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I. SAMPLES

Crystals of [Cu(pym)(H2O)4][SiF6]H2O grow as rod-like blocks with the long axis of the crystal parallel to the Cu—
pym chain. For the heat capacity measurements a sample of dimensions 7× 2× 1 mm3 was used. For susceptibility
measurements the sample was 6 × 1.5 × 1.5 mm3. The ESR measurements made use of crystals with similar aspect
ratios. For the room-temperature measurements the sample length was 1.5 mm and for the low-temperature ESR
data the sample was 2 mm long.

II. MUON-SPIN RELAXATION

Zero field (ZF) muon-spin relaxation (µ+SR) measurements were made at the ISIS Facility, Rutherford Appleton
Laboratory, UK using the EMU instrument and at the Swiss Muon Source, Paul Scherrer Institut, CH using the LTF
instrument. The polycrystalline sample was mounted on a silver plate using a thin layer of silicon grease. In a µ+SR
experiment [S1] spin-polarized positive muons are stopped in a target sample, where the muon usually occupies an
interstitial position in the crystal. The observed property in the experiment is the time evolution of the muon spin
polarization, the behaviour of which depends on the local magnetic field B at the muon site. Each muon decays,
with a lifetime of 2.2 µs, into two neutrinos and a positron, the latter particle being emitted preferentially along
the instantaneous direction of the muon spin. Recording the time dependence of the positron emission directions
therefore allows the determination of the spin-polarization of the ensemble of muons. In our experiments positrons
are detected by detectors placed forward (F) and backward (B) of the initial muon polarization direction. Histograms
NF(t) and NB(t) record the number of positrons detected in the two detectors as a function of time t following the
muon implantation. The quantity of interest is the decay positron asymmetry function, defined as

A(t) =
NF(t)− αexpNB(t)

NF(t) + αexpNB(t)
, (S1)

where αexp is an experimental calibration constant. A(t) is proportional to the spin polarization of the muon ensemble.
The ZF spectrum measured at 20 mK is shown in Fig. S1. We note that no oscillations or related signatures

are observed in the muon asymmetry, which strongly suggests that the material does not magnetically order at
temperatures above 20 mK. The measured spectra are found to contain two contributions. The first is a fast relaxing
component A1 which dominates the signal at early times and is well described by an exponential function exp(−λt).
The second is a larger, slowly relaxing component A2, which dominates at intermediate times and fits to the Kubo-
Toyabe (KT) function fKT(∆, Bapp, t) [S2] where ∆ is the second moment of the static, local magnetic field distribution

defined by ∆ = γµ
√
〈(B − 〈B〉)2〉, Bapp is the magnitude of the applied longitudinal magnetic field and γµ(= 2π ×

135.5 MHz T−1) is the muon gyromagnetic ratio. The KT function is characteristic of spin relaxation due to a
random, quasi-static distribution of local magnetic fields at diamagnetic muon sites. We do not observe the recovery
in asymmetry at late times that is expected for the static KT function. The lack of this recovery is probably due to
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FIG. S1. (a) ZF µ+SR spectrum measured at 20 mK showing a contribution from two components. A fit is shown to Eq. (S2).

slow dynamics in the random field distribution and is crudely modelled here with an exponential term exp(−Λt). The
data were found to be best fitted with the resulting function over the entire time range

A(t) = A1fKT(∆, Bapp, t) exp(−Λt) +A2 exp(−λt) +Abg (S2)

where Abg represents a constant background signal from those muons that stop in the sample holder. The fitted
magnitude of ∆ ≈ 0.5 MHz suggests that the random magnetic field distribution giving rise to the KT function is due
to nuclear magnetic moments, implying that the field due to electronic moments at these muon sites is motionally
narrowed out of the spectrum due to very rapid fluctuations. The observation of two distinct components, A1 and
A2, in the asymmetry spectrum suggests that there are two distinct muon stopping states in the material. We note
that behaviour consistent with two muon sites has been observed previously in copper chain compounds with similar
structures.

From the observation that the material does not undergo a magnetic ordering transition above 20 mK, it is possible
to put an upper limit on any interchain interaction present in the system. The onset temperature of long-range order
in highly one-dimensional S = 1/2 antiferromagnets depends critically on the ratio of the interchain (J⊥) to intrachain
(J) exchange strengths [S3]. Using the relation given in that reference, the lack of long-range order indicates that
J⊥/J < 1.7× 10−4 or J⊥ < 7 mK.

III. CRYSTAL SYMMETRY AND DZYALOSHINSKII-MORIYA INTERACTIONS

As for all exchange interactions present in the spin Hamiltonian, in the absence of symmetry-breaking order or
external fields, the antisymmetric Dzyaloshinskii-Moriya (DM) interaction must respect the symmetry of the parent

crystal structure. The relevant term in the mean-field energy is typically written D · (Ŝi × Ŝj), where the DM
interaction is represented by a time-even and parity-even pseudo vector (axial vector), D.

The crystal structure of [Cu(pym)(OH2)4][SiF6]H2O has space group P41212, and is composed of two chiral
Cu(pyrimidine) chains per unit cell with a common, global chirality. The two chiral chains are related by the 21
and 2 symmetry operators of the space group (note that both 21 and 2 operations do not switch structural chiral-
ity, which is formally represented by a time-even, parity-odd pseudo scalar). An individual chain has symmetry 41,
such that 4 Cu atoms bonded together via pyrimidine molecules complete a full chiral rotation per unit cell. When
occurring by itself, 41 symmetry supports a uniform Du parallel to the axis of the chain. The 41 symmetry also
supports a four-fold staggered Ds lying perpendicular to the uniform Du, which transforms in the same way as the
Cu-(pyrimidine)-Cu bonds.

Without loss of generality, the DM interaction in [Cu(pym)(OH2)4][SiF6]H2O can be decomposed into the two
orthogonal components, uniform and staggered, described above. We note, however, that the two terms in the
mean-field energy will have common components of the spins, such that they cannot be minimised independently.

Finally, we note that space group P41212 does not support a net D. The 21 and 2 symmetry operators give the
same configuration of staggered Ds on every chain, but opposite signs of the uniform Du for the two chiral chains in
each unit cell.
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FIG. S2. Schematic plot showing the relationship between the crystalline abc axes and the laboratory frame xyz. The red
arrows represents the JT axes of Cu1 and Cu4, i.e. the local principal g axes, and the dashed lines indicate their projection
into the ab plane. The projection of the JL axis for Cu1 is 52.5◦ away from the a axis. The x axis lies halfway between the
projections of the JT axes for Cu1 and Ch4, making it 7.5◦ away from the a axis.

IV. ELECTRON SPIN RESONANCE

IV.a. Room-temperature electron spin resonance and staggered g tensors

In order to separate the uniform and staggered parts of the g tensors, it is convenient to define a laboratory frame
xyz based on the Jahn-Teller (JT) axes of the Cu(II) atoms. This xyz coordination is chosen such that the g tensors
for each Cu2+spins can be separated into a uniform diagonal part, invariant for all spins, and staggered off-diagonal
parts. To achieve this, the x axis is set to be midway between the projections of two adjacent JL axes in the ab plane.
Therefore, the x axis lies within the ab-plane and it is rotated 7.5◦ away from the a axis. The z axis is parallel to the
crystallographic c axis. The conversion between the crystalline abc axes and the xyz frame is shown in Fig. S2 .

An anisotropic g tensor is expected for the Cu(II) spins due to the JT distorted octahedral coordination environment
surrounding the Cu(II) ions. The JT axis, defined as the elongated Cu—O bond, lies 9.1◦ out of the xy plane. The
local principal axis of the g tensor is expected to be parallel to the JT axis. Assuming tetragonal local symmetry, the
local g tensor is expected to take the diagonalized form:

gloc =

g⊥ 0 0
0 g⊥ 0
0 0 g‖

 (S3)

with the g‖ component along the elongated JT axis (g‖ > g⊥). The local g tensors for individual spins can be
transformed to the global xyz coordination with the following Euler rotations:

gxyzi = QTi glocQi (S4)

with

Qi =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 cosφi sinφi 0
− sinφi cosφi 0

0 0 1

 (S5)

θ = 80.9◦(90− 9.1), which is the tilting angle between the JT axis and the z axis. φi = 45◦, 135◦, 225◦ and 315◦ for
i = 1, 2, 3 and 4, respectively, in consistent with the four-fold rotation of the local coordination environment about the
z axis. In the strong coupling limit, the average of the four Cu(II) sites within a unit cell give the g values observed
in ESR measurements [Fig. 2(a) in the main text]:

1

4

4∑
i=1

gxyzi =

2.21 0 0
0 2.21 0
0 0 2.10

 (S6)
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By combing Eq. S3-S6, we obtained g‖ = 2.33 and g⊥ = 2.09. Therefore, according to Eq. S4, the g tensors for
individual spins in the xyz coordination frame is:

gxyz1 =

2.210 −0.12 0.026
−0.12 2.21 −0.026
0.026 −0.026 2.10

 gxyz2 =

2.210 0.12 0.026
0.12 2.21 0.026
0.026 0.026 2.10


gxyz3 =

 2.210 −0.12 −0.026
−0.12 2.21 0.026
−0.026 0.026 2.10

 gxyz4 =

 2.210 0.12 −0.026
0.12 2.21 −0.026
−0.026 −0.026 2.10

 (S7)

Which corresponds to Eq. 1 in the main text. When a transverse field is applied parallel to the x axis, H0 = [H0, 0, 0],
the effective fields (Hi) on the ith Cu site is:

H1 =

 2.21H0

−0.12H0

0.026H0

 , H2 =

 2.21H0

0.12H0

0.026H0

 , H3 =

 2.21H0

−0.12H0

−0.026H0

 , H4 =

 2.21H0

0.12H0

−0.026H0

 (S8)

Eq. S8 is the field configuration in Fig. 3(b) of the main text. The two-fold staggered fields are in the y direction
while the four-fold staggered fields lies parallel to the z axis.

The room-temperature ESR resonance has the Lorentzian shape expected for an exchange-coupled system. The
linewidth (∆H) [Fig. 2(b) in the main text] has a strong angular dependence, probably due to the staggered g tensors
as well as DM interactions [S4–S6]. In the high temperature limit (kBT � J), when the isotropic exchange interactions
is large compared to the ESR linewidth (J � gµB∆H), the ESR resonance is expected to have Lorentzian profile
with a linewidth [S4]:

∆H =
2π√

6

kB
gµB

(
M3

2

M4

)1/2

, (S9)

M2 and M4 are the second and fourth moment of the resonance and their explicit expressions can be found in Ref. [S4].
The wide ESR resonance suggests the existence of sizable DM interactions. However, we found it is difficult

to reproduce the extreme orientation dependence of ∆H, which varies between 50—550 mT. For instance, with
Du = 1.5 K, ∆H = 50 mT for H perpendicular to the c axis. Such a value of Du is reasonable as the magnitude of the
DM interaction is expected to be proportional to J × δg/g, where δg is the anisotropy in g. On the other hand, this
Du would lead to ∆H = 75 mT for H ‖ c, which is significantly smaller than the experimental result. Furthermore,
we found it is impossible to simulate the angular dependence solely based on Eq. S9 with any combination of Du and
Ds. This suggests additional broadening effects need to be considered to explain the result. One possible candidate
is spin diffusion due direct flip-flop processes [S7, S8]. These energy-conserving processes are maximal for H ‖ c such
that all spins have the same resonance frequency, leading to extra broadening of the ESR signal. When the field is
rotated away from the c-axis, the resonance frequencies of the neighboring spin centers differ, suppressing the extra
broadening effect.

IV.b. Low-temperature ESR results

The low-temperature multiple frequency ESR measurements were performed with a transmission type ESR spec-
trometer using a millimeter vector network analyzer as the microwave source and detector. The experiments were
performed with the applied field perpendicular to the crystal c axis. For a given frequency, the spectrum can be di-
vided into the low-field and high-field regimes, as depicted by the dashed line in Fig. S3(a). In the high-field side of the
spectra, six strong resonances can be resolved and followed through the experimental frequency range. As we discussed
in the main text, these six resonances are reminiscent of the breather excitations observed in [pym-Cu(NO3)2(H2O)2],
albeit only three breather modes were expected for the experimental field range.

One possible reason for the extra high-field resonances in our material is that the unit cell of Cu(pym)(H2O)4]SiF6·H2O
contains four inequivalent Cu2+spins, double that for [pym-Cu(NO3)2(H2O)2], although it is not obvious exactly how
the larger unit cell may lead to the additional resonances. Another possible explanation is that the breather modes
are affected by a field parallel to the chain axis, e.g. due to a small field misalignment. This longitudinal field causes
different effects to the chains with opposite Du. In this case, the signal could be due to two groups of breather excita-
tions, each with three modes as predicted by the SG model, arising due to differences in the effective staggered fields
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FIG. S3. (a) ESR spectra for Cu(pym)(H2O)4]SiF6·H2O recorded at 1.9 K with the field applied perpendicular to the crystalline
c-axis. The spectra are separated into two regimes, the low-field part and the high field part, indicated by the dashed line in
(a). (b) and (c) Frequency vs field plot showing the high-field ESR transitions following the label scheme used in Fig. 2(c) in
the main text. The solid black lines are the best fit to the data using the sine-Gordon model described in Eq. S10 and S11.
The red line shows the linear dependence of the energy gap ∆ [Fig. 2(f) of the main text] as determined from heat capacity
measurements and converted into GHz units. This is everywhere lower than the ESR excitation frequencies, implying that the
minimum gap could be at a point in k-space not probed by ESR.

between the two subspecies with opposite Du. This could also account for the similar amplitudes of the resonances
marked by open/filled black squares [see Fig. 2(c) in main text].

To explore this possibility within the existing model of non-chiral chains, attempts were made to fit the high-field
ESR resonances with two sets of breathers modes with different parameters. In the SG model, the nth breather gap
is expected to be [S9]:

∆n = 2∆s sinnπξ/2 (S10)

where ∆s is the soliton gap

∆s = J
2Γ(ξ/2)vF√
πΓ[(1 + ξ)/2]

[
gµBH

JvF

πΓ[1/(1 + ξ)]cAx
2Γ[ξ/(1 + ξ)]

](1+ξ)/2
(S11)

At a given field H, there are n = 1, ...[1/ξ] breather branches. ξ(H/J), vF (H/J) and Ax(H/J) in Eq. S10 and S11
are known [S10]. The value of ξ(H/J) varies between 0.3065 and 0.2585 in the experimental field range; hence three
branches are expected. J is the antiferromagnetic interaction between spins and is set to 42.3 K (see main text). The
only free parameter in the fitting is the effective staggered field coupling c = h2s/H, which should be close to g2s.

The best fits are shown in by the solid lines in Fig. S3(b) and (c). We found it is impossible to simultaneously fit
all three branches for either set of resonances. In addition, within each branch, the field dependence of the resonances
also deviate from the SG model considerably. Furthermore, the fits gives the c value of 0.011 and 0.013, significantly
smaller than the measured g2s. Therefore, we conclude it is impossible to model the low-temperature ESR spectra
with the SG model proposed for the two-fold staggered chains [S9, S10].

Analyzing the low-field transitions in Fig. S3(a) is challenging due to the difficulty in classifying the resonances
within the experimental frequency/field range. In most spectra, a relatively broad peak is observed at low fields end
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FIG. S4. (a) Temperature dependence of the heat capacity, Cp, in different transverse fields (H ⊥ c). A broad peak was observed
around 0.52, 0.81, 1.1 and 1.3 K for H = 5, 7, 10 and 13 T, respectively. The solid line is the calculated lattice contribution.
(b) Magnetization of [Cu(pym)(H2O)4]SiF6·H2O divided by the saturation magnetization Msat taken using pulsed magnetic
fields at 1.6 K. The field is applied both parallel (black line) and perpendicular (red line) to the chain axis. The saturation field
is consistent with the value of the intrachain exchange constant as determined from both heat capacity and low-field magnetic
susceptibility.

with a fine structure. As shown in Fig. 2(c) in the main text, upon cooling, the paramagnetic resonance shifts towards
lower field and eventually splits into two peaks. A similar low-temperature evolution of the ESR spectra has been
reported in Cs2CuCl4 and K2CuSO4Br2, which is attributed to the splitting of the spinon continuum around k = 0
when the magnetic field has a component along the DM interaction [S11, S12]. However, the four-fold staggered DS

configuration makes it impossible for the field to be either parallel or perpendicular to all DM vectors, complicating the
ESR spectra. On the other hand, it is challenging to identify the other sharp resonances observed in the low-field part
of the spectra. Similar resonances were observed in the ESR study for [pym-Cu(NO3)2(H2O)2] and were speculated
to be related to chain-edge effects [S9, S13].

V. HEAT CAPACITY

V.a. Subtraction of nuclear Schottky anomaly.

The heat capacity (Cp) was measured as a function of temperature and magnetic field. In order to minimize the
contribution from nuclear spins at low temperatures, the measurement was performed with a deuterated sample,
[Cu(pym-D)(D2O)4]SiF6·D2O. Fig. S4(a) shows Cp/T recorded with the field applied perpendicular to the crystalline
c axis. At zero field, for T > 0.8 K, Cp can be well described with Cp = αT + βT 3, where the first and second
terms correspond to the 1D spin correlation and the lattice contribution, respectively. Fitting the zero-field data gives
Clatt = βT 3 with β = 2.6 mJ/(mol K4). This Clatt contribution is independent of the applied field and is removed
from all data.

Upon cooling the sample, Cp exhibits a board peak when an external field is applied before a sharp upturn at the
lowest temperatures. Similar behavior was observed in the hydrogenated sample. The broad peak is related to the
field induced gap discussed in the main text. On the other hand, We found the low temperature upturns the can be
described as Cp ∝ T−2 and is likely due to a nuclear Schottky effect [S14]. The nuclear heat capacity Cn is expected
to follow Cn = (a0 + a1H

2)/T 2. a0 is due to nuclear quadrupole splitting of nuclei with nuclear spins I > 1/2 while
a1 is the nuclear Zeeman energy.

At zero field, the µ+SR data shown no evidence of magnetic order above 20 mK and no spin gap is expected for a
S = 1/2 AFM chain. Therefore, below 0.2 K, the zero-field heat capacity data is fitted with Cp = a0T

−2+αT , yielding
a0 = 27µJK/mol. The a0 value is then fixed with the a1 as the only variable in fitting the low-temperature Cp data
with a nonzero field. We found the data can be well fitted with a1 = 123 µJ K/(mol T2), giving Cn = (27+123H2)/T 2

µJ/(molK). This nuclear heat capacity was subtracted from all Cp data measured with the application of a magnetic
field [Fig. 2(f) in the main text].

We note the coefficient a1 is larger than expected from the nominal composition of the sample. In principle, the
Zeeman energy contribution to the heat capacity can be calculated as a1 =

∑
nI~2γ2I I(I + 1)/3kB. The summation

is over all atoms in the chemical formula with a nuclear spin I 6= 0. nI is the number of the nuclei per mole, ~ is
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FIG. S5. (a) Result of fitting the simple two-level model (lines) described below to experimental Cmag/T data (points). (b)
Field dependence of the gap (squares) deduced from the fits in (a), as well as a best fit to a linear model (black line), a best
fit to the SG model (dotted blue line), and the size of the gap predicted by the SG model using the experimentally-determined
value of the two-fold staggered field (solid blue line).

the Planck constant, γI is the gyromagnetic ratio, and kB is the Boltzmann constant. Based on the nominal chemical
formula of the deuterated sample, one would expect a1 = 57 µJ K/(mol T2). Indeed, we found the fitted value of a1
= 123 µJ K/(mol T2) would correspond to a H:D ratio close to 8:6, rather than all 14 H atoms are replaced by D. We
suspect this is due to partially rehydrogenation whereby H2O replaces some of the D2O during the crystal growth,
leading to the discrepancy between the nominal and experimental determined a1 values.

V.b. Fitting to obtain the gap size.

The temperature-dependence of the heat capacity of a gapped system will have a broad Schottky-like hump whose
shape and position depends on the size of the gap and the degeneracy and distribution of excited states averaged
across the Brillouin zone. In the manuscript the magnetic heat capacity is fitted with a model derived from the SG
theory. While we stress that the SG model is not adequate to quantitatively account for many features of our data,
there are still strong similarities between our system and that of the SG materials, particularly the staggered g-tensors
and the richness of the excitation spectrum observed by ESR. Therefore the best possible expression that currently
exists to reliably estimate the size of the gap from the heat capacity of our system is that derived from the SG model.

Nevertheless, in order to show that the linear field dependence of the gap is not an artefact of using the SG heat-
capacity expression, we also fit our data at fixed fields to a model consisting of a two-level system (Schottky anomaly)
plus a constant C/T term that accounts for the Tomonaga-Luttinger liquid behaviour observed at high temperatures.
This is certainly not the ideal model to use to extract a reliable estimate of absolute size of the gap. This is because,
while the heat capacity will be strongly influenced by the gap between the ground state and lowest energy excited
state, any higher energy states will also have a significant effect. Such higher energy states are observed in the ESR
spectra, but are not taken into account in this simple model. Thus we would expect the absolute size of the gap
extracted in this way to be an overestimate.

This is what we observe in Fig. S5: panel (a) shows the result of fitting this two-level model to our data and it is
seen that the form of the data is reasonably well-described by the model. The points in panel (b) shows the size of
the gap and its evolution in field. This procedure illustrates several issues: (i) the form of the heat capacity data are
well described by a generic gapped model; (ii) the size of the gap extracted using this model, which is expected to be
a overestimate of the actual gap, is still smaller across the measured field range than that predicted by the SG model
using the experimentally-determined size of the two-fold staggered field in our material (solid blue line); and (iii) the
gap thus extracted has a linear field-dependence (black line) and cannot be described by the SG model even with a
staggered field much smaller than that measured (dotted blue line).

VI. PULSED-FIELD MAGNETIZATION

Pulsed-field magnetization experiments used a compensated-coil susceptometry technique, described in [S15]. Fields
were provided by the 65 T short-pulse and 100 T multi-shot magnets at NHMFL, Los Alamos. The susceptometer
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was placed within a 4He cryostat providing temperatures down to 1.6 K. Magnetic field was measured by integrating
the voltage induced in a ten-turn coil calibrated by observing the de Haas-van Alphen oscillations of the belly orbits
of the copper coils of the susceptometer. To create the traces shown in Fig. S4(b), data below 65 T taken using
the 65 T short pulse magnet were combined with data above 40 T taken using the 100 T multi-shot magnet. Both
experiments made use of the same sample and susceptometer.

VII. SPIN-WAVE EXPANSION

We present a calculation for the excitation gap based on the standard spin-wave approximation for the XZ canted
structure with four-fold staggered fields h4s and h′4s. In the following calculation, we define the XY Z frame as the
laboratory frame. The c axis of the chain is parallel to Z and a external field H0 is applied in the X direction. The
xiyizi frames represent the local coordination systems for the ith Cu2+ion where zi axes are defined by the direction
of the ith spin (Fig. S6). With an external field applied perpendicular to the chain, the four-fold staggered fields are
parallel to the chain propagation direction (c-axis). This is the situation illustrated in Fig. S6 (also see Fig. 3(b) in the
main text). The magnitudes of staggered fields, h4s and h′4s, depend on the explicit form or the staggered gmethrm4s
and can be treated as twin independent parameters. However, as long as the field is applied within the XY plane, the
resultant four-fold staggered field should always be parallel to the Z axis. The canted antiferromagnetic configuration
of the spins, as well as the polarities of stagger fields, are illustrated in Fig. S6. The canted angles, θn (n = 1 to 4),
are determined by both the external field H0 and the staggered fields. Therefore, Eq. 3 in the main text does not hold
rigorously due to the possibility that θ1 6= θ2 6= θ3 6= θ4. The energy per unit cell of the canted antiferromagnet state
is:

E =− JS2[cos (θ1 + θ2) + cos (θ2 + θ3) + cos (θ3 + θ4) + cos (θ4 + θ1)]

−H0S[sin θ1 + sin θ2 + sin θ3 + sin θ4]

+ h4sS(cos θ1 − cos θ3)− h′4sS(cos θ2 − cos θ4)

(S12)

This energy is minimized for ∂E/∂θn = 0, which gives:

∂E

∂θ1
= JS2[sin (θ1 + θ2) + sin (θ1 + θ2)]−H0S cos θ1 − h4sS sin θ1 = 0

∂E

∂θ2
= JS2[sin (θ1 + θ2) + sin (θ2 + θ3)]−H0S cos θ2 + h′4sS sin θ2 = 0

∂E

∂θ3
= JS2[sin (θ2 + θ3) + sin (θ3 + θ4)]−H0S cos θ3 + h4sS sin θ3 = 0

∂E

∂θ4
= JS2[sin (θ3 + θ4) + sin (θ4 + θ1)]−H0S cos θ4 − h′4sS sin θ4 = 0

(S13)

The staggered fields, h4s and h′4s, are much smaller than H0. The canted angles, θn, are mostly determined by H0

while the staggered fields lead to a small correction to θn. Therefore, the canted angles can be written as θn = θ+ δθn
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where θ = arcsin (H0/4JS) is the canted angle induced by H0. δθn’s are the small corrections caused by the staggered
fields and θ � θn. Hence, Eq. S13 can be written as:

16J2S2δθ1 + (8J2S2 −H2)(δθ2 + δθ4) = 2h4sH0

16J2S2δθ2 + (8J2S2 −H2)(δθ1 + δθ3) = −2h′4sH0

16J2S2δθ3 + (8J2S2 −H2)(δθ2 + δθ4) = −2h4sH0

16J2S2δθ4 + (8J2S2 −H2)(δθ1 + δθ3) = 2h′4sH0

(S14)

Solving Eq. S14 leads to a simple correlation between δθn and the staggered fields that:

δθ1 =
h4sH0

8J2S2

δθ2 = −h
′
4sH0

8J2S2

δθ3 = −h4sH0

8J2S2

δθ4 =
h′4sH0

8J2S2

(S15)

At this point, it is more convenient to write the staggered field in terms of δθn. Comparing Eq. S15 with Fig. S6, we
can get that the staggered field on the nth site, hn, is:

hn = (−1)n+1 8J2S2

H0
δθn. (S16)

The effective spin Hamiltonian for Cu(pym) in the laboratory frame (XY Z in Fig S6) can be written as:

Ĥ =
∑
n

J(ŜXn Ŝ
X
n+1 + ŜYn Ŝ

Y
n+1 + ŜZn Ŝ

Z
n+1)−H0Ŝ

X
n + (−1)n

8J2S2

H0
δθnS

Z
n . (S17)

The first term in Eq. S17 represents the antiferromagnetic interactions. The second and third terms are the Zeeman
interactions due to the external field H0 and the staggered fields hn, respectively. ŜXn , ŜYn and ŜZn correspond to the

spin operators in the laboratory frame. They are related to the spin operators in the rotating frame (Ŝxn, Ŝyn and Ŝzn)
in the following way:

ŜXn = (−1)(n+1)Ŝxn cos θn + Ŝzn sin θn

ŜYn = −Ŝyn
ŜZn = (−1)nŜzn cos θn + Ŝxn sin θn

(S18)

In the rotating frames, the ground state of the chain corresponds to the nth spin being parallel to zn. By substituting
Eq. S18 into Eq. S17 the Hamiltonian in the rotating frame can written as:

Ĥ =
∑
n

J [− cos (θn + θn+1)(ŜxnŜ
x
n+1 + ŜznŜ

z
n+1) + ŜynŜ

y
n+1 + (−1)n+1 sin (θn + θn+1)(ŜxnŜ

z
n+1 − ŜznŜxn+1)]

+H0[(−1)n cos θnŜ
x
n − sin θnŜ

z
n]

+ (−1)n
8J2S2

H0
δθn[(−1)n cos θnŜ

z
n + sin θnŜ

x
n],

(S19)

The spin operators can be written via bosonic operators using the Holstein-Primakoff transformation. The leading
order expansion for a spin pointing in the z-direction is:

Ŝxn =

√
S

2
(a†n + an)

Ŝyn = i

√
S

2
(a†n − an)

Ŝzn = S − a†nan

(S20)
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Substituting Eq. S20 into Eq. S19, the Hamiltonian can be written as Ĥ = Ĥ0 + Ĥ1 + Ĥ2 + . . .+O(H0) +O(h4s, h
′
4s).

Ĥn = O(S2−n/2) is the field independent part whereas O(H0) and O(h4s, h
′
4s) correspond to the contributions due to

the applied field H0 and the four-fold staggered fields, respectively. By substituting Eq. S20 into Eq. S19, we get:

Ĥ0 =
∑
n

−JS2 cos (θn + θn+1)

Ĥ1 =
∑
n

(−1)(n+1)J
S3/2

21/2
[sin (θn−1 + θn) + sin (θn + θn+1)](a†n + an)

Ĥ2 =
∑
n

JS[cos (θn + θn+1) + cos (θn−1 + θn)]a†nan

− JS

2
[cos (θn + θn+1) + 1](a†na

†
n+1 + anan+1) +

JS

2
[1− cos (θn + θn+1)](a†nan+1 + ana

†
n+1)

O(H0) =
∑
n

−H0 sin θnS +H0(−1)n cos θn

√
S

2
(a†n + an) +H0 sin θna

†
nan

O(h4s, h
′
4s) =

∑
n

[
8J2S2

H0
δθn(S − a†nan) + (−1)n

√
S

2

8J2S2

H0
δθn sin θn(a†n − an)]

(S21)

Eq. S21 includes the first three leading orders in the exchange interaction part (Ĥ0, Ĥ1 and Ĥ2) and all orders in

H0, h4s and h′4s. Ĥ0 is a constant. Taking into account the constraints for canted angles (Eq. S13) and replacing θn
with θ + δθn, the Hamiltonian can be written as (to the order of S in spin-wave expansion):

Ĥ =
∑
n

2JS cos 2θa†nan +H0 sin θa†nan

− JS

2
(1 + cos 2θ)(a†na

†
n+1 + anan+1) +

JS

2
(1− cos 2θ)(a†nan+1 + ana

†
n+1)

+
JS

2
sin 2θ(δθn + δθn+1)(a†na

†
n+1 + anan+1 + a†nan+1 + ana

†
n+1)− 8J2S2

H0
cos θδθna

†
nan

+
JS

4
cos 2θ(δθn + δθn+1)2(a†na

†
n+1 + anan+1 + ana

†
n+1 + a†nan+1)

[
16J2S2 −H2

0

H2
0

sin θδθ2n −
JS

2
cos 2θ(2δθ2n + δθ2n−1 + δθ2n+1)]a†nan

(S22)

The first four terms of Eq. S22 correspond to the spin wave expansion for a uniform antiferromagnetic chain in the
presence of a external field H0 without any staggered field. The fifth and sixth terms are the linear contribution of

h4s and/or h′4s while the remaining two parts are proportional to h24s and/or h′4s
2
. By Fourier transforming Eq. S22,

it can be found that the fifth and sixth terms vanish because that the values of δθn oscillate between ±h4sH0/8J
2S2

(or ±h′4sH0/8J
2S2). Therefore, the Hamiltonian is:

Ĥ =
∑
k

[2JS cos 2θ +H0 sin θ −
H2

0 (16J2S2 − 3H2
0 )(h2α + h2β)

1024J5S5

+ (JS − JS cos 2θ +
H2

0 (8J2S2 −H2
0 )(h2α + h2β)

1024J5S5
) cos k]a†kak

− [
JS

2
(1 + cos 2θ)−

H2
0 (8J2S2 −H2

0 )(h2α + h2β)

2048J5S5
] cos k(a†ka

†
−k + aka−k).

(S23)

For clarity, we define the following functions:

A(k) = [2JS cos 2θ +H0 sin θ −
H2

0 (16J2S2 − 3H2
0 )(h2α + h2β)

1024J5S5
+ (JS − JS cos 2θ +

H2
0 (8J2S2 −H2

0 )(h2α + h2β)

1024J5S5
) cos k]

B(k) = [
JS

2
(1 + cos 2θ)−

H2
0 (8J2S2 −H2

0 )(h2α + h2β)

2048J5S5
] cos k,

(S24)
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and Ĥ =
∑
k A(k)a†kak −B(k)(a†ka

†
−k + aka−k). By performing the following Bogoliubov transformation:

ak = coshψkαk + sinhψkα
†
−k

a†−k = sinhψkαk + coshψkα
†
−k

(S25)

with tanh 2ψk = 2B(k)/A(k), the Hamiltonian (Eq. S23) can be diagonalised that:

Ĥ =
√
A2(k)− 4B2(k)α†kαk. (S26)

which gives a single band in the paramagnetic Brillouin zone. We can equivalently fold the dispersion relation into
the antiferromagnetic Brillouin zone, −π/2 < k < π/2. This gives us two branches with dispersion relations:

E± = {[2JS cos 2θ +H0 sin θ − (h24s + h′4s
2
)H2

0 cos 2θ

32J3S3
± [JS(1− cos 2θ) +

(h24s + h′4s
2
)H2

0 cos 2θ

64J3S3
] cos k]2

− [JS(1 + cos 2θ)− (h24s + h′4s
2
)H2

0 cos 2θ

64J3S3
]2 cos2 k}1/2

(S27)

In the absence of staggered fields, E− = 0 and Eq. S27 gives the gapless excitation expected for uniform antifer-
romagnetic chains. Non-zero four-fold staggered fields lead to a excitation gap (∆) with the magnitude of the gap
being:

∆ =

√
(h24s + h′4s

2)H2
0

J2S2
× (16J2S2 −H2

0 )(8J2S2 −H2
0 )

1024J4S4
(S28)

Eq. S28 shows that the excitation gap is proportional to
√

(h24s + h′4s
2)H2

0/J
2S2. The staggered fields are much

smaller than the applied field H0 and the antiferromagnetic interactions JS. Therefore, comparing with the excitation
gap in Cu benzoate [S16, S17] (∆ ∝

√
hJS) calculated with similar spin-wave expansion technique, the gap in Cu(pym)

is expected to be much smaller. We note that by taking into account 1D critical fluctuation, the power-law behavior
of the gap in Cu benzoate is changed from h1/2 to h2/3. We expected similar corrections should also be applied to
our calculations, modifying the prediction of the field induced gap.
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[S6] M. Herak, A. Zorko, D. Arčon, A. Potočnik, M. Klanǰsek, J. van Tol, A. Ozarowski, and H. Berger, Physical Review B

84, 184436 (2011), 1109.5597.
[S7] S. J. Balian, G. Wolfowicz, J. J. L. Morton, and T. S. Monteiro, Physical Review B 89, 045403 (2014), 1302.1709.
[S8] M. Shiddiq, D. Komijani, Y. Duan, A. Gaita-Ariño, E. Coronado, and S. Hill, Nature 531, 348 (2016).
[S9] S. A. Zvyagin, A. K. Kolezhuk, J. Krzystek, and R. Feyerherm, Physical Review Letters 93, 027201 (2004), 0403364

[cond-mat].
[S10] F. H. L. Essler, A. Furusaki, and T. Hikihara, Physical Review B 68, 064410 (2003), 0304244 [cond-mat].
[S11] K. Y. Povarov, A. I. Smirnov, O. A. Starykh, S. V. Petrov, and A. Y. Shapiro, Phys. Rev. Lett. 107, 37204 (2011).
[S12] A. I. Smirnov, T. A. Soldatov, K. Y. Povarov, M. Hälg, W. E. A. Lorenz, and A. Zheludev, Physical Review B 92,

134417 (2015), 1507.07518.
[S13] S. A. Zvyagin, Low Temperature Physics 38, 819 (2012).
[S14] K. An, T. Sakakibara, R. Settai, Y. Onuki, M. Hiragi, M. Ichioka, and K. Machida, Physical Review Letters 104, 1

(2010), 0911.3443.
[S15] P. A. Goddard, J. Singleton, P. Sengupta, R. D. McDonald, T. Lancaster, S. J. Blundell, F. L. Pratt, S. Cox, N. Harrison,

J. L. Manson, H. I. Southerland, and J. A. Schlueter, New Journal of Physics 10, 083025 (2008).
[S16] M. Oshikawa and I. Affleck, Phys. Rev. Lett. 79, 2883 (1997).
[S17] I. Affleck and M. Oshikawa, Phys. Rev. B 60, 1038 (1999).

http://dx.doi.org/10.1080/001075199181521
http://arxiv.org/abs/0207699
http://dx.doi.org/ 10.1103/PhysRevB.20.850
http://dx.doi.org/ 10.1103/PhysRevLett.94.217201
http://dx.doi.org/10.1103/PhysRevB.4.38
http://dx.doi.org/ 10.1103/PhysRevB.69.174420
http://arxiv.org/abs/0311079
http://dx.doi.org/ 10.1103/PhysRevB.84.184436
http://dx.doi.org/ 10.1103/PhysRevB.84.184436
http://arxiv.org/abs/1109.5597
http://dx.doi.org/10.1103/PhysRevB.89.045403
http://arxiv.org/abs/1302.1709
http://www.nature.com/doifinder/10.1038/nature16984
http://dx.doi.org/10.1103/PhysRevLett.93.027201
http://arxiv.org/abs/0403364
http://arxiv.org/abs/0403364
http://dx.doi.org/10.1103/PhysRevB.68.064410
http://arxiv.org/abs/0304244
http://dx.doi.org/10.1103/PhysRevLett.107.037204
http://dx.doi.org/10.1103/PhysRevB.92.134417
http://dx.doi.org/10.1103/PhysRevB.92.134417
http://arxiv.org/abs/1507.07518
http://dx.doi.org/10.1063/1.4752094
http://dx.doi.org/ 10.1103/PhysRevLett.104.037002
http://dx.doi.org/ 10.1103/PhysRevLett.104.037002
http://arxiv.org/abs/0911.3443
http://stacks.iop.org/1367-2630/10/i=8/a=083025
http://dx.doi.org/10.1103/PhysRevLett.79.2883
http://dx.doi.org/10.1103/PhysRevB.60.1038

	Supplemental Material: Unconventional field-induced spin gap in an S = 1/2 chiral staggered chain
	Samples
	Muon-spin relaxation
	Crystal symmetry and Dzyaloshinskii-Moriya interactions
	Electron spin resonance
	Room-temperature electron spin resonance and staggered g tensors
	Low-temperature ESR results

	Heat capacity
	Subtraction of nuclear Schottky anomaly.
	Fitting to obtain the gap size.

	Pulsed-field magnetization
	Spin-wave expansion
	References


