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Abstract

We describe an approach to multivariate analysis, termed structured kernel principal component regression
(sKPCR), to identify associations in voxel-level connectomes using resting-state functional magnetic resonance
imaging (rsfMRI) data. This powerful and computationally efficient multivariate method can identify voxel -
phenotype associations based on the whole-brain connectivity pattern of voxels, and it can detect linear and
non-linear signals in both volume-based and surface-based rsfMRI data. For each voxel, sKPCR first extracts
low-dimensional signals from the spatially smoothed connectivities by structured kernel principal component
analysis, and then tests the voxel-phenotype associations by an adaptive regression model. The method’s power
is derived from appropriately modelling the spatial structure of the data when performing dimension reduc-
tion, and then adaptively choosing an optimal dimension for association testing using the adaptive regression
strategy. Simulations based on real connectome data have shown that sKPCR can accurately control the false-
positive rate and that it is more powerful than many state-of-the-art approaches, such as the connectivity-wise
generalized linear model (GLM) approach, multivariate distance matrix regression (MDMR), adaptive sum of
powered score (aSPU) test, and least-square kernel machine (LSKM). Moreover, since sKPCR can reduce the
computational cost of non-parametric permutation tests, its computation speed is much faster. To demonstrate
the utility of sKPCR for real data analysis, we have also compared sKPCR with the above methods based on the
identification of voxel-wise differences between schizophrenic patients and healthy controls in four independent
rsfMRI datasets. The results showed that sKPCR had better between-sites reproducibility and a larger propor-
tion of overlap with existing schizophrenia meta-analysis findings. Code for our approach can be downloaded
from https://github.com/weikanggong/sKPCR.

Keywords: multivariate analysis, structured kernel principal component regression, association study,
functional connectivity,

1. Introduction1

Functional connectivity analysis using resting-state functional magnetic resonance imaging (fMRI) data has2

become increasingly popular in the last few years (Smith et al., 2015; Finn et al., 2015), and the advances have led3

to many investigations of functional dysconnectivity between brain areas in neurodegenerative and psychiatric4

brain diseases (Gong and He, 2015; Romme et al., 2017). Voxel-based functional connectivity analysis has also5
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recently emerged (Cheng et al., 2015, 2016; Rolls et al., 2018; Satterthwaite et al., 2015; Kaczkurkin et al.,6

2017). However, designing methods to explore the associations between the whole-brain voxel-level connectome7

and phenotypes is a challenging task, and well-developed approaches are usually designed for parcellation-based8

or seed-based connectivity studies (Meskaldji et al., 2013; Bellec et al., 2015; Xia and He, 2017).9

The most popular method for functional connectivity analysis is the massive univariate generalized linear10

model (GLM) approach. This approach uses a GLM to test the association between each voxel-voxel connectivity11

and the phenotype of interest, and then corrects for multiple comparison (Cheng et al., 2015, 2016) by such12

methods as Bonferroni correction, false-discovery rate (Benjamini and Hochberg, 1995) and random field theory13

(Gong et al., 2018), to locate the significant signals. The major advantage of this approach is that it can14

provide the exact location of the signals. However, the large number of hypothesis tests require a stringent15

multiple correction threshold which usually decrease the power. In addition, univariate approach only tests the16

linear relationships between connectivities and phenotypes. Important higher-order information, such as the17

co-contribution of a set of functional connectivities and the non-linear associations, is usually ignored by this18

method.19

In recent years, many improvements over the univariate method have been proposed. These approaches20

usually adopt global association tests to achieve higher power. In other words, they test whether the signal21

is present somewhere in a set of functional connectivities rather than localizing it. We briefly review some22

of them here. First, in the brain-wide association study (BWAS) approach (Gong et al., 2018), the authors23

proposed to test whether the observed cluster size of the suprathreshold functional connectivities is larger than24

that by chance. The BWAS is a generalization of the traditional cluster-size inference approach (Friston et al.,25

1994) and popular network-based statistic (NBS) approach (Zalesky et al., 2010) to voxel-level connectivity26

studies. Second, the multivariate distance matrix regression (MDMR) (Shehzad et al., 2014) is an nonparametric27

multivariate approach, which directly tests the association between a phenotype of interest and a between-28

subject distance matrix estimated using the functional connectivity data. Third, in Pan et al. (2014); Kim et al.29

(2014, 2015), the authors proposed the adaptive sum of powered score (aSPU) test and its extensions. This30

approach first assigns a score to measure the association between a phenotype and an individual connection.31

It then combines all the individual scores into a summary statistic and uses a permutation test to access32

the significance. Other related approaches include (Simpson and Laurienti, 2015; Chen et al., 2015b; Fiecas33

et al., 2017; Meskaldji et al., 2015; Belilovsky et al., 2016). However, in the context of voxel-level connectivity34

analysis, the above approaches have three major drawbacks: First, they do not explicitly model the spatial35

structure of the voxel-level connectome, which is structurally and smoothly correlated. Therefore, as shown in36

our analysis, the unmodelled spatial noise usually decreases their power. Second, they use the computationally37

expensive nonparametric permutation to get voxel/connectivity-wise p-values. Third, they can only detect38

linear association signals, whereas important nonlinear signals may be missed.39

In this paper, we propose a novel multivariate approach specifically designed to detect associations in the40

voxel-level connectome and overcome the above mentioned drawbacks of previous methods. This approach,41

termed ‘structured kernel principal component regression’ (sKPCR), is specifically designed for the voxel-level42

connectome, and it can be applied to both volume-based and surface-based fMRI data. The sKPCR evaluates43

the simultaneous contribution of the whole-brain connectivities of each voxel to a phenotype of interest. We44

have designed this method to perform three steps: (1) extract important features from the data using a newly45

developed structured kernel principal component analysis (sKPCA) approach; (2) test the association between46

the low-dimensional features (principal components) and the phenotype of interest using an adaptive regression47

approach; and (3) control the voxel-wise family-wise error rate (FWER), using an efficient nonparametric48

permutation procedure. Methodologically, we make three contributions to the science of voxel-level connectome49

analysis. First, we developed sKPCA as the first step of sKPCR, which is an extension of the widely used50

principal component analysis (PCA) (Jolliffe, 2002) and probabilistic PCA methods (Tipping and Bishop,51

1999). However, unlike the PCA method, which assumes independent and identically distributed noise structure,52

sKPCA assumes a more realistic, spatially correlated noise structure among functional connectivities, leading53

to superior performance in dimension reduction. A nonlinear extension is also developed based on the idea54

of kernel principal component analysis (Schölkopf et al., 1997). Second, we proposed a new adaptive linear55

regression approach as the second step of sKPCR to test the association between a set of principal components56

and phenotypes of interest. The model can adaptively choose the optimal number of principal components,57
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and its performance is robust, even if many noise components are wrongly included in the model. Third,58

we developed a highly efficient permutation approach which can simultaneously estimate voxel-wise p-values59

and correct for multiple comparisons. Other attractive features of sKPCR include 1) applicability for both60

categorical (e.g., disease status) and continuous variables (e.g., IQ, symptom scores), as well as 2) covariate61

effects (e.g., age, gender, motion).62

The remainder of the paper is organized as follows. We begin by reviewing PCA and its probabilistic63

model. Next, we describe the details of sKPCR, including sKPCA and adaptive regression (see Figure 1 for a64

graphical overview). We then conduct comprehensive simulations to compare the proposed sKPCR approach65

with several state-of-the-art methods discussed above, such as the univariate approach, MDMR, aSPU, in terms66

of their false-positive rate, power of detecting signals and computation time. Finally, using four schizophrenia67

datasets, we evaluate and compare their between-sites reproducibility and the proportion of overlaps with68

existing schizophrenia meta-analysis findings. The code for our approach can be downloaded from https:69

//github.com/weikanggong/sKPCR.70

2. Method71

2.1. Structured kernel principal component analysis (sKPCA)72

2.1.1. Background: Principal component analysis and its probabilistic model73

Principal component analysis (PCA) is one of the most popular dimension reduction and feature extraction74

approaches (Jolliffe, 2002). It is usually defined as the orthogonal projection of a data matrix X ∈ Rp×n onto75

a low-dimensional space which maximizes the projection variance, where n is the number of subjects and p is76

the number of features. Specifically, suppose that X = (x1, x2, . . . , xn) has been centered to zero mean by rows.77

Let uj ∈ R1×p be a p-dimensional vector that projects each data point xi to a scalar value ti = ujxi, then78

t2i = (ujxi)
2 is proportional to the variance of the projection, and PCA seeks such uj that maximizes it. As an79

optimization problem, this can be written as:80

max
uj∈Rp

ujXX
τuτj

subject to uju
τ
j = 1, j = 1, 2, . . . , k

uju
τ
j′ = 0, ∀ j′ < j

(1)

This constrained optimization problem can be solved by an eigenvalue decomposition of the sample covariance81

matrix XXτ ∈ Rp×p, in which the first k principal components are exactly the first k eigenvectors U =82

(u1, u2, . . . , uk) of XXτ . When the number of features p is larger than the number of subjects n, note that we83

can equivalently perform an eigenvalue decomposition on XτX ∈ Rn×n. We can only extract a maximum of84

min(n, p) number of principal components.85

Probabilistic PCA reformulates PCA as the maximum likelihood solution of a probabilistic latent variable86

model (Tipping and Bishop, 1999; Bishop, 2006), which is closely related to factor analysis (Bartholomew87

and Knott, 1999; Bishop, 2006) and probabilistic canonical correlation analysis (Bach and Jordan, 2005). In88

probabilistic PCA, the generative model of the i-th data point xi ∈ Rp×1 of a data matrix X ∈ Rp×n is assumed89

to be a projection of latent variable zi ∈ Rk×1 using weight matrix W ∈ Rk×p plus isotropic Gaussian noises ε90

among features:91

zi ∼ N (0, I)

ε ∼ N (0, σ2I)

xi = W τzi + ε

(2)

To estimate the model parameter W , σ2 and latent variable matrix Z = (z1, z2, . . . , zn) ∈ Rk×n, Tipping92

and Bishop (1999) proposed to maximize the (complete-data) log likelihood with respect to the parameters:93

max
W,Z,σ2

log p(X,Z|W,σ2). They showed that the solution of the above maximum likelihood problem can be94
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obtained by using an expectation–maximization (EM) algorithm or in closed-form as:95

WMLE = U(Λ− σ2
MLEI)1/2

σ2
MLE =

1

p− k

p∑
j=k+1

λj

ZMLE =
(
WMLEW

τ
MLE + σ2

MLEI
)−1

WMLEX

(3)

where Λ ∈ Rk×k is a diagonal matrix, the diagonal elements of which are the first k eigenvalues of sample96

covariance matrix XXτ , i.e., λj , j = 1, 2, . . . , p, and U ∈ Rk×p is the corresponding eigenvectors.97

The equivalence between conventional PCA and probabilistic PCA can be seen from the closed-form solution,98

as demonstrated in Eq. (3). That is, when k → p, then σ2 → 0, the maximum-likelihood estimation (MLE)99

of latent variable ZMLE = (WMLEW
τ
MLE)

−1
WMLEX, which is an orthogonal projection of the data onto the100

latent space, enabling recovery of the standard PCA model (Tipping and Bishop, 1999; Bishop, 2006).101

From the probabilistic interpretation of PCA, we can see that the noise is assumed to be independent between102

features (and subjects). However, the assumption may break down when analyzing voxel-based functional103

connectivity data because the noise terms among the connectivities are spatially correlated. In addition, PCA104

can only perform linear dimension reduction and feature extraction, and many important non-linear factors may105

be missed by this method. Therefore, we propose a structured kernel principal component analysis (sKPCA)106

approach in the next section, which can model the spatial structure of the noise and extract both linear and107

non-linear features.108

2.1.2. Structured PCA109

We propose a framework for structured PCA (sPCA) in this section. It allows structured noise among110

features and subjects to be modelled. We first describe sPCA from a probabilistic perspective by modelling111

the noise as a multivariate Gaussian distribution, and then provide an efficient algorithm for estimating the112

principal components.113

To accomplish this, we first introduce the matrix normal distribution MNn,p(M,Q,R), which is a gener-114

alization of the multivariate normal distribution to matrix-valued random variables X ∈ Rp×n, the probability115

density function of which is: p(X|M,Q,R) =
exp[− 1

2 tr(Q
−1(X−M)τR−1(X−M))]

(2π)np/2|Q|n/2|R|p/2 , where M ∈ Rp×n is the mean,116

and R ∈ Rp×p and R ∈ Qn×n are the covariance matrix of the rows and columns of X. The connection between117

the matrix normal distribution and multivariate normal distribution is: vec(X) ∼ N (vec(M), Q
⊗
R), where118 ⊗

denotes the Kronecker product and vec denotes the vectorization M .119

We can represent probabilistic PCA using the matrix normal distribution as:120

X = W τZ + E; E∼MN p,n(0, σ2I, I) (4)

Here, both the rows (e.g. features) and columns (e.g. subjects) of the error matrix are assumed to be independent121

from each other. However, for neuroimaging data, errors among voxels/vertices are known to be smoothly122

correlated with each other. Therefore, our sPCA model is a generalization of the probabilistic PCA model,123

which allows two-way dependence between noise terms:124

X = W τZ + E; E∼MN p,n(0, R,Q) (5)

where W is the weight matrix and Z is the latent variable matrix in accordance with probabilistic PCA.125

In this model, the Q and R do not need to be estimated from the data; however, they do need to be126

prespecified based on the known topological structure of the data (see section 2.2 for details). Then, we can127
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still use the MLE approach to estimate the W and Z in (5):128

max
W,Z

logP (X,Z|W ) = max
W,Z

−1

2
tr
[
Q−1(X −W τZ)τR−1(X −W τZ)

]
− 1

2
tr(ZτZ) + Const

= max
W,Z

−1

2
tr
[
(R̃XQ̃− R̃W τZQ̃)τ (R̃XQ̃− R̃W τZQ̃)

]
− 1

2
tr(ZτZ) + Const

= max
W,Z

−1

2
tr
[
(X̃ − W̃ τ Z̃)τ (X̃ − W̃ τ Z̃)

]
− 1

2
tr(ZτZ) + Const

(6)

where we have decomposed Q−1 = Q̃Q̃τ and R−1 = R̃R̃τ , and X̃ = R̃XQ̃, W̃ = WR̃ and Z̃ = ZQ̃. Therefore,129

the sPCA problem (6) is equivalent to the standard PCA or probabilistic PCA problems using the ‘weighted’130

data matrix X̃ (Escoufier, 1977; Allen et al., 2014; Zhu et al., 2017), where the weights are learned from the131

external information, i.e., the spatial, temporal or population structures of data, as:132

max
uj∈R1×p

ujR
−1XQ−1XτR−1uτj

subject to ujR
−1uτj = 1, j = 1, 2, . . . , k

ujR
−1uτj′ = 0, ∀ j′ < j

(7)

Therefore, the principal components U (or W ) can be obtained by a simple eigenvalue decomposition on the133

matrix R−1XQ−1XτR−1 ∈ Rp×p, or when n < p, on the matrix Q−1XR−1XτQ−1 ∈ Rn×n.134

2.1.3. Structured kernel PCA135

The sPCA model can be further generalized to perform non-linear dimension reduction by using kernel136

tricks. Specifically, let x̃i be the i-th ‘weighted sample’, i.e., the i-th column of X̃ = R̃XQ̃, we first perform a137

non-linear mapping of the sample x̃i to the high dimensional feature space as x̃i → Φ(x̃i). Now, we assume that138

each Φ(x̃i) has been mean centered in the feature space and we will return to this point later. We can perform139

a PCA in the mapped high-dimensional feature space by maximizing the projected variance as:140

max
uj∈R1×n

ujΦ(X̃)τΦ(X̃)uτj , j = 1, 2, . . . , n (8)

Similar to the kernel principal component analysis (Schölkopf et al., 1997), the optimization problem (8) can
be solved by first performing a mean normalization of the kernel matrix K ∈ Rn×n, where Kij = Φ(x̃i)

τΦ(x̃j):
K̃ = K − InK −KIn + InKIn, where In is an n× n matrix in which each element takes the value 1/n. Then,
we solve the eigenvalue problem:

n−1K̃uτj = λuτj , j = 1, 2, . . . , n

and obtain n eigenvalues in a descending order as (λ1, . . . , λn) and the corresponding eigenvectors (u1, . . . , un).141

The k-th principal component is the k-th eigenvector uk.142

Similar to most other kernel-based approaches, all the computations can be expressed in the form of the kernel143

matrix. When using the linear kernel, the sKPCA is exactly the same as sPCA. In addition, for many commonly144

used kernels, we do not even need to estimate Q̃ and R̃. For example, we can calculate X∗ = QXRXτQ,145

and the polynomial kernel can be calculated as Kij = (aX∗ij + b)c, the sigmoid kernel can be calculated146

as Kij = tanh(aX∗ij + b), and the Gaussian kernel can be calculated as Kij = exp(−||x̃i − x̃j ||2/2σ2) =147

exp[−(X∗ii − 2X∗ij +X∗jj)/2σ
2].148

2.2. The choice of sKPCA parameters149

Many methods have been developed to determine the number of principal components for conventional150

PCA, such as the ratio estimator (Lam and Yao, 2012; Li et al., 2017), the information criteria approaches151

(Bai and Ng, 2002, 2007), the distribution-based approach (Choi et al., 2014) or just by the amount of variance152

explained (e.g., 90%). Although these methods can be easily extended to the current sKPCA framework, we153

have found that none of them works optimally in the subsequent association tests, which is our main goal in this154
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paper. Therefore, we developed a novel adaptive regression approach in the next section, in order to address155

the problem of selecting the number of principal components in the association study.156

Many possible choices are available for the covariance matrix (Allen et al., 2014; Ramsay, 2006), but we157

will introduce and compare just three in this paper. The first one is the Graph Laplacian (GL) operator,158

which has been widely used in Bayesian task-activation studies (Penny et al., 2005; Flandin and Penny, 2007;159

Sidén et al., 2017). It is also known as the inverse covariance operator (Allen et al., 2014; Ramsay, 2006).160

To define the GL operator G, we first define the feature-feature adjacency matrix A as a binary matrix such161

that aij = 1 if the spatial distance between feature i and j (i 6= j) equals one (or feature i and j are spatial162

neighbours) and aij = 0 otherwise. Based on A, we can define G as, for feature i and j, Gii =
∑
i 6=j aij and163

Gij = −aij if i 6= j. The second one is the normalized Graph Laplacian (NGL) operator G?. Based on A, it is164

defined as G?ii = 1 and G?ij = − 1√∑
i′ 6=i aii′

∑
j′ 6=j ajj′

if i 6= j. The third one is called the Gaussian random field165

operator. It assumes that the noise covariance between two features is a functional of their spatial distance:166

Σij = exp
(
− ||X·i−X·j ||22σ2

)
where ||X·i −X·j ||2 represents the spatial Euclidian distance between feature i and167

feature j in the volume space, and ||X·i −X·j ||2 can also be the geodesic distance in surface space. The σ can168

be specified based on the estimated Full Width at Half Maximum (FWHM) of the images using the relationship169

FWHM= 2
√

2 log 2σ ≈ 2.355σ. We will show that sKPCR is very stable for selecting different covariance170

operators and that the GL operator has a slightly higher power. Therefore, it is used in all our analyses.171

2.3. Structured kernel principal component regression (sKPCR) for identifying connectome-wide associations172

2.3.1. Overview173

We extend sKPCA to structured kernel principal component regression (sKPCR) to identify connectome-174

wide associations. In our study, the individual-level brain functional network is estimated by the Fisher’s Z175

transformed Pearson correlation coefficient between every pair of voxels’ BOLD signal time series. Let n be176

the number of subjects in a study, and p be the number of voxels; as such, the total number of functional177

connectivities in each individual’s brain network is p(p− 1)/2 and p− 1 functional connectivities connecting a178

voxel to all other voxels across the whole brain. Let Y ∈ Rn×1 be the phenotype of interest of n subjects (e.g.179

disease status, clinical symptoms) and Z ∈ Rn×q be the nuisance covariates (e.g. age, gender, motion terms).180

Our aim is to test, for each voxel, whether the phenotype of interest Y is associated with the voxel’s whole-brain181

functional connectivity pattern X ∈ Rn×(p−1), conditioned on the nuisance covariates Z. Since connectivity182

is of ultra-high dimensionality (e.g. for each voxel, there are 104 to 105 whole-brain functional connectivities,183

but only a few hundred samples), the basic idea of sKPCR is to (1) extract important low-dimensional features184

(principal components) in the data X by sKPCA, and then (2) test the association between the extracted185

principal components U = (u1, . . . , uk) and the phenotype of interest Y .186

2.3.2. An adaptive regression model187

To test associations, we propose a novel adaptive regression approach which can estimate a single p-value188

per voxel to summarize the overall significance of the association. Traditionally, we would manually select the189

top k principal components and then use a general linear model with F statistic for statistical testing. However,190

we found the pre-specification of k to be very difficult, and the top principal components may not always191

explain the phenotype of interest. Therefore, we proposed a new approach which is able to adaptively choose192

the optimal number of principal components to include in the model, one that is sufficiently robust to include193

noise components. The idea is similar to many other adaptive test approaches widely used in the neuroimaging194

(Kim et al., 2015) and genetics fields (Pan et al., 2014; Lee et al., 2012).195

In detail, let ri be the partial correlation between a principal component ui and a phenotype Y conditioned
on covariates Z, then we define a score Sk to measure the overall correlations between k(k = 1, 2, . . . ,K)
extracted components and the phenotype as:

Sk =

k∑
i=1

r2i

We can get a score vector S = (S1, S2, . . . , SK). Using a non-parametric permutation approach, we can get the
p-value of each score by permuting the phenotype Y and recalculating the ‘null’ score M times. That is, let Ỹ j
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be a randomly permuted phenotype in the j-th permutation. We first calculate the partial correlation between
Ỹ j and ui conditioned on covariates Z to get the permuted coefficient r̃ji . Then, as above, we calculate the
score as

S̃jk =

k∑
i=1

(
r̃ji

)2
With a total ofM permutations, we can get a vector of null score S̃k = (S̃1

k, S̃
2
k, . . . , S̃

M
k ). Therefore, the p-value

of score Sk can be estimated non-parametrically as:

pk =
#{S̃k > Sk}+ 1

M + 1

where #{A > a} denotes the number of times the elements in vector A is larger than a number a. After the196

above steps, we can get the p-values of the K scores S, denoting them as (p1, p2, . . . , pK). The above steps can197

be computationally very efficient by using a simple matrix computation strategy.198

Now, we define our test statistic as the smallest p-values in (p1, p2, . . . , pK):

TsKPCR = min(p1, p2, . . . , pK)

Note that TsKPCR is a not a p-value, because its null distribution is no longer subjected to a uniform distribution.
Therefore, its statistical significance should be estimated using non-parametric permutation again. However, it
is interesting to note that we do not need to run another set of permutations, but rather simultaneously estimate
the null distribution of TsKPCR using the above permutations, which have been used to calculate (p1, p2, . . . , pN ).
Specifically, the permutation empirical p-value of the k-th score in the j-th permutation is:

p̃jk =
#{S̃k > S̃jk}

M

Therefore, the most significant p-value across K scores in the j-th permutation is:

T̃ jsKPCR = min(p̃j1, p̃
j
2, . . . , p̃

j
K)

Thus, for all the M permutations, we get T̃sKPCR = (T̃ 1
sKPCR, T̃

2
sKPCR, . . . , T̃

M
sKPCR) Finally, the p-value of our

test statistic TsKPCR can be estimated as:

p(T̃sKPCR) =
#{T̃sKPCR > TsKPCR}+ 1

M + 1

Note also that this approach can provide an exact control of false-positive rate. However, for the general linear199

model approach, the p-value of a F -test or likelihood-ratio test may not provide a valid p-value when the number200

of components is comparable to the number of subjects (Sur et al., 2017).201

2.3.3. Multiple comparison correction202

After getting the voxel-wise p-values, we can use a nonparametric permutation approach (Nichols and203

Holmes, 2002) or false-discovery rate method (Benjamini and Hochberg, 1995) to perform multiple comparison204

correction. For permutation-based approaches, we can still use the same set of permutations above to perform205

topological inference, including peak-level inference (Worsley et al., 1996), cluster-size inference (Friston et al.,206

1994), cluster-mass inference (Zhang et al., 2009), and threshold-free cluster enhancement (Smith and Nichols,207

2009).208

3. Evaluating sKPCR using simulation studies: false-positive rate, power and robustness209

3.1. Data210

We use two resting-state fMRI datasets to evaluate different methods, including 281 subjects from the211

Southwest University (SWU) dataset in the International Data-sharing Initiative (IDNI, http://fcon_1000.212
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projects.nitrc.org/indi/retro/southwestuni_qiu_index.html), and 150 subjects from the Human Con-213

nectome Project (HCP_REST1_LR, https://www.humanconnectome.org/). All subjects were healthy adults214

with similar demographic information.215

The data from SWU were preprocessed using a standard volume-based fMRI pipeline (code can be down-216

load from https://github.com/weikanggong/Resting-state-fMRI-preprocessing). For each individual,217

the preprocessing steps include: slice timing correction (FSL slicetimer), motion correction (FSL mcflirt), spa-218

tial smoothing by a 3D Gaussian kernel (FWHM = 6 mm), despiking motion artifacts using the BrainWavelet219

Toolbox (Patel et al., 2014), registering to 4× 4× 4 mm3 standard space by first aligning the functional image220

to the individual T1 structural image using boundary based registration (Greve and Fischl, 2009), and then to221

standard space using FSL’s linear and non-linear registration tool (FSL flirt and fnirt), regressing out nuisance222

covariates including 12 head motion parameters (6 head motion parameters and their corresponding temporal223

derivatives), white matter signal, cerebrospinal fluid signal and global signal, band-pass filtering (0.01-0.1 Hz)224

using AFNI (3dTproject). All the images were manually checked to ensure successful preprocessing. Finally,225

14364 grey matter voxels located in each subject’s cerebrum were extracted for the subsequent analysis.226

The data from HCP-S900 were preprocessed using the fMRIsurface minimal preprocessing pipeline (Glasser227

et al., 2013; Smith et al., 2013). The basic steps included: correcting for spatial distortions caused by gradient228

nonlinearity, correcting for head motion by registration to the single band reference image, correcting for B0229

distortion, and registering to the T1w structural image. The global intensity was normalised. Then, independent230

component analysis (ICA) was run using MELODIC with automatic dimensionality estimation (Beckmann and231

Smith, 2004). These components were fed into FIX (Salimi-Khorshidi et al., 2014), which classified components232

into ‘good’ vs. ‘bad’. Bad components were removed from the data. From this resulting volume time-series,233

the data were mapped onto the standard 32k Conte69 cortical surface using the Multimodal Surface Matching234

approach (MSMAll pipeline (Robinson et al., 2014)). Finally, the Gaussian spatial smoothing was carried out235

on the cortical surface with a Full-Width at Half Maximum of 4 mm. In our analysis, BOLD time series of236

32492 cortical vertices from each subject’s left cortical surface were used.237

3.2. Type I error rate evaluation238

To evaluate whether the proposed sKPCR approach could control the type I error rate, we evaluated whether239

it had a nominal false-positive rate when comparing the connectome of two groups of healthy subjects with240

similar demographic information (Eklund et al., 2016). If a method can provide a valid control of type I error241

rate, the observed false-positive rate will be around its nominal level (e.g. 0.05). Specifically, first, a voxel242

was randomly selected, and functional connectivities between it and all other voxels across the whole brain243

were estimated for every subject. Second, subjects were randomly divided into two groups, and sKPCR with244

5 different types of kernel was then applied to test whether this voxel showed differences between the two245

randomly assigned groups. This step resulted in one p-value for sKPCR per kernel. Third, the above two steps246

were repeated for 1000 times, and the observed false-positive rate was estimated as the proportion of times247

the p-value was below 0.05. Some commonly used kernels we evaluated here were a linear kernel, polynomial248

kernel with degree 2,3,4,5 and a Gaussian kernel with σ parameter equaling the middle of the Euclidian distance249

among data points (Brown et al., 2000).250

3.3. Comparing the statistical power of detecting linear signals with other methods251

In this simulation, we considered methods for detecting linear signals. We compared the linear sKPCR with252

5 other approaches, including a connectivity-wise general linear model (GLM) approach controlling the family-253

wise error rate (i.e., SPU(Inf) approach (Kim et al., 2014)); multivariate distance matrix regression (MDMR)254

(Shehzad et al., 2014); and adaptive sum of powered score (aSPU) and extensions (i.e., SPU(1), SPU(2), aSPU255

(Kim et al., 2014)). All of these approaches can produce voxel-wise p-value maps based on the rsfMRI data. A256

brief description of these methods and their parameter settings are shown in the Supplementary Material.257

In our simulation, first, one voxel was randomly selected, and functional connectivities between it and all258

other voxels across the whole brain were estimated for every subject, and they were normalized to zero mean unit259

variance. Second, signals were then randomly added to a subset of functional connectivities (proportion of null260

functional connectivity ρ). For linear signals, we simulated a phenotype of interest y which was linearly correlated261
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with some functional connectivities x. This was achieved by first simulating new functional connectivities as262

xnew = γy + x, and then normalizing them again to zero mean unit variance. The signal-to-noise ratio γ2,263

which was defined as the ratio of signal variance and noise variance, varied from 0 (no signal) to 0.25 in our264

simulation. Each method was then applied to test whether the overall connectivity pattern was associated with265

the signal y. Third, the above two steps were repeated 1000 times, and the empirical power was estimated by266

the proportion of times the p-value was below 0.05.267

3.4. Comparing the statistical power of detecting nonlinear signals with other methods268

For non-linear signals, we compared our approach with 2 other methods, including kernel principal compo-269

nent regression (KPCR) (Schölkopf et al., 1997) and least-squares kernel machine (LSKM) (Liu et al., 2007; Ge270

et al., 2012). A brief description of these methods and their parameter settings are shown in the Supplementary271

Material.272

This simulation is similar to the above one. The only difference is the way of generating the nonlinear273

signals. This was achieved by simulating new functional connectivities xnew as xnew = γyd + x where d is274

the polynomial degree. Theoretically, therefore, methods using a polynomial kernel with corresponding degree275

should achieve the highest power.276

3.5. The robustness of sKPCR when the kernel is misspecified277

To evaluate whether sKPCR is robust when the kernel was misspecified, we also used sKPCR, KPCR and278

LSKM with linear kernels for signal detection. The simulation procedures were exactly the same as those279

described in Section 3.4, but we used the wrong kernels to detect signals.280

3.6. The robustness of sKPCR when the number of principal components are misspecified281

As illustrated in section 2.3, the proposed adaptive regression approach, which was used to detect association282

after sKPCA dimension reduction, was robust to the misspecification of number of principle components. To283

demonstrate this, we conducted a simulation study to compare it with the traditional general linear model284

approach.285

We assumed a total of 200 subjects and we totally extracted 100 principal components. As the components286

are not correlated with each other, we first simulated independent Gaussian white noise data, which formed287

a 200 × 100 matrix X. The first 10 components were assumed to be correlated with a phenotype y, and the288

11-th to 100-th components were assumed to be noise components. Therefore, we added βy to the first 10289

components, where β could be treated as the effect size. In our experiment, β = 0, 0.03, 0.06, 0.09, 0.12, 0.15.290

We tested the association between the first i columns of X and y using either the adaptive regression or the291

linear regression model with the F statistic. The above procedures were repeated 1000 times for different effect292

sizes and numbers of components. We compared the power of the two methods when the number of principal293

components were misspecified by adding more noise components to the model.294

3.7. The robustness of sKPCR under different covariance operators295

Following the same simulation procedures as those detailed in section 3.3, we compared the power of linear296

sKPCR when using different covariance operators. The covariance operators we tested included GL, NGL ,297

Gaussian with σ2 = 2, 4, 6 voxels (Gaussian (2), Gaussian (4), Gaussian (6)).298

4. Evaluating sKPCR in real data: brain-wide associations of the schizophrenic connectome299

4.1. Data300

Four resting-state fMRI datasets were used here: Taiwan, Centers of Biomedical Research Excellence (CO-301

BRE http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html), BrainGluSchi (http://schizconnect.302

org/), and NMorphCH (http://schizconnect.org/). All of them are datasets with schizophrenia patients303

and matched healthy controls. The demographic information is shown in Table 1. Resting-state fMRI data were304

preprocessed using the same pipeline as the SWU dataset (code can be download from https://github.com/305

weikanggong/Resting-state-fMRI-preprocessing). Finally, 18757 voxels located in each subject’s cerebral306

regions were extracted for the subsequent analysis.307
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4.2. Between-sites reproducibility308

We applied sKPCR with a linear kernel to identify voxels with significantly altered connectivities in each
schizophrenia dataset separately. At the same time, five other methods, including the univariate approach,
MDMR, SPU(1), SPU(2) and aSPU, were used for comparison. To compare the between-sites reproducibility of
each method, they were applied to analyze the four schizophrenia datasets separately, and the Dice Coefficient
(DC) between the resulting voxel-wise p-value maps of two sites was calculated. DC is defined as

DC =
2|E1 ∩ E2|
|E1|+ |E2|

where |Ei| is the number of significant voxels in the i-th experiment. We will mainly report the DC with309

p = 0.001 as the voxel-wise significance threshold, as it is widely used (Woo et al., 2014). We expect that a310

better approach has a larger overlap.311

4.3. Evidence from the literature: overlaps with existing meta-analysis findings312

We also evaluated whether the above results were consistent with existing meta-analysis findings reported313

in the Neurosynth database (Yarkoni et al., 2011). We searched for the term ‘schizophrenia’ on the Neurosynth314

website (http://neurosynth.org/analyses/terms/schizophrenia/), and downloaded the default forward315

inference map (FDR<0.01). We calculated the DC between the p-value map of each approach in each dataset316

and the Neurosynth schizophrenia forward inference map. We will mainly report the DC with p = 0.001 as the317

voxel-wise significance threshold, as it is widely used (Woo et al., 2014).318

5. Results319

5.1. Evaluating sKPCR using simulation studies320

5.1.1. Type I error rate evaluation321

We first evaluate whether sKPCR could control the type I error rate using different kernels in different322

types of data. We simulated a case-control study in the absence of any group difference (see Section 3.2), and323

sKPCR was applied to detect signals. The results show that the proposed approach can control the false-positive324

rate appropriately using a wide range of kernels (linear, polynomial and Gaussian) in both volume-based and325

surface-based fMRI data (Figure 2), because the observed false-positive rates are similar to their theoretical326

nominal level at 0.05.327

5.1.2. Comparing the statistical power of detecting linear signals with other methods328

Figure 3 shows the results of comparing the power of different methods when the true signal is linear, i.e.329

some functional connectivities are linearly correlated with a simulated phenotype of interest in volume-based330

fMRI data (see Section 3.3). Similarly, Figure 4 shows the results of the same simulation using surface-based331

fMRI data.332

For both volume-based and surface-based data, it can be clearly seen that the proposed sKPCR method333

with a linear kernel always has the highest power in different situations (different signal-to-noise ratios and334

proportions of non-null connectivities). The univariate approach and aSPU have similar power in different335

situations. The performance of MDMR and SPU(2) are similar to that of aSPU and the univariate method336

when the number of non-null functional connectivities is large (e.g., 20% non-null). However, the power of337

MDMR and SPU(2) decreases dramatically when only a few non-null connectivities exist (e.g., 1% non-null).338

SPU(1) performs the worst in these simulations. In addition, the power of sKPCR displays a larger gap with339

other approaches in surface-based fMRI data compared to volume-based fMRI data.340

To get a more intuitive understanding of why sKPCR had a better performance, we simulated a case-control341

study with some of the functional connectivities in one group having a higher mean than another group with the342

same strategies as the above simulation. We applied sKPCA with a linear kernel and PCA to the simulated data343

and extracted the top 4 principal components. For each method, we plotted each pair of principal components344

in a 2D figure and used different colors to distinguish the two groups. As can be clearly observed from Figure 5,345

sKPCA (top row) has much better performance because the case and control groups are better separated than346

with PCA dimension reduction (bottom row).347
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5.1.3. Comparing the statistical power of detecting nonlinear signals with other methods348

Figure 6 shows the results of comparing the power of different methods when the true signal is nonlinear,349

i.e. a subset of functional connectivities are nonlinearly correlated with a simulated phenotype of interest in350

volume-based fMRI data (see Section 3.4). Similarly, Figure 7 reports the results of the same simulation using351

surface-based fMRI data.352

For both volume-based and surface-based data, it can be clearly seen that the proposed sKPCR method353

with a nonlinear polynomial or linear kernel always has the highest power in different situations (different354

signal-to-noise ratios and polynomial degrees). When the polynomial degree is an even number, sKPCR with a355

corresponding polynomial kernel outperforms all other approaches, but when the polynomial degree is an odd356

number, sKPCR with a corresponding polynomial kernel and linear kernel have the similar high power. This is357

because the polynomial signals with odd degree are quite similar to linear signals (e.g., consider y = x3 + ε and358

y = x+ ε).359

5.1.4. The performance of sKPCR when the kernel is misspecified360

Again, when the true signals are nonlinear, we can see from Figure 6 and Figure 7 that methods using a361

linear kernel usually have decreased power compared with the corresponding nonlinear kernel. This highlights362

the importance of specifying correct kernels in the analysis to achieve optimal power. However, this does not363

mean that our method is sensitive to the choice of kernels. In practice, we can run sKPCR with different364

kernels, and for each kernel, we will get a voxel-wise p-value map which reflects the strength of different types365

of association signals. In addition, although the power of sKPCR with a linear kernel decreases when the366

true signals are nonlinear, we can see that it is still higher than many other approaches, even with the correct367

nonlinear kernels. This may result from its effective modelling of the spatial structure of the data.368

5.1.5. The robustness of sKPCR when the number of principal components are misspecified369

Figure 8 shows the results of a power comparison between adaptive regression and the general linear model370

in association testing with different numbers of noise components and signal-to-noise ratios (see Section 3.6).371

It can be seen that adaptive regression is robust to the miss-specification of components because its power does372

not change much, even when an increasing number of noise components are added to the model. However, the373

power of the general linear model decreased dramatically when an increasing number of noise components are374

included in the model.375

5.1.6. The stability of sKPCR under different covariance operators376

Figure 9 shows that the power of sKPCR using different covariance operators under different signal-to-noise377

ratios and different proportions of null functional connectivities (see Section 3.7). We find that its power is378

similar across three different covariance operators and operator parameters. The GL operator has a slightly379

higher power, so we used it throughout our simulations and real data analysis.380

5.2. Evaluating sKPCR in real data: brain-wide associations of the schizophrenic connectome381

5.2.1. Between-sites reproducibility382

Table 2 shows the results of comparing the between-sites reproducibility of different approaches (see Section383

4.2). In five of the six comparisons, our sKPCR approach with a linear kernel achieved the highest between-site384

reproducibility values, as measured by DC. Only the univariate approach outperformed our method in one385

comparison. The voxel-wise p-value map of sKPCR in four datasets is shown in Figures S1 to S4, and the386

corresponding results with global signal regression are shown in Figures S6 to S9, which were very similar to387

the results without global signal regression.388

5.2.2. Literature evidence: overlaps with existing meta-analysis findings389

Table 3 shows the results of comparing the overlap of the findings with the new method with existing meta-390

analysis findings in the Neurosynth database (see Section 4.3). Our sKPCR method with a linear kernel has391

the highest overlap with existing findings in the literature. The schizophrenia meta-analysis map is shown in392

Supplementary Figure S5.393
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5.2.3. Computation time394

Finally, we compare the computation time of sKPCR, MDMR and aSPU in the above analyses. All the395

analyses were implemented in MATLAB 2016b using 20 cores on a Linux workstation with Intel Xeon E5-2660396

v3(2.60GHz) CPU and 128 GB memory. Table 4 shows that our method is the most efficient.397

6. Discussion398

The sKPCR described in this paper is a powerful and efficient multivariate approach for voxel-level connectome-399

wide association studies. It can identify voxels, the overall connectivity pattern of which, as summarised by400

sKPCA as low-dimensional features, correlates with the phenotypes of interest. The idea behind sKPCR sim-401

ply involves reducing the dimensionality of the connectivity features and then performing association studies.402

However, we went further and carefully refined these two steps, aiming to extract more information from the403

fMRI data. Specifically, sKPCR models the spatial noise structure in the dimension reduction step and auto-404

matically selects an optimal number of principal components in the association testing steps. In our simulation,405

we demonstrated that sKPCR usually had the highest power in both volume-based and surface-based fMRI406

data for both linear and nonlinear signals. In real data analysis, we showed that sKPCR usually had better407

between-sites reproducibility, larger overlap with existing findings, and faster computation speed.408

A voxel/vertex identified by this approach can be interpreted as ‘there may exist one or more functional409

connectivities which connect it that are associated with the phenotype of interest’. To know the associated410

connections, a subsequent seed-based analysis can be performed. That is, we can extract a seed time series411

by averaging the voxel/vertex’s time series within a significant cluster and test the associations between the412

seed connectivity map and a phenotype of interest. However, no significant individual connections in the seed-413

based analysis may be found because our approach can detect more than simple linear association signals. For414

example, consider a scenario in which many of the connections only have small effect sizes. In addition, as our415

approach can produce a voxel-wise statistical map, but not a connectivity-wise result, it can be directly compared416

with results of other analyses, such as task-activation studies, voxel-based morphometry (VBM) analysis, and417

Neurosynth meta-analysis results, even though our results do not reflect the direction of the association.418

Additional areas can be refined. First, the method currently can only analyse binary and continuous phe-419

notype variables. However, it could be extended to analyse categorical and multivariate phenotypes. Second, a420

sparse version of sKPCA, which allows only a subset of functional connectivities related to a principal compo-421

nent, may further improve the performance of dimension reduction, just like sparse PCA (Witten et al., 2009)422

improves PCA. Third, with the larger size of the available datasets, such as HCP and the UK-Biobank, an423

online version of sKPCA should be an important extension because it is not currently possible to fit thousands424

of high-resolution fMRI data into memory. However, sKPCR could be equipped to analyse big datasets by425

borrowing ideas from the online/group PCA approach (Smith et al., 2014) and other related variants (Monti426

and Hyvärinen, 2018; Chen et al., 2015a). Fourth, it would also be very interesting to extend sKPCR to in-427

fer causal relationships (Tran and Blei, 2017). Finally, the current sKPCR method is designed for single-site428

studies. However, combining the sKPCR results from multiple imaging sites is an important issue for the fu-429

ture. Possible methods include conventional meta-analysis methods and the model-based site-effect adjustment430

methods, such as ComBat (Johnson et al., 2007).431
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Step two: reducing the dimension of the connectivity map using sKPCA

Subjects

(independent)

Connectivity map

(spatially correlated)

𝑿 = 𝑾𝒁+ 𝑬
𝑿 : connectivity map.

Z : structured principal components.

𝑾: loading matrix.

𝑬 : noise (independent across subjects, correlated among connectivities).

Subjects

Structured principal

components

𝑿

······

For each voxel

Step one: estimating the voxel’s whole-brain connectivity map in all subjects

Subject 1 Subject 2 Subject 3 Subject n-1 Subject n

Step three: testing the association between principal components and phenotype of interests using adaptive regression

First, for each principal components 𝒛𝒊, we 

calculate its partial correlation with the 

phenotype of interests 𝒀, conditioned on the 

nuisance covariates P:

𝒓𝒊 = 𝒑𝒂𝒓𝒕𝒊𝒂𝒍𝒄𝒐𝒓𝒓(𝒛𝒊, 𝒀, 𝑷)

Step four: multiple comparison correction across voxels

Thresholding (e.g. cluster-size, TFCE)

𝒁

Then, we calculate the sum of square correlation 

from the first PC to the k-th PC (k=1,…,n):

𝑺𝒌 = 

𝒊=𝟏

𝒌

𝒓𝒊
𝟐

Permutation test is used to get the p-value of each 

𝑺𝒌: (𝒑𝟏, … , 𝒑𝒏)

Finally, the test statistics is:

𝒑𝒔𝑲𝑷𝑪𝑹 = 𝒎𝒊𝒏(𝒑𝟏, … , 𝒑𝒏)
The same permutation test is then used to 

get the p-value of 𝒑𝒔𝑲𝑷𝑪𝑹.

This bypasses the need of selecting the 

number of principal components.

Estimating its 

whole-brain FC map

Voxel-wise p-value map Significant clusters with different functional connectivities

Figure 1: An overview of the structured kernel principal component regression (sKPCR) in a voxel-level connectome-wide association
study. First, for each voxel and each subject, the whole-brain functional connectivity map is computed. Second, a dimension
reduction technique, termed structured kernel principal component analysis (sKPCA), is applied to extract important features in
this connectivity map, which utilizes the spatial information of functional connectivities. Third, an adaptive regression is fitted to
test the association between a phenotype of interest and principal components of this voxel, which automatically selects the optimal
number of components. Finally, voxel-wise multiple correction is performed to identify significant clusters.
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Figure 2: Type I error rate of structured kernel principal component regression (sKPCR) estimated in the volume-based and surface-
based fMRI data using different kernels (linear, 2,3,4,5-degree polynomial and Gaussian). The results show that the method can
control the type I error rate at its nominal level (approximately 5%, dashed red line).
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Figure 3: Comparisons of the power of detecting linear signals with different methods using simulations in volume-based fMRI data.
In this simulation, some functional connectivities were simulated to linearly correlated with a phenotype of interest. Each figure
plots the power curves of 6 different methods with different signal-to-noise ratios (0 to 0.25) and with different null connectivity
proportions (0.8 to 0.99). The results show that the proposed sKPCR approach with a linear kernel has the highest power.
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Figure 4: Comparisons of the power of detecting linear signals with different methods using simulations in surface-based fMRI data.
In this simulation, some functional connectivities were simulated to linearly correlated with a phenotype of interest. Each figure
plots the power curves of 6 different methods with different signal-to-noise ratio (0 to 0.25) and with different null connectivity
proportions (0.8 to 0.99). The results show that the proposed sKPCR approach with a linear kernel has the highest power.
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Figure 5: An illustrative example of comparing structured kernel principal component analysis (sKPCA), which takes connectivity
structure into account, with the original principal component regression (PCA) using simulated connectivity data. In this simulation,
some functional connectivities connecting one voxel to other voxels in the brain were simulated to be higher in one group compared
to another group. We applied these two methods to this dataset to learn the first 4 principal components. The top row shows the
scatter plots of each pair of PCs in the two groups (blue and red) using sKPCA, while the bottom row shows the results for PCA.

20



0 0.05 0.1 0.15 0.2 0.25

Signal-to-noise Ratio

0

0.2

0.4

0.6

0.8

1

Po
w

er

 Polynomial degree = 2
sKPCR-nonlinear
KPCR-nonlinear
LSKM-nonlinear
sKPCR-linear
KPCR-linear
LSKM-linear

0 0.05 0.1 0.15 0.2 0.25

Signal-to-noise Ratio

0

0.2

0.4

0.6

0.8

1

Po
w

er

 Polynomial degree = 3

0 0.05 0.1 0.15 0.2 0.25

Signal-to-noise Ratio

0

0.2

0.4

0.6

0.8

1

Po
w

er

 Polynomial degree = 4

0 0.05 0.1 0.15 0.2 0.25

Signal-to-noise Ratio

0

0.2

0.4

0.6

0.8

1

Po
w

er

 Polynomial degree = 5

0 0.05 0.1 0.15 0.2 0.25

Signal-to-noise Ratio

0

0.2

0.4

0.6

0.8

1

Po
w

er

 Polynomial degree = 6

Volume-based fMRI with non-linear signal (polynomial relationship)

0 0.05 0.1 0.15 0.2 0.25

Signal-to-noise Ratio

0

0.2

0.4

0.6

0.8

1

Po
w

er

 Polynomial degree = 7

Figure 6: Comparisons of the power of detecting nonlinear signals with different methods using simulations in volume-based fMRI
data. In this simulation, polynomial (nonlinear) relationships were simulated to exist between some functional connectivities and a
phenotype of interest with polynomial degree ranging from 2 to 7 in each figure (e.g. y = xd, where y is a phenotype of interest, x is
a functional connectivity and d = 2, . . . , 7). Each figure plots the power curves of 3 different methods (sKPCR, KPCR and LSKM)
with 2 different kernels (polynomial kernel and linear kernel) under different signal-to-noise ratios (0 to 0.25) and null connectivity
proportion of 0.9.
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Figure 7: Comparisons of the power of detecting nonlinear signals with different methods using simulations in surface-based fMRI
data. In this simulation, polynomial (nonlinear) relationships were simulated to exist between some functional connectivities and
a phenotype of interest, with polynomial degree ranging from 2 to 7 in each figure (e.g. y = xd, where y is a phenotype of interest,
x is a functional connectivity and d = 2, . . . , 7). Each figure plots the power curves of 3 different methods (sKPCR, KPCR and
LSKM) with 2 different kernels (a polynomial kernel and a linear kernel) under different signal-to-noise ratio (0 to 0.25) and a null
connectivity proportion of 0.9.
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Figure 8: A simulated example to demonstrate the power benefits of adaptive regression compared to the traditional general linear
model F test. In the absence of a signal (no PCs correlate with phenotypes of interest, top left figure), both approaches can control
the type one error rate accurately, i.e., power = α ≈ 5%. When signals exist and the number of noise PCs increases, however, the
power of the adaptive regression approach is stable, which means that it is sufficiently robust with respect to the selection of the
number of PCs, while the power of the traditional general linear model decreases dramatically. When the number of noise PCs is
small, it should be noted that adaptive regression has a somewhat lower power than the traditional general linear model.
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Figure 9: The power of linear sKPCR with different covariance operators under different signal-to-noise ratio (0 to 0.25) and
proportions of null functional connectivities (0.8 to 0.99). The covariance operators evaluated here are: Graph Laplacian (GL),
Normalized Graph Laplacian (NGL), and Gaussian with σ2 = 2, 4, 6 (Gaussian (2), Gaussian (4), Gaussian (6)).
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Table 1: Demographic information of subjects used in simulations (Southwest University and Human Connectome Project datasets)
and real data analysis (4 schizophrenia datasets: COBRE, Taiwan, NMorphCH and BrainGluSchi).

Dataset Group # Subjects Age (mean ± std) Gender (M/F) mean FD

Southwest University Control 281 19.7±0.85 0/281 0.09±0.03
HCP Control 150 28.8±3.71 64/86 0.08±0.02

Control 72 35.6±11.7 50/22 0.21±0.11
COBRE Patient 58 36.7±13.5 49/9 0.24±0.11

Statistic (p-value) 0.61 0.07 0.07

Control 136 44.1±12.0 57/79 0.11±0.05
Taiwan Patient 123 44.0±11.3 51/72 0.10±0.07

Statistic (p-value) 0.79 1 0.66

Control 39 30.6±8.1 19/20 0.13±0.07
NMorphCH Patient 42 32.8±6.9 30/12 0.18±0.11

Statistic (p-value) 0.20 0.04 0.01

Control 76 38.7±12.4 49/27 0.23±0.11
BrainGluSchi Patient 60 34.5±13.6 55/5 0.21±0.11

Statistic (p-value) 0.06 1.9e-4 0.54
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Table 2: Comparing the between-sites reproducibility of different approaches in 4 schizophrenia datasets using the Dice Coefficient
(DC), with voxel-wise p-value threshold of 0.001 and permutation-based cluster-size FWER correction.

Sites sKPCR MDMR SPU(1) SPU(2) Univariate aSPU

COBRE & Taiwan 42% 24% 9% 19% 13% 22%
COBRE & NMorphCH 12% 14% 3% 4% 20% 14%
COBRE & BrainGluSchi 16% 9% 2% 0.3% 0% 1%
Taiwan & NMorphCH 10% 8% 2% 2% 9% 7%
Taiwan & BrainGluSchi 13% 7% 2% 0.2% 1% 1%
NMorphCH & BrainGluSchi 7% 4% 0% 0% 0.7% 0.5%
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Table 3: Comparing the schizophrenia findings with different approaches with existing meta-analysis results (Neurosynth
‘schizophrenia’ term) in 4 datasets. The Dice Coefficient (DC) is used to quantify the proportion of overlap. The schizophre-
nia findings are thresholded using a voxel-wise p-value of 0.001 and permutation-based cluster-size FWER correction. The
Neurosynth ‘schizophrenia’ forward inference map is thresholded using FDR=0.01 (the default setting in the database (http:
//neurosynth.org/analyses/terms/schizophrenia/).

Sites sKPCR MDMR SPU(1) SPU(2) Univariate aSPU

COBRE 39% 30% 10% 12% 5% 14%
Taiwan 69% 56% 5% 34% 26% 37%
NMorphCH 8% 7% 0.3% 1% 3% 3%
BrainGluSchi 11% 1% 2% 0.1% 0.4% 1%
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Table 4: Computation time of different methods when analyzing different real datasets with an optimized software implementation
in MATLAB (number of permutations = 2000, number of cores = 20).

Datasets COBRE Taiwan NMorphCH BrainGluSchi

sKPCR 0.5h 1.2h 0.3h 0.5h
MDMR 1.0h 4.3h 0.4h 1.0h
aSPU 7.8h 9.4h 7.7h 7.8h
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