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Hierarchical nanostructuring approaches for thermoelectric materials
with high power factors

Vassilios Vargiamidis∗ and Neophytos Neophytou
School of Engineering, University of Warwick, Coventry, CV4 7AL, UK

The thermoelectric power factor of hierarchically nanostructured materials is investigated using
the non-equilibrium Green’s function method for quantum transport, including interactions of elec-
trons with acoustic and optical phonons. We describe hierarchical nanostructuring by superlattice-
like potential barriers/wells, combined with quantum dot barriers/wells nanoinclusions as well as
voids in the intermediate region. We show that these structures can be designed in a way that the
power factor is not only largely immune to the presence of the nanostructure features, but under cer-
tain conditions benefits can be achieved as well. Interestingly, we show that these design approaches
are linked to the energy relaxation of the current flow and whether charge carrier scattering is lim-
ited by elastic or inelastic processes. In particular, when nanostructures form potential barriers,
the power factor can be substantially enhanced under elastic scattering conditions, irrespective of
nanostructuring density and potential barrier heights. When inelastic scattering processes domi-
nate, however, the power factor is inevitably degraded. In the case in which nanostructures form
potential wells, despite a slight decrease, the power factor is quite resilient under either elastic or
inelastic scattering processes. These nanostructuring design approaches could help open the path to
the optimization of new generation nanostructured thermoelectric materials by not only targeting
reductions in thermal conductivity, but simultaneous improvements in the power factor as well.

PACS numbers: 73.20.-r, 73.43.-f, 72.10.-d

I. INTRODUCTION

Thermoelectric (TE) materials convert heat from tem-
perature gradients into electricity and vice versa. Their
performance is quantified by the dimensionless figure of
merit ZT = σS2T/(κe +κ`) where σ is the electrical con-
ductivity, S is the Seebeck coefficient, T is the operating
temperature, κe is the electronic thermal conductivity,
and κ` is the lattice thermal conductivity. The prod-
uct σS2 is known as the power factor (PF ). Traditional
TE materials, which are mostly semiconductor doped al-
loys of Sb and Bi2Te3 at room temperature, and PbTe
or SiGe at higher temperatures, reach ZT ≈ 1. Over
the last several years, however, numerous other materi-
als have been explored, such as transition-metal dichalco-
genides (TMDC) [1–3], skutterudites [4, 5], phonon-glass-
electron crystal structures [6], half-Heuslers [7, 8], oxides
[9], etc. A large number of these materials demonstrate
ZT above 1, primarily due to the reduction of their ther-
mal conductivity [10].

In order to achieve even further reductions in ther-
mal conductivity, the majority of these materials are
explored in the context of nanostructuring. Many ap-
proaches towards this route are common practice, such
as superlattice-like geometries [11], alloying [12], heavy
doping [13], nanoporous materials [14–16], nanograining
[17, 18], nanoinclusions (NIs) [19–24], etc. Nanoinclu-
sions, in particular, cause scattering of short wavelength
phonons with mean-free-paths in the order of nanome-
ters, which otherwise contribute significantly in the ther-
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mal conductivity of common TE materials, such as in
PbTe [25]. This technique is applied to a broad range
of materials, including Bi2Te3 [26, 27], PbTe [19, 28, 29],
SiGe [12, 30, 31], MnSi [32], and SnTe [33], to name a
few.

Furthermore, undoubtedly, one of the most success-
ful approaches to reduce thermal conductivity is hi-
erarchical nanostructuring, where distortion features
are placed within a matrix material at the mesoscale
(grains/boundaries), microscale (NIs) and nanoscale
(atomic defects). These scatter phonons of various wave-
lengths and reduce phonon transport across the entire
spectrum. Indeed, by nanostructuring PbTe in a hi-
erarchical manner, record high value of ZT = 2.2 was
achieved due to drastic reductions in κ` [19]. More re-
cent works have achieved even higher ZT up to 2.5 at 923
K [35]. For such a success, the thermal conductivities in
these materials reached values well below the amorphous
limit which is 1 − 2 W/mK at room temperature [36],
and thus, cannot be further reduced easily. Therefore,
further benefits to ZT can only be achieved from the en-
hancement of the PF . In the majority of cases, however,
nanostucturing degrades the electrical conductivity and
the PF as well. In addition, the adverse interdependence
of the electrical conductivity and Seebeck coefficient does
not allow flexibility in PF improvements.

The importance of retaining high PF s has recently be-
come more appreciated in nanostructured TE materials.
Reference [37], in particular, emphasizes the importance
of matrix/inclusion band alignment to retain the original
conductivity of the material and to avoid degradation
in the PF . Large PF improvements were also demon-
strated in highly doped nanocrystalline Si [17], especially
in the presence of nanovoids [38]. While the impact of
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nanostructuring on the thermal conductivity can be more
clearly understood as a general increase in phonon scat-
tering, the same cannot be assumed for the PF . Due
to the complexity in geometry, theoretical works to date
(by us and others) focus on one type of nanostructured
feature at a time, i.e. only superlattices (SLs) [39], only
nanocrystalline boundaries [36], only NIs [26, 30, 40–43],
etc. In several cases, the conclusions vary substantially,
from reports of large PF benefits to only moderate or
none; a consequence of the difficulty in accurately simu-
lating and optimizing the complexity of geometries cou-
pled with the complexities of the nanoscale transport
physics in the presence of various types of nanostruc-
tured features. Indeed, the complexity of the electronic
transport, combining semiclassical effects, quantum ef-
fects (i.e. quantization, tunneling, interferences, reso-
nances), ballistic and diffusive regimes, as well as the ge-
ometry details with multiple features and feature types,
makes accurate modelling a difficult task. Thus, it is
imperative to shed more light and establish a high level
of understanding of the PF behavior in the presence of
more than one nanoscale feature type, both qualitatively
and quantitatively, if ZT is to be maximized.

In this work we use the non-equilibrium Greens Func-
tion (NEGF) method to calculate the electron transport
properties of two-dimensional (2D) nanostructures when
superlattice-type boundaries and NIs are present simulta-
neously (see Fig. 1). NEGF provides a unified, geometry
flexible, fully quantum mechanical simulation approach
well-suited for this problem. We present a systematic
investigation of how such complex geometries affect the
PF in the cases where the nanofeatures impose poten-
tial barriers, or potential wells for charge carriers. We
explore the influence of the heights of those barriers, as
well as their number density. We then identify the design
approaches that will allow for PF immunity in hierarchi-
cally nanostructured materials, and in some cases, even
significant improvements.

The paper is organized as follows. In Sec. II we de-
scribe our NEGF approach including our calibration pro-
cedure and indicate the geometries we study. In Sec. III
we present and discuss our results, in Sec. IV we present
a discussion on optimal nanostructuring, and finally, in
Sec. V we conclude.

II. APPROACH

We employ a 2D quantum transport simulator based
on the NEGF formalism including electron-phonon (e-
ph) scattering in the self-consistent Born approximation.
We include both scattering of electrons with acoustic
phonons (elastic scattering) and with optical phonons
(inelastic scattering). The formalism and the details of
the specific 2D simulator, which we developed in order
to capture phonon scattering, as well as its convergence
details, are described in several works of ours and of oth-
ers [41, 44–47]. However, in order to be able to better

FIG. 1: (Colour online) Geometries of the hierarchical nanos-
tructured materials that we consider in this paper. (a) The
pristine channel. (b) Channel with SL-type barriers. (c)
Channel with SL barriers and quantum-dot potential barrier
NIs. (d) Channel with SL-type wells. (e) Channel with SL-
type wells and quantum-dot potential well NIs.

discuss certain characteristics of e-ph scattering in the
context of this work, we include here a brief description
of the model with notation adopted to our system.

In the NEGF method a system/channel, described by
a Hamiltonian H, is connected to two contacts (left and
right), which are represented by self-energy functions ΣL

and ΣR. The Hamiltonian is constructed using a 2D ef-
fective mass (single-orbital) tight-binding grid uniformly
spaced in the x- and y-directions, resulting in a banded
matrix. The 2D channels we consider within the effec-
tive mass approximation, have a uniform m∗ = m0 in
the entire channel, where m0 is the rest mass of the elec-
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tron. Thus, we do not consider a specific material, rather
our study aims in providing first-order qualitative guid-
ance into the design of high power factor nanostructured
materials. These self-energies represent the influence of
the semi-infinite Left and Right leads on the channel, re-
spectively. Note that ΣL and ΣR are energy dependent,
and non-Hermitian. They are formed using the first/last
channel layers from which electrons are injected into the
channel (and thus, they have the same size as these lay-
ers), and are calculated using the Sancho-Rubio iterative
scheme [48]. They are added to the first/last layer ele-
ments of the channel Hamiltonian. The e-ph scattering
process in the device enters the NEGF formalism through
the self-energy function ΣS. One can view the scattering
process as just another contact described by ΣS, similar
to the actual contacts described by ΣL and ΣR, however,
ΣS is added to all diagonal elements of the Hamiltonian.

The retarded Green’s function for the device is given
by [45]

G(E) =
[(
E + iη+

)
I −H − Σ(E)

]−1
, (1)

where η+ is an infinitesimal positive number which
pushes the poles of G to the lower half plane in com-
plex energy, I is the identity matrix, and Σ(E) is the
sum of the self-energies

Σ(E) = ΣL(E) + ΣR(E) + ΣS(E). (2)

It proves useful and convenient to define the in-scattering
self-energies due to contacts as:

Σin
L, R(E) = −2Im [ΣL, R(E)] fL, R(E), (3)

where Im[...] is the imaginary part and fL, R is the Fermi
distribution for the left and right leads. Similarly, the
out-scattering self-energies are defined as:

Σout
L, R(E) = −2Im [ΣL, R(E)] [1− fL, R(E)] . (4)

With Σ
in/out
L, R (E) one can express the electron and hole

correlation functions as:

Gn(E) = G(E)Σin
L, R(E)G†(E), (5)

Gp(E) = G(E)Σout
L, R(E)G†(E). (6)

Assuming that the system consists of 2D grid/lattice
points with uniform spacing a, and making the nearest
neighbour tight-binding approximation, the current den-
sity between grid points j and j + 1 is given by

Jj,j+1 =
ie

~

×(2)

∫ ∞
−∞

dE

2π

[
Hj+1,jG

n
j,j+1(E)−Hj,j+1G

n
j+1,j(E)

]
,(7)

where Hj+1,j = H†j,j+1 are the hopping matrix elements

of the Hamiltonian, and (2) is for the two spin directions.

A second source for in-scattering and out-scattering of
electrons from an occupied state is the e-ph interaction.
The self-energy at point j and energy E has two terms
corresponding to scattering from (j, E + ~ω) and (j, E −
~ω). Within the Born approximation the in-scattering
self-energy into a fully empty state is [49]

Σin
S (E) = D0[nBG

n(E−~ω)+(nB +1)Gn(E+~ω)]. (8)

where D0 represents the e-ph scattering strength at grid
point j, nB is the Bose-Einstein distribution function for
phonons of energy ~ω, and Gn(E − ~ω) is the electron
density at E− ~ω. The first and second terms in Eq. (8)
represent in-scattering of electrons from E−~ω (phonon
absorption) and E + ~ω (phonon emission) to E, respec-
tively. The out-scattering self energy, Σout

S (E), from a
fully filled state at energy E is given by [49]

Σout
S (E) = D0[(nB+1)Gp(E−~ω)+nBG

p(E+~ω)], (9)

where Gp(E − ~ω) and Gp(E + ~ω) are the densities
of unoccupied states at E − ~ω and E + ~ω. The first
and second terms in Eq. (9) represent out-scattering of
electrons from E to E−~ω (phonon emission) and E+~ω
(phonon absorption), respectively. In the case of acoustic
phonons, ~ω → 0, and so in Eqs. (8) and (9) we let
D0nB → DAP (making use of the commonly employed
equipartition approximation see details in Appendix A)
while in the case of optical phonons D0 → DOP, which
are taken to be constant throughout the channel.

The strength of the phonon scattering is adjusted such
that the mean-free-path of electrons is λ = 15 nm. The
way we calibrate this, is that we initially simulate a chan-
nel with length L = 15 nm in the ballistic regime, and
then we increase the electron - acoustic phonon scat-
tering strength DAP in the NEGF formalism, until the
channel conductance drops to 50% of its ballistic value
(DAP = 0.0026 eV2). This effectively fixes a mean-free-
path of 15 nm for the channel (under acoustic phonon
scattering conditions alone), a value that is compara-
ble to that of common semiconductors such as silicon
[50]. The nanostructured geometries that we consider
are shown in Fig. 1. The channels have length L = 100
nm and width W = 15 nm. Thus, with a mean-free-path
of λ = 15 nm, the channel we consider is long enough
for the transport to be diffusive. Note that the compu-
tational cost of NEGF simulations scales with the third
power in channel width, and thus we only consider nar-
row channels of widths as given above. However, us-
ing wider structures should not affect our final conclu-
sions. Throughout the paper we assume room tempera-
ture T = 300 K.

In the case that we consider electron-optical phonon
scattering only, we use an optical phonon energy of ~ω =
0.06 eV (a value similar to that of silicon longitudinal
optical phonons, see for example [51]), and simply use the
same value of the scattering strength in the simulations,
i.e., D0 = DOP = DAP = 0.0026 eV2. This gives an
energy relaxation length of λE = 13 nm, which, in the
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well region of length 60 nm, dictates semi-relaxation of
the electron energy, after they pass over the SL barriers.
We consider this semi-relaxation of energy because it has
been shown that it provides optimal conditions for the
PF of SL materials [17, 52, 53]. Note, however, that in
this way the conductance of the channel with only optical
phonon scattering will be in general larger compared to
that with only acoustic phonon scattering. This is due
to the fact that electron scattering with optical phonons
has weaker phonon absorption rates, as a consequence
of lower than unity phonon occupation number. Thus,
we cannot compare the two cases quantitatively. In the
case where we consider both acoustic and optical phonon
scattering, we simply divide the scattering strengths DAP

and DOP by a factor of two, which (as we show later)
gives similar conductances for their pristine channels as
in the acoustic phonon scattering case.

In order to calculate the power factor GS2, where G is
the channel conductance and S the Seebeck coefficient,
we use the fact that the Seebeck coefficient is the aver-
age energy of the current flow [54] (see Appendix B for
derivation details)

S =
1

qTL

∫ L

0

〈E(x)− EF 〉dx, (10)

where q is the carrier charge (q = −|e| for electrons and
q = |e| for holes) and 〈E(x)〉 is the energy of the current
flow along the transport direction, defined as:

〈E(x)〉 =

∫
Ich(E, x)EdE∫
Ich(E, x)dE

, (11)

where Ich(E, x) is the energy and position resolved cur-
rent. This is the quantity we integrate in order to get
in Eq. (7) the total current as J =

∫
Ich(E)dE. Note

that the current is constant along the channel at each
cross section, however, its energy is not constant, i.e. the
charge carriers can gain or lose energy as they propa-
gate. This happens in the presence of inelastic scatter-
ing (optical phonons). Thus, the energy of the current
is position dependent and it is its scaled integral in the
channel which provides the overall value of the Seebeck
coefficient. In experimental settings, one extracts the
Seebeck coefficient from the open circuit voltage upon
the application of a thermal gradient along the channel,
as S = ∆V/∆T , which equivalently can also be com-
puted by S = Ich(∆V=0)/G∆T . In [54], it was validated
that the two methods of extracting the Seebeck coeffi-
cient are equivalent, which makes it easier in time con-
suming simulations (as the ones we undertake) to only
run the ∆V 6= 0 case and still be able to extract the See-
beck coefficient by integrating the energy of the current
flow over the length of the channel, and that is how we
extract the Seebeck coefficient in this work.

Note that from NEGF we obtain the conductance G,
rather than the conductivity σ, because NEGF simulates
a 2D channel with specific dimensions, thus, the units
of the two quantities are also different. This could be

converted to conductivity using the channel dimensions,
however since we do not have a specific thickness associ-
ated with our 2D simulation (W = 15 nm, L = 100 nm
only), we use the conductance G from here on. Also note
that in all our results below we refer to G as the con-
ductance, not to be confused with the Greens function in
Eqs. (1)-(9), for which it is also customary to use G.

Figure 1(a) shows the pristine channel that we begin
with. The conduction band reference is set at EC = 0
eV. The Fermi level is placed also at EF = 0 eV as this
provides the highest PF [41, 52, 53]. Thus, we begin
with an optimal channel as our basis, and we then pro-
ceed with inserting nanostructured features. The first
nanostructured feature is SL type boundaries that form
potential barriers for electrons as shown in Fig. 1(b). We
consider thickness of LSL = 5 nm and arbitrarily choose
barrier heights of VSL = 0.05 eV (≈ 2kBT ). We then
add NIs with diameter d = 3 nm each in between those
boundaries as indicated in Fig. 1(c). In these structures,
the Fermi level is placed at EF = VSL = 0.05 eV, so
that the carriers are allowed easily to flow over the SL
barriers. The NIs are modeled as potential barriers of
cylindrical shape in rectangular arrangements within the
matrix material, and their number density and barrier
heights are varied, as discussed in the text below. The
choice of the SL and NI sizes are such as to minimize the
influence of quantum tunneling, which becomes strong
and detrimental for the PF for feature sizes below 3 nm
[52]. We also consider nanostructured geometries where
the potential barriers are replaced with potential wells
(Figs. 1(d)-(e)). Finally, we also consider the situation
in which the NIs are replaced by voids (not shown). The
NEGF approach is ideal for such geometries as they can
be described precisely when the Hamiltonian of the sys-
tem is constructed.

It turns out that a lot about the thermoelectric trans-
port can be understood by looking at the energy of the
current flow, 〈E(x)〉, along the transport direction, as
defined in Eq. (11). This states, as expected, that the
higher in energy the current flows with respect to the
Fermi level, the higher the Seebeck coefficient is. It also
provides some indication about the electrical conductiv-
ity, i.e. the higher the energy of the current flow, the
more electrons with higher velocities are utilized (assum-
ing no complex bandstructure effects cause velocity re-
ductions), and the higher the conductivity could be. As
we will show below, it proves to be a very useful feature
in understanding TE transport particularly in the nanos-
tructured materials we consider, and below we describe
how we use it to interpret our simulation results.

Figure 2 shows 〈E(x)〉 for different structure cases
and scattering conditions. Figure 2(a) considers a chan-
nel with two SL-type barriers inserted (black SL barrier
lines). The colormap in all subfigures shows the energy
and spatial regions where the current flows (yellow) in
the case where both acoustic and optical phonon (AOP)
scattering are taken into account, i.e., elastic and inelas-
tic scattering, respectively. In this situation, 〈E(x)〉 is
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FIG. 2: (Colour online) Average energy of the current flow
〈E(x)〉 as defined in Eq. (11) along the channel length with (a)
SL barriers, (b) SL barriers and NI barriers, and (c) SL wells
and NI wells. The black lines (solid and dashed) represent
the potential barriers. The yellow-green colormap shows the
energy resolved current Ich(E, x), with yellow corresponding
to regions of large flow in the case of OP scattering. The blue
lines represent the position of the Fermi level EF . In (a) the
red-solid line shows 〈E(x)〉 in the presence of AP only (i.e.,
elastic scattering), in which case charge carriers have con-
stant energy above the barriers/wells. The magenta-dashed-
dotted line shows 〈E(x)〉 in the presence of OP only (i.e.,
inelastic scattering), in which case carriers relax their energy
in the regions between the barriers and absorb phonons to
gain energy and overpass the barriers. The black-dashed line
shows 〈E(x)〉 in the presence of AOP. In (b) the red-solid and
magenta-dashed-dotted lines are the same as in (a) for the
SL structure. The green-dashed and black-dotted lines show
〈E(x)〉 in the presence of AP and OP, respectively, for the
SL+NIs structure. In (c) the red-solid line shows 〈E(x)〉 in
the presence of AP, the magenta-dashed-dotted for OP, and
the black-dashed for AOP.

indicated by the dashed-black line. Clearly, electrons
absorb optical phonons, overpass the potential barriers
and then they relax into the wells by emitting optical
phonons. The solid-red line shows 〈E(x)〉 under purely
acoustic phonon (AP) scattering-limited conditions. In
this case scattering is elastic, and the energy of the cur-
rent is constant along the channel. The dashed-dotted-
magenta line shows the optical phonon (OP) scattering-
limited transport case, where the energy of the current
flow is now slightly lower and the degree of energy re-
laxation slightly larger compared to the AOP case. Note
that we do not compare the two cases on equal basis as
the scattering rates for the OP case and AOP case are
different, i.e. the OP scattering strength is halved in the
AOP case, so relaxation is weaker.

Figure 2(b) shows 〈E(x)〉 in the case where NIs are
placed in between the SL barriers (dashed line barri-
ers). The horizontal dashed-green line shows again that
under acoustic (elastic) scattering conditions 〈E(x)〉 re-
mains constant along the channel length, and is almost
identical to the SL case (solid-red line). In the case of op-
tical (inelastic) scattering conditions (dotted-black line),
〈E(x)〉 is relaxing in the region between the SLs, as ex-
pected. However, the presence of NIs reduces the number
of available states that carriers can fall into after emit-
ting phonons of energy ~ω. In addition, since NIs disturb
the low energy electrons, the average energy of the cur-
rent 〈E(x)〉 slightly increases compared to the SL alone
case [41]. Consequently, the degree of energy relaxation
in the presence of NIs (dotted-black line) is smaller than
that in the absence of NIs (dashed-dotted magenta line-
repeated here from Fig. 2(a)), signaling a higher Seebeck
coefficient. In Fig. 2(c), we show the corresponding case
where the SL regions and the NIs form potential wells,
and thus, less obstruction of transport is expected. In-
deed, in this case 〈E(x)〉 is uniform throughout the chan-
nel, not only in the case of elastic scattering, but also in
the case of inelastic scattering, as the wells are too narrow
for the electrons to relax into.

III. RESULTS AND DISCUSSION

In the basis of the above observations, we will explain
the PF behavior in these nanostructures. It turns out
that the dominance of elastic or inelastic scattering pro-
cesses has a significant effect in the PF [39, 54], since
relaxation lowers 〈E(x)〉 and degrades the Seebeck co-
efficient. Therefore, for each one of the five geometries
shown in Fig. 1, we consider AP scattering alone, OP
scattering alone, and finally both AOP scattering com-
bined. We begin by presenting in Figs. 3(a)-(c) some key
simulation results for those basic structures with respect
to the electronic conductivity, Seebeck coefficient, and
PF , respectively. In the case of the SL barrier structures,
we align the Fermi level with VSL at 0.05 eV for optimal
performance, whereas in the other cases with the band
edge EC. The different bars correspond to the geometries
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FIG. 3: (Colour online) Row-wise, summary of conductance
G, Seebeck coefficient S, and power factor PF , for key struc-
ture examples as shown in Fig. 1. The blue bar indicates the
pristine channel (Fig. 1a), the red bars the SL barrier chan-
nels (Fig. 1b), the magenta bars the SL+NI barrier chan-
nel (Fig. 1c), the light green bar the SL well channel (Fig.
1d), and the green bar the SL+NI well structure (Fig. 1e).
Column-wise, the three different groups are results for AP
scattering only, OP scattering only, and AOP scattering. No-
tice that the PF in the SL case is higher than that of the
pristine channel by 23% under elastic AP scattering condi-
tions only. This is retained when NIs are inserted.

of Fig. 1 as follows: i) blue bars-pristine structure, ii) red
bars-SL barrier structure, iii) magenta bars-SL barriers
plus NIs structure, iv) light green bars-SL wells structure,
and v) green bars-SL wells with NIs structure. The three
different column groups show the corresponding values
for AP scattering, OP scattering, and AOP scattering,
respectively.

Elastic scattering improves the optimal PF: We
first focus on AP (elastic) scattering conditions, where

the results for G, S, and PF are shown in the first col-
umn group of Fig. 3. We compare how each quantity
changes with respect to the pristine material (blue bars)
for each nanostructured geometry. Interestingly, by rais-
ing EF high in the bands, the conductance G (first col-
umn, first row, red bar) is increased by 55%, despite the
introduction of the SL barriers (we discuss the reasons
behind this behavior below). The Seebeck coefficient nat-
urally drops (red bar in second row, first column), but
overall the PF is increased in the SL structure by 23%
compared to the pristine structure. This indicates that
the energy filtering, provided by potential barriers that
cut lower parts of the Fermi distribution, is more effec-
tive at degenerate conditions as long as energy does not
relax, as also pointed out in earlier studies [17, 52, 53].
However, the reason the PF improves originates from
the significant increase of the conductivity, rather than
from the Seebeck coefficient which is actually degraded.
The introduction of NIs in the region between the SL
barriers (magenta bars), has a small degrading effect in
the electrical conductance of the channel, as the NIs in-
troduce additional scattering. However, this reduction is
not strong, and the PF is retained at values higher than
those of the pristine material by 19%. Thus, we demon-
strate here that it is indeed possible to achieve significant
PF improvements (rather than reductions) in a hierar-
chically nanostructured material. This PF improvement
combined with the expected very low thermal conductiv-
ity, can lead to high ZT .

It is important, thus, to clarify the reason behind
the increase in G, which is responsible for this PF im-
provement. The physical origin for this behavior lies
in the fact that the charge carriers propagate on av-
erage at higher energies, which allow higher group ve-
locities, and thus higher mobility. This is evident in
Fig. 4(a), which shows the transmission versus energy
of the pristine material (solid-blue line) and of the SL
material (dashed-red line), extracted at every x-point as
Tr(x) =

(
h/e2

)
(I(x)/(f1 − f2)). Note that I(x) is con-

stant in the case of AP which makes the Tr(x) constant,
but not in the case of OP and AOP. In the semiclas-
sical Boltzmann transport formalism, the transmission
is related to the transport distribution function (TD)
Ξ(E) via Trn(E) = (W/L) 2π~Ξn(E), where Ξn(E) =
gn(E)υ2

n(E)τn(E) is the TD function per subband n
[50, 55–57]. In the usual case where τn(E) ∝ 1/gn(E),
then Ξn(E) ∝ υ2

n(E) ∝ 2E/m?, which is linear in energy
as we also observe within NEGF in Fig. 4(a). In the case
of the SL, the transmission opens up for energies above
the SL barrier at VSL = 0.05 eV, but when this hap-
pens, the slope is larger compared to that of the pristine
material. This indicates that carriers, after passing over
the SL barriers, relax on the higher velocity states of the
intermediate region, and propagate with larger group ve-
locities. Figure 4(b) shows the transmission scaled over
the derivative of the Fermi function Tr (∂f/∂E), which
captures the part of the transmission that actually con-
tributes to transport. Clearly, the higher peak in the
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FIG. 4: (Colour online) (a) and (b):
Transmission Tr and Tr (∂f/∂E) ver-
sus electron energy E for the pristine
channel (solid-blue lines) and for the
channel with SL barriers (dashed-red
lines) in the AP scattering regime. (c)
and (d): The same as in (a) and (b),
but in the OP scattering regime. The
Fermi level is EF = 0 eV in the pris-
tine channel and EF = 0.05 eV in
the channel with SL barriers. Notice
that the transmission for the channel
with SL barriers increases faster than
that for the pristine channel for ener-
gies close to EF in the elastic scatter-
ing regime. This is a consequence of
the fact that charge carriers at higher
energies have higher velocities which,
therefore, leads to higher conductivity.

case of the SL structure (dashed-red line), indicates larger
conductivity. Thus, the deeper the well between the SL
barriers, the higher the mobility and conductivity of the
material.

Inelastic scattering degrades the power factor:
What actually causes reduction in the PF , is the pres-
ence of energy relaxation, which is a result of inelastic
scattering, in our case OP scattering. In the second col-
umn of Fig. 3, we show how the TE coefficients change
in the presence of inelastic scattering alone. Because the
phonon absorption process is weaker in the OP case as
a consequence of the lower than unity phonon occupa-
tion number, the conductance of the pristine channel case
(blue bars) is larger compared to that of the AP only case.
Thus, we do not intent to quantitatively compare the two
cases anyway. Furthermore, it is clearly seen that both
the conductance G and the Seebeck coefficient S are re-
duced in the SL structure, G even more in the SL plus
NIs structure (compare the blue bar to the red and ma-
genta bars in the second column group of Fig. 3). This
reduction in both G and S leads to a large reduction in
the PF by 29%. As shown in Fig. 2 above, the energy re-
laxation process of charge carriers in the region between
the SL barriers causes electrons to propagate at lower
velocity states, which leads to reduction of the conduc-
tivity and of the Seebeck coefficient. This is again shown
clearly in Figs. 4(c) and 4(d), where we plot the trans-
mission Tr and Tr (∂f/∂E) for the pristine (blue lines)
and the SL structure (red-dashed lines) when only OP
scattering is considered. The peak in the pristine case at
low energies is a consequence of not having phonon emis-
sion processes for carriers with energies smaller than the
OP energies considered here ~ω = 0.06 eV. In the case of
the SL structure, however, where the EF is raised at the
VSL level, emission is actually possible. In this case the
scattering rate into lower energy states is larger, leading

to reduction of the electronic conductivity compared to
the pristine channel, despite the higher carrier energies
and velocities. (Note that in the presence of inelastic
scattering, the current flow, although constant along the
channel, varies in energy. Thus, the transmission versus
energy function is also spatially varying. In this case we
still have transmission for energies below VSL because we
extract the transmission at a point in the middle of the
channel, where relaxation allows current flow at lower
energies).

In the case where we introduce NIs in the region be-
tween the SL barriers (Fig. 3, column 2, magenta lines),
the conductance suffers even more. However, the PF is
slightly increased compared to the SL case (red bar), but
is significantly reduced by 27% compared to the pristine
case (blue bar). We mention here that our simulations
(not shown here), indicate that the degrading effect of
energy relaxation can be prevented when OP emission is
suppressed. This can be achieved by utilizing lower en-
ergies for transport compared to ~ω (lower Fermi level
and consequently lower VSL) or materials with large ~ω,
such that there is not enough energy range for emission
to happen.

In a realistic scenario, however, the scattering is domi-
nated by both elastic and inelastic processes. In the third
column of Fig. 3 we show G, S, and PF , respectively, in
the case in which AOP scattering is taken into account.
Note that here the strengths of both scattering mecha-
nisms are reduced to half of their initial values in order to
have similar conductance numbers as in the AP case (for
the pristine structure, blue bars) for a more reasonable
comparison. Since the scattering rates and relaxation
rates change, we cannot map quantitatively the results
of this column to the previous two, but we treat it as a
separate case and we only draw qualitative conclusions.
In this scenario, the conductance in the case of SL bar-
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riers only (red bar) naturally increases in comparison to
that of the pristine channel (blue bar) as the electrons
propagate at higher velocity states (see Fig. 4(a)). Even
if OP emission takes place, in this case the reduction in G
is not significant enough to lower it below that of the pris-
tine channel. The Seebeck coefficient on the other hand,
is reduced largely in the case of SL barriers in compari-
son to the pristine channel, which is similar to the case in
which only OP scattering is considered (middle column).
The origin of this similarity is that when both types of
scattering processes are considered in this context, the
energy relaxation is still determined by the OP scattering
(note that as before we raise the EF in the SL channel).
We also note in the inset of Fig. 3(c) that the aver-
age energy of the current flow measured from the Fermi
level (i.e. Eq. (11)), in the case of the pristine channel,

〈Epristine〉 − Epristine
F = 0.053 eV (left), while in the case

of a channel with SL barriers, 〈ESL〉 − ESL
F = 0.042 eV

(right), which is a factor of ≈ 0.79× smaller than that of
the pristine case. Thus, similarly, the Seebeck coefficient
shown in the bar chart drops from Spristine = 1.77×10−4

V/K to SSL = 1.39 × 10−4 V/K, i.e., by a factor of
≈ 0.78×. Due to the large reduction in the Seebeck co-
efficient, the PF is also degraded.

Potential wells reduce PF only slightly: We now
investigate the structures where the SL layers and the NIs
introduce potential wells for transport electrons (green-
colored bars in Fig. 3). In the AP case, either of the
two features reduce the conductance slightly, increase the
Seebeck coefficient again very slightly, and thus the PF
suffers only slightly by 1.1% and 2.6%, respectively, com-
pared to the pristine material. As expected, potential
wells cause some obstruction to transport due to reflec-
tions at the interfaces of the SL and NI boundaries, but
this is not enough to cause significant reduction of the
PF . The degradation of the PF in the case in which in-
elastic scattering alone is taken into account is 11% and
19% for the SL wells structure and for the SL wells plus
NIs structure, respectively (second column, third row of
Fig. 3, compare blue vs green bars). This reduction is
significantly less than that in the case of SL barriers and
SL barriers plus NIs. This is due to the fact that, since
the wells formed are thin in our case (5 nm), the carrier
energy cannot relax easily in there, which therefore leads
to a weak degrading influence.

To summarize, therefore, in materials in which trans-
port is dominated by elastic scattering, or if the inelastic
scattering energy relaxation length is much larger that
the characteristic geometrical features of the channel, it
is beneficial to utilize nanostructures that form potential
barriers, while setting high Fermi levels at the level of the
SL barriers. In that case, benefits to the PF by > 20%
can be achieved. In the case where the dominant scatter-
ing mechanisms are inelastic, then nanostructuring using
potential wells is more beneficial. Although in this case
improvements cannot be achieved, at least the reduction
to the PF is minimal. Later on we analyze these two
cases in more detail.

FIG. 5: (Colour online) Transmission Tr versus electron
energy E for the channel with SL barriers and nanoinclusions
(NIs) in the elastic scattering regime (AP scattering only)
for: (a) increasing NI barrier height VN, and (b) increasing
number of NIs. In (b) the height of the NIs is set to VN = 0.1
eV. The insets show schematics of the channels considered.

Robustness to VN and NI number density: In
the first case, where NIs form barriers, and under elas-
tic scattering conditions, where benefits are observed, it
is important to note that these benefits seem to be ro-
bust to the barrier heights of the NIs and their number
density. Figure 5, for example, shows the transmission
versus energy in the case where only AP scattering is
considered for increasing values of VN (Fig. 5(a)) and
for increasing number densities (Fig. 5(b)), as also illus-
trated in the insets. In Fig. 5a, by changing the barrier
height from zero to VN = 0.05 eV and then to 0.1 eV, the
transmission changes only slightly. The same is observed
in Fig. 5(b) when the number of NIs changes from zero
to 4 and then to 10. Minimal changes to the transmis-
sion are observed, indicating that the performance will
be robust to such variations. It is known from a previ-
ous simulation work that the NI number density does not
have a significant influence on the PF when the Fermi
level is raised in the bands and VNI ≤ EF, because the
moderate decrease they cause in G is compensated by
an increase in S [41]. Experimental observations, where
NIs embedded within matrix TE materials also point to
this direction [26, 42, 58]. Here, in the hierarchical archi-
tecture, even better, the NI density does not affect the
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FIG. 6: (Colour online) Row-wise, summary of conductance G, Seebeck coefficient S, and power factor PF , for SL structures
with barrier nanoinclusions (NIs) as shown in Fig. 1(c). Results for increasing NI barrier heights VN are presented. Column-
wise, results for AP scattering only, OP scattering only, and AOP scattering are shown. In (c), the PF of the optimized pristine
channel (Fig. 1(a)) is shown by the green dashed line. The red, blue and magenta lines show results in which the number
density of NIs increases from 2 × 2 to 3 × 2 and 5 × 2 NIs, respectively-as shown in the inset of (b). The dotted black lines
extend the results to the case where the NIs are replaced with voids, as shown in the inset of (b) as well. The SL barrier height,
VSL, is denoted as well.

transmission, which means it affects neither G, nor S,
nor the PF . The density, however, can drastically affect
the thermal conductivity by increasing phonon scattering
as shown in several works [34, 59–62], which will benefit
the overall ZT figure of merit. We can attribute this
difference in behavior to simple scattering theory, i.e.
from Matthiessens rule the scattering mechanism with
the smaller mean-free-path will have the largest effect.
For example in Si the mean-free-path for electrons is of
the order of few nanometers, but for phonons the domi-
nant mean-free-path is ∼ 135 nm - 300 nm [63, 64], which
largely increases the influence of closely packed NIs on
phonons, rather than electrons.

Comprehensive analysis: In Fig. 6 we present a
comprehensive analysis for the TE coefficients in the SL
plus NIs barrier case, as functions of the NI barrier height
VN and for increasing NI number density. In a similar

manner to Fig. 3, row-wise we show the TE coefficients
G, S, and PF , while column-wise we show results for
simulations that consider only AP scattering, only OP
scattering, and AOP scattering, respectively. We con-
sider the initial structure as the one which contains the
SL barriers of height VB = 0.05 eV, and we plot data
versus the heights of the NI barriers VN. In each sub-
figure we show results for three structures, containing 4,
6 and 10 NIs in the regions between the SL barriers (as
shown in the inset of Fig. 6(b)). In all cases we observe
that, as the NI barrier height increases, the conductance
is reduced, however not strongly. The Seebeck coeffi-
cient demonstrates only a small increase, as the NIs tend
to push 〈E(x)〉 slightly upward as shown in Fig. 2(b).
Therefore, in the case of AP scattering in SL channels,
the PF exhibits a slight degradation of the order of 10%
when NIs are introduced (Fig. 6(c)). However, even at
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the high NI density and high VN, the PF is higher than
that of the pristine material we began with (horizontal
dashed-green line in Fig. 6(c)). A ∼ 10% reduction in the
PF is observed in the case in which only OP scattering
is considered (middle column, Fig. 6(f)), but in this case
the PF is already ∼ 30% below the pristine material PF
value (not shown). In the third column of Fig. 6, where
we consider the influence of AOP scattering, we observe
again a ∼ 4% decrease in the PF in comparison to the
pristine case, an intermediate percentage value between
the two extreme cases (although due to the scattering
rates chosen, we cannot quantitatively compare this case
to the previous two directly). In addition, as the number
density of NIs increases, the conductance and PF drop
slightly, however their effect is not significant, even at
high NI densities.

The effect of voids: The far right points connected
by the black-dotted lines in the sub-figures of Fig. 6,
indicate the corresponding results in the case where the
NIs are replaced with voids. For simulation purposes, we
increase VN in those geometries to very large numbers,
effectively leading to vanishing wave function in those
regions, which resembles a void structure. We notice
that voids cause significant degradation in the conduc-
tance and in the PF ; namely, there is 30% - 50% reduc-
tion from the SL reference depending on the NI number
density (it turns out that in this case the density has a
stronger effect). The Seebeck coefficient also seems to
be reduced in the presence of voids, and interestingly
it can be reduced to values below the Seebeck value of
the SL channel without NIs or voids that we began with
(left-most data points in Figs. 6(b), (e), and (h). The
reasons behind this counter-intuitive simultaneous reduc-
tion in both conductance and Seebeck coefficient will be
discussed later on. It is important to note, however, that
voids degrade the thermal conductivity drastically, com-
pared to NIs [65, 66]. Thus, despite the ∼ 50% reduction
in the PF , a large increase in the ZT figure of merit is
expected to be achieved in the void structures.

Note also that although in the presence of voids the
conductance is degraded, the degradation is smaller when
the Fermi level is placed at degenerate conditions, i.e.,
when EF is placed at the level of the SL barriers, in which
case the carriers have higher velocities and are affected
somewhat less. In Fig. 7(a) we show the transmission of
the pristine channel and of the SL channel with/without
voids, plotted versus the carrier energy. The blue/red
lines correspond to the absence/presence of voids in a
pristine channel (solid lines) and the channel with SL
barriers (dashed lines), where the conduction opens af-
ter VSL. The transmission in the SL case with or with-
out voids (dashed lines), has a large slope after the en-
ergy crosses VSL (around the SL Fermi level), larger than
the slope of the pristine channel (at E = 0 eV, around
the pristine channel Fermi level). In the pristine chan-
nel, upon the introduction of voids (red solid line), the
transmission slope decreases significantly, starting and
remaining close to zero for several meV above EF = 0

FIG. 7: (Colour online) Comparison of the effect of voids
on the transmission of the pristine channel (with EF at 0 eV)
and the SL channel, in which case the latter operates at highly
degenerate conditions (EF = 0.05 eV). (a) Transmission ver-
sus carrier energy of a pristine channel in the presence (red
solid line) and in the absence (blue solid line) of voids. The
dashed lines show the respective transmissions for a channel
with SL barriers. (b) Transmission ratios Trvoids/Trprist and
TrSL+voids/TrSL plotted versus carrier energy.

eV. Notice on the other hand, that in the SL case upon
the introduction of voids (red-dashed line), the transmis-
sion is not degraded around E = VSL where the Fermi
level is placed. As also seen earlier for the transmission
of SL barriers in Fig. 5, this means that the conductance
of the pore structures suffers less if we operate at degen-
erate conditions.

This is reflected more clearly in Fig. 7(b) where we
show the ratio of the transmission of the pristine channel
with voids to that of the pristine channel, Trvoids/Trprist

(solid line) and the ratio of the transmission of the
SL channels with voids to that of the SL channels,
TrSL+voids/TrSL (dashed line) plotted versus energy. In
the SL channels the ratio of the transmissions starts from
unity at E = VSL, indicating the weak influence of the
voids. In the pristine channel, on the other hand, the ra-
tio begins at zero at E = 0 eV, indicating that in this case
the effect of voids is detrimental. This is quite important,
indicating that the electronic conductance in highly dis-
ordered structures, which can slow down phonons sig-
nificantly, can be less affected if they are operated at
degenerate conditions, which will help the PF .
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FIG. 8: (Colour online) Transmission Tr versus electron
energy E for the channel with SL wells and for the channel
with SL wells plus NI wells between them for (a) elastic-AP
scattering (b) inelastic-OP scattering, and (c) elastic/inelastic
AOP scattering regimes combined. The solid blue line shows
results for the pristine channel, the green dashed line corre-
sponds to the SL wells channel, and the green dashed-dotted
line corresponds to the SL wells+NI channel, as indicated in
the inset of (a).

Making use of the observations in Fig. 7, we discuss
briefly now the reason for which the values of the Seebeck
coefficient of the SL channel with voids are smaller than
those of the SL channel without voids (see Figs. 6(b), (e),
and (h)). As can be observed in Fig. 7(a), for energies
close to VSL (and also EF) the SL+voids channel (red-
dashed line) has similar transmission to that of the SL
channel (blue-dashed line). However, at higher energies
the transmission of the SL+voids channel grows with en-
ergy at a slower rate and it merges with the lower trans-

mission of the pristine+voids channel. As a consequence
the Seebeck coefficient, which is proportional to the slope
of the transmission (in a similar manner that is propor-
tional to the derivative of the density of states at the
Fermi level), drops to lower values compared to those of
the SL channel, i.e., the right-most points in Figs. 6(b),
(e), and (h) are lower than the left-most points which
correspond to VN = 0.

Transport in the case of potential wells: Finally,
we examine the transport behavior of the structures in
which the SL barriers and the NIs form potential wells.
As indicated above in Fig. 3, the degradation in the con-
ductance and in the PF is very small, of the order of
∼ 1%. In Figs. 8(a)-(c) we show the transmission func-
tion versus energy in the cases where only AP scatter-
ing is present, only OP scattering is present, and where
both elastic and inelastic scatterings are present, respec-
tively. In each sub-figure we show three cases: i) pris-
tine channel, ii) SL structure, and iii) SL structure plus
NIs, all forming potential wells for electrons. These ge-
ometries are depicted in the insets of Fig. 8(a). Under
elastic scattering conditions (Fig. 8(a)), in all three cases
the transmission functions are almost identical, indicat-
ing that the nanostructuring does not obscure electronic
transport. This is expected as the carriers flow at higher
energies compared to the well energy levels. Some quan-
tum reflections, however, are always present [41, 52], and
thus some minor signatures are evident in the transmis-
sion features. In the case of OP scattering conditions in
Fig. 8(b), a large peak is observed in the pristine case at
low energies due to the lack of OP emission (blue line).
At energies higher than the phonon energies ~ω = 0.06
eV, a sharp drop is encountered, a result of the fact that
the electrons have enough energy now to emit a phonon
and lose energy all the way to the band edge. In the case
of SL structures (green-dashed line) and the SL plus NIs
geometries (green-dashed-dotted line), the initial peak is
slightly suppressed, since now electrons have narrow re-
gions (of the size of the SL and NI wells, ∼ 3 nm - 5
nm) to emit phonons and move to lower energies. How-
ever, this process is weak and the transmission is not
significantly changed, which also shows why the conduc-
tance and PF do not degrade noticeably compared to
the pristine structure. In the case of Fig. 8(c), where
AOP scattering is considered, the transmission function
among the three geometries differs again slightly, the de-
gree being intermediate between the completely elastic
and completely inelastic behavior. This directly reflects
the fact that the PF does not change significantly from
the pristine case when the wells are introduced. We note
here, that our model considers nanostructuring as caus-
ing simple shifts in the band edges. In reality, however,
the effective masses of the NIs will vary, strain fields will
build around them, charging effects and interface resis-
tances will appear, and the phonon-scattering details will
also change. These will most probably add an additional
reduction in the transmission which needs to be exam-
ined more carefully taking into account material specific
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parameters. However, our results demonstrate that to
first order we should not expect large conductivity reduc-
tions from potential wells, as also is the case observed in
experiments [37].

IV. DISCUSSION ON OPTIMAL
NANOSTRUCTURING FOR HIGH POWER

FACTORS

In our simulations we have chosen the simplest possible
system that can account for energy filtering through bar-
riers and energy relaxation through wells (i.e., only 2 bar-
riers) without strong PF degradation We did not intent
to optimize the power factor of the hierarchical structure,
it could be that higher power factors can be obtained for
different geometries, but that would require significantly
more work. Our purpose was to show that hierarchical
architectures could provide benefits for the power factor,
using geometrical features that we believe are close to
optimal. Thus, here we elaborate on the reasons some of
our choices are justified, which could also serve as useful
guidelines to experimentalists in the design of high power
factor advanced nanostructured thermoelectric materials
in the presence of energy filtering:

i) EF and VB choice: Degenerate conditions (with EF
into the bands) are beneficial to employ high velocity
electrons, and in that case the barrier heights VB and
the Fermi level EF need to be positioned at similar lev-
els. Energy filtering from potential barriers increases the
Seebeck coefficient, however, not so easily the power fac-
tor unless these conditions are satisfied.

ii) Distance between filtering barriers: This needs to be
large enough because the more closely spaced the barriers
are, the larger the resistance and the lower the conduc-
tivity, but on the other hand short enough, such that
carriers do have space to relax their energy completely
(this reduces the Seebeck coefficient and conductivity).
Therefore, the distance is determined by the energy relax-
ation mean-free-path λE (which is typically larger than
the momentum relaxation mean-free-path). In our sys-
tems we have chosen an energy relaxation mean-free-path
of 15.5nm, and thus, a distance between the barriers of
50nm, which is almost 3.5 times larger and allows semi-
relaxation of the carrier energy. Indeed, for similar sim-
ulation scattering parameters, in Ref. [67] we showed
that the distance between barriers is optimized at around
50nm.

iii) Spacing between the nanoinclusions (NIs) within
the barriers: From simple scattering mean-free-path con-
siderations, it is common to assume that the NIs intro-
duce a mean-free-path similar to the distance between
them, and this needs to be combined with the momentum
relaxation mean-free-path (not the energy relaxation-
mean-free-path only), through Matthiessens rule. In our
simulations, the distance between the NIs for the high
density case is dNI = 6nm, which is quite smaller com-
pared to the mean-free-path of electron-phonon scatter-

ing. In principle, NIs degrade the power factor from its
optimal value, and should be avoided if we only consider
power factor improvements. However, they bring sig-
nificant degradation in the thermal conductivity, for ex-
ample in semiconductor materials for which the phonon
mean-free path is 10s-100s of nanometers. The important
observation in this work, however, is that the degrading
influence of NIs on the power factor of hierarchical ar-
chitectures is suppressed (at a larger degree compared
to material cases that do not include the SL barriers).
This is because the SL barriers (in combination with el-
evated Fermi levels) utilize charge carriers of higher en-
ergies, which are less susceptible to scattering from NIs.
The scattering rate of high energy/large wavevector car-
riers by potential barriers is weaker, especially when the
NI barrier height VNI is lower compared to the carrier
energies (or negative in the case of wells). Thus, the
recommendation for practical design of such hierarchi-
cal geometries is that the degrading effects on the power
factor will be suppressed even if the NIs are placed at dis-
tances smaller compared to the mean-free-path of charge
carriers.

With regards to improving the performance of thermo-
electric materials, we need to mention here that although
the electronic conductivity can be designed to be immune
to the presence of NIs to a large degree, this is not the
case for the thermal conductivity. A large number of lit-
erature reports indicate that NIs indeed cause significant
degradation in the thermal conductivity [64, 68, 69]. The
combination of these two effects could decouple the elec-
trical with the thermal conductivities and improve the
ZT figure of merit. There are two reasons why NIs affect
phonons more than electrons: i) The distance between
NIs can be thought of as the mean-free-path for scatter-
ing on the NIs. From simple Matthiessens rule scattering
rate combination, the carrier with the longer mean-free-
path will experience the larger relative reduction in its
conductivity from a given NI geometry. Therefore, the
thermal conductivity, carried by phonons with dominant
mean-free-paths in the 10s-100s of nanometers (in com-
mon semiconductors like Si), will experience a stronger
reduction compared to the electronic conductivity, where
electrons have mean-free-paths of a few to 10s of nanome-
ters. ii) Scattering of electrons on NIs is caused by the
potential barriers that the NIs form. The electrons that
contribute to conductivity are located energetically in a
narrow window around the Fermi level, which can be
shifted at high energies, where carriers are less obscured
(especially if the barrier height VNI is small or negative).
Phonon scattering on the other hand, does not offer this
degree of freedom in the design of thermal conductivity.
At room temperature for example, most phonons in the
spectrum contribute to transport, and since phonons are
lattice vibrations, they are affected by lattice interrup-
tions. Therefore, although different nanostructuring can
affect phonons with different mean-free-paths differently,
all phonons are affected by NIs and the SL barriers.
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V. SUMMARY AND CONCLUSIONS

In this work we investigated the influence of hierar-
chical nanostructuring on the thermoelectric coefficients
of nanomaterials, which are the primer candidates for
achieving ultra-low thermal conductivities and high ther-
moelectric ZT figures of merit. Using the fully quan-
tum mechanical NEGF transport formalism, we studied
systematically two-dimensional materials with embedded
SL-type barriers/wells combined with quantum dot-like
NIs and voids. We found novel effects and presented de-
sign strategies for such materials, and stated the condi-
tions under which the PF is not only immune to nanos-
tructuring, but it can also be improved. In summary,
we showed that: 1) Nanostructuring using superlattice-
like potential barriers and nanoinclusions can have up to
20% PF improvements even at very high nanoinclusion
densities, as long as the Fermi level is placed well into
the bands and charge carrier relaxation is avoided; 2)
Nanostructuring using potential wells causes only minor
reduction in the PF , even at very high nanostructuring
densities. Thus, designing the nanostructured geometry
of such materials should take into account the energy re-
solved mean-free-path of carriers, as well as their energy
relaxation length caused by inelastic processes, in this
case the optical phonon energies and the electron-optical
phonon interaction strength. Such insight is currently
not being explored in hierarchical nanostructured ma-
terials, where current strategies only focus on thermal
conductivity reduction. It can, however, offer significant
benefits to the thermoelectric figure of merit by simulta-
neously improving, or at least not degrading the power
factor as well.

Acknowledgments This work has received funding
from the European Research Council (ERC) under the
European Union’s Horizon 2020 Research and Innovation
Programme (Grant Agreement No. 678763). We thank
Dr Mischa Thesberg for helping with the construction of
the NEGF simulator. We also thank Samuel Foster and
Dhritiman Chakraborty for helpful discussions.

Appendix A: The acoustic deformation potential
scattering rates

For elastic acoustic deformation potential (ADP) scat-
tering, where ~ω → 0, we use the commonly employed
equipartition approximation. This results in the acoustic
scattering rates to become proportional to the density of
final states at the energy of the electronic state under con-
sideration with the proportionality constant determined
by the acoustic phonon deformation potential DA, the
temperature, and other material parameters. This pro-
cess is described in detail in Ref. [70], whereas the con-
nection of the constant DAP used within NEGF to the
actual deformation potential DA is presented in Ref. [44].

The ADP scattering rate is determined by [70]:

1

τ
=
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2
∓ 1

2

)
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where m∗ is the effective mass of the material, DA is
the deformation potential, ρ is the mass density, vs is
the sound velocity, and p is the carrier momentum. nB is
the number of phonons, determined by the Bose-Einstein
distribution, and the integration is performed over all
phonon wavevectors that participate in ADP scatter-
ing. Since the number of acoustic phonons at room
temperature is large so that nB ' nB + 1, and because
kBT � ~ω, we can use the equipartition approximation
nB ≈ kBT/~ω. Taking also into account that the phonon
dispersion is linear for acoustic phonons (ω = υsβ) the
above equation can be simplified as
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where a factor of 2 has been inserted due to both emission
and absorption processes. In order to ensure momentum
and energy conservation, βmin = 0 and ~βmax = 2p, and
therefore we get
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s

k

~
, (A3)

where k = p/~ is the electron wave vector. Using k =

(2m∗E)
1/2

/~, and the density of states, g(E), in 3D:

g(E) =
1

2π2

(
2m∗

~2

)3/2

E1/2, (A4)

we can finally write the rate equation as:

1

τ
=
πD2

AkBT

~ρv2
s

g(E). (A5)

Thus, the ADP scattering rate can be approximated with
a constant times the density-of-states, which is standard
practice.

Appendix B: Seebeck coefficient as average energy
of the current flow

In order to extract the Seebeck coefficient S we proceed
as follows. In the Boltzmann transport formalism, the
Seebeck coefficient is given by:

S =
kB

qσ

∫ ∞
−∞

dE

(
− ∂f
∂E

)
Ξ(E)

(
E − EF
kBT

)
, (B1)

where Ξ(E) is the transport distribution function. In
terms of the energy and position resolved current
Ich(E, x) the Seebeck coefficient can be expressed as

S′(x) =
1

qIch

∫ ∞
−∞

dEIch(E, x)

(
E − EF

T

)
, (B2)
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which can be rewritten as

S′(x) =
1

qT

(
1

Ich

∫ ∞
−∞

Ich(E, x)EdE − EF
)

=
1

qT
〈E(x)− EF 〉, (B3)

where the integral in the last equation is the definition of
the average energy of the current. The same derivation
can be expressed in terms of the transmission by using

the definition: Trn(E) = (W/L)2π~Ξn(E). The total
Seebeck coefficient of the channel is then given as

S =
1

L

∫ L

0

S′(x)dx =
1

qTL

∫ L

0

〈E(x)− EF 〉dx, (B4)

where q is the carrier charge (q = −|e| for electrons and
q = |e| for holes) and 〈E(x)〉 is the energy of the current
flow along the transport direction as given in Eq. (11).
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