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Abstract

Motivation: Public health authorities can provide more effective and timely interventions to protect

populations during health events if they have effective multi-purpose surveillance systems. These

systems rely on aberration detection algorithms to identify potential threats within large datasets.

Ensuring the algorithms are sensitive, specific and timely is crucial for protecting public health.

Here, we evaluate the performance of three detection algorithms extensively used for syndromic

surveillance: the ‘rising activity, multilevel mixed effects, indicator emphasis’ (RAMMIE) method

and the improved quasi-Poisson regression-based method known as ‘Farrington Flexible’ both cur-

rently used at Public Health England, and the ‘Early Aberration Reporting System’ (EARS) method

used at the US Centre for Disease Control and Prevention. We model the wide range of data struc-

tures encountered within the daily syndromic surveillance systems used by PHE. We undertake ex-

tensive simulations to identify which algorithms work best across different types of syndromes

and different outbreak sizes. We evaluate RAMMIE for the first time since its introduction.

Performance metrics were computed and compared in the presence of a range of simulated out-

break types that were added to baseline data.

Results: We conclude that amongst the algorithm variants that have a high specificity (i.e. >90%),

Farrington Flexible has the highest sensitivity and specificity, whereas RAMMIE has the highest

probability of outbreak detection and is the most timely, typically detecting outbreaks 2–3 days

earlier.

Availability and implementation: R codes developed for this project are available through https://

github.com/FelipeJColon/AlgorithmComparison

Contact: f.colon@uea.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Epidemiological surveillance is becoming more important due to the

increasing public health threats resulting from the quick spread of infec-

tions, especially as the world population increases and environmental

risks augment. Public health authorities seek efficient algorithms that

can detect unusual increases in infections quickly, so that they can

investigate the sources of spread and ultimately take control measures.

A main challenge for such algorithms is that they must be completely

automated and must work across a range of different infections and syn-

dromes encountered in real life in order to be useful in daily practice.

Most of the existing literature (Bédubourg and Stratt, 2017;

Buckeridge and Burkom, 2010; Enki et al., 2016; Spreco et al.,
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2017; Texier et al., 2017; Unkel et al., 2012; Yang et al., 2018) con-

siders and evaluates surveillance algorithms for weekly data. There

is, however, a rising interest in daily surveillance (e.g. Abat et al.,

2016; Mathes et al., 2017; Morbey et al., 2015; Smith et al., 2016;

Vial et al., 2016). One of the initial motivations of daily surveillance

was the early warning of bio-terrorist incidences. However, now-

adays, daily surveillance is seen as important for various purposes

such as situation awareness during events, reassurance about lack of

incidents during mass gatherings and providing earlier detection for

quicker control. Syndromic surveillance is generally performed daily

based on diagnostic symptoms like cough, fever or diarrhoea, which

are available before a laboratory-confirmed causal pathogen has

been identified. Syndromic Surveillance has been in routine use at

Public Health England (PHE) and its predecessors the Health

Protection Agency and the Public Health Laboratory Service since

2001. Within PHE, syndromic surveillance is coordinated by the

Real-time Syndromic Surveillance Team (ReSST). ReSST currently

monitors general practitioner (GP) consultations using an in-hours

syndromic system (GPIHSS) (Harcourt et al., 2012a,b) and an out-

of-hours and unscheduled care system (GPOOHSS) (Harcourt et al.,

2012a,b), calls to a national telephone health service (NHS 111)

(Harcourt et al., 2016) and emergency department attendances

(EDSSS) (Elliot et al., 2012).

The aim of this paper is to investigate the performance of

three extensively used multi-purpose outbreak detection algo-

rithms in monitoring daily syndromic data across a range of scen-

arios representing real-life syndromic activity. We base these

scenarios on PHE’s syndromic surveillance system and the vari-

ous syndromic data signals it encounters. We, therefore, com-

pare: the multi-level regression approach known as the ‘rising

activity, multilevel mixed effects, indicator emphasis’

(RAMMIE) method (Morbey et al., 2015) developed and cur-

rently used at PHE for syndromic daily surveillance; the

improved quasi-Poisson regression-based (Noufaily et al., 2013)

method (also known and referred to in this paper as Farrington

Flexible) developed and currently used in PHE for weekly detec-

tion of infectious disease outbreaks; the ‘Early Aberration

Reporting System’ (EARS) method (Hutwagner et al., 2003)

based on Shewhart control charts, developed and used as the

standard system (since 11 September 2001) at the United States

CDC for conducting weekly syndromic surveillance (Fricker

et al., 2008). In doing so, the study addresses key challenges in

epidemiological surveillance. It provides a multi-purpose setting

for evaluating algorithms based on simulations representing the

range of real-life syndromes. It also addresses the challenge of

monitoring daily counts for potential alarms, a theme that has

not been thoroughly explored in the literature as the main focus

has been on weekly surveillance. In addition, it presents the first

formal evaluation of RAMMIE since its introduction in 2013.

Farrington Flexible and EARS are methods usually applied to

weekly data, therefore we adapted them for daily surveillance by

using 7-day moving totals. We tested all four variants of the EARS

method (called C1, C2, C3 and NB). Also, we developed a modified

version of RAMMIE which includes testing for long-term trends.

Our comparison thus involves the two major surveillance algorithms

(regression-based RAMMIE and Farrington Flexible) used at PHE

and arguably the most commonly used surveillance algorithm,

EARS, which includes non-regression-based variants, and so we pro-

vide a variety of approaches to contrast. The main challenge facing

such algorithms is to control the false alarms whilst keeping a good

power of detection, i.e. producing high sensitivity and specificity at

the same time. We evaluate the performance of RAMMIE,

Farrington Flexible and EARS by comparing the power of detection,

sensitivity, specificity and timeliness using extensive simulations

based on various scenarios that reflect the range of different data

structures encountered in PHE’s syndromic surveillance system and

seen in the real world including volume, trend, seasonality and day-

of-the-week effects.

In Section 2, we describe the RAMMIE, Farrington Flexible and

EARS algorithms. Section 3 explains the simulation study design

used to compare the three algorithms and Section 4 introduces the

measures used for this evaluation. Section 5 displays the results. We

conclude with a final discussion and interpretation of the results in

Section 6.

2 The algorithms

In this section, we provide a description of the algorithms we com-

pared. These algorithms offer public health bodies a first indication

of unusual activity or aberrations in the form of statistical alarms.

Within PHE, a risk assessment process follows the identification of

statistical alarms after which a smaller proportion of the alarms will

be acted upon as required (Smith et al., 2016).

2.1 The ‘rising activity, multilevel mixed effects,

indicator emphasis’ (RAMMIE) method
RAMMIE (Morbey et al., 2015) fits a multilevel mixed effects

negative binomial regression model to historical daily syndromic

data counts and provides estimates for current counts at a local,

regional and national level in England. The model controls for

the days of the week/month and bank holidays which can impact

on health care consulting behaviour. Upper prediction intervals

for the estimates are used to create thresholds and generate statis-

tical alarms whenever actual counts exceed the thresholds.

ReSST uses RAMMIE as the first stage in its risk assessment pro-

cess for decision-making (Smith et al., 2016). For this study, data

was not stratified into different geographies so the RAMMIE

models are not multilevel, instead a simplified negative binomial

model was used.

RAMMIE uses a denominator as an offset in its regression mod-

els to allow for potential large daily fluctuations in daily coverage

from data providers. For this study, where coverage does not vary,

an offset Nt at day t is defined as:

Nt ¼ 100

(
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9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

; (1)

where H, Sa, Su and W are binomial variables being either 0 or 1

when day t is a public holiday, Saturday, Sunday or other day re-

spectively; yt is the count on day t and n the number of days in the

baseline dataset.

A negative binomial regression model is fitted to all available

baseline data using the following loglinear model which includes the

offset, month of the year, day of the week and whether or not a day

is a public holiday as independent variables:
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lnðytÞ ¼ lnðNtÞ þ
X7

i¼1

biDit þ
X12

j¼1

ajMjt þ cHt; (2)

where Dit are seven binary variables for the day of the week, on any

particular day t, six of these will be zero and the other variable equal

to one. Mjt are 12 weighted variables for the months of the year.

An alarm is signalled if the current expected count is larger than

three and at the same time higher than the current observed count

plus three times the standard deviation; details can be found in

Morbey et al. (2015).

RAMMIE does not include an independent variable for trends.

However, for this study, a modified version of RAMMIE was also

created with an added simple linear trend to account for potential

long-term trends in the data. This version provided better detection

and allowed a fairer comparison with the other algorithms.

2.2 The quasi-Poisson regression-based exceedance

algorithm
Farrington Flexible (Noufaily et al., 2013) fits a quasi-Poisson re-

gression-based model to weekly confirmed organism counts (by date

of report), with mean (expected count) li and variance /li at week

ti. To estimate the organism at the current week, the model is fitted

to the most recent years (usually 5 years) and includes a linear trend

as well as a yearly 10-level factor whose reference period comprises

comparable weeks in previous years. The corresponding log-linear

model is:

log li ¼ hþ bti þ djðtiÞ; (3)

where jðtiÞ is the seasonal factor level for week ti, with jðt0Þ ¼ 0 and

d0 ¼ 0. In this model, a trend is always fitted, irrespective of its stat-

istical significance, except for special cases where data is very

sparse.

A particular week is flagged as being a possible outbreak based

on the value of what is known as the exceedance score:

X ¼ y0 � l̂0

U � l̂0

; (4)

where y0 is the current observed count and l̂0 ¼ exp(ĥ þ b̂t0 þ
djðt0Þ) is the current expected count, ĥ and b̂ being the respective esti-

mates of h and b from Equation (3). U, the upper threshold, is the

100(1-a)% negative binomial quantile, a being the type I error.

Another suggested approach to compute U uses the 2/3 power trans-

formation of the Poisson distribution which is approximately nor-

mal. An alarm is flagged for organism weeks where X � 1. The

exceedance score is conditioned to 0 for particular cases that repre-

sent high data sparsity.

To reduce the effect of baseline outbreaks on current predictions,

the algorithm reweights baseline data. As explained in Noufaily

et al. (2013), the baseline at week ti is down-weighted by a factor of

the Anscombe residual when the latter is greater than 2.58 at that

week.

This algorithm is implemented in R Development Core Team

(2018) and is available via the function Farrington Flexible within

the package surveillance (Höhle, 2007; Salmon et al., 2016).

2.3 The Early Aberration Reporting System (EARS)
EARS (Hutwagner et al., 2003) is available through its four variants

(EARS-C1, EARS-C2, EARS-C3 and EARS-NB), mainly used for

monitoring weekly syndromic counts. These methods are particular-

ly useful when limited baseline data is available for undertaking syn-

dromic surveillance. Although the first three variants are labelled C

after CUSUM, most of them are actually Shewhart range methods

using a moving sample average and sample standard deviation

(Fricker et al., 2008). For each of the variants EARS-C1, EARS-C2

and EARS-C3, a statistical alarm is produced at week t with

observed count Y(t) if statistics C1, C2 and C3 (given below) respect-

ively exceed the baseline count mean plus a multiple of the standard

deviation:

C1ðtÞ ¼
YðtÞ � l1ðtÞ

r1ðtÞ
; (5)

where l1ðtÞ ¼ 1
7

Pt�7

i¼t�1

YðiÞ and r2
1ðtÞ ¼ 1

6

Pt�7

i¼t�1

ðYðiÞ � l1ðiÞÞ2 are re-

spectively the moving sample mean and the moving sample standard

deviation.

C2ðtÞ ¼
YðtÞ � l2ðtÞ

r2ðtÞ
; (6)

where l2ðtÞ ¼ 1
7

Pt�9

i¼t�3

YðiÞ and r2
2ðtÞ ¼ 1

6

Pt�9

i¼t�3

ðYðiÞ � l2ðiÞÞ2 are re-

spectively the moving sample mean and the moving sample standard

deviation.

C3ðtÞ ¼
Xt�2

i¼t

max½0;C2ðiÞ � 1� (7)

Alarms for the different variants are produced when correspond-

ing statistics C1 or C2 exceed three sample standard deviations

above the sample mean or if C3 exceeds two sample standard devia-

tions above the sample mean.

EARS-NB implements Shewhart regression Poisson and negative

binomial charts based on the generalized likelihood ratio statistic and

is described in Höhle and Paul (2008). The method is implemented

via the algo.glrnb function within the R Development Core Team

(2018) surveillance package (Höhle, 2007; Salmon et al., 2016).

3 Simulation study

We first describe how baseline data is simulated and second how

outbreaks are generated. The simulations reflect the real world ex-

perience of the syndromic surveillance systems. A novel and key fea-

ture in this paper is the way simulations take into account the day-

of-the-week effects based on health-seeking behaviour. These effects

are also applied to the outbreaks before combining them with the

synthetic baselines (Buckingham-Jeffery et al., 2017). The simula-

tions are a potential resource for similar evaluations and can be used

by researchers for testing other algorithms in a daily setting.

3.1 Simulated baseline data
The simulations are set to reflect the various syndromes encountered

at PHE as well as the reporting patterns. The four services reporting

to PHE (i.e. GPOOHSS, GPIHSS, NHS 111 and EDSSS) report data

based on the days of the week they operate. GPOOHSS and NHS

111 operate on a 7-day-week basis, with a lower volume of reports

during the week and almost double that volume on weekends.

GPIHSS operates on a 5-day-week basis (only during weekdays) and

portrays two peaks around Mondays and Fridays (the Friday one

being smaller). In contrast, for EDSSS the day of the week effects are

much smaller.

Simulations are designed to mimic the various syndromes’ prop-

erties, including volume, trend, seasonality and weekly patterns.

Based on Noufaily et al. (2013), data is generated using a negative

binomial model (of mean l and variance /l) with dispersion

Comparison of statistical algorithms 3
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parameter / � 1. We adapt the Noufaily et al. (2013) model to in-

corporate the day-of-the-week effects. Hence, two simulation mod-

els are designed, one for each of the 5-day-week and 7-day-week

systems. On day t, mean lðtÞ is defined as:

lðtÞ ¼ exp fhþbðt þ sÞ þ
Xk1

j¼1

c1 cos
2pjðt þ sÞ

52� d

� �
þ c2 sin

2pjðt þ sÞ
52� d

� �� �

þ
Xk2

j¼1

c3 cos
2pjðt þ sÞ

d

� �
þ c4 sin

2pjðt þ sÞ
d

� �� �
g;

(8)

where d is 5(7) for the 5(7)-day-week system. The value k1 ¼ 0 cor-

responds to no seasonality, k1 ¼ 1 and k1 ¼ 2 to annual and bian-

nual seasonality respectively, while k2 ¼ 0 corresponds to no

specific weekly pattern, k2 ¼ 1 and k2 ¼ 2 to one and two weekly

peaks respectively. In our simulations, we have considered the real-

world variability seen in our systems and characterized it into 16

data scenarios (there is no particular significance for the choice of a

total of 16) representing the range of over 12 000 syndromic surveil-

lance time series that PHE analyses daily, taking into consideration

different linear trends (b), seasonal trends (c1 and c2), day-of-the-

week effects (c3 and c4), baseline frequencies of reports (h) and

dispersions (/). A horizontal shifting parameter (s) allows easier

control over dates of peaks. Table 1 shows the parameters used to

simulate 16 different data scenarios representing most syndromic

data signals encountered in England. Table 2 displays examples of

16 syndromes that can show a similar type of behaviour to the 16

simulated scenarios, along with their characterizations. We did not

select these 16 syndromes because they were the most clinically im-

portant or most likely to have outbreaks. Instead, these syndromes

together cover the range of different structures of the different time

series monitored daily by PHE.

Baseline data, in the absence of outbreaks, is generated using

100 simulations from each of the 16 scenarios; each simulation of

size 2548 days (i.e. 7 years consisting of 364 days each or equivalent-

ly 52 weeks). Day-of-the-week effects are also reflected within each

week. In a 7-day-week system, weekends are set to have around

double the volume of reports than weekdays. In a 5-day-week sys-

tem, weekends are set to zero, whereas weekdays generally consist

of 2 peaks, one at the beginning of the week (around Monday) and

another later in the week (around Friday). Figure 1 shows the

resulting data series and Supplementary Figure S1 shows the first 3

weeks of signals 3 (7-day-week system) and 7 (5-day-week system)

to demonstrate the modelled weekly patterns. The outbreaks are

added to the most recent 49 weeks (343 days) of the simulated syn-

dromic data.

3.2 Simulated outbreaks and public holiday effects
The simulation models described in this paper enable the control of

baselines for different scenarios, and therefore outbreaks and un-

usual increases of different shapes can be added to the baselines. We

consider two types of outbreaks: ‘spiked outbreaks’ which last

around 3 weeks on average and ‘seasonal outbreaks’ which have a

duration of about 8 weeks on average. We also consider the effects

of public holidays (called bank holidays in the UK), which usually

last 1 or 2 days, because of their impact on syndromic baselines. All

outbreaks and public holiday effects take into account the day-of-

the-week pattern.

3.2.1 Seasonal outbreaks

Examples of syndromes with seasonal outbreaks are syndromes

designed to detect seasonal influenza and allergic rhinitis (i.e. hay

fever). Although, baseline data already take into account seasonal-

ity, ‘seasonal outbreaks’ differ from the usual seasonality in the

sense that the size and timing of their peak is more variable. They

are added to a similar window of weeks within each year of simu-

lated data. Based on Noufaily et al. (2013), outbreak sizes are simu-

lated using a Poisson distribution with mean equal to m times the

standard deviation of the baseline count of the day at which the out-

break started and then distributed randomly in time according to a

lognormal distribution with mean 0 and standard deviation 0.5.

Outbreaks are then re-weighted based on the day of the week they

fall on, since outbreaks tend to be influenced by the weekly patterns.

In the 5-day-week system, Monday (Tuesday) outbreaks are over-

weighted by a factor of 1.5 (1.1). Outbreak days falling on the

remaining weekdays are kept the same. In the 7-day-week systems,

weekend outbreaks are over-weighted by a factor of 2, whereas

weekday outbreaks are kept the same. ‘Seasonal outbreaks’ are only

added to signals 5 (m¼1680), 6 (m¼1050) and 15 (m¼3150) as

shown in Supplementary Figure S2.

Table 1. Parameters and criteria used to generate the 16 representative signals

Signal h b c1 c2 c3 c4 / s k1 k2 Trend

1 6 0 0.2 0.2 0.5 0.4 2 29 1 2 0

2 0.5 0 1.5 1.4 0.5 0.4 1 �167 1 2 0

3 5.5 0 0 0 0.3 0.25 1 1 0 2 0

4 2 0 0 0 0.3 0.25 1 1 0 2 0

5 6 0 0.3 2 0.3 0.5 1.5 �50 1 2 0

6 1 0 0.1 2 0.05 0.05 1 �50 1 1 0

7 6 0.0001 0 0 0.6 0.9 1.5 0 0 1 1

8 3 0 1.5 0.1 0.2 0.3 1 �150 1 1 0

9 3 0 0.2 0.1 0.05 0.15 1 �200 1 1 0

10 5 0 0.2 0.1 0.05 0.1 1 0 1 1 0

11 0.5 0 0.4 0 0.05 0.15 1 0 2 1 0

12 9 0 0.5 0.2 0.2 0.5 1 0 1 1 0

13 2 0.0005 0.8 0.8 0.8 0.4 4 57 1 2 1

14 0.05 0 0.01 0.01 1.8 0.1 1 �85 4 1 0

15 3 0 0.8 0.6 0.8 0.4 4 29 1 2 0

16 6 0 0 0 0.8 0.4 4 1 0 2 0

4 A.Noufaly et al.
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3.2.2 Spiked outbreaks

‘Spiked outbreaks’ are added to the most recent 49 weeks of our 16

simulated signals. They are generated in a similar fashion to ‘season-

al outbreaks’, however they are of shorter duration. Day-of-the-

week re-weighting is also considered. ‘Seasonal outbreaks’ were

added first to signals 5, 6 and 15, then ‘spiked outbreaks’ were

added to all signals. ‘Spiked outbreaks’ of different sizes—very

small, small, medium and large using respective m values of 2, 3, 5

and 10—have been considered and this study will involve repeating

the analysis of the 16 signals 4 times, each time using a different

‘spiked outbreak’ size. For the purpose of demonstration,

Supplementary Figure S3 shows baseline data for signals 1, 2, 9 and

12 with examples of medium (m¼5) ‘spiked outbreaks’.

3.2.3 Public holidays

Public holiday effects are added to the simulations following the

addition of ‘seasonal outbreaks’ and ‘spiked outbreaks’. We chose

the public holiday dates to be on similar days as the United

Kingdom ‘bank holidays’ (Supplementary Data). In the 5-day-sys-

tem, the public holiday count was set to zero and the weekday after

the public holiday was multiplied by 1.5; in the 7-day-system, the

public holiday count was doubled.

4 Evaluation measures

We used different measures to evaluate the performance of the de-

tection systems in the presence of outbreaks. The measures are the

power of detection (POD), sensitivity (also known as the true posi-

tive), specificity (also known as the true negative or as ‘1-false posi-

tive rate’), positive predictive value (also known as PPV or

precision) and timeliness. POD is the probability of having an alarm

at least once during a spiked outbreak i.e. the probability of detect-

ing the outbreak; sensitivity is the proportion of alarms among spike

outbreak days; specificity is the proportion of no alarms among

non-outbreak days; PPV is the proportion of detected outbreaks that

are true positives i.e. the proportion of detections that are correct;

timeliness is the proportion of days elapsed to detect an outbreak

since its start. This measure of timeliness prevents undue weight

being given to poor performance during a very long outbreak, which

is a problem if timeliness is measured as the number of days since

the start of an outbreak. If an outbreak was not detected, then time-

liness was set to 1. Sensitivity and specificity are a rate per day

whereas POD, PPV and timeliness are a rate per outbreak. For each

of the 16 simulated signals, all five measures are computed from

running the algorithms to the most recent 49 weeks (343 days) of the

100 simulations across each of the four sizes of ‘spiked outbreaks’.

We note that we use these measures to evaluate the detection of just

‘spiked outbreaks’ in the presence of ‘spiked outbreaks’, ‘seasonal

outbreaks’ and public holidays. Below are the explicit formulae used

to compute each measure:

POD ¼ number of �spiked outbreaks0 flagged at least once

100
; (9)

Sensitivity ¼ number of alarms among�spiked outbreaks0 days

number of outbreak days
;

(10)

Specificity ¼ number of non� alarms among non��spiked outbreaks0 days

number of non� outbreak days
;

(11)

PPV ¼ number of true positives

number of positives
; (12)

Table 2. Characteristics of 16 syndromes representative of the 16 simulated data signals

Signal ID Related system Related syndrome Mean daily count Yearly variation 5/7 day service Trend

1 NHS111 Diarrhoea >100 Moderate 7 No

2 ED Arthropod bites <10 Large summer peak 7 No

3 ED Cardiac <500 Small 7 No

4 ED Cardiac admissions (HCU/ICU) <10 Small 7 No

5 GPIHSS Allergic rhinitis >100 Large peak with variable timing 5 No

6 GPIHSS Heat stroke <10 Large peak variable with timing 5 No

7 GPIHSS Herpes zoster >100 Small 5 Yes

8 GPIHSS Insect bite 10–100 Large summer peak 5 No

9 GPIHSS Pertussis 10–100 Moderate 5 No

10 GPIHSS Pneumonia >100 Moderate 5 No

11 GPIHSS Rubella <10 Moderate 5 No

12 GPIHSS Upper tract respiratory infection >100 Moderate 5 No

13 GPOOHSS Bronchitis 10–100 Moderate 7 Yes

14 GPOOHSS Hepatitis <10 Moderate 7 No

15 GPOOHSS Influenza-like illness 10–100 Large peak with variable timing 7 No

16 GPOOHSS Urinary tract infection >100 Small 7 No

Fig. 1. Plots of the 16 simulated data signals
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Timeliness ¼

X100

sim¼1

ð�spiked outbreak0 detection� 1Þ=ðtotal�spiked outbreak0 daysÞ

100
if the�spiked outbreak0 was detected

1 if the�spiked outbreak0was not detected:

8>>>>><
>>>>>:

(13)

A number of additional measures, such as receiver operator char-

acteristic curves, have been used elsewhere to assess the performance

of algorithms. However, here we focused on measures that can be

easily explained to the users and policy makers who will be choosing

which algorithms to implement. Hence, we have POD to measure

the probability of detecting specific outbreaks but also specificity

and sensitivity measures that tell users how accurate daily alarms

will be during and outside outbreaks. PPV is useful when outbreaks

are very rare because even if specificity is high, an alarm is more

likely to be false than true. For example, a system monitoring two

outbreak types (one from a common disease, and one from a rare

disease) may have the same specificity for both of them; however,

the PPV for the common disease would be higher than that of the

rare disease. It is noted that in our study PPV is not very informative

because we specified outbreak occurrence to be exactly one out-

break for each 343 day simulation. Thus, PPV does not give the user

any more useful information than does specificity.

5 Simulation study results

As well as giving overall performance we report on differences be-

tween the 16 scenarios of synthetic syndromes. RAMMIE without

trend, RAMMIE with trend, Farrington Flexible, EARS-C1, EARS-

C2, EARS-C3 and EARS-NB were implemented to the most recent

49 weeks of each of the 100 simulations from each of the 16 signals

(i.e. 49 weeks � 16 signals � 100 simulations ¼ 78 400 simulated

time series) and the evaluation measures defined in Section 4 were

computed across all four sizes of ‘spiked outbreaks’ (notice that PPV

is discussed at the end of this section). As previously mentioned,

both RAMMIE versions were run on daily counts whereas

Farrington Flexible and the EARS variants were run on 7-day mov-

ing totals. Results for RAMMIE with or without trend are very simi-

lar in cases where a trend does not exist; however, RAMMIE

without trend produces a much lower specificity in some cases

where data has an increasing trend, such as signal 13. Given that

RAMMIE with trend produces a much higher specificity and similar

sensitivity and timeliness (for signals with trend) as well as compar-

able results for signals without trend, we only include the results

corresponding to RAMMIE with trend (referred to as RAMMIE) in

the analysis below.

We first investigate how performance is affected by outbreak

size. Figure 2 shows the detection capability of each algorithm for

different outbreak sizes. It displays both POD and sensitivity versus

timeliness (note that a lower score for timeliness indicates better

results). Specificity was not included in this figure because it varies

only very slightly with outbreak size (for each of the algorithms, a

difference of less than 0.003, on average, between the different out-

break sizes). The average specificity across all 16 signals and all out-

break sizes for each of the algorithms is: 0.981 for Farrington

Flexible; 0.953 for RAMMIE; 0.922 for EARS-C1; 0.834 for EARS-

C2; 0.812 for EARS-C3; 0.969 for EARS-NB. The figure shows

that, all algorithms were very likely to detect the larger outbreaks,

but POD was considerably lower for the smallest outbreaks, particu-

larly for the Farrington Flexible method. Farrington Flexible detec-

tion capability is the most affected by outbreak size, though

generally algorithm ranking is not affected by outbreak size and as

the latter increases, POD, sensitivity and timeliness improve.

Farrington Flexible and EARS-NB have a much higher sensitivity

than RAMMIE but lower POD, most likely due to the smoothing

methods used in adjusting from weekly to daily surveillance. In par-

ticular, Farrington Flexible has the highest sensitivity but lowest

POD, though its POD is similar to the other algorithms with out-

breaks of size 10. EARS-C1 and EARS-C2 were the most timely, al-

though RAMMIE has similar timeliness except for the smallest

outbreaks. (See Supplementary Fig. S4 for further demonstration on

how detection is influenced by outbreak size).

Second, we investigate the algorithms’ performance with the par-

ticular characteristics depicted by each of the 16 simulated signals.

Figure 3 displays the algorithms’ 4 performance measures for each

of the 16 signals, when ‘spiked outbreaks’ of medium size (m¼5)

were added to the most recent 49 weeks. Figures corresponding to

very small, small and large outbreaks can be found in the

Supplementary Data. EARS-C1, EARS-C2 and EARS-C3 have much

lower sensitivity and specificity than the other algorithms making

them not very useful in our setting, therefore Figure 3 reports on the

results corresponding to just RAMMIE, Farrington Flexible and

EARS-NB. The figure shows that Farrington Flexible has the highest

specificity on average followed by EARS-NB then RAMMIE.

RAMMIE specificity is similar to Farrington Flexible, however it

has particularly low values for signals 5, 13 and 15, all of which

Fig. 2. Average (across the 16 signals) sensitivity (lower end of plot) and POD

(upper end of plot) versus timeliness for evaluating the impact of ‘spiked out-

break’ size on detection capabilities obtained from applying RAMMIE,

Farrington Flexible, EARS-C1, EARS-C2, EARS-C3 and EARS-NB to the most

recent 49 weeks of each of the 100 simulations of the 16 signals. Marker size

is proportional to outbreak size (i.e. largest point refers to large outbreaks; se-

cond largest refers to medium outbreaks; third largest refers to small out-

breaks; smallest point refers to very small outbreaks)
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have high volume and seasonality. Signal 13 has a trend and signals

5 and 15 have the added ‘seasonal outbreaks’, which could explain

the low specificity. RAMMIE produces particularly low specificity

for signal 15 and so the false alarms might be due to the fact that

RAMMIE detects ‘seasonal outbreak’ better (which in reality could

be the seasonal influenza outbreak). RAMMIE sensitivity is the least

variable across signals. Farrington Flexible produces low POD and

is the least timely particularly for signals 5, 6, 8 and 15 which have

high seasonality and added seasonal outbreaks (for signals 5, 6 and

15). EARS-NB gives a similar picture but with a higher POD and

lower timeliness on average. The timeliness for simulations where

an outbreak is not detected is set to 1, which explains why signals

with particularly low POD are also the least timely. RAMMIE pro-

duces, on average, the highest (lowest) and most consistent POD

and timeliness across all signals.

Every algorithm scored highly in terms of PPV. Farrington

Flexible had the highest overall PPV (99.73%) followed by EARS-

NB (99.56%), RAMMIE (99.04%), EARS-C1 (99.03%), EARS-C2

(98.00%) and EARS-C3 (97.70%). The slightly lower values for

EARS-C methods reflects their lower scores for specificity.

6 Discussion

During the testing of algorithm performance across a range of scen-

arios, we found that EARS-C1, EARS-C2 and EARS-C3 have con-

siderably lower specificity than the other algorithm variants tested.

Amongst the other algorithms, Farrington Flexible has the highest

sensitivity and specificity, whereas RAMMIE has the highest POD

and is the most timely.

Farrington Flexible and EARS-NB smooth the data by taking

moving totals and so dilute the signal, whereas RAMMIE is

designed for daily surveillance which allows it to detect more out-

breaks, typically 2–3 days earlier. However, RAMMIE is less con-

sistent in generating alarms during spiked outbreak days and

produces the lowest sensitivity. Due to smoothing of the day-of-the-

week effects, once Farrington Flexible and EARS-NB detect an out-

break, they are more likely to generate alarms consistently during

the remaining spike outbreak days.

Although there are differences in the performance measures

across the syndromes, the differences mostly affect all the algorithms

in similar ways, apart from some signals with high seasonality or

added seasonal outbreaks. The Flexible Farrington method has the

biggest variation in detection capabilities across the different signals.

Our results show that the performance of RAMMIE can be

improved by adjusting it for long-term trends.

6.1 Implications for public health authorities
In this paper, we provide an assessment of algorithm detection cap-

ability to help decision makers and researchers performing daily sur-

veillance decide which algorithm would be more efficient for their

needs, and which aspects of detection are more important i.e. POD,

sensitivity, specificity, PPV or timeliness. POD is the most important

measure if the priority of the surveillance system is to ensure that all

outbreaks are detected. Whilst our sensitivity measure is important

if a clear consistent signal is required, i.e. an alarm every day during

an outbreak, specificity is important if the user needs to ensure that

there are no false alarms. PPV provides a measure of how likely an

alarm is to be true, which is particularly important when outbreaks

do not occur often. Finally, timeliness may be the most important

measure if the focus of the surveillance activity is on providing early

warning and other public health systems exist which can reliably de-

tect outbreaks. For each of these measures the user may want to set

a minimum threshold required by the algorithms and/or prioritize

which measures are most important for their surveillance needs.

Furthermore, their requirements may vary depending on the public

health hazard they are trying to detect.

In effect, there is no one algorithm that is better across all detec-

tion measures. However, due to their lower specificity, the EARS-

C1, EARS-C2 and EARS-C3 variants may not be as suited for a

multi-purpose daily surveillance system. Farrington Flexible had the

highest sensitivity and specificity so may be preferred if the priority

is for daily alarms that are as accurate as possible. However,

RAMMIE was more timely and had a slightly higher POD so it may

be more useful where early warning is important or the top priority

is that at least one alarm occurs during an outbreak. Alternatively,

EARS-NB may be preferred as a compromise because its sensitivity

was better than RAMMIE and its POD slightly better than Flexible

Farrington.

Specifically, we provide PHE with an evaluation of RAMMIE

that will help them improve their service by modifying RAMMIE or

replacing it with another algorithm. We recommend adjusting

RAMMIE to allow for any long-term trends in the underlying syn-

dromic data. We also provide a range of developed simulations that

researchers can use in testing other algorithms for use in a daily set-

ting elsewhere (We aim in the future to provide public access to

these simulations).

One of our research aims was to discover which algorithm

worked best in particular situations, (e.g. which algorithm is best for

small numbers or which is best for 5-day-week systems, or which is

best for different outbreak sizes or types). However, we show that

the ranking of algorithms is not affected by these different situa-

tions. Therefore, whichever algorithm is preferred by users should

be used for all types of signals.

6.2 Limitations
The timeliness penalty of 1 for failing to detect an outbreak is set

quite high. Consequently, when an algorithm has a low POD score

it will also have very poor timeliness, e.g. Farrington Flexible for sig-

nals with seasonal outbreaks. An alternative approach, given that

the simulated outbreaks are nearly symmetric could be to impose a

penalty of 0.5, because it is highly unlikely that an outbreak will first

be detected after it has peaked. It would also be possible to not im-

pose any penalty, although that could result in algorithms that can

Fig. 3. POD, sensitivity, specificity and timeliness for each of the simulated

signals, with added medium ‘spiked outbreaks’, obtained from applying

RAMMIE (dashed lines), Farrington Flexible (solid lines) and EARS-NB (dot

dash lines) to the most recent 49 weeks of each of the 100 simulations from

each signal
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only detect big outbreaks with an initial sharp rise in cases being

scored as more timely than algorithms with a much better POD.

6.3 Future work
In further research, we aim to explore different decision rules for

evaluating the algorithms. We can use the results from this study to

see how different priorities for timeliness, sensitivity, specificity or

POD would affect the decision of which algorithm we should use.

For instance, we can ask decision makers to specify a set of preferred

requirements for algorithms (e.g. specificity > 98%) and their prior-

ities, (e.g. whether timeliness is a priority over alarming every day).

Then we can apply these decision rules to our study results to deter-

mine which algorithm performed best against the criteria set by the

decision makers. This approach would also allow them to set differ-

ent priorities for different public health events (e.g. a short spike in

vomiting cases caused by a norovirus outbreak or a longer-term

gradual rise in scarlet fever incidence).

We attribute some of the differences in performance between

algorithms to whether or not they were designed for daily or weekly

surveillance. Future work could create new versions of the

Farrington Flexible and EARS algorithms which are specifically

adapted to model day-of-the-week effects inherent in the daily sur-

veillance data.

This research focuses on the detection of spiked outbreaks. The

seasonal outbreak detection is part of the bigger question of what

are we trying to model versus what we are trying to detect. This is

an issue that can be addressed in future work. Also, further research

on RAMMIE day-of-the-week detection efficiency (e.g. weekends

versus weekdays; public holidays versus non-public holidays; detec-

tion on different days of the week) can be undertaken.

7 Conclusion

We have created simulated data representing the wide range of data

structures seen in a multi-purpose daily surveillance system. We

have used this data to compare three algorithms already in use and

made these modelled data structures available for the evaluation of

other new algorithms. We have shown that the decision as to which

algorithm to use should depend on which detection characteristics

are most important to the user and not the characteristics of the

data signal being monitored. In particular, the Farrington Flexible

method has the highest sensitivity and specificity, whereas

RAMMIE has the highest POD and is the most timely.
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