know the position of
each projective indecomposable module P . By 1.10 it is sufficient to
know the position of P/ZP . We show that it is sufficient to determine

the position of each simple module.

We digress a little to discuss the Brauer Tree which plays a crucial
role in this problem. In the next two chapters we show that a knowledge
of the Brauer Tree is enough for one to recover the full quiver and to
determine the irreducible maps. The following is an outline of results

found in Green's paper [GR2].

Let {VM1 ¢ 13 W~N|i el}) be full sets of simple (projective
indecomposable) modules labelled such that WYRW?Y =V. and let
(n.jli ¢ 1) be the corresponding projective modular characters. In CD]

Dade shows that IB has e + (g-1)/e ordinary irreducible characters

Furthermore, if one sets Xg+~= zZ Xx (and call this character
AeA



exceptional), then for each i e | there exists a unique pair ii(l) ,
i(2) e il,...,e+1} such that:
€5 niotoXi (1) + Xi(2) *

Define the Brauer Tree r to be the graph with e+l vertices
corresponding to the set { X , .} and with e edges corresponding
to the ni's ; two vertices , Xm being linked by an edge ni iff

U, m = (1(1),1(2)}

In CGR2] Green shows that there exists a permutation 6:1-*- |

such that, renumbering the W. , V.. if necessary, the following holds.

2.10 Theorem.

For all 1,j e |
(@ (fVj.S~ = (Vj.gs~ =k 1-j
0 17 ]
® Gi.NI) - ©s1,Vf) -k 51 -j
0 6(1) jJij -
(©) For each 1 e | there exist s.e.s.
0 # ngs" A g *0

0 gS1+l WL+l ¥ °9Si * 0O -



Green goes on to show that if, for each i e |l , p2_, P2i+1
denote the modular characters afforded by g , ngS™ respectively

then Pj e {X....... *e+|N /ﬁ \]:0»...»2e—l and so the equation

(11) can be written as:

12)

2«_1(i) 26_1(i)+1

thus linking the Brauer Tree r with the permutation &

One can also deduce the Cartan matrix from the Brauer Tree, the

following result being found in Cla].

2.11 Theorem.

Let C = (c.j) be the Cartan matrix for B . Then:

{1().i2)> n § D).JI(2)} =9
=1 {@.i@d n §(1),j Ay =Ur t {e+l}
(q-1)/e {i).i(2)= n (jH,j(2)} = {e+1}

e+l / {i(),i(2)>

(g-1 )/e+l e+l € {i (1).i ()}



We return to the problem of recovering the full quiver Q( IB)

from the stable one. For any Ue mod B, let t(U) denote the
composition length, in particular t(T. ) =a for each i « I ,
1 £a s q . Define:

(13) X1 - {1,..,9-1%}

by setting A(): =*(fV.) . In addition, let X*(i) =q-A(i)

2.12 Lemma.

For each 1¢ | X (i) =6_1(i)-i+1 mod (e)

Proof.

By 2.10(a), HA({fv™) = which implies fv.. = a , some
ae(l1,— ,g-I>= . By (4) iffv™ « Si+a.1 whilst 2.10(b) gives

E(fV.j) = * Therefore 1+a*1 5 «-1(1) mod(e) and so A(i)

a =6 1(1)-i+l as required.

2.13 Theorem.

The (projective) mesh containing corresponds to the A-R

sequence stopping at dT

« (D.A'(D



Proof.

The A-R sequence whose middle term contains W is:

0] R\NI —"‘RV\{./ZV\{. CR)IW —:i WIIZW A0

by 1.10. Now RW. =SM. since

0 RW = W & Vi 0

is a m.p.p. for Vi . Hence f(RW.) =f(PV.) =0(fV.) (by 2.2(c))
CAEAL) Y Ti+x(i),X, () =V @+ iX. (1) by2J2- NW
RV = x(Wi./EWI ) =fI2(WL/IWi) by 1.8 which implies that

=n2f(Wi/rw.) and so
&1 (i )+l (i)

f(w./zw ) =T
1 1 « NMU.x'd)

as required.

2.14 Corollary.

A(QT , ) is:
«e'(D.x'd)
o gT s ¥ gT igT » W.
6 @)+ ,A*Q1) i 1().A" (D)+1 it @)+ ,x' @)l 1
aT . o .
a«a’OM'0O)
and in particular, RW. n gT , W</eW. - gT and

1 «A+l.x"d) 1 1  «"(0.x"d)

RW./72ZW, - gT -
«

" (D xiD+1 7~ Tl (i xoq)-i n
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CHAPTER 3. Riedtmann Quivers and Coverings.

In this chapter we introduce the abstract Riedtmann Quiver

CR1] of which the A-R Quiver is an example.

3.1 Definition.

A quiver Q = (Q0O»Q]) is a directed graph with vertex set Qg and

arrow set @ which contains no loops or directed arrows.

For x e Qg let x+ denote the set of vertices which are endpoints
for arrows starting at x and x' the set of vertices which are starting
points for arrows ending at x . W shall only consider quivers Q such

that x+, x” are finite for all x c

3.2 Definition.

A Riedtmann Quiver ¢« (Ag.a™t) 1s a quiver (aq,al) together
with an injective function t:Aq % Aq defined on a subset Ag c Ag such

that (ex)+ =x" for all x e Aq

Call A stable 1f Ag =Ag and « 1s onto. Say X e Aq is

periodic if t*x =x for some a eW

3.3 Example.

Let Q(A) be the A-R quiver of a symmetric algebra A . Then the



2
triple (Q9,Q-] .,n ) is a Riedtmann Quiver where Qg = Ind(A) ,

Qg = Indp(A) and is as defined in 1.4.

Notice that Q(A)S is also a Riedtmann Quiver and that Q(A)S

is stable as defined above.

3.4 Definition.

A morphism of quivers 0:Q Q* is a mep such that if x -2-> vy

is an arrow in Q there exists an arrow 6(x) O(y) in gqg* <
it 't 't
Let A = (Ag.Apx) , A = (Ag,A-|,T*) be Riedtmann Quivers. A
morphism of Riedtmann Quivers 9:A A is a morphism of quivers such
that:
(D) T*e(X) = 9x(x)

for such x e Ag where this is defined.

3.5 Definition.

A covering WwA + A is a surjective morphism of Riedtmann Quivers

satisfying the following for all x c Ag .
(@) it maps x" bijectively onto (tt)-

(b) it maps x+ bijectively onto (irx)+ .
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(c) tx Is defined iff +t*(itx) is defined.

3.6 Definition.

A directed tree T = (Tg>T-|]) is a quiver whose underlying
undirected graph T is a tree. If there exists an arrow x -2-> vy

Q

then there exists no arrow vy X .

3.7 Example.

Let T = (Tq.T™) be a directed tree and define ZT to be the
quiver with vertex set ZxTq and arrow set ~ as follows. For each
arrow X y in T define arrows (i,x) # (i,y) , (i+l,y) # (i.x) for
all i e2 . Now define t: Z*Tq ZxTqg by t(i,x) = (i+1,x) . Clearly
X is bijective whilst (r(i,x))+ ={(i+Ly)]y e x+} u {(i,z)]z e x=) = (i,x)
proving that the triple ZT = (ZxTg.t™.x) is a Riedtmann Quiver. Since

t is defined on ZxTg and is surjective, ZT is stable.

Riedtmann shows ([RI] 204) that given directed trees T,T then
T =T iff ZT = ZT* . She also shows in [R2] (460) that if A is
a self-injective algebra which is representation finite, then the stable

quiver Q(A)S can be written as the disjoint union of connected components

QA = U q. , J a finite set
S j«J J
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such that qj = er/EtJ . Here rj is a directed tree, O. is
and f. is a tree of
type An> D> Eg, or Eg for each j e J . In particular there

exists a covering

Furthermore irl can be extended to a covering tcA Q(A) of Riedtmann

Quivers such that

AS > A

QA)S 32- > Q)

commutes, being the inclusion maps.

From now on let A =B , a kG-block with cyclic defect group and

set Q=QB) so Q@ =Q(g,e) , some d,e eIN, by 2.8. We shall

construct a covering for @ and extend this to a covering for Q .

Let Indp(B) = {gT™ #]|lel, a =1,..,9-1) be a full set of non-
projective indecomposable modules where g™ a is the Green Correspondent

of T.1_<€



Consider the linear tree An with the following arrows and vertices

e < < <. ... — — =%
1 2 3 4 n-1 n

3.8 Proposition.

The morphism of quivers

1 ZAg-1 - Q8 (i‘a) - 9Ti,a

is a covering and induces an isomorphism

ZAg-1/<"e=> " Qs =

Proof.

Recalling the construction of Qs (and 2.9) it is clear that
n27r'(i,a) =w't(1,0) =gT1.,”G so (1) is satisfied and w' is a
morphism of Riedtmann Quivers. Now (1,a)+ = {(1-1,a+1),(1,a-1)} and
(1,a) ={(@,a+),(i+1,a-1)} so by 2.9 it is easily seen that
n'((i,a)*) = (r11,a))” and 7r'((i,a)+) = w*(i,a))+ . Since ZZAg-1 ,
s are stable quivers (3.7, 3.3) x and n2 are defined on the full
vertex sets of ZAq and Qs respectively which shows that ir' 1s a
covering. Finally, the identity ir'oxe =ir' induces the desired

Isomorphism. n
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We now extend to a quiver A and construct a covering

t:a ¥ Q such that irl™. =wl . This construction is essentially
1 g-1

due to Riedtmann and can be found in [R2].

Recall the permutation 5:1 & | as defined in 2.10 and the maps

X, X1 i+ {I,...,q-1j in 8 (13). We extend the domain to the integers
as follows. For j cZ write j =i+ae where i el , a elL are
uniquely determined and define 5:Z2 ->2 , D &« {I,..,q-1}% as follows
<5(G) =5(i) + ae
MJ) =M1) , *'(j) =X'(D)

Now for each j eZ define a vertex w. and arrows as shown:
J

\Y
/ W »

(2) («1@)+1.X*1)) «1 -J 6_13().X-0))
' /

Let A be the directed graph with vertex sets Aqg = {(1,a)lieZzZ,

a»1,..,q-13u iWjlj ¢ 23 and having arrows as 1n ZA . together

with (@ 1()+LX, (I))— W) , w ( « 1(3).X'(3) | £23}

Let tuZA™ n Ag + Ag be as defined for the quiver
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By 3.7 and (2) we see that (tx)+ = x" for all x e2Ag-1 n

so A is a Riedtmann Quiver. Now define ir:A & Q to be the mep such

that «l . =it and tww(w.) =W.
g-1 J J

3.9 Theorem.

The map mA Q as defined above is a covering of Riedtmann Quivers.

Proof.

Since irL. =it is a covering, it remains (see (2)) to show
1 g1

that Tr(x') = ()~ , Tr(x+) = (irx)+ for Xe {W.,(o-1(j)+H , X" ())»
(5 ()»X'(J))]J] «2} . By regarding the projective mesh corresponding

to the A-R sequence in 2.14 it is easy to see that:

Wj/ZWj

(H  if(w)) = ("Wi)_

ir(wj) = ("Wj+ = RW
(i) ir((6_1(-X* (1)) = (WI/EWjf » (RWj+

="((«"2(H)+1L,A,(J))+) = igT aT W.}
« DX F@FD) « (M XTUH)

as required.



CHAPTER 4. Functions on the quiver A .

Throughout this chapter A, Q, w are as in 3.9.

Let ft be an abelian group and let (a,A) denote the space of all
maps f:A & ft which we regard as an abelian group viz : (f+gQ)(X) =

=f(x) +9x) , f,g e (a,ft)

4.1 Definition.

Let F = (A/ft) be the set of all maps which factor through w«
That is, all f e (A,ft) such that f(x) = f(y) whenever it(x) =ir(y)

For such an f there exists a unique map f':Q ft such that

Q

commutes. It also follows that f(xex) = f(x) where this makes sense.
Clearly F is a subgroup of (A.ft) (F s (A,A)) and we shall frequently

identify F with the set of maps f:Q ft which we denote by (Q,ft)

Say f € F is additive if for a vertex x e Ag n ZA™ j ,

@ f(x) + f(xx) = e _f(y)
yex
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and denote the space of all such maps by F+

(Since A is a covering for Q and, for all U,V e Ind(B)

(1) does correspond to the usual

4.2 Lemna.

The subgroup F+ consists of all f e F which satisfy,

i «Z , 1sasaqgl

2@ (a) f(i,a) =f(i,a-)+f(1+1,a-1)-f(i+1,0-2)-f(W6(1))

if a=X'(6(1) +1

and for all i ez

(b) f(i,q-1) =f(i+l,q-2)-f(i+1,g-D+fF(W5(i))

if X (6()) =g1

f(i+1,9-2) - f(i+1,9-1) otherwise.

MWe will make the convention that f(l1,a) =0 whenever 1eZ

asO0 or aaq for all fe (AA) . In particular (b) is

with a =q .)

definition of additivity -[W]

, noting that F+ s F .

mvs 1

for all

f(i,a-1) + f(i+1,0-1) - f(i+l,a-2) otherwise

and

case

101).

®



Proof.

Recall that for each i cZ , 1 $a s g-1 there is a subquiver

which contains w5™ iff a =V(<5(@)) . The result follows.

4.3 Definitions.

Let F++ s F be the set of all maps satisfying (2). Clearly

s P++s F and any f e F++ is completely determined by the e-tuples

Sf = (f(O,1)cune... fe-1.1))

M - (F(WO)..o....... f(ne-1~ *

For any j ez define a map

3) »C(J) z

(i,a) - [C«L(D-a+X"(D+1,«'1()] n i+e 4



where [a,b] ={ze2]|]asz”™~b}
For j' =j mod(e) it is clear that nc(j) =nt(j') = In fact

me(j) 1S the number of vertices (i1,a) , such that | e i+eZ ,

which lie in the shaded area of the diagram below.

4.4 Theorem.

Given ~ = (aQ,....ae-1" » ii= (bo*..... be ) €7~ < then ior
nell , define an»n « % such that an * a* «bn “ b for n a 1 mod(e) ,

lei. Let fe (a,A) be given by:



i+a-1
@) f(i,a) = z a - I mm (1,a).b. , (1,a)
n=i n j I cld) J q-i
and
®) f(wj) =b. J£Z
Then f e F+ and =£ , wf =b
Proof.
Since, for i' =i mod(e) , nmt(j)(1») =nc(j)(i'™**) 1t 1s clear

that f ¢ F so we must show that f satisfies (2). Me split the
proof into two parts, first assuming b =0 = (O....... ,0) and then
a =0

Let b =£ whereupon it remains to prove that

f(i,a) =f(1l,a-1) + f(i+1,a-1) - f(i+! ,a-2)

for all (1,a) e ZAq_i . Now the right-hand side is equal to
1+a-2 i+a-1 1+a-2
z a, + z a, z a
n*1 n=i+ n-1+1 "
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= r + a.
i+a-1

as required. We now assume a =0 .

(Notation: To avoid confusion with the permutation 6 , define

e.Ej 12 »Z % {0,1> by:

e(l,j) =1 iff i =j
Ejii.j) =1 iff i =j mod(e) .)
It remains to show that for any e

<6 > R .

~2).b)

- e(a,X 1(6(1) )+1).bfin j

In fact we prove the stronger statement that for each j « |

@) mc(§)(1,a) “ mc(G)(@ a-Dffc()(1+1,a-1)

m mc(g)(1+l.a-2) + e(a,X"g)+*D.ej@®),.j) -
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i+a-2

= n=i 9n + ai+a-l = -

as required. We now assume d = O.

(Notation: To avoid confusion with the permutation 6 , define
e,£j :TL {0,1} by:
e(l,j) n» 1 iff i =j
Ej(i,j) =1 iff i 5j mod(e) .)

It remains to show that for any b e IF

(6) " jelrc(j)(1'a),bj *

L Ji1Om () ('a" LI (i) <L - 1> () (1H *-2) N bj

- e(@,X"(«())+H.b4,~ .

In fact we prove the stronger statement that for each j ¢ |

) mc()(@.«) “ mc@A@.°~DcG)(@+1.0-1)

e () (i+1- 2) + ei@*x'iJ)+)-Cj(<S@i ).J)
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We divide the proof into three cases.

() a s A1(j) : In this case nt~™.j(i,e) =0 for all e *g

and so (7) is clearly satisfied.
(b) a = @+l : By part (a) it remains to show that

nC(j) (i, X (J)+1) =el(6(1)*J) = Now>

me(j)(1.v(iH) IC<"1(-(X"(D+D+X(H+1,6°1(j)] n i+eZ]

[{6 1( )> n i+e 3|

ej(6(i).j)
as required.
() a >Xi(j)+l : Let a = +X'())+1 , b =5_1(j)
Then:
ne (j)(1,a"1) +ne(j)(1+170,_1) “ nme(]) (1l »«-2)

+e(a,X'(+1).ej(3(1).)

|Ca+1,b]ni+e Z| + |Cat+l ,b]ni+l+e Z| - |[a+2,b]ni+l+e Z]|

* |[a+I1,b]ni+e Z| + |[a,b-l]ni+e Z| - |Ca+l,b-I]n1+e2Z]|
* |Ca+1,b]lnl+e Z|] + |[{a} n 1+eZ]|

|Ca,b] n 1+eZ]

me (j)(Ug)
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as required proving that f e F++ .

Finally, (5) implies wf =b and since nt(j)(i»l) *0
jEIl , i ez , (4 implies that f(i,l) =ai and so sf =a .
4.5 Corollary.

Take any fle F++ and let a =£fl . b =w_, . Then
where f is defined as in 4.4.

Define a new map

(8) m i +2

(1,0) * |Cj-0+1,j] n i+e Z]

4.6 Lemma.

Let {& | 1 ¢cTh) be a set of elements of such that

for 1 =j mod(e) . Then for any (1,a) ¢ ZAq ™ :

1+a-I
9 z a =1 m,(1,a).a.
=1 " jel J J

Proof.

We use induction. Since nij(i,l) =ex(i,j) (9) holds for

f1="f

a

for all



Now,

i+a-1 i+a-2

+ .
n 3i+a-1

(1°) =AA(i.a-D.a. + W |

by induction. Comparing (9) and (10) we need to show that n:ll.(i,a) =

=nij(i,a-1) + Ej(j,i+a-1) which is immediate from the definition (8).

4.7 Definition.

Given F e (Q.A) , say F is additive if, for Me Indp(B) |,

F(M) + F(tM) = z nr mF(E) = z F(E)
EeM" EeM”

by the remarks following (1).

4.8 Theorem.

Let F € (Q,ft) be additive and let M =g a e Indp(B) . Then
FM) = z {mj(i,a).F(gSj) - nme(j }(i,«).F(W))}

Proof.

Let f * Foir ¢ (a,ft) . Then f e F+ s F+ since f is additive.



Therefore
i +CX-1
F(M) =f(i,a) = E f(n,I) - ZmM.(i,a).f(w.)
n=i jel 3
by 4.4, 4.5
- jg n?](i,a).f(j,l) - jglm (i,a).f(wj)
by 4.6

= E {m (1,a).F(gS

-) ec(j) 0.»)F(Wj
o1 3 3 c@i) YF(Wj )}

as required.
|

We again note that the distinction between F and (Q.A) will

often be dropped and F , f = Foit will be identified.

As a corollary we shall obtain a description of the composition
factors for the non-projective indecomposable modules. Let 2(B) be
the free abelian group with generators corresponding to M e Ind(B) and

define:
(11) S(B) =Zsp.{M-M'-M" | O # M1+ H+ H" + 0 is a s.e.s.}

The factor group 2(B)/S(B) : =Gg(B) is the Grothendieck Group for IB



and for Me nmodIB let [M] =M+ S(E) e GQ(B) . One can show ([CR]

p.405) that G (B) = ZCV.] and [M] = z r.(M).CV.] where
iel 1 lel 1 1
r.j(M) is the multiplicity of as a composition factor of M .

4.9 Corollary.
Let M =gTIme Indrp(IB) . Then

aM] = £ Cm.(i,0).CgS.]
jel J (0]

Proof.

Let F e (Q,Gg(B)) be given by FM) =CM] . By definition F

is additive and the result follows by 4.8

To fully determine CM] we need to know CgS”™] , CWj] for each
j el . This has been done by Peacock in CP] but for the sake of
completeness we give a proof here.

Recalling the Brauer Tree r as defined in Chapter 2 we follow
Peacock's notation 1n [P] by defining p:lI I , p(1) =6-1(i)+1 mod(e)
For any permutation y:1 +1 , 1 el let Cy()d ={ya(l)]l]a eZ}

The following is true.

4.10 Proposition.

For all 1,j « I



@ =Cgsjl iff M i)] =ce6(@)]

(b)  CiJgS.] = CngSjliff  jyq & ()]

Proof.

Recall that each vertex of the Brauer Tree can be labelled by
some modular character P2i or P2i+1 , i e |l . In fact, Green CGR2D
shows that each vertex can be labelled in turn, at least once, in a 'walk’

around r

By 8 (12) we see that the edges and vertices can be labelled

(12) 2i-1 r 2i
2j+l1 2j
where j = 6—~"() , with the resulting identification of characters

Indicated by the dotted lines.

Now there exists an isomorphism (CCR] 425) between GO(B) and the
ring of modular (Brauer) characters given by CM] X(M) where X(M)

is the modular character afforded by M e modIB . Together with (12)



we deduce:
(13) [9S.] = [gs ] i el
1 «_1(i)
14 [ngS. ,] = [figS , 1 . i el
! 6 '\i)
Part (a) follows from (13) whilst C«gS<5(i_1 = [ngS.] by (14) and,
since p“1(i) =6(i-1) , part (b) follows.
O
We now have a one to one correspondence between (X1....... xe+ 1}
and {[6@()].,[p()] | i e 1} , corresponding to [6(i)] (Cp(i)])
Xj =72 (P2i+1 ™~ * We can now exPress 2.11 in terms of the

permutation 6

4.11 Proposition.

Let C = (cij) be the Cartan matrix for B . Then

(@ (1<) ciJ =0 iff [«()] / Ci(jd)land [p(i)D / [p@)]
-1 Iff C6(i)] - c6(j)land Pgl f X0
or [p()] =cp@)] and P2i+1 f Xi+1
- (g-1)/e iff [5(1)] =Ci(j)] and P2l =XfiH

or Cp(i)3 =Cp(@J)] and P21+l = Xfi+l
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(b) c, -2 <ff p2) t x,t, t p

(g-1)/e = 1 I1ff P2) - X,,

or Pju) . X,+)

From the s.e.s. in 2.10(c) we obtain the equations:
(15) N6(1)] =[9Sjl + [ngS.]
(16) OM+ O = CgS1+1] + CflgS.]

4.12 Proposition.

For all i « | define g (Q.2) by:

<*(M) » dimk (WL,M)

Then for all i,j e 1

(@ «i(gSj) =0 iff C«@)Dt C6(j)]

i iff c«(i)] - C5@)]

. p2l t xe+l

- (g-1)/e iff CBA)] - [6( )] . P2L = Xe+l
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1
(e

(b)  «(figs)) it Cp(i)] 1 [p())]

=1 [P(D3 =Cp@)3 , P2i+1 + Xetl

(9-1)/e iff CP(i)] =Cp(@)] , P2.+ = Xe+]

Proof.

We note that is additive, an(W) = and that, for
M,N e mod B , CM] = CN] iff M =an~N) for all i e |

The result now follows from 4.11 and (15), (16).
O

From the above and 4.9, 4.11 we have now determined the composition
factors for each M e Indp(B) . Notice that 4.9 relies on knowing
1C(J, e F which in turn relies on knowing A(j) , for each j e I
We calculate A(j) wusing 4.8 and the Brauer Tree. Since ¢ is additive,

by 4.8:
al<ngVv « «MNi+l.q-1)
m £ m(4+1l,g-1).a.(gSt)-_£"Lm (t+1 ,q-1).a.(W.)
tel jcl 1/ 1J

1 (g-1)/e £ a.(gS.)—£ m,,.(4+1,g9-1).C..
til 1 1 jel 1)

since nt (4+I1,9-1) * |Ct+2-q,t] n *+1+eZZ| = (g-1)/e for all 4,t e |
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Therefore,
¢<n
= (g-1)/e Z a.(gS ) - a.(ngS )
tell ~ 1 *
for all i,*. e |l . Define exe matrices M1 = (mj") , B = (b,

m.j =mc (i) (j+1*1-1)

bij = (g-D/e~"™igS”™ - ~(ngS™)

By (17) we have

and, by 4.11, 4.12, B and C are determined by the Brauer Tree.

C is non-singular (CCRI) we can solve for M1 . That is

(18) M< = C_1.B

Furthermore,

Zm .
uil 1 jeEIne(1)(+19g-1>

by

Since
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= JZI IC6-1 (i )-(g-1) + *, (1)+1,a"l (1)] n j+l+e T\
«

=1C6'1(i) + 2 - X(i),6_1(i)]I

= X(1)-1 -
Therefore,
(19) £Em .+ 1 =X(®1)
jel 1,3

As an example we look at the principal 11-block for the Mathieu
Group M]i . James (CJD) gives the Brauer Tree together with the

exceptional vertex Xg+l and the trivial character ™~ as shown:

O<aV)e>Xo

The 11-defect group is cyclic of order 11 and the inertial index

e =5 . We may associate the trivial character with [6(0)1 where the



permutation

5.p

are:

€= (0)(1 234)

P =0DEGMH

whence the exceptional vertex Xg is associated with [p(3)] . A
few calculations give us the matrices B and C .

2 2 Cc = 1 00

2\ /2 o\

8 8 8 f1 2 1 1 1

7 8 8 01 2 11

8 6 8 011 3 1

8 8 I\ 0 1 1 1 2

Substituting

N B N » O

o 0 0 N -

in

N B N P O

(18) we obtain the matrix

0 0 o\
2 2

1 2
10 4
2 2 1/

By (19) we see that

©) - 1, A() - 9, X(2) - 10, A(®3)

so that

=5, A@) - 10



fvo ' T10,l *fVl " Tl,q ' fv2 =T72,10 ' fv3 " T3,5

and fV4 =T4,10 «

In the second half of the chapter we look at maps which are not
necessarily additive and see if we can present them in the same way as
we did for f e F in 4.8. It turns out that a very similar result

holds true for these non-additive maps.

From now on let 'K =TL .

Let Fun(B) (Fun*(B)) denote the category of contravariant
(covariant) k-linear functors F:mod B *mod k . To each M e mod IB we
will associate an object ~ (™S) ¢ Fun(B) (Fun*(B)) , the existence

of such functors and further details being found in Gabriel's survey [Gal.

4.13 Definitions. ([Ga] 81)

Let Mc mod£ and let ( ,M) ¢ Fun(B) be defined by

¢ .M(N) = (N.M)

Let R( ,M) e Fun(B) be such that

RC ,M)(N) = R(N,M)

as defined in II,(l). Now define
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M = ( ,M)/R( ,M) e Fun(B)
It follows from 8§1,(1) that, for M,N e Ind(B)

Sn(N) =k if M=N

0 otherwise.

Furthermore, for Ne modB , S™N) ~0 iff MN and then dim”™S™N)
is the number of times M occurs as a direct sunmand of N . For
*

n
Me modB, M=U M, , M. e Ind(B)
=113 J

Sn = i l«l« ®FY} -
nl n

In a similar way we can define MS = (M, )/R(M, ) e Fun*(B)

For each M e Ind(B) define « F by
ym(N) = dimkSM(N) = dimk MS(N)

Let A(MM) : O XMAEM) +M 0 and AMX-1M):0 + M E(x-1M)
X M0 be the A-R sequences stopping and starting at M . Note
also that for Me modB) , ( M) and (M, ) are projective objects

in Fun(B) and Fun*(B) respectively. The following is due to Auslander

and Reiten.



4.14 Theorem. ([Ga] 81)
For each M e Indp(B)
(a) SM admits the m.p.p.
0- (,eM) v ( ,LEM)) - ( ,H)-Sm+ 0
in  Fun(B)
(b) MS admits the m.p.p.
0- (¢'V )- (E(.IM), ) - (M, ) - mb - O
in  Fun*(B)
For each projective module P e Ind(IB)
(c) Sp admits the m.p.p.
0- (RP) - (P - Sp-0
in  Fun(B) ;
(d) pS admits the m.p.p.
0- (P/ZP, ) - (P, ) +pS-0

In  Fun*(B)

4.15 Definition.
For X e Ind(IB) define “X»6X e F by
ax(M) = dimk(X,M)

PX(M) » dimk(M,X)
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where M e mod B . We can extend this definition by Z-linearity and

consider
:2zB) - L

c = E avaY (Y)
X(y) Yelnd(B) T A

Bx (y) — | a Bx
Yelnd(B) T A
where y =E avY eZ(IB) . By Z-linearity again, for
Y T
z = Z b7 Z ezz)B) , define
Zelnd(B) *

az :Z0B) *2

(20)
“z() = |bz@y) = z BaYooz(Y) .-
Define @ similarly.

For M« Ind(B) , define BV & 2(B) by:

AM =M + tM - E(M) M « Indp(B)
=M - RM M projective
BM =M+ t_1IM - E(x_1(M) M e Indp(B)

M - M/ZM M projective.
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The following is a direct consequence of 4.14.

4.16 Proposition. (CBP1l)

Let M, X « Ind(B) . Then:

(a) w =W =V X>

(b) iaxIX € Ind(B)}, (BX|X £ Ind(IB)} are both ZZ-bases for

((b) is false if B is of infinite representation type.)

Proof.

(a) Let ME£ Indp(B) , X £ Ind(B) . Then:

ax(AM) - ox(M) + «x(tM) + ax(E(M))

dimk (X,M) + dimk(X,TM) + dimk(X,E(M))

dimRSM (X) by 4.14 (a)
=ym(X) -

A similar proof, using 4.14(b), for

ax(AM) =ym(X)

M projective shows that

Again, similar methods and 4.14(c),(d) show that
ex(BM} =V Xx) =«

(b) By part (a), for M £ Indp(B)

™ =eM + OxM ' SE(M) " BM + BtM ' n“m8N



whilst for M projective

ym = 6M - brm e

In particular we see that:

ZsptBx |X e Ind(IB)} 2ZZsp{yx |X e Ind(B)}

the latter being the standard dual basis for F

2Zsp{Bx |X e Ind(B)} =F as required.

, and so

A similar argument works for the
°x case. Part (a) shows that each spanning set is linearly independent

and the proof is complete.

Recalling (20) we deduce that any f e F can be written as

°y or Bz for unitlue elements y,z e 2(B) Let

the second equality holding since = BtM for all Me Indp(B)

In addition let

a(P) =Zsp{op|P e Ind(B) , P projective)

B(P) =Zsp(Bp|P e Ind(B) , P projective)
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4.17 Proposi tion.

(@) a) =er) =ft
0 P -un g i582%5. 3 emo Mg

© IB)=1® ZA = s ZBy

Xelnd(B) A Xelnd(B) x
(d) A®) = S(B) as defined in (11) and in particular,
ZfIB)/A(B) = Gq(B)

Part (d) says that any s.e.s. is a 'linear combination' of A-R

sequences. This has been proved in a more general context by M. Butler
in [Bu2].

Proof.

(a) Since, for each i el , (W™~ ) and ( ,Wl) are exact
functors 1t follows that a(P) , s(P) * F+ . Suppose a(lP) <F+ so

there exists f - ay e F+ such that y =r ayY and aM/ O for some

M e Indp(B) . Since f 1s additive,

0" f(V ** y*Y(V 3 aM 4.16(a),

a contradiction. The proof for b@P) = F+ is similar.
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(b) By part (a) a(P) =F+ s F++ so we must show that for

X c Indp(B) , ay e F Iff X*ngS™ , i £1 . Assume
* = = an<" X =“xolr * ~ follows from 4.16(a)
that for all i £1 , a =1,..,9-2
fx(i,a) + fx(x(1,0)) = z f..(x)
XE(i,a)"

which is the same as saying:

fX(i.«) + fxd+l.«) =fx(i,a+l) + fx(i+l,a-I)

+e(a,X'(i(1)) +1).fxWs(1))

But this is just condition (2) in 4.2 so fx £ F+ . By the identification
aX s X ' aX e ™+ as reclJlred.

For X } ngSi suppose X =gTj>a , some jCl ,a=>1.... q-2

It follows from 4.16(a) that:

MJ.a) + fy(T(j,a)) = Z fv(x) + 1
X XE(J.«) X

which implies that fx / F++

(c) Let K* z® ZAy . By 4.16(a) the Av's are linearly
XEInd(B) X X
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independent and so rank( 2Z(B)) = rank(K) =g.e implying that

Z(B)/K is finite. Suppose there exists y e Z(B)\K . Then there

exists O/ n tW such that n.y e K implying that n.y =t avAv ,

Y YY
ay «2 . For Me Ind(B) ,
=“M*"*) =aMy W =aM
which implies that n~» for all M £ Ind(B) . Therefore:
y =r(n_lav)Av e K
Y Y Y
which is a contradiction.
Similarly Z(B) =r®zZBv
X X
(d) First notice that A(B) s S(B) since g S(B) for all
M £ Indp(B) . Since G&G@B) -JI1 zCcv~™ |, rank(GQ(B)) - e and so:

rank(S(B)) = rank(Z(B)) - rank(GQ(B))
=q.e - e
- rank(A(B))

Therefore S(B)/A(B) is finite and a similar argument to that in

part (c) completes the proof.



Let FS - {f e FIf(W) =0 » j e l) which we shall identify

with (Qs>2) . For each j,e eZ define n]ifP e (QO,2) by

n ,3:9Ti >a |Cj+0-a,j] n i+eZ|

Notice that
(21) n%:(j ) =m oir by (3)
2Ag-1 «1(I).X"()+1
2) ™A "j.10* by (8)*
g-1

4.18 Theorem.

V
Let X =gTj>e e Indp(B) . Then:

@ “xlag
iel 6 '1(i), X, (i)+ 1> mj,e+l
(b) ~ "
. -1 i
**|«8  id ) (1).X'(i)+l)
Proof.
Fer X as above, define gx,hx e F by
(23)

9xX * “X +m ,8+1



Let FS " < e FIf(W) =0, j e 1} which we shall identify

with (QS=>2) . For each j,e e Z define ge (QSZ) by

nj»0:9Ti,a n 1+«]| -

Notice that

(21) : = m-1 . ,0n by (3)

©0) zag 1T (2),X* ())+
(22) =mjjo" by (8).

ZA

g-1
4.18 Theorem.
Let X =gTj ~e Indp(B) . Then:
(a) 0. " 1 {*y(OM m 17 *y(™l)ea = }-m
iel X 1 13 X 1 «~(iJ.j-OH J-e+l

(b) ®xlo - ~ ~6y(9Sj).m. | - 6Y(W.).m }-m

XIS lei x 1 i*l X 1 a-1(1).Xe@)

Proof.

For X as above, define gx»hx e F by

&) 9X =“X +nj, BH



S hX =RX +mj-1,841 =

We wish to show that gx>hx e F++ and by 4.17(b) it is enough

to show that

@) =VV =0

for all Y «gT”a , 1«1l ,a«1,...,g-2. For such X,Y

ax(AYN = ex”BYM = ei(i»Jd )*e(ot,k) and so we must prove:
5 n,8+I(N =m-ItR+H(BY) - -«jd.Ji.cfa.a)

NOW 1 ,8+1 @y} = mj,e+i(AgTi ‘J 1,8+ (9T1,a)+ W>6+I(9TiH,.)

mmj,e+l(OTi,atl } = mj, e+i(9Ti+i,a-i) Setting a = a8 :

m,8+1 7gTi,a”™ = Icj*a+1»J] n i+e2] ;
.8+ 1(9T1l+l.a> = KJ-a+l n 1+l+e 27

|Cj-a,j-1] n 1+e Z]|

nj.8+I(gTi,a+ 1) 1+e Z|

m,8+1(gTi+ l,a-1) = UJ-a+2,j] n 1+l+eZ]

I0-atl,j-1] n 1+e Z]
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Comparing this with 4.4 we have an almost identical situation to (7).
The proof is similar, taking case by case calculations with a <O ,
a=0,a>0. Therefore gx e F+ . Now,

m-1,6+1(BY) " mi-1,B+I1(AT-1y

=-Cj(i-I,j-1).e(a,6) =-ej(i,j).e(a,B) which completes the proof of

(25) and so hx e F+ . Since

M “Crefli*"VIV -%<P :

9X(9S,) W «X<SV  *mJ t W (9S,) - «X(9S,)

for all ic i, by 4.8
XN, ™ = Y+ t. (9™, @)™ Ma- | (1) fX. (A)+1 ==
...(9Ti fa)=
and so
“X O 9X - mi,B+lI
* £ iax(gSJ.m. . c(y (W. ) eni -
id x 1 11 «-’(D,X’dJ+I} 641

which proves part (a).



Yz

Similarly, hx(W.) =BX(W.) , hx(gS.) = Bx(gS.) and part (b)

is proven.
O

We return briefly to the category Fun(B) . First consider the

larger category Fun(kG) of all contravariant functors

F : mod kG & mod k .

For F c Fun(kG) define P £ Fun(kH) by:

Fh(U) =F(UG) , U £ mod kH .

Let e £ kH be the central primitive idempotent corresponding to the

block B and, for £ e Fun(kH) , define Pe ¢ Fun(kH) by

fre(U) =F(el)

It follows that for F e Fun(kG) , F® e Fun(B) . The following is due

to J.A. Green.

4.19 Lemma.

Let F = c Fun(B) , M € Indp(B) . Then Fj -



Proof.

We have to show that for U e Ind(kH) , F®U) =0 if U2 fM
and F®U) = k otherwise. If U{nmdB F®WU) =0 so assume U e nod B
If U is projective, so is UG and if F®WU) = (SM)H(eU) =SMUG) t 0

then MJ|U by 4.13 which implies M is projective contradicting the

fact that Me Indp(B) . If U is not projective FMU) ~0 iff
MU .Now U =guUu ©Q with Q projective so FMNU) t 0 iff
M= g)iff fM =U (see 2.2) as required.
O

We use this lemma to prove the following.
4.20 Proposition.

Let U,V e Indp(B) be such that ax(U) = <X() for
X e {W.,gS.,ngS.]li e I} =S . Then U *V
Proof.

Suppose U =gTlo , V =gTj O . Then itis enough to show that
a* eand €j(1,j) = 1. Consider U-V e 2(B)and let
(26) U-v £ avAv , av e TL

Yelnd(B) T Y T

which is possible by 4.17(c). From the hypothesis, ax(U-V) =0 for

all X e S and applying such to both sides of (26)
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0 = ax(U-Vv) £ a (Ay) —
Yelnd(B) YaX

by 4.16(a) and therefore

27) Uu-Vvs= 12z avAv
Yelnd(B)\S Y Y

We now wish to restrict both sides of (27) to H and multiply by
where e is the block idempotent corresponding to B . Since

f(gT- ) =T. by 2.2(a) it follows that (gT. )|, =T. 8 P

where P is projective and so

(28) U-v) IH = Ti ZTaI'TI e2

’ tel
Now recall that for Y e Indp(B) the exact sequence

0- (.n2Y) - ( LECY)) - (.,Y) - SY-0

is a m.p.p. for Sy (4.14(a)) and by 4.19 that (Sy)® » Sfy as

functors. Therefore
(29) 0 - ( ,n2fY) - ( ,E(fY)) - ( ,fY) Sfy - 0
(30) 0- ( ,n2Y)5 ( ECY)I - (»y ) X SfY 2 0

are both projective presentations of S , (29) being a m.p.p. By



Frobenius Reciprocity (CCR] 232) and Schanuel's Lemma, (30) is

isomorphic to

(31) 0- ( ,SRfY ©Q1) & ( ,E(fY) 9 QL © Q®)

- ( .fy ®@) - Sfy +0

In particular, e.(fi2yH) = fi2fy 9 Q] , e.(E(Y)H) « E(fY) 9 Q, 9

and e.Y™ =fy 9 and therefore:

(32) e(Ay)H = Afy

Regarding (27) in the light of (28) and (32) -

(33)

N A Yelnd(B)\SaYAfY
Recall that for a (g.e)-uniserial block B , the projective module
T*, only occurs in the A-R sequence (TA>q.i) where Tt q_i “ nS™
Since no such sequence occurs 1n the right-hand side of (33) it follows
that at * 0 for all te | and
34 £

Yelnd(B)\s @ YATY

Applying Oj to both sides we see that
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Ti = YaT ="

ali My 5 3.8 T vemd@ns™Ph. tv
This is true for all | e I and so CTi a3 =CTJ r?] , therefore
a =8 . Similarly, ac (T, -T, .) =0 since S, eS for all

y T &y p) ( gs, e S)
te | implying that z(Ti a) = r(Tj. ) . That is, i+a-1 = j+B-1 mod(e)
) P
But a =6 and so i =j mod(e) , that is eT(i,j) =1 as required.
1

We conclude this chapter with a description of the irreducible maps
in mod B . The projective irreducible maps are the inclusion/quotient

maps RP P & P/IP as given in 1.9 where P ¢ Ind(B) is projective.

Now let
Y(i,a) : gT.=a- 9Timlta+} (« * gq-1)
*(1,a) : gT.ia - gTita_i @* 1)
be irreducible maps with domain gT1 . They are unique up to scalar

multiplication modulo Rz(gT’\a, ) since

lrr(9Ti,«-9Ti.i,a+i) = Irr(9Ti,a-9Ti,a-1) =k

by 2.7.

Notation (See CP])

For M,N « mod B denote by NoM any extension of N by M so there
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exists a s.e.s.

0 M NoM & N & O

We note that T = S.oT, , . =T foS , where the extensions
1l,a I~ 1+71,a-1 l,a- 1+a-1
concerned are non-split.
The following two results, both due to Peacock, will be needed. W
will make use of the obvious homological algebraic fact that

Extg(U.Vv) = (flU.V) for U,Y€ mod B

421 lemma CP] p.241.
i 1 FaN
Let Tl,aOTJ',p' be an extension given by O e (fIT] s J»p) and
let r(e) denote the length of Im(e) . Then 0 ~0 implies that

r(e) > 6-a and then there exists a non-split extension

Ti,ot+r(e) ®Tj,B-r(e) ’ Q

4.22 Lemma  CP] 3.9

Let M,N e Indp(B) and suppose NoM =L ¢ Indp(B) . Then there
exists a non-split extension fNofM such that f(NoM) 9 P = fNofM where

P is a (possibly zero) projective module. q

4.23 Lemma.

(@) The irreducible map 't(i.a) is either
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@ v oy 29Ty Sy %%y

or (D) w2d.«) g7y . 9Ty /P95y

(b) The irreducible map 4>(i,a) is either

@ 13 2a) i gTi,a - gTi,a"gSi+a-1

il *2 (i :
or (D @.a) 9Ti,a - ngSi+a-2o0gTi,a *

Proof.

Recall that an irreducible map is either a monomorphism or an

epimorphism.

. . . - - . -
(@) (i) Suppose v(i,a) is a monomorphism and let y’l(l’a)'gT'l»Q XOngjG
be irreducible for some X ¢ Indp(B) . Since XogT. is non-split and

f(XogTi,a) “ T1l-l,a+l “ Si-loTi,a We Can "PI™ 4-22- That is X “ 9Si_| =

(ii) Suppose f(i,a) is an epimorphism and let fc(l 'a):gTiI.:éX gTde/Y

be irreducible, Y e Indp(B) . Then g™ a =gT™ 1 atloY and 4.22 again:

J»P
be given by e By421 Ti=#. Pi T ,.,"™ , |1

j ive. ] D
where P e mod B 1s projective Let fY T and let TT"I |®!-'IOTJ°P

Tj e.r(9) which forces j =1, B-r(e) =a and a+l+r(e) =q . Therefore



r(6) =qg-a-1 and e =g-1 It follows that fY :T"I :nSii
» L d -
and so Y =«gSi_1 .
Parts (b)(i), (ii) are proved similarly.

4.24 Theorem.
(@ ¥(i,a)

(b) =(i,a)

Proof.

We turn to the Grothendieck Group

factors of each module as follows:

(a) By the previous lemma,

(35) [Range ™ (1,«)] - [gTi=a] =
and [Range Y2(1.a)] - [gT™ a] =
However, recalling 4.8

(36)

JE€I

is a monomorphism iff

is an epimorphism iff

a < x'(6(1-1))

a s x'(i+a-I)

and consider the composition

CgS1_| D

- [Qgs™ ]

[gS1_i] - owe(i_1 by (15).

NN AL »oiH) < one (§) (1)} [Wi]
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Comparing (35) and (36) we see that:

@n Aj-1.c+13 = CRan% %1 .a)]“ [9Si-i°9Tix0F ~ mc()(L.d
=nc(j) (il »a+™)  70r i 61
(38) and CgTi_1”~ 1 - [Range *2(1,«)] = [g~ a/OgSi_1] if
nc(j)(1,a) =nc@()~1_1,a+1~ for all j e I\6(i-1) and
nme(j)(1.a) + 1 nc(j)(i"l ,a+l) for J = .

Setting a =1-a + X*(6(i-1))

nme(6(1-))( *) = n l+e 2|
and mc(6(i-1))(i-1 ,a+1) = ICa»i] ni+eZl =

It follows that nc(6(i_i))0.%) =nmnc(6(i-i))(i_1*+1) 1ff 3 * 1

That is a < X*(6(1-1)) as required.

(b) As in part (a), comparing ~(i.a) with *2(i,a)

(39 [Range *2(1,0)D - [gT™] =
» [W+a.i] - [gS~.,] by (16)

and [Range *-|(i,a)] - [T oD1nr - [gSl+a_.j]
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Recalling 4.8,

(40) Egl.~]1 - [gT.=a]

=-[9si+a-1] + ~ I{pe () (1 »)-nic () (I *-1)}-0§ ] -

Comparing (39) with (40)

(41) CgTi,a-i] =CRange V 1*)3 - ~ ¢~ w i3 If
me (j) (1a> mnc (j) (1*°-1) for all j s | and

(42) CgTi,a-1] = CRan%e V 1*Q)-1 = CngSi+a-20gTi ,a] |

and

mc (j)(i,a) =m(j)ni,a"1l) for all j * i+““1

m(i+a-DN,anr=nc(i+a-)(i,a"1l>+ 1"

Setting a * 5*1(i+a-1) - a + X' (i+o-1) + 1 :

mc(i+a_Il)0»a) “ |Ca,6_I(l+a-1)] n i+te Z|

and nc (i+a-1)" ,a“1™" Katl» 1 (1+<x1)1 n 1+eZ].

However a = fi"3(i+a-1) - a + (i+a-1) - 6~-3(1+a-l) +1 by 2.12

Therefore it follows that:

nc(i+a-1)(1%) " mc(l+a-1)(1,a'l) 1ff a >«_1(1+o0-l)



That is a < X'(i-t-a-1) +1 or a s X'(i+a-l) as required.

The result can be better appreciated by the following diagram. In
particular it is seen that an irreducible map is monomorphic/epimorphic

depending on its position in Q relative to a certain projective mesh.



CHAPTER 5. Some Periodic SL(2,pn)-modules.

As before, let k be an algebraically closed field of
characteristic p , 6 a finite group. The classification of kG-
modules seems an all but hopeless task. In 1954 ([Hi]) Higman showed
that kG is representation finite iff P e Sylp(G) is cyclic, but for
the non-cyclic case there seemed to be little one could say. Recently,
however, two tools have been made available which may be of some value.
The first is Auslander-Reiten theory, in particular the A-R quiver. The
second is the notion of complexity introduced by Alperin in 1975 ([Al])

which we describe now.

To each Me mod kG we assign an integer Os Cqg(M) s r , where r

is the p-rank of G , (r is the number of generators of the largest element-

ary abelian p-subgroups of G as follows. Let

pi " POF M- O

be a minimal projective resolution for M and define:

Cag(M) =minis eIN |3 ue]R : dimkPn s y.ns.1 Vn elIN)

Clearly Cg(M) =0 iff M is projective so, in a crude sense, the
complexity of a module measures how much a module deviates from being

projective. The following is quite easy to prove.
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5.1 Proposition. ([Al] 779)

Let Hs G, L¢ nmod kd , Me mod kG be such that L|MU and
H

MIL . Then QM) = CH(L)

5.2 Corollary.

Let Hs G be such that mod kH and mod kG are stably equivalent.

Then
Cg (M) = CH(fM)
for all Me Indp(kG)

O

We can further classify M e Ind (kG) by means of the A-R quiver.
That is, for M above, we consider the connected component q(M) s Q(kG)
containing M . The following theorem by Webb relates this idea with

that of complexity.

5.3 Theorem. ([W] p.99)
Let M e Indp(kG) |, gM) s Q(kG) be as above and let

N e gM) n Indp(kG) . Then OQ(H) = CQ(N)

We can see then that the A-R quiver refines the classification

afforded by complexity.
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5.4 Example. ([BP] 20)

Take G =C2 *C2, p =2 . Then

QkG) =q(k)u o 0.
b XdP(k) A

where the second term is parametrised by the projective line P(k)
The component q(kg) contains modules of complexity two whilst each

gx contains modules of complexity one. A covering for Q(kG)s is

4=TLA"0 U zA
XdP(k)  ©

where A, is the infinite tree

and A" is the 'doubly* infinite tree

5.5 Definition.

A kG-module M is said to be periodic if it is not projective

and there exists a e IN such that naM =M .
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The following is due to Carlson.

5.6 Theorem. (CCD)

If Me Ind(kG) is periodic then p |dimkM where r is the

p-rank of G . Furthermore, M is periodic iff CgM) =1 . n

From now on let G =SL(2,pn) . In therestof this chapter we want
to look at some of the periodic kG-modules and, for such modules,

construct the connected components containing them. We shall assume n 2 2

Recall that G =SL(2,pn) is the set of all 2x2 matrices of
determinant one over the Galois Field GF(pn) - we shall assume that k

contains GF(pn) . Fix P ¢ Sylp(G) to be the subgroup

i ? la«G(m)}

so P is elementary abelian and the p-rank of G is n . Let

B = Ng(P) =P.T where

T={ =2, | tecF(pnm 2 C .
0 t 1 p_l

Since Sylp(G) is a T.lI. set we can apply the Green Correspondence to

get an equivalence

(1) f : mod kG ¢+ mod kB
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As a point of notation we will write

z@ =@ ®»EP

For b en define

z(a)._t & t*5

and let be the corresponding irreducible kB-module. Also, set

Uh =P(S.) . Then {S. |b eZ 3 ., {U.]b e7L } are full sets of
0 0 D | D pn-1

simple, projective indecomposable kB-modules.

Let Mc mod kB , b sZ n_.| and let ,....,mt> be a k-basis
p
for M . We form the tensor product M 8 which has k-basis
{m 9 |1 =>1,...,t) , where Ot sbe . For each me¢ M we
shall write the corresponding element mO s e MO Sb as mOb . W

list a few properties which we shall need later.

5.7 Proposition.

Let M e mod kB beZz
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(@ ™M =M 0 Sb)p

(b) PM O Sb) =P(M) O Sb and in particular Ua O Sb =Ua+b since

Sa O Sb = Sa+bh =

(c) ™™ O Sb

n(M O Sb)

(d) Each O:M # N induces a nep

90Ib :MOSb- NOSb

mO b =®*mO0ODb

satisfying
Ker(e) O = Ker(e O Ib)
Im(e) 0 Sb =Im(0O 91b) . a

We now look at the KkG-modules. Let V e mod kG be given by

+:G- GLJk) and, for i eTL, let ip. ¢ Aut(G) be given by

i w1
b. ,ap. bP,,
((,3 & - <cp' / !

Define V(I) to be the kG-module given by «wop™ . Notice that
V<'> =V since im =1Q <«

Let R = Kk[X,Y] be the polynomial ring in two variables and define

a G-action on R by

* 0 F(X'Y) ™ f(aX +cvoox » dY) o



We now describe the irreducible kG-modules. For u 2 0 let V(y)

denote the (y+1)-dimensional subspace consisting of all homogenous

polynomials f e R of degree u . |If, for each Osi sy , we set
(2) Ui (vi) = XL ywl

then clearly {u.(y) | i =0, Y} is a basis for V(y) . Furthermore
([Br] 830), for 0 sy s p-1 , V(y) is irreducible. W shall be

interested in the restriction of such modules to the subgroup B ; hence

we describe the B-action.

(3) t o U.(y) = (tX)1(t’ 1X),J1
- t2i_u Uny)
(4) z(a) 0 U.(y) =X (aX + v)ul
y-I1
=X1 z )alXNYp-i'nN
j=0

* "1 W »l

Now the rest of the irreducible kG-modules can be described as

follows. For 0O s X s pn-l we can write

n-1 A
(5) E X.pJ
j=0 1



- the (unique) p-adic decomposition. With (5) in mind we define:

(®) LX) =V V(X))
j=0 J

showed that

Brauer ([Br] 830)
kG-modules which

As long ago as 1941
set of irreducible

(LX) | X =0,...,pn-1} is a full
fact can be deduced from the Steinberg Tensor-product theorem for algebraic

([StD).

groups.

We note that

n-1
@ dim.L(x) = n (x.+)
K j=0

Notation.
For each 0 s x s pn-1 define

@ 1(x) =ii = (iQ....... in_1) 10*ims xm}

() x = (Xg,....tXN_~)«l(x)

(c) h:l(x) {0,....,x}
i o<l jp
“  j=01
For each 1¢ 1(X) define:

()] MX) =ul (xQ)(0)aw..a Ul x «)NISELCO
| 0 u n-1 n1

and {UNX) N 1(X)= forms a k-basis for L(X)
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We equip 1(A) with a partial ordering - say i_s j iff
*0 5 ™0......... '~p-l s -1 ' Clearly 0(xj are minimal (maximal)

elements of 1(A) with respect to this ordering. Finally we note that

h(A = x
We now look at the B-action for L(A) . For each 0O s x s pn-l ,
1> 1(A)
[©) t o U.() =toU. (Xo)(O)8....... atoU _ (X (n-1)
1 o u _ Vi n—f
0O u
.n-1
-tV P
by @ = t2h{i )_x.u.(x)
(10) z(a)ou.(x) = z(a)ou. (xn)(0)B....8 z(a) U. xn (-1
— 0O u Vo1 n_lI
n-1 Xm ’m x -1 j pm . -
= 8 r (m m)ad U . (xj@m
m:ij:0 j‘m mJm m
by (4
i -1
w X
Os”sx-1 1
n-1 x -1
where A'l n_( )



5.8 Lemma.
For each 0 s X <pn-l1 , L(x), is indecomposable. Furthermore
L(Pn-DB = U0 =

Proof.

We divide the proof into two cases.

Case 1. 0 s x < pn-I

Here x = (XQ........ xn-1~  where not all the x-j's are equal to
By (7) dimkL(x) < pn . Since the projective indecomposable kB-modules
have dimension pn we deduce that fL(x) = L(x)B and so the result

follows by the Green Correspondence 2.2(a).

Case 2. x =pn-lI

Now pn-1 = (p-1......... p-1) so dimkL(pn-1) = pn by (7) again.
Since L(pn-1)([5]) is projective it follows that L(pn-1)B is and so
L(pn—41)d = U for some O s as pn-2 . By earlier remarks we know

that

L(Ua) ¥ Hd(Ua) s Sa

so it is sufficient to show that s(L(pn-1)) = Sg . Consider

U_ (Pn-1) c L(pn-1) . By (9
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(1) touU (pn-1) = t2h<P”i)-Pn-1U (Dn-1)
P -1 p-I

=tpn_1lu n (p"-1
¢111

teun (p"-D)

and by (10)

(12) z(a)ou (pn-1) = z ah(0) u (pn-1)
P-1 OSjSO p '1+J

™ W 77 L]

Me deduce from (11) and (12) that

S° “ k,Upn- I (P"~1) 5 E(L(pn' 1)B) “ Sa

and the proof is complete.

From now on put UQ =L(pn-1)B and, for aeZ n ,

For each V e mod kB let [I(V) be Its Injective hull.

» UQ fl Sfi



5.9 Proposition.

For 0O s Xs pn-I

@ PLE)HB) 1U_X

(b) i(L(x)B) aux

Proof.

(@ Define (¢ :UX aL(X)B

Vpni) a-x- Y(i).ui(x) 151
0 otherwise,
X ¢ il
where (i) P |
Clearly $l is a well-defined k-map which is onto. Now for i s

to*1(UL(n-1) a X) - toy(i )-UL(O

- y(1) . €2h(- )" XU"C) by (©)

» 2h(@)"x*1 (i (pn-i) 8 -X)

whereas

ol (tp(ul(pn-i) a -x))
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= &1 (t2!1?Cl)-(pn-T)-~ u.(pn-i) a-x)

= t2?(i)-x 4 (u.(Pn-i ) a -x)

as required.

Since (Ux)kp = kP =L(p )kp as left kP-modules for all

0s Xs pni , wewill drop the "B -X" in the next step. That is:
(13) z(a)y & U. (pn- 1)) = z(a)oY(i_).U™ (X)
X -2
Y (i . A
(I)sz_ w1 1 ah(i) ui+j(x)

by (10) whereas

n-1-i
(14) * (z(a)oU (pn-1)) = i P ahU>
- Qsjsp-1-1 ¢ IUi+ i(pn' 1))

by (10)

Pn-1-i
ah ()Y (i+i).Ui+ i(X)
Os™Nsx-i

Comparing (13) and (14) we must show that

Y(i) - Xr_-i y (1+1). !
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for all O s i n , 0O*1 5i-j. ; that is
X e et pga
L L 2 R i

In fact it is enough to show that

1 .
p-l-i,,

for all 0 s ms n-1 which is straightforward. Therefore

L(X)g is a surjective kB-map and since U is indecomposable,

U x =P(L(x)b) as required.

(b) Define

¢2:L(X)b - UA

@) ui (x)-ui+erl x(pn-i) ax .

Clearly <2 is a well defined k-map which is injective.

tp*2<VX)) - toUl+pn.1.x(n-1) a *

Furthermore



= t2h(i+pn-1-X)-pn-1+A
u +pn_1_A(Pn-1) a A

= t2h(l)-x«2 (Ux=(x))

+ 2(t2h( ) XU.(A))

*2(tpU.(A))
as required. For the action of z(a) € P we again omit the "8 A'

z(a)o$2(UN(X)) = z(a)oUi+pn .i.x(pn-1)

ah(MIl in"
Ui +Pn-1-*+J(P

OsJsxH [
hri
« z ah(J.)
0sJSV-i ¢ 2Ui+ i)(X))

=02 (z(a) U™X))

as required. This proves part (b).



In particular we see that L(X)B 1S simple headed and has a

simple socle since Z(UX) =Hd(Ux) =Sx . As a consequence of 5.9,
(16) Hd(L(X)B) =S x
a7 e (L(X)b) ™ Sx

As a further corollary we see that:

@a8) n(L(x)B) - Ker(™)
= ksp{Ui (pn-1) 8 X | i $ Xt
and
(19) n"V (X)B) * Coker(*2)
= ksp{U~(n-1) 8 X | i £ I(pn-1)>

where U™Npn-1) 8 X * U.j(pn-1) 8 X + Im($2) -

Definition.

For 0i Xs pn-l say X is almost-perfect if X =p-1 for all
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but one of the x™'s . That is

N4 (PH] QeeeeWEP—|* .. *p—1)

where u ™ p-1

For notational convenience we shall write

Udil)) =U.(pn-1) , 1 el =1I(pn-1)

5.10 Theorem.

For 0 * X < pn-I L(x) is periodic iff X is almost perfect.

Proof.

Suppose L(x) is periodic. By 5.6 pn~ | dim. [ (x) since n 1

n-1 K
the p-rank of G . But by (7) dim.L(x) = n (X.+l) and we deduce
K j=0
that XJ =p-1 for all but one of the j's . That is X 1s almost
perfect.
Conversely assume X is almost-perfect so that X » (p-1,..,u,..
and
n-1 i r
h(x) » £PJ(P-1) +UP , some Os r s n-l

j»0
i

- pn-1 - (p-l-u)pr
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Let V(p,r) =L(A)B . We show that V(y,r) , and hence L(X) , is
periodic. In fact we show that there exists an isomorphism.
(20) n2V(y,r) =V(y,r) a S r+l

2pr 1

so that in particular V(y,r) is periodic with period pn-I

Define a map

(21) e:il'lv(y,r) 8 S . - nV(u.r)
2pr+

u@ax a:p*!

Prod=(y=DPT PRl ey pr) @ X, ir <peley

otherwise.

We must check this is well defined. Suppose U(J) B X =0 , that is
Ul) 8 X e Im(e2) as given 1n 5.9. By (15 i1 (0-..-. p-1-u,0,..,0)
which Implies that 1 * p-l-u which means that e(U(1J8xfi2pr+*) =0
Also e 1s onto. This follows because U(l)B-x e nV(u,r) Iff 1 $ x
by (18) but 1~~_.= (p-1,...1Vi...,p-1) which implies that if i v+l

and so e 1is surjective. Clearly e 1is injective so it is an isomorphism



of k-spaces. We check the B-action noting that, since

to (t £ GF(pn)) , toU(i) =t2h( YU() for all j 1 (9)
(22) toe(u(i_) A x A 2pr+l)

pn-1-(u+1)pr Pn-1
i i

toii(i+()j+ )pr) a -x

pn-1-(u+Dpr pn-1 t2h(1+ (Hil)£) xu(i+(y+l)pr)a
— i i

t2h(i) +2(“+1)Pr-x e(u(i) a X a 2pr+1)

whereas

(23) e(toU(i) a X a 2pr+1)

- e(t2hW +x+2p u(i) a x a 2pr+1)

Comparing (22) with (23) 1t is enough to show that

(24) X + 2pr+1 = 2(u+Dpr - X mod(pn- 1)



Recall that X = pn-I-(p-I-,i))pr =-(p-I1-p)pr n»d(pn-1) . The L.H.S.
of (24) is X + 2pr+l = 2pr+1-(p-I1-P)pr = (p+l+p)pr = 2(w+Dpr +

(p-l-w)pr = 2(vi+l )pr-X as required.

For the action of z(a) ¢ P we ignore the tensor product as before

and so we aim to show that

(25) z(a)oe(U(iL)) = e(z(a)oU(i_))
Now each is simple headed and is cyclic, being generated as a
kB-module by U0O) i X . Therefore £ \v(w,r)) is generated by

U@0) a X (19) so it is enough to prove (25) for the case 1=0

Now,
pn-I-(w+I)pr  pp-1
z(a)oe(U(0)) = z(a)o 0 0 u((h=xlel)
= z(a)oli( (u+1)pr)
pn-1-(™NDpr
ab"NUti+tjj+yjn)
0*j*pn-1-(u+1)pr
w hilst
e(z(a)ou(0)) - ah@)e(U(d)
1

Osjsp - |
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-1
p"-I h(; Pn~I~(u+1)Pr  Pn-1 i+(a+i)El
= ORI |- (ii+ ) pr © | R

= z(a)oe(U(0))

as required. Therefore n_1V(u,r) S S . =nV(p,r) and applying q
2p 1

we see that

n2V(P,r) » n(n_1V(u,r) QS )
2pr 1

- V(u,r) S'S . by 5.7(c)
2pr+

Consider the connected component containing L(x) , x almost-
perfect. Since we have an isomorphism of stable quivers Q(kG)s = Q(kB)s
by (1) and 1.5 it will suffice to look at the connected component
qg: =q(V(p,r)) s QkB)™ where X =pn-I-(p-l-u)pr . We need the following

notation.

For each i £1 , X almost-perfect, let

(26) i* =i +Pn1l - X

- i + (p-1-p)?r ; (if ir s p)
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1* =1 + (u+l)pr i (if ip+tuH * p-1)
1* =1 - (W+l)pr ; (if ir * u+l)

wherever this makes sense. Otherwise let i * i * f* equal zero.

5.11 Definition.
m

(@) For meIN put U@m) =XI U ,
t=I X+2(£-Dpr+

(b) For 1si,sm, i_£ 1 put

K*) = (0,..,0,U(i )fl2 (t-1 )pr+1+X,0,.. ,0) £ Um)

We aim to prove the following.

5.12 Theorem.
2 i
Let q =q(V(v.r)) be as above and let t «n be the Auslander

Translate.

(a) q " ZAS#<t2 _1> , p =2

T2AJ<t"n~",2> p odd



(b) The vertex set for q can be written

iVa>mlja =0....... 2n-1, melIN} , p =2
and Na,mfNa = eeeexn(pn_Il)/2 , meIN} , p odd where, in
both cases, VQ81L ¥ V(,.r) , Vitli Vfll1i s ~ | and
dimkva ,m = -
(c) The almost split sequence ending in Vam is
«> ~Vva2 * VI *° m=1
<"> 0*VI.n ~va,».l 4 vatl m-1 * *«.,, * 0 e « » > =
(d) VvVom - = and has a k"basis consisting of the
following elements in U(m)
i'(*) £/ 1e1» , 2 1 .. m ;
ws =£'(s) +y 1.pn-I*@*l) , s =1,.. ,m- ;
w" = 0'(m
i = 0'(m)
where Pl x
Y = <i+i> e
Proof.
We use induction on m , constructing the almost-split sequence
ending at Vg>m to obtain VQ ™ as a direct summand of the middle

term of A(VO>m)
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Set W,l = Im"2~ as defined in O5) and let va i := fidavg 1 «

Then Vg~ =V(u,r) and Va { = 18S r+{ by (20). Notice that
2ap

VQ i satisfies part (d) of the theorem by (15). Consider the pullback

1,1 - E1 * V0,1 -
1 i 1 el
1,1 - p(nVo,i) -7; P(VO,1: '0,1
VI,I =A m Since Vg

RvVvg 4 is the unique maximal submodule. To obtain an almost split
sequence, J.A. Green's construction allows us to choose ~ such that
Ker(0.) = R(Vg ™ and, by the argument used in 8 in the construction

of almost split sequences in a (q.e)-uniserial block, we may use any

6 with this pro%erty. (See 81 a§1d 2.6.) By considering the composition
~0,1 " HA(VOji) ---—-- >z (P(Vg N))----——>S_x (see (16)) we can define

€ explicitly by

@7 0, : V@1 * U.x

UG_")BX - U(n-1)B -X ,1=0

0 otherwise.

We define irl as follows. Since P(nVg j) = P(o-1Vg 1)B S ptl (5.10)
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and P(j Vn ,) =U by (19) we deduce that P(nv,, ,) =U .
) 0,1 X+2pr+1

Now let W,i be the composite UXa SZprw/L\I UX/VO,I 0 S2pr+l
=il .VU,l’ 8 SZpr+1 > «/QJ incl. P(Vg j) » noting that
Ker(irl) =VvQjl 8 s ~ j . Explicitly -
2p
(28) "i 1 p(«vO>i) - P (vO>i)

UG 0 X + 2pr Vy*(2).u@*) 0 -x

-1 ,n .
Pn-1 p “1*
i

where y*(i)
The middle term Ej in the pullback is {(a,b) e VQ 1 0 P(nvQ -]|0-|(@)
=™ (b)} which, as a sum of k-spaces, is
Kerfe,) fi Ker(ul) O k. (U(O*IBx.y"' 1.U(pn-U)8x + 2pr+1)

(since Y*(pn—I1*)=1vy) which is equal to

(29) RVO,1 * VI,I ®k*wWl =
Let VQ2 :* Ej . By (29) we see that the k-basis for VQ 2 is as
given in part (d) of the theorem. We will show later that Vg 2 is

indecomposable.



Since ValJ - Vg™ 8 r+i the above pullback construction

shows that

oO-V -, +V-, 1S58 xXx - V., v0
a+1,1 0,2 2apr+1 3,1
is th .e.s. AWV . C tl defi \Y% ., 8 ,
is e s.e.s ( a,l') onsequently we define a2 8,2 gapr+|
We now assume that Theorem 5.12 (c¢), (d) hold for all s , 1 s s <m

That is : (1) Vg s has the desired k-basis as described in 5.12 (d);

(2) If the s.e.s.

0 - Vl,s-1 - Es-1 - VO,s-1

is almost split then E =V8 s ©V

&1 1,5-2

(3) There exist indecomposable modules V
- VO.s = S2apr.,

satisfying 5.12 (c).

Consider the pullback

(30) on VBm + 0
" ie

0 - vy 7 PeVgm) —» POVl - Vg, - O



We must show that Em=VQml ®V~m1 where VQ ™ is indecomposable

and has the desired k-basis.

Recalling 5.8 and in particular (11), (12) it is easy to show that

m m-1
Ewvnm = *V(P-XJ) =11S . From this we
i=i j=0 X+2jpr+
G P<Q”,v0.m> 1
«Q*.v0. i(vw-")1S W -~ u<m)
=ksp {f(t) | i« I , 1 =1,...m) . Therefore

p(«v0>~%,|. = p(n—lvB,nrq 0 52p~-> * >s2p,,, *

2p
(21). 5.7(b) and (31).

Now let us make the identification

pt "W " vi.. = nvOom £ P(VO,m)
and define TFﬁ:P(nVB,m) > p(vo,m) by

€2 10 2 2pML $ies « 2prrt o* i

making Now define

Ker<lps> " vi.m

€9))

em:VO,m - P</Bnmm

i“(0 -0 170 9£=leeeeejnf
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Y 1 PALI*(1) 8 2pr+1 + VI>m

Notice that Ker(e ) <-Vn , in fact we shall assume that €

the desired almost-split sequence via the pullback but shall

later. Now

E- * VO,m * m<b»

induces

prove this

contains the submodule Ker(%J ®Ker_(n(])_ =1L ®V1 n (L = Ker(em)).

and an element (w™b) . Here b c P(nhVQ m) is such that

V b>=emK> ¢ VI>m 1

so we may let b =Yy “pn-I»(l) 9 2pr+~ . As a k-space,

Ea- L « V, m®k.(W7»”1p~I* (1) fi 2pr+1)

Define *!:L * 0,1 ®V1,ml

(34) i(s) + (O, i(s-1) a2pr+1) ; s * 1

1(1) - (UHan, 0)

A few calculations show that is a kB-isomorphism -

it is

instructive



0 s = 2....... m ;
y'"l a:PrHl + vim .

Notice that Ker(9,) <-Vn , in fact we shall assume that 0 induces
1 u,m m

the desired almost-split sequence via the pullback but shall prove this

later. Now

1« “e'> o 1 '»<b»

contains the submodule Keriel 8 Kerjin ) =L ®Vl,m (L = Ker(en}),

and an element (w”™.b) . Here b e P(iivQ m) is such that

'n,<b>1u »2P"1 *

so we may let b =y “pn-1.»(1) B 2pr+~ . As a Kk-space,

Em*“ L ®VI,m ®M w;\y'V 1il*(1l) a 2pr+1)

Define :L » RvVn ®V, m
| o,l 1 ,m1
(34) i(s) - (0, i(s-1) d2pr+1) ; si 1

1.(1) - (U()BX, 0)

A few calculations show that is a kB-isomorphism - it is instructive



- 113 -

to show that i does not extend to a KkB-isomorphism T4 ;Vg m

VO, ®Vl,m-1 e Hence Em = Rvo,l ®VI,m-1 ®VI, m®

as a k-space. Define a nmep

(35)

*2;k(,i'v-V M (i) “ * RVO,1 e »!.,* VO,»*|
by

U@i) ax— i_(@() , U(@) axXeRvol

1(S) 8 2pr+l— i(s+1) , i.(s)82pr+l £ Vi>m

Again, ~» is a kB-isomorphism and combining (34) and (35) we see

that

m“ No,m+l ®VI,m-I

and that Vg nm# is as defined in part (d). ; —

N part (D since vy g = vp ABS2apr+
the above pullback construction shows that:

® Va+lm  VO.m+H®2apr+~ * Va+l,m-I Vam O

is almost-split. Define Va>m#l Voem+l 8 S n e This proves

parts (¢) and (d) of the theorem. For parts (a), (b) we note that, for

)82pr+1)
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p=2' ~0.m " VO,m 8 S2a2r+1 “ VOom iff z"*113 whilst for p ©dd,

~O0O.m =VOm 8 S2apr+1 iff (PP-1)/2]a . Finally, dimkVa>l =

dimkV(u,r) = (y+)pn 1 by (7) and dimkva m = m(u+l)pn1l follows by

induction.

It remains to show that each V
a,m

is indecomposable and that 6
m

does induce an almost-split sequence. First we shall show that
End,0(V ) is uniserial, hence local, from which it follows that V
Kb * a,m a,m

is indecomposable.

Let E(m) denote the endomorphism algebra of the injective module

.oml
Uum) =1(VQ ) . Since Um) =H. U , , any n c E(m) is
Um j=0 x+j2pr+
determined by the m-tuple (n(O0(l)),...,n(0O(mM))) . Let n' « EndkB(VQ m)

Since U(m) is injective we can complete the diagram

Hence each n' e EndkﬂiVIL\J*ml can be extended to an n ¢ E(m) such that

(36) nL =n*
vO,m
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Let EP(m) = Endkp(U(m)) . We find it easier to work over KkP and
then restrict back to kB afterwards. For n e EP(m) define Crl. e k ,

1sr,s £m, such that

m
n(0(s)) = z C 0(r) modulo R(U(mM))..
r=l rs_

Since the 0(s) 1 s s s m are KkP generators of U(m) the
Crs 1 s r,s s m determine n e EP(m) . To satisfy (36) we want

an n such that n(W,s\)u?iV?i (the WTS’V' are kP generators of Vu,m)

Notation.

For i_e | denote by M(i) s U(m) the submodule spanned by

elements of the form (¢(r) |Jj[>i_, r o 1,... m}y . In particular -
M(@©O) = RUmM) , M(O") = RVO>m

Omitting details, the following lemma is true.

5.13 Lemma.

Let n « EP(m) , CrS e k be given as above. Then

n(1(s)) h z C .j_(r) mod M(@i)
r=1 rs O

Consider w», 1sssm. For 1ss <m,
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n(wj) =n(0'(s)) + n(Y"1L.ENI*(s+1))
m m
= =C O0'(r) +HO* + £¢C r p~NI*(r) + M(pn-1%)
r=l ri =t s

by 5.13. Since pn-l1+ "~ ( - implying pn-1+(r) 4 M(0') - and

M(pn-1,) s M(0") it follows that

p— m H
(37) n(wj) s ™~ (Crs.0'(r) + Cr>s+1Y_1 *(r)) + M(0*)
_ m
(38) For s=sm nw™ =n(0'(m)) = z 0’ (r) + M(0")
r=I
However for n to satisfy (36), that is h(Vg m) s m »
m m
39 Ww?) = £b wJ +M(0")
S r=1 rs r
m

=pE (brs£‘(r) + brsY—;/M *(r)) + M(O")

for 1 s s s m. Comparing (37), (38) with (39)

Crs 3 Cr+l,s+I r,s “m;
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Therefore each n « Endkp(Vg m) is determined by a matrix C = ( j)

of the form

where Cj =Cj-] . It is clear that Endkp(Vg m) is uniserial with

a unique chain of ideals:

0 In Xml L X1 " Endkp(VO,m)

where 1™ = {(C™)) | e 1, *0 1sj s s-1}

We can embed EndkB(Vg>1m) in Endkp(VO>m) and so EndkB(VO>m) is
uniserial and local. Hence Vg m is indecomposable and thus

\Y =V8 AS is indecomposable as required.
a,m ,m o,nr+l

Finally we show that induces an almost-split sequence in the
pullback (30). Recall from 8l that we must show:
e EndkB(VOjm)

(40) Te 0) * 0 1 1
8m ) VO,m
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(41) V  REndkB(VO.m» =° *

Now (40) is clear from the definition of T and by the above

om
remarks it is enough to show that T (r End.,(Vn _)) » T (1,) =0
om r 6m 1
For n e 12
\ M =t (niw™)) +....+ tm(n(wj))
NIV KD+ -

Now Ker(em) <= VQ>m and in particular w™ e Ker(em) for s =2,...m

Since ne 12 nw™ = Ersw™» and so Om(T(Wg)) =0 implying that

Tg (n) =0 as required.

9Im
O

To conclude this chapter we give a few more details on the connected

components and briefly describe their correspondents in Q(kG)

Notice that, for p =2 , g contains naV(p,r) for all powers
of a whereas for p odd g contains just the even powers. Let
X, X' e {l,...,pn-1} be almost-perfect such that X * pn-I-(p-I- )pr ,
X' » pn-1-(p-l-v)ps and let gQ(X) , g-j(xX) be the connected components

containing L(xX)g , nL(x)g respectively.
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5.14 Proposition.

(@ For p=2, qo(x) =0 and gQ(x) = qO(X‘) iff

(b) For p odd, g~X) _ iff i =j , X=X where
i.j e {0,1}
Proof.
Assume q-(X) =q.(X') and suppose i / j . We may assume that
' J
i =0, j =1 and so L(xX)B e gnx') . Since L(XX)B (= V(y,r)) lies

at the 'bottom' of qg(x) we deduce that:

42) L(X)B = n2a+1L(x')B = nL(x')B a S s+l , some a e IN
2ap
Taking dimensions of (42) using (7) it follows that
dimkL(x)B = pn-dimkL(x')B , implying that (y+Dpn_1 =pn-(v+D)pnl =
=pn \p-v-l) . By previous remarks we can assume p is odd and we
deduce from the above that y is even iff v is even. But y even
implies that dimkL(x)B is odd contradicting the fact that

dimkn2a+1L (x')B is even.

We may assume then that i =j and so must show that qg(x) = qg(x")

Implies that X » X' . Since L(X)B e =9g(x') there exists

a ¢ IN such that

43) L(X)b “ 02aL(X")B * L(x')b B S S+
zap
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Taking dimensions (7) implies that (y+1)pn_1 = (v+1)pn_1 forcing

u=v . Suppose r / s , Applying t =fi2 to both sides of (43) we

obtain:
44> L<»B *S.r +11 *<», 1*(»0), » S i
Zap
1
Lx»'V ISV 4 o
Combining (43) and (44), S - =S which implies that
2pr+ 2ps+

2pr+~ - 2ps+~ =0 mod pn-lI and so r =s as required.
O

Finally we look at the full quivers Q(kB) , Q(kG) . To take
advantage of the Green Correspondence between mod kB and mod kG we
have had to look at the connected components of the stable quivers. For
an almost-perfect X let us look at g(L(x)) s QkG)$ . Recalling 1.10

a projective module W only occurs in the almost-split sequence
(45) 0] RV + W « RW/rW  W/eW #% 0 .
If W=P(L(X)) (@45 can be written as

(46) 0- nL(x) - P(L(x)) @ nL(X)/L(x) = 1L(X) - O .

Thus, for p odd q(L(x)) is the full component in Q(kG) containing
LX) whilst for p = 2 the full component is q(L(X)) u (P(LCXD)))

with the attaching arrows.
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Taking dimensions (7) implies that (u+Dpn1l = (v+l)pn 1l Forcing

u=v . Suppose r t s . Applying t =n2 to both sides of (43) we

obtain:
44) L(X)B 8 s 1 ,L(»)B1 ,L(A")B as , 1
2ap
L@B V> 92> -
Combining (43) and (44), S , =S . which implies that
2pr+ 2ps+
1 s+l . n i
‘P " ap =0 mod p -1 and so r =s as required.
O
Finally we look at the full quivers Q(kB) , Q(kG) . To take

advantage of the Green Correspondence between mod kB and mod kG we
have had to look at the connected components of the stable quivers, For
an almost-perfect X let us look at q(L(x)) * Q(kG)s . Recalling ]_]_0

a projective module W only occurs in the almost-split sequence
(45) 0 RV WO RW/eW WEW %0
If W=P(L(X)) (45) can be written as

(46) 0 - EIL(A) - P(L(X)) © nL(X)/L(X) - fl-1L(X) O .

Thus, for p odd q(L(x)) 1is the full component in Q(kG) containing
L(X) whilst for p =2 the full component is q(L(X)) u (P(LCXD))}

with the attaching arrows.



Taking dimensions (7) implies that (p+Dpn-1 = (v+l)pn 1 Forcing
p =v . Suppose rt s . Applying r =n2 to both sides of (43) we

obtain:

(«) L(A)Bas , 1. 1(»bi ,1(a")b Ss S

P Zap
Combining (43) and (44), S . =S8 ,  which implies that
2pr+ 2pS+
2p - 2p =0 nmod pn-I and so r =s as required.
O
Finally we look at the full quivers Q(kB) , Q(kG) . To take

advantage of the Green Correspondence between mod kB and nmod kG we
have had to look at the connected components of the stable quivers. For
an almost-perfect X let us look at q(L(X)) s Q(kG)s . Recalling 1.10

a projective module W only occurs in the almost-split sequence
(45) 0+ RW A M6 RWeW » W/eW+ 0O
If W=P(L(x)) (45) can be written as

(46) 0 - nL(X) - P(L(x)) @ ilL(x)/L(X) - n_1L(X) O .

Thus, for p odd q(L(x)) is the full component in Q(kG) containing
L(x) whilst for p = 2 the full component is q(L(xX)) u (P(LC))}

with the attaching arrows.



- 121

REFERENCES.

[Al]

[AR1]

[AR2]

[AR3]

[BF]

[Br]

[Bui]

[Bu2]

Alperin, J.L. : "Periodicity in groups.” Illinois J. Math.

21, 776-783 0977).

Auslander, M., Reiten, |. : "Representation of Artin algebras 111

Almost split sequences.” Conm Algebra 3, 239-294 (1975).

Auslander, M., Reiten, |. : "Representations of Artin algebras IV
Invariants given by almost split sequences." Comm Algebra 5,

443-518 (1977).

Auslander, M., Reiten, |. : "Representations of Artin algebras V
Methods for computing almost split sequences and irreducible

morphisms.” Comm. Algebra 5, 519-544 (1977).

Benson, D., Parker, R.A. : "The Green ring of a finite group."

Preprint (Aarhus) 1982.

Brauer, R., Nesbitt, C. : "On the modular characters of groups.”

Annals of Math. 42, 556-590 (1941).

Butler, M.C.R. : "The construction of almost split sequences |I.

Proc. London Math. Soc. 40, 72-86 (1980).

Butler, M.C.R. : "Grothendieck groups and almost split sequences."
In:  Integral representations and applications, Lecture notes
in Mathematics 882, pp.357-368, Springer, Berlin-Heidelberg-

New York, 1981.



ccl

[CR]

o]

CE1]

[E2]

[Ga]

CGrl ]

[Gr2]

[Gr3]

CH]

- 122

Carlson, J.F. : "The dimensions of periodic modules over modular
group algebras.” Illinois J. Math. 23, 295-306 (1979).

Curtis, C.W., Reiner, . : "Methods of representation theory
with applications to finite groups and orders." J. Wiley

and Sons, New York, 1981.

Dade, E.C. : "Blocks with cyclic defect groups.” Annals of Math.

84, 20-48 (1966).

Erdmann, K. : "Projective modules in blocks with elementary abelian

defect groups.” Math. Z. 183, 177-215 (1983).

Erdmann, K. : "On periodic modules in p-blocks of type SL2 ."
Preprint.

Gabriel, P. : "Auslander-Reiten sequences and representation-finite
algebras.” In: Representation theory |, Lecture notes in

mathematics 831, pp.1-71, Springer, Berlin-Heidelberg-New

York, 1980.

Green, J.A. : "Relative module categories for finite groups.”

J. Pure Appl. Algebra 2, 371-393, 1972.

Green, J.A. : "Walking around the Brauer tree." J. Austral.

Math. Soc. 17, 197-213, 1974.
Green, J.A. : "Notes on almost split sequences, I." Preprint.

Higman, D.G. : "Modules with a group of operators." Duke Math.

J. 21. 369-376, 1954.



123 -

CJ] James, G.D. : "The modular characters of Mathieu groups.”

J. Algebra 27, 57-111, 1973.

[Ja] Janusz, G. : "Indecomposable modules for finite groups.”

Annals of Math. 89, 209-241, 1969.

[R] Peacock, R.M. : "Blocks with a cyclic defect group.”

J. Algebra 34, 232-259, 1975.

[RI] Riedtmann, C. : "Algebren, Darstellungskacher, Uberlagerungen

und zuruck.” Comment. Math. Helv. 55, 199-224, 1980.

[R2] Riedtmann, C. : "Representation-finite selfinjective algebras of
class An ." In: Representation theory 11, Lecture notes in

mathematics 832, pp.449-520, Springer, Berlin-Heidelberg-New

York, 1980.

[Ri] Ringel, C.M. : "Report on the Brauer-Thrall conjectures: Roiter's
theorem and the theorem of Nazarova and Roiter. In:
Representation theory 1. Lecture notes in mathematics 831,

pp.104-136, Springer, Berlin-Heidelberg-New York, 1980.

[S] Steinberg, R. : "Representations of algebraic groups.” Nagoya

Math. 22, 33-56, 1963.

wl Webb, P.J. : "The Auslander-Reitern Quiver of a Finite Group.”

Math. Z. 179, 97-121 (1982).



124

[Re] Reiten, 1. : "Almost split sequences for group algebras of

finite representation type.” Trans Amer. Math. Soc. 233,

125-136 (1977).

[GaR] Gabriel, P., Riedtmann, C. : "froup representations without

groups.” Comment. Math. Helv. 54, 240-287 (1979).

[H] Happel, D., Preiser, U., Ringel, C.M. : "Vindberg's
Characterization of Dynkin diagrams using subadditive
functions with application to DTr-Periodic modules."

In:  Representation theory Il, Lecture notes in mathematics

831, pp.280-294, Springer, Berlin-Heidelberg-New York, 1980.



