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Abstract  

Introduction 

Respiratory syncytial virus (RSV) causes a significant respiratory disease burden 

in the under 5 population. The transmission pathway to young children is not 

fully quantified in low-income settings, and this information is required to design 

interventions.  

Methods  

We used an individual level transmission model to infer transmission 

parameters using data collected from 493 individuals distributed across 47 

households over a period of 6 months spanning the 2009/2010 RSV season. A 

total of 208 episodes of RSV were observed from 179 individuals. We model 

competing transmission risk from within household exposure and community 

exposure while making a distinction between RSV groups A and B.  

Results 

We find that individuals are more likely to get infected by a member of the same 

household than from an external source; the rate of pair-wise transmission is 

lower in larger households (≥8 occupants) than smaller households (relative 

proportion =0.42 (95% CrI: 0.26-0.7)); symptomatic individuals are 2-7 times 

more infectious than asymptomatic individuals i.e. 2.48 (95% CrI: 1.22-5.57) 

among symptomatic individuals with low viral load and 6.7(95% CrI: 2.56-16) 

among symptomatic individuals with high viral load; previous infection reduces 

susceptibility to re-infection within the same epidemic by 47% (95% CrI: 17%-

68%) for homologous RSV group and 39% (95%CrI: -8%-69%) for heterologous 

group; RSV B is more frequently introduced into the household, and RSV A is 

more rapidly transmitted once in the household.  

Discussion 

Our analysis presents the first transmission modelling of cohort data for RSV and 

we find that it is important to consider the household social structuring and 

household size when modelling transmission. The increased infectiousness of 

symptomatic individuals implies that a vaccine against RSV related disease 

would also have an impact on infection transmission. Together, the weak cross 

immunity between RSV groups and the possibility of different transmission 

niches could form part of the explanation for the group co-existence.  
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Introduction 

Respiratory syncytial virus (RSV) is an ubiquitous RNA virus infection that is a 

major cause of lower respiratory tract disease in children under 5 years of age 

worldwide (Nair et al., 2010; Shi et al., 2015).  The estimated global burden of 

RSV associated acute lower respiratory tract infection (ALRI) in 2015 in under 5 

year olds is 33.0 million (21.6-50.3), most of which occurs in developing 

countries (30.5 million) (Shi et al., 2017). Of the 3.2 (2.7 -3.8) million hospital 

admissions associated with RSV in the under 5s, 1.4 (1.2-1.7) million occurred in 

the 0-5 months age group, and 1.2 (1.0-1.5) million occurred in developing 

countries.  

 

Despite 50 years of vaccine research none is yet licensed for the prevention of 

RSV infection or disease.  There are currently over fifty vaccines in different 

stages of development: many with the aim of prevention of early infant RSV 

disease.  While the most advanced (in phase III trials) is a maternal vaccine to 

boost transplacental antibody transfer (Thomas, 2017; “RSV Vaccine Snapshot,” 

2016, “WHO | WHO vaccine pipeline tracker,” 2016),  a variety of product types 

and range of strategies for protecting young children are under investigation 

including indirect protection  by targeting older infants, elder siblings and family 

cocooning (Anderson et al., 2013; Kinyanjui et al., 2015; Poletti et al., 2015).   

 

Prior to vaccine introduction, drivers of transmission need to be well understood 

in order to predict the potential public health impact of implementation. 

Investigating outbreaks within the household setting could help to further 

characterize RSV transmission. The household is an important unit of study for 

diseases that are transmitted through close contact. The quantitative analysis of 

household outbreaks has been conducted for influenza (Cauchemez et al., 2009, 

2004; House et al., 2012; Klick et al., 2011; Lau et al., 2015; Wu et al., 2006; Yang 

et al., 2015). This has led to quantification of transmissibility within the 

household, improved understanding of the factors that determine level of 

transmission such as household size and effectiveness of different household 

level interventions (Tsang et al., 2016). To date studies of RSV transmission 

within households or families have been largely observational. One of the 
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earliest is a household cohort study in the USA in which 36 families were 

followed up for 2 months during the 1974/1975 RSV season (Hall et al., 1976). 

This study found that RSV attack rates in households were high, more so in 

infants. Older siblings to infants were found to be the most likely index cases in 

household outbreaks, and illness was found to have an age-related severity. 

Several other studies over the years across different settings have highlighted 

the importance of older children in household outbreaks (Heikkinen et al., 2015; 

Jacoby and Glass, 2017; Munywoki et al., 2014) which could have implications 

for control strategies (Graham, 2014).  

 

In Kenya, a household cohort study conducted in a rural coastal community 

during the 2009/2010 RSV epidemic has revealed several patterns. In addition 

to the importance of older children (Munywoki et al., 2014), bigger household 

size and infection with RSV group B, among other factors, were found to be 

independently associated with increased risk of asymptomatic infection 

(Munywoki et al., 2015a); shedding duration estimates (using molecular 

diagnostics) were 11.2 days on average, and longer than  the previous range 

reported of 3.9-7.4 days (Munywoki et al., 2015b); individuals experiencing the 

first infection of an RSV season were found to shed more virus relative to 

secondary infections; children under 1 year old, symptomatic shedders and RSV 

A and B co-infected individuals were identified as the most likely to transmit due 

to their relatively higher viral loads (Wathuo et al., 2016). 

 

RSV can be categorized into two antigenically and genetically distinct groups, 

RSV A and RSV B (Cane, 2001). These groups, thought to have diverged about 

350 years ago (Zlateva et al., 2005), have been observed to co-exist 

geographically and temporally with most outbreaks being dominated by RSV A 

and, in some locations, clear patterns of alternating dominance (White et al., 

2005). Within the RSV groups are subgroups or genotypes whose frequency 

changes from season to season, with some genotypes undergoing complete 

replacement over time (Agoti et al., 2013, 2012; Park et al., 2017; Rodriguez-

Fernandez et al., 2017; Song et al., 2017; Thongpan et al., 2017). This pattern of 

group and genotype replacement is thought to be due to a herd immunity effect 
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(Botosso et al., 2009; Cane, 2001; Pretorius et al., 2013; White et al., 2005). A 

phylogenetic analysis of RSV A sequences from the Kenyan household study 

showed that most infections arise from a single variant introduction followed by 

accumulation of household specific variation, i.e. cases arise more from within 

household spread rather than multiple introductions (Agoti et al., 2017). 

 

However, there is yet to be a mechanistic analysis of RSV household outbreak 

data that consolidates information on the characteristics of infection episodes 

and characteristics of the host population into a single dynamic framework.  

Inference could then be drawn on the competing risks of within household 

exposure and community (external to household) exposure, in order to quantify 

the importance of households in RSV transmission. We proposed to use an 

individual-based approach within a Bayesian framework to analyze the 

household cohort data from Kenya to further understand transmission 

dynamics. We also explore the differences and interactions between RSV groups. 
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Material and methods 

Data 

The data to be used were collected from a household cohort study conducted in 

rural coastal Kenya within the Kilifi Health and Demographic Surveillance 

System (KHDSS) during the 2009/2010 RSV epidemic. Details of the study have 

been published elsewhere (Munywoki, 2013; Munywoki et al., 2015a, 2015b, 

2014). In brief, the infant-centric study recruited household members using the 

criteria that the infant was born after 1 April 2009 (after the previous RSV 

epidemic) and had at least 1 older sibling less than 13 years old. Deep 

nasopharyngeal swab (NPS) samples were collected every 3-4 days regardless of 

symptoms, together with a record of clinical illness.  The samples were tested for 

RSV antigen using an in-house real-time multiplex polymerase chain reaction 

(PCR) assay. A sample was considered antigen positive if the PCR cycle threshold 

(Ct) value was 35.0 or below. Positive Ct values were then converted to viral load 

(log10 RNA equivalent). A household was defined as a group of individuals living 

in the same compound and eat together. The data contain information from 493 

individuals spread across 47 households whose dates of data collection span 180 

days. The household sizes range from 4 to 37 occupants with a median of 8 

members.  

 

An RSV A/B shedding episode is defined as a period within which an individual 

provided PCR positive samples for RSV A/B that were no more than 14 days 

apart. A shedding episode is referred as symptomatic if within the window of 

virus shedding, there is at least one day where symptoms were recorded. The 

symptoms of interest are those of an acute respiratory illness (ARI), which are: 

cough, or nasal discharge/blockage, or difficulty breathing. Sampling of the study 

population was done in 3-4 day intervals, as such, complete duration of shedding 

and ARI episodes had to be imputed, and missing viral loads were linearly 

interpolated. Shedding durations were imputed first, after which, if there were 

any days of recorded ARI within shedding episodes, the total duration of the ARI 

was imputed based on the days of recorded symptoms. As such, the length of an 

ARI episode within a shedding episode can be ≤ length of related shedding 

episode. 
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Details of the imputation of episodes and interpolation of viral load can be found 

in the supplementary appendix section.  

 

We categorized days of shedding according to viral load and symptoms into 4 

categories to compare infectiousness: low viral load and asymptomatic, high 

viral load and asymptomatic, low viral load and symptomatic and, high viral load 

and symptomatic. High viral load is defined as >6 log10 viral copy number (or a 

PCR Ct value <23.05). 

 

Transmission model 

We built a mechanistic model for RSV that tracks infection onset at the individual 

host level. The main assumptions about transmission are contained in the 

equation giving the per capita rate of exposure (to infection) per unit time, also 

known as the infection hazard. The rate of exposure to a particular RSV group 

(index g) is given for a particular individual, (index i) from a given household 

(index h) at a given day (index t) and is specified by the notation 𝜆𝑖,ℎ,𝑔(𝑡).  We 

assume that an individual can be exposed to infection in the household they 

occupy and from external infection sources and as such, decompose the rate of 

exposure into two parts, a within household component and a community 

component.  

Within household exposure: 

For an individual i, in household h, the rate of exposure at a given time t, is a 

summation of rates from all the infectious individuals in their household. The 

rate of exposure from a single infectious housemate (index j) is assumed to 

depend on the size of the household and the viral load and symptom status. We 

consider the household size effect as a binary variable where a house with >8 

members is considered large. We consider viral load and symptom status as one 

variable with 4 categories: low viral load and no symptoms, high viral load and 

no symptoms, low viral load and symptomatic, high viral load and symptomatic. 

The household rate of exposure from individual j to i is thus give as: 

 

𝐻𝐻_𝑅𝑖𝑠𝑘ℎ,𝑔,𝑗→𝑖(𝑡) =  𝜂𝑔  ×  𝜓𝐻(𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑_𝑠𝑖𝑧𝑒𝑖)  × 𝜓𝐼,𝑖𝑛𝑓(𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑗,ℎ,𝑔(𝑡)) 
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𝜂𝑔 is the baseline rate of exposure in the household which is estimated for each 

of the two RSV groups, RSV A and RSV B. 𝜓𝐻  is the coefficient modifying 

exposure in large household relative to small households and 𝜓𝐼,𝑖𝑛𝑓is the 

coefficient modifying infectiousness based on viral load and symptom status. The 

within household rate of exposure only affects susceptible individuals who are 

present in the household, as such this rate is multiplied by a binary variable 

𝑀𝑖,ℎ(𝑡) =0 if i is not present in the household at time t and 𝑀𝑖,ℎ(𝑡)=1 if i is 

present. 

Community exposure: 

For a susceptible individual i, this external to the household source of exposure 

is assumed to represent both sampled and unsampled cases from other 

households. Community exposure is assumed to depend on the age of the 

susceptible individual and time. Age is treated as a categorical variable. The 

community rate of exposure is thus give as:  

 

𝐶𝑜𝑚𝑚𝑅𝑖𝑠𝑘𝑖,𝑔
(𝑡) = 𝜀𝑔  ×  𝑓𝑔(𝑡)  × 𝜓𝐸,𝑎𝑔𝑒(𝐴𝑔𝑒_𝑔𝑟𝑜𝑢𝑝𝐸,𝑖) 

 

𝜀𝑔 is the baseline rate of exposure from the community, which is estimated for 

each of the two RSV groups. 𝜓𝐸,𝑎𝑔𝑒  is the coefficient modifying the rate of 

community exposure by age. For each RSV group, we have 𝑓𝑔(𝑡), a time-unit 

dependent curve that modifies the community rate of exposure over time, in this 

case the time period of interest is the duration of the study. We wanted this 

curve to represent the background epidemic dynamics in the local zone from 

which the data was collected; as such we proceeded to use the same household 

dataset to generate it.  

The data are calibrated in days and are at the individual level, but to obtain the 

background community rate, we assumed that this background rate is scalable 

from the weekly household-level rate of primary incidence, denoted 𝜆𝐻𝐻(𝑡𝑤). If 

we treat 𝜆𝐻𝐻(𝑡𝑤) as the hazard rate in a probability distribution, we can estimate 

it using the following model: 

𝐼𝑐(𝑡𝑤) = 𝑁𝐻𝐻 (1 −  𝑒𝑥𝑝− ∫ 𝜆𝐻𝐻(𝑠)
𝑡𝑤

0 )  

  𝐼(𝑡𝑤) = 𝑚𝑎𝑥(0, [𝐼𝑐(𝑡𝑤) − 𝐼𝑐(𝑡𝑤 − 1)])  
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Where 

NHH = Total number of households in the study 

I(𝑡𝑤) = Average weekly household-level incidence of primary infection  

IC(𝑡𝑤) = Weekly cumulative household-level incidence of primary 

infection 

We further assumed that 𝜆𝐻𝐻(𝑡𝑤) = 𝑎1𝑒𝑥𝑝
−(

𝑡𝑤−𝑏1
𝑐1

)
2

, giving it a bell-shape, and 

estimated {a1, b1, c1} using maximum likelihood assuming Poisson distributed 

data.  

Once 𝜆𝐻𝐻(𝑡𝑤) was estimated for each RSV group, it was scaled such that it ranges 

between 0 and 1 using the formula 𝑋𝑖
𝑆𝑐𝑎𝑙𝑒𝑑 =

𝑋𝑖−min ({𝑋})

max({𝑋})−min ({𝑋})
. As such, 

 𝑓𝑔(𝑡𝑤) =
𝜆𝐻𝐻(𝑡𝑤)−min ({𝜆𝐻𝐻(1),𝜆𝐻𝐻(2)…𝜆𝐻𝐻(𝑡𝑤)})

max({𝜆𝐻𝐻(1),𝜆𝐻𝐻(2)…𝜆𝐻𝐻(𝑡𝑤)})−min ({𝜆𝐻𝐻(1),𝜆𝐻𝐻(2)…𝜆𝐻𝐻(𝑡𝑤)})
. To turn 𝑓𝑔(𝑡𝑤) 

into a daily scale, the value for a given week were assumed to be the values for 

every day of that week. The resultant background community curves for RSV A 

and B are shown in Figure 1 

 

Figure 1:  Establishing the background community rate function. The figures 

in the top row show a comparison of data and model fit of the weekly incidence 
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of primary household outbreaks that was used to derive the background 

community rate function. Top left: RSV A data and model fit; Top right: RSV B 

data and model fit; Bottom: Comparing the estimated background community 

rate function for RSV A and RSV B.  

Finally, we assume that susceptibility can be modified according to an 

individual’s infection history within the same epidemic, and their age. These two 

components are combined into an equation representing relative susceptibility 

to infection as shown below  

 

𝑆𝑖,𝑔(𝑡) = exp (𝜙𝑌,ℎ𝑖𝑠𝑡(𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛_𝐻𝑖𝑠𝑡𝑜𝑟𝑦𝑖(𝑡)) +  𝜙𝑋,𝑎𝑔𝑒(𝐴𝑔𝑒_𝑔𝑟𝑜𝑢𝑝𝑆,𝑖)) 

 

𝜙𝑋,𝑎𝑔𝑒is the coefficient modifying susceptibility by age. We categorized infection 

history into four groups: no previous infection, recovered from an RSV A 

infection, recovered from an RSV B infection, recovered from both RSV A and B. 

 ϕY,hist is the coefficient modifying susceptibility to a particular RSV group 

depending on infection history in the following three ways: by 𝑒𝑥𝑝ϕ𝑌,ℎ𝑜𝑚 if an 

individual has previously experienced and recovered from infection by the same 

group (homologous infection), 𝑒𝑥𝑝ϕ𝑌,ℎ𝑒𝑡  if the individual has previously 

experienced and recovered from infection by a different group (heterologous 

infection) and by 𝑒𝑥𝑝(ϕ𝑌,ℎ𝑜𝑚+ϕ𝑌,ℎ𝑒𝑡) if an individual has previously experienced 

and recovered from both RSV A and RSV B infection. This mechanism of 

interaction between RSV A and B is similar to that applied in a compartmental 

model used to analyze data from the UK and Finland (White et al., 2005).  

In combination, all the above assumptions result in the rate of exposure equation 

shown below 

1) 𝜆𝑖,ℎ,𝑔(𝑡) = Rate of exposure of individual i in household h with RSV 

group g at time t. 

𝜆𝑖,ℎ,𝑔(𝑡) = 𝑆𝑖,𝑔(𝑡) [𝑀𝑖,ℎ(𝑡) ∑ 𝐻𝐻_𝑅𝑖𝑠𝑘ℎ,𝑔,𝑗→𝑖(𝑡)

𝑗≠𝑖

+ 𝐶𝑜𝑚𝑚_𝑅𝑖𝑠𝑘𝑖,𝑔(𝑡)] 

The assumption of how age and infection history modify the rate of exposure is 

similar to the assumptions made in a proportional hazards model.  
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Additional details on the data variables and parameters are given in Table 1.  

 

Table 1: Model Notation. 

Symbol Name Type Description 

i   Index Index of individual 

h  Index Index of household 

g  Index Index of RSV group type, either A 

or B 

t   Index Index of time in days 

𝑰𝒋,𝒉,𝒈(𝒕) Infectivity Data* Categorical data variable for 

infectious individuals indicating 

level of infectivity categorized by 

viral load and symptom status at 

time t. The categories are: low 

viral load and asymptomatic 

(reference group), high viral load 

and asymptomatic, low viral load 

and symptomatic and, high viral 

load and symptomatic. High viral 

load is defined as >6 log10 viral 

copy number. 

𝒀𝒊(𝒕) Infection_

history 

Data Variable indicating if an 

individual has experienced and 

recovered from an infection by a 

particular RSV group in the 

current epidemic at time t. 

𝑿𝒊 Age_grou

pS 

Data Categorical data variable 

indicating the susceptibility age 

group of an individual. The age 

groups are <1 year (reference 
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group), 1 - <5 years, 5 - <15 

years and ≥15 years. 

𝑴𝒊,𝒉(𝒕)  Data Binary data variable indicating if 

an individual is present in the 

household at time t. Absence 

from the household means that 

an individual was not present at 

the point of sample collection 

and thus in the model they can 

only get infection from a 

community source and not from 

an infectious housemate (not 

sampled and not at household 

risk). Individuals who were 

present but not sampled are 

exposed to both household and 

community source transmission 

in the models (not sampled but 

at household risk).  

𝑯𝒊 Househol

d_size 

Data* Binary data variable indicating 

whether the individual lives in a 

large or small household. A small 

household (reference group) has 

<8 individuals. 

𝑬𝒊 Age_grou

pE 

Data Categorical data variable 

indicating the community 

exposure age group of an 

individual. The age groups are <1 

year (reference group), 1 - <5 

years and ≥5 years. 

𝝓𝑿,𝒂𝒈𝒆 Sus.age.2 

Sus.age.3 

Parameter Coefficients modifying 

susceptibility to RSV depending 
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Sus.age.4 on age, applied to the age group 

covariate Xi. Sus.age.2 estimates 

the effect being in age group 1-5 

years, Sus.age.3 the effect of 

group 5-15 and Sus.age.4 of 

group ≥15 relative to group <1 

year.  

𝝓𝒀,𝒉𝒊𝒔𝒕 

 

Prev.hom 

Prev.het 

Parameter Coefficients modifying 

susceptibility to infection by a 

particular RSV group depending 

on infection history. Prev.hom 

estimates the effect of a previous 

homologous group infection, 

while Prev.het estimates the 

effect of a previous heterologous 

group infection. Applied to the 

categorical covariate Yi(t). 

𝝍𝑯 HH.size Parameter Coefficient modifying the 

amount of within household 

exposure by household size. 

HH.size estimates the effect of 

being in a large household 

relative to a small one. Applied to 

covariate Hi. 

𝜼𝒈 HH.rsv.a 

HH.rsv.b 

Parameter Baseline rate of within 

household exposure by RSV 

group 

𝝍𝑰,𝒊𝒏𝒇 High.Asy

m 

Low.Sym 

High.Sym 

Parameter Coefficients modifying 

infectiousness by viral load and 

symptom status. Relative to 

shedding low viral load and 

being asymptomatic, High.Asym 
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estimates the effect of shedding 

high viral load and being 

asymptomatic, Low.Sym the 

effect of shedding low viral load 

and being symptomatic and 

High.Sym the effect of shedding 

high viral load and being 

symptomatic. Applied to the 

infectivity covariate 𝑰𝒋,𝒉,𝒈(𝒕). 

𝝍𝑬,𝒂𝒈𝒆 

 

Exp.age.2 

Exp.age.3 

Parameter Coefficients modifying the rate of 

community exposure by age 

group. Exp.age.2 estimates the 

effect being in age group 1-5 

years and Exp.age.3 the effect of 

group ≥5, relative to the <1-year 

age group. Applied to the age 

group covariate Ei 

𝜺𝒈 

 

Comm.rsv.

a 

Comm.rsv.

b 

Parameter Community transmission 

coefficient by RSV group 

𝒇𝒈(𝒕)  Estimated  RSV group specific, time-

dependent curve modifying the 

rate of community exposure.  

𝑼𝒊,𝒉,𝒈  Data Set of group specific onset days 

for an individual i in household h 

used in calculating the likelihood 

of an individual’s data. 

* The choice of cut-off for high viral load and large households was based on 

initial runs of the inference algorithm that explored different cut-offs for each. 

The choice of 6 log10 copy number for high viral load and 8 persons for large 

households led to the best convergence. 
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Following on from the rate of exposure equation are two additional nested 

equations that make up the model. 

 
2) 𝛼𝑖,ℎ,𝑔(𝑡) = Probability of infection following exposure per day i.e. 

individual enters the latent phase 

𝛼𝑖,ℎ,𝑔(𝑡) = (1 − 𝑒𝑥𝑝−𝜆𝑖,ℎ,𝑔(𝑡)) 

3) 𝑝𝑖,ℎ,𝑔(𝑡) = Probability of starting to shed i.e. individual enters the 

infectious phase  

𝑝𝑖,ℎ,𝑔(𝑡) = ∑ 𝜃𝑙𝛼𝑖,ℎ,𝑔(𝑡 − 𝑙)

𝐿

𝑙=0

 

Where L is the maximum latent period and 𝜃𝑙  is the probability that the 

latent period is exactly 𝑙 days. For 𝑙 = {0,1,2,3,4,5} days, we have the 

following probabilities [0,0,4,4,3,1]/12= [0, 0,0.33,0.33,0.25,0.083] (Lee et 

al., 2004). The same latency distribution is used for RSV A and B.  

The likelihood of an individual’s data, given the above model thus becomes: 

𝐿𝑖 =  ∏ [ ∏ 𝑝𝑖,ℎ,𝑔(𝑢)

𝑢∈𝑈𝑖,ℎ,𝑔

∏ (1 − 𝑝𝑖,ℎ,𝑔(𝑢))

𝑢∉𝑈𝑖,ℎ,𝑔

]

𝑔

 

 

The model as presented can be reduced to fit for a single RSV group or for RSV as 

a single pathogen with no distinction between RSV A and B. Attempts to model 

household size as a continuous variable were unsuccessful possibly due to our 

small sample size and hence we modeled transmission within the household as a 

density dependent process but identified households as either large or small and 

found that the cut-off between categories of 8 provided the best fit.   

Parameter inference 

We used Bayesian inference to obtain estimates of the parameters. Adaptive 

Metropolis Markov Chain Monte Carlo was used as implemented in the R 

software package fitR (Camacho and Funk, 2017), function mcmcMH . The 

mcmcMH function can adapt the size of the proposal distribution, such that the 

acceptance rate is close to 23.4%, and the shape using the Adaptive metropolis 

algorithm as in (Roberts and Rosenthal, 2009); the difference in size and shape 

adaptation being in the scaling factor used. In brief, the method builds a Markov 
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chain which allows us to sample from the posterior distribution P(φ|D) of the 

parameters given the data, where φ={𝜙𝑋,𝑎𝑔𝑒 , 𝜙𝑌,ℎ𝑖𝑠𝑡, 𝜓𝐻 , 𝜂𝑔 , 𝜓𝐼,𝑖𝑛𝑓, 𝜓𝐸,𝑎𝑔𝑒 , 𝜀𝑔 }. 

Flat bounded priors were used for all the parameters. We initiated 3 chains and 

set the algorithm to start adapting the size of the proposal distribution after 

1000 iterations and the shape after 500 accepted iterations.  

 

Burn-in was assessed visually after which the results of the three concurrent 

chains were combined to infer the posterior distribution. To obtain fairly 

accurate values for the 95% credible intervals, we ran the MCMC algorithm until 

the effective sample size (ESS) was ≥ 4000 (Raftery and Lewis, 1992). The three 

chains were run for 250,000 iterations each and burn-in for each chain was 

80,000, 90,000 and 80,000.  After burn-in the reminders of the three chains were 

combined into a single chain with and overall acceptance rate of 16.8%. The 

parameters were estimated on the log scale. All the computation was done using 

R software package (RStudio version 1.1.383 running R version 3.4.0 (R Core 

Team, 2017)). The code is freely available under the GNU Lesser General Public 

License v3.0 and can be found at 

https://github.com/Ikadzo/HH_Transmission_Model. 

 

Ethics statement  

For the data collection, informed written consent was obtained from all the study 

participants or their parents/guardian. The KEMRI-Scientific and Ethical Review 

Committee in Kenya provided ethical approval. The analysis presented here falls 

under the expected results from the original data collection study, however, 

additional ethical approval was obtained from the Observational / Interventions 

Research Ethics Committee at the London School of Hygiene and Tropical 

Medicine.  
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Results 

Table 2 gives a summary of the shedding episodes in the data. This particular 

outbreak had more RSV B cases than RSV A, with a significant portion of cases 

being symptomatic both for RSV A and B. Eight five percent of the households 

that were successfully followed up had an introduction of an RSV case. In 

addition to the information in Table 2; 28 (13.5%) of the total 208 episodes were 

censored during imputation; of the A and B episodes, 14 (6.7%) were 

simultaneous RSV A and B shedding episodes, 7 (3.3%) of which had a 

simultaneous onset; of the 179 individuals who got infected 31 (17.3%) were <1 

year old, 41 (22.9%) were 1-5 years, 66 (36.9%) were 5-15 years and 41 

(22.9%) ≥15 years old. Of the symptomatic infected individuals, 28 (25.7%) were 

<1 year old, 35 (32.1%) were 1-5 years, 36 (33%) were 5-15 years and 10 

(9.2%) ≥15 years old. A detailed analysis of these shedding patterns has been 

published elsewhere (Wathuo et al., 2016). Figure 2 shows the shedding pattern 

for all 179 people who had a shedding episode. Figure A.3 and Figure A.4 in the 

supplementary appendix shows the shedding and ARI patterns for RSV A and B 

respectively. 

 

Table 2: Summary of shedding episodes 

 
RSV A RSV B All RSV 

Number of episodes 97 125 208 

Number of symptomatic episodes 59 69 119 

Number of people infected 88 113 179 

Number of people with symptomatic 

episodes 

54 67 109 

Number of people with repeat 

infections 

8 12 27 

Number of households infected 

(percentage of total) 

25 

(53.2%) 

34 

(72.3%) 

40 

(85.1%) 
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Total percentage of household 

occupants that were infected  (total 

number of occupants) *  

30.0% 

(293) 

28.5% 

(396) 

40.5% 

(442) 

* The total number of infected individuals out of the total number of individuals 

that occupy the infected households.   

 

 

 

Figure 2: Shedding patterns for each of the 179 individuals who 

experienced at least one RSV shedding episode. The y-axis shows the 

household, time is on the x-axis with zero indicating the day before the first 

sample was collected. The grey dots show RSV A shedding, dark pink show RSV B 

and blue shows days of co-shedding. The horizontal grey lines separate the data 

by household. The study initially recruited 60 households but 13 were lost to 

follow-up, hence the numbering of the households goes beyond 47.  

 

Transmission model parameter inference 



 20 

The trace plots used to assess convergence of the three chains are shown in 

Figure A.5 in the supplementary appendix. The resulting parameters estimates 

are given in Table 3 and Figure A.6. 

Table 3: Results of fitting the transmission model.  Median and 95% credible 

intervals (CrI) are given for the 15 parameters of interest. The posterior 

distribution for each parameter was obtained by running 3 MCMC chains for 

250,000 iterations each. The burn-in for the three chains was 80,000, 90,000 and 

80,000 respectively. The reminders of the three chains were combined into a 

single chain with and overall acceptance rate of 16.8% 

Parameter 

name 

Median 95% credible interval (CrI) 

Prev.hom 0.530 0.316 - 0.833 

Prev.het 0.607 0.306 - 1.08 

Sus.age.2 0.924 0.483 - 1.87 

Sus.age.3 0.267 0.142 - 0.537 

Sus.age.4 0.155 0.0825 - 0.316 

HH.rsv.a 0.0188 0.00734 - 0.0401 

HH.rsv.b 0.015 0.00578 - 0.033 

HH.size 0.424 0.265 - 0.702 

High.Asym 0.0704 0.0000692 - 3.15 

Low.Sym 2.48 1.22 - 5.57 

High.Sym 6.7 2.56 – 16.0 

Comm.rsv.a 0.00338 0.00203 - 0.00530 

Comm.rsv.b 0.00615 0.00388 - 0.00926 

Exp.age.2 0.563 0.206 - 1.45 

Exp.age.3 1.87 0.788 - 4.26 

 

In short, susceptibility to infection was reduced by previous infection whether 

these infections were homologous (Prev.hom = 0.53 (0.32 - 0.83)) or 

heterologous (Prev.het = 0.61 (0.3 - 1.1)). Increasing age also reduces 

susceptibility with ages 1-5 years old having an estimated 8% reduction  

(Sus.age.2 = 0.92 (0.48 - 1.9)), ages 5-15 years a 73% reduction (Sus.age.3 = 0.27 
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(0.14 - 0.53)) and ages >15 years an 84% reduction (Sus.age.4 = 0.16 (0.08 - 

0.32)). The within household transmission coefficients (HH.rsv.a = 0.019 (0.0073 

– 0.04) and HH.rsv.b =0.015 (0.0058 – 0.033)) are estimated higher than the 

community transmission coefficients (Comm.rsv.a = 0.0034 (0.002 – 0.0053) and 

Comm.rsv.b = 0.0062 (0.0039 – 0.0093)). The coefficient modifying within 

household exposure by size (HH.size = 0.42 (0.27 – 0.7)) suggests that larger 

households have less risk of pair-wise within household transmission 

(𝐻𝐻. 𝑅𝑖𝑠𝑘ℎ,𝑔,𝑗→𝑖(𝑡)) than smaller households. However the total risk of 

household transmission (∑ 𝐻𝐻. 𝑅𝑖𝑠𝑘ℎ,𝑔,𝑗→𝑖(𝑡)𝑗≠𝑖 ) is in general higher for larger 

households as they can have more infectious individuals at a time point, this is 

illustrated in Figure A.7.  

 

Although there is suggestion that pre-school individuals are the least likely to 

acquire infection from the community, and school-age individuals and older are 

the most likely to acquire community infection , the evidence is very weak: the 

relative estimate for age groups 1-5 years is Exp.age.2 = 0.56 (0.21 – 1.5) while 

for age group >5 years is Exp.age.3 = 1.9 (0.78 – 4.2). Symptomatic individuals 

are more infectious than asymptomatic individuals, more so those with high viral 

load, the relative estimate for high viral load symptomatic shedders is given as 

High.Sym=6.7 (2.6 – 16). However there are not enough instances where 

individuals have high viral load and are asymptomatic to quantify the relative 

infectiousness of this specific combination, the relative estimate for high viral 

load asymptomatic shedders, High.Asym, has a very wide 95% CrI. Given 71132 

person days of observation (493 individuals * 180 days of data, minus days 

individuals were away), 1021 had RSV A shedding, of which 49 were 

asymptomatic high viral load shedding days, and 1227 had RSV B shedding with 

49 days of asymptomatic high viral load shedding. Given the inability to 

distinguish between the infectiousness of high versus low viral load 

asymptomatic shedders, we will not make this distinction in subsequent results 

and instead just refer to asymptomatic shedders in general. 
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For a better understanding of the within household and community transmission 

coefficient parameters, we calculated the different rates of exposure and plotted 

them as shown in  Figure 3. 

 

 

Figure 3: Comparing the range of within household exposure rate 

(𝑯𝑯_𝑹𝒊𝒔𝒌𝒉,𝒈,𝒋→𝒊(𝒕)), (I) and (II), and community exposure rate 

(𝑪𝒐𝒎𝒎_𝑹𝒊𝒔𝒌𝒊,𝒈(𝒕)) , (III) and (IV), for a single susceptible individual given 

different heterogeneities in exposure and infectiousness.  Top row: The box 
plots show the range of values for the rate of exposure per person per day 
between a single susceptible and a single infectious housemate for RSV A (I) and 
RSV B (II). The distributions of rate are categorized by household size and the 
infectiousness based on viral load and symptom status (see text). Note: outliers 
have been removed from the box plots for better visualization. Bottom row: The 
shaded graphs show the range of values over time for the rate of exposure from 
the community to a single susceptible individual for RSV A (III) and RSV B (IV). 
The graphs are color-coded by the age group of the susceptible individual. The 
ranges for each age group are determined by the 95% CrI of the parameters that 
go into the calculations, hence the shaded regions show 95% CrI of the 
community exposure rate. 

In general, it seems the individuals are more likely to get infected within the 

household than from the community. There is a suggestion that RSV A has a 

higher transmission potential at the household level relative to RSV B, while the 
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situation is reversed at the community level. However, there is considerable 

overlap between the distributions of within household transmission coefficient 

for RSV A and that for RSV B as seen in Figure A.6, which shows the distribution 

of the parameters on the log scale, which is mirrored in the rate of household 

exposure shown in Figure 3. 

 

We observed some correlations in the estimated parameters. In particular there 

were strong positive correlations within the relative susceptibility by age 

parameters. The within household transmission coefficient for RSV A was 

strongly positively correlated with the within household transmission coefficient 

for RSV B. The age effects of susceptibility were strongly negatively correlated 

with the age effects on community exposure. Figure A. 8 in the supplementary 

index shows all the pairwise correlation patterns.  

 

To check if any information is lost when we have less data, we refitted the data in 

three additional ways: RSV A alone, RSV B alone and RSV with no distinction 

between groups. The results are shown in Table A. 1 in the supplementary index. 

In reducing the data used to infer parameters we notice that more posterior 

densities for the relative effect parameters now include 1 in their 95% credible 

interval, as can be expected. In general, the trends with age, household size and 

relative infectiousness, as seen in Figure A.6, are maintained. However, when 

RSV is treated as one entity, the protective effect of previous infection is reduced, 

symptomatic cases are more infectious and the estimate of the community 

transmission coefficient is increased. This suggests that misclassification of 

viruses disrupts the ability of the model to track transmission patterns, resulting 

in a greater propensity to account for infections as spontaneous.  

 

Model validation and sensitivity analysis 

To validate the model we checked to see that the range of simulated epidemics 

contained the real data; then we chose a single simulation with known 

parameters and re-estimated to see if the posterior distribution contained the 

known values. Details of this process can be found in the supplementary 

appendix, but in general, we were satisfied that the model was working as 
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expected. Figure 4 shows multiple simulated epidemics for different parameter 

sets relative to the real data. From this we see that as with the real data, the 

simulations show the RSV B epidemic taking off earlier than the RSV A epidemic. 

There is a tendency for simulate epidemics to be larger than that observed in 

terms of total number of cases (Figure A.23). 

 

 

Figure 4: A comparison between the simulated data and real epidemics 

using simulations from 5 different parameter sets estimated from the full 

model (row 1 to 5). First column: RSV A simulated epidemics (grey lines) 
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compared to real data (thick black line). Second column: RSV B simulated 

epidemics (light blue lines) compared to real data (thick blue line). Third 

column: RSV simulated epidemics (orange lines) compared to real data (thick 

green lines). 

 

We performed a sensitivity analysis to check the robustness of our results to the 

background community density function. We used 3 additional background 

functions and found that despite a change in summary values for the parameters, 

in general the trends were maintained. These results are shown in the 

supplementary appendix. They show that the results are robust to the choice in 

the shape of background community density function. 

 

Finally, we removed the largest household (which had a very large RSV A 

outbreak but only a single RSV B case) from the data to check if this would 

change the patterns of the within household transmission coefficients. The 

results, shown in the supplementary appendix, were robust to these changes. 

 

Following the validation of the model, we simulated epidemics altering the 

degree of infectiousness. Initially we reduced the infectiousness of symptomatic 

individuals to predict the effect of reducing RSV related ARI; then we assumed 

that asymptomatic individuals are not infectious in order to quantify the 

contribution of asymptomatic infections to transmission. The results show that 

reducing infectiousness of symptomatic individuals to the level of asymptomatic 

individuals lowers the distribution of total number infected. Assuming that 

asymptomatic individuals are not infectious also tends to decrease the total 

number infected (see Figure A. 23 in the supplementary appendix).  We also 

removed the asymptomatic shedding episodes from the data and re-estimated 

the parameters to check what the effect of only having sampled symptomatic 

individuals would be. We found that we lose precision in the estimates of the 

relative infectiousness parameters, previous infection is estimated as being more 

protective as is being >15 years old (Figure A. 24 and A.25). 
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Given the posterior densities for the parameters, we calculated the source with 

the highest likelihood for each infection. While respecting the correlation 

patterns observed in Figure A.8, we sampled 10 different parameter sets and for 

each, we calculated the proportion of cases whose most likely source was an 

infectious housemate. The changes made to the likelihood equation to allow for 

this calculation are described in the supplementary appendix. For all the cases, 

32-53% of them were attributed to transmission within the household. For RSV 

A, this range was 40-59%, while for RSV B it was 26-48%.  
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Discussion 

We developed an individual based approach to make Bayesian based inference 

on transmission parameters using MCMC. We set out to better understand RSV 

transmission within a household setting using cohort data collected with 

unprecedented detail during the course of a single RSV epidemic in a rural 

coastal community in Kenya.  

 

Older individuals are less susceptible to detectable infection, presumably due to 

immunity acquired in previous epidemics. We found strong evidence of partial 

immunity to homologous re-infection within the same epidemic for the RSV 

groups. The effect of previous infections is captured in two different ways in our 

model. Age (Sus.age parameters) captures the combined effect of age and 

experience of epidemics prior to the one under study, while the estimates for the 

effect of previous observed infections (Prev.hom parameter), captures effect of 

infections in the current epidemic. It is therefore implicit that immunity to RSV is 

built up in the long term, from one epidemic to the next and in the short term 

from one infection to the next. The evidence for cross-immunity between RSV A 

and B was weaker, which presumably allowed the two virus groups to co-

circulate in this epidemic. However, typically, RSV epidemics are dominated by 

one or other of group A or B and so the particular circumstances of this epidemic 

might not always hold. It remains to be explored how this individual level 

parameter estimate is translated into population dynamics.  

 

We found some evidence that individuals aged ≥5 years were the most likely to 

get infection from a community source (less likely to get infected during a 

household outbreak). This means that given our assumption of latent periods 

between 2-5 days, which forms the temporal link between cases, individuals ≥5 

were the most often identified as index cases in a household outbreak relative to 

the younger age groups. We have not considered an age-dependent latent period, 

and estimating the latent period from these data is a future goal. The ≥5 age 

group contains school going children and our result is in line with those of 

Munywoki et al (Munywoki et al., 2014), based on a different analysis of the 

same study, who found that school-going children were often initiating 
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household outbreaks. Establishing transmission chains using genomic 

information could strengthen this result. 

 

The estimated parameters suggest that individuals were more likely to get 

infected within the household than from a source outside the household; half of 

all cases were most likely infected within the households they occupy. However, 

some caution is required as we have assumed that the community risk of 

infection changes smoothly over time and is homogeneous apart from an age 

effect. These assumptions are necessary as community infections are not 

completely observed. We are confident that these assumptions do not have 

significant influence on our estimates of within-household transmission (which 

is fully observed). Our results of about one half of infections arising from within 

the household are likely to be a minimum as community exposure will be more 

heterogeneous than we have assumed. The simulated epidemics are larger in 

total numbers than that observed, Figure 4, and we believe that this is also due to 

assumed homogeneity of community risk. Data on genetic relatedness between 

viral isolates will clarify the extent to which individuals are infected from the 

community during a household outbreak.  

 

By separating RSV A and RSV B we find that RSV B has a higher rate of 

introduction into the household, and RSV A is more transmissible once in the 

household, an observation also made by (Agoti et al., 2017) from a phylogenetic 

analysis of RSV sequences. This, together with the fact that RSV A had a larger 

proportion of cases attributed to within household transmission, suggests that 

there might be some niche separation, explaining how and why these two 

different groups are able to co-exist and remain separate. It should be noted 

however that the difference in the distribution of the within household 

transmission coefficient between the RSV groups is not large, there is a 

significant overlap of credible intervals. As such, whatever advantage RSV A 

might have over RSV B at the household level is small in terms of transmission, 

but might be larger in terms of interaction with other respiratory viruses, and 

small differences in individual based parameters might translate into large 

population effects. In the present epidemic, the RSV B epidemic takes off earlier 
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than the RSV A epidemic despite the first case being RSV A (Figure 2). In addition 

to which, we see that despite RSV B infecting more households than RSV A, RSV A 

infects a larger proportion of household members (Table 2). An examination of 

the comparative dynamics of RSV A and B within epidemics might be a good way 

to understand how they interact. 

 

With the definition of a household as a group of individuals living in the same 

compound and eating food from the same kitchen, we found that the pairwise 

rate of within household transmission is higher in small households than large 

ones. However, the total household incidence rate is in general higher for larger 

households as they have the potential to have larger numbers of infectious 

individuals at a given time point. The relationship between household size and 

pair-wise rate of transmission has been observed before for Influenza, 

(Cauchemez et al., 2009, 2004; House et al., 2012; Lau et al., 2015), however 

going a step further we show that if households are structured such that they can 

hold over 20 individuals (possibly several members of an extended family as is 

the case in the present study) then larger households will tend to contribute 

more to transmission than smaller households.  

 

We looked at a combination of presence of symptoms and viral load to infer 

infectiousness. We found that being symptomatic is of key importance. In 

general, symptomatic individuals were more infectious, particularly if shedding 

large amounts of virus. Though this result is not surprising it has an important 

implication on vaccine effectiveness. If an RSV vaccine works by reducing or 

preventing disease in the form of an ARI, this will in turn have an impact on 

transmission potential and we should expect to see reduced morbidity and 

infection. To check what that potential impact of such a vaccine would be, we 

simulated an epidemics where the infectiousness of symptomatic individuals 

was equal to that of asymptomatic individuals and we found a significant shift in 

the overall distribution of simulated case towards smaller total numbers 

infected. The shift was more for ages between 1 and 15 years, given that this 

group also had the larger fraction of symptomatic cases, the observation from 

simulations with reduced infectiousness suggests largely assortative mixing 



 30 

within this group, which in turn means largely assortative transmission. The 

number of cases in the <1 year age group is not greatly altered by reducing the 

infectiousness of symptomatic individuals, implying that there are several 

sources of infection to the infant and reducing or removing only one has little 

impact (Figure A. 23).  

 

We reduced the model complexity to look at RSV as a single pathogen without 

distinguishing between groups. This resulted in skewing the parameter 

estimates away from within household transmission and towards spontaneous 

infection from external sources, as a result of introductions due to RSV A and 

RSV B being treated as multiple introduction of the same pathogen thus 

compounding the effect of community transmission. This, in addition to the 

reduced protective effect of previous infection due to misclassification of re-

infections, led to the within household transmission parameter being 

underestimated in order for the model to account for the observed number of 

infections. In addition, temporally linking RSV A and B cases as a result of 

misclassification also led to the effect of symptoms on transmission being 

overestimated. This suggests that the estimates obtained in the present analysis 

are likely to change if we further classified the cases into RSV subgroups. This 

goes to illustrate the importance of making distinctions between pathogens in 

order to obtain accurate estimates of transmission parameters. At any given 

moment multiple pathogens are co-circulating in a host population, this 

household study alone had multiple viruses spreading in large numbers during 

the time of data collection (Munywoki et al., 2018). How these pathogens 

interact could have dramatic implications for parameter estimates, and 

ultimately on how control strategies are implemented. We have seen the effect of 

the pneumococcal vaccine on the non-vaccine serotypes and how it might 

mitigate vaccine effectiveness (Kwambana-Adams et al., 2017) and a study on 

influenza has shown evidence of its controlling effect on other pathogens (Zheng 

et al., 2017). There is an increasing call from such observations to understand 

how multiple pathogens interact at the host population level.  
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Our study is not without limitations. The households in the study were selected 

based on the presence of an infant born after the previous RSV epidemic and 

older siblings to the infant in order to determine who infects the infant. As such 

the sample is not random and this might introduce bias in the parameter 

estimates, the extent of which we are uncertain. Relative to other studies, our 

sample size in terms of number of households is small. However, the intensive 

sampling regardless of symptoms means we had less biased observation of 

infections relative to index-case ascertained household studies that rely on 

symptom reporting by household contacts. In our study we had 47.2% of RSV A 

and 40.2% of RSV B positive samples that were symptomatic, 60.8% of RSV A 

and 55.2% of RSV B episodes were symptomatic. Estimation of parameters only 

using data from symptomatic episodes shows similar parameter estimates, 

although with loss of precision, especially in terms of differential infectiousness 

(Figure A. 24). In addition, sampling was done every 3 or 4 days, which means 

that short duration infections might have been missed, and we do not have 

serological data to complement the PCR results.  

  

The present analysis could be extended in several ways. We used interpolated 

shedding durations; it would be an added advantage to use the data to estimate a 

distribution of shedding durations that could potentially be more generalizable. 

The inclusion of other sources of information into the analysis could improve 

parameter inference, as was the case with Li et al and the inclusion of genetic 

data (Li et al., 2017). The inference made on within-household transmission 

compared to community transmission is based on the latency distribution that 

links onset of cases. This is a temporal linking of cases that is not always correct. 

A combination of temporal and genetic distance would allow better inference on 

linked cases and consequently the competition between within-household and 

community source transmission. Finally the RSV A and B model could be used to 

look at other pathogen interactions and perhaps incorporate more than two 

pathogens. 

 

In conclusion, our analysis presents the first transmission modelling of cohort 

data for RSV and we find that it is important to factor in household size and 
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social structuring – such as the tendency for households to contain several 

members of the extended family – when modelling transmission. It is also 

important to model competing risks of infection from within the household and 

the community. There are questions on the mechanisms that allow co-existence 

of RSV groups temporally and geographically. The weak cross immunity between 

RSV groups demonstrated by our analysis and the possibility of different 

transmission niches could form part of the explanation for the co-existence.   
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