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This Supplemental Material contains technical details that are complementary to the Letter. We
discuss (i) the molecular dynamics simulation details and initial conditions, (ii) thermal fluctuations
on liquid surfaces, (iii) the probable region of the onset of coalescence, (iv) bridge growth in the
thermal regime, (v) calculations of thermal fluctuations on the surface of a thin cylinder, and (vi)
the role of van der Waals interactions between the droplets.

SIMULATION DETAILS AND INITIAL
CONDITIONS

Molecular dynamics (MD) simulations [1] of 3D and
quasi 2D water droplets are performed in order to study
the very early stages of droplet coalescence. MD is a par-
ticle based simulation tool in which the time evolution of

a set of interacting particles is carried out by integrating
their equations of motion: ~Fj = mj~aj . Here ~Fj is the net
force on an atom j whose mass is mj and acceleration
is ~aj . The force on any atom is the negative gradient
of its potential energy function. In our systems, the ef-
fective potential between any two atoms, j and k is a
combination of the shifted Lennard-Jones potential and
electrostatic Coulombic interaction, given by
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where εjk is the van der Waals interaction energy between
the atoms, σjk is the length parameter, rjk is the distance
between the atoms, qj is the charge on atom j, ε0 is the
permittivity of the vacuum, and rc=1.3 nm is the cut-off
distance used. This value of rc is typical in the literature
for liquid-vapour systems [2]. Using a cut-off means that
our description of interactions between the droplets is not
fully correct at distances above rc, as only Coulombic in-
teractions are present. However, we argue in the final
section of this Supplemental Material that this value is
adequate for our purposes. Our studies are performed
in a periodic box of size at least 4 times the diameter of
the droplet in two directions. For quasi 2D droplets, the
thickness of the box (L = 4.3 nm) is kept slightly larger
than 3rc so that a molecule will not interact with its own
periodic image. Such a system essentially represents a
particular section of a spherical droplet. Previous stud-
ies have shown that cylindrical droplets can qualitatively
represent coalescence of spheres [3, 4]. The smallest di-
ameter of the cylindrical droplets considered is 22.2 nm.

The TIP4P/2005 [5] model of the water with long-
range Coulombic interactions (evaluated using the
PPPM technique) is used in all our simulations. This is a
rigid water model with 4 sites: one oxygen, two hydrogen
and a massless site located below the oxygen along the
HOH angular bisector. All simulations are performed in

LAMMPS [6].

We begin the simulations by constructing a droplet; for
the quasi 2D case a cylindrical water droplet of radius R
is initialised with molecules that are randomly arranged,
and an energy minimization is performed. Initial veloci-
ties corresponding to an absolute temperature of 300 K
and zero net velocity of the entire droplet are assigned
to every atom sampled from a Maxwell-Boltzmann dis-
tribution. The droplet is then equilibrated for ∼1000
ps, keeping the temperature constant using a Berendsen
thermostat. The time step employed in our simulations
is 0.002 ps. After equilibration, the thermostat is turned
off, and the positions and velocities of all molecules are
recorded at regular intervals of 4 ps for a further 2000 ps
and the droplet radius is then determined (Fig. 1).

In order to generate the initial configuration of two
droplets, to study their coalescence, two frames are taken
from the above simulation, which are well separated in
time (by at least 1000 ps) so that they can be consid-
ered as two independent droplets. Both droplets are then
placed in a single simulation domain such that the min-
imum distance between the surfaces of the droplets is
roughly the cut-off distance rc. Again, we argue be-
low that this initial distance is adequate, as only the
later stages of approach are of importance. An initial
droplet velocity of ±1 m/s towards each other is given to
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both droplets. A similar methodology is also employed in
studying the coalescence of 3D droplets. No thermostat
is applied during the coalescence process.

During coalescence, all relevant physical data are
stored every 0.04 ps. In order to identify the location
of the bridge connecting the two droplets at any instant
during coalescence, we divided the entire domain into
square bins of length 0.25 nm and averaged the density
in every bin for 0.8 ps. Then the bins whose density cor-
responds to the average of the combined liquid and vapor
densities are identified as equimolar points and are used
to identify the droplet interface and locate the position
of the bridge between the droplets. By comparing Figs.
2(a) and 2(b), it can be seen that our code accurately
resolves the free surface shape of the droplet.

THERMAL FLUCTUATIONS ON LIQUID
SURFACES

The actual shape of a droplet is composed of a mean
profile (circular in quasi 2D and spherical in 3D) and
a fluctuating part caused by the thermal noise of the
molecules at the interface. In Fig. 1, we show the equimo-
lar points for the long-time averaged profile of a quasi 2D
droplet of radius 11.1 nm, where the local density is the
average of the liquid and vapor densities. The structure
of the same droplet at a particular instant and the cor-
responding equimolar points are shown in Figs. 2(a) and
2(b), respectively. Due to the presence of the thermal
capillary waves, at any given instant the interface devi-
ates significantly from the mean profile. However, these
fluctuations smooth out if the profile is averaged over a
long period of time.

While thermal capillary waves increase the surface area
of the droplet, the surface tension will act to reduce it.
Capillary waves cause the interface to oscillate and can
be represented by a sum of modes that are orthogonal to
each other. For a large enough droplet, the fluctuations
are small compared to the droplet size so the problem is
linear; as a result, the oscillation of any interfacial point
in the radial direction is distributed normally about its
mean location. Figure 3 shows the probability distribu-
tion, G(r), of the location of a particular interfacial point
on a cylindrical droplet of radius R=11.1 nm and a fitted
normal distribution.

For a planar interface, the capillary wave modes are
plane waves characterized by a wave number q. From
Fourier analysis [7, 8], the mean-square magnitude of the
oscillation of the surface in the absence of an external
field can be shown to be

〈ζ2〉pl =
kBT

2πγ
ln

(
qmax

qmin

)
, (2)

and the square-root of this equation is the standard de-
viation of the normally distributed oscillation of an in-
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FIG. 1. Equimolar points and the mean surface for a long-
time averaged droplet profile (R = 11.1 nm).
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FIG. 2. (a) The structure of a quasi 2D droplet at an instant
(R = 11.1 nm). Red spheres are oxygen and white ones are
hydrogen atoms. (b) Equimolar points corresponding to (a)
and the mean circle. At a particular instant, the profile is
significantly different from the mean circular profile.
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FIG. 3. The histogram of positions of a particular interfa-
cial point on an R=11.1 nm cylindrical droplet and the fitted
normal distribution.
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FIG. 4. Standard deviation σ of the local thermal fluctuations
evaluated from MD simulations of cylindrical droplets varying
with the circumference 2πR. The broken red line is a fit to
the red points in the form of Eq. (4) using only B0 as a fitting
parameter. Equation (4) is not applicable when 2πR < L.
The blue curve shows Eq. (3) with the same value of B0 as
used for the red line.

terfacial point about its mean position. In Eq. (2), kB
is the Boltzmann constant, T is the absolute tempera-
ture, γ is the liquid-vapour surface tension (65.4 mN/m
for TIP4P/2005 water) and qmax = 2π/B0 signifies an
upper cut-off for the wave number, beyond which it is
meaningless to discuss fluctuations in terms of a set of
continuous waves. A simple choice for B0 is the size of
a constituent molecule [7], radius of gyration or segment
length in case of polymer chains [9]. On the other hand,
in the absence of an external field, such as gravity, the
lower cut-off for the wave number, qmin, is characterized
by the longest wave on the surface and depends on the
system size, with an important assumption being that it
is roughly the same in both dimensions.

For spherical surfaces of 3D droplets, we expect Eq.
(2) to still apply, since for most modes (except those with
the longest wavelengths) the surface is effectively flat on
the scale of the wavelength, and the divergence for both
qmin → 0 and qmax → ∞ indicates that both short- and
long-wavelength modes are important. In this case, for
the longest wave two wavelengths fit on the circumfer-
ence of the sphere, and qmin ≈ 2π/(πR). Therefore, the
standard deviation of the thermal fluctuations is given
by:

σ(R) =
√
〈ζ2〉sph ≈

√
kBT

2πγ

[
ln

(
πR

B0

)] 1
2

. (3)

It is assumed that R� B0. Although σ(R) is a diverging
function of the radius, R, the divergence is very weak.

For quasi 2D droplets, the principal difference is that
the surface characteristic dimension/length is very dif-
ferent in the axial and azimuthal directions. Assuming
a thin disc geometry, i.e. R� L, the standard deviation
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FIG. 5. Geometry of the coalescence onset problem for two
3D spherical droplets.

of the oscillation of the surface is given by,

σ(R)cyl =
√
〈ζ2〉cyl =

√
kBT

2πγ

[
3R

2L
+ ln

(
L
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)] 1
2

, (4)

(see final section for derivation). Unlike Eq. (3), Eq.
(4) diverges quickly with increasing R while keeping L
constant. For a water surface, we determined B0 based
on a fit to the dependence of the standard deviation of
the surface fluctuations on the circumference, 2πR, for
quasi 2D systems, giving B0 ≈ 1.2 nm (see Fig. 4).

PROBABLE REGION OF THE ONSET OF
COALESCENCE

Finding theoretically the distribution of locations at
which coalescence initiates, taking surface fluctuations
into account, is a complex problem deserving separate
consideration. Only scaling estimates of the size of the
coalescence onset region will be made here, by compar-
ing the surface fluctuations in the region to the variation
of the mean distance between the surfaces within that
region due to their curvature.

Spherical droplets (3D)

Consider two spherical droplets of radius R approach-
ing each other head-on (Fig. 5). The coalescence is most
likely to be initiated on the line of approach. However,
when surface fluctuations are accounted for, there is a
possibility that a surface point B off the line of approach
“overtakes” the point A on that line to initiate off-center
coalescence. Suppose the distance between points A and
B is x� R. Then the distance between the mean profiles
at B is larger than that at A by

2Y (x) = 2(R−
√
R2 − x2) ≈ x2/R. (5)
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Let the deviations of the profile of one of the droplets at
a given instant of time at A and B be ζA and ζB, respec-
tively. It is reasonable to expect that the probability of
coalescence at B is significant (comparable to that at A)
if ζB − ζA is likely to exceed Y (x), or, in other words,

〈
(ζB − ζA)2

〉
>∼ Y

2(x) ≈ x4

4R2
. (6)

The relative fluctuation ζB − ζA is expected to be of
the same order of magnitude as the typical fluctuations
within a patch of size x, which, according to Eq. (2) and
accompanying considerations, gives

〈(ζB − ζA)2〉 ≈ kBT

2πγ
ln

(
x

B0

)
. (7)

The width of the distribution of coalescence onset loca-
tions, lc, will be approximately equal to the value of x at
which the left- and right-hand sides of Eq. (6) are equal,
i.e.

kBT

2πγ
ln

(
lc
B0

)
≈ l4c

4R2
, (8)

so,

lc ≈
[

2kBT

πγ
ln

(
lc
B0

)]1/4
R1/2. (9)

This is a transcendental equation that does not have a
closed-form solution. However, in practice the logarith-
mic factor raised to a small power is of order unity, so for
an order-of-magnitude estimate, it, along with the factor
(2/π)1/4, can be omitted, giving

lc ≈
(
kBT

γ

)1/4

R1/2. (10)

Cylindrical droplets (quasi 2D)

For cylindrical droplets of axial length L, we use a sim-
ilar approach. However, a complication is that instead of
a single point A at which the mean profile of the droplet
is closest to that of the other droplet, there is a line of
such points. If point A is chosen arbitrarily on that line
and point B on a line at distance x from the first line, the
result for

〈
(ζB − ζA)2

〉
will depend on where exactly A

and B are chosen with respect to each other: the closer
the points, the smaller that expression is. It can then be
argued that choosing A as close to B as possible (i.e., at
distance x) is reasonable, since in order for coalescence
to be initiated at B, the gap between the droplets at all
possible A needs to be larger. The result will then de-
pend on the relation between x and L. If x < L, then,
similar to the spherical case, the relative displacement
ζB − ζA is of the same order of magnitude as typical dis-
placements in a patch of size x in both dimensions. If,

however, x > L, then the patch is still of size x in the
azimuthal direction, but cannot exceed L in the axial di-
rection. For such an asymmetric patch, we use our quasi
2D expression, Eq. (4), replacing R with x/(2π). Then,
arguing as before,

l4c
4R2

≈


kBT
2πγ ln

(
lc
B0

)
, lc < L,

kBT
2πγ

[
3lc
4πL + ln

(
L
B0

)]
, lc > L.

(11)

Neglecting the logarithmic factor and term, and the nu-
merical factors, gives

lc ≈


(
kBT
γ

)1/4
R1/2, lc < L,(

kBT
γL

)1/3
R2/3, lc > L,

(12)

or

lc ≈


(
kBT
γ

)1/4
R1/2, R < L2

(
γ

kBT

)1/2
,(

kBT
γL

)1/3
R2/3, R > L2

(
γ

kBT

)1/2
.

(13)

For the systems studied here, L2
(

γ
kBT

)1/2
≈ 73 nm

and they correspond to the top line of Eq. (13), which is
the same expression as Eq. (10). For the three cylindrical
droplets studied, R = 11.1 nm, 20.1 nm and 58.5 nm,
which correspond to lc =1.7 nm, 2.2 nm and 3.8 nm,
respectively.

Based on the above analysis, when two droplets of dif-
ferent radii coalesce, we expect no qualitative change in
the results found in the current work. The effect of dif-
ferent radii may appear in two ways: 1) the droplets will
now have different thermal fluctuation amplitudes, and
2) the gap thickness profile between the droplets will be
modified, as this depends on the mean curvature between
the droplets. For a realistic 3D system, the fluctuation
amplitude depends only weakly on droplet sizes (Eq. (3)),
so size will have a negligible effect on the overall process.
As for the gap thickness, its effect is that the coalescence
will correspond to that of two droplets of the same curva-
ture, equal to the mean curvature of the actual droplets.

BRIDGE GROWTH IN THE THERMAL REGIME

As the total surface area decreases during droplet coa-
lescence, the number of molecules at the interface will de-
crease as well. Figure 6(a) shows a snapshot of a typical
coalescence between two R=11.1 nm cylindrical droplets
when the bridge is still within lT . The interface molecules
at the same instant, identified by our interface tracking
algorithm, are shown in Fig. 6(b). A criterion based on
the total number of neighbors of a target molecule was
used to identify the interface molecules. Typically, a bulk
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water molecule will have roughly 310 neighbors within a
sphere of radius rc=1.3 nm, while an interface molecule
will have fewer neighbors. Molecules with not more than
270 neighbors and not fewer than 5 gave the thickness of
this layer of molecules close to the interfacial thickness of
water (which is roughly 1 nm). The lower limit will dis-
regard vapor molecules, if any, and a higher upper limit
always identified a few molecules in the bulk.

FIG. 6. (a) Snapshot of an instant of a typical coalescence
process (quasi 2D; R = 11.1 nm) and (b) the corresponding
interface molecules identified by our interface tracking algo-
rithm.

Once the coalescence begins, the number of inter-
face molecules starts to decrease, since many of these
molecules will become bulk molecules during coalescence.
For quasi 2D droplets, instead of the total number of in-
terface molecules, we kept track of the variation of the
number of interface molecules on either side of the con-
tact point separately, as the bridges are often asymmet-
ric. The variation of interface molecules on either side
of the contact point is observed to be linear in time for
cylindrical droplets. For spherical droplets, we studied
the total number of interface molecules as a function of
time since there is essentially a single bridge front, and
the variation is non-linear (see Fig. 6 in the main paper).

We observe that during this early stage of coalescence,
rb ≤ lT , i.e. the system is in the thermal regime, during
which time a relation between the bridge growth veloc-
ity vb and the rate of change of the number of interface
molecules near to that bridge front, [dN/dt], can be ob-
tained as follows. LetA denote the surface area of a single
droplet and nA denote the number of interface molecules
per unit area. If the surface area of each droplet changes
by ∆A, then the number of interface molecules changes
by 2nA∆A. So,

dN/dt = 2nA(dA/dt). (14)

(a) Thermal regime

(b) Hydrodynamic regime

Line of approach

FIG. 7. Snapshots of the molecules in the thermal and hydro-
dynamic regimes during coalescence of two R=58.5 nm quasi
2D droplets.

On the other hand,

dA/dt = −(drb/dt)∆Z, (15)

where ∆Z is the length of the bridge front over which
molecular jumps occur. For the 3D spherical case, ∆Z
is the circumference of the bridge. For quasi 2D systems
with a single contact point between the droplets, we are
able to track the variation of the number of interface
molecules near a particular bridge front, i.e. on either
side of the contact point separately, and consequently
∆Z is the length of a single front (i.e. L). Combining
Eqs. (14) and (15), we get

vb ≡
drb
dt
≈ −dN/dt

2nA∆Z
. (16)

From our MD results, we determine a length scale, lT ,
up to which the bridge expands linearly through collec-
tive molecular jumps. The length scale lT is identified
as the point on the rb(t) plot above which the devia-
tion from the initial linear behavior continually exceeds
0.5 nm. From our MD simulations we observe that lT
is seemingly captured by 2lc for both 3D and cylindri-
cal droplets, which is reasonable since both lengths are
defined by thermal mechanisms.

Figure 7 shows the thermal and hydrodynamic regimes
during the coalescence of two R = 58.5 nm cylindri-
cal droplets. Only oxygen atoms are shown and some
of them at the interface are colored differently for il-
lustrative purposes. Oxygen atoms close to the bridge
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(a) Thermal regime

(b) Hydrodynamic regime

Line of approach

FIG. 8. Thermal and hydrodynamic regimes during coales-
cence of two R=17.5 nm spherical droplets.

front are colored in maroon, and atoms near the con-
fronting surfaces are colored in yellow. In the thermal
regime, the bridge expands due to the confronting sur-
faces (yellow atoms) being drawn into each other. In the
hydrodynamic regime, the bridge expands by the conven-
tional bridging flow from under the bridge front (maroon
atoms). In the snapshots for the 3D case (Fig. 8), some
‘bulk colored’ molecules are seen among the yellow and
maroon molecules. These are molecules which entered
the slice from outside because of self-diffusion.

Figure 9 shows the bridge growth as a function of time
during the coalescence of two spherical droplets with (a)
R=11.1 nm, and (b) R=17.5 nm. There is a charac-
teristic change in the bridge expansion after the bridge
passes the corresponding lT , consistent with the change
in mechanism of the bridge growth. Note that the ref-
erence time, t0, shown in the snapshot figures is not the
same as t = 0 in Fig. 9; t0 is defined as the time at which
the number of interface molecules at a particular bridge
front starts to decrease and is determined by curve fitting
(See Fig. 6 in the main paper). For a bridge to appear
in the equimolar plots (which corresponds to t = 0 in
Fig. 9), the bridge needs to have developed sufficiently
so that there are enough molecules within it to evaluate
a density profile.

In order to investigate the influence of inter-atomic po-
tentials we use in MD simulations on the thermal regime,
coalescence studies were carried out using a different
model of water: the mW model [10], which in contrast to
TIP4P/2005 uses a three-body potential among coarse-
grained molecules and employs a shorter cut-off distance.
Reassuringly, with the mW model, we still observe that
the bridge initially grows as a result of collective molecu-
lar jumps, with little change in the thermal length scale
(compare Figs. 10 & 11 here to Figs. 3 & 5(a) in the
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FIG. 9. Bridge growth during coalescence of (a) two R=11.1
and (b) two R=17.5 nm spherical droplets, evaluated from
equimolar plots. The coalescence began close to the collision
axis.

(a) Thermal regime

(b) Hydrodynamic regime

Line of approach

FIG. 10. Snapshots of the molecules in the thermal and hy-
drodynamic regimes during coalescence of two R=11.1 nm
quasi 2D mW water droplets.

Letter). On the other hand, as expected, there are quan-
titative differences, in particular, in the bridge growth
speed, which justifies using a more computationally ex-
pensive, but more accurate TIP4P/2005 model for our
studies.
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FIG. 11. Bridge growth during coalescence of two water
droplets modelled using the mW model.

THERMAL FLUCTUATIONS ON THE SURFACE
OF A LIQUID CYLINDER

In this section, we derive the mean-square displace-
ment of the surface of a short cylinder due to thermal
fluctuations (i.e. Eq. (4) above). This result is needed
to obtain the value of the cutoff length B0 from MD
simulations, and is also used to derive the width of the
distribution of coalescence onset locations.

Consider an incompressible liquid cylinder of radius
R. Periodic boundary conditions with period L are as-
sumed along the axis of the cylinder. Our consideration
of thermal fluctuations of its surface uses an approach
similar to that of Sides et al. [8] for a planar surface,
where the fluctuations are expanded in eigenmodes and
the equipartition theorem is utilized. However, there are
two important differences. First, while in Ref. [8] the
sum over the modes is replaced with an integral, which
is valid for a surface with similar dimensions in the two
directions, we retain the sum and analyze carefully un-
der what conditions the replacement is possible. Second,
in the case of a curved surface, special care needs to be
taken to ensure that the eigenmodes preserve the volume.

In cylindrical coordinates, the shape of the surface of
the cylinder is described by a function r(z, φ, t), where
z is the coordinate along the axis (0 ≤ z ≤ L), φ is the
azimuthal angle (0 ≤ φ ≤ 2π), r is the radial distance of
the surface from the axis, and t is the time. The surface
area of the periodically repeated section of the cylinder
is

A(t) =

∫ L

0

dz

∫ 2π

0

dφ

(
r2

[
1 +

(
∂r

∂z

)2
]

+

(
∂r

∂φ

)2
)1/2

,

(17)

and the volume is

V (t) =
1

2

∫ L

0

dz

∫ 2π

0

dφ r2. (18)

We express the radial distance as

r(z, φ, t) = R+ ζ(z, φ, t), (19)

and assume that the deviation ζ from the cylindrical
shape is small (ζ � R).

In the linear approximation free oscillations of the
cylinder can be expanded into eigenmodes:

ζ(z, φ, t) ≈
∞∑

nz=1

∞∑
nφ=1

ζ(1)nznφ
+

∞∑
nz=1

∞∑
nφ=0

ζ(2)nznφ

+

∞∑
nz=0

∞∑
nφ=1

ζ(3)nznφ
+

∞∑
nz=0

∞∑
nφ=0

′ζ(4)nznφ
,(20)

where

ζ(1)nznφ
(z, φ, t) = a(1)nznφ sin

2πnzz

L
sinnφφ, (21)

ζ(2)nznφ
(z, φ, t) = a(2)nznφ sin

2πnzz

L
cosnφφ, (22)

ζ(3)nznφ
(z, φ, t) = a(3)nznφ cos

2πnzz

L
sinnφφ, (23)

ζ(4)nznφ
(z, φ, t) = a(4)nznφ cos

2πnzz

L
cosnφφ, (24)

the coefficients a
(j)
nznφ are time-dependent, and the prime

in the last sum excludes the term with nz = nφ = 0 as it
corresponds to the uniform expansion or contraction of
the cylinder and so does not preserve the volume.

When thermal fluctuations are considered, the coeffi-
cients a vary randomly in time and are uncorrelated, so

〈a(i)mzmφa
(j)
nznφ
〉 ∼ δmznzδmφnφδij , (25)

where 〈. . .〉 denotes the time average and δkl is the Kro-
necker delta. However, it is important to note that per-
turbations of the form in Eqs. (21)–(24) do not preserve
the volume exactly, with deviations quadratic in a. To
ensure volume preservation, we replace Eq. (21) with

ζ(1,2,3,4)nznφ
(z, φ, t) = a(1,2,3,4)nznφ

sin
2πnzz

L
sinnφφ

−∆nznφ(a(1,2,3,4)nznφ
), (26)

and similarly for Eqs. (22)–(24), where the ∆ terms do
not depend on z or φ and so correspond to uniform con-
traction (or expansion). By substituting these expres-
sions into Eq. (19), expanding Eq. (18) to quadratic or-
der in a and linear in ∆, and requiring that the volume
remain equal to that of the unperturbed cylinder (i.e.
πR2L), we obtain

∆nznφ(a) =

{
a2

8R , nz 6= 0 and nφ 6= 0,
a2

4R , nz = 0 or nφ = 0.
(27)
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While the ∆ terms are quadratic in a and so at first sight
seem negligible, this is not so, since the area change is
quadratic in a, but linear in ∆.

Combining Eqs. (19), (20), (26) and (27), we can
find the area change due to surface fluctuations using

Eq. (17), expanding it to quadratic order in a and sub-
tracting the area of the unperturbed cylinder (i.e. 2πRL).
We find that the contributions of different modes to the
area change are additive, and are given by

∆A(j)
nznφ

=



(
π3Rn2

z

L +
πL(n2

φ−1)
4R

)(
a
(j)
nznφ

)2
, nz 6= 0, nφ 6= 0,

πL(n2
φ−1)

2R

(
a
(j)
nznφ

)2
, nz = 0,(

2π3Rn2
z

L − πL
2R

)(
a
(j)
nznφ

)2
, nφ = 0.

(28)

Equation (28) has two notable features. First, ∆A
(j)
01 =

0. This is expected, since the corresponding modes (there

are two of them, ζ
(3)
01 and ζ

(4)
01 ) are pure translations in the

directions transverse to the axis of the cylinder and so do
not deform it. These modes need to be subtracted when
calculating the displacement of the surface, so the corre-
sponding terms should be deleted from Eq. (20). Second,

∆A
(j)
10 < 0 when L > 2πR, so the corresponding defor-

mation decreases the surface energy. This is, of course,
the well-known Plateau-Rayleigh instability [11]. When
it is present, the deviation from the cylindrical shape can
become arbitrarily large; we restrict ourselves to the case
when the instability does not arise (as is indeed true for
our quasi 2D MD systems). It is worth noting that nei-
ther of these important features is reproduced when the
∆ term in Eq. (26) is not included.

Surface energy changes associated with the modes can
be obtained by multiplying Eq. (28) by the surface ten-
sion γ. By equipartition, these energy changes are, on
average, kBT/2, which gives

〈(
a(j)nznφ

)2〉
=


2kBT/(πγ)

L
R (n2

φ−1)+
4π2R
L n2

z

, nz 6= 0, nφ 6= 0,

kBT/(πγ)
L
R (n2

φ−1)
, nz = 0,

kBT/(πγ)
4π2R
L n2

z−LR
, nφ = 0.

(29)
Then, according to Eq. (20) with the nz = 0, nφ = 1
terms removed, taking into account Eq. (25),

〈ζ2〉 =

Nz∑
nz=1

Nφ∑
nφ=1

2kBT/(πγ)
L
R (n2φ − 1) + 4π2R

L n2z

+

Nz∑
nz=1

kBT/(πγ)
4π2R
L n2z − L

R

+

Nφ∑
nφ=2

kBT/(πγ)
L
R (n2φ − 1)

. (30)

The result is independent of z and φ, which is expected,
since all points on the surface are equivalent. Note that
the upper summation limits have been made finite by
introducing cutoffs Nz and Nφ. These cutoffs are im-
portant, because without at least one of them Eq. (30)

would diverge. They are determined by the fact that be-
low a certain length B0 continuum fluid dynamics equa-
tions (on which the consideration here) is based cease
to be valid. This length scale is typically comparable to
the molecular size. The cutoffs then approximately cor-
respond to the perturbations with wavelengths equal to
this length scale, i.e.

Nz ≈
L

B0
, (31)

Nφ ≈
2πR

B0
. (32)

Further progress can be made by assuming that the
period in the axial direction L is much smaller than the
radius R. We will also assume that B0 is sufficiently
small that Nφ � 1. Then, since the last sum in Eq. (30)
converges as Nφ →∞, we can safely write

Nφ∑
nφ=2

kBT/(πγ)
L
R (n2φ − 1)

≈
∞∑

nφ=2

kBT/(πγ)
L
R (n2φ − 1)

=
3kBTR

4πγL
, (33)

where the exact numerical value
∑∞
n=2 1/(n2 − 1) = 3/4

has been used. The second sum

Nz∑
nz=1

kBT/(πγ)
4π2R
L n2z − L

R

≈ kBTL

4π3γR

Nz∑
nz=1

1

n2z

<
kBTL

4π3γR

∞∑
nz=1

1

n2z
=

kBTL

24πγR
, (34)

which is much smaller than Eq. (33) and therefore negligi-
ble. Finally, considering the double sum, since changing
nφ by one makes a change in the expression under the
sum that is small compared to the expression itself, the
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sum over nφ can be replaced by an integral:

Nz∑
nz=1

Nφ∑
nφ=1

2kBT/(πγ)
L
R (n2φ − 1) + 4π2R

L n2z

≈
Nz∑
nz=1

∫ ∞
nφ=0

2kBT/(πγ)
L
Rn

2
φ + 4π2R

L n2z
dnφ

=
kBT

2πγ

Nz∑
nz=1

1

nz
. (35)

Then

〈ζ2〉 ≈ kBT

2πγ

[
3R

2L
+

Nz∑
nz=1

1

nz

]
. (36)

The sum over nz diverges in the limit Nz → ∞, so Nz
should be kept finite. If Nz � 1, then

∑Nz
nz=1 1/nz ≈

lnNz ≈ ln(L/B0), and the final result is

〈ζ2〉 ≈ kBT

2πγ

[
3R

2L
+ ln

L

B0

]
, (37)

which is our Eq. (4) above.

RELEVANCE OF VAN DER WAALS
INTERACTIONS BETWEEN THE DROPLETS

In our theoretical consideration, we have assumed that
the average shapes of the droplets remain spherical as
they approach each other, and the fluctuations of the sur-
faces of the two droplets are independent of each other
and of the distance between them. In reality, droplets
in proximity to each other interact. First, they may in-
teract hydrodynamically via the medium in which they
move. In our simulation setup, however, the medium is
the droplets’ own vapor and has a very low density, so
that interaction is clearly negligible. A more interesting
effect is the van der Waals (vdW) interactions between
the molecules belonging to different droplets. These in-
teractions change the average shape of the droplets as
they approach each other and also correlate the fluctua-
tions of their surfaces and modify their spectrum. The
most dramatic manifestation of the latter effect is an in-
stability, in which fluctuations grow exponentially until
the droplets touch.

Based on the fact that our simulation results generally
agree with our theory and, in particular, there is no evi-
dence of either a significant shape change or an instabil-
ity, we have concluded that these effects probably do not
play an important role under the conditions of our simu-
lations. This is particularly interesting in view of the fact
that it is the vdW-driven instability that is considered in
many works (see, e.g., Ref. [12]) as giving rise to coales-
cence between the droplets. In fact, there is no contra-
diction, since our work differs from these previous ones in

two respects: first, we simulate much smaller, nanoscale
droplets, and second, as mentioned above, our simula-
tions are carried out essentially in vacuum, which, by
eliminating hydrodynamic interactions, affects the shape
of the droplets and thus the effect of vdW interactions as
well. The purpose of this section is to consider the role
of these two factors. We take vdW interactions into ac-
count by introducing the disjoining pressure contribution
to the normal stress at the boundary i.e

pvdW = − AH
48πH3

, (38)

where AH is the material-dependent Hamaker constant,
and H is one-half the separation between the surfaces.

We start by considering two very large volumes of liq-
uid, separated by a vacuum gap between two planar par-
allel surfaces. Ignoring first the interactions between the
surfaces, we assume that their thermal fluctuations are
not large enough to bridge the gap (thus, strictly speak-
ing, the surfaces cannot be infinitely large, since the fluc-
tuations diverge as the size of the surface grows; however,
this divergence is only logarithmic, so we will assume
that the surfaces are infinite for all other intents and pur-
poses). Nevertheless, when the interactions are “switched
on”, this system will still be unstable: the fluctuations
with wavelengths above a critical one, λc, will grow ex-
ponentially. This critical wavelength corresponds to the
surface perturbation mode for which the local changes in
the disjoining pressure are exactly compensated by those
in the Laplace pressure, which gives

kc = 2π/λc =

(
aH
γ

)1/2

, (39)

where

aH =
AH

16πH4
(40)

For large H, the growth rates σk [defined so that the
corresponding mode grows as exp(σkt)] are so small that
this growth may not matter for practical purposes. A
general expression for the growth rate exists [13], but it
is more convenient to use much simpler ones valid in the
two limits, inertial and viscous, in both cases assuming
kH � 1, and interpolate between them.

For small wavenumbers k, the growth rate is limited
by the liquid inertia and is given by

σk =

[
(aH − γk2)k

ρ

]1/2
, (41)

where ρ is the liquid density. For large k, it is limited by
the viscosity µ and is

σk =
aH − γk2

2µk
. (42)
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Both expressions vanish above kc. Since σk grows as
k1/2 for small k and decreases to zero as k → kc, there is
always a maximum, either at k at which Eq. (41) has a
maximum (kimax), or at the crossover kx where Eqs. (41)
and (42) are equal, whichever of the two values of k is
smaller. The maximum of Eq. (41) is at

kimax =

(
aH
3γ

)1/2

, (43)

while the crossover is the solution of

4µ2

ρ
k3x + γk2x = aH , (44)

which is

kx ≈


(
ρaH
4µ2

)1/3
, aH > ρ2γ3

16µ4 ,(
aH
γ

)1/2
, aH < ρ2γ3

16µ4 .
(45)

The second line of this gives kx ≈ kc > kimax and there-
fore is irrelevant. Then the value kmax at which the max-
imum rate is reached is either Eq. (43) or the top line of
Eq. (45), i.e.

kmax ≈


(
ρaH
4µ2

)1/3
, aH > 27ρ2γ3

16µ4 ,(
aH
3γ

)1/2
, aH < 27ρ2γ3

16µ4 .
(46)

The corresponding maximum growth rate is

σmax ≈


(
a2H
2µρ

)1/3
, aH > 27ρ2γ3

16µ4 ,(
4a3H
27γρ2

)1/4
, aH < 27ρ2γ3

16µ4 .
(47)

There is a discontinuity, since an exact expression is used
in the bottom line, but an approximate one in the top
line, but it is relatively small and insignificant for our
purposes. Note also that given Eq. (40), σmax increases
very rapidly when H decreases (∝ H−8/3 in one regime
and ∝ H−3 in the other). Individual modes grow quite
rapidly, too: neglecting the γk2 terms, the growth is ∝
H−2 in the inertial regime and ∝ H−4 in the viscous one.

Suppose now that the two liquid volumes approach
each other with relative speed 2v so that H decreases
linearly in time as H0 − vt. Even with vdW interactions
“switched off”, the surfaces would touch before H = 0
due to fluctuations. Suppose this typically happens when
H = Hmin. Then the question is whether the growth of
the fluctuations due to the instability is significant be-
fore H = Hmin. We can still estimate the growth using
Eqs. (41) and (42), keeping in mind that σk is now time-
dependent. For the amplitude of a mode with wavenum-
ber k we can write

ak(t) ∼ exp

(∫ t

0

σk(t′)dt′
)
. (48)

Because of the fast growth of σk with decreasing H, the
value of σk at Hmin dominates and the modes with the
most growth are those with k = kmax(Hmin). These
modes grow by a factor

Fmax ' exp[σmax(Hmin)∆t], (49)

where ∆t is the effective time interval during which the
growth rate is close to maximal and is

∆t = αHmin/v, (50)

with α a numerical factor of order (but likely somewhat
below) unity, e.g., α = 1/(β−1) for σk(t) ∝ (H0/v−t)−β .
Then, finally, the instability is not significant if

σmax(Hmin)∆t < 1, (51)

and significant otherwise.
The answer to the question above about significance of

the instability depends on Hmin. For a rough estimate,
we choose Hmin = 1 nm, which is the typical size of
fluctuations of drop surfaces. Then for water (γ = 65
mN/m, µ = 10−3 Pa s, ρ = 103 kg/m3, AH = 3.7 ×
10−20 J) we find that this corresponds to the top lines of
Eqs. (46) and (47) (though close to the boundary between
the regimes) and then kmax ≈ 6×107 m−1, σmax ≈ 6×109

s−1. Then, according to Eq. (51) and assuming α = 1,
the instability is insignificant for v > 6 m/s, a moderate
speed relevant experimentally, and the threshold may be
even lower if α < 1.

Are the above results relevant to spherical droplets of
a finite size? The vacuum gap between the droplets is
finite in extent and its width varies with the distance
from the axis. This changes the surface modes and their
spectrum. However, near the axis the gap width can be
considered roughly constant. We define the “flat part” of
the gap as that part of it where its width does not exceed
1 + s times the width on the axis, where s ∼ 1. Then,
assuming that H is much smaller than the radius of the
droplet R, the radius of this “flat part” is

rf ≈ (2sRH)1/2. (52)

There will be modes oscillating many times within
the “flat part”; these modes will have a well-defined
wavenumber and for them the previous results obtained
above for a flat infinite gap should remain valid. On
the other hand, modes with wavelength above ≈ 4rf (or
k < kmin ≈ π/(2rf )) do not exist. Then, if kmin < kmax

[Eq. (46)], the above results for the maximum growth
rate (as well as those for significance of the instability)
should remain valid; if, however, kmin > kmax, then the
growth should be slower, being determined by the “flat-
gap” rate for kmin, rather than kmax (this rate may, in
fact, be negative). The condition kmin < kmax gives

π

2rf
< kmax, (53)
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or

R >
π2

8sHk2max

. (54)

For water and Hmin = 1 nm, we have obtained kmax ≈
6× 107 m−1, which, assuming s = 1, gives R >∼ 300 nm.
Thus, our estimates should be roughly valid for macro-
scopic (e.g., mm-sized) droplets; however, for smaller
droplets, like those used in our simulations, the rate
should be slower and therefore even for slower approach
speeds there should be no significant vdW effect, in agree-
ment with our simulation results.

Another effect of vdW interactions that we have ig-
nored so far is their influence on the average shape of
the droplets. Since the disjoining pressure depends on
the distance between the surfaces, its contribution is not
constant on a spherical surface, which gives rise to pres-
sure gradients. This creates flows that distort the surface.
The process is similar to that giving rise to the instabil-
ities that we have considered above, but with a specific
length scale on the order of rf (the size of the region
on the surface where the interaction is the strongest). It
is reasonable to assume then that the time scale of the
process is similar to that for development of the insta-
bility with k = kmin (except perhaps with γ ≈ 0, as the
pressure gradient is created by vdW forces and is not
initially counterbalanced by the Laplace pressure). This
time scale is normally either comparable to or longer than
the shortest time scale of the instability development and
so this distortion process is never more important.

This explains how our results are different from what
is commonly found in the literature where the effect of
the vdW instability is dominant. In part, the difference
does indeed arise from the fact that the growth rate is
smaller for drops of nanometer size. However, a more
important factor is that when drops collide in a medium,
a thin film between them exists for a relatively long time
(milliseconds for mm-sized drops), which is more than
sufficient for the instability to develop, even if the growth

rate is smaller than the value of σmax quoted here due to
the film being thicker than 1 nm.

The discussion above indicates that the biggest contri-
bution of vdW interactions between the droplets arises
within a short interval immediately preceding coales-
cence, of duration less than the time it takes the droplets
to move a distance equal to the size of the fluctuations.
Given that this size is somewhat below 1 nm for our
droplets, the cut-off of 1.3 nm in our molecular dynamics
simulations appears adequate.
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