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Abstract—Analysts wishing to explore (multivariate) data
spaces, typically pose queries involving selection operators (i.e.,
range or radius queries, which in essence define data subspaces
of possible interest) and then use aggregation functions, the
results of which determine their interesting-ness. However, such
aggregate query (AQ) results are simple scalar values. As such,
they convey limited information about the queried spaces for
exploratory analysis. We aim to address this shortcoming, aiding
analysts to explore and better understand data (sub)spaces
by contributing a novel type of explanations (coined XAXA:
eXplaining Aggregates for eXploratory Analytics). XAXA’s novel
AQ explanations are represented using functions, which are
obtained by solving a three-fold joint optimization problem.
Specifically, explanations assume the form of a set of parametric
piecewise-linear functions acquired through statistical/Machine
Learning (ML) models and algorithms. A key feature of the
proposed solution is that model training is performed by only
monitoring AQs and their answers on-line. Using our models,
explanations for future AQs can be computed without any DB
access and can be used to further explore/understand the queried
data (sub)spaces, without issuing any more queries to the DB.
This greatly simplifies and expedites exploratory data analysis.
We evaluate the explanation accuracy and efficiency of XAXA
by applying theoretically grounded metrics over real-world and
synthetic datasets and query workloads.

Index Terms—Exploratory analytics, aggregates, explanations,
PLR regression, vector quantization, hetero-associative statistical
learning, query-driven analytics.

I. INTRODUCTION

In the era of big data, analysts must be able to explore and
understand huge data spaces and derive new knowledge in an
efficient manner. The typical procedure followed by analysts
is rather ad hoc and domain specific, but invariantly includes
the fundamental step of exploratory analysis [20].

Aggregate Queries (AQs), e.g., COUNT, SUM, AVG
(AVERAGE), play a key role in exploratory analysis as they
summarize regions of data. Using these aggregates, analysts
decide whether a region is of importance, depending on the
task at hand. However, AQs return single values possibly
conveying little information. For example, imagine checking
whether a particular range of zip codes is of interest, where
the latter depends on the count of persons enjoying a ‘high’
income: if the count of a particular subspace is 273, what
does that mean? If the selection (range) predicate was less
or more selective, how would this count change? What is the
region size with the minimum/maximum count of persons?
Similarly, how do the various subregions of the queried
subspace contribute to the total count value? To answer such
exploratory questions and enhance the analysts understanding

of the queried subspace, they need to issue more queries. The
analyst has no understanding of the space that would steer
them in the right direction w.r.t. which queries to pose next;
as such, further exploration becomes ad hoc, unsystematic,
and uninformed. To this end, the main objective of this paper
is to find ways to assist the analysts understanding such
subspaces. A convenient way to represent how something is
derived (in terms of compactly and succinctly conveying rich
information) is adopting a regression function. In turn, this
would lead to fewer queries issued against the system saving
system resources and drastically reducing the time needed for
exploratory analysis.

A. Motivations and Uses

We focus on AQs with a center-radius selection operator
(CRS) because of their wide-applicability in data analytics
tasks and their easy extension to 1-d range queries. A CRS
operator is defined by a multi-dimensional point (center)
and a radius. Such operator is evident in many applications
including: location-based search, e.g searching for spatially-
close (within a radius) objects, such as astronomical objects,
objects within a geographical region etc. In addition, the same
operator is found within social network analytics, e.g when
looking for points within a similarity distance in a social graph.
Finally, please note that such operator can easily be extended
to formulate an AQ over a specific attribute, e.g a user can
issue an AQ with VAR and a CRS to retrieve the variance for
a specific attribute, over the whole range or a portion of it.

Crimes Data: Consider analyzing crimes’ datasets, con-
taining recorded crimes, along with their location, the type of
crime (homicide, burglary, etc.) and other information. One
such dataset is the Chicago Crimes Dataset [1]. A typical
exploration technique is to issue the AQ with a CRS operator:

SELECT COUNT(*) AS y FROM Crimes AS C
WHERE $theta>sqrt(power($X-C.X,2)
+power($Y-C.Y,2));

The multi-dimensional center is defined by ($X, $Y) and
radius by $theta. Such AQ returns the number of crimes in
a specific area of interest located around the center. With the
given parameters defining a data subspace corresponding to an
arbitrary neighborhood. Having a function as an explanation
for this AQ, the analyst could use it to further understand
how the queried subspace and its subregions contribute to
the aggregate value. For instance, Figure 1 (left) depicts the
specified AQ as the out-most colored circle. Where the x,y



axes are the (Lat, Lon) and the blue points are the locations
of incidents reported from the Chicago Crimes Dataset. The
different colors inside the circle denote the different rates at
which the number of crimes increase as the region gets larger.
Thus, consulting this visualisation the analyst can infer the
contributions of the different subspaces defined as the separate
concentric circles. Starting from the center of the circle we
see that the rate is small, then varies as parameter $theta
gets larger. The different concentric circles and the different
rates ( different colors at different radii) are obtained using a
Piecewise-Linear Regression function. Finally, the availability
of an explanation function will facilitate the further exploration
of the aggregate value for subregions of smaller or greater
sizes without issuing additional SQL queries, but instead
simply plugging different parameter values in the explanation
function.

Telecommunication Calls Data: Consider a scientist tasked
with identifying time-frames having high average call times.
She needs to issue AQs for varying-sized ranges over time,
such as this SQL range-AQ.

SELECT AVG(call_time) AS y FROM TCD AS C
WHERE C.time BETWEEN $X-$theta AND $X+$theta

(We can immediately see the usefulness to more than just
spatial queries using a 1-d range selection operator on any
attribute.) Discovering the aforementioned time-frames, with-
out our proposed explanations, can be a daunting task as
multiple queries have to be issued, overflowing the system with
a number of AQs. Beyond that, analysts could formulate an
optimization problem that could be solved using our function.
Given a function, the maxima and minima points can be
inferred. Thus the analyst can easily discover the parameter
at which the AQ result is maximized or minimized. Again,
such functionalities are very much lacking and are crucial for
exploratory analytics.

B. Problem Definition

We consider the result of an AQ stemming from a function,
defined from this point onwards as the true function. With
that true function fluctuating as the parameter values of an
AQ (e.g $X, $Y, $theta) change. Thus, we are faced with the
problem of being able to approximate the true function with
high accuracy. Using the aforementioned facts we construct
an optimization problem to which its solution is an optimal
approximation to the true function. In turn, this problem is
further deconstructed into two optimization problems. The first
being the need to find optimal query parameters representing
a query space. The described AQs often form clusters, as
a number of AQs are issued with similar parameters. This
is evident from Figure 1 (right) displaying AQs (from real-
world analytical query workload [31]) forming clusters in the
query space. AQs clustered together will have similar results,
thus similar true functions. Consequently, we are interested in
finding a set of optimal parameters to represent queries in each
one of those clusters, as this will be more accurate than one set
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Fig. 1. (Left) Use case of explanation function; x-axis is Longitude, y-axis
is Latitude; blue points are the locations of reported incidents; Circle on right
is the AQ with a CRS operator with the varying rate-of-increase shown as
color coded concentric circles; (right) Real workload cluster analysis (Source
SDSS [31]); x1 and x2 axes are parameters of a CRS operator.

of global parameters1. The second part of the deconstructed
optimization problem is being able to approximate the true
function(s) using a known class of functions over the clustered
query space. To this end we use piecewise-linear functions
that are fitted over the clustered query space. In addition, as
we consider both historically observed queries and incoming
queries we form a third joint optimization problem which is
solved in an on-line manner by adapting both the obtained
optimal parameters and the fitted function.

II. RELATED WORK & CONTRIBUTION

XAXA aims to provide explanations for AQ queries. AQs
and their efficient computation has been a major research
interest [3], [5], [6], [11], [13], [14], [14], [18], [19], [27], [34],
[36], with methods applying sampling techniques, synopses
and ML models to compute such AQs. Compared to XAXA,
the above works are largely complementary. However, the
key salient and distinguishing feature of XAXA is that its
primary task is to explain the AQ results and do so efficiently,
accurately, and scalably w.r.t. increasing data sizes.

Explanation techniques have emerged in multiple contexts
within the data management and ML communities. Their
origin stems from data provenance [12], but have since de-
parted from such notions, and focus on explanations in varying
contexts and with different objectives. One of such contexts,
is to find explanations, represented as predicates, for simple
query answers as in [15], [25], [29].

Explanations have been used in domains such as interpreting
outliers in both in-situ data [35] and in streaming data [7]. In
[26], the authors build a system to provide interpretations for
service errors and present the explanations visually to assist
debugging large scale systems. In addition, the authors of
PerfXPlain [22] created a tool to assist users while debugging
performance issues in Map-Reduce jobs. Other frameworks
provide explanations that in turn can be utilized by the users
to locate any discrepancies found in their data [32], [9], [33].
A recent trend is in explaining ML models for debugging

1This basically represents all queries in a cluster by one query.



purposes [23] or to understand how a model makes predictions
[30] and conveys trust to users using these predictions [28].

In this work, we particularly focus on explanations for AQs
because of the AQs’ wide use in exploratory analytics [34].
Both [35] and [4] focused on explaining aggregate queries.
Our major difference is that we wish to explain these AQs
solely based on the input parameters and results of previous
and incoming queries, thus not having to rely on the underlying
data, which makes generating explanations slow and inefficient
for large-scale datasets. That being said, our objectives and
criteria are vastly different than the aforementioned related
work.

Scalability/efficiency is particularly important: Computing
explanations is proved to be an NP-Hard problem [32] and
generating them can take a long time [15], [29], [35] even
with modest datasets. An exponential increase in data size
will imply a dramatic increase in the time to generate ex-
planations. XAXA does not suffer from such limitations and
is able to construct explanations in a matter of milliseconds
even with massive data volumes. To do so, it relies on two
pillars: First, on workload characteristics: workloads contain
a large number of overlapping queried data subspaces. This
characteristic has been acknowledged and exploited also by
recent research e.g., [34], [27], STRAT [10], and SciBORQ
[24] and has been found to hold in real-world workloads
involving exploratory/statistical analysis, such as in the Sloan
Digital Sky Survey and in the workload of SQLShare [21].
Second, XAXA relies on a novel ML model that exploit
the above workload characteristics to perform efficient and
accurate (approximate) AQ explanations by only monitoring
queries in an on-line manner.

Our contributions are:
1) Novel explanations for AQs useful for exploratory analyt-

ics.
2) Definition of finding the optimal AQ explanation functions

as a three-fold joint optimization problem.
3) A novel hetero-associative statistical learning model, for

formalizing and solving the joint optimization problem.
4) Model training, AQ processing and explanation generation

algorithms requiring zero data access.
5) Use of principled metrics for evaluating the accuracy of

AQ explanations, their efficiency and scalability, and their
sensitivity to key parameters.

III. REPRESENTING EXPLANATIONS

We formally model data items (tuples) and AQs with a CRS
operator, as vectors in a vectorial data space, D ⊂ Rd, and
vectorial query space, Q ⊂ Rd+1.

A. Vectorial Representation of Queries

Let x = [x1, . . . , xd] ∈ Rd denote a random row vector in
data space D.

Definition 1: (Vector Norm) The p-norm (Lp) distance
between two vectors x and x′ from Rd for 1 ≤ p < ∞,
is ‖x − x′‖p = (

∑d
i=1 |xi − x′i|p)

1
p and for p = ∞, is

‖x− x′‖∞ = maxi=1,...,d{|xi − x′i|}.

Consider now a scalar θ > 0, hereinafter referred to as
radius, and a dataset B consisting of N vectors {xi}Ni=1.

Definition 2: (Data Subspace) Given x ∈ Rd and scalar θ,
being the parameters of an AQ with a CRS operator, a data
subspace D(x, θ) is the convex subspace of Rd, which includes
vectors xi : ‖xi − x‖p ≤ θ with xi ∈ B. Thus the region
enclosed by a CRS operator is the referred data subspace.

Definition 3: (Aggregate Query) Given a data subspace
D(x, θ) an AQ is a function over D(x, θ), that produces a
response variable y = f(D(x, θ)) which is the result of an
AQ. So for instance, in the case of AVG the function could be
f(D) = E[y|D(x, θ)], where y is the attribute we are interested
in e.g call time.

Definition 4: (Query Similarity) The L2
2 distance or sim-

ilarity measure between AQs q,q′ ∈ Q is ‖q − q′‖22 =
‖x− x′‖22 + (θ − θ′)2.

B. Functional Representation of Explanations

The AQs defined in Section III-A return a single scalar
value y, to the analysts. We seek to explain how such values
are generated by finding a function f : R × Rd → R
that can describe how y, is produced given an ad-hoc query
q = [x, θ] with x ∈ Rd. Specifically, given our interest in
parameter x, we desire explaining the evolution/variability of
output y of query q as the radius θ varies. Therefore, given
a parameter of interest x we define a parametric function
f(θ;x) to which its input is the radius θ. Thus, our produced
explanation function(s) approximates the true function w.r.t
radius θ conditioned on x.

An explanation function can be linear or polynomial w.r.t
θ given a fixed center x. However, when using high-order
polynomial functions as our explanations, we assume that none
of the true AQ functions will be monotonically increasing, and
that we know the order of the polynomial. A monotonically
increasing AQ function w.r.t θ is COUNT. However, for ag-
gregates such as AVG the previous assumption does not hold:
Hence, representing explanations with high-order polynomial
functions will be problematic. Therefore, we choose to employ
linear functions. But, linear functions will still have trouble
representing explanations accurately. For instance, if the result
y is given by AVG or CORR, then the output of the function
might increase or decrease for a changing θ. Even for COUNT,
a single linear function might be an incorrect representation
as the output y might remain constant within an interval θ and
then increase abruptly.

Figure 2 (left) shows that the true function for this AQ (eg
COUNT), is monotonically increasing w.r.t θ given x. The re-
sulting linear and polynomial fitting/approximation functions
fail to be representative. The same holds for Figure 2 (right)
in which the true function is non-linear for this AQ (eg AVG).
Hence, we need to find an adjustable linear function that is able
to capture such irregularities and conditional non-linearities.
A more appropriate solution is to approximate the explanation
function f with a Piecewise Linear Regression(PLR) function
a.k.a. segmented regression. A PLR approximation of f is able
to address the above shortcomings by finding and fitting the
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Fig. 2. (Left) Actual and approximate explanation functions for a monoton-
ically increasing result, where x-axis is the radius θ of a query and y-axis
is the result y given x; (right) Actual and approximate explanation functions
for non-linear function vs radius θ of a query given x.

best multiple linear functions, as illustrated in Figure 2. We
now provide the definition of an explanation:

Definition 5: (Explanation Function) Given an AQ q =
[x, θ], an explanation function f(θ;x) is defined as the fusion
of piecewise linear functions, f ≈

∑
f̂(θ;x) , derived by the

fitting of f̂ over AQs q′ = [x′, θ′] with radii θ′.

IV. EXPLANATION FUNDAMENTALS

The challenge in approximating f , as defined in Definition
5 lies in seeking functions to explain the way result y varies
as radius θ changes without access to base data, as this would
harm efficiency. Specifically, we seek to find explanation
functions by only leveraging previous and incoming AQs.

A. Explanation Approximation

XAXA utilizes AQs to train statistical learning models
that are able to accurately approximate the true explanation
function f for any center of interest x. Given these models,
we no longer need access to the underlying data, thus, guar-
anteeing efficiency. This follows since the models learn the
various query patterns to approximate explanation functions
f(θ;x),∀x ∈ Rd.

Formally, given a well defined explanation loss L(f, f̂)
(defined later) between the true explanation function f(θ;x)
and an approximated function f̂(θ;x) ∈ F , we seek the op-
timal approximation function f̂∗ that minimizes the Expected
Explanation Loss (EEL) for all possible queries (all locations
and radii):

f̂∗ = arg min
f̂∈F

∫
x∈Rd

∫
θ∈R+

L(f(θ;x), f̂(θ;x))p(θ,x)dθdx, (1)

where p(θ,x) is the probability density function of the queries
q = [x, θ] over the query workload. Eq(1) is the objective
minimization loss function given that we use the optimal
model approximation function to explain the relation between
y and radius θ for any given/fixed center x.

However, accuracy will be problematic as it seems intu-
itively wrong that one such function can explain all the queries
at any location x ∈ Rd with any radius θ ∈ R. Such an
explanation is not accurate because: (i) The radius θ can
generally be different for different queries. For instance, crime
data analysts will issue AQs with a different radius to compare

Fig. 3. The XAXA framework modes overview.

if crimes centered within a small radius at a given location
increase at a larger/smaller radius; (ii) At different locations
x, the result y will almost surely be different.

Therefore we introduce local approximation functions
f̂1, . . . , f̂K that collectively minimize the objective in (1).
Thus, we no longer wish to find one global approximation to
the true explanation function for all possible queries. Instead,
we fit a number of local optimal functions that can explain a
subset of possible queries. We refer to those models as Local
PLR Models (LPM).

The LPMs are fitted using AQs forming a cluster (have
similar query parameters). Thus for each uncovered cluster of
AQs we fit an LPM. Therefore, if K clusters are obtained from
clustering the Query space Q, K LPMs are fitted.

The obtained K LPMs are essentially multiple possible
explanations. Intuitively, this approach makes more sense as
queries that are issued at relatively close proximity to each
other, location-wise, and that have similar radii will tend to
have similar results and in turn will behave more or less the
same way. The resulting fused explanation has more accuracy
as the clusters have less variance for y and θ. This was
empirically shown from our experimental workload.

Formally, to minimize EEL, we seek K local approximation
model functions f̂k ∈ F , k = 1 ∈ [K], such that for each
query q belonging to a partition/cluster k, Qk, the summation
of the local EELs is minimized:

J0({f̂k}) =
∑
f̂k∈F

∫
q∈Qk⊂Rd+1

L(f(θ;x), f̂k(θ;x))pk(q)dq (2)

where pk(q) is the probability density function of the query
vectors belonging to a query sub-space Qk. Thus, J0 forms
our generic optimization problem mentioned in Section I-B.
We define explanation loss, L(f, f̂) as the discrepancy of
the actual explanation function f due to the approximation
of explanation f̂ . For evaluating L, we propose two different
aspects to measure explanation loss: (1) the statistical aspect,
where the goodness of fit of our explanation function is
measured and (2) the predictive accuracy denoting how well
the results from the true function can be approximated using
our explanation function. The proposed metrics are covered in
Section VIII.

B. A Bird’s Eye View of the Solution

The proposed methodology for computing explanations is
split into three modes (Figure 3). The Pre-Processing Mode
aims to identify the optimal number of LPMs and an initial
approximation of their parameters using previously executed



queries. The purpose of this mode is basically to jump-start
our framework. In the Training Mode, the LPMs’ parameters
are incrementally optimized to minimize the objective function
(2) as incoming queries are processed in an on-line manner.
In the Explanation Mode, the framework is ready to explain
AQ results.

1) Pre-Processing Mode: A training set T of m previously
executed queries q and their corresponding aggregate results
is used as input to the Pre-Processing Mode. The central
task is to partition (quantize) the query space Q based on
the observed (previous) queries q ∈ T into K clusters,
sub-spaces Qk, in which queries with similar x are grouped
together. Each cluster is then further quantized into L sub-
clusters, as queries with similar x are separated with regards
to their θ parameter values. Therefore, this is a hierarchical
query space quantization (first level partition w.r.t. x and
second level partition w.r.t. θ), where each Level-1 (L1) cluster
Qk, k = 1, . . . ,K is associated with a number of Level-2
(L2) sub-clusters Ukl, l = 1, . . . , L in the θ space. For each
L1 cluster Qk and L2 sub-cluster Ukl, we assign a L1 rep-
resentative, hereinafter referred to as Location Representative
(LR) and a L2 representative, hereinafter referred to as Radius
Representative (RR). LR converges to the mean vector of the
centers of all queries belonging to L1 cluster Qk, while the
associated RR converges to the mean radius value of the radii
of all queries, whose radius values belong to Ukl.

After this hierarchical quantization of the query space, the
task is to associate an LPM f̂kl(θ;x) with each L2 sub-
cluster Ukl, given that the center parameter x is a member
of the corresponding L1 cluster Qk. This process is nicely
summarized in Figure 4.

2) Training Mode: This mode optimizes the clustering
parameters (LR and RR representatives) of the pre-processing
mode in order to minimize the objective function (2). This
optimization process is achieved incrementally by processing
each new pair (qi, yi) in an on-line manner. Consulting
Figure 4, in Training mode, each incoming query qi is
projected/mapped to the closest LR corresponding to a L1
cluster. Since, the closest LR is associated with a number
of L2 RRs, the query is then assigned to one of those RRs
(closest u to θ), and then the associated representatives are
adapted. After a pre-specified number of processed queries,
the corresponding LPM f̂kl(θ;x) is re-trained to associate the
result y with the θ values in Ukl and account for the newly
associated queries.

3) Explanation Mode: In this mode no more modifications
to LRs, RRs, and the associated LPMs are made. Based on
the L1/2 representatives and their associated approximation
explanation functions LPMs, the model is now ready to
provide explanations for AQs. Figure 4 sums up the result of
all three modes and how an explanation is given to the user.
For a given query q, the system finds the closest LR;wk and
then, based on a combination of the RRs;(uk,1, . . . , uk,3) and
their associated LPMs;(f̂k,1 . . . , f̂k,3), returns an explanation
as a fusion of diverse PLR functions derived by the L2 level.

We elaborate on this fusion of L2 LPMs in Section VII2.

V. OPTIMIZATION PROBLEMS FORMULATIONS

We initially defined the generic optimization problem in
(2), which identifies the need for local approximations of the
true explanation function. Subsequently, we defined a high
level solution that allows us to tackle such problem. In this
section, we deconstruct the generic problem into more specific
optimization problems, where XAXA minimizes the EEL.

A. Optimization Problem 1: Query Space Clustering

The first part of the deconstructed generic problem identifies
the need to find optimal LRs and RRs, as such optimal
parameters guarantee better grouping of queries thus better ap-
proximation of true function, during the Pre-Processing phase.
The LRs are initially random location vectors wk ∈ Rd, k =
1, . . . ,K, and are then refined by a clustering algorithm as
the mean vectors of the query locations that are assigned
to each LR. Formally, this phase finds the optimal mean
vectors W = {wk}Kk=1, which minimize the L1 Expected
Quantization Error (L1-EQE):

J1({wk}) = E[‖x−w∗‖2;w∗ = arg min
k=1,...,K

‖x−wk‖2], (3)

where x is the location of query q = [x, θ] ∈ T and wk is the
mean center vector of all queries q ∈ Qk associated with wk.
We adopt the K-Means [17] clustering algorithm to identify
the L1 LRs based on the queries’ centers x[3]. This phase
yields the K L1 cluster representatives, LRs. A limitation of
the K-Means algorithm is that we need to specify K number
of LRs in advance. Therefore, we devised a simple strategy
to find a near-optimal number K. By running the clustering
algorithm in a loop, each time increasing the input parameter
K for the K-Means algorithm, we are able to find a K that
is near-optimal. In this case, an optimal K would sufficiently
minimize the Sum of Squared Quantization Errors (SSQE),
which is equal to the summation of distances, of all queries
from their respective LRs4.

SSQE =

n∑
i

min
wk∈W

(||xi −wk||22) (4)

This algorithm starts with an initial K value and gradually
increments it until SSQE yields an improvement no more than
a predefined threshold ε > 0.

We utilize K-Means again, but this time over each L1
cluster of queries created by the L1 query quantization phase.
Formally, we minimize the conditional L2 Expected Quanti-
zation Error (L2-EQE):

J1.1(uk,l) = E[(θ − uk,∗)2];uk,∗ = arg min
l∈L

(θ − uk,l)2 (5)

conditioned on wk = w∗. Therefore, for each LR
w1, . . . ,wK , we locally run the K-Means algorithm with L

2Note that LPMs are also referred to as PLRs.
3The framework can employ any clustering algorithm.
4The algorithm is available in the extended version of the paper at: https:

//github.com/Skeftical/xaq-reproducibility/tree/master/Extended\%20Version



number of RRs, where a near optimal value for L is obtained
following the same near-optimal strategy. With SSQE being
computed using u and θ instead of (w,x). Specifically, we
identify the L2 RRs over the radii of those queries from T
whose closest LR is wi. Then, by executing the L-Means over
the radius values from those queries we derive the correspond-
ing set of radius representatives Ui = {ui1, . . . , uiL}, where
each uil is the mean radius of all radii in the l-th L2 sub-cluster
of the i-th L1 cluster. Thus the first part of the deconstructed
optimization problem can be considered as two-fold, as we
wish to find optimal parameters for both LRs and RRs that
minimize (3) and (5).

B. Optimization Problem 2: Fitting PLRs per Query Cluster
The second part of the deconstructed generic optimization

problem has to do with fitting optimal approximation functions
such that the local EEL is minimized given the optimal
parameters obtained from the first part of the deconstructed
problem. We fit (approximate) L PLR functions f̂kl(θ;wk)
for each L2 sub-cluster Ukl for those θ values that belong to
the L2 RR ukl. The fitted PLR captures the local statistical
dependency of θ around its mean radius ukl given that x is
a member of the L1 cluster represented by wk. Given the
objective in (2), for each local L2 sub-cluster, the approximate
function f̂kl minimizes the conditional Local EEL:

J2({βkl, λkl}) = Eθ,x[L(fkl(θ;wk), f̂kl(θ;wk))] (6)
s.t. wk = arg min

j∈[K]
‖x−wj‖2,

ukl = arg min
j∈[L]

|θ − ukl|

conditioned on the closeness of the query’s x and θ to the L1
and L2 quantized query space Qk and Ukl, respectively, where
{βkl, λkl} are the parameters for the PLR local approximation
explanation functions f̂kl defined as follows in (7).

Remark 1: Minimizing objective J2 in (6) is not trivial
due to the double conditional expectation over each query
center and radius. To initially minimize this local objective,
we use Multivariate Adaptive Regression Splines (MARS) [16]
as the approximate model explanation function f̂kl. Thus, our
approximate f̂kl has the following form:

f̂kl(θ;wk) = β0 +

M∑
i=1

βihi(θ), (7)

where the basis function hi(θ) = max{0, θ − λi}, with λi
being the hinge points. Essentially, this creates M linear
regression functions. The number M of linear regression
functions is automatically derived by MARS using a threshold
for convergence w.r.t R2(coefficient-of-determination, later de-
fined); which optimize fitting. Thus, guaranteeing an optimal
number of M linear regression functions. For each L2 sub-
cluster, we fit L MARS functions f̂kl, l = 1, . . . , L, each one
associated with an LR and an RR, thus, in this phase we
initially fit K×L MARS functions for providing explanations
for the whole query space. Figure 4 illustrates the two levels
L1 and L2 of our explanation methodology, where each LR
and RR are associated with a MARS model.
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Fig. 4. The XAXA framework rationale: Query mapping to L1 cluster, then
mapping to L2 sub-cluster, and association to L3 PLR regression space. The
explanation is provided by the associated set of PLR functions fkl.

C. Optimization Problem 3: Putting it All Together

The optimization objective functions in (3), (5) and (6)
should be combined to establish our generic optimization
function J0, which involves the estimation of the optimal
parameters that minimize the EQE in J1 (L1) and J1.1 (L2),
and then the conditional optimization of the parameters in
J2. In this context, we need to estimate these values of the
parameters in W = {wk} and U = {ukl} that minimize the
EEL given that our explanation comprises a set of regression
functions f̂kl. Formally, our joint optimization is optimizing
all the parameters from J1, J1.1, and J2 from Problem 1 and
Problem 2, respectively:

J3(W,U ,M) = J1(W) + J1.1(U) + J2(M) (8)

with parameters:

W = {wk},U = {ukl},M = {(βi, λi)kl} (9)

with k ∈ [K], l ∈ [L], i ∈ [M ], which are stored for fine
tuning and explanation/prediction.

Remark 2: The optimization function J3 approximates the
generic objective function J0 in (2) via L1 and L2 query
quantization (referring to the integral part of (2)) and via the
estimation of the local PLR functions referring to the family
of function space F . Hence, we hereinafter contribute to an
algorithmic/computing solution to the optimization function
J3 approximating the theoretical objective function J0.

VI. XAXA: HETERO-ASSOCIATIVE LEARNING

The framework contributes a new hetero-associative learn-
ing model that associates the (hierarchically) clustered query
space with (PLR-based explanation) functions. Given the
hierarchical query space quantization and local PLR fitting,
the training mode fine-tunes the parameters in (9) to optimize
both J1, J1.1 in (3), (5) and J2 in (6). The three main sets of
parameters W , U , andM of the framework are incrementally
trained in parallel using queries issued against the DBMS.
Therefore, (i) the analyst issues an AQ q = [x, θ]; (ii) the



DBMS answers with result y ; (iii) our framework exploits
pairs (q, y) to train its new statistical learning model.

Training follows three steps. First, in the assignment step,
the incoming query q is associated with an L1, L2 and PLR,
by finding the closest representatives at each level. The second
step is the on-line adjustment step, where the LR, RR and PLR
parameters are gradually modified w.r.t. the associated incom-
ing query in the direction of minimizing the said objectives.
Finally, the off-line adjustment step conditionally retrains any
PLR fitting model associated with any incoming query so far.
This step is triggered when a predefined retraining value is
reached, or when the number of queries exceeds a threshold .

Query Assignment Step. For each executed query-answer
pair (q, y), we project q to its closest L1 LR using only
the query center x based on (3). Obtaining the projection
w∗k allows us to directly retrieve the associated RRs U∗k =
{u∗1k, . . . , u∗Lk}. Finding the best L2 RR in U∗k is, however,
more complex than locating the best LR. In choosing one of
the L2 RRs, we consider both distance and the associated
prediction error. Specifically, the prediction error is obtained
by the PLR fitting models of each RR from the set U∗k . Hence,
in this context, we first need to consider the distance of our
query q = [x, θ] to all of the RRs in U∗k focused on the
absolute distance in the radius space:

|θ − ukl|,∀ukl ∈ U∗k , (10)

and, also, the prediction error given by each RR’s associated
PLR fitting model f̂kl. The prediction error is obtained by the
squared difference of the actual result y of the query q and
the predicted outcome of the local PLR fitting model ŷ =
f̂kl(θ;w

∗
k):

(y − f̂kl(θ;w∗k))2, l = 1, . . . , L (11)

Therefore, for assigning a query q to a L2 RR, we combine
both distances in (10) and (11) to get the assignment distance
in (12), which returns the RR in U∗k which minimizes:

l∗ = arg min
l∈[L]

(z|θ − ukl|+ (1− z)(y − f̂kl(θ;w∗k))2) (12)

The parameter z tilts our decision towards the distance-wise
metric or the prediction-wise metric, depending on which
aspect we wish to attach greater significance.

Remark 3: Why incorporate prediction error? We could
associate an incoming query with the closest L2 RR as is
being done with L1 LR. However, note that an explanation
function may have lower prediction error even though is not
the closest (w.r.t to RR). Intuitively, this holds true, as some
function might be able to make better generalizations even
if their RRs are further apart. Therefore, we introduce the
weighted-distance in (12) to account for this and make more
sophisticated selections.

On-line Representatives Adjustment Step. This step op-
timally adjusts the positions of the chosen LR and RR so that
training is informed by the new query. Their positions are
shifted using Stochastic Gradient Descent (SGD) [8] over the

J1 and J2 w.r.t. w and θ variables in the negative direction of
their gradients, respectively. This ensures the optimization of
both objective functions. Theorems 1 and 2 present the update
rule for the RR selected in (12) to minimize the EEL given
that a query is projected to its L1 LR and its convergence to
the median value of the radii of those queries.

Theorem 1: Given a query q = [x, θ] projected onto the
closest L1 wk∗ and L2 uk∗,l∗ , the update rule for uk∗,l∗ that
minimizes J2 is:

∆uk∗,l∗ ← αzsgn(θ − uk∗,l∗) (13)

Proof 1: See the proof in extended version of the paper.
α ∈ (0, 1) is the learning rate defining the shift of θ ensuring

convergence to optimal position and sgn(x) = d|x|
dx , x 6= 0 is

the signum function. Given that query q is projected on L1
w∗k and on L2 uk∗,l∗ , the corresponding RR converges to the
local median of all radius values of those queries.

Theorem 2: Given the optimal update rule in (13) for L2
RR uk,l, it converges to the median of the θ values of those
queries projected onto the L1 query subspace Qk and the L2
sub-cluster Ukl, i.e., for each query q = [x, θ] with x ∈ Qk,
it holds true for ukl ∈ Ukl that:

∫ ukl

0
p(θ|wk)dθ = 1

2 .
Proof 2: See the proof in extended version of the paper.

Using SGD, θk∗,l∗ converges to the median of all radius values
of all queries in the local L2 sub-cluster in an on-line manner.

Off-line PLR Adjustment Step. The mini-batch adjustment
step is used to conditionally re-train the PLRs to reflect the
changes by (13) in Uk parameters. As witnessed earlier, repre-
sentatives are incrementally adjusted based on the projection
of the incoming query-answer pair onto L1 and L2 levels.
For the PLR/MARS functions, the adjustment of hinge points
and parameters (βi, λi) needs to happen in mini-batch mode
taking into consideration the projected incoming queries onto
the L2 level. In order to achieve this, we keep track of the
number of projected queries on each L2 sub-cluster Uk and
re-train the corresponding parameters (βkli, λkli) PLR/MARS
of the fitting f̂kl given a conditionally optimal L2 RR ukl
and for every processed query we increment a counter. Once
we reach a predefined number of projected queries-answers,
we re-train every PLR/MARS model that was affected by
projected training pairs. Once the fitting models are retrained,
then a new era of on-line adjustment begins until the end of
the training pairs or the convergence of the L2 RRs.

VII. XAXA: EXPLANATION SERVING

After Pre-Processing and Training, explanations can be
provided for unseen AQs. The explanations are predicted by
the fusion of the trained/fitted PLRs based on the incoming
queries. The process is as follows. The analyst issues a query
q, q /∈ T . To obtain the explanation of the result for the
given query q = [x, θ], XAXA finds the closest w∗k LR and
then directly locates all of the associated RRs of the U∗k . The
provided explanation utilizes all selected associated L PLRs
fitting models f̂k∗,l. The selection of the most relevant PLR
functions for explaining q is based on the boolean indicator



I(θ, uk∗,l), where I(θ, uk∗,l) = 1 if we select to explain AQ
based on the area around θ represented by the L2 RR uk∗,l; 0
otherwise. Specifically this indicator is used to denote which
is the domain value for the θ radius in order to deliver the
dependency of the answer y within this domain as reflected
by the corresponding PLR f̂k∗,l(θ;wk∗). In other words, for
different query radius values, XAXA selects different PLR
models to represent the AQ, which is associated with the RR
that is closer to the given query’s θ. Using this method, L
possible explanations for q exist and the selection of the most
relevant PLR fitting model for the current radius domain is
determined when I(θ, uk∗,l) = 1 and, simultaneously, when:

0 ≤ θ < uk∗,1 + 1
2 |uk∗,1 − uk∗,2| and l = 1

uk∗,l−1 + 1
2 |uk∗,l−1 + uk∗,l| ≤ θ < uk∗,l + 1

2 |uk∗,l + uk∗,l+1|
and l < L

uk∗,l−1 + 1
2 |uk∗,l−1 + uk∗,l| ≤ θ and l = L

(14)
Interpretation. The domain radius in (14) shows the radius

interval boundaries for selecting the most relevant PLR fitting
model for explanation in the corresponding radius domain. In
other words, we switch between PLR models according to the
indicator function. For instance, from radius 0 up to the point
where the first RR would still be the closest representative,
indicated as ≤ u1 + 1

2 |u1 − u2|, we use the first PLR fitting
model. Using this selection method, we can derive an accurate
explanation for the AQ. The returned explanation is then
represented by (15):

L∑
l=1

I(θ, uk∗,l)f̂k∗,l (15)

which is a PLR function where the indicator I(·, ·) returns 1
only for the selected PLR.

VIII. EXPERIMENTAL EVALUATION

A. Experimental Setup & Metrics

Data Sets and Query Workloads: The real dataset B1 =
{xi}Ni=1,x ∈ R2 with cardinality |B1| = N = 6 · 106 contains
crimes for the city of Chicago [1]. We also used another real
dataset B2 = {x} where x ∈ R2 and |B2| = 5.6 ·106 contains
records of calls issued from different locations in Milan [2]5.
We create a synthetic workload T containing m = 5 · 104

queries and their answers, i.e., {(q, y)i}mi=1 = T . Each query
is a 3-d vector q = [x, θ] with answer y where x = [x1, x2] ∈
R2 is the center, θ ∈ R is its radius and y ∈ R the result against
real dataset B1. We scale B1 and T in all their dimensions,
restricting their values in [0, 1]. We use workload T for Pre-
Processing and Training and create a separate evaluation set
V containing |V| = 0.2 ·m new query-answer pairs.

Query Workload (T ,V) Distributions: It is important to
mention that no real-world benchmarks exist for exploratory
analytics in general; hence we resort to synthetic workloads.

5The complete set of results were omitted due to space restrictions, we note
that the results were similar to real dataset B1

TABLE I
SYNTHETIC QUERY WORKLOADS T ,V .

Location x Radius θ
Gauss-Gauss

∑C
i=1 N (µi,Σi)

∑J
i=1 N (µi, σ

2
i )

Gauss-Uni
∑C

i=1 N (µi,Σi)
∑J

i=1 U(vi, vi + 0.02)

Uni-Gauss
∑C

i=1 U(vi, vi + 0.04)
∑J

i=1 N (µi, σ
2
i )

Uni-Uni
∑C

i=1 U(vi, vi + 0.04)
∑J

i=1 U(vi, vi + 0.02)
DC (U) U(0, |D|) U(0, |D|)

The same fact is recognized in [34]. For completeness, there-
fore, we will also use their workload as well in our evaluation.
Please note that the workload from [34] depicts different
exploration scenarios, based on zooming-in queries. As such,
they represent a particular type of exploration, where queried
spaces subsume each other, representing a special-case sce-
nario for the overlaps in the workloads for which XAXA was
designed. However, as it follows the same general assumptions
we include it for completeness and as a sensitivity-check for
XAXA workloads. We first generated T ,V with our case
studies in mind. We used 2-dim./1-dim. Gaussian and 2-
dim./1-dim. Uniform distributions for query locations x and
radius θ of our queries, respectively. Hence, we obtain four
variants of workloads, as shown in Table I. We also list the
workload borrowed from [34] as DC(U).6

The parameters C and J signify the number of mixture dis-
tributions within each variant. Multiple distributions comprise
our workload as we desire to simulate the analysts’ behavior
issuing queries against the real dataset B1. For instance, given
a number C × J of analysts, each one of them might be
assigned to different geo-locations, hence parameter C, issuing
queries with different radii, hence J , given their objectives. For
the parameters µ (mean) and v of the location distributions
in Table I, we select points uniformly at random ranging in
[0,1]. The covariance Σi of each Gaussian distribution, for
location x, is set to 0.0001. The number of distributions/query-
spaces was set to C × J , where C ∈ N and J ∈ N with
C = 5 and J = 3, thus, a mixture of 15 query distributions.
The radii covered 2%− 20% of the data space, i.e., µi for θ
was randomly selected in [0.02, 0.2] for Gaussian distributions,
with small σ2 for the Gaussian distributions, and vi was in
[0.02, 0.18] for Uniform distributions. Further increasing that
number would mean that the queries generated would cover a
much greater region of the space, thus, making the learning
task much easier. The variance σ2

i for Gaussian distributions
of θ was set to 0.0009 to leave no overlap with the rest of
the J − 1 distributions. We deliberately leave no overlapping
within θ distributions as we assume there is a multi-modal
mixture of distributions with different radii used by analysts.
Parameters z and α were set to z = 0.5 to ensure equal
importance during the query assignment step and stochastic
gradient learning schedule α = 0.01.

Our implementation was in Python 2.7. Experiments ran
single threaded on a Linux Ubuntu 16.04 using an i7 CPU at
2.20GHz with 6GB RAM. For every query in the evaluation set
V , we take its radius and generate n evenly spaced radii over

6|D| is the cardinality of the data-set generated by [34].
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Fig. 5. Goodness of fit and predictive accuracy results.

the interval [0.02, θ′], where 0.02 is the minimum radius used.
For query q = [x, θ] we generate and find the answer for n
sub-queries, ST = {([x, θ1], y1), · · · ([x, θn], yn)}. The results
of these queries constitute the Actual Explanation (AE) and
hence the true function is represented as a collection of n pairs
of sub-radii and y, {(θi, yi)}ni=1. The approximated function
is the collection of n sub-radii and predicted ŷ, {(θi, ŷi)}ni=1.

Evaluation & Performance Metrics:
Goodness of Fit: The EEL is measured here using the

coefficient of determination R2. This metric indicates how
much of the variance generated by f(θ;x) can be explained
using the approximation f̂(θ;x). This represents the goodness-
of-fit of an approximated explanation function over the actual
one. It is computed using : R2 = 1−

∑
i (yi−ŷi)

2∑
i (yi−y)2

, in which the
denominator is proportional to the variance of the true func-
tion and the numerator are the residuals of our approximation.
The EEL between f and f̂ explanations can then be computed
as L(f(θ;x), f̂(θ;x)) = 1−R2.

Predictive Accuracy: To completely appreciate the ac-
curacy and usefulness of XAXA, we also quantify the
predictive accuracy associated with explanation (regres-
sion) functions. We employ the Normalized-Root-Mean-
Squared-Error(NRMSE) for this purpose: NRMSE =

1
ymax−ymin

( 1
n

∑n
i (yi − ŷi)

2). Essentially, this shows how
accurate the results would be if an analyst used the explanation
(regression) functions for further data exploration, without
issuing DB queries.

B. Experimental Results: Accuracy

For our experiments we chose to show performance and
accuracy results over two representative aggregate functions:
COUNT and AVG due to their extensive use and because of their
properties, with COUNT being monotonically increasing and
AVG being non-linear. As baselines do not exist for this kind
of problem, we demonstrate the accuracy of our framework
with the bounds of the given metrics as our reference. Due
to space limitations, we show only representative results–
results with additional datasets and experiments are given in
the extended version of the paper along with the scripts used,
for reproducibility at 7.

Figure 5(a) shows the results for R2 over all workloads
for AVG and COUNT. We report on the average R2 found by
evaluating the explanation functions given for the evaluation

7https://github.com/Skeftical/xaq-reproducibility/tree/master/Extended\
%20Version

set V . Overall, we observe high accuracy across all workloads
and aggregate functions. Meaning that our approximate ex-
planation function can explain most of the variation observed
by the true function. Figure 5(a) also shows the standard-
deviation for R2 within the evaluation set, which appears to
be minimal. Note that accuracy for COUNT is higher than for
AVG; this is expected as AVG fluctuates more than COUNT,
the latter being monotonically increasing. If the true function
is highly non-linear, the score for this metric deteriorates as
witnessed by the decreased accuracy for AVG. Hence, it should
be consulted with care for non-linear functions this is why we
also provide measurements for NRMSE. Also, it is important
to note that if the true function is constant, meaning the rate
of change is 0, then the score returned by R2 is 0. Thus, in
cases where such true functions exist, R2 should be avoided
as it would incorrectly label our approximation as inaccurate.
We have encountered many such true functions especially for
small radii in which no further change is detected.

As statistical measures for model fitness can be hard to
interpret, Figure 5(b) provides results for NRMSE when using
XAXA explanation (regression) functions for predictions to
AQ queries (avoiding accessing the DBMS). Overall, the
predictive accuracy is shown to be excellent for all combi-
nations of Gaussian-Uniform distributed workloads and for
both aggregate functions. Even for the worst-case workload
of DC(U), accuracy (NRMSE) is below 4% for AVG and
below 18% for COUNT. As such, an analyst can consult this
information to decide on whether to use the approximated
function for subsequent computation of AQs to gain speed,
instead of waiting idle for an AQ to finish execution.

C. Experimental Results: Efficiency and Scalability

1) XAXA is invariant to data size changes: XAXA remains
invariant to data size changes as shown in Figure 6 (b). Dataset
B1 was scaled up by increasing the number of data points
in B1 respecting the original distribution. As a reference we
show the time needed to compute aggregates for B1 using a
DBMS/Big Data engine.

2) Scalability of XAXA: We show that XAXA scales lin-
early with some minor fluctuations attributed to the inner
workings of the system and different libraries used. Evidently,
both Pre-Processing stage and Training stage do not require
more than a few minutes to complete. We note that Training
stage happens on-line, however we test the stage off-line to
demonstrate its scalability; results are shown in Figure 6(a).

IX. CONCLUSIONS

We have defined a novel class of explanations for Aggregate
Queries, which are of particular importance for exploratory an-
alytics. The proposed AQ explanations are succinct, assuming
the form of functions. As such, they convey rich information
to analysts about the queried data subspaces and as to how
the aggregate value depends on key parameters of the queried
space, helping to guide analysts in their further explorations.
Furthermore, they allow analysts to utilize these explanation
functions for their explorations without the need to issue more
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Fig. 6. Scalability of XAXA in terms of explanation time and data set size.

(potentially very) expensive queries to the DBMS. Thus, given
the importance of statistical analyses and exploratory analyt-
ics, these explanations can significantly empower in-DBMS
analytics for data exploration tasks. We have formulated the
problem of deriving AQ explanations as a joint optimization
problem and have provided novel statistical/machine learning
models for its solution. The proposed scheme for computing
explanations does not require DBMS data accesses (after
model training) ensuring efficiency and scalability.
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