A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:
http://wrap.warwick.ac.uk/111980

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/111980
mailto:wrap@warwick.ac.uk

An Algorithm for Computing Short-Range Forces
in Molecular Dynamics Simulations with
Non-Uniform Particle Densities
by

Timothy R. Law

A thesis submitted to the University of Warwick
in partial fulfilment of the requirements
for admission to the degree of

Doctor of Philosophy

Department of Computer Science

September 2017

Contents

Abstract v
Acknowledgments vi
Declarations vii
Sponsorship and Grants viii
Abbreviations ix
List of Tables xii
List of Figures xXiv
Chapter 1 Introduction 1
1.1 Motivations 2
1.2 Aims & Objectives L 3
1.3 Research Methodology 4
1.4 Thesis Contributions 4
1.5 Thesis Overview e 5
Chapter 2 Parallel Hardware and Performance Engineering 7
2.1 Types of Parallelism 7

2.1.1 Instruction Level Parallelism 8

2.2
2.3
24

2.5

2.6

2.1.2
2.1.3
2.14

SIMD Vectorisation
Multithreading oo o

Message Passing oo

The Memory Hierarchy

Many-core and Heterogeneous Computing

Performance Engineering

24.1
2.4.2
24.3

244

Benchmarking oo oo
Profiling
Code Optimisation

Performance Modelling

Mini-applications Lo Lo

SUMMATY o o e e e e e

Chapter 3 Molecular Dynamics

3.1

3.2

3.3

Computational Aspects of Molecular Dynamics

3.1.1

Short-Range Force Algorithms

Parallelisation of Molecular Dynamics

Summary . .o oL .. e e

Chapter 4 Projection Sorting

4.1
4.2
4.3
4.4

4.5

Description of the Algorithm,

Illustrative Example

Complexity & Scope for Optimisation

Preliminary Comparison to Verlet Lists

4.4.1 Periodic Computation
4.4.2 Force Computation oL
4.4.3 Communication Costs,
4.4.4 Comparing Projection Sorting and Verlet Lists in Practice . .
SUMMATY o o e e e e e

ii

10
10
11
13
13
14
15
18
20

21

23
24
26
30

32

35
36
40
42
43
45
46
47
48

Chapter 5 A Simulation of Chromosome Condensation 51

5.1 Chromosome Condensation 52
5.1.1 Simulation Forces. oL 53

5.2 Optimisations L 58
5.2.1 Parallelisation. oL 58
5.2.2 Cell Lists and Verlet Lists 58
5.2.3 Linear Forces 59
5.2.4 Entropic Forces o oL 59

5.3 Summary . . .o ..o e 59
Chapter 6 Implementing Projection Sorting On-node 61
6.1 Experimental Setup Lo 62
6.1.1 Datasets L 62
6.1.2 Machine Specifications & Compilation 64
6.1.3 Validation o 65
6.1.4 Parameter Selection 67

6.2 Repulsion Forces 67
6.2.1 Force Sweep 68
6.2.2 Sorting 70

6.3 Projection Sorting vs. Verlet Lists 72
6.3.1 Distance Check Counts 72
6.3.2 Periodic Costs 73
6.3.3 Force Sweep Costs 74

6.4 Condensin Interaction Forces 78
6.4.1 Storage e 79
6.4.2 Vectorisation L oo 79

6.5 Overall Performance, 80
6.5.1 Offload Computation 83

iii

6.6 Summary oL e

Chapter 7 Implementing Projection Sorting Off-node
7.1 Experimental Setup oL
7.1.1 Machine Specifications, Compilation & Execution
7.2 MPI Implementation
7.2.1 Projection Sorting oo
7.3 Experiments.
7.3.1 Raw Performance Comparisons
7.3.2 Scaling Studies oo
733 Xeonvs. XeonPhi 0.

T4 SUMMAryo e e

Chapter 8 Conclusions
8.1 Contributions
8.2 Limitations
8.3 Further Work
8.3.1 Improvements to Projection Sorting
8.3.2 Alternative Shared-Memory Parallelisations

8.3.3 Implementation in Other Molecular Dynamics Packages . . .
Bibliography

Appendix A Code Listings
A.1 AVX/AVX2 Projection Sorting Force Sweep
A.1.1 Shim Gather Intrinsic (AVX)
A.1.2 Shim Scatter Intrinsic (AVX/AVX2)
A.1.3 Shim Reduce-Add Intrinsic (AVX/AVX2)
A.2 KNC/AVX-512 Projection Sorting Force Sweep
A.3 Shim Packed Store Intrinsic (AVX/AVX2)

iv

85
86
86
88
89
90
90
91
91
97

99
100
102
103
103
104
105

Abstract

We develop the projection sorting algorithm, used to compute pairwise short-range
interaction forces between particles in molecular dynamics simulations. We con-
trast this algorithm to the state of the art and discuss situations where it may be
particularly effective.

We then explore the efficient implementation of the projection sorting algo-
rithm in both on-node (shared memory parallel) and off-node (distributed memory
parallel) environments. We provide AVX, AVX2, KNC and AVX-512 intrinsic imple-
mentations of the force calculation kernel. We use the modern multi- and many-core
architectures: Intel Haswell, Broadwell Knights Corner (KNC) and Knights Land-
ing (KNL), as representative slice of modern High Performance Computing (HPC)
installations.

In the course of implementation we use our algorithm as a means of opti-
mising a contemporary biophysical molecular dynamics simulation of chromosome
condensation. We compare state-of-the-art Molecular Dynamics (MD) algorithms
and projection sorting, and experimentally demonstrate the performance gains pos-
sible with our algorithm. These experiments are carried out in single- and multi-node
configurations. We observe speedups of up to 5x when comparing our algorithm to
the state of the art, and up to 10x when compared to the original unoptimised sim-
ulation. These optimisations have directly affected the ability of domain scientists

to carry out their work.

Acknowledgments

First and foremost I would like to thank my supervisor, Prof. Stephen Jarvis for
securing my funding, giving me the opportunity to undertake a PhD, and nurturing
the research group that made this thesis possible.

Second I extend my sincere gratitude to colleagues at Intel, in particular
Jonny Hancox, Gaurav Kaul and John Pennycook—thank you for involving me in
so many projects, enabling access to code, data and hardware, and making time for
me in your busy schedules.

Within the Department of Computer Science Faiz Sayyid, Steven Wright,
James Davis and Richard Bunt in particular (amongst innumerable others) have all
contributed either directly or indirectly to this thesis, and to making my time at
Warwick enjoyable.

Finally I would like to thank my other friends and family for the many varied
and entertaining distractions from work over the past four years, and Jess, for the

ceaseless moral and gastronomic support.

vi

Declarations

This thesis is submitted to the University of Warwick in support of the author’s
application for the degree of Doctor of Philosophy. It has been composed by the
author and has not been submitted in any previous application for any degree. The
work presented (including data generated and data analysis) was all carried out by

the author.
Parts of this thesis have been previously published by the author in:

e Timothy R. Law, Jonny Hancox, Tammy M. K. Cheng, Raphaél A. G. Chaleil,
Steven A. Wright, Paul A. Bates, and Stephen A. Jarvis, Optimisation of
a molecular dynamics simulation of chromosome condensation, Proceedings
of the 28th International Symposium on Computer Architecture and High
Performance Computing 2016, Los Angeles, USA, October 2016 [53]

vii

Sponsorship and Grants

The research presented in this thesis was made possible by the support of the fol-

lowing benefactors and sources:

e The University of Warwick, United Kingdom:

Engineering and Physical Sciences Research Council Studentship (1365607)

e Intel Corporation

viii

Abbreviations

AoS Array-of-Structs

API Application Programming Interface
ASIC Application-Specific Integrated Chip
AVX Advanced Vector eXtensions

AVX2 Advanced Vector eXtensions 2
AVX-512 Advanced Vector eXtensions 512-bit
CFD Computational Fluid Dynamics

CPU Central Processing Unit

CUDA Compute Unified Device Architecture
DRAM Dynamic Random Access Memory
FPGA Field-Programmable Gate Array
FMM Fast Multipole Method

FLOP Floating-Point Operation

GPU Graphics Processing Unit

GPGPU General Purpose Graphics Processing Unit
HPC High Performance Computing

ix

ILP Instruction Level Parallelism

ISA Instruction Set Architecture

KNC Knights Corner

KNL Knights Landing

LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator
LINPACK Linear Algebra Package

LLC Last Level Cache

MIMD Multiple Instruction Multiple Data

MISD Multiple Instruction Single Data

MCDRAM Multi-Channel DRAM

MD Molecular Dynamics

MPI the Message Passing Interface standard

N3 Newton’s Third Law

NAMD Nanoscale Molecular Dynamics

NAS NASA Advanced Supercomputing Division

NPB NAS Parallel Benchmarks

NUMA Non-Uniform Memory Access

000 Out-of-Order

OpenMP the Open Multiprocessing standard

PACE Performance Analysis and Characterisation Environment

PAPI Performance Application Programming Interface

PClIe Peripheral Component Interconnect Express
POSIX Portable Operating Systems Interface
PRNG Pseudo Random Number Generator
PS Projection Sorting

RAM Random Access Memory

SDE Software Development Emulator

SIMD Single Instruction Multiple Data
SMT Simultaneous Multithreading

SNL Sandia National Laboratories

SoA Structure-of-Arrays

SRAM Static Random Access Memory

SSE Streaming SIMD Extensions

SST Structural Simulation Toolkit

TAU Tuning and Analysis Utilities

TPU Tensor Processing Unit

VL Verlet Lists

WARPP WARwick Performance Prediction Toolkit

Xi

List of Tables

2.1

3.1

6.1

6.2

6.3

6.4

6.5

Flynn’s taxonomy 7

Summary of the developments in computational MD covered in this

chapter, and how this thesis fitsin. 33
Summary of node hardware configurations on Tinis and Chiron.. . . 65
List of timers used for data collection. 66

Number of instructions as it scales with W for various in-register

sorting operations. Lo Lo 71

Relative performance for vectorised sorting (versus scalar sorting)
per Single Instruction Multiple Data (SIMD) Instruction Set Archi-
tecture (ISA). The scalar implementations use a comparison based

sort rather than bitonic networks. 71

Mean number of distance checks performed per particle, and the num-
ber of unnecessary checks performed as a result of SIMD inefficien-
cies for Advanced Vector eXtensions 2 (AVX2) (4-wide) and KNC
(8-wide) implementations. The dataset used contained 128,000 nu-

cleosomes, with r¢ =40and k=2. 73

xii

6.6

7.1

Mean number of full neighbour force calculations performed per parti-
cle, and the number of unnecessary calculations performed as a result
of SIMD inefficiencies for AVX2 (4-wide) and KNC (8-wide) imple-
mentations. The dataset used contained 128,000 nucleosomes, with

re=40and k=2.

Summary of node hardware configurations on Orac and the ARCHER

Knights Landing platform.

xiii

List of Figures

1.1

2.1

2.2

2.3

Comparison between MD simulations exhibiting uniform and non-
uniform particle density. (a) shows a regular lattice-like structure,

whereas in (b) a much more irregular structure can be seen.

Layers of parallelism.

The memory hierarchy: the fastest and lowest capacity at the top
(on-chip memory), the slowest and largest capacity at the bottom

(external mechanical drives).o 000

Performance engineering: (1) Benchmark the hardware to determine
attainable performance, (2) profile the application to determine areas
where performance is not up to standard, (3) optimise the application
code to bring performance closer to the ideal, (4) analyse achieved
performance, which can feed back into further optimisation. When

new hardware is acquired, the cycle begins again.

Xiv

3.1

3.2

3.3

3.4

3.5

An example of the forces acting between particles in an MD simula-
tion. The yellow line indicates a pair potential between two particles.
The blue lines indicate a three-body potential, and the pink lines in-
dicate a four-body potential. All the particles exert a non-zero force
on all other particles for each such degree. In practice, these inter-
actions must be approximated. In all simulations we consider, all
higher-order potentials are approximated—only the pair-potentials

are calculated explicitly.o oo

Cell lists are inefficient in the sense that particles are checked that
cannot possibly fall within the cut-off radius. Here the shaded circle
represents a particle’s cut-off radius, and the grid represents a decom-
position of the space into cells. All particles are checked within each
cell that intersects the cut-off radius. As some squares only partially
intersect the circle, particles that fall within those cells, but outside

of the intersection, are checked despite not being within the cut-off

Cell lists—fraction of unnecessary particle-pair checks as a function
of cell size for a fixed r. (assuming 3 spatial dimensions and uniform

particle density).

Verlet lists—fraction of unnecessary particle-pair checks as a function
of rebuild period k£ and skin distance 7, for a fixed r. (assuming a

uniform particle density). L

The difference between the particle decomposition and force decom-
position strategies for N = 8 particles. The two grids show all
particle-pairs, and the colours indicate which of four parallel proces-
sors is responsible for each pair. (a) shows the particle decomposition

and (b) shows the force decomposition.

XV

3.6 An example of an MD dataset exhibiting significant non-uniformity

in the particle density. Lo 32

4.1 2-dimensional illustration of projecting two position vectors onto the

z-axis. Equation 4.1 clearly follows from Pythagoras’ theorem. . . . 36

4.2 2-dimensional illustration of projection sorting. Imagine we have
14 particles as shown in (a) (numbers indicating some possible in-
memory ordering), and that we wish to determine which particles are
within the cut-off radius of the filled particle 8 (the cut-off radius
being marked by the dashed circle). We can see that there are 3 such
particles: 5, 6 and 7, but how would the computer determine this?
(b) and (c) show the calculation of the projections onto two possible
values for v. In (b) we choose v as the vector connecting the two
endmost particles, whereas in (¢) we use a vector perpendicular to
this. The thick arrows show the projection of the cut-off circle onto
v in each case, which defines the search area for candidate particles.
Particles whose projections fall into this region are hatched. In (b)
there are 5 such particles, whereas in (c) there are 11. We must per-
form full distance checks for all of these particles, so (b) is clearly the

better choice for v. 39

xXvi

4.3

5.1

5.2

5.3

6.1

Worked example of projection sorting for the scenario in Figure 4.2b.
(a) shows the xy-positions for each particle (numbered as in Fig-
ure 4.2a), and the components of ©. In this example, we take r. = 1,
and wish to calculate the neighbours of particle 8. The first row in
(b) shows the projections calculated from this data, ordered by parti-
cle number. In the second row these are sorted, and the shaded cells
show the range of particle projections within the range —0.11+r.. In

the final row, the true distances are calculated for these 5 candidate

particles using d = /(22 — 71)2 + (y2 — y1)2. 3 of these distances are

less than r., corresponding to particles 5, 6 and 7 as expected.

A visualisation of one of the datasets used—a conformation of yeast

DNA dotted with nucleosomes.

Repulsion force on nucleosome pairs within 15nm. A force of 10 pN
repels pairs within 10 nm, which then falls off rapidly to near-zero at
15nm. After 15 nm, no repulsion forces apply. c3 is an experimentally

determined value, set to 10pN. L.

Linear forces: the solid lines indicate the tension forces applied by
the DNA linkers on the filled nucleosome and its neighbours. The
dashed line indicates a weak force designed to regulate the angle

between each triplet of consecutive nucleosomes.

Performance figures for Projection Sorting (PS) kernels and Verlet
Lists (VL) kernels on a Tinis node running 16 threads, from 4000
up to 256,000 particles. (a) shows periodic costs and (b) shows force

calculation costs. Lower time is better.

xXvii

41

6.2

6.3

6.4

7.1

7.2

7.3

7.4

Performance figures for PS kernels and VL kernels on a Chiron co-
processor running 244 threads, from 4000 up to 256,000 particles. (a)
shows periodic costs and (b) shows force calculation costs. Lower

time is better.

Per-kernel single-threaded speedup observed for the optimised im-
plementation relative to the original simulation for the 2000 particle

dataset. Higher speedup is better.

Performance figures for each kernel when running on Tinis and Chi-
ron, from 4000 up to 256,000 particles. (a) shows the timings for 16
threads on Tinis, (b) shows 244 threads running on Chiron. Lower

time is better. L

Speedup of the full simulation when using PS relative to VL on (a)
Orac up to 256 processors and (b) ARCHER up to 512 processors,

over 2,048,000 particles. Higher speedup is better.

Speedup for PS kernel costs relative to VL kernel costs on Orac up
to 256 processors, over 2,048,000 particles. (a) shows periodic costs,
(b) shows force calculation costs, and (¢) shows communication costs.

Higher speedup is better.

Speedup for PS kernel costs relative to VL kernel costs on ARCHER
up to 512 processors, over 2,048,000 particles. (a) shows periodic
costs, (b) shows force calculation costs, and (c) shows communication

costs. Higher speedup is better.

Scaling on Orac up to 256 processors. (a) shows strong scaling over
2,048,000 particles and (b) shows weak scaling with 8000 particles

per processors. Higher speedup is better..

xXviii

7.5 Scaling on ARCHER up to 512 processors. (a) shows strong scal-
ing over 2,048,000 particles and (b) shows weak scaling with 4000

particles per processors. Higher speedup is better.

Xix

Comfort as a philosophy of life! The least possible commotion, nothing
shocking. Those who so love comfort will never seek where there is not

definitely something to find.

— Arnold Schoenberg

xxi

Chapter 1

Introduction

Computational simulations are widely used across many scientific disciplines, span-
ning a variety of domains of investigation from crystalline atomic structures to cell
pathways, with numerous software packages available. Of these, Molecular Dynam-
ics (MD) simulations are some of the most well known. Two prominent examples are
the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [73], de-
veloped by Sandia National Laboratories to simulate materials under the influence
of various physical potentials, and Nanoscale Molecular Dynamics (NAMD) [71],
which focuses on biological applications and has been used solve important recent
medical problems, such as resolving the structure of the HIV-1 virus responsible for
AIDS [91].

Simulations on this scale require enormous computational resources and the
time is long since past where a single machine could provide the necessary power.
In our current age of falling clock-speeds (due to thermodynamic constraints), ex-
ploiting the increasing amounts of available parallelism at all levels—from large net-
worked clusters, down to optimal ordering of microarchitecture instructions—has be-
come crucially important. Maturing many-core architectures such as Intel’s Knights
Landing (KNL) and NVIDIA’s Pascal and Volta Graphics Processing Unit (GPU)

architectures epitomise this philosophy of “going wide”, but in turn demand much

Figure 1.1: Comparison between MD simulations exhibiting uniform and non-
uniform particle density. (a) shows a regular lattice-like structure, whereas in (b) a
much more irregular structure can be seen.

more from implementations in order to extract maximum performance. Significant

work has gone into optimising MD applications for such architectures [9, 35, 70].

1.1 DMotivations

The initial motivation for the work contained in this thesis was the desire to improve
the performance of a particular biophysical MD simulation from Cheng et al. [20],
described in detail in Chapter 5. As the work progressed however, it became appar-
ent that the root cause of many of the performance issues encountered was the use
of classic MD algorithms designed decades ago with specific types of simulation in
mind. Whilst these algorithms worked, in that they produced the correct answer,
they were not the most appropriate choices for achieving good performance.
Specifically, this MD simulation exhibits what we will term non-uniform
particle density. Many MD simulations are designed to handle materials such as
atomic lattices, or gases, which conversely exhibit approximately constant particle
density throughout the simulation domain. See Figure 1.1 for a comparison between

these two types of structure. Algorithms designed for simulations like Figure 1.1a

can exhibit inefficiencies when applied in situations as shown in Figure 1.1b, and

vice versa.

1.2 Aims & Objectives

Our primary focus in this thesis is the development and optimisation of an algorithm
suitable for pairwise short-range force calculations (that is, forces between every pair
of particles that are within a certain small distance of each other, see Chapter 3 for a
full discussion) within MD applications which exhibit non-uniform particle density.
We call this algorithm projection sorting. Owing to their computational expense
and widespread applicability, pairwise short-range force calculations have received

significant attention in the MD literature.

Conjecture: It is possible to accelerate pairwise short-range force cal-
culations relative to classic MD methods by taking closer account of
the domain-specific properties of the simulation (such as non-uniform

particle density).

The three research questions (referred to henceforth as RQ1, RQ2 and RQ3) we

propose to answer are as follows:

e RQ1: How might an algorithm designed to accelerate an MD simulation in

accordance with the above conjecture look?

o RQ2: How might such an algorithm perform (and how might it be best im-

plemented) in a shared-memory parallel environment?

o RQ3: How might such an algorithm perform (and how might it be best im-

plemented) in a distributed-memory parallel environment?

1.3 Research Methodology

The research we undertake is primarily quantitative. We will use the methods and
techniques which make up performance engineering in order to improve the effec-
tiveness of our new algorithm, and to compare its effectiveness against existing
algorithms. Performance engineering is discussed in detail in Chapter 2 (see Sec-
tion 2.4), however we will briefly discuss the principles here.

Performance engineering is an iterative process consisting of 4 phases: bench-
marking, profiling, optimisation and analysis. Benchmarks assess a system to deter-
mine peak feasible performance, profiles assess an application to determine actual
performance, optimisation improves actual performance (moving it closer to peak
feasible performance), and analysis determines the effectiveness of optimisations,
and may suggest new ones. The results of this cycle then feed back into a new
iteration.

In this thesis we seek to improve established MD methods when applied to
certain types of simulation. The standard means of calculating pairwise short-range
forces is by means of Verlet (or neighbour) lists [84] (discussed in Chapter 3). There-
fore the analysis phase of the performance engineering cycle will consist primarily
of quantitative comparisons between the algorithm we will develop, and Verlet lists.
Further details of benchmarking, profiling and optimisation techniques are discussed

in Chapter 2.

1.4 Thesis Contributions

The research presented in this thesis makes the following primary contributions:

e We develop the projection sorting algorithm, used to compute pairwise short-
range interaction forces between particles in molecular dynamics simulations.
We compare this algorithm qualitatively to the state of the art and discuss

situations where it may be particularly effective. This pertains to RQ1.

o We explore the efficient implementation of the projection sorting algorithm
in both on-node (shared memory parallel) and off-node (distributed mem-
ory parallel) environments. We provide Advanced Vector eXtensions (AVX),
Advanced Vector eXtensions 2 (AVX2), Knights Corner (KNC) and Advanced
Vector eXtensions 512-bit (AVX-512) intrinsic implementations of the force
calculation kernel. We use the modern multi- and many-core architectures:
Intel Haswell, Broadwell KNC and KNL, as a representative slice of modern
High Performance Computing (HPC) installations. This pertains to RQ2 and
RQ3.

e We use our algorithm as a means of optimising a contemporary biophysical
molecular dynamics simulation of chromosome condensation [20]. We com-
pare state-of-the-art MD algorithms and projection sorting, and experimen-
tally demonstrate the performance gains possible with our algorithm. These
experiments are carried out in single- and multi-node configurations. We ob-
serve speedups of up to 5x when comparing our algorithm to the state of the
art, and up to 10x when compared to the original unoptimised simulation.
These optimisations have directly affected the ability of domain scientists to

carry out their work. This pertains to RQ2 and RQ3.

1.5 Thesis Overview

The remainder of this thesis is structured as follows:

¢ Chapter 2 provides an overview of the fundamentals and terminology related
to the field of HPC, including the development and current state of parallel
hardware and the science of performance engineering, which is at the core of

this thesis.

e Chapter 3 presents a similar treatment of computational molecular dynamics

simulations, broadly covering the aspects relevant to this thesis.

Chapter 4 presents our algorithm: projection sorting. We provide an overview
and broadly compare it against Verlet lists, the state of the art for pairwise

short-range force calculations. This chapter covers RQ1.

Chapter 5 describes a molecular dynamics simulation of chromosome conden-
sation from Cheng et al. [20]. This simulation is used in Chapters 6 and 7 to
compare the projection sorting algorithm from Chapter 4 against state-of-the-
art MD algorithms. We also detail some optimisations performed unrelated

to the projection sorting algorithm. This chapter covers RQ2.

Chapters 6 and 7 implement projection sorting in the context of the simula-
tion from Chapter 5. In Chapter 6 we explore shared memory settings, using
the Intel Haswell and KNC architectures, and deal with the data layout and
vectorisation of the algorithm. Chapter 7 extends the implementation to dis-
tributed memory settings using the Message Passing Interface standard (MPI),

and uses the Intel Broadwell and KNL architectures. This chapter covers RQ3.

Chapter 8 concludes the thesis and discusses the limitations of our work, as

well as future work.

Chapter 2

Parallel Hardware and

Performance Engineering

We begin with an overview of the current state of parallel hardware, and then discuss

the principles of performance engineering which underpin this thesis.

2.1 Types of Parallelism

Flynn’s taxonomy [28] (see Table 2.1) is a broad classification of computer archi-
tectures based on whether or not they can handle multiple concurrent instruction
and/or data streams. The vast majority of modern architectures are capable of ex-
ecuting in any of these four configurations; multiple processes can run concurrently,
all using separate data streams.

Multiple Instruction Single Data (MISD) and Multiple Instruction Multiple

Data (MIMD) can be thought of as employing “task parallelism”, where different

Single Instruction Multiple Instruction

Single Data SISD MISD
Multiple Data SIMD MIMD

Table 2.1: Flynn’s taxonomy

Message passing

CLUSTER

Multithreading

NODE

Scale

SIMD vectorisation

CHIP

Instruction level parallelism

Figure 2.1: Layers of parallelism.

instruction streams execute concurrently, whereas Single Instruction Multiple Data
(SIMD) characterises “data parallelism”: multiple similar (or identical) instruction
streams operating on different parts of a dataset.

In modern hardware, parallelism exists at several different layers, shown in
Figure 2.1. Higher layers make use of parallelism at the lower layers. At the lowest
layer, individual instructions executing on a processor are run in parallel. Above
that, so called vector instructions operate on multiple pieces of data at once. One
step higher, multiple cores can operate simultaneously on a single node, each running
a different thread of execution. Finally at the top layer, multiple processes cooperate

in a cluster environment, exchanging messages to coordinate their activities.

2.1.1 Instruction Level Parallelism

Instruction Level Parallelism (ILP) exists in several forms in modern microarchitec-
tures. Pipelined processors work on multiple instructions simultaneous at different
stages of the fetch-decode-execute cycle. While one instruction is executing, others

can be fetched and decoded. Superscalar processors employ multiple pipelines which

operate concurrently. Out-of-Order (OoO) execution is possible—given a queue of
instructions, a processor may execute any instruction whose dependencies are sat-
isfied, regardless of its position in the queue. Instructions can also be executed
speculatively, in anticipation of a branch in execution. Significant work has gone
into developing accurate dynamic branch prediction schemes to minimise the num-
ber of speculatively executed instructions that must be discarded due to an incorrect
branch prediction [90].

Writing code with ILP in mind is difficult, and rarely worthwhile in today’s
age of modern optimising compilers, which more often than not are capable of

generating code optimised for ILP themselves.

2.1.2 SIMD Vectorisation

Modern microarchitectures often provide SIMD instruction sets alongside the stan-
dard serial operations. These vector instructions operate on larger-than-usual vector
registers, containing multiple data items. For example, if one wished to add 100 pairs
of numbers, SIMD instructions would allow adding two, four, eight or even more
pairs in a single instruction. GPUs employ the widest SIMD of all, usually 2048-bits
(or 64 32-bit integers).

Vector instruction sets include Intel’s Streaming SIMD Extensions (SSE) and
AVX and Arm’s NEON. Developers may employ these directly using assembly code,
or indirectly, either by intrinsic wrappers in high-level programming languages,
through auto-vectorising compilers, or by making use of libraries with built in SIMD

support.

2.1.3 Multithreading

As clock speeds rose rapidly throughout the 90’s and early 2000’s, it became clear
to chip manufacturers that the associated increase in thermal output was unsus-

tainable. Rather than continue to push clock speeds, they moved to a multi-core

model, where more than one chip running at a lower clock speed runs in parallel.
Applications make use of multiple cores simultaneously through the use of more than
one thread of execution. Threads can make use of both task- and data-parallelism,
whereas SIMD vectorisation is better suited to data-parallelism.

Modern architectures also make use of Simultaneous Multithreading (SMT),
where a single core can concurrently execute more than one thread [83]. 2-way SMT
is common in today’s multi-core processors, and GPUs reach much higher numbers.

Common methods of using multiple threads in applications include direct
implementation with Portable Operating Systems Interface (POSIX) threads or a
higher level approach with tools like the Open Multiprocessing standard (OpenMP) [69]
or Intel Cilk [13].

2.1.4 Message Passing

When reaching the level of a cluster of networked nodes, processors no longer share
a single memory address space, and must instead communicate explicitly over an
interconnect. The advantages of this model are that applications can be scaled
to much larger numbers of cores than is possible on a single node. As the nodes
are entirely independent, it also obviates barriers to parallel efficiency like cache
coherency protocols. However, applications must be carefully designed to minimise
the amount of inter-node communication required.

In HPC, MPI is the de facto standard for implementing message passing

applications [2].

2.2 The Memory Hierarchy

All computer architectures require some mechanism to store and retrieve data. Many
different technologies exist to achieve this, ranging widely in speed of access, capac-

ity and cost. During computation the Central Processing Unit (CPU) operates

10

Registers

Cache

DRAM

Flash memory

External memory

Figure 2.2: The memory hierarchy: the fastest and lowest capacity at the top (on-
chip memory), the slowest and largest capacity at the bottom (external mechanical
drives).

extremely rapidly on small fragments of data. Here, minimising latency is the pri-
mary concern and the capacity required is low, expensive technologies such as Static
Random Access Memory (SRAM) are used for processor registers and cache. Con-
versely, storing large amounts of data (as in backups or data warehouses) has very
different requirements. Capacity is key, speed is secondary. Using SRAM would be
economically infeasible, other technologies such as mechanical drives or magnetic
tape are more appropriate.

Figure 2.2 summarises the different tiers of storage commonly used, known
as the memory hierarchy. The fastest, smallest, costliest technologies used are at

the top, and the slowest, largest, cheapest at the bottom.

2.3 Many-core and Heterogeneous Computing

A relatively recent development is the advent of “many-core” processors. Whereas

standard multi-core processors are designed to be efficient for both serial and parallel

11

code, many-core processors are designed exclusively for highly parallel code and do
away with single-thread optimisations that may limit scaling. GPUs fall under the

umbrella of many-core processors.

At the time of writing, the number one supercomputer on the Top500 rank-
ing [61] is Sunway TaihuLight, based at the National Supercomputing Centre in

Wuxi, China. This machine achieves over 93 PFLOP /s from 40,960 Sunway SW26010

many-core processors, each with 260 cores.

Intel’s Xeon Phi product line is based on many-core architectures, specifically
Knights Corner (KNC) and Knights Landing (KNL). Both offer in the region of
60 cores. We use both of these in this thesis and compare results to traditional

multi-core architectures.

A related concept is heterogeneous computing, where single nodes contain
various accelerator hardware alongside traditional CPUs. Accelerators have long
been used for a variety of purposes with GPUs of course originally being used to
accelerate the graphics pipeline in multimedia computers, and ASICs commonly
being used to relieve the burden on the CPU during tasks such as video encoding.
In modern HPC, General Purpose Graphics Processing Unit (GPGPU) computing
is flourishing, with many scientific codes offloading all or part of their computa-
tional workload to GPUs. Recently the so-called Tensor Processing Unit (TPU)
has emerged in response to the proliferation of deep-learning applications, designed
specifically to accelerate the kinds of computation done in, for example, convolu-
tional neural networks (CNNs). The Field-Programmable Gate Array (FPGA) has
also seen a resurgence—many applications are being experimented with on such
hardware.

In short, for many applications it is increasingly important to be able to take
advantage of accelerators, and a variety of software solutions have emerged to make
writing code that will run on different accelerator architectures easier. OpenMP [69]

and OpenACC [68] both offer “directive-driven” ways to offload code to accelera-

12

tors, where developers decorate their code with special statements which instruct
the compiler to generate device-specific code, and transparently handle moving data
between host and device memory. The CUDA library has continued to evolve, mak-
ing offloading to NVIDIA GPUs easier than ever. Performance portability libraries
such as Kokkos [24] and RAJA [42] have also begun to emerge, which enable devel-
opers to write an application once, and then run it on many different architectures

with minimal overhead.

2.4 Performance Engineering

In HPC, performance engineering is the set of techniques and methodologies that
scientists and engineers use to predict and improve the performance—here referring
to a variety of metrics including wall-clock time taken, storage space used and power
expended—of computation. The fundamental basis of performance engineering is
the cycle of hardware benchmarking, application profiling, code optimisation and

performance modelling shown in Figure 2.3.

2.4.1 Benchmarking

Benchmarking is often the first task performed when presented with a new computer
architecture or set of hardware. A benchmark is a piece of software designed to
assess performance in some way. Perhaps the most well known examples in the field
of HPC are the Linear Algebra Package (LINPACK) benchmarks, based on the
Fortran library of the same name [23]. These benchmarks test a system’s ability to
rapidly solve dense systems of linear equations, a common task in many engineering
problems. LINPACK scores are used to build the Top500, a biannual ranking of
supercomputers across the world [61].

Other benchmarks include STREAM, designed to assess sustainable mem-

ory bandwidth [59], SKaMPI, which measures network communication times in a

13

Benchmarking

Performance modelling |- - - Profiling

Code optimisation

Figure 2.3: Performance engineering: (1) Benchmark the hardware to determine
attainable performance, (2) profile the application to determine areas where perfor-
mance is not up to standard, (3) optimise the application code to bring performance
closer to the ideal, (4) analyse achieved performance, which can feed back into fur-
ther optimisation. When new hardware is acquired, the cycle begins again.

cluster environment [76], and the NAS Parallel Benchmarks (NPB) from the NASA
Advanced Supercomputing Division (NAS), a suite of benchmarks derived from

Computational Fluid Dynamics (CFD) applications.

2.4.2 Profiling

Application profiling refers to the use of a tool—a profiler—to analyse the execution
of an application. Profilers can provide information such as which sections of code
consume the majority of the runtime, memory usage throughout execution, parallel
inefficiencies and 1/O wait times for network of disk access. They can also shed light
on low-level metrics collected by hardware performance counters, such as efficiency
of cache usage and instruction level parallelism.

Examples of profiling tools include:

o GNU gprof [26]

Uses a combination of static automated instrumentation (where a compiler

14

inserts calls to profiler functionality within the compiled application itself)
and hardware performance counter sampling to generate a call graph (showing
which source code functions call which other ones) and a list of functions

ordered by cumulative execution time.

o Intel VTune Amplifier [43]
Uses dynamic automated instrumentation (where the code is analysed and
rewritten at runtime to call profiler functions), based on the Intel Pin tool [55],
and hardware performance counter sampling. Can generate detailed call graphs
and cumulative execution time per individual line of code, in addition to a

myriad of low level metrics.

o Linux perf [1]
Also capable of performance counter sampling, and dynamic automated in-
strumentation using the Linux kprobe and uprobe frameworks for kernel and
userspace instrumentation respectively. Deeply integrated into the Linux ker-

nel providing rich profiling functionality.

o Tuning and Analysis Utilities (TAU) Performance System [79]
Provides static and dynamic automated instrumentation, and event-based

sampling. Features many graphical analyses of the collected profile.

o Performance Application Programming Interface (PAPI) [17]
Provides an Application Programming Interface (API) for programmers to
manually instrument their code with access to hardware performance counters.
PAPI doesn’t profile code itself, but provides the tools for programmers to add

profiling to their applications manually.

2.4.3 Code Optimisation

When the application hotspots have been identified through profiling, code optimi-

sation activities can begin. Such optimisations can take a variety of forms ranging

15

1| // before unrolling

2 | for (i = 0; i < N-1; i++) {

3 A[i]l = 0.5 = (B[i] + B[i+1]);
4]}

6 | // after unrolling by a factor of 4

7 | int M = (N-1) / 4;

g | for (i = 0; i < M; i++) {

9 int j = i*4;

10 A[j+0] = 0.5 * (B[j+0] + B[j+11);
11 A[j+1] = 0.5 * (B[j+1] + B[j+2]);
12 A[j+2] = 0.5 * (B[j+2] + B[j+31);
13 A[j+3] = 0.5 * (B[j+3] + B[j+41);
14 | }

15

w6 | // ... perform remaining iterations

if ((N-1) % 4 '=0) {
for (i = M*4; i < N-1; i++) {
A[i] = 0.5 * (B[i] + B[i+1]);

o e
© 0

}

[CES)
= O

}

Listing 1: An example of unrolling a 1D stencil by a factor of 4. This optimisation
improves the ratio of compute to loop-control overhead.

from simple code transformations to total rewrites based on new algorithms or al-
ternative hardware solutions (such as accelerator devices like GPUs and FPGAs)

which radically alter the performance characteristics of the application.

Commonly used code transformations include loop unrolling [67], where the
body of a simple loop may be duplicated n times and the number of iterations
reduced correspondingly by a factor of n. An example of this is shown in List-
ing 1. The principal advantages of loop unrolling are that it reduces the number of
branches required to complete a loop, and allows other hardware mechanisms such
as prefetching and pipelining to operate more effectively. The downsides are an
increase in the size of compiled code, and worsened readability (although as mod-
ern optimising compilers are perfectly capable of performing loop unrolling without

programmer intervention, the latter of these is moot).

Another example of a common code transformation is loop tiling [88]. As
discussed in Section 2.2 (the Memory Hierarchy), modern architectures make use of
multiple levels of data storage, differing in speed and size. Moving data from one

level to another takes a non-zero amount of time, so achieving optimal performance

16

1| // before tiling

2 | for (i = 0; i < N; i++) {

3 for (j = 0; j < P; j++) {

4 Clil[j] = 0.0;

5 for (k = 0; k < M; k++) {

6 Cli1[j1 += A[il[x] * BLkI[jl;

7 }

8 }

9| }

10

11 | // after tiling (assuming N and P are even)

12 | for (i = 0; i < N; i +=2) {

13 for (j =0; j <P; j+=2){

14 C[i+0] [j+0] = 0.0;

15 C[i+0] [j+1] = 0.0;

16 C[i+11[j+0] = 0.0;

17 Cl[i+1][j+1] = 0.0;

18 for (k = 0; k < M; k++) {

19 Cc[i+0] [j+0] += A[i+0][k] * B[k][j+0];
20 Cli+0] [j+1] += A[i+0][k] * B[k][j+1];
21 Cli+1][j+0] += A[i+1][k] =* B[k][j+0];
22 Cli+1]1[j+1] += A[i+1][k] * B[k][j+1];
23 }

24 }

25 | }

Listing 2: An example of tiling a matrix multiplication C = AB where A is an
N x M matrix and B is an M x P matrix. In the un-tiled version, calculating each
row of C requires loading the i-th row of A and all of B. In the tiled version, entries
in 2 X 2 blocks of C are calculated simultaneously, which reuses each loaded value
from A and B twice.

is contingent on minimising data movement. Loop tiling is a technique that can be
used to reorder iterations in nested-loop structures to increase data reuse—where
data is moved to the top level of the memory hierarchy as few times as possible,
and the amount of computation performed on the data while it is at that top level
is maximised. Listing 2 shows an example of simple loop tiling applied to matrix
multiplication. Whilst loop tiling can improve performance, optimally tiling a loop
usually requires knowledge of the particular hardware the code is to be run on,
in particular the cache sizes, and is therefore not a portable optimisation. This
highlights the distinction between cache-aware optimisations (such as loop tiling),
and cache-oblivious optimisations. Cache-oblivious algorithms are ones that make
effective use of hierarchical memory in general without being particularly suited to
any specific hardware implementation.

Other types of code transformation include loop fission (where a single loop

17

is broken into multiple loops over the same iteration space, each taking a portion
of the original loops body), loop fusion (the opposite), loop interchange (changing
the order of nested loops to improve data access patterns), code hoisting (moving
loop invariant code outside a loop), strip mining (a kind of loop tiling where the
iteration space is partitioned to allow for vectorised implementations) and countless
others [8, 85]. Many of these optimisations can be performed transparently by
modern optimising compilers.

After optimising an application, the natural thing to do is to compare it with
the original unoptimised version as a baseline. If the optimisation is successful in
improving performance one may then profile the code again to find secondary areas
to improve upon. This process is repeated until the level of performance reached is

satisfactory, relative to the benchmarks previously obtained.

2.4.4 Performance Modelling

Constructing an accurate model of an application’s performance has many benefits.
It allows prediction of performance on other hardware [60, 41, 48, 50], which is useful
in procurement (supercomputers are very expensive, and being able to speculatively
“try before you buy” is valuable when one knows what workloads one intends to run
on a purchased machine). Performance models can also inform further optimisations
on the existing hardware [22, 64], and reveal potential misconfiguration [18].
Conducting performance modelling usually involves a combination of analyt-
ical methods and simulation [7]. Simpler aspects may be modelled using a series of
mathematical equations, while deeper complexities may resist analytical approaches
and require simulation. The results from simulation can be plugged into analytical
models to tune their accuracy. An important consideration when using simulation
is the computational resources required; if a simulation takes longer to perform than
simply running the application in the desired configuration, then it is not a partic-

ularly useful model. This also applies to the time required to develop the model in

18

the first place.

The characteristics of the hardware on which an applications runs form an
integral part of a performance model, as different hardware will greatly influence
the application’s runtime. It is important to separate the hardware-related aspects
of the performance model from the application-related aspects, so that different
applications can be modelled given a single hardware model, and likewise so that
a single application’s performance model can be used in the context of multiple

machine models [49].

Performance modelling tools include SNL’s Structural Simulation Toolkit
(SST), which provides a framework for simulating parallel scientific applications
at both the macro and micro levels [65]. SST supports both offline and online
simulation. Offline simulation is where a real application is run on a real machine,
instrumented so as to produce a “trace” of various events of interest, such as MPI
calls. This trace can be played back and further data can be extrapolated from
it. Online simulation is where an application skeleton is constructed, which in part
mimics the real application. Rather than actually running expensive sections of
compute, they are replaced with an estimation of how much time they would have
taken based on application and system data. Online simulation is more flexible than

offline simulation, and is the recommended way to use SST.

Intel’s Software Development Emulator (SDE) allows developers to emulate
the execution of code under architectures other than that which available hardware
implements. For example, an application that has been compiled with future x86
instructions that are not available in currently released hardware. To use SDE,
the developer inserts special start and end markers around a loop body in their
code. The SDE application looks through a compiled binary for these markers,
and performs analysis of the machine code between them. By using knowledge of
instruction latency and throughput, and of the target architecture, SDE is able to

produce various statistics about the expected performance of the code. This allows

19

application developers to prepare their code for future architectures before they
arrive in silico.

The WARwick Performance Prediction Toolkit (WARPP) [33, 34] is a set
of tools designed to automate parts of the performance modelling workflow. It
combines automated source code instrumentation, benchmarking and discrete event
simulation to produce estimated performance figures. The input to a WARPP sim-
ulation is instrumented application source code (capturing the control flow and the
compute), MPI and IO benchmarks, and actual timings produced by the instru-
mented code from a real run. WARPP builds on the earlier Performance Analysis

and Characterisation Environment (PACE) [19] tool.

A survey of other available performance modelling tools has previously been

undertaken by Allan [7].

2.5 Mini-applications

Undertaking performance engineering endeavours on a large production application
is often an arduous process. It’s not unusual for modern scientific codes to reach half
a million lines of code. Making significant changes to such an application can take
months of development and re-validation effort. Mini-applications, or mini-apps,

can alleviate some of this burden.

A mini-application is a small program, usually around 10 to 20 thousand
lines of code, which is designed to mimic the performance characteristics of a partic-
ular production application. For example, the Mantevo suite from Sandia National
Laboratories (SNL) [38, 39] consists of several mini-apps covering a variety of appli-
cation domains including numerical solutions of partial differential equations (both
implicit and explicit, structured and unstructured), hydrodynamics and molecular
dynamics. CloverLeaf [56] is around 15 thousand lines and represents an Eulerian

solution of the compressible Euler equations. miniMD is around the same size,

20

and consists of the basic computational kernels from the LAMMPS molecular dy-
namics package. The small size of these mini-apps has enabled the development of
a great many variants, both using different implementations and combinations of
parallelism, and targeting different machines and processor types. The results of
this work have then fed back into the development of the corresponding production

applications.

2.6 Summary

Modern hardware offers a great many ways for developers to leverage parallelism in
their applications. Indeed, doing so is crucial to getting the most out of the hard-
ware. Performance engineering provides a framework for taking underperforming
applications and identifying and rectifying their weaknesses. Throughout the rest
of this thesis, we apply this framework to studying and improving the performance

of a class of MD applications.

21

Chapter 3

Molecular Dynamics

Molecular Dynamics (MD) is a computational method that uses simulation to study
the dynamical behaviour of systems of particles. The trajectories of N particles are
computed by integrating Newton’s classical equations of motion. MD was developed
in the 1950s by theoretical physicists looking to study such systems but lacking
suitable analytical methods to do so [4, 6, 15, 27]. Today MD is used across a wide
range of scientific fields, including chemical physics, materials science and biophysics.
Well known molecular dynamics codes include LAMMPS [73], NAMD [12, 45, 71,
80], DL_POLY [82] and GROMACS [5].

To accurately capture the motion of atomic-scale particles, the timescale
over which Newton’s equations of motion are integrated must be extremely small. A
single “timestep” is measured in femtoseconds for such simulations. Many thousands
of timesteps must therefore be computed to obtain results over a representative
duration in “real world” time. Considerable research effort has been expended to

make such simulations tractable.

In this chapter, we will explain concepts in 2-dimensional space, for simplicity

of exposition. Everything presented generalises straightforwardly to 3-dimensions.

23

O O O

O
Figure 3.1: An example of the forces acting between particles in an MD simulation.
The yellow line indicates a pair potential between two particles. The blue lines
indicate a three-body potential, and the pink lines indicate a four-body potential.
All the particles exert a non-zero force on all other particles for each such degree. In
practice, these interactions must be approximated. In all simulations we consider,
all higher-order potentials are approximated—only the pair-potentials are calculated
explicitly.

3.1 Computational Aspects of Molecular Dynamics

At a fundamental level, MD simulations must solve the differential equations given

by Newton’s equations of motion [52]:

dv:
mZ% = Z F;; + Z Z Fij i+-+ Z Z i Z Fij jayin-n
J1 a1 Je i J2 IN-1 (3.1)
dmi — v
da

The first of these, is the well-known F' = ma (the acceleration induced in an object
by a net force is in the same direction as the force, proportional to the magnitude of
the force, and inversely proportional to the mass of the object). The second relates
position to velocity. The trajectory of each particle ¢ is calculated based on the
sum of all “pair potentials”—forces F'; ; between i and all other particles j—plus
all three-body potentials, four-body potentials, and so on (illustrated in Figure 3.1).
Such a sum is extremely expensive to calculate. In practice, the interaction energy
is usually largely concentrated in the pair term. Many MD simulations truncate the

series after the pair term and calculate an “effective” pair potential which assumes

24

pairwise additivity and includes the average effects of the many-body terms (and

quantum effects), based on experimental data.

The force terms in Equation 3.1 are typically non-linear functions of the
distances between the particles involved. They fall into two categories: short- and
long-range. Long-range forces are those that do not become negligible over a finite
distance, and therefore require inspection of all particles during calculation. Calcu-
lating long-range forces directly is practically infeasible in most cases, and as such
a variety of approximate methods have been developed such as the Fast Multipole
Method (FMM) [77]. Despite advances in these methods, many MD simulations do

not directly include long-range force terms due to their expense.

Short-range forces on the other hand, do become negligible over a finite
distance. Only particles that fall within a limited “cut-off radius” (r.) need be
considered when calculating short-range forces. Particles outside of this radius make
only a negligible contribution to the total force and do not need to be considered.
The cut-off radius is typically taken as a constant parameter in molecular dynamics
simulations, and a suitable value is determined through knowledge of the physical

processes being simulated.

Short-range forces often dominate the execution time of MD simulations,
therefore the cut-off radius and the particle density (the inverse of the average
separation between particles within the simulation domain, which depends on the
physical processes under simulation) are two quantities that can greatly affect the
overall performance. A larger cut-off radius includes more neighbour particles in
the calculation of each particle’s short-range forces, which is more computationally
expensive. A lower particle density implies that there will be fewer neighbour parti-
cles falling within a given cut-off radius of a particle. A simulation of a gas implies a
lower particle density than a simulation of a solid. This thesis is concerned with the
calculation of pairwise short-range forces, and we now review common approaches

in the literature.

25

3.1.1 Short-Range Force Algorithms

The naive approach to calculating pairwise short-range forces on a given particle is
to iterate through all other particles, calculate the distances between each pair, and
only apply forces for those within the cut-off radius. This takes quadratic time in
the number of particles and is therefore not scalable to larger systems.

This can be accelerated by decomposing the simulation domain into disjoint
uniform axis-aligned square or rectangular “cells”. A list is maintained for each cell
containing the particles resident. Particle-pair lookups are then restricted to a small
neighbourhood of cells within the cut-off radius. This is called using “cell lists”, or
the “link-cell” approach [74, 40, 75, 25, 58, 37].

As cells are square or rectangular as opposed to the sphere indicated by the
cut-off radius, cell lists still carry an inefficiency in the number of particle-pair checks
required. All particles associated with each cell that partially intersects the circle
defined by the cut-off radius must be inspected, despite the likelihood that not all
the particles are truly within the cut-off radius. This is illustrated in Figure 3.2.
We refer to these failing checks as being spurious.

The inefficiency increases as the cell size is increased, as larger cells imply a
greater spatial area that does not intersect the cut-off circle. For example, when the
cells are defined as squares of side 7., the immediate neighbourhood of 9 cells must
be inspected for each particle. This has an area of (3r.)?, which is over 2.8 times
greater than circle of area mr? defined by the cut-off radius. Assuming a uniform
particle density across these 9 cells, 65% of the particle-pair checks are unnecessary.
This increases to 84% in 3-dimensions. While the inefficiency tends to zero with
the cell size (see Figure 3.3), programming overheads will erase the benefit past a
certain point as the number of cells to be inspected increases rapidly as the size is
decreased. Gonnet [32] discusses reducing the inefficiency by sorting cell particles
according to their scalar projection onto the vector connecting the cell centre and

the position of the particle for which forces are being calculated. This strategy

26

AN /|

_/

Figure 3.2: Cell lists are inefficient in the sense that particles are checked that cannot
possibly fall within the cut-off radius. Here the shaded circle represents a particle’s
cut-off radius, and the grid represents a decomposition of the space into cells. All
particles are checked within each cell that intersects the cut-off radius. As some
squares only partially intersect the circle, particles that fall within those cells, but
outside of the intersection, are checked despite not being within the cut-off radius.

allows the algorithm to stop checking distances after encountering the first particle

that falls outside of the cut-off radius, although it introduces its own overheads.

The situation can often be improved by utilising Verlet, or “neighbour”,
lists [84]. This approach was first developed by Loup Verlet in 1967. A list is
maintained per particle, storing only the particles within a certain “Verlet radius”
ry (ry > 7). Rather than building this list every timestep, each list is reused
a number of times (k). Doing so requires knowledge of the maximum distance a
particle can move in a single timestep, called the “skin distance” of the simulation
(rs). This quantity is used to ensure that we do not neglect contributions from
particles within the cut-off radius of a particular reference particle. Particles that
are outside the cut-off radius of the reference particle at timestep n, but which
could possibly enter it before timestep n+ k should be included within the reference
particle’s Verlet list. Therefore, the Verlet radius is set r, = 7. + 2krs (with the
factor two accounting for the situation where two particles are moving directly

towards each other at maximum velocity). It should be noted that Verlet lists and

27

Fraction of spurious pairs

1.5 2

Fo

Figure 3.3: Cell lists—fraction of unnecessary particle-pair checks as a function of
cell size for a fixed r, (assuming 3 spatial dimensions and uniform particle density).

cell lists are not mutually exclusive; cell lists are often an efficient way of building
Verlet lists. Using this strategy, the cost of traversing the cell lists is amortised over
k timesteps.

One disadvantage of Verlet lists is that the number of particle-pair checks is
now tied to the speed at which particles move, which can be undesirable when this
is a large, or highly variable quantity. The rebuild period k should be chosen to
strike a balance between the frequency of expensive list rebuilds, and the increased
size of the lists. It is also clear that the viability of using Verlet lists depends heavily
on the skin distance; it must be small relative to the cut-off radius or the number of
unnecessary particle-pair checks will be too high. Figure 3.4 shows how the fraction
of unnecessary checks increases rapidly with both k& and rs. Nevertheless, many

modern MD codes, including NAMD [71] and LAMMPS [73], use Verlet lists.

Newton’s Third Law

As the force terms are based on relative particle positions, it should be noted that sig-

nificant computational redundancy exists. Following Newton’s Third Law (N3) [52],

28

Fraction of spurious pairs

100 e

Figure 3.4: Verlet lists—fraction of unnecessary particle-pair checks as a function
of rebuild period k and skin distance 7, for a fixed r. (assuming a uniform particle
density).

the pairwise force of particle ¢ on particle j will be the negative of the pairwise force
of particle j on particle i (“every action has an equal and opposite reaction”). This
fact can be exploited to cut the number of force calculations in half, and is used

extensively throughout many MD algorithms.

Spatial Locality

Another type of optimisation involves reordering stored particles such that those
local to each other in two-or-three dimensional simulation space are also local in
the computer’s memory (a one dimensional space). Spatial locality is important in
contemporary computer architectures, whose performance often depends on being
able to work around memory latency by means of reuse within multiple layers of
cache, and the ability to predict and prefetch data likely to be needed in the near fu-
ture. Yao et al. discuss sorting particles along an axis of the simulation domain [89].
Gonnet discusses decreasing spurious distance checks through sorting [32]. An-
derson et al. demonstrate a successful application of a more sophisticated approach,
whereby particles are ordered according to their distance along a space-filling Hilbert

curve [9]. The Hilbert curve is chosen due to its locality preserving properties [63].

29

3.2 Parallelisation of Molecular Dynamics

MD exhibits significant inherent parallelism [14, 29]. Given a set of positions, cal-
culating the acting forces can be done in parallel for every individual particle. The
same is true for updating velocities and positions in accordance with Newton’s equa-
tions of motion. Plimpton [73] describes the three main ways of extracting this

parallelism: particle decomposition, force decomposition and spatial decomposition.

In a particle decomposition, each parallel processor takes a subset of the
particles in the simulation and is responsible for computation of all forces on these
particles, and for updating their trajectories. Even if particles move away from
their initial positions, the same processor retains control for the duration of the
simulation. The advantages of this scheme are that it is simple to implement and
assigns an even amount of work to each processor. The main problem is that in a
distributed memory setting it requires an all-to-all communication operation after
each timestep: each processor needs to know the current position of all particles in
the simulation, and must therefore send all its newly computed particle positions to
every other processor, and receive a copy of every other processors’ in turn. This is

an expensive operation which can seriously inhibit scaling.

This deficiency can be somewhat remedied by using a force decomposition,
where each processor is responsible for a block of interactions in the matrix of
particle-pairs (see Figure 3.5 which contrasts this with the particle decomposition).
Under this scheme processors do not need to know all particle positions, only those

belonging to one of their pairs. This reduces the communication requirements.

Spatial decompositions are entirely different. Rather than taking an arbitrary
subset of either particles or particle-pairs, each parallel processor is responsible for
a sub-region of the physical simulation space. If a particle moves such that it no
longer resides within a given processor’s sub-region it is handed off to the new

processor. This decomposition is the most complicated to implement but has the

30

Figure 3.5: The difference between the particle decomposition and force decompo-
sition strategies for N = 8 particles. The two grids show all particle-pairs, and the
colours indicate which of four parallel processors is responsible for each pair. (a)
shows the particle decomposition and (b) shows the force decomposition.

Figure 3.6: An example of an MD dataset exhibiting significant non-uniformity in
the particle density.

lowest communication requirements of all. Each processor only needs to exchange
particles with processors handling adjacent sub-regions. The price of this efficiency
comes in the form of load balancing: if one processor’s sub-region contains more
particles than the others it will take longer to complete its calculations and hold
up progression to the next timestep. In many simulations this is not a significant
issue, where particles are densely packed and have an approximately uniform density
across the entire simulation domain. Other simulations, particularly biological ones,
can exhibit significant non-uniformity here (see Figure 3.6 for an example that we

will return to in Chapter 5).

3.3 Summary

We summarise the computational MD literature reviewed in this chapter in Ta-
ble 3.1. There is a great deal of work on this subject and this chapter aims to
provide a representative sample of various approaches rather than an exhaustive
list. In this thesis we now move to add another tool to the computational scientist’s
toolbox in the same vein as many of the authors listed above—the work of many
of whom is applicable only to certain kinds of MD simulation. In particular, we
take inspiration from Yao et al. and Gonnets’ ideas on particle sorting [89, 32] and
develop them with respect to simulations with certain characteristics of geometry

and particle mobility (as discussed in Chapter 1), where the approaches surveyed

32

Verlet (1967) [84] Develops Verlet lists to study the thermody-
namical properties of a system of 864 particles
interacting through a Lennard-Jones potential.

Quentrec and Brot (1973) [74] Proposes an algorithm similar to cell lists
where each cell contains at most one particle.

Identifies situations where this method can give
speedups over Verlet lists.

Hockney et al. (1974) [40] Proposes a linked-list based formulation of cell
lists for use in plasma simulations.

Rapaport (1988) [75] Studies the effective vectorisation of cell lists.

Everaers and Kremer (1994) [25] Extends the ideas of Quentrec and Brot regard-
ing cell lists where each cell contains at most
one particle.

Plimpton (1995) [73] Surveys different ways to parallelise molecular
dynamics simulations.
Mattson and Rice (1999) [58] Modifies cell lists by the use of cells of side

smaller than 7. to decrease the number of spu-
rious checks.

Heinz and Hunenberger (2004) [37] Proposes an alternate cell list formulation
which can efficiently handle periodic boundary
conditions, which operates by grouping adjacent
non-empty cells into stripes according to a mask.

Yao et al. (2004) [89] Proposes optimisations to the combination of
cell lists and Verlet lists through partial Ver-
let list updates and sorting data to improve
cache performance.

Gonnet (2007) [32] Proposes a way to accelerate searching cell lists
by sorting particles within cells by their projec-
tion onto a vector connecting two cell centres.

Anderson et al. (2008) [9] Gives a complete implementation of MD algo-
rithms on GPU, paying particular mind to spa-
tial locality.

Pennycook et al. (2013) [70] Explores the implementation of MD algorithms
on Intel’s Xeon Phi coprocessor, paying partic-
ular attention to effective vectorisation.

This work Proposes an alternative to cell lists and Verlet
lists based on sorting particles across the whole
simulation domain by their projection onto a
particular vector.

Table 3.1: Summary of the developments in computational MD covered in this
chapter, and how this thesis fits in.

33

above may not yield good performance.

34

Chapter 4

Projection Sorting

In this chapter we propose the projection sorting algorithm, an alternative approach
to computing pairwise short-range forces as discussed in Section 3.1.1, as an answer

to Research Question 1 (RQ1):

Conjecture: It is possible to accelerate pairwise short-range force cal-
culations relative to classic MD methods by taking closer account of
the domain-specific properties of the simulation (such as non-uniform

particle density).

RQ1: How might an algorithm designed to accelerate an MD simulation

in accordance with the above conjecture look?

Section 4.1 contains a description of the projection sorting algorithm and explanation
of the steps involved. We then provide an illustrative example in Section 4.2. In
Section 4.3 we discuss the computation complexity of projection sorting, and its
inherent scope for optimisation. Finally, in Section 4.4, we compare and contrast the

algorithm to Verlet lists, the state of the art in pairwise short-range force calculation.

35

Figure 4.1: 2-dimensional illustration of projecting two position vectors onto the
z-axis. Equation 4.1 clearly follows from Pythagoras’ theorem.

4.1 Description of the Algorithm

When two particles are separated by a distance greater than r. along any vector
v, the Euclidean distance between them cannot possibly be less than r.. This fact
forms the crux of the projection sorting algorithm, and is formalised for two particle
position vectors a and b and an arbitrary unit vector v in Equation 4.1. Figure 4.1
demonstrates the statement graphically—where v is set to the unit vector in the
direction of the z-axis (¢). It can be seen that the projection of the two position
vectors onto ¢ forms a right-triangle with the vector a —b. Equation 4.1 thus follows
directly from Pythagoras’ theorem, which has the corollary that the hypotenuse must

be at least as long as the adjacent.

Vo,a,b € R3 |(a—b) 9| <|a— b (4.1)

It follows that if one were to order the set of particles in a MD simulation

36

by the scalar projections of their position vectors onto a vector v, then for each
particle there would exist a contiguous block of other particles either side in that
ordering, limiting the search space for possible neighbour particles within r.. Only
particles within this block could possibly be within the cut-off radius. Note that this
is a necessary condition, but not a sufficient one; a full distance check must still be
carried out to ensure that the particle is within r. for all possible values of v. The
crucial point is that, outside of this block, all other particles could be disregarded
completely. In a sense, this is like a 1-dimensional formulation of cell lists, except
the lists are implicit in the particle ordering, rather than explicitly built, stored
and traversed at each iteration. This leads to the following three step algorithm for

computing pairwise short-range forces:

1. Selecting v: The first step is to select a suitable vector v to use for cal-
culating the projections. For a simulation with non-uniform particle density,
the choice of v can greatly impact the number of particles for which the pro-
jections fall within the cut-off radius r.. Imagine a configuration of particles
where all are positioned along a straight line. Choosing v to be perpendicular
to this line would result in all projections being the same, whereas choosing
the line itself would spread the projections out as much as possible, and con-
sequently minimise the number of distance checks and maximise performance.
Figures 4.2b and 4.2¢ below demonstrate how the choice of v can impact the
number of distance checks that need to be performed. In general the choice
of v should be informed by knowledge of the specific simulation, and should
ideally maximise the difference between any pair of particle projections. Pos-
sible ways of determining a reasonable value for v in general include principal
component analysis [46] and linear regression [62]. The vector v need not be
reselected every timestep (or indeed ever, depending on the simulation), but
instead only when the conformation of particles changes in such a way that it

is rendered suboptimal.

37

2. Particle sort: The particles are then sorted according to their scalar pro-
jections onto w. Scalar projections are calculated by taking the dot product
of the particle position vector and the vector ©. This creates a 1D spatial

ordering within which forces can be efficiently calculated.

3. Force sweep: In order to calculate the pairwise short-range forces on particle
1 due to its neighbours, loop over all particles j, where 5 is bounded by kj, and
kni, the first particles below and above ¢ respectively for which the difference
between the scalar projections of j and i onto v exceeds r.. It is guaranteed
by Equation 4.1 that no particle outside this set will fall within the cut-off
radius. For each j, calculate the distance ||a@ — b||. If this is less than 7., then
j is a neighbour of ¢ and the application-specific force between the two can
be calculated and added to the total force on i. The neighbour search space
can be further reduced to particles i < j < kp; by using N3, applying the

complementary negative force to each particle j.

It should be noted that the calculation of the scalar projections in Step 2
can be obviated by a change of basis at the start of the simulation. Changing the
basis such that © corresponds to a basis vector allows simply using that particle
coordinate as the sort key. Whether this is appropriate depends on the simula-
tion in question, specifically whether any other parts of the code necessitate use of
the original coordinate system (for instance, file I/O using a file format expecting
particle positions relative to the standard basis). Computationally speaking, cal-
culating scalar projections is a cheap operation, and only needs to be performed
once per timestep, so a change of basis is unlikely to yield significant performance

improvements.

38

—0

(b) ()

Figure 4.2: 2-dimensional illustration of projection sorting. Imagine we have 14
particles as shown in (a) (numbers indicating some possible in-memory ordering),
and that we wish to determine which particles are within the cut-off radius of the
filled particle 8 (the cut-off radius being marked by the dashed circle). We can see
that there are 3 such particles: 5, 6 and 7, but how would the computer determine
this? (b) and (c) show the calculation of the projections onto two possible values for
v. In (b) we choose v as the vector connecting the two endmost particles, whereas
in (c) we use a vector perpendicular to this. The thick arrows show the projection
of the cut-off circle onto v in each case, which defines the search area for candidate
particles. Particles whose projections fall into this region are hatched. In (b) there
are 5 such particles, whereas in (c) there are 11. We must perform full distance
checks for all of these particles, so (b) is clearly the better choice for v.

39

1| for (i = 0; i < nb; i++) {
2 projs[i]l = p_x[il * vx + p_y[il * vy + p_z[i] * vz;

3|}

Listing 3: C-like pseudocode demonstrating the calculation of scalar projections onto
the unit vector v (with components vx, vy and vz) from the nb particle positions
in 3-dimensional space (stored in p_x, p_y and p_z).

4.2 TIllustrative Example

As a simple example, let us consider the case presented in Figure 4.2. Figure 4.2a
shows the setup: we have 14 particles arranged in the zy-plane (numbered arbitrarily
according to some initial in-memory ordering), and we wish to calculate the pairwise
short-range forces on the filled particle number 8. The circle indicates the cut-off
radius for this particle, which contains 3 other neighbour particles numbered 5, 6
and 7 (although an implementation could not look at this diagram to see this).

The first step in the projection sorting algorithm is to select some vector
v which we will use to calculate the particle projections. Figure 4.2b shows the
vector between the two endmost particles. It is clear from this diagrammatic per-
spective that this choice does a good job of spreading out the particle projections
(indicated by the dotted lines). Figure 4.2c shows the projections we would get if we
used the line perpendicular; note that more particles fall within the marked range
here, indicating that more full distance checks need to be carried out (at additional
computational expense). In practice the selection of v would be based on some
knowledge of the dataset, and would ideally spread out the set of projections as
much as possible. In the experiments in Chapters 6 and 7 we actually do use the
strategy of picking the two endmost particles, as we know the dataset is laid out in
a long stripe.

The next step in the algorithm is to actually calculate and sort the scalar
projections of the particle positions onto v (taking v as shown in Figure 4.2b).
Figure 4.3 shows the resulting values of these calculations. Figure 4.3a gives the

particle position vectors and © and the first row in Figure 4.3b shows the calculated

40

Particle # T Yy

1 -3.80 0.48
2 -2.70 -0.77
3 -1.00 0.45
4 0.22 0.20
5 -1.10 -0.76
6 -1.30 -1.30
7 -0.82 -1.80
8 -0.45 -0.99
9 0.82 -0.52
10 1.30 -0.79
11 094 -1.10
12 110 -1.90
13 2.80 -1.80
14 3.80 -2.13
v 0.95 -0.32
(a)

Projections (unsorted)
1 2 3 4 5 6 7 8 9 10 11 12 13 14
-3.76 -2.32 -1.09 0.14 -0.80 -0.82 -0.20 -0.11 095 1.49 124 1.65 3.24 429

Projections (sorted)
1 2 3 6 5 7 8 4 9 11 10 12 13 14
-3.76 -2.32 -1.09 -0.82 -0.80 -0.20 -0.11 0.14 095 1.24 149 1.65 3.24 4.29

True distances
1 2 3 6 5 7 8 4 9 11 10 12 13 14
- - 1.54 090 0.69 0.89 - 1.37 - - - - - -

(b)

Figure 4.3: Worked example of projection sorting for the scenario in Figure 4.2b.
(a) shows the xy-positions for each particle (numbered as in Figure 4.2a), and the
components of v. In this example, we take r. = 1, and wish to calculate the
neighbours of particle 8. The first row in (b) shows the projections calculated from
this data, ordered by particle number. In the second row these are sorted, and the
shaded cells show the range of particle projections within the range —0.11 £ .. In
the final row, the true distances are calculated for these 5 candidate particles using
d= /(2 —21)2 + (y2 — y1)2. 3 of these distances are less than r., corresponding
to particles 5, 6 and 7 as expected.

41

projections. Listing 3 gives some example code for calculating the projections: a

simple dot product.

Next we must use the projections to determine which of the particles are
candidate neighbours for particle 8. Although it is clear from Figure 4.2b which
projected particles fall within the cut-off radius (the hatched particles), it is not
so easy for the computer to efficiently determine. This is where the particle sort
comes in. Sorting the particles by their scalar projection means that we can step
through the particles either side of the filled particle in order of projection, and
therefore know that when we reach the first particle that is out of range, there are
no other possible candidate particles. This sorted order is shown in the second line of
Figure 4.3b, and the shaded block of projections indicates the candidate neighbours

for particle 8.

Finally we calculate the true neighbours of particle 8, which are guaranteed
by Equation 4.1 to be within the set of candidate neighbours identified by the con-
tiguous block of shaded projections. For each candidate neighbour we calculate the
true distance between it and particle 8 using the typical formula. The results of these
calculations are shown in the last line of Figure 4.3b, and the true neighbours (those
for which the distance is less than r. = 1) are shaded green. As expected, these
correspond to the particles within the cut-off radius originally shown in Figure 4.2a.

This concludes the projection sorting algorithm.

4.3 Complexity & Scope for Optimisation

We can deduce the algorithmic complexity of projection sorting as follows. Assuming
N particles, calculating projections is O(N). Sorting is commonly taken to be
O(N log N), however this may often be a loose bound for our purposes. The ordering
in an implementation of projection sorting will not change much from timestep

to timestep, and can therefore use the previous timesteps ordering as a “nearly

42

sorted” starting point, which brings the complexity closer to O(NV) for some sorting
algorithms (e.g. Insertion sort). For each particle we must then step through the
set of candidate neighbours (let us call this set C(i) for particle 7). If we let M =
(Zf\;l |IC(7)|)/N (the mean size of C(i)), then this is O(NM). Therefore the total
complexity is O(N (1 +log N + M)). The algorithmic efficiency therefore hinges on

M being “small enough”, which is a property of the simulation in question.

Complexity is not the only factor on which performance depends however,
and a key advantage of projection sorting is the ability to implement it in an efficient
way with respect to modern hardware. The particle sort, in addition to restricting
the search space for true neighbours, gives another advantage. We can combine
the force calculations with the distance checks into a “stepping” algorithm, which
lets us reuse distance information, as well as knowing that memory accesses will
be efficient as all data is contiguous in memory. As modern applications are often
memory-bound, this memory efficiency is a crucial property of projection sorting.
Listing 4 gives pseudocode for a simple implementation of this algorithm (assuming
pre-sorted arrays), where for each particle i (e.g. the filled particle in Figure 4.2),
the candidate neighbours j (the 5 hatched particles in Figure 4.2b) are identified
by stepping through the sorted arrays in both directions, a full distance check is
performed for each j, and if that check is passed (i.e. if j is within the original
cut-off radius illustrated in Figure 4.2a), then the force on i due to j is calculated
and added to the total force on i. We do not illustrate the sorting here, as for the

purposes of exposition any sorting algorithm will do.

4.4 Preliminary Comparison to Verlet Lists

When seeking to compare projection sorting to Verlet lists, it is helpful to break
each algorithm down into two parts: periodic computation and force computation.

Periodic computation refers to work that needs to be done in preparation for the

43

1| for (i = 0; i < nb; i++) {

2 fxi = 0.0;

3 fyi = 0.0;

4 fzi = 0.0;

6 // step in one direction

7 for (j =i + 1; j < nb; j++) {

8

9 // are we stepping out of the block of candidate neighbours?
10 if (projs[j] - projs[i] > rc) break;
11

12 // full distance check

13 dx = p_x[j] - p_x[il;

14 dy = p_y[3] - p_y[il;

15 dz = p_z[j]l - p_z[il;

16 dsq = dx*dx + dy*dy + dz*dz;

17 if (dsq <= recsq) {

18

19 // force calculation

20 coeff = /* app-dependent */;

21 fxi += coeff * dx;

22 fyi += coeff * dy;

23 fzi += coeff * dz;

24 }

25 }

26

27 // step in the other direction

28 for (j =1i-1; j>= 0; j—-) {

29 if (projs[il - projs[j] > rc) break;
30 /7

31 // as above

32 /.

33 }

34

35 // accumulate forces on particle i due to neighbours
36 f_x[i] += fxi;

37 f_yl[il += fyi;

38 f_z[i] += fzi;

30 | }

Listing 4: C-like pseudocode demonstrating the final part of the projection sorting
algorithm. It is assumed that the projs array contains scalar projections of each
particle position, and that this array and the position arrays p_x, p_y and p_z
are all sorted on these projections. The resulting force arrays £_x, f_y and f_z
will also be sorted in this manner. The conditionals with the break statements on
Lines 10 and 29 represent the points where the algorithm checks whether the pro-
jections of particles 7 and j are within range of each other. Immediately afterwards,
a full distance check is performed. If this succeeds, the force between the pair of
particles is calculated.

44

force computation: for Verlet lists this is building the lists themselves, including
constructing cell lists, which needs to be done every k timesteps. For projection
sorting this includes calculating particle projections and sorting the particles by
said projections, which needs to be performed before every force computation. We
call this “periodic” as, in the case of Verlet lists, it doesn’t need to be done every
timestep.

Force computation refers to using the precomputed information to calculate
forces for a given set of particle positions, which must be done every timestep for
both projection sorting and Verlet lists. In this section we discuss some of the

trade-offs between projection sorting and Verlet lists.

4.4.1 Periodic Computation

The algorithmic complexity of the construction of cell lists (i.e. binning each particle
depending on the cell it is in) particles is O(N) (calculating the cells and adding each
particle to the appropriate list). Let S(i) be the set of particles in cell i. Construction
of each particle’s Verlet list depends on the contents of the surrounding 3 x 3 x 3
cells. Let K = max; |S(j)|, the size of largest cell. Then constructing all Verlet lists
is O(NK) (omitting the constant factor 3% = 27). Therefore the total complexity
of the periodic computation associated with Verlet lists is O(N(1 + K)). Above
we derived the complexity for projection sorting, and the part of this pertaining
to periodic computation (calculating and sorting projections) is O(N(1 + log NV)).
Therefore we are interested in the value of K, and how this compares to log V.
The value of K depends on the size of the cells, which depends on the value of
Ty, which in turn depends on the parameters to the simulation (r¢, rs, k etc.). In
addition to the dependence on r,, the number of particles in each cell also depends
on the geometry of the simulation; in a simulation with significant non-uniform
particle density, we would expect some cells to contain many particles, whereas

others would contain none. Bringing in an example from an experiment we run in

45

Chapter 6, with N =128,000 we have log N ~ 17 and K = 44 (the maximum cell
list size, although the mean non-empty cell list size is 7.1).

As previously mentioned, the algorithmic complexity is only one factor in
performance. If we directly compare the linear (O(N)) terms discussed above (cal-
culating projections and constructing cell lists), we find that computing a collection
of N dot products (as is necessary for the projection calculation) is much cheaper
on modern hardware than appending N items to many distinct lists (as is necessary
for the cell list construction). This is because FLOPs are cheaper than memory
accesses. Constructing cell lists is also more difficult to parallelise, as threads need
to serialise their access to the shared cell lists to avoid race conditions.

Additionally we must remember that in the case of Verlet lists, the periodic
costs are amortised over k timesteps, whereas the projection sorting costs occur
every timestep. In short it is not easy to theoretically compare these periodic costs.

We explore them empirically in Section 6.3.2.

4.4.2 Force Computation

Let L(i) be the length of the Verlet list associated with particle i. Then let
Q = (2N |L£()])/N, the average length of all Verlet lists. The algorithmic com-
plexity of the force computation phase when using Verlet lists is then O(NQ). We
have from Section 4.3 that the corresponding complexity for projection sorting is
O(NM), where M is the average number of candidate neighbours per particle.
These complexities are therefore directly comparable with empirical values of) and
M for a given simulation. We perform this comparison in Chapter 6.

Complexity aside, a key advantage of projection sorting is the highly con-
tiguous memory access pattern it affords during the force sweeps. As the particles
are sorted they are accessed in a linear order, which allows the memory subsystems
to work at peak efficiency, and enables highly efficient SIMD vectorisation. Runtime

analysis of hardware counters reveals that around 99.8% of memory accesses during

46

the force sweeps hit L1 cache (see Chapter 6). This stands in stark comparison to
Verlet lists, which require sophisticated gather/scatter memory operations on every
access.

Another key metric is the number of particle-pair checks performed by each
algorithm (previously discussed in Section 3.1.1). The number of checks is a good
predictor of an algorithm’s performance [86]. Whether projection sorting or Verlet
lists require more spurious checks depends on the skin distance, rebuild period,
and overall particle conformation. Typically, projection sorting will require fewer
checks along the axis of projection, but more along orthogonal axes. This is because,
along the axis of projection, projection sorting only searches for neighbours up to
r., whereas Verlet lists searches up to r, > r.. Along orthogonal axes however,
projection sorting must check all particles in the domain, whilst Verlet lists still

only needs to search up to r,.

4.4.3 Communication Costs

As MD simulations are almost always executed on clusters nowadays, it is instruc-
tive to look at the effect an algorithm might have on the communication costs of
particle data between nodes. When implementing a distributed-memory paralleli-
sation of MD using a spatial decomposition (note that here we are referring to a
decomposition of the simulation domain between nodes, distinct from the spatial
decomposition performed as a part of the cell list algorithm, see Section 3.2), ad-
jacent processors need to share particle data so that particles on the edge of their
subdomains have access to particles within their cut-off radius, but owned by an-
other processor. As Verlet lists are constructed based on 7, > r., they require more
data from adjacent processors than projection sorting does. The amount of commu-
nication increases cubically with an increased cut-off radius, so can be significant.
Conversely, projection sorting needs to communicate more frequently, so again we

have a trade-off dependent on skin distance.

47

4.4.4 Comparing Projection Sorting and Verlet Lists in Practice

In Chapters 6 and 7 we will seek to compare projection sorting and Verlet lists em-
pirically. As these two methods operate in a fairly distinct manner, it is important
that these comparisons are carefully considered to avoid an “apples-to-oranges” sit-
uation. At a high level, we are seeking to determine the fastest available way to
execute a given simulation. We assume that this runtime is principally bound by
the time taken to compute short-range pairwise interaction forces (as is often the
case in MD simulations). Projection sorting and Verlet lists are both methods for
computing these forces, and we assume that substituting one method for the other
does not change either the results of the simulation or any aspect of the applica-
tion performance under consideration other than the time taken to compute these
forces, and the initialisation time (which is discounted as negligible in the context
of a long running simulation). This is a reasonable assumption as most applications
are broken up into independent parts which do not interact; this is standard software
engineering practice.

As a consequence of the above, we can focus our attention on the individual
implementations and parameterisations of the two algorithms. As Verlet lists are
the de facto standard for computing short-range pairwise interaction forces in MD
simulations (discussed in Chapter 3), the optimised implementation thereof is well
studied. We will draw from the literature to ensure that our implementation of
Verlet lists is as performant as possible on the architectures we will consider.

As is also discussed in Chapter 3, Verlet lists require selection of two principal
parameters dependent on the particular application in question: the skin-distance
rs and rebuild period k. In order to ensure that we choose the values giving the
best possible performance, we will perform a full parameter sweep and select the
best performing values.

Given the above considerations, we believe that the empirical comparisons

we present in the remainder of the thesis are not biased in favour of either projection

48

sorting or Verlet lists, and purely reflect which of the two gives the best performance

in the context of the application in question (which we discuss in the next chapter).

4.5 Summary

Projection sorting is an algorithm for computing pairwise short-range forces in MD
simulations. It is designed to work in simulations where the particle density is
non-uniform: some areas have many particles and others have none. Projection
sorting works by creating a linear ordering of particles dependent on each particle’s
scalar projection onto a certain unit vector ©. The remainder of this thesis seeks to
show that choosing a suitable vector and ordering particles in this manner can yield

speedups over traditional methods.

49

Chapter 5

A Simulation of Chromosome

Condensation

In this chapter, we introduce a modern MD simulation of chromosome condensation
from Cheng et al. [20], which we use as a vehicle for the implementation of our ideas
described in Chapter 4 and elaborated throughout the remainder of this thesis.

In the search for a suitable candidate application for the evaluation of a new

algorithm, the primary relevant characteristics are as follows:

e Domain characteristics. The intuition behind projection sorting implies
that it would be most effective in simulations which exhibit significant non-
uniformity in particle density across the simulation domain, so we would like
an application that exhibits these characteristics. Projection sorting is also
designed to calculate short-range forces, so a suitable application should be

heavily dependent on the efficient computation of such forces.

o Size (lines of code). A production molecular dynamics package is unsuitable
as a testbed for new ideas and low-level optimisation work, as they typically
involve hundreds of thousands of lines of code implementing a variety of nu-

anced physical models which are irrelevant to the algorithmic underpinnings.

51

Small applications, or mini-applications, require less work while still providing

representative performance results.

e Scientific value. Ideally the code would be seeing active use, so that our

optimisation work has impact.

The simulation from Cheng et al. fits well with all three of these. It exhibits
a high degree of non-uniformity in particle density and spends the majority of its
execution time in pairwise short-range force calculations. It is also small, consisting
of approximately 7000 lines of code, and is actively being used by domain scientists
at Cancer Research UK.

Other small MD applications, and MD mini-applications, exist, such as min-
iMD and CoMD from the Mantevo mini-application suite [39]. However these focus
on the simulation of homogenous materials exhibiting unsuitable domain character-
istics for effective use of the projection sorting algorithm.

We first provide a description of the simulation from Cheng et al. itself,
enumerating the main computational aspects which are relevant to this thesis. We
then briefly discuss some general optimisations we made to the simulation that are
not related to projection sorting. In Chapter 6 we implement projection sorting and
evaluate its performance in a shared memory environment, and in Chapter 7 we do

the same for a distributed memory environment.

5.1 Chromosome Condensation

Genomes can be large—the DNA comprising the human genome is approximately
2m long when stretched out. In order to fit inside the nucleus of each cell, the DNA
is wrapped around many bundles of proteins to form packaging units called nucleo-
somes, collectively comprising a structure called chromatin. Chromatin’s structure
varies with the cell cycle; when the time comes for the cell to divide, it moves from

the loose conformation of nucleosomes and DNA linkers (often likened to “beads

52

Figure 5.1: A visualisation of one of the datasets used—a conformation of yeast
DNA dotted with nucleosomes.

on a string”) to a more tightly compacted version typically associated with chro-
mosomes. This process is known as chromosome condensation, and it is thought
to be affected by protein complexes known as condensins, although exactly how it
happens is currently not well understood.

Current research looks to leverage computational techniques to answer this
question. The simulation from Cheng et al. is used to study the effects of different
models of condensin interaction on the condensation of conformations of nucleosomes
and linker DNA determined via in vitro methods (see Figure 5.1). The optimisations
presented throughout this thesis are instrumental in making it feasible to run the

lengthy simulations required.

5.1.1 Simulation Forces

The simulation treats the nucleosomes as uniform particles in an MD simulation,
with radius 5nm. The DNA linkers are modelled as ideal springs following Hooke’s
law (which states that the force required to extend or compress a spring by a given
distance scales linearly with that distance [52]), connecting each nucleosome to the
next. Nucleosomes are free to move according to Brownian motion, subject to certain

constraints:

o Tension forces exerted by DNA linkers (modelled as ideal springs);

¢ Repulsion forces between nucleosomes that are intersecting, or very close to

93

each other;

e Angular tendencies between adjacent DNA linkers;

e Optionally: interactions between “condensin binding sites” spaced along the

string.

In the original implementation, the vast majority (~95%) of the runtime is
spent computing the repulsion forces that prevent particles from overlapping. This

kernel is an excellent candidate for the projection sorting algorithm.

Repulsion Forces

Two nucleosomes cannot occupy the same area in space at the same time. In order
to enforce this in the simulation, a force is included that repels pairs of nucleosomes
whose centres come very close to each other. Figure 5.2 illustrates the magnitude
of this force as it varies by distance. 15 nm is the cut-off radius r. outside which no
repulsion forces apply between two nucleosomes, and is equal to twice the nucleosome
radius of 5nm plus an extra 5nm to deter possible collisions on the next timestep.
c3 is an experimentally determined value set to 10 pN.

This is a spatial force: it applies between close nucleosomes, independent of
their “string order” as connected by DNA linkers. This is analogous to Van der
Waals [87] forces in other MD simulations, where a combination of cell lists and
Verlet lists are often used to facilitate computation. In the original implementation

of this simulation cell lists were used exclusively.

Condensin Interaction Forces

The application supports two distinct modes of simulation, each representing a
different phase of the cell cycle: interphase and mitosis. Mitosis simulation differs

from interphase simulation in that it includes additional forces between “condensin

o4

fld)=cs3

Force magnitude (pN)

o f(d):W N

0 10 15
Separation distance d (nm)

Figure 5.2: Repulsion force on nucleosome pairs within 15nm. A force of 10pN
repels pairs within 10 nm, which then falls off rapidly to near-zero at 15nm. After
15nm, no repulsion forces apply. c3 is an experimentally determined value, set to
10 pN.

95

binding sites”, which correspond to points on the string which are rich in specific
“condensin” proteins.

On average every 48th nucleosome is designated a condensin binding site,
When simulating mitosis, these sites may bind together for extended periods, caus-
ing the condensation of the chromosome over time. Cheng et al. [20] test various
hypothetical models for these interactions and compare the results between simula-
tions where no condensin interaction forces are applied against each model in turn,
and see which best fits the experimental data.

These forces are also spatial in nature. For two sites to bind together, they
must come within 40nm. When this occurs, sites remain bound until either they
are pulled apart by other forces, or a “dissociation event” occurs, which has a small
probability of happening each timestep. When two sites dissociate, they enter a
cooldown period of three timesteps, during which they may not rebind. When
two sites are bound, forces regulate the distance between them, which averages

c5; = 30nm.

Linear Forces

The tension forces and angular tendencies are products of the DNA linkers. They
apply between adjacent nucleosomes in string order, hence we refer to them to-
gether as linear forces. Figure 5.3 demonstrates how these forces are applied in
the simulation. Tension forces regulate the distance between adjacent nucleosomes,
implemented based on Hooke’s Law for ideal springs. This has the interesting side
effect of enforcing some level of spatial locality (see Section 3.1.1) as an inherent
property of the simulation. That is to say, when the nucleosomes are stored in mem-
ory based on string order, they are implicitly partially ordered spatially, due to the
tension forces preventing adjacent nucleosomes in string order from becoming spa-
tially distant. The spring constant is set Ky = 50 pNnm~! and the relaxed spring

length co = 15nm, both based on experimental data.

96

Figure 5.3: Linear forces: the solid lines indicate the tension forces applied by the
DNA linkers on the filled nucleosome and its neighbours. The dashed line indicates
a weak force designed to regulate the angle 1) between each triplet of consecutive
nucleosomes.

The relative angles by which the DNA linkers emanate from each nucleosome
are regulated by a weak force between alternating pairs of nucleosomes. The forces

are tuned such that the mean value of ¥ = 70° based on experimental data.

Entropic Forces

The Brownian motion is implemented by applying an independent, randomly di-
rected force of magnitude ¢; = 24.5 pN to each nucleosome. This force simulates the
action of diffusion within a cell and produces movement consistent with experimental

data.

The simulation uses the midpoint method, a second-order Runge-Kutta method [36],
to numerically calculate nucleosome trajectories based on the forces above. This is

illustrated in Equation 5.1.

- . At
xt+£ = Tt + 7ft
: (5.1)

Terar = Te + Atfy,

Given nucleosome positions at time ¢, Z;, the acting forces f; are calcu-

o7

—

lated. These are used to calculate the “midpoint” positions, #, a:, where At rep-
2
resents an in silico timestep. Each in silico timestep corresponds to approximately
1.69 x 1075s. Forces are then calculated again for these new positions, f; yat, and
2

finally used to calculate the updated positions at time ¢ + At, iy a¢. Experiments

need to run for up to 40 x 106 in silico timesteps.

5.2 Optimisations

Prior to using the simulation in our experiments we performed some optimisations,
both to assist the domain scientists, and to ensure that the code was fit for comparing

short-range force algorithms.

5.2.1 Parallelisation

The original implementation of the simulation was serial so our first step was to
parallelise it. We chose to do this with OpenMP [69], as a widely supported and
understood open standard. As this is a shared memory parallelisation we chose
to use a particle decomposition (see Section 3.2). Each thread takes a contiguous

length of the string and is responsible for all nucleosomes within.

5.2.2 Cell Lists and Verlet Lists

It was mentioned above that the original implementation used cell lists to calculate
repulsion forces, and that these calculations consumed around 95% of the overall
runtime. Given the small cut-off radius in this simulation, it is desirable to construct
cell lists based on a fine decomposition, otherwise there will be many spurious checks.
Calculating these naively (by allocating a three dimensional array of bins) uses an
infeasibly large amount of memory, which increases cubically with the problem size.
As we wish to test the simulation over a variety of datasets, we implemented an

alternative approach using a lock-free hash map (based on Margais et al. [57]) to

98

construct the lists in a much smaller amount of space, without sacrificing high
performance when running multiple threads.

We then implemented Verlet lists on top of this optimised cell list con-
struction. Verlet list rebuilds and force computation using Verlet lists were hand-

vectorised as described by Pennycook et al. [70].

5.2.3 Linear Forces

The tension and angular forces were originally calculated separately. As they both
require scanning through the particles in string order we obtained a speedup by

combining their calculation into a single “linear” kernel.

5.2.4 Entropic Forces

The original Pseudo Random Number Generator (PRNG) used is not thread safe.
We replaced this with one that is thread safe, and also amenable to compiler auto-
vectorisation. This came at a slight performance cost as the substitute generator

uses more state (providing higher quality random numbers).

For the results of these optimisations we refer the reader to our comparison of the

original and optimised simulation in Section 6.5.

5.3 Summary

In this chapter we have discussed the basic theory and implementation of the sim-
ulation which we will use as the basis for the experimental part of the work in
Chapters 6 and 7. Specifically we have covered the physical justification for each of
the forces included in the simulation, specific parameters in the implementation and
some of the computational factors. We briefly surveyed some basic optimisations
that we made in preparation for the work in the upcoming chapters. We now move

to implementing and evaluating the projection sorting algorithm.

99

Chapter 6

Implementing Projection

Sorting On-node

In Chapter 4 we described the three phases of the projection sorting algorithm,

which we list again here:

1. Selecting axis of projection v;
2. Calculating and sorting particle projections;

3. Calculating forces based on projections.
In this chapter we propose an answer to Research Question 2 (RQ2):

RQ2: How might [projection sorting] perform (and how might it be best

implemented) in a shared-memory parallel environment?

To do this we implement projection sorting in the context of the simulation described
in Chapter 5. Specifically we reframe the calculation of the repulsion forces in terms
of projection sorting. We then compare the implementation empirically against

Verlet lists, the state of the art for pairwise short-range force computations.

61

In terms of hardware, we implement two versions: Intel Haswell and Intel
KNC. We chose these architectures so as to represent both the multi- and many-
core architectures which dominate the HPC landscape today. An alternate popular
choice for many-core implementations is NVIDIA’s GPU architectures. We decided
on Xeon Phi on the basis that MD on GPU is already well studied: the explosion in
popularity of GPGPU programming has left few scientific fields untouched. Xeon
Phi is a much newer architecture whose characteristics, advantages and disadvan-

tages are less well understood.

6.1 Experimental Setup

Throughout this chapter and the next we present experimental results based on our

implementations. Below we summarise the setup for these!.

6.1.1 Datasets

The initial dataset described by Cheng et al. [20] was derived from a budding yeast
cell and contains 2000 particles. For three main reasons, this is not large enough for
the experiments that we conduct in this chapter and in Chapter 7. Firstly, the cited
work from Cheng et al. represents an initial foray into this area, with the intent to
continue with larger datasets in the future. Therefore we need to ensure that our
algorithm is still effective as the dataset size increases. Secondly, we wish to stress
the memory subsystems of the hardware involved, and to do so we need large enough
datasets that do not fit into the higher levels of the memory hierarchy. Thirdly and
finally, the scaling studies that we conduct require larger datasets. For example, if
we were to strong scale a simulation of the 2000 particle dataset to 512 cores, each
core would only be responsible for approximately 4 particles, at which point scaling

would obviously be limited by programming overheads.

!Note that there are some differences in the setup for the experiments in Chapter 7, which we
cover in Section 7.1.

62

As no larger real datasets were available while this work was being under-
taken, we generate extended versions of the original using statistical methods. Syn-
thetic datasets were generated for Neg,: = 2k.103, 2 < k < 11. The largest of these,
with 211 - 102 = 2,048,000 particles, satisfies the above criteria. Below we describe

the process used to create these datasets.

We define three normal distributions, each parameterised using the sample
mean and sample standard deviation of the positional differences between successive
particles in string-order along each axis, x, y and z in the original dataset. There are
N particles, and therefore N — 1 differences. Equations 6.1, 6.2 and 6.3 show how
these quantities are calculated. We represent the difference between the positions of
particles ¢ and i + 1 by A;, the component-wise sample means of these differences

by w, and the component-wise sample standard deviations by o.

Al’ =Tj4+1 — L4 (61)
1 N-1
n= N_1 ; A; (6.2)

o \/Zz]'\i_ll(Ai —p)? (6.3)

We then generate new conformations of length N.;; particles by sampling
these distributions to perform an N, — 1 step random walk. Starting by placing
a particle at the origin, the walk proceeds by sampling each normal distribution to
construct an offset from the current position, and placing a new particle at that

point. The construction of the position of particle i 4 1 from the position of particle

63

1 is shown in Equation 6.4.

L1 = 0
(6.4)

i1 =x; + (Nm(ﬂza Ur)aNy(Ny7a'y)aNz(Nza U'z))

Finally condensin binding sites are placed randomly on average every 48 par-
ticles. After generation we simulate the conformation in interphase (see Section 5.1.1
for discussion of the difference between interphase simulation and mitosis simula-
tion) for 100,000 timesteps to reach a stable state, free of artefacts caused by the
random walk process. These artefacts can include particles being placed within re-
pulsion range of each other, far enough apart that tension forces pull them together,
or in configurations requiring angular correction (see Section 5.1.1 for discussion of

these forces).

6.1.2 Machine Specifications & Compilation

To run the experiments, two machines were used. Firstly, Tinis, a cluster at the
University of Warwick consisting of 203 nodes, each with 2 Intel Xeon E5-2630 v3
processors, for 3488 cores in total. Each node is equipped with 64 GB of RAM.
Single Tinis nodes were used to run the Xeon experiments.

Secondly we used Chiron, also located at the University of Warwick. This
machine is host to several accelerator nodes, 2 of which are equipped with 2 Intel
Xeon Phi 7120P coprocessors. Single coprocessors were used to run the Xeon Phi
experiments. We refer the reader to Table 6.1 for more details.

All code was compiled using the Intel C++ compiler, v15.0.4 with the fol-
lowing performance flags: -03 -ansi-alias -qopt-assume-safe-padding -ipo
-qopenmp. In addition, ~qopt-threads-per-core=T was used, with T set to the
number of hardware threads in use per core (usually 1 on the CPU and 4 on the co-

processor for best performance). CPU AVX2 vectorisation was forced with -~xCORE-

64

Xeon E5-2630 v3 Xeon Phi 7120P

Socketsx Coresx Threads 2x8x%2 1x61x4
Clock (GHz) 2.40 1.24
L1{i,d} / L2 cache (KB) {32,32} / 256 {32,32} / 512
Memory (GB) 64 16
SIMD ISA AVX2 KNC

Table 6.1: Summary of node hardware configurations on Tinis and Chiron.

AVX2. Threads were pinned sequentially at runtime using a combination of the

KMP_PLACE_THREADS and KMP_AFFINITY environment variables.

6.1.3 Validation
Simulation Validation

Our optimised version of the simulation has been independently validated by the
domain scientists that authored the original. The simulation is deterministic (given
a fixed random seed), and we can therefore ensure that the results produced are
accurate (and be confident that the time to solution is meaningful) by checking that

they do not deviate from run to run.

Results Validation

Detailed timing information was collected across all areas of the code using the rdtsc
hardware counter in order to achieve high accuracy with minimal overhead. This
counter reports the number of CPU clock cycles which have passed since some fixed
time in the past. We can convert these measurements to seconds using knowledge
of the CPU’s clock speed. In practice we do this conversion by measuring the total
simulation time using the OpenMP omp_get_wtime() function which returns the
number of seconds since some fixed time in the past as a double-precision value. We
take quotient of the number of clock cycles counted over the same period and the

measured wall time, and multiply each counter by this value to obtain the time in

65

Timer 1D Comments

VL_MISC VL only. Miscellaneous.

VL_BIN VL only. Cell list construction.
VL_BUILD VL only. Verlet list construction.
VL_WAIT VL only. Thread barriers.
PS_MISC PS only. Miscellaneous.

PS_SORT PS only. Per-thread particle sort.
PS_MERGE PS only. Parallel particle merge.
PS_WAIT PS only. Thread barriers.
ENTROPIC Entropic forces.

LINEAR Linear forces.

COND_MISC Miscellaneous condensin forces.
COND_BIN Binding site binning.

COND_INT Binding site interactions.
COND_WAIT Condensin thread barriers.
REPULSION Repulsion forces.

REPULSION_WAIT Repulsion thread barriers.

INTEGRATION Timestep integration.

CHECKPOINT Output checkpointing.

WAIT Miscellaneous thread barriers.

COMM MPI comms (see Chapter 7).
OFFLOAD_TX KNC offload data transfer (outbound).
OFFLOAD_RX KNC offload data transfer (inbound).

Table 6.2: List of timers used for data collection.

seconds. We take this approach rather than measuring in seconds directly to ensure
that there is no contention between the many threads trying to measure the time
simultaneously.

The results reported do not include time spent in initialisation or shutdown,
as this becomes a negligible fraction of the total runtime at the scale of full sim-
ulations. It should be noted that the initialisation phase performs some “dummy
calculations” in order to warm up the caches prior to starting the simulation proper.
Table 6.2 lists each individual timer used for data collection in the experiments (we
report aggregate results based on the measurements from these timers).

Each experiment was allocated a full node (nodes in Chapter 7), to ensure
that there was no contention for hardware from other users. Each experiment was

repeated five times. As the simulation is deterministic and performs exactly the same

66

calculations on each run with the same inputs, we can be sure that the variation
between these results is due to background noise on the node (i.e. operating system
processes). Because this variation is orthogonal to what we are actually testing (i.e.
the runtime of the simulation), we select the lowest runtime out of these five. The
purpose of doing five runs is therefore to establish the impact of system noise on the

results, however in all cases we observed very little variation.

6.1.4 Parameter Selection

All our experiments have a duration of 1000 timesteps. In theory, as each timestep
does exactly the same thing, it does not matter how many we choose to execute, as
long as we are consistent. In practice however, there are two interacting constraints
that led us to choose 1000 as the length for our experiments. Firstly it is necessary
to run for long enough that the minor variations observed due to background system
noise on the node discussed in the previous chapter are negligible in comparison.
Secondly, in Chapter 7 we run strong scaling studies, which necessitates simulating
large datasets at a low core count. This takes a very long time, and the machines
on which we run have upper limits on the amount of time which may be requested.
We selected 1000 timesteps as a number which is feasible to use when simulating
large datasets with a small number of cores, and provides sufficient total runtime
when simulating those datasets with a large number of cores.

When using Verlet lists, we set the skin distance to the empirical minimum

rs = 40nm, and k£ = 2, which yields the best performance for the given value of ;.

6.2 Repulsion Forces

We now discuss the implementation of the two performance-critical components
of the projection sorting algorithm—the force sweep and the global particle sort.

Projection sorting is used in the context of the simulation described in Chapter 5 to

67

provide a means for the calculation of repulsion forces which prevent particles from
overlapping each other (see Section 5.1.1 for a more detailed discussion).

The Structure-of-Arrays (SoA) data layout (where each particle facet is laid
out independently and contiguously in memory, cf. Array-of-Structs (AoS)) is used
throughout the code for position and force arrays to facilitate vectorisation. As
a result, the compiler is able to auto-vectorise the simpler kernels (the entropic,
tension and angular forces, and the integration), with a small amount of help in
the form of #pragma directives. Those that do not auto-vectorise, including the
projection sorting implementation, have been hand-vectorised using both AVX2
and KNC intrinsics (depending on whether the code is being built for CPU or the

coprocessor respectively).

6.2.1 Force Sweep

Due to the nature of vectorisation, all instructions within a branch must be executed
if any of the lanes trigger the condition. In this case, if any particles in the vector
pass the cut-off check at Line 11 in Listing 5, all the instructions within that branch
must be executed for all vector lanes. This introduces inefficiency, as the scalar
version only executes the inner branch on a per-particle basis as necessary. The
actual inefficiency depends on the proportion of particles that are within the cut-off
distance. For a SIMD width of W, up to W — 1 of the force computations carried
out inside the branch could be unnecessary.

Inefficiency also comes from padding to a multiple of the vector width at
the end of each force sweep, and from redundant computation due to alignment
requirements at the start of each force sweep. Each sweep must continue until all
particles in the vector fail the projection cut-off check, which implies a maximum
wastage of 2W — 2. The worst case for wastage due to alignment is W — 1, so for
a bidirectional pair of sweeps, the maximum wastage is 6W — 6. The longer the

sweep, the smaller a fraction of the total number of particles processed this will

68

1] for (i = 0; i < nb; i++) {

2 fxi = 0.0;

3 fyi = 0.0;

4 fzi = 0.0;

5

6 // step in one direction

7 for (j =i + 1; j < nb; j++) {

8

9 // are we stepping out of the block of candidate neighbours?
10 if (projs[jl - projsl[il > rc) break;
11

12 // full distance check

13 dx = p_x[j]l - p_x[il;

14 dy = p_y[3] - p_ylil;

15 dz = p_z[j]l - p_z[il;

16 dsq = dx*dx + dy*dy + dz*dz;

17 if (dsq <= rcsq) {

18

19 // force calculation

20 coeff = /* app-dependent */;

21 fxi += coeff * dx;

22 fyi += coeff * dy;

23 fzi += coeff * dz;

24 }

25 }

26

27 // step in the other direction

28 for (j =1i-1; j > 0; j—=) {

29 if (projs[i] - projs[j] > rc) break;
30 V2

31 // as above

32 Y/

33 }

34

35 // accumulate forces on particle i due to neighbours
36 f_x[i] += fxi;

37 f_yl[i]l += fyi;

38 f_z[i] += fzi;

30 | }

Listing 5: Skeleton implementation of the force sweep.

69

account for, leading to better vector efficiency. With real datasets, the sweeps are
quite short so the inefficiency can be significant. We explore the empirical values
for these inefficiencies in detail in Section 6.3.

In addition to inefficiency arising from simply performing unnecessary com-
putation, it is also necessary to ensure that these superfluous calculations do not
affect the results. This is achieved by using blend operations to set the out-of-range
values to zero, so that when the vector is written to memory only the valid values
are updated. This requires 2 extra comparison operations on both the CPU and the
coprocessor, 3 extra blend operations on the CPU, and the addition of masking to
the final triplet of fused multiply-add instructions used to accumulate forces on the
COProCessor.

The force sweep is very cache friendly as all accesses are contiguous. Hard-
ware counter analysis for a representative run reveals that 99.8% of loads issued hit
L1 cache. This minimises delays in getting data into the vector registers.

Appendix A gives full listings for our intrinsic implementations.

6.2.2 Sorting

The other computationally intensive component of the projection sorting approach
is the particle sort. Each thread uses a tuned in-place Quicksort to sort the particles
under its control. We can exploit the partially ordered conformation at each step
to accelerate the sort. Pairs of sorted blocks are then merged iteratively using
the balanced asynchronous parallel merging algorithm described by Francis and
Mathieson [30]. This ensures that each thread merges an even portion of the input
sequences. For P threads, [log, P| layers of merging are required.

FEach particle consists of five pieces of information—the value of its scalar
projection, its (z,y,z) coordinates in space, and its status as a condensin binding
site. We sort an array of indices first, keyed by the projection values. These indices

are then used to reorder the other four arrays in linear time.

70

SSE 4.2 (128-bit) AVX2 (256-bit) KNC (512-bit)

Lanes (W) 2 4 8
Transpose 3 8 24
Sort 6 (3+3) 28 (20+8) 100 (76+24)
Bitonic merge 15 26 36

Table 6.3: Number of instructions as it scales with W for various in-register sorting
operations.

Speedup
SSE 4.2 1.30x
AVX2 2.02x
KNC 1.31x

Table 6.4: Relative performance for vectorised sorting (versus scalar sorting) per
SIMD ISA. The scalar implementations use a comparison based sort rather than
bitonic networks.

Using the SoA format enables the use of vectorised in-register sorting tech-
niques. Bitonic sorting networks [10] are frequently applied here in the literature,
as they fit well with existing SIMD ISAs. We use the in-register sorting/merging
scheme described by Chhugani et al. [21], implemented with SSE, AVX2 and KNC
intrinsics. Although the size of these networks scales poorly with the SIMD width
W (see Table 6.3) we see reasonable speedups (see Table 6.4).

We also explored several alternate sorting strategies, including the non-
comparative radix sorting family of algorithms [78, 81]. As we are sorting based
on 64-bit key values (projections are stored in double precision floating point for-
mat) these are at a disadvantage, as they require splitting each key up into chunks
and performing several passes, checking each chunk in turn. Larger key sizes require
more passes, which takes longer. We found the optimal chunk size (or radiz) to be
16 bits, but the Quicksort + asynchronous merge algorithm described above still
yielded better performance.

There exist hybrid strategies, for example: doing one pass of radix-style

binning to split the keys up, and then sorting bins in parallel with multiple threads.

71

We found load balancing to be the main issue with this; the IEEE 754 floating point
standard [3] makes it difficult to partition many close values finely enough to achieve

similarly sized bins.

6.3 Projection Sorting vs. Verlet Lists

As discussed in Chapter 3, Verlet lists are the de facto standard approach to pairwise
short-range force calculations. In this section we investigate how the performance
of the projection sorting approach compares.

To fairly compare the two, we need to choose values for the skin distance 7,
and rebuild period k£ that maximise the performance of the Verlet list approach while
still computing correct results. The values s = 40nm and k = 2 were determined
by tracking the maximum distance moved by any particle over an experiment using
the projection sorting method, and setting rs to just greater than that, ensuring

that the results are correct. k was then chosen to maximise performance.

6.3.1 Distance Check Counts

A “distance check” is a calculation of the distance between a pair of particles, nec-
essary to determine whether we need to calculate the force between them. The
number of distance checks performed by an algorithm is a good predictor of its per-
formance [86]. Table 6.5 shows the average number of distance checks performed
using each method, with N3 on and off, as well as the SIMD inefficiency for AVX2
and KNC intrinsic implementations (i.e. the number of distance checks that were
unnecessary, and only performed as a result of SIMD limitations).

Projection sorting performs fewer distance checks overall, but is affected more
by SIMD inefficiencies. As discussed above, when N3 is not used projection sorting
requires two force sweeps. There is SIMD inefficiency at the end of both of these

sweeps, and also at the beginning of the sweep due to alignment requirements. Verlet

72

Algorithm N3? # checks AVX2 ineff. (#/%) KNC ineff. (#/%)

pS N 64.73 10.15 (13.55%) 22.03 (25.39%)
Y 32.41 6.00 (15.54%) 13.98 (30.13%)
VL N 91.74 1.42 (1.52%) 3.54 (3.72%)
Y 45.83 1.57 (3.31%) 3.60 (7.27%)

Table 6.5: Mean number of distance checks performed per particle, and the num-
ber of unnecessary checks performed as a result of SIMD inefficiencies for AVX2
(4-wide) and KNC (8-wide) implementations. The dataset used contained 128,000
nucleosomes, with ry = 40 and k = 2.

lists only require one sweep regardless of N3, and have no alignment requirements as
they are allocated on a cache line boundary. As we scale up to wider SIMD, we see
the projection sorting technique approaching the operation of Verlet lists in terms
of the number of distance checks performed. At current SIMD widths however,

projection sorting still requires the fewest checks in all cases.

6.3.2 Periodic Costs

A key part of the Verlet list algorithm is the use of cell lists to accelerate the list
build phase. The simulation space is discretised into cubes of side 7, (the Verlet
radius, 7, = 7. + krs) and particles are binned accordingly. While this step is
necessary (construction of the Verlet lists takes time quadratic in the number of
particles otherwise), using a naive three dimensional array method means the cell
lists consume a very large amount of memory. This is especially true in our case
due to the non-uniform particle density. Many of the cell lists are empty, but space
for at least a pointer must still be pre-allocated.

As the conformation is concentrated in a small portion of simulation space,
we instead choose to implement the construction using a lock-free hash table, where
cell lists are only allocated when a particle actually needs to be added. Once an
allocation has occurred we do not free the memory until the end of the simulation.

This is done to avoid the large overhead of continually freeing and reallocating

73

Algorithm N3? # calcs. AVX2 ineff. (#/%) KNC ineff. (#/%)

P N 1.68 4.74 (73.83%) 10.51 (86.21%)
Y 0.84 2.38 (73.91%) 5.47 (86.69%)
VL N 1.68 3.53 (67.75%) 7.80 (82.28%)
Y 0.84 2.05 (70.93%) 4.69 (84.81%)

Table 6.6: Mean number of full neighbour force calculations performed per particle,
and the number of unnecessary calculations performed as a result of SIMD ineffi-
ciencies for AVX2 (4-wide) and KNC (8-wide) implementations. The dataset used
contained 128,000 nucleosomes, with r; = 40 and k = 2.

memory that is likely to be reused anyway. Using atomic operations rather than
mutexes ensures internal consistency with minimal performance penalties. This
method is slower than simply allocating all bins at the start, but uses orders of

magnitude less memory, and as such is feasible for larger datasets.

Figures 6.1a and 6.2a compare the costs of Verlet list rebuilds using this
scheme and the particle sort required by the projection sorting algorithm. The sort
is clearly cheaper than the Verlet list rebuild, even though it is performed 4 times

as often (with k = 2).

6.3.3 Force Sweep Costs

Finally, we compare the cost of the force sweeps. Vectorisation is a major considera-
tion, and Table 6.6 shows the empirical values for the inefficiency arising from wasted
computation inside the force calculation branch. As discussed in Section 6.2.1, we
see very high fractions approaching % here due to the low rate of interactions be-
tween particles (brought on by the small cut-off distance). This impacts the overall
SIMD speedup as the width increases. Verlet lists have slightly lower inefficiencies
as they preserve the order of particles better than projection sorting.

Figures 6.1b and 6.2b show the full sweep comparison. Interestingly, the
fastest option here is projection sorting with N3 disabled. N3 cuts the number of

distance checks in half, so one would assume that it should be faster. However as

74

iterations of the outer loop over particles occur concurrently, and N3 introduces
memory stores to particles other than the one indexed by the outer loop, using this
strategy requires that we introduce a measure to prevent data-races in updating
the force array. There are two main ways of doing this, firstly by means of thread-
local storage, where each thread writes its forces to a separate location in memory,
and each thread’s contributions are added up at the end. The second is to make
force updates atomic at the hardware level, so that one thread cannot read an
invalid value during another thread’s store. Both approaches were tried, and it was
determined that atomics were more efficient on the present hardware (likely due
to the low number of particles that pass the distance-checks). Despite this, the
additional cost of atomic operations outweighs the benefits provided by N3. The
gap is especially pronounced on Xeon Phi, as it is running 15x as many threads.
As is well established, N3 improves performance for Verlet lists.

In conclusion, projection sorting wins on all fronts in these tests, exhibiting
the lowest number of distance checks, the cheapest periodic costs, and the fastest
force sweeps. The non-uniformity in the particle density and the fast moving parti-
cles (necessitating a high value for ry) are the primary reasons that Verlet lists are
ineffective for this simulation. It is clear that projection sorting can be an effective
alternative. The primary factors to consider when choosing an algorithm are (in

order of importance):

e Uniformity of the particle densities;

o Average movement of particles per timestep (lower allows for a smaller 4, and

therefore better Verlet list performance);

¢ Projection sorting uses memory bandwidth more effectively;

Higher SIMD width favours Verlet lists.

75

28

26 - |
24 [|
©
o) 2| |
g g
=
20
2—2
PSN3 = PSnoN3
y VL N3 VL no N3
9—4 \ \ \ \ \
22 23 24 25 26 27 28
particles (10%)
(a)
28 T
26 - |
24 [-
©
o) 2| n
£ ?
=
20 [
2—2 [
PS no N3
VL N3 VL no N3
2_4E \ \ \ \ \
22 23 24 25 26 27 28
particles (10%)

(b)

Figure 6.1: Performance figures for PS kernels and VL kernels on a Tinis node
running 16 threads, from 4000 up to 256,000 particles. (a) shows periodic costs and
(b) shows force calculation costs. Lower time is better.

76

28

28

26 - |
24 [|
©
) 2 L i
£ ?
=
20 E% |
2—2 [|
—~— PS N3 —& PS noN3
VL N3 VL no N3
9—4 ! ! ! ! !
22 23 24 25 26 27
particles (10%)
(a)
28 T
26 - |
24 - i
©
) 2 L i
£ ?
=
20 [
-2 Z
. PS no N3
| VL N3 VL no N3
2_4E ! ! ! ! !
22 23 24 25 26 27
particles (10%)

(b)

Figure 6.2: Performance figures for PS kernels and VL kernels on a Chiron copro-
cessor running 244 threads, from 4000 up to 256,000 particles. (a) shows periodic

costs and (b) shows force calculation costs. Lower time is better.

77

28

6.4 Condensin Interaction Forces

The other computationally intensive force calculation pertains to the interactions
between “condensin binding sites”—modelled as special nucleosomes occurring along
the length of the string at irregular intervals, with an average separation of 48
nucleosomes. These sites can interact when they come close, and become stuck
together for extended periods, prompting the condensation of the string over time.

Sites whose centres come within 40nm of each other experience attractive
forces, up to a limited number of interactions per site, per timestep (typically capped
at 1 or 2). There is also a stochastic component: for each interaction, and each
timestep there is a small configurable probability that interacting sites will dissociate
from each other. When this happens they enter a cooldown period of 3 timesteps
during which they cannot form any bonds, giving them time to move apart.

There are two primary steps to computing the forces on each site, referred

to henceforth as the binning step and the interaction step respectively:
1. List other sites within the 40 nm cut-off radius,

2. Determine whether to apply forces, dissociate, or advance cooldown period,

depending on the number of close pairs and their interaction history.

This is another pairwise short-range interaction, although with different
properties to the repulsion force. The cut-off radius is larger, 40nm compared
to 15nm. The force between a pair of sites is more expensive to calculate, but the
number of sites is an order of magnitude smaller than the number of nucleosomes.
For a given site, we must determine all other close sites before we can compute any
forces, rather than accumulating them per interaction as in the repulsion kernel.
The cooldown mechanic also introduces additional state between timesteps, which
complicates matters. Projection sorting can be used during the binning step, al-
though careful attention must be paid to correctly mapping from sorted binding

sites to the inter-timestep state.

78

6.4.1 Storage

It is necessary to store the cooldown status for every pair of binding sites—a flag
indicating whether a site’s interaction with another site is currently in cooldown
mode, and the number of timesteps remaining before it is free to interact again.
While the two can be combined into a single field (with 0 representing no cooldown
mode, and any other number representing the remaining count), the naive storage
requirement is still quadratic in the number of sites. This becomes a problem with

larger datasets.

As dissociation events are uncommon, the matrix of cooldown state is very
sparse. Taking advantage of this fact, we implement the same technique used to
reduce the storage requirement for cell lists, and replace the matrix with a lock-free
hash table. For a large number of binding sites, say 100,000, this approach requires
over 2300x less space, 4.1 MB instead of 9.3 GB.

6.4.2 Vectorisation

Meaningful vectorisation is infeasible for both the binning and interaction steps.
The binning step requires access to the cooldown status of each site. As these are
stored non-contiguously regardless of the storage strategy used, we are faced with
an expensive gather operation. In the case of the hash table, current SIMD ISAs do
not support atomic gathers [51], necessitating performing the memory accesses and
register insertions manually. More crucially though, the average binding site sweep
length is slightly under 2, which negates any benefit due to the large overhead. For
the interaction step the algorithm dictates that each site is processed individually

based on the contents of a very short list of neighbour sites.

79

Speedup (x)
—
— ot o
[[
I
|
I
| | |

—
| | | | |

& & : = >

Ry & N 9 o9
5 N & NS >
N A% > > 5%
<5 L N &
¢ < <

Figure 6.3: Per-kernel single-threaded speedup observed for the optimised imple-
mentation relative to the original simulation for the 2000 particle dataset. Higher
speedup is better.

6.5 Overall Performance

Relative to the original code, we see single-threaded speedups starting at over 10x
on the CPU for 2000 particles (see Figure 6.3 for a per-kernel breakdown), and
increasing as the dataset size goes up due to better algorithmic scaling. We would
emphasise that this is not a fair comparison of algorithmic approaches (which we
previously presented in Section 6.3), as the original implementation is not heavily
optimised.

The slowdown to the entropic kernel is due to switching to a random number
generator which is both thread-safe and provides a better source of randomness.
We observe speedups in all other kernels. This decreases the time taken to perform
a typical experimental run, consisting of 40 million timesteps, from ~90 hours to

~9 hours on our hardware. When factoring in the effects of parallelisation the

80

improvement is much greater.

Figure 6.4 shows a breakdown of each optimised kernel’s performance over
a range of dataset sizes for both the CPU and coprocessor. On the CPU, the
repulsion sweep is the most expensive, followed closely by the condensin interactions
and the sort. The entropic, tension and attraction forces (grouped under “other”)
are comparatively cheap. The point where the integration falls out of Last Level
Cache (LLC) is clearly visible between 128,000 and 256,000 particles. The barrier
costs are fairly low throughout, but increase sharply for the largest dataset, possibly

due to Non-Uniform Memory Access (NUMA) problems.

On the coprocessor, the sort is most expensive, primarily as sorting is diffi-
cult to vectorise effectively (see discussion in Section 6.2.2). Vectorisation is more
crucial to performance on the Xeon Phi than on the CPU so this is expected. The
repulsion sweep is cheaper on the Xeon Phi, as it vectorises very well and does
not require any barriers. Interestingly, the condensin interactions are also cheaper
to compute, despite not being vectorised either, likely because each binding site is
largely independent leading to good scaling to a larger number of threads. The
integration also scales better with dataset size, as the coprocessor has roughly 3x
the memory bandwidth as the CPU (153 GB/s per NUMA region as opposed to
48 GB/s, as reported by the STREAM benchmark [59]).

The main issue we see on the coprocessor is significantly higher barrier costs.
On some level this is unavoidable, a higher number of threads is going to mean
slower blocking operations and a greater sensitivity to load imbalance, and we can-
not remove any barriers as they are necessary to ensure correctness. We can aim
to reduce the number of barriers via algorithmic changes however—the midpoint
integration scheme used is the main culprit here, requiring twice as many barriers

per timestep as would otherwise be needed.

81

25

23% -

—7 4= |

2 —— Sort —=— Condensin Repulsion
Integration —e— Other = —— Barrier

_9 I T T I I

: 22 23 24 25 26 27 28
particles (10%)
(a)
2° T

Time (s)

-7l |
2 —— Sort —=— Condensin Repulsion
Integration —e— Other = —— Barrier
_9 I T T I T
2 22 23 24 25 26 27 28
particles (10%)
(b)

Figure 6.4: Performance figures for each kernel when running on Tinis and Chiron,
from 4000 up to 256,000 particles. (a) shows the timings for 16 threads on Tinis,
(b) shows 244 threads running on Chiron. Lower time is better.

82

6.5.1 Offload Computation

We experimented with offloading computation to the coprocessor while running on
the CPU. Suitable candidate kernels for offloading should perform well on the co-
processor, be able to run in parallel with other kernels (minimal data dependencies),
not require large amounts of data transfer on and off the coprocessor each timestep,
and take long enough that the overhead of offload does not dominate. Of the ker-
nels in this simulation, the only one that satisfies most of these conditions is the
projection sorting force sweep. It performs better on the coprocessor, and can be
run in parallel with any of the other force computation kernels. Despite this, the
time saved by running offloaded was roughly equalled by the overhead of doing so,

and we did not see any significant change in performance.

6.6 Summary

We have explored the optimised implementation of projection sorting in a shared
memory environment, for the Intel Haswell and KNC architectures. We show
through detailed comparison of the number of distance checks, time spent on periodic
calculations and time spent on force calculations that projection sorting outperforms
Verlet lists for this simulation of chromosome condensation. We observe speedups of
around 5x for both periodic calculations and force calculations across representative
runs of the simulation. Together with our general optimisations from Chapter 5 we
observe serial speedups up to 10x relative to the original implementation of this

simulation.

83

Chapter 7

Implementing Projection

Sorting Off-node

Up until this point, the simulation we have been using has only been parallelised
using OpenMP [69], which limits experiments to a single node. As one of the primary
ways of reducing the computation time of lengthy simulations is to run on multiple
nodes in a cluster environment, it is crucial that we validate the projection sorting
algorithm in this setting. Therefore, in this chapter we reimplement the simulation
to leverage distributed memory parallelism using MPI in addition to the existing

shared memory parallelism. In doing so we answer Research Question 3 (RQ3):

RQ3: How might [projection sorting] perform (and how might it be best

implemented) in a distributed-memory parallel environment?

In Chapter 6 we provided implementations for the Intel Haswell and Intel KNC
architectures. Here we upgrade to their successors, Intel Broadwell and Intel KNL
respectively. Intel KNL in particular is a significant re-engineering of KNC. Instead
of running on a PCle coprocessor KNL runs as a bootable device (in place of a CPU)
which allows for faster access to main memory. KNL also provides on-package fast

Multi-Channel DRAM (MCDRAM) memory, with up to 4x the memory bandwidth

85

of conventional Dynamic Random Access Memory (DRAM) memory [44]. This can
be used in a variety of configurations, including caching accesses to main memory,
or running applications entirely from it. Access to this memory can be controlled
using NUMA software-awareness.

KNL provides a partial implementation of the AVX-512 SIMD ISA in place of
the architecture specific KNC SIMD ISA. AVX-512 inherits many of the instructions
from KNC (they are both designed around 512-bit vectors), but is designed to be
used uniformly across KNL and newer CPU architectures including some Skylake
chips. We provide new intrinsic implementations of projection sorting force sweep,

Verlet list rebuilds and Verlet list force sweeps using this instruction set.

7.1 Experimental Setup

We use the same datasets previously generated (described in Chapter 6) throughout
these experiments. As distributed memory parallelism brings with it the possibility
of higher processor counts, we use some of the larger ones here, up to 2,048,000
particles.

In our on-node experiments, we enabled the condensin interaction forces to
simulate a condensing chromatin string. We found that when doing so, the mini-
mum valid skin distance was rs = 40 nm, and noted that the fast moving particles
were a reason for Verlet lists being less effective (see Section 6.3). To provide an
alternate perspective, we disable the condensin interaction forces for experiments in
this chapter to simulate a relaxed chromatin string. This allows us to set the skin

distance lower, rs = 15nm, and consequently increase the rebuild period to k = 5.

7.1.1 Machine Specifications, Compilation & Execution

To run the experiments, two machines were used. Firstly, Orac, a cluster at the

University of Warwick consisting of 84 nodes, each with 2 Intel Xeon E5-2680 v4

86

Xeon E5-2680 v4 Xeon Phi 7210

Sockets x Cores x Threads 2x14x2 1x64x4
Clock (GHz) 2.40 1.30
L1{i,d} / L2 cache (KB) {32,32} / 256 {32,32} / 512
Memory (GB) 128 96+16
SIMD ISA AVX2 AVX-512

Table 7.1: Summary of node hardware configurations on Orac and the ARCHER
Knights Landing platform.

processors, for 2352 cores in total. Each node is equipped with 128 GB of Random
Access Memory (RAM), and connected with an Intel Omni-Path X16 100 Gbit/s

interconnect. Orac was used to run the Xeon experiments.

To run the Xeon Phi experiments we used the ARCHER Knights Landing
platform at the Edinburgh Parallel Computing Centre. This consists of 12 nodes,
each equipped with a Xeon Phi 7210 and 96 GB of RAM. The nodes are connected
with a high performance Cray Aries interconnect. Each Xeon Phi also has 16 GB of
fast onboard MCDRAM, which in this case is used to cache accesses to the external
memory. We refer the reader to Table 7.1 for more details.

All code was compiled using the GNU C++ compiler, v6.3.0" with the follow-
ing performance flags: -03 -fopenmp. Architecture was specified with -march=broadwell,
and -march=knl for Xeon and Xeon Phi respectively.

On Oragc, the application was launched using the mpirun command. Ranks
were distributed evenly among the available resources using the following flags: —-
map-by socket:SPAN --bind-to core --rank-by core. Each rank was assigned
to a unique core, and used a single thread.

On ARCHER, the application was launched using the aprun command. Each
KNL node was assigned 64 ranks, each bound to a unique core. Each rank used two

threads out of four available hardware threads per core, which we found to yield

!Newer versions of the Intel compiler encounter an internal error when compiling our lock-free
hash map implementation, which is why we do not use it here as in Chapter 6.

87

the best performance. This was achieved using the following flags: -d 2 -j 2 -cc

depth.

All experiments have a duration of 1000 timesteps. When using Verlet lists,
we set the skin distance to the empirical minimum r; = 15nm, and k& = 5, which
yields the best performance for the given value of rs. Timing information was

collected across all areas of the code as discussed in Chapter 6.

7.2 MPI Implementation

To reduce the engineering burden of porting the simulation to MPI, we based the
new implementation on the Mantevo suite miniMD mini-app from Sandia National
Laboratories (SNL) [38, 39], which is known to exhibit good scaling. We removed the
application specific code, keeping parts related to particle storage and communica-
tion between MPI ranks. miniMD uses a spatial decomposition which theoretically
scales well with processor count, at the price of more complex load balancing in the
case of simulations with non-uniform particle densities (like this one).

To address this, we implemented a static load balancing strategy wherein
the problem domain is decomposed into small cubic “patches” of uniform size. Note
that this patch-decomposition is only used to determine which region of space each
MPI rank is responsible for, and is distinct from the cell list decomposition (see
Chapter 3). Each patch is then weighted according to how many particles it contains,
and patches are distributed among processors by a recursive bisection algorithm,
such that all processors end up with a cuboidal subdomain of approximately equal
total weight. This strategy is used by NAMD [66] and is based on work from Berger
and Bokhari [11].

NAMD, which has similar load balancing requirements, implements a layer of
dynamic load balancing on top of this, which distributes pairwise force calculations

between neighbouring processors. Our implementation does not currently do this,

88

although it is a possible extension. The static load balancing performs well enough

to show the differences between Verlet lists and projection sorting.

The application is parallelised in a so-called “hybrid” fashion. Within each
MPI rank, OpenMP may be used to leverage multiple threads. We use this capability

to take advantage of SMT, or hyperthreading, on KNL.

Our implementation has two primary compile-time switches: use of projec-
tion sorting or Verlet lists, and enabling or disabling halving of the neighbour space
using Newton’s third law. We refer to these four variants below as PS N3, PS no

N8, VI, N3 and VL no NS.

7.2.1 Projection Sorting

The low level implementation of projection sorting is largely consistent with that
explained in Chapter 6. After MPI ranks have communicated with their neigh-
bours to receive ghost particles, they include these when computing projections and
sorting. Force computation using the sorted conformation was hand-vectorised us-
ing both AVX2 and AVX-512 intrinsics. Appendix A gives full listings for these

implementations.

When using N3 it is now important that different ranks are consistent when
deciding which particles to directly calculate forces for, and which to implicitly
calculate as a result of the equal and opposite action of the explicit force. For
projection sorting this is straightforward. As long as all ranks use the same axis of
projection ¥, the scalar projections will form a total ordering over all ranks. Particles
with greater relative scalar projections are calculated explicitly, and those with lower

relative scalar projections are calculated implicitly (or vice versa).

89

7.3 Experiments

In this section we seek to empirically establish the performance differences between
our implementations of Verlet lists and projection sorting. In order to do this, we

present the following comparisons:

e Raw performance comparisons between the two algorithms for fixed numbers

of processors and problem sizes (see Section 7.3.1).

o A scaling study for each implementation, showing how the performance changes

with varying numbers of processors and different problem sizes (see Section 7.3.2).

¢ Qualitative performance comparisons between the Xeon and Xeon Phi plat-

forms (see Section 7.3.3).

7.3.1 Raw Performance Comparisons

Figure 7.1 shows the speedup attained by projection sorting relative to the perfor-
mance of Verlet lists, for the entire simulation (including kernels unrelated to the
repulsion calculations). This is significant for all four configurations, reaching nearly
5% on Orac.

We observe that PS attains a greater relative speedup when N3 is disabled,
although enabling N3 results in better absolute performance. On ARCHER, PS
sees approximately 2x speedup. We conjecture that this lower speedup is due to
better hardware support for gather/scatter and vector compression on KNL, which
VL relies on.

Figures 7.2 and 7.3 break these speedups down into periodic calculations,
force calculations and communication costs. Notable are the communication costs,
which are higher for PS. This is because VL only needs to communicate fully every
k = 5 timesteps, which fits with the approximate 0.2x speedup we see. We note also

that the speedup improves with the number of processors. We conjecture that this is

90

due to the lower amount of communication required per processor in PS (discussed
in Section 4.4.3). However, the higher communication costs are more than offset by
the significantly lower periodic costs. On ARCHER these reach speedups of over
10x.

7.3.2 Scaling Studies

Figures 7.4 and 7.5 show strong and weak scaling figures on Orac and ARCHER.
Both algorithms scale well, with VL reaching over 150x for 256 processors on Orac.
VL generally scales slightly better than PS, likely due to the lower communication
costs. We expect that this gap could be closed if PS was adapted to use a skin
distance (see the further work in Chapter 8).

Figure 7.5 shows some anomalous super-linear scaling for PS, likely due to

the lower amount of data per processor improving cache effectiveness.

7.3.3 Xeon vs. Xeon Phi

It is inherently difficult to compare performance between Xeon and Xeon Phi archi-
tectures, as they differ in almost every important aspect. Equal numbers of cores
are not comparable, as KNL cores are much slower individually. In Chapter 6 we
found that KNC was well suited to the force calculations as it has double the vector

width available.

Figure 7.3b shows that disabling N3 nets a greater relative increase to force
calculation speedup than on Orac (cf. Figure 7.2b). This is because KNL crucially
uses SMT to keep its execution units busy, and multiple threads with N3 enabled
necessitates atomic accesses to shared memory to prevent conflicts. KNL has poor
support for vectorised atomic writes. On Orac SMT is not used, therefore the
atomics are not necessary. This effect is also visible in the VL rebuilds, which use

atomics as part of a lock-free hash table (compare Figures 7.3a and 7.2a).

91

4
4 [-
i
2 3 |
o
=
.S
g
&2 i
1 [-
—=—no N3
0 |
1 8 16 32 64 128 256
processors
(a)
3
2.5 .
2] .
x
5
= 1.5 0
g
o
n
1 [-
0.5 |
—=-no N3
O | |
64 128 256 512

processors

(b)

Figure 7.1: Speedup of the full simulation when using PS relative to VL on (a)
Orac up to 256 processors and (b) ARCHER up to 512 processors, over 2,048,000
particles. Higher speedup is better.

92

T 6| .
=9
=
3
]
& 4 :
2 |- -
—=— N3
—=-no N3
0 Il Il Il Il Il Il
1 4 8 16 32 64 128 256
processors
(a)
6 T

Speedup (x)
w
T
Il

2 |- -
1 |- -
—5—-no N3
0 | | | | | |
1 4 8 16 32 64 128 256
processors
(b)
T T T I
—=— N3
1 —&-n0o N3 ||
0.8 |
0.6 |- B

Speedup (x)

0 | | | | |

|
1 4 8 16 32 64 128 256
processors

(c)

Figure 7.2: Speedup for PS kernel costs relative to VL kernel costs on Orac up to
256 processors, over 2,048,000 particles. (a) shows periodic costs, (b) shows force
calculation costs, and (c) shows communication costs. Higher speedup is better.

93

Speedup (x)

—%— N3
—5-no N3
0 L |
64 128 256 512
processors
(a)
3
2'5;77***7% e —
2 [-
o S]
2
2 15F |
g
[N
7]
1 [-
0.5 |
— N3
—=—no N3
0 L |
o 128 256 512
processors
(b)
—%— N3
gl —&-n0 N3 ||
0.8 |
<
= 061 |
£
2
&
&
0.4 |
e ——
NS =
0.2 |
0 L I
64 128 256 512
processors
(c)

Figure 7.3: Speedup for PS kernel costs relative to VL kernel costs on ARCHER up
to 512 processors, over 2,048,000 particles. (a) shows periodic costs, (b) shows force
calculation costs, and (c) shows communication costs. Higher speedup is better.

94

250 | %
—5-PS no N3 |
VL N3
200 - VL no N3 [
X 150 o
o,
=]
ol
g
& 100
50
O[n...__‘_# .. } | | |
1 4 8 16 32 64 128 556
processors
(a)
I ‘ |
le e PS 1o N3 |
VL N3
VL no N3
0.8 |
X
o, 0.6 -
=
ol
8 1
o
0.4 4
0.2 4
0 ! ‘ ‘ | | |
1 4 8 16 32 64 128 556
processors
(b)

Figure 7.4: Scaling on Orac up to 256 processors. (a) shows strong scaling over
2,048,000 particles and (b) shows weak scaling with 8000 particles per processors.
Higher speedup is better.

95

—— PS N3
7k —=—PS no N3 ||
VL N3
VL no N3
6 [, -
5% -
4 - |

Speedup (x)

0 | |
64 128 256 512
processors
(a)
| —— PS N3
Le —5-PSno N3 ||
VL N3
VL no N3
0.8 - |
= 0.6} B
= al
.S
g
)
0.4 N
0.2} |
0 | |
64 128 256 512

processors
(b)

Figure 7.5: Scaling on ARCHER up to 512 processors. (a) shows strong scaling over
2,048,000 particles and (b) shows weak scaling with 4000 particles per processors.
Higher speedup is better.

96

7.4 Summary

We extend our shared memory implementation of projection sorting to hybrid dis-
tributed/shared memory using MPI, and reimplement key kernels for the Intel
Broadwell and KNL architectures. We also relax the skin distance rs by changing
the context of the simulation, which benefits Verlet lists. Similar to our conclusions
from Chapter 6, we observe significant speedups due to projection sorting up to 5x.
We scale the simulation to previously infeasible dataset sizes by running on large

numbers of cores on clusters of Xeon and Xeon Phi nodes.

97

Chapter 8

Conclusions

The ability to perform simulations on a large scale is crucial to the continued progress
of science across a range of domains. Such simulations require great computational
resources, and scientists working in the field of HPC seek to reduce their expense
through innovations in hardware, software and underlying mathematical principles.

In this thesis we investigated Molecular Dynamics (MD) simulations, and in
particular an MD simulation of chromosome condensation. We presented projection
sorting, an alternative to the traditional Verlet list algorithm for pairwise short-
range force calculations, and showed that it can be significantly more effective under
certain conditions.

In Chapters 6 and 7 we explored the efficient implementation of this strat-
egy for the modern multi- and many-core architectures: Intel Haswell, Broadwell,
Knights Corner (KNC) and Knights Landing (KNL). We covered optimisations
across the parallel stack, from SIMD vectorisation up to communication strategies
in a message passing implementation for clusters. Our implementations are paral-
lelised using shared memory (OpenMP), distributed memory (MPI) and a hybrid of
both techniques, representative of MD simulations used across a large cross-section
of modern science.

We demonstrated speedups relative to Verlet lists of up to 5x across a range

99

of problem sizes and processor counts. Our algorithm scales comparably to the state
of the art in both strong and weak senses, with the runtime being reduced by up to
125x over 256 processors.

These results are not just theoretical: our algorithm and optimisations have
been, and continue to be used by domain scientists to facilitate further experiments
in chromosome condensation using the simulation described in Chapter 5. As a
result of our optimisation work, we see serial speedups of up to 10x relative to the

original implementation of this simulation.

8.1 Contributions

In Chapter 1 we posed three Research Questions (RQ1 — 3) which were tackled

throughout the course of the thesis. We restate these questions below:

Conjecture: It is possible to accelerate pairwise short-range force cal-
culations relative to classic MD methods by taking closer account of
the domain-specific properties of the simulation (such as non-uniform

particle density).

e RQ1: How might an algorithm designed to accelerate an MD simulation in

accordance with the above conjecture look?

o RQ2: How might such an algorithm perform (and how might it be best im-

plemented) in a shared-memory parallel environment?

o RQ3: How might such an algorithm perform (and how might it be best im-

plemented) in a distributed-memory parallel environment?

In Chapter 4 we proposed the projection sorting algorithm as a possible answer to
RQ1. This algorithm produces a 1-dimensional ordering over the set of particles

which creates a linear search space for the neighbours of any given particle, and also

100

attempts to minimise the size of this search space. The search space is efficiently
traversed at each timestep in order to calculate forces. This is in contrast to Verlet
lists, where an explicit list of candidate neighbours is built and stored on a per-
particle basis, and reused over multiple timesteps. Projection sorting’s approach
of linearising the search space allows for more efficient traversal than is possible
with Verlet lists, and the manner of linearisation is computationally cheaper than
the construction of Verlet lists. However projection sorting is not efficient when
particles are spread uniformly throughout the simulation space, as in this case it

requires more pair-checks.

In Chapter 6 we sought to answer RQ2 by implementing and optimising pro-
jection sorting in a shared-memory parallel environment, and comparing it against
an optimised implementation of Verlet lists in the same setting. We explored the
efficient implementation of the two primary components of the projection sorting al-
gorithm: the sort and the force sweep, on the Intel Haswell and KNC architectures.
We found that a thread-local quicksort followed by a multi-threaded merge yielded
the best performance when sorting, and observed minor speedups due to vectori-
sation. The force sweep offers excellent cache efficiency and high performance in

practice, vectorisation in particular is very effective here.

Finally, in Chapter 7 we sought to answer RQ3 by implementing and opti-
mising projection sorting in a distributed-memory parallel environment, and com-
paring it against an optimised implementation of Verlet lists in the same setting.
Here we explored the consequences of distributed-memory on the implementation
of the algorithm, and investigated its scaling to large numbers of cores. We found
that projection sorting scales comparably to Verlet lists, indicating its suitability

for large scale simulations.

Our results build in particular on those from Gonnet [32] and Pennycook et al. [70]
(discussed in Chapter 3). We extend Gonnet’s ideas regarding sorting particles along

a vector beyond simply searching cell lists. Pennycook et al. studied in detail how

101

best to vectorise short-range pairwise force calculations, with a particular focus
on the Xeon Phi architectures—we build on this work to determine how best to

vectorise projection sorting.

8.2 Limitations

The primary limitation of this thesis is its focus upon a single scientific application
as a means of establishing the effectiveness of projection sorting as an alternative
to Verlet lists. We discuss in Chapter 3 how pairwise short-range force calculations
are almost ubiquitous across MD, both in their application and in their relative
computational expense. Nearly all MD codes use a computational shell identical in
structure to the one present in the simulation from Cheng et al. [20], where for each
particle, the code needs to search through all other particles in some way to find
its near neighbours, and then some force is applied between the pair as a function
of distance. Our research is completely application agnostic in the sense that any
such calculation could make use of projection sorting, which serves to accelerate
the search rather than the force calculation itself (which does vary from application
to application). However, we would certainly expect the effectiveness of projection
sorting to vary significantly based on the domain-specific characteristics of each
simulation—from the outset we have emphasised that the algorithm could only be
expected to provide improvements in cases where non-uniform particle density is
exhibited. Further work on this algorithm would certainly involve implementation
in other MD packages. Implementation of our ideas in a larger scale package such
as NAMD [71] (which is commonly used for biological simulations exhibiting non-
uniform particle densities) would enable experimentation with a wider variety of

different simulation domains.

We also note that our algorithm sees slightly poorer scaling to large problem

sizes than Verlet lists (refer to Figures 7.4 and 7.5), despite being significantly faster

102

overall. We have two ideas to pursue in regard, which we discuss in Section 8.3.

8.3 Further Work

In closing, we discuss several avenues for future exploration of the projection sorting
algorithm and its applicability to the optimisation of short-range pairwise force
calculations. We discuss three main areas: improvements to the algorithm itself,
and alternate ways of making use of it; implementations using different hardware or

parallel frameworks; and implementation of the algorithm in other MD packages.

8.3.1 Improvements to Projection Sorting
Using a Skin Distance

As has been mentioned many times (see Chapter 3), Verlet lists make use of a skin
distance 75, which quantifies the maximum distance particles may move in any given
given timestep. Incorporating this allows reuse of one set of lists over k timesteps.
It is conceivable to use the same strategy with projection sorting. The idea is to
only sort the particles every k timesteps, and to continue up to the “Verlet” cut-off
radius, r, = 7. + 2krs, when performing force sweeps. As the sort is considerably
cheaper than a Verlet rebuild, it is possible that the additional costs associated with
the longer force sweeps outweigh the benefits, but we note that it would also improve

the communication costs, which may balance this increase at scale.

Alternate MPI Decomposition Strategies

We are also investigating alternate spatial decomposition strategies to offset projec-
tion sorting’s main disadvantage: that it must inspect more particles in directions
orthogonal to the projection axis. As we use a spatial MPI decomposition, part of
the work of finding neighbours in short-range pairwise force calculations is already

done in a sense by the comms layer. Each MPI rank only needs to search within its

103

own local particles and a surrounding layer of ghost particles.

We hypothesise that a “french fry” decomposition—decomposing space into
long thin slivers along the axis of projection rather than into more regular cuboids as
is typically done—could significantly decrease the number particles to be processed.

Typically the MPI decomposition is tuned to minimise the surface area of the
adjoining faces between partitions. This minimises the amount of data that needs to
be transferred between processes, and therefore is optimal in terms of the necessary
network bandwidth. The “french fry” approach would increase this surface area, but
decrease the number of neighbouring partitions, which would improve the comms

performance in a high latency environment.

Using Projection Sorting as a Verlet List Building Method

One of the most expensive parts of the Verlet list algorithm is actually building
the Verlet lists (using cell lists), performed every k timesteps. It is possible to use
projection sorting as a means of constructing these lists in place of cell lists. The
algorithm would proceed as usual, except rather than calculating forces during the
force sweep, one would instead populate the Verlet lists. This hybrid method may
potentially provide speedups in scenarios with long Verlet lists where cell lists are a

bottleneck.

8.3.2 Alternative Shared-Memory Parallelisations

In addition to what has been studied in this thesis, it would be interesting to analyse
the performance of projection sorting on other architectures, in particular GPUs.
GPUs have traditionally been highly effective tools when it comes to scientific sim-
ulation in general, and MD on GPU is well-studied (e.g. [9, 72, 16, 54, 31] amongst
many others). By their nature, GPUs are more effective at rapidly executing many
independent iterations of small non-branching numerical computational kernels than

traditional fat CPU cores, which are designed to be flexible and provide good per-

104

formance for many kinds of workload.

The first-class way to target NVIDIA GPUs is the Compute Unified Device
Architecture (CUDA) toolkit, which is now a mature piece of software, and makes
the addition of GPU support to existing code relatively easy. Other ways to target
NVIDIA GPUs exist, such as the OpenACC [68] (short for accelerator) framework,
which is directive-driven in the same manner as OpenMP, but offers better support
for device offload.

A more recent development are so-called performance portability frameworks,
which allow developers to write a single version of an application which can be com-
piled to run against a variety of different parallel back-ends with minimal modifi-
cation. Two examples of these are Kokkos [24] and RAJA [42]: both use advanced
C++ metaprogramming constructs to enable low overhead implementation of this
portability idea. Implementation of the simulation of chromosome condensation
using either of these would be an effective way to try different shared-memory par-

allelisations.

8.3.3 Implementation in Other Molecular Dynamics Packages

As mentioned above, implementation of projection sorting in other existing MD
software would be valuable to establish the extent of its applicability in a more
general sense. NAMD is a popular production MD package designed for simulation
of large biomolecular structures which has been the subject of substantial HPC
research, and has been shown to scale to over 500,000 cores.

NAMD is implemented using Charm++, a parallel programming system from
the University of Illinois Parallel Programming Laboratory [47]. Charm+-+ appli-
cations are written in primarily in C++, with an interface description language to
specify Charm++ parallel objects. Execution is separated into “chares”: lightweight
process-like objects which communicate in a message-driven fashion. Charm+-+

supports modular applications, executing across heterogeneous architectures using

105

a variety of load balancing strategies.

NAMD is a large code, and implementing a new algorithm would be a time
consuming process, however we believe this would be a worthwhile endeavour, and
is crucial to gaining further insight into the properties of the projection sorting

algorithm, and directions in which to take it.

106

Bibliography

1]
[2]
[3]

[4]

Linux perf. URL https://perf.wiki.kernel.org/index.php/Main_Page.
MPI: a message-passing interface standard. Technical report, 1994.
IEEE standard for floating-point arithmetic. IEEE, August 2008.

F Abraham. Computational statistical mechanics methodology, applications

and supercomputing. Advances in Physics, 35(1):1-111, January 1986.

M J Abraham, T Murtola, R Schulz, S Pall, J C Smith, B Hess, and E Lin-
dahl. GROMACS: high performance molecular simulations through multi-level
parallelism from laptops to supercomputers. SoftwareX, 1-2:19-25, September
2015.

B J Alder and T E Wainwright. Studies in molecular dynamics. 1. general
method. Journal of Chemical Physics, 31(2):459-466, 1959.

R J Allan. Survey of HPC performance modelling and prediction tools. Dares-

bury Laboratory Technical Reports, 2009.

R Allen and K Kennedy. Optimizing compilers for modern architectures: a

dependence-based approach. Morgan Kaufmann Publishers Inc., 2002.

J A Anderson, C D Lorenz, and A Travesset. General purpose molecular dy-
namics simulations fully implemented on graphics processing units. Journal of

Computational Physics, 227(10):5342-5359, May 2008.

https://perf.wiki.kernel.org/index.php/Main_Page

[10]

[17]

18]

K E Batcher. Sorting networks and their applications. In Proceedings of the
1968 AFIPS Conference, pages 307-314. ACM Press, 1968.

M Berger and S Bokhari. A partitioning strategy for non-uniform problems on

multiprocessors. IEEE Transactions on Computers, C-36(5):570-580, 1987.

A Bhatele, S Kumar, C Mei, J C Phillips, G Zheng, and L. V Kalé. Overcoming
scaling challenges in biomolecular simulations across multiple platforms. In
Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis 1988, pages 1-12. IEEE, 2008.

R Blumofe, C Joerg, B Kuszmaul, C Leiserson, K Randall, and Y Zhou. Cilk.
Proceedings of the 1982 SIGPLAN Symposium on Compiler Construction, 30

(8):207-216, August 1995.

B Boghosian. Computational physics on the connection machine. Computers

in Physics, 4(1):14, 1990.

C Brooks. Computer simulation of liquids. Journal of Solution Chemistry, 18

(1):99-99, January 1989.

W M Brown, P Wang, S J Plimpton, and A N Tharrington. Implementing
molecular dynamics on hybrid high performance computers — short range forces.

Computer Physics Communications, 182(4):898-911, April 2011.

S Browne, C Deane, G Ho, and P Mucci. PAPI: A portable interface to hard-
ware performance counters. In Proceedings of Department of Defense HPCMP

Users Group Conference, June 1999.

R A Bunt, S A Wright, S A Jarvis, Y K Ho, and M J Street. Predictive
evaluation of partitioning algorithms through runtime modelling. In 2016 IEFEE
23rd International Conference on High Performance Computing (HiPC), pages
351-361. IEEE, 2016.

[19]

[20]

[21]

22]

[24]

[25]

J Cao, D J Kerbyson, E Papaefstathiou, and G R Nudd. Performance model-
ing of parallel and distributed computing using PACE. In 2000 International

Conference on Performance, Computing and Communications (IPCCC 2000),
pages 485-492. IEEE, 2000.

T M K Cheng, S Heeger, R A G Chaleil, N Matthews, A Stewart, J Wright,
C Lim, P A Bates, and F Uhlmann. A simple biophysical model emulates

budding yeast chromosome condensation. eLife, 4:¢05565, 2015.

J Chhugani, A D Nguyen, V W Lee, W Macy, M Hagog, Y Chen, A Baransi,
S Kumar, and P Dubey. Efficient implementation of sorting on multi-core
SIMD CPU architecture. In Proceedings of the VLDB Endowment 2008, pages
1313-1324. VLDB Endowment, August 2008.

J A Davis, G R Mudalige, S D Hammond, J A Herdman, I Miller, and S A
Jarvis. Predictive analysis of a hydrodynamics application on large-scale CMP
clusters. Computer Science - Research and Development, 26(3-4):175-185, April
2011.

J Dongarra. The LINPACK benchmark: an explanation. In Proceedings of
the International Conference for High Performance Computing, Networking,

Storage and Analysis. Springer Berlin Heidelberg, 1988.

H C Edwards, C R Trott, and D Sunderland. Kokkos: enabling manycore
performance portability through polymorphic memory access patterns. Journal

of Parallel and Distributed Computing, 74(12):3202-3216, December 2014.

R Everaers and K Kremer. A fast grid search algorithm for molecular dynamics
simulations with short-range interactions. Computer Physics Communications,

81(1-2):19-55, June 1994.

J Fenlason. GNU gprof. URL https://sourceware.org/binutils/docs/

gprof/.

https://sourceware.org/binutils/docs/gprof/
https://sourceware.org/binutils/docs/gprof/

[27]

[30]

31]

32]

33]

E Fermi, J Pasta, S Ulam, and M Tsingou. Studies of non-linear problems.

Technical report, May 1955.

M Flynn. Some computer organizations and their effectiveness. IEEFE Trans-

actions on Computers, C-21(9):948-960, 1972.

G Fox, M Johnson, G Lyzenga, S Otto, J Salmon, D Walker, and Richard L
White. Solving problems on concurrent processors vol. 1: general techniques

and regular problems. Computers in Physics, 3(1):83, 1989.

R S Francis and I D Mathieson. A benchmark parallel sort for shared memory

multiprocessors. IEEE Transactions on Computers, 37(12):1619-1626, 1988.

J Glaser, T D Nguyen, J A Anderson, P Lui, F Spiga, J A Millan, D C Morse,
and S C Glotzer. Strong scaling of general-purpose molecular dynamics simu-

lations on GPUs. Computer Physics Communications, 192:97-107, July 2015.

P Gonnet. A simple algorithm to accelerate the computation of non-bonded
interactions in cell-based molecular dynamics simulations. Journal of Compu-

tational Chemistry, 28(2):570-573, January 2007.

S D Hammond, G R Mudalige, J A Smith, S A Jarvis, J A Herdman, and
A Vadgama. WARPP: a toolkit for simulating high-performance parallel sci-
entific codes. 1CST (Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering), March 2009.

S D Hammond, J A Smith, G R Mudalige, and S A Jarvis. Predictive simulation
of HPC applications. IEEE, May 2009.

A Harode, A Gupta, B Mathew, and N Rai. Optimization of molecular dy-
namics application for Intel Xeon Phi coprocessor. In Proceedings of the Inter-

national Conference on High Performance Computing and Applications 2014,
pages 1-6. IEEE, 2014.

[36]

[37]

[38]

[39]

[42]

M Hazewinkel. Runge-Kutta Method, volume 227-228. Encyclopedia of Math-

ematics, January 2001.

T N Heinz and P H Hiinenberger. A fast pairlist-construction algorithm for
molecular simulations under periodic boundary conditions. Journal of Compu-

tational Chemistry, 25(12):1474-1486, September 2004.
M A Heroux and R Barrett. Mantevo project. May 2011.

M A Heroux, D W Doerfler, and P S Crozier. Improving performance via

mini-applications. Technical report, 2009.

R W Hockney, S P Goel, and J W Eastwood. Quiet high-resolution computer
models of a plasma. Journal of Computational Physics, 14(2):148-158, February
1974.

A Hoisie, G Johnson, D Kerbyson, M Lang, and S Pakin. A performance com-
parison through benchmarking and modeling of three leading supercomputers:
Blue Gene/L, Red Storm, and Purple. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis

2006, pages 3—-3. IEEE, 2006.

R D Hornung and J A Keasler. The RAJA portability layer: overview and
status. Technical report, Lawrence Livermore National Laboratory (LLNL),

Livermore, CA (United States), September 2014.

Intel Corporation. Intel VTune Amplifier XE. URL https://software.intel.

com/en-us/intel-vtune-amplifier-xe.

Intel Corporation. An introduction to MCDRAM (high band-
width memory) on Knights Landing, June 2016. URL
https://software.intel.com/en-us/blogs/2016/01/20/

an-intro-to-mcdram-high-bandwidth-memory-on-knights-landing.

https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/blogs/2016/01/20/an-intro-to-mcdram-high-bandwidth-memory-on-knights-landing
https://software.intel.com/en-us/blogs/2016/01/20/an-intro-to-mcdram-high-bandwidth-memory-on-knights-landing

[45]

[49]

[50]

W Jiang, J C Phillips, L Huang, M Fajer, Y Meng, J C Gumbart, Y Luo,
K Schulten, and B Roux. Generalized scalable multiple copy algorithms for

molecular dynamics simulations in NAMD. Computer Physics Communica-

tions, 185(3):908-916, March 2014.

I T Jolliffe and J Cadima. Principal component analysis: a review and recent

developments. Phil. Trans. R. Soc. A, 374(2065):20150202, April 2016.

L V Kalé and S Krishnan. CHARM++: a portable concurrent object oriented

system based on C++. Technical report, October 1993.

D J Kerbyson, H J Alme, A Hoisie, F Petrini, H J Wasserman, and M Gittings.
Predictive performance and scalability modeling of a large-scale application. In
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis 2001, pages 37-37, New York, New York,
USA, 2001. ACM Press.

D J Kerbyson, A Hoisie, and H J Wasserman. Modelling the performance of

large-scale systems. IEE Proceedings - Software, 150(4):214-221, August 2003.

D J Kerbyson, A Hoisie, and H J Wasserman. A comparison between the
Earth Simulator and AlphaServer systems using predictive application perfor-
mance models. In Proceedings of the International Symposium on Parallel and

Distributed Processing 2003, page 10. IEEE Comput. Soc, 2003.

S Kumar, D Kim, M Smelyanskiy, Y Chen, J Chhugani, C J Hughes, C Kim,
V W Lee, and A D Nguyen. Atomic vector operations on chip multiprocessors.

In Proceedings of the 35th International Symposium on Computer Architecture

2008, pages 441-452. IEEE, 2008.

J Law and R Rennie. A dictionary of physics. Oxford University Press, USA,
April 2015.

[53]

[56]

[57]

[58]

[59]

[60]

T R Law, J Hancox, T M K Cheng, R A G Chaleil, S A Wright, P A Bates, and
S A Jarvis. Optimisation of a molecular dynamics simulation of chromosome
condensation. In 2016 28th International Symposium on Computer Architecture

and High Performance Computing (SBAC-PAD), pages 126-133. IEEE, 2016.

S Le Grand, A W Go6tz, and R C Walker. SPFP: Speed without compromise—A
mixed precision model for GPU accelerated molecular dynamics simulations.

Computer Physics Communications, 184(2):374-380, February 2013.

C Luk, R Cohn, R Muth, H Patil, A Klauser, G Lowney, S Wallace, V Reddi,
and K Hazelwood. Pin: building customized program analysis tools with dy-
namic instrumentation. In Programming Language Design and Implementation,

pages 190-200, June 2005.

A C Mallinson, D A Beckingsale, and W P Gaudin. Cloverleaf: preparing

hydrodynamics codes for exascale. The Cray User Group, 2013.

G Marcais and C Kingsford. A fast, lock-free approach for efficient parallel

counting of occurrences of k-mers. Bioinformatics, 27(6):764-770, March 2011.

W Mattson and B M Rice. Near-neighbor calculations using a modified cell-
linked list method. Computer Physics Communications, 119(2-3):135-148, June

1999.

J D McCalpin. Memory bandwidth and machine balance in current high perfor-
mance computers. IEEE Computer Society Technical Committee on Computer

Architecture Newsletter, 1995.

J Meng, V Morozov, K Kumaran, V Vishwanath, and T Uram. GROPHECY.
In Proceedings of the International Conference for High Performance Comput-

ing, Networking, Storage and Analysis 2011, page 1, New York, New York,
USA, 2011. ACM Press.

[61]

[62]

[63]

[64]

[65]

[66]

H Meuer, E Strohmaier, J Dongarra, H Simon, and M Meuer. Top500, June

2017. URL https://www.top500.o0rg.

D C Montgomery, E A Peck, and G G Vining. Introduction to linear regression

analysis. 5 edition, April 2012.

B Moon, H V Jagadish, C Faloutsos, and J H Saltz. Analysis of the clustering
properties of the Hilbert space-filling curve. IEEE Transactions on Knowledge
and Data Engineering, 13(1):124-141, 2001.

G R Mudalig, S D Hammond, J A Smith, and S A Jarvis. Predictive analysis
and optimisation of pipelined wavefront computations. In Proceedings of the

International Symposium on Parallel and Distributed Processing 2009, pages

1-8. IEEE, 2009.

R Murphy, K Underwood, A Rodrigues, and P Kogge. The Structural Sim-
ulation Toolkit: a tool for exploring parallel architectures and applications.

Technical report, 2007.

M Nelson, W Humphrey, A Gursoy, A Dalke, L. V Kalé, R D Skeel, and K Schul-
ten. NAMD: a parallel, object-oriented molecular dynamics program. The
International Journal of Supercomputer Applications and High Performance

Computing, 10(4):251-268, September 1996.

A Nicolau. Loop quantization: unwinding for fine-grain parallelism exploita-

tion. Technical report, Cornell University, October 1985.
OpenACC Standard Board. OpenACC 2.6 specification, November 2017.

OpenMP Architecture Review Board. OpenMP 4.5 specification, November
2015.

S J Pennycook, C J Hughes, M Smelyanskiy, and S A Jarvis. Exploring SIMD

for molecular dynamics, using Intel® Xeon® processors and Intel® Xeon Phi™

https://www.top500.org

[71]

[72]

[77]

(78]

coprocessors. In Proceedings of the International Symposium on Parallel and
Distributed Processing 2013, pages 1085-1097. IEEE Computer Society, May

2013.

J C Phillips, R Braun, W Wang, J Gumbart, E Tajkhorshid, E Villa, C Chipot,
R D Skeel, L Kalé, and K Schulten. Scalable molecular dynamics with NAMD.
Journal of Computational Chemistry, 26(16):1781-1802, December 2005.

J C Phillips, J E Stone, and K Schulten. Adapting a message-driven parallel
application to GPU-accelerated clusters. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analy-
sis 2008, pages 1-9. IEEE, 2008.

S J Plimpton. Fast parallel algorithms for short-range molecular dynamics.

Journal of Computational Physics, 117:1-19, March 1995.

B Quentrec and C Brot. New method for searching for neighbors in molecular
dynamics computations. Journal of Computational Physics, 13(3):430-432,
November 1973.

D Rapaport. Large-scale molecular dynamics simulation using vector and par-

allel computers. Computer Physics Reports, 9:1-53, 1988.

R Reussner, P Sanders, and J Tréaff. SKaMPI: a comprehensive benchmark for
public benchmarking of MPI. Scientific Programming, 10(1):55-65, 2002.

V Rokhlin. Rapid solution of integral equations of classical potential theory.

Journal of Computational Physics, 60(2):187-207, September 1985.

S Satish, C Kim, J Chhugani, A D Nguyen, V W Lee, D Kim, and P Dubey.
Fast sort on CPUs and GPUs: a case for bandwidth oblivious SIMD sort. a
case for bandwidth oblivious SIMD sort. ACM, New York, New York, USA,
June 2010.

[79]

[30]

[81]

[83]

[84]

S Shende and A Malony. The Tau parallel performance system. International
Journal of High Performance Computing Applications, 20(2):287-311, Septem-
ber 2016.

Y Sun, G Zheng, C Mei, E J Bohm, J C Phillips, L. V Kalé, and Terry R
Jones. Optimizing fine-grained communication in a biomolecular simulation
application on Cray XK6. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis 2012, pages
1-11. IEEE, 2012.

P Terdiman. Radix sort revisited, April 2000. URL http://codercorner.

com/RadixSortRevisited.htm.

I T Todorov, W Smith, K Trachenko, and M T Dove. DL_POLY_3: new
dimensions in molecular dynamics simulations via massive parallelism. Journal

of Materials Chemistry, 16(20):1911-1918, May 2006.

D M Tullsen, S J Eggers, and H M Levy. Simultaneous multithreading: maxi-
mizing on-chip parallelism. In 22nd Annual International Symposium on Com-

puter Architecture, pages 392—403. ACM, 1995.

L Verlet. Computer “experiments” on classical fluids. I. thermodynamical prop-

erties of lennard-jones molecules. Physical Review, 159(1):98-103, July 1967.

M Weiss. Strip mining on SIMD architectures. ACM, New York, New York,
USA, June 1991.

U Welling and G Germano. Efficiency of linked cell algorithms. Computer
Physics Communications, 182(3):611-615, March 2011.

R H S Winterton. Van der Waals forces. Contemporary Physics, 11(6):559-574,
November 1970.

http://codercorner.com/RadixSortRevisited.htm
http://codercorner.com/RadixSortRevisited.htm

[83]

[89]

M Wolfe. More iteration space tiling. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis

1989, pages 655—664, New York, New York, USA, 1989. ACM Press.

Z Yao, J Wang, G Liu, and M Cheng. Improved neighbor list algorithm in
molecular simulations using cell decomposition and data sorting method. Com-

puter Physics Communications, 161(1-2):27-35, August 2004.

C Young, N Gloy, and M D Smith. A comparative analysis of schemes for

correlated branch prediction, volume 23. ACM, May 1995.

G Zhao, J R Perilla, E L Yufenyuy, X Meng, B Chen, J Ning, J Ahn, A M
Gronenborn, K Schulten, C Aiken, and P Zhang. Mature HIV-1 capsid structure
by cryo-electron microscopy and all-atom molecular dynamics. Nature, 497

(7451):643-646, May 2013.

Appendix A

Code Listings

Here we reproduce some lengthier code fragments from our implementations.

A.1 AVX/AVX2 Projection Sorting Force Sweep

10

11

12

13

15

16

17

18

__m2564 vrc _mm256_setl_pd(rc);

__m256d vrcsq = _mm256_setl_pd(rcsq);

__mi128i vw = _mm_setl_epi32(4);
__m256d vO = _mm256_setl_pd(0.0);
__m128i vnt = _mm_setl_epi32(nt);

for (i = 0; i < nt; i++) {

if (indices[i] >= nb) continue;

__m128i vi = _mm_setl_epi32(i);

__m256d vpxi = _mm256_broadcast_sd(ps_x + 1i);
__m256d vpyi = _mm256_broadcast_sd(ps_y + 1);
__m256d vpzi = _mm256_broadcast_sd(ps_z + 1i);

__m256d vproji _mm256_broadcast_sd(projs + i);

__m256d vfxi = _mm256_setl_pd(0.0);

__m256d vfyi = _mm256_setl_pd(0.0);

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

51

52

__m256d vfzi = _mm256_setl_pd(0.0);

int const start = (i+1) & (((int) -1) ~ 0x3);
__m128i vj = _mm_add_epi32(
_mm_setl_epi32(start),

_mm_set_epi32(3, 2, 1, 0));

for (j = start; j < nt; j += 4) {
__m256d kprojcutoff = _mm256_cmp_pd(
_mm256_sub_pd (_mm256_load_pd(projs + j), vproji),
vrc,
_CMP_LE_0OQ) ;

if (!_mm256_movemask_pd(kprojcutoff)) break;

__m256d vdx = _mm256_sub_pd(_mm256_load_pd(ps_x + j), vpxi);
__m256d vdy = _mm256_sub_pd(_mm256_load_pd(ps_y + j), vpyi);
__m256d vdz = _mm256_sub_pd(_mm256_load_pd(ps_z + j), vpzi);

__m256d vdsq = _mm256_mul_pd(vdx, vdx);

#ifdef ENABLE_AVX2

vdsq = _mm256_fmadd_pd(vdy, vdy, vdsq);
vdsq = _mm256_fmadd_pd(vdz, vdz, vdsq);
#else

vdsq = _mm256_add_pd(_mm256_mul_pd(vdy, vdy), vdsq);
vdsq = _mm256_add_pd(_mm256_mul_pd(vdz, vdz), vdsq);

#endif

__m256d krccutoff = _mm256_cmp_pd(vdsq, vrcsq, _CMP_LE_0Q);

__m256d vid = _mm256_cvtepi32_pd(vi);
__m256d vjd = _mm256_cvtepi32_pd(vj);
__m256d vntd = _mm256_cvtepi32_pd(vnt);

krccutoff = _mm256_and_pd(krccutoff,

_mm256_cmp_pd(vjd, vid, _CMP_GT_0Q));

krccutoff _mm256_and_pd (krccutoff,

53

54

55

56

57

58

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

s

78

79

80

81

82

83

84

85

86

_mm256_cmp_pd(vjd, vntd,

if (_mm256_movemask_pd(krccutoff)) {

__m256d vcoeff = /* app-dependent */;

vdx

vdy

vdz

_mm256_blendv_pd(v0, vdx, krccutoff);
_mm256_blendv_pd(v0, vdy, krccutoff);

_mm256_blendv_pd(v0, vdz, krccutoff);

#ifdef ENABLE_AVX2

vixi
viyi
vizi
#else
vixi
viyi
vizi

#endif

#ifdef N3
__m256d
__m256d

__m256d

__mi128i

vix

viz

_mm256_fmadd_pd(vcoeff, vdx, vfxi);
_mm256_fmadd_pd(vcoeff, vdy, vfyi);

_mm256_fmadd_pd(vcoeff, vdz, vfzi);

_CMP_LT_0Q));

_mm256_add_pd(vfxi, _mm256_mul_pd(vcoeff, vdx));

_mm256_add_pd(vfyi, _mm256_mul_pd(vcoeff, vdy));

_mm256_add_pd(vfzi, _mm256_mul_pd(vcoeff, vdz));

_mm256_mul_pd(vcoeff, vdx);
_mm256_mul_pd(vcoeff, vdy);

_mm256_mul_pd(vcoeff, vdz);

vind = _mm_load_si128((__m128i *)

#ifdef ENABLE_AVX2

__m256d vfxj = _mm256_mask_i32gather_pd(

__m256d vfyj = _mm256_mask_i32gather_pd(

__m256d vfzj = _mm256_mask_i32gather_pd(

#else

v0, f_x, vind, krccutoff, 8);

vO, f_y, vind, krccutoff, 8);

v0, f_z, vind, krccutoff, 8);

(indices + j));

87

88

89

90

91

92

93

94

96

97

98

99

100

101

102

103

104

105

106

108

109

110

111

112

113

114

115

116

117

118

119

120

#endif

vixj

viyj
vizj

shim_mm256_mask_i32scatter_pd(f_x, vind, vfxj, krccutoff, 8);
shim_mm256_mask_i32scatter_pd(f_y, vind, vfyj, krccutoff, 8);

shim_mm256_mask_i32scatter_pd(f_z, vind, vfzj, krccutoff, 8);

__m256d vfxj = shim_mm256_mask_i32gather_pd(

v0, f_x, vind, krccutoff, 8);

__m256d vfyj = shim_mm256_mask_i32gather_pd(

vO, f_y, vind, krccutoff, 8);

__m256d vfzj = shim_mm256_mask_i32gather_pd(

v0, f_z, vind, krccutoff, 8);

_mm256_add_pd(vfxj, vix);
_mm256_add_pd(vfyj, viy);

_mm256_add_pd(vfzj, vfz);

vj = _mm_add_epi32(vj, vw);

#endif
X
}
#ifndef N3

vj = _mm_add_epi32(_mm_setl_epi32(start), _mm_set_epi32(3, 2, 1, 0));

vj = _mm_sub_epi32(vj, vw);

for (j = start - 4; j >=0; j -=4) {

__m256d kprojcutoff = _mm256_cmp_pd(

_mm256_sub_pd(vproji, _mm256_load_pd(projs + j)),

vrc,

_CMP_LE_0Q) ;

if (!_mm256_movemask_pd(kprojcutoff)) break;

/Zane

// as abowve

Zane

121

122 vj = _mm_sub_epi32(vj, vw);

123 }

124 | #endif

125

126 f_x[indices[i]] -= shim_mm256_reduce_add_pd(vfxi) ;
127 f_ylindices[i]] -= shim_mm256_reduce_add_pd(vfyi);
128 f_z[indices[i]] -= shim_mm256_reduce_add_pd(vfzi);
129 | }

A.1.1 Shim Gather Intrinsic (AVX)

1 | inline __m256d

2 | shim_mm256_mask_i32gather_pd(__m256d src, double const* base_addr,

3 __m128i vindex, __m256d mask, const int scale)

4] {

5 int const m = _mm256_movemask_pd(mask) ;

6

7 __m256d res = src;

8 if (m & (0x1 << 0))

9 res = _mm256_blend_pd(

10 res,

11 _mm256_setl_pd(base_addr[_mm_extract_epi32(vindex, 0)]), 1);
12 if (m & (0x1 << 1))

13 res = _mm256_blend_pd(

14 res,

15 _mm256_setl_pd(base_addr[_mm_extract_epi32(vindex, 1)1), 2);
16 if (m & (0x1 << 2))

17 res = _mm256_blend_pd(

18 res,

19 _mm256_setl_pd(base_addr[_mm_extract_epi32(vindex, 2)]), 4);
20 if (m & (0x1 << 3))

21 res = _mm256_blend_pd(

22 res,

23 _mm256_setl_pd(base_addr[_mm_extract_epi32(vindex, 3)]1), 8);

24
25 return res;

26 | }

A.1.2 Shim Scatter Intrinsic (AVX/AVX2)

1 | inline void

2 | shim_mm256_mask_i32scatter_pd(double *base_addr, __m128i vindex,
3 __m256d v1, __m256d mask, const int scale)

a1 {

5 #define MM_EXTRACT_PD(v, i) \

6 _mm_cvtsd_f64(_mm_shuffle_pd(v, v, _MM_SHUFFLE2(0, %)))
7

8 int const m = _mm256_movemask_pd (mask) ;

9

10 if (m & (0x1 << 0))

11 base_addr[_mm_extract_epi32(vindex, 0)] =

12 MM_EXTRACT_PD(_mm256_extractf128_pd(vi, 0), 0);
13 if (m & (0x1 << 1))

14 base_addr[_mm_extract_epi32(vindex, 1)] =

15 MM_EXTRACT_PD(_mm256_extractf128_pd(vi, 0), 1);
16 if (m & (0x1 << 2))

17 base_addr[_mm_extract_epi32(vindex, 2)] =

18 MM_EXTRACT_PD(_mm256_extractf128_pd(vi, 1), 0);
19 if (m & (0x1 << 3))

20 base_addr[_mm_extract_epi32(vindex, 3)] =

21 MM_EXTRACT_PD(_mm256_extractf128_pd(vi, 1), 1);
22

23 #undef MM_EXTRACT_PD

24 | }

A.1.3 Shim Reduce-Add Intrinsic (AVX/AVX2)

1 | inline double

2 | shim_mm256_reduce_add_pd(__m256d a)

31 {

4 a = _mm256_hadd_pd(a, a);

5 a = _mm256_shuffle_pd(a, _mm256_permute2f128_pd(a, a, 0x1l), 0x0);
6 a = _mm256_hadd_pd(a, a);

7 return _mm256_cvtsd_f64(a);

g | }

A.2 KNC/AVX-512 Projection Sorting Force Sweep

1| __mb12d vrc _mm512_setl_pd(rc);

2 | __mb12d vrcsq = _mm512_setl_pd(rcsq);

3 | __mb12i vw _mmb12_setl_epi64(8);

4 | __mbl2d vO

_mm512_setl_pd(0.0);

5 | __m512i vnt _mm512_setl_epi64(nt);

7| for (i = 0; i < nt; i++) {

8 if (indices[i] >= nb) continue;

9

10 __mb12i vi = _mmb512_setl_epi64(i);

11

12 __mb12d vpxi = _mm512_setl_pd(ps_x[il);
13 __mb12d vpyi = _mm512_setl_pd(ps_y[il);
14 __mb12d vpzi = _mmb12_setl_pd(ps_z[il);
15 __m512d vproji = _mm512_setl_pd(projs[il);
16

17 __mb12d vfxi = _mmb512_setl_pd(0.0);

18 __mb12d vfyi = _mmb512_setl_pd(0.0);

19 __mb12d vfzi = _mmb512_setl_pd(0.0);

20

21 int const start = (i+1) & (((int) -1) ~ 0x7);
22 __mb12i vj = _mmb512_add_epi64(

23 _mm512_setl_epi64(start),

24 _mmb512_set_epib4(7, 6, 5, 4, 3, 2, 1, 0));

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

51

52

53

54

55

56

58

59

for (j = start; j < nt; j += 8) {

if (!_mm512_cmple_pd_mask(

__mb12d vdx
__mb12d vdy

__mb12d vdz

__mb12d vds
vds

vds

_mm512_sub_pd(_mm512_load_pd(projs + j), vproji),

vrc)) break;

= _mmb512_sub_pd(_mm512_load_pd(ps_x + j), vpxi);

_mm512_sub_pd(_mm512_load_pd(ps_y + j), vpyi);

= _mm512_sub_pd(_mm512_load_pd(ps_z + j), vpzi);

q

q

q

__mmask8 krccutoff

krccutoff =

krccutoff =

if (krccuto

_mm512_kand (krccutoff, _mm512_cmpgt_epi64_mask(vj, vi));

_mm512_kand (krccutoff, _mm512_cmplt_epi64_mask(vj, vnt));

££) {

_mm512_mul_pd(vdx, vdx);
_mmb512_fmadd_pd(vdy, vdy, vdsq);

_mm512_fmadd_pd(vdz, vdz, vdsq);

= _mm512_cmple_pd_mask(vdsq, vrcsq);

__mb12d vcoeff = /* app-dependent */;

vixi

viyi

vizi

#ifdef N3

__mb12d

__mb12d

__mb12d

__m256i

__m512d

__mb1l2d

_mm512_mask3_fmadd_pd(vcoeff, vdx, vfxi, krccutoff);

_mm512_mask3_fmadd_pd(vcoeff, vdy, viyi, krccutoff);

_mm512_mask3_fmadd_pd(vcoeff, vdz, vfzi, krccutoff);

vix

vy

viz

vind

vixj

_mm512_mask_mul_pd(v0, krccutoff, vcoeff, vdx);
_mm512_mask_mul_pd(v0, krccutoff, vcoeff, vdy);
_mm512_mask_mul_pd(v0, krccutoff, vcoeff, vdz);

_mm256_load_si256((__m256i *) (indices + j));

_mm512_mask_i32gather_pd(

v0, krccutoff, vind, f_x, 8);

viyj

_mm512_mask_i32gather_pd(

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

#endif
¥
#ifndef N3
vj =
mm512
mmb12
vy =

v0, krccutoff, vind, f_y, 8);

__mb12d vfzj = _mm512_mask_i32gather_pd(

vixj =
viyj =

vizj =

_mmb512_mask_i32scatter_pd(f_x, krccutoff, vind, vfxj, 8);
_mm512_mask_i32scatter_pd(f_y, krccutoff, vind, vfyj, 8);

_mmb512_mask_i32scatter_pd(f_z, krccutoff, vind, vfzj, 8);

v0, krccutoff, vind, f_z, 8);

_mm512_add_pd(vixj, vfx);
_mm512_add_pd(vfyj, viy);

_mm512_add_pd(vfzj, vfz);

vj = _mm512_add_epi64(vj, vw);

_mm512_add_epi64(

setl_epi64(start),

set_epi64(7, 6, 5, 4, 3, 2, 1, 0));

_mm512_sub_epib4(vj, vw);

for (j = start

#endif

/)
// as above
Y/Z2n

-8; j>0; j =28 A

if (!_mm512_cmple_pd_mask(

_mm512_sub_pd(vproji, _mm512_load_pd(projs + j)),

vrc)) break;

vj = _mm512_sub_epi64(vj, vw);

94

95 f_x[indices[i]] -= _mm512_reduce_add_pd(vfxi);

96 f_y[indices[i]] -= _mm512_reduce_add_pd(vfyi);
97 f_z[indices[i]] -= _mm512_reduce_add_pd(vfzi);
98 | }

A.3 Shim Packed Store Intrinsic (AVX/AVX2)

This is used to emulate the KNC packed store and AVX-512 compressed store in-

trinsics for the AVX and AVX2 code paths.

1 | inline void

2 | shim_mm_mask_packstore_epi32(void #*mt, int const mask, __m128i v1)
39

4 static __m128i const packmasks[16] = {
5 _mm_set_epi32(3, 2, 1, 0), // 0000, identity
6 _mm_set_epi32(3, 2, 1, 0), // 0001
7 _mm_set_epi32(3, 2, 1, 1), // 0010
8 _mm_set_epi32(3, 2, 1, 0), // 0011
9 _mm_set_epi32(3, 2, 1, 2), // 0100
10 _mm_set_epi32(3, 2, 2, 0), // 0101
11 _mm_set_epi32(3, 2, 2, 1), // 0110
12 _mm_set_epi32(3, 2, 1, 0), // 0111
13 _mm_set_epi32(3, 2, 1, 3), // 1000
14 _mm_set_epi32(3, 2, 3, 0), // 1001
15 _mm_set_epi32(3, 2, 3, 1), // 1010
16 _mm_set_epi32(3, 3, 1, 0), // 1011
17 _mm_set_epi32(3, 2, 3, 2), // 1100
18 _mm_set_epi32(3, 3, 2, 0), // 1101
19 _mm_set_epi32(3, 3, 2, 1), // 1110
20 _mm_set_epi32(3, 2, 1, 0) // 1111
21 };

22

23 static __m128i const writemasks[5] = {

24

25

26

27

28

29

30

31

32

33

34

_mm_set_epi32(0, 0, 0, 0),

_mm_set_epi32(0, 0, 0, ~((int) 0)),
_mm_set_epi32(0, 0, ~((int) 0), ~((int) 0)),
_mm_set_epi32(0, ~((int) 0), ~((int) 0), ~((int) 0)),

_mm_set_epi32(~((int) 0), ~((int) 0), ~((int) 0), ~((int) 0))
};

int const n = _popcnt32(mask);
__m128 v = _mm_permutevar_ps(_mm_castsil28_ps(vl), packmasks[mask]);

_mm_maskstore_ps((float *) mt, writemasks[n], v);

	Abstract
	Acknowledgments
	Declarations
	Sponsorship and Grants
	Abbreviations
	List of Tables
	List of Figures
	Chapter Introduction
	Motivations
	Aims & Objectives
	Research Methodology
	Thesis Contributions
	Thesis Overview

	Chapter Parallel Hardware and Performance Engineering
	Types of Parallelism
	Instruction Level Parallelism
	SIMD Vectorisation
	Multithreading
	Message Passing

	The Memory Hierarchy
	Many-core and Heterogeneous Computing
	Performance Engineering
	Benchmarking
	Profiling
	Code Optimisation
	Performance Modelling

	Mini-applications
	Summary

	Chapter Molecular Dynamics
	Computational Aspects of Molecular Dynamics
	Short-Range Force Algorithms

	Parallelisation of Molecular Dynamics
	Summary

	Chapter Projection Sorting
	Description of the Algorithm
	Illustrative Example
	Complexity & Scope for Optimisation
	Preliminary Comparison to Verlet Lists
	Periodic Computation
	Force Computation
	Communication Costs
	Comparing Projection Sorting and Verlet Lists in Practice

	Summary

	Chapter A Simulation of Chromosome Condensation
	Chromosome Condensation
	Simulation Forces

	Optimisations
	Parallelisation
	Cell Lists and Verlet Lists
	Linear Forces
	Entropic Forces

	Summary

	Chapter Implementing Projection Sorting On-node
	Experimental Setup
	Datasets
	Machine Specifications & Compilation
	Validation
	Parameter Selection

	Repulsion Forces
	Force Sweep
	Sorting

	Projection Sorting vs. Verlet Lists
	Distance Check Counts
	Periodic Costs
	Force Sweep Costs

	Condensin Interaction Forces
	Storage
	Vectorisation

	Overall Performance
	Offload Computation

	Summary

	Chapter Implementing Projection Sorting Off-node
	Experimental Setup
	Machine Specifications, Compilation & Execution

	MPI Implementation
	Projection Sorting

	Experiments
	Raw Performance Comparisons
	Scaling Studies
	Xeon vs. Xeon Phi

	Summary

	Chapter Conclusions
	Contributions
	Limitations
	Further Work
	Improvements to Projection Sorting
	Alternative Shared-Memory Parallelisations
	Implementation in Other Molecular Dynamics Packages

	Bibliography
	Appendix Code Listings
	AVX/AVX2 Projection Sorting Force Sweep
	Shim Gather Intrinsic (AVX)
	Shim Scatter Intrinsic (AVX/AVX2)
	Shim Reduce-Add Intrinsic (AVX/AVX2)

	KNC/AVX-512 Projection Sorting Force Sweep
	Shim Packed Store Intrinsic (AVX/AVX2)

