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A B S T R A C T

Following the growing empirical evidence on the health effects of air pollution and noise, the fair distribution of
these impacts receives increasing attention. The existing environmental inequality studies often focus on a single
environmental impact, apply a limited range of covariates or do not correct for spatial autocorrelation. This
article presents a geospatial data analysis on Ghent (Belgium), combining residential exposure to air pollution
and noise with socioeconomic variables and housing variables. The global results show that neighborhoods with
lower household incomes, more unemployment, more people of foreign origin, more rental houses, and higher
residential mobility, are more exposed to air pollution, but not to noise. Multiple regression models to explain
exposure to air pollution show that residential mobility and percentage of rental houses are the strongest pre-
dictors, stressing the role of the housing market in explaining which people are most at risk. Applying spatial
regression models leads to better models but reduces the importance of all covariates, leaving income and
residential mobility as the only significant predictors for air pollution exposure. While traditional multiple re-
gression models were not significant for explaining noise exposure, spatial regression models were, and also
indicate the significant contribution of income to the model. This means income is a robust predictor for both air
pollution and noise exposure across the whole urban territory. The results provide a good starting point for
discussions about environmental justice and the need for policy action. The study also underlines the importance
of taking spatial autocorrelation into account when analyzing environmental inequality.

Introduction

In recent decades, the impact of the built environment on health and
well-being receives increasing research interest (Jackson, 2003). Con-
cerns about levels of physical activity, respiratory disease, sleep dis-
turbance and stress strongly identify urban design and associated ac-
tivity patterns as a public health issue (Dannenberg et al., 2012;
Frumkin, 2003).

Conclusive empirical evidence is available on the negative health
impact of air pollution and noise. Exposure to air pollution has been
related to asthma, deficits in lung development and allergy develop-
ment in children; and a higher mortality and coronary disease risk for
the whole population (Health Effects Institute, 2010). Recently, also
effects on cognitive performance and neuropsychological development,
especially in children, have been established (Suades-González, Gascon,
Guxens, & Sunyer, 2015). For noise exposure, conclusive associations
have been found with annoyance, sleep disturbance, cognitive impair-
ment of children and increased risk of hypertension and coronary heart

disease (Basner et al., 2014).
Both impacts have the largest health burden out of all environ-

mental risk factors in developed countries. In a European research
project comprising six countries, the included environmental risk fac-
tors accounted for about 3 to 7% of the total annual burden of disease
(Hänninen et al., 2014). Air pollution was the leading environmental
risk factor associated with 6000–10,000 disability-adjusted life years
(DALYs) per million people per year. Together with second-hand
smoke, traffic noise came second, with estimate ranges between 600
and 1200 DALYs per million people per year – considerably lower than
the health burden of air pollution.

Environmental Justice and Pollution

Together with the growing empirical evidence on the causality of
effects, also the spatial and social distribution of environmental burdens
gets attention. While environmental justice research initially focused on
the relationship between race and the distribution of waste and
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industrial sites in the United States, its scope has expanded and di-
versified, with a growing focus on all kinds of socio-demographic dif-
ference in environmental impact exposure (Brulle & Pellow, 2006). In
this light, Schweitzer and Valenzuela (2004) made the case for more
quantitative environmental justice research on the (environmental)
costs and (economic) benefits of transportation. This was followed by
continued attention to the topic in recent years, also in Europe, where
research interest mainly goes to environmental justice issues con-
cerning the impact of (traffic-related) air pollution and noise. For both
impacts, the substantial local variation in exposure and the mutual
production by all of us, open up discussions on fairness.

Moreover, exposure is considered to interact with vulnerability,
producing a “triple jeopardy” of low socioeconomic position, polluted
environment and impaired health. This means that groups with a lower
socioeconomic position that already experience a compromised health
status due to material deprivation and psychosocial stress, also receive
the highest exposure; and this exposure then exerts larger effects on
their health than it does on the average population (Laurent, Bard,
Filleul, & Segala, 2007; O’Neill et al., 2003; Pearce, Richardson,
Mitchell, & Shortt, 2010; Walker, 2012). Vice versa, well-off popula-
tions, regardless of their residential exposure to noise or air pollution,
are likely to perceive less annoyance or health effects than their
neighbors, because they can afford to protect themselves by equipping
their dwelling with sound proofing or air purification and are often not
at home during the day (Havard, Reich, Bean, & Chaix, 2011). More-
over, for noise specifically, subgroups in socially lower positions may
tend to complain less about environmental noise due to habitation to
chronic residential noise exposure or adoption of coping strategies,
leaving problematic situations underexposed (Kohlhuber, Mielck,
Weiland, & Bolte, 2006; Riedel, Scheiner, Müller, & Köckler, 2014). In
this way, air pollution and noise may aggravate social health inequal-
ities, forming an additional argument in discussions on fairness of en-
vironmental impact distribution and underlining the importance of
empirical studies.

Quantitative environmental justice studies on air pollution and noise

Today, an abundance of American empirical studies relatively
consistently suggests that exposure to air pollution – usually oper-
ationalized through NO2 concentration – is not evenly distributed and
that individuals with a low socioeconomic position, a low income or a
non-white background may generally be more exposed (Bell & Ebisu,
2012; Chakraborty, 2009; Clark, Millet, & Marshall, 2014; Su, Larson,
Gould, Cohen, & Buzzelli, 2010). In studies from New Zealand and
Canada the same association with deprivation and income was usually
found, but only a weak or even inverse association for ethnicity
(Crouse, Ross, & Goldberg, 2009; Kingham, Pearce, & Zawar-Reza,
2007; Pearce & Kingham, 2008; Su et al., 2010). In European studies
results are more varied overall (Deguen & Zmirou-Navier, 2010; Hajat,
Hsia, & O’Neill, 2015). Some European studies are in line with the
American studies and reported a (weak) global relation between high
exposure and low socioeconomic status or non-white ethnicity
(Brainard, Jones, Bateman, Lovett, & Fallon, 2002 (UK); Briggs,
Abellan, & Fecht, 2008 (UK); Chaix et al., 2006 (Sweden); Fecht et al.,
2015 (UK & the Netherlands); Goodman, Wilkinson, Stafford, & Tonne,
2011 (UK); Jephcote & Chen, 2012 (UK)). Other studies found a higher
exposure for mid-level deprivation areas (Havard et al., 2009 (France)),
a lower exposure for mid-level deprivation areas (Mitchell & Dorling,
2003 (UK)) or inconsistent results depending on the city (Padilla et al.,
2014 (France)).

In their 2009 paper, Havard et al. stressed the need to take spatial
autocorrelation into account in ecological studies. Spatial autocorrela-
tion occurs when locations close to each other exhibit more similar
values than those further apart. If the pattern remains present in the
residuals of a statistical model based on such data, the key assumption
that residuals are independent and identically distributed is violated

(Dormann et al., 2007). Ignoring spatial autocorrelation may lead to
biased and unreliable estimates and thus erroneous conclusions. Havard
et al. (2009) were among the first authors to account for spatial auto-
correlation in environmental justice studies. Using spatial auto-
regressive models in addition to ordinary least square (OLS) regression
models, they found similar results, but with much weaker coefficients.
Also other (already mentioned) authors applied methods to correct for
spatial autocorrelation, such as geographically weighted regression
(Jephcote & Chen, 2012 (UK)), generalized additive models (Padilla
et al., 2014 (France); Su et al., 2010 (Canada/US)) and three-level
random intercept models (Goodman et al., 2011 (UK)). These models
are very different in the way they take spatial autocorrelation into ac-
count. For example, in spatial autoregressive models an additional ex-
planatory variable is added to the global regression function to capture
the spatial effect, while in geographically weighted regression a unique
regression function is calculated for each spatial unit, assuming that
there is a different relationship between the independent variables in
different parts of the study area. Accounting for spatial autocorrelation
in environmental justice studies generally led to weaker coefficients,
but also revealed localized variations in associations. For example,
Goodman et al. (2011) found a reversed relation between socio-
economic status and air pollution exposure in central city areas.

In contrast to air pollution, relatively few studies examined in-
equalities in environmental noise exposure. While some North
American studies and one Asian study indicated a relatively strong
association between noise levels, household income and percentage of
non-white/minority residents (Carrier, Apparicio, & Séguin, 2016; Dale
et al., 2015; Lam & Chung, 2012; Nega, Chihara, Smith, & Jayaraman,
2013), the evidence in European studies is mixed. Some studies showed
that more deprived or non-white populations might be subjected to a
higher modelled noise exposure, but associations are generally very
weak (Brainard, Jones, Bateman, & Lovett, 2004 (UK)), dependent on
the type of noise source (Kruize, Driessen, Glasbergen, & van Egmond,
2007 (the Netherlands)) or only valid for medium-sized cities and not
for large cities (Fyhri & Klæboe, 2006 (Norway)). Conversely, two
French studies reported the highest noise exposure levels for middle-
class neighborhoods (Bocquier et al., 2013) and more advantaged
neighborhoods (Havard et al., 2011). Of the European studies, only the
latter two applied spatial regression models to control for spatial au-
tocorrelation. They both found a better fit and reductions of the re-
gression coefficients, but the shape of the relations remained the same.

Housing market dynamics and residential preferences might help
explain why some subgroups suffer from a higher exposure to noise or
air pollution and others buy themselves free of pollution (Deguen &
Zmirou-Navier, 2010). However, there is few research available to
support this hypothesis, and most studies did not include spatial auto-
correlation effects. In a case study in Hong Kong, Lam and Chung
(2012) found that renters on the private housing market were generally
exposed to higher levels of traffic noise. Since no multiple regression
analysis was performed, it is not possible to verify whether this effect is
independent from the relation between socioeconomic status and noise
exposure. In a case study in Phoenix, neighborhoods with a higher
proportion of renters were exposed to higher levels of air pollutants
(Grineski, Bolin, & Boone, 2007). A multiple regression analysis showed
that the percentage of renters explained additional variability in air
pollution exposure that ethnicity and income could not explain. For this
particular study area it meant that also more privileged groups would
generally bear a higher exposure to air pollution in case they rent their
house. We found one study that did account for spatial autocorrelation,
examining the association between home ownership rate and air pol-
lution related health risks (lifetime cancer risk and a respiratory hazard
index) (Chakraborty, 2009). In a multiple spatial error regression
model, a robust relation was found between higher home ownership
and lower air pollution related health risks.
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Research objectives

The presented overview of empirical studies provides evidence of
city-specific spatial inequalities that relate to the historical socio-
economic make-up of the cities and their evolution (Padilla et al.,
2014). The mixed results highlight the need to study the diversity of
patterns of environmental inequalities across various economic, social
and cultural contexts (Bocquier et al., 2013). Our empirical study on the
city of Ghent presents the first environmental justice analysis on a
Belgian city, adding to the growing evidence base from various Eur-
opean countries. Moreover, whereas most studies limit their focus to a
single environmental impact, we simultaneously analyze the spatial
distribution of air pollution and noise – the two most important en-
vironmental stressors – using the same methodology. Finally, unlike
several other studies, we run spatial regression models to correct for the
effects of spatial autocorrelation.

This study aims to determine the association between residential
exposure to air pollution and noise, and different socioeconomic and
housing variables. We specifically assess whether unequal exposure is
linked to having a lower socioeconomic status and being of foreign
origin. Furthermore, by including housing variables, we explore the
role of the housing market in explaining differences in exposure. We opt
for a geostatistical analysis using geospatial tools available in the
GeoDA software package and apply Local Indicators of Spatial
Association (LISA), correlation analysis, multiple OLS regression
models and spatial autoregressive models that account for the possible
effects of spatial autocorrelation. We conclude with discussing the re-
sults from an environmental justice perspective and explore ethical
concerns and policy implications.

Materials and methods

Study area

Ghent is a medium-sized city with a population of about 250,000 in
the Flanders region, the northern part of Belgium (Fig. 1). The city lies
north of the intersection of two important international highways (E17
and E40) and is further characterized by a busy urban ring road (R40), a
suburban ring road (R4) and an economically important port area north
of the city center, all contributing to local hotspots of air and noise
pollution. Interestingly, the municipal territory is characterized by a

gradient that goes from a rather small urban core with high densities
over lower-density suburban neighborhoods to semi-rural areas, parti-
cularly on the southwestern edge of the city.

The city is also known for its ambitious policy on sustainable urban
development. In 2010, a Ghent Local Air Quality Plan 2010–2015 was
developed, including fifty concrete actions for cleaner air (City of
Ghent, 2010). In 2014, an equally ambitious Ghent Local Noise Action
Plan 2014–2019 was drawn up, including the explicit aim to decrease
the traffic noise level at all houses below 70 dB(A) by 2030 (while in
2014 about 15% of the city’s population was still exposed to these le-
vels) (City of Ghent, 2014). One of the most important actions in
reaching the air quality and noise targets is a new Circulation Plan,
which splits the city center into six disconnected traffic zones, elim-
inating through traffic and discouraging cars to enter the city center
(City of Ghent, 2015). Considering these far-reaching and ambitious
plans, a thorough environmental justice analysis prior to the im-
plementation of concrete actions would yield an important reference
measurement to which a future analysis can be compared.

Finally, the choice for the study area is supported by the availability
of detailed and full coverage modeled data for exposure to air pollution
and environmental noise, which makes it possible to calculate address-
based exposure values.

Data

Air pollution
To quantify exposure to air pollution, data on air quality were de-

rived from the ATMOSYS annual air quality maps for road traffic-re-
lated air pollution (ATMOSYS, 2013). The air quality maps result from
the combination of two data sources: the spatial interpolation of air
quality measurements (RIO-interpolation technique) and the calcula-
tion of air pollutant concentrations based on meteorological data and
the emissions of air pollutants (IFDM-model) (Lefebvre et al., 2013).
The RIO-interpolation technique primarily provides data on the back-
ground concentration, while the IFDM-model reveals local differences
in air quality caused by traffic. Although validation tests gave reliable
results, both data sources have limitations and uncertainties. A dis-
advantage of the IFDM-model is its focus on air pollution by road
traffic, not including other sources like industry or households. While
other sources are still partly captured in the RIO-model, this can lead to
underestimation of the actual concentrations and mitigation of local

Fig. 1. Location of Ghent in Flanders; location of highways and major roads around Ghent (black line: municipal boundary; basemap: © OpenStreetMap (and)
contributors, CC-BY-SA).
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differences. Most importantly, the RIO-IFDM model is an “open street”
model that does not consider the effect of obstacles alongside roads
(buildings, continuous urban fabric, trees) that can cause the street
canyon effect. This means that in narrow inner-city streets with a lot of
traffic, where the dispersion of polluted air goes slower, the model will
probably underestimate the concentrations.

The ATMOSYS project provides rasterized georeferenced data on
several pollutants, with a resolution of 10×10m. In further analysis,
the annual mean concentration (μg/m³) of NO2 (nitrogen dioxide) for
the year 2013 was used as proxy indicator for traffic-related air pollu-
tion. NO2 has proven to be a good indicator for traffic-related air pol-
lution, showing more spatial variation than other modeled pollutants
(Goodman et al., 2011). Probably the occurrence of NO2 is correlated
with a specific mixture of particulate matter typical for traffic-related
air pollution and the associated health effects (Health Effects Institute,
2010). Thus, NO2 can be considered a good proxy indicator and ac-
cordingly limit values have been adopted by the World Health Orga-
nization and the European Commission. Both bodies use a maximum
limit value of 40 μg/m³ for annual mean NO2 concentration.

When NO2 concentrations are mapped for the city of Ghent (Fig. 2)
an uneven distribution across the city is visible, with higher values
around the highways and just south of the city center. In a small area
the limit value of 40 μg/m³ is exceeded.

Noise
To quantify noise exposure the urban noise maps of the city of

Ghent were used, taking road, railway and industry noise into account.
These were created for the first time in 2010 following the EU
Environmental Noise Directive 2002/49/EC, which stated that for all
agglomerations with more than 250,000 inhabitants, detailed noise
maps had to be made. In 2014, the noise maps were revised by the same
consultants AIB-Vinçotte Environment nv and GIM nv (2014). They

combined noise measurements with a 3D model containing topography
and buildings, and also performed an extensive quality control with
model validation on the field. Their approach followed the Good Prac-
tice Guide for Strategic Noise Mapping and the Production of Associated
Data on Noise Exposure produced by the European Commission’s
Working Group – Assessment of Exposure to Noise (WG-AEN, 2007).

In further analysis, Lden (2014) was used as the principal proxy
variable for environmental noise. Lden is the standard harmonized noise
indicator for assessing annoyance and sleep disturbance, measuring the
average equivalent sound level over a 24-hour period, with a 5 dB(A)
penalty added for noise during the evening hours of 19:00 to 23:00 and
a 10 dB(A) penalty for noise during the nighttime hours of 23:00 to
07:00. In the analysis “Lden total” was used, combining road, railway
and industry noise, though in most parts of the city mainly representing
the first two. Data are in georeferenced raster format and have a re-
solution of 10×10m. In Belgium and Europe no legally binding stan-
dards for traffic-related environmental noise exist. Only target and re-
ference values are defined, with the most important ones the Flemish
“fundamental reference values” of Lden = 65 dB(A) for existing situa-
tions and Lden = 55 dB(A) for new situations. The World Health
Organization (WHO) advocates a limit value of Lden = 55 dB(A) to
indicate serious annoyance, while for new developments it recommends
a limit value of Lden = 40 dB(A) (WHO, 1999). Note that these limit
values are considerably lower than the 2030 target value of 70 dB(A) in
the Ghent Local Noise Action Plan 2014–2019 (City of Ghent, 2014).

In Fig. 3 the distribution of “Lden total” across the city is shown,
displaying a dispersed pattern across the municipal territory. In large
parts of the city, especially along the major roads and railways, the
WHO limit value of Lden = 55 dB(A) is exceeded.

Covariates
To operationalize the covariates, data were collected at the level of

Fig. 2. Distribution of annual mean NO2 concentration (2013) (based on:
ATMOSYS, 2013).

Fig. 3. Distribution of annual mean Lden total (2014) (based on: AIB-Vinçotte
Environment nv and GIM nv, 2014).
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statistical sectors. The city of Ghent counts 201 statistical sectors, which
have been defined by sociological and spatial characteristics, with an
average population of about 1,200 respondents. It is the finest spatial
division for which census data are available and is representative of
natural neighborhoods. Opting for this level of analysis thus follows the
recommendations regarding the Modifiable Area Unit Problem (MAUP)
in environmental justice research (Baden, Noonan, & Turaga, 2007).
Indicators on socioeconomic vulnerability and housing are publicly
available on a website of the city of Ghent (http://gent.buurtmonitor.
be/). Table 1 lists summary statistics for the covariates, and for the air
pollution and noise indicators.

Socioeconomic position was operationalized by median household
income and unemployment pressure (the share of non-working job-
seekers between 18 and 64 years old relative to the total population
between these ages). Being of foreign origin was operationalized by a
general indicator representing the percentage of people of foreign
origin – which means the father, mother or individual had a foreign
nationality at birth – and by four specialized indicators on the per-
centage of people with EU15 (countries that entered the EU before
2004), EU13 (countries that entered the EU after 2004), Turkish-
Maghreb and other foreign origin. Finally, we chose to focus the aspect
of housing on the aspect of temporary or unstable housing, by selecting
a variable on the percentage of rental houses and the number of house
moves per 1000 inhabitants per statistical sector. Apart from the per-
centage of rental houses, which is based on data from 2011, all data are
from 2012.

Of the 201 statistical sectors in Ghent, 17 do not contain any re-
sidential buildings and consist of parks, waterways, infrastructure or
industrial land. Of the 184 remaining sectors, 19 sectors with in-
complete data were excluded and one sector was excluded because it
had an extreme outlier value on the indicator of house moves (due to
planned residential development taking place in a previously un-
populated statistical sector). The most important exclusion criterion
was formed by the median income variable. For privacy reasons, in-
come data is not made publicly available if a statistical sector contains
less than 20 taxpayers. As such, 1,216 citizens were excluded from the
analysis, which is less than 0.5% of the total population. In all sub-
sequent analyses we only report on the 164 remaining statistical sec-
tors.

The descriptive statistics in Table 1 show a wide range of values for
all variables (including the two environmental indicators), under-
scoring the variety of the different neighborhoods across the city. In
Table 2 associations between the nine different socioeconomic and
housing variables are summarized. Almost all correlation coefficients
are significant, but they are not equally strong. One of the strongest
associations exists between median income and unemployment pres-
sure per sector (r = −0.823**). Both variables also show relatively
strong correlations (0.7< r<0.9 or -0.9< r<−0.7) with percentage
of rental houses and percentage of people of foreign origin. Also the
correlations between percentage of rental houses and percentage of

people of foreign origin resp. number of house moves per 1000 in-
habitants are relatively strong (r = 0.641** and r = 0.692**). The
number of house moves per 1000 inhabitants, in turn, shows moder-
ately strong correlations with median income, unemployment pressure
and percentage of people of foreign origin (0.5< r< 0.6 or
−0.6< r<−0.5). The specialized foreign origin variables show pat-
terns similar to the combined variable, though with weaker correlation
coefficients, and with the people of EU15 origin being a clearly better-
off socioeconomic group.

Methods

The data analysis was carried out at statistical sector level with
environmental impact indicators based on average residential exposure
values (Table 1). To calculate average residential exposure values per
sector, a spatial data set containing all residential addresses for the year
2013 was obtained from the City of Ghent. Making use of ArcGIS9.3, to
each address point the respective values were added of the rasterized
air pollution and noise data. In this operation bilinear interpolation was
used. These residential address-based exposure values were subse-
quently averaged at statistical sector level. This approach calculates a
fairly accurate estimation of residential exposure at statistical sector
level, by accounting for the local differences in household density. Parts
of a statistical sector where the household density is very high (e.g.
apartment blocks) will have a higher weight in calculating the ag-
gregated value for the statistical sector.

As a first step in our geostatistical analysis, the constructed en-
vironmental exposure variables were analyzed for global spatial auto-
correlation by calculating the univariate global Moran’s I statistic. The
significance of the Moran statistical values was obtained through cal-
culating pseudo p-values based on 999 random permutations.
Subsequently, Local Indicators of Spatial Association (LISA) were ap-
plied to each statistical sector for the detection of spatial patterns, i.e.
spatial clusters of high or low values or spatial outliers (Anselin, 1995).
Contiguity-based spatial weights were used, standardized by neighbor
count and applying the queen criterion, which defines neighbors as
spatial units sharing a common edge or common vertex. We also cal-
culated the bivariate Moran’s I coefficients for the two environmental
exposure variables. The bivariate tool determines whether there is
spatial autocorrelation between two variables. It more specifically
evaluates the correspondence between the value of one variable in one
location and the values of the other variable in neighboring locations
(i.e. the lagged variable). Finally, also the spatial patterns of the most
important covariates were analyzed using the Moran’s I statistic and
LISA maps. In addition, we calculated correlation coefficients between
the covariates and the environmental indicators.

Next, multiple regression methods were applied to discern the dif-
ferent explanatory value of socioeconomic and housing variables, and
the relation between them. We applied ordinary least square (OLS)
regression models and subsequently spatial autoregressive models to
control for spatial autocorrelation. We used the values of the Lagrange
Multiplier and Robust Lagrange Multiplier (LM and Robust LM) tests,
calculated using the residuals from the OLS models, to evaluate the
need for either a spatial lag or spatial error model (Anselin & Bera,
1998).

• When it is assumed that the autoregressive process occurs only in
the response variable, a spatial lag model is applied. In this model
the values of the dependent variable in neighboring locations (WY)
are included as an additional explanatory variable with a parameter
ρ (with Y the dependent variable, X the covariate, β the regression
coefficient, β0 the intercept, ε the error and W the weights matrix).

= + + +Y β ρWY βX ε0

• When it is assumed that the autoregressive process occurs only in

Table 1
Descriptive statistics for covariates and environmental impact indicators, at
statistical sector level (N= 164).

Min Max Mean Std. dev.

Median household income (€) 15,151 39,067 24,876 5015
Unemployment pressure (%) 0.00 18.00 6.32 4.07
% foreign origin 2.10 78.90 22.03 17.44
% EU15 origin 0.00 27.20 4.50 2.84
% EU13 origin 0.00 18.50 3.10 3.82
% Turkish/Maghreb origin 0.00 52.90 7.68 10.14
% other origin 0.00 28.70 6.75 5.76

% rental houses 5.60 96.30 41.12 21.07
Number of house moves per 1,000 inh. 29.41 739.49 244.67 129.78
Annual mean NO2 concentration (μg/m³) 15.07 40.77 26.52 5.10
Annual mean Lden total (dB(A)) 47.53 70.03 57.94 3.92
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the error term, a spatial error model is applied. In this model the
values of the residuals in neighboring locations (Wε) are included as
an extra term in the equation, with a parameter λ (and ξ being
“white noise”).

= + + +Y β βX λWε ξ0

To compare the different models and evaluate the relative quality
we applied the Akaike Information Criterion (AIC) (Akaike, 1974) (with
k = the number of coefficients in the regression equation, normally
equal to the number of independent variables plus one for the constant
term).

= +AIC k n Residual Sum of Squares2 [ln( )]

Statistical analyses were carried out in SPSS (Version 22) and
GeoDA (see https://geodacenter.github.io/).

Results

Exploratory geospatial data analysis

The correlation between residential exposure to air pollution and
noise (r = 0.387**) is rather weak, showing that both indicators have a
different distribution across the study area. An exploratory geospatial
data analysis can give more insight in the specificities of the spatial
patterns. We first calculated the Global Moran’s I coefficient for re-
sidential exposure to air pollution (annual mean NO2 concentration)
and noise (annual mean Lden total). While both variables show sig-
nificant spatial autocorrelation, the spatial distribution of air pollution
(Moran’s I = 0.78, p<0.01, 999 randomizations) is much more clus-
tered than the spatial distribution of noise (Moran’s I = 0.34, p< 0.01,
999 randomizations). These results show that spatial dependencies
should be accounted for when developing regression models.

We further explored the spatial patterns of residential exposure to
air pollution and noise by employing Local Indicators of Spatial
Association (LISA), using the Local Moran’s I statistical test to define
clusters and outliers (Fig. 4). Statistical sectors shown in dark red are
sectors with high values surrounded by sectors with equally high va-
lues, indicating a cluster. Statistical sectors with a dark blue color are
sectors with low values, surrounded by sectors with equally low values,
indicating a cluster. Statistical sectors shown in light red or light blue
represent spatial outliers, with a high value surrounded by low values
or vice versa. The statistical sectors colored in grey represent non-sig-
nificant spatial patterns, while the sectors colored in white were ex-
cluded from the analysis because of lack of data and a very low po-
pulation.

The maps show rather different spatial patterns for residential air
pollution and noise exposure. For air pollution, the Local Moran’s I
statistical test identified a high clustering of air pollution exposure in
the southeast, where there is a high concentration of major road in-
frastructure, and in the city center. Observed annual mean NO2 con-
centrations in this zone of high clustering range from 26.65 to
40.77 μg/m3, values all above the city’s mean of 26.50 μg/m3 (Table 1).

The western part of the municipality of Ghent, which has a relatively
rural character, consists of a cluster with a very low exposure to air
pollution, with values from 15.07 to 25.15 μg/m3. There is only one
specific outlier in the west, where air pollution exposure is significantly
higher than in neighboring areas (33.12 μg/m3).

The Local Moran’s I statistical test for noise exposure identified a
more dispersed pattern with several smaller clusters next to two large
clusters. A large cluster of high values is situated south of the city
center, similar to the air pollution map. However, the city center itself
did not come out as an area with significantly higher values. Values of
annual mean Lden total in this contiguous cluster range from 58.23 to
70.03 dB(A), above the city’s mean of 57.93 dB(A) and well above the
limit value of 55 dB(A) advised by the WHO. Spatial clustering of low
values of residential noise exposure can be found in some suburban
neighborhoods north of the city center. This zone is clearly different
from the spatial clustering of low values in the air pollution map. Values
of annual mean Lden total in the largest cluster range from 47.53 to
55.61 dB(A), which means these sectors almost comply with the advised
limit value of the WHO. Finally, the map indicates seven outliers,
particularly in the southern part of the city. Most of these outliers are
located near major road infrastructures, but they – or the majority of
homes in these neighborhoods – are not directly adjacent to them. This
illustrates the more pronounced local differences in noise, while higher
and lower concentrations of air pollution form larger clusters (see
Figs. 2 and 3). However, there clearly is some overlap between the
spatial patterns of both indicators. This is confirmed by the bivariate
Global Moran’s I coefficient for exposure to air pollution and the lagged
noise variable (Moran’s I = 0.25, p<0.01, 999 randomizations), and
for exposure to noise and the lagged air pollution variable (Moran’s I =
0.23, p< 0.01, 999 randomizations).

In addition, we calculated Global and Local Moran’s I for four
covariates: median household income, percentage of people of foreign
origin, percentage of rental houses and the number of house moves per
1,000 inhabitants. Percentage of foreign origin is the most clustered
variable (Moran’s I = 0.69, p<0.01, 999 randomizations), followed by
the number of house moves (Moran’s I = 0.67, p<0.01, 999 rando-
mizations), percentage of rental houses (Moran’s I = 0.62, p<0.01,
999 randomizations) and median household income (Moran’s I = 0.46,
p<0.01, 999 randomizations). A LISA analysis for these covariates
(Fig. 5) shows that especially the spatial cluster of low air pollution
exposure overlaps very well with a cluster of high income, low per-
centage of foreign origin people, low residential mobility and a low
percentage of rental houses. The spatial cluster of high air pollution
exposure corresponds fairly well with the cluster of high percentage of
rental houses and low residential mobility. These spatial corre-
spondences help interpreting spatial regression models.

Correlation analysis

To get more insight into the possible explanatory value of the dif-
ferent covariates we first employed a bivariate correlation analysis,

Table 2
Bivariate correlations between the covariates, at statistical sector level (N = 164) (Pearson correlation coefficients) (** correlation significant at the 0.01 level; *

correlation significant at the 0.05 level).

1 2 3 4 5 6 7 8 9

1 Median household income (€) 1 – – – – – – – –
2 Unemployment pressure (%) −.823** 1 – – – – – – –
3 % people of foreign origin −.750** .865** 1 – – – – – –
4 % people of EU15 origin −.106 .217** .251** 1 – – – – –
5 % people of EU13 origin −.614** .676** .881** .104 1 – – – –
6 % people of Turkish/Maghreb origin −.645** .733** .892** −.082 .823** 1 – – –
7 % people of other origin −.677** .773** .749** .339** .503** .435** 1 – –
8 % rental houses −.761** .758** .641** .381** .414** .399** .774** 1 –
9 Number of house moves per 1,000 inh. −.539** .577** .573** .480** .519** .322** .586** .692** 1
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with Pearson correlation coefficients calculated at statistical sector level
(Table 3).

For air pollution, moderate to strong correlations with the covari-
ates can be noted, at least for social research (Cohen, 1988). All cor-
relation coefficients are highly significant. A higher residential ex-
posure to air pollution is associated with a lower median household
income (r = −0.452**), a higher unemployment rate (r = 0.480**)
and a higher share of people of foreign origin (r = 0.464**). Re-
markably the association with foreign origin is strongest for the share of
people with “other origin” (mainly Asia, Africa and the Americas) and
not for the important minority group with Turkish/Maghreb origin. As
for housing variables, there is a relatively strong correlation of re-
sidential exposure to air pollution with the relative number of house
moves per sector (r = 0.607**) and with the percentage of rental
houses (r = 0.553**).

For noise, we only found one significant weak correlation, with the
percentage of people with “other origin” (r = 0.159*). This shows
again that noise is much more equally spread across the city.

Multiple spatial regression

To analyze the combined effect of the covariates we applied mul-
tiple regression techniques. First, conventional ordinary least square
(OLS) regression was applied, starting from a model with two covari-
ates, median household income and percentage of people of foreign
origin per statistical sector. Because of the very high correlation be-
tween income and unemployment pressure and between the different
specialized foreign origin variables (Table 2), adding the other socio-
economic variables would lead to unacceptably high levels of multi-
collinearity. Tables 4 and 5 show the multiple regression models, with
NO2 concentration and Lden total as the respective dependent variables.
While the residuals of the models for residential noise exposure follow a

normal distribution, the residuals of the models for air pollution ex-
posure violate this assumption (not shown in table). However, since the
violation of normality is not severe, the sample is quite large, and we
are mainly interested in predicting the average value for the coefficients
(and not the prediction intervals), we consider the models as valid.

The first regression model for air pollution (OLS_AIR_1) is sig-
nificant, with the two covariates explaining 24% of the variance (R2 =
0.24, F(2,161) = 25.26, p< 0.01). We found that median household
income per sector significantly predicts residential exposure to air
pollution (β=−0.24, p<0.05), as did percentage of people of foreign
origin per sector (β = 0.08, p<0.01). According to this model, the
annual mean NO2 concentration decreases with 1 μg/m³ when the
median household income increases with € 4000 or when the percen-
tage of foreign origin people decreases with 12.5%. For residential
noise exposure, the regression equation (OLS_NOISE_1) turned out to be
non-significant (F(2,161) = 1.24, p = 0.29).

Next, we added the two housing variables to the model. For air
pollution, the regression equation (OLS_AIR_2) is again significant (F
(4,159) = 27.25, p< 0.01), with an R2 of 0.41. This means an addi-
tional 17% of the variation in residential exposure to air pollution can
be explained by adding the two housing variables. Both percentage of
foreign origin and median household income do not significantly con-
tribute to the model anymore. Instead, the number of house moves
turns out to be a highly significant predictor (β = 0.02, p<0.01),
while the contribution of the (correlated) percentage of rental houses
almost reaches statistical significance (β = 0.05, p = 0.06). This means
the relation of median household income with exposure to air pollution
can largely by explained by its correlation with the housing variables.
According to the model, the annual mean NO2 concentration increases
with 1 μg/m³ when there are 50 more moves per 1000 inhabitants and
when the percentage of rental houses increases with 20%. Again, for
residential noise exposure, the regression equation (OLS_NOISE_2) is

Fig. 4. Local Moran’s I cluster and outlier analysis for residential exposure to air pollution (left) and noise (right) (p-value<0.05) (highways and urban ring road
added for spatial reference).
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Fig. 5. Local Moran's I cluster and outlier analysis for median household income, percentage people of foreign origin, percentage of rental houses and the relative
number of house moves (p-value< 0.05) (highways and urban ring road added for spatial reference).
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not significant (F(4,159) = 1.81, p = 0.13), showing that noise ex-
posure is much more equally spread across the city.

The spatial dependency tests for all OLS regression models showed
significant spatial autocorrelation of the residuals in terms of the
Moran’s I value. This is no surprise given the significant spatial auto-
correlation of both dependent variables, reported earlier. According to
the higher values for the Lagrange Multiplier and Robust Lagrange
Multiplier tests, spatial lag models (SL_AIR_1 and SL_AIR_2) were de-
veloped for explaining residential exposure to air pollution and spatial
error models (SE_NOISE_1 and SE_NOISE_2) were developed for ex-
plaining residential exposure to noise. Again, the residuals of the
models for residential exposure to noise follow a normal distribution,
unlike the residuals for residential exposure to air pollution (not shown
in table). Since the violation of the normality assumption is not severe,
our sample is quite large, and we are mainly interested in predicting the
average values for each coefficient (and not the prediction intervals),
we consider the models acceptable for the aim of our study.

All four models have a substantially higher predictive power in the
form of R2. However, it is best to use the Akaike Information Criteria
(AIC) to compare the relative quality of spatial regression models with
OLS regression models. For all variable combinations the spatial re-
gression model has a better relative quality, but the improvement is
larger for the air pollution models. The AIC scores of the models with
two and four covariates are almost similar, so both have a comparable
quality.

Taking spatial autocorrelation into account, percentage of people of
foreign origin is no significant predictor anymore. However, income is a

significant predictor in both spatial regression models with two cov-
ariates (β = −0.14, p = 0.02* in the air pollution model; β = −0.17,
p = 0.04* in the noise model). According to the spatial regression
models, this means that a € 1,000 increase in median household per
sector brings a decrease of 0.14 μg/m³ NO2 concentration and of
0.17 dB(A) Lden total. While for noise none of the covariate coefficients
is significant in the model with four covariates, this is not the case for
the air pollution model. In this model the number of house moves per
1000 inhabitants is still a highly significant, though weak predictor.

In summary, it seems the two spatial regression models with two
covariates have a similar outcome, with only income remaining a sig-
nificant predictor after correcting for spatial autocorrelation. For air
pollution, the number of house moves per sector is a robust predictor in
the non-spatial and spatial models and gives important contextual in-
formation. Since the inclusion of the spatial autoregressive parameter in
the spatial regression models works particularly well in predicting
clustered values, coefficients only stay substantial and significant if
they help explain the dependent variable where it is less clustered (i.e.
the outliers and the non-significant statistical sectors in Fig. 4). The
association between a higher/lower percentage of foreign origin and a
higher/lower residential exposure to air pollution thus seems to be a
rather localized phenomenon.

Discussion

The results of our traditional data analysis suggest some environ-
mental inequalities in Ghent. In general, people in more deprived
neighborhoods, with lower incomes, more unemployment, a higher
percentage of foreign origin people (of both European and non-
European background), a higher percentage of rental houses and a
higher residential mobility, were more exposed to air pollution. A
multiple OLS regression model showed that the number of house moves
and the percentage of rental housing per statistical sector are the most
important predictors. After including these variables in the model, the
contribution of household income had no explanatory power anymore,
proving the role of the housing market in explaining the higher ex-
posure of lower-income neighborhoods. As for residential exposure to
noise, only neighborhoods with a higher percentage of people of other
foreign origin (non-EU and non-Turkish-Maghreb) had a significantly
higher exposure. A multiple OLS regression model did not have a sig-
nificant predictive power, which means noise is much more equally
spread across different socioeconomic and housing variables.

However, after correcting the regression models for spatial auto-
correlation, other results were found. Median household income proved
to be a significant predictor for both environmental indicators. For air
pollution, this means that the association between the variable of

Table 3
Correlations of covariates and environmental impact indicators (N = 164) (**

correlation significant at the 0.01 level; * correlation significant at the 0.05
level).

Annual mean NO2

concentration (μg/m³)
Annual mean Lden
total (dB(A))

Median household income
(€)

−0.451** −0.067

Unemployment pressure
(%)

0.481** 0.019

% people of foreign origin 0.463** −0.017
% people of EU15 origin 0.298** 0.062
% people of EU13 origin 0.351** −0.030
% people of Turkish/

Maghreb origin
0.290** −0.126

% people of other origin 0.512** 0.159*

% rental houses 0.552** 0.116
Number of house moves per

1,000 inh.
0.607** 0.141

Table 4
Multiple OLS and spatial lag regression models for explaining NO2 concentration (μg/m³) (N = 164) (*p<0.05; **p< 0.01) (AIC = Akaike Information Criterion;
LM = Lagrange Multiplier; RLM = Robust Lagrange Multiplier).

OLS_AIR_1 SL_AIR_1 OLS_AIR_2 SL_AIR_2

β (SE) p Β (SE) p Β (SE) p Β (SE) p

Constant 30.65 (3.18) 0.000** 8.42 (2.09) 0.000** 19.96 (3.71) 0.000** 7.83 (2.43) 0.001**

Rho 0.80 (0.04) 0.000** 0.76 (0.05) 0.000**

Median household income (1,000 €) −0.24 (0.11) 0.024* −0.14 (0.06) 0.020* 0.00 (0.11) 0.989 −0.11 (0.07) 0.122
% people of foreign origin 0.08 (0.03) 0.007** 0.00 (0.02) 0.917 0.03 (0.03) 0.327 −0.01 (0.02) 0.568
% rental houses 0.05 (0.03) 0.060 0.00 (0.02) 0.925
Number of house moves per 1,000 inh. 0.02 (0.00) 0.000** 0.01 (0.00) 0.007**

R2 0.24 0.76 0.41 0.77
F statistic 25.26** 27.25**

AIC 959.84 803.02 922.99 798.73
Moran’s I (error) 0.66** −0.04 0.57** −0.05
LM (lag) 173.61** 133.54**

LM (error) 153.90** 116.29**

RLM (lag) 19.74** 18.17**

RLM (error) 0.03 0.92
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foreign origin and air pollution exposure is a localized phenomenon,
which especially holds true for the spatial cluster of low air pollution, a
suburban area on the southwestern outskirts of the city, with sig-
nificantly less people of foreign origin. Since this association disappears
after correcting for spatial autocorrelation, it does not hold true for the
whole urban territory. Instead, household income turns out to be the
only variable with robust predictive power across the whole urban
territory. Since we found the same outcome in the spatial regression
models for noise exposure but not in the OLS models, it means the
clusters of high and low noise exposure values do not correspond well
to clusters of high or low values of the socioeconomic and housing
covariates. However, across the urban territory there is a robust inverse
relation between median household income and residential noise ex-
posure. This surprising finding confirms the need to account for spatial
autocorrelation in environmental inequality studies.

In the spatial regression models with four covariates, the effect of
median household income does not decrease much but loses its sig-
nificance. Instead, for the air pollution model, the number of house
moves remains a robust predictor, providing interesting ideas about the
context of unequal exposure.

The global association of income and foreign origin with a higher
exposure to air pollution is consistent with most of the European re-
search results (Brainard et al., 2002; Briggs et al., 2008; Chaix et al.,
2006; Fecht et al., 2015; Goodman et al., 2011; Jephcote & Chen,
2012). Following the advice of Havard et al. (2009), we corrected for
spatial autocorrelation. In line with their findings, this led to better
models but weaker coefficients, with particularly the effect of income
remaining substantial and robust. The association of income with noise
exposure, which we only found in the spatial regression models, adds to
the limited and rather mixed evidence base of unequal exposure to
noise. Our results are in line with a few other studies that found a weak
association between noise exposure and socioeconomic position under
specific circumstances (Brainard et al., 2004; Fyhri & Klæboe, 2006;
Kruize et al., 2007). However, these studies did not correct for spatial
autocorrelation.

The robust relation between household income and exposure to air
pollution and noise across the entire urban area provides an important
environmental justice argument. It follows that a general reduction of
air pollution and noise across the entire urban area of Ghent would
benefit more deprived neighborhoods the most. Moreover, as exposure
is considered to interact with vulnerability, producing a “triple jeo-
pardy”, it has a bigger effect on poor people’s health than on the
average population (e.g. O’Neill et al., 2003; Walker, 2012), providing
an additional environmental justice argument to tackle pollution at the
urban level.

While housing variables were not associated with noise exposure,

they helped explain the global socioeconomic inequalities in exposure
to air pollution. The higher exposure of renters to air pollution confirms
the studies of Lam and Chung (2012), Grineski et al. (2007) and
Chakraborty (2009). Contrasting Grineski et al.’s results, adding the
percentage of rental houses to the model also substantially reduced the
effect of income in our models, which could be explained by the strong
association between socioeconomic vulnerability and renting in Bel-
gium (Winters & Heylen, 2014). However, the most important housing
variable in our models appeared to by the number of house moves per
1000 inhabitants, both in the non-spatial and the spatial model ex-
plaining air pollution exposure. This means that neighborhoods with a
high residential mobility are significantly higher exposed to air pollu-
tion, also after correcting for spatial autocorrelation. Based on the re-
sults we cannot say whether the residential mobility is higher because of
the higher air pollution exposure (and lower environmental quality) but
it is an interesting coincidence which can be interpreted in a positive
and negative way. On the positive side, it means that neighborhoods
where a lot of people live only temporarily bear the highest exposure to
air pollution. Some people might even deliberately live in a more pol-
luted neighborhood for a while, are aware of the health consequences
and will move to a less polluted neighborhood after some years. On the
negative side, there will always be people who do not (or cannot) move
out of these neighborhoods, and are subject to prolonged exposure to
air pollution. This goes together with a generally lower sense of place
attachment in neighborhoods with more rental housing and a higher
residential mobility. A previous study in a noise-polluted neighborhood
in Ghent found that renters who arrived more recently in the neigh-
borhood placed lower demands on their residential environment, re-
ported less annoyance and were less concerned about health effects
(Verbeek, 2018). It is also known that homeowners tend to be more
active politically on local environmental issues (Pastor, Morello-Frosch,
& Sadd, 2005). This makes it a politically unrewarding strategy for a
city council to focus on these areas. Because of these complex pathways,
more in-depth research is needed to judge on the fairness of such a
situation and whether it deserves particular policy attention.

While this study gives robust and significant results, adding to the
evidence base on environmental inequalities, the data and methods also
have some limitations. First, the air pollution and noise data are the
result of modeling processes, starting from relatively few measure-
ments, emission data and road traffic statistics. While the results were
validated by tests on the field, the models remain an estimate of the real
situation. Second, the analysis used indicators for exposure around the
residential address, rather than individual exposure to air pollution or
noise during the day. This spatio-temporal exposure gets more attention
in recent years, since measuring equipment is getting cheaper and more
convenient to use (Steinle, Reis, & Sabel, 2013). However, at the

Table 5
Multiple OLS and spatial error regression models for explaining Lden total (dB(A)) (N = 164) (*p< 0.05; **p<0.01) (AIC = Akaike Information Criterion; LM =
Lagrange Multiplier; RLM = Robust Lagrange Multiplier).

OLS_NOISE_1 SE_NOISE_1 OLS_NOISE_2 SE_NOISE_2

β (SE) p Β (SE) p Β (SE) p Β (SE) p

Constant 62.29 (2.78) 0.000** 62.74 (2.44) 0.000** 59.00 (3.62) 0.000** 61.67 (3.50) 0.000**

Lambda 0.54 (0.08) 0.000** 0.54 (0.08) 0.000**

Median household income (1,000 €) −0.14 (0.09) 0.121 −0.17 (0.08) 0.035* −0.07 (0.11) 0.522 −0.16 (0.10) 0.117
% people of foreign origin −0.03 (0.03) 0.190 −0.04 (0.03) 0.186 −0.05 (0.03) 0.059 −0.04 (0.03) 0.111
% rental houses 0.01 (0.03) 0.572 0.00 (0.03) 0.861
Number of house moves per 1,000 inh. 0.01 (0.00) 0.126 0.00 (0.00) 0.121
R2 0.02 0.26 0.04 0.27
F statistic 1.24 1.81
AIC 916.05 880.81 915.27 882.40
Moran’s I (error) 0.35** 0.00 0.32** 0.00
LM (lag) 42.18** 37.28**

LM (error) 42.64** 37.61**

RLM (lag) 0.03 0.08
RLM (error) 0.50 0.41
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moment in Belgium no large-scale data sets are available that take
spatio-temporal exposure into account. Third, the performed analysis is
cross-sectional and not longitudinal. This means no statements about
causal relations can be made. The analysis points to inequalities, but
does not tell how these were produced. However, the results provide an
interesting starting point for longitudinal investigation based on qua-
litative approaches. Fourth, there is room for further exploration with
more advanced statistical methods. Other spatial regression models can
be applied, such as geographically weighted regression (Jephcote &
Chen, 2012), which accounts for different localized relations between
variables. Finally, while the simultaneous analysis of exposure to air
pollution and noise with the same methodology is a strength of our
analysis, the two environmental indicators were still modeled sepa-
rately. There exist several interesting attempts that assessed the cu-
mulative effect of air pollution and noise (Carrier, Apparicio, Séguin, &
Crouse, 2016), examined the trade-off between accessibility and
(traffic-related) air pollution (da Schio, Boussauw, & Sansen, 2018) or
combined a range of nuisances and urban amenities in one environ-
mental equity indicator (Carrier, Apparicio, Kestens, et al., 2016;
Pearce et al., 2010). In this vein, the data in our analysis could form the
basis for a wider environmental equity analysis for Ghent. However, it
remains an open question how different environmental benefits and
burdens can be combined in a single indicator, since a simple additive
method, e.g. based on quantile scores, does not account for differences
in impact or interaction effects.

The results add to the empirical evidence base on environmental
justice and promote further discussions on the fairness of environ-
mental impact distribution. Following Pearce and Kingham (2008, p.
991), we need to “move beyond simple regional ‘bottom line’ ap-
proaches that are focused on addressing aggregated environmental
exposures, towards strategies that recognise the intraurban variability
in pollution levels, prioritising remedial action for communities bearing
the highest exposures”. However, assessing inequalities in the spatial
and social distribution of environmental impacts is just the first step in
an environmental justice analysis. Only by approaching inequalities
from a pluralistic, interpretative, bottom-up and people-driven per-
spective, next to the top-down mapping of inequalities, environmental
justice claims can be substantiated and possible trajectories for future
development and improvement of the situation can be devised
(Davoudi & Brooks, 2014; Walker, 2012). Although a possible ex-
planation of inequalities is the interplay between personal preferences,
personal behavior and forces operating in the public and private
housing markets, also government departments can play a role. There is
foremost a need to consider whether biases against certain social groups
exist within the evident mechanisms driving changes in land use pat-
terns, urbanization and development of transport corridors (Brainard
et al., 2004). For example, if urban development takes place in the
outer parts of the urban area, these neighborhoods will be safer from
traffic and less polluted than the urban average, while inadvertently
contributing to an increased overall amount of traffic and air pollution
for residents living closer to downtown (Næss, 2013). In the same
stance, the Ghent Mobility Plan (City of Ghent, 2015), which tries to
decrease the traffic volume in as many streets as possible but inevitably
increases traffic volume in some other, might be (inadvertently) biased
towards specific population groups. Reporting on environmental in-
equalities through geospatial data analysis can be a vital element in
increasing awareness about the inherent environmentally unjust me-
chanisms built in our current urban and spatial policies and help us
understand the complexity of urban environmental pollution.
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