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Abstract: This review contains an account of recent developments in the applications of N’-

monoalkylated or N’-mono(thio)acylated(N-sulfonyl)-1,2-diphenylethylene-1,2-diamine 

(TsDPEN) derivatives to asymmetric catalysis. The coverage features examples of applications 

of derivatives as ligands in organometallic complexes for use in asymmetric reduction and 

oxidation reactions. The use of TsDPEN derivatives as catalysts in a diverse range of C-C and 

C-S bond formation reactions is also described in detail.

1. Introduction. 

N-(p-Tosyl)-1,2-diphenylethylene-1,2-diamine (TsDPEN) 1 (Figure 1) is a widely used chiral 

diamine derivative with synthetic applications in asymmetric catalysis. The precursor to 1, i.e. 

1,2-diphenylethylene-1,2-diamine 2 (Figure 1), can be readily prepared in both 

enantiomerically pure forms. This can be achieved through the reaction of benzil with 

cyclohexanone and ammonium acetate to initially form a spiro-bicyclic diimine intermediate 

which is then reduced with metallic lithium and hydrolysed to give the racemate, subsequently 

resolved through the formation of its tartaric acid salt.[1a,1b] Enantiomerically-pure DPEN 

may also be prepared via the diol precursor, itself generated using a Sharpless asymmetric 

dihydroxylation reaction.[1c,1d] Enantiomerically-pure DPEN itself has found extensive 

applications as a component of asymmetric organometallic catalysts, and for ketone 
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hydrogenation in particular.[2] TsDPEN, and other sulfonylated derivatives, may then be 

prepared through an efficient monotosylation of the diamine.

TsHN NH2

Ph Ph

H2N NH2

Ph Ph

(R,R)-TsDPEN-1 (R,R)-DPEN-2

Figure 1. Structures of (R,R)-TsDPEN and DPEN.

Perhaps the most successful and established application to catalysis of TsDPEN is as a ligand 

in [6-arene)Ru(II)TsDPEN(Cl)] complexes such as 3a-3d (Figure 2), which are now 

established as efficient and selective catalysts for asymmetric transfer hydrogenation (ATH) of 

ketones and imines.[3] In ATH applications, the simple preparation of the derived catalysts by 

the reaction of TsDPEN with an 6-arene ruthenium(II) chloride dimer precursor makes the 

reagents highly practical. Derivatives containing alternative sulfonamide groups have also been 

reported. In contrast, very few examples of catalysis by N’-monofunctionalised TsDPEN 

derivatives (i.e. containing a single alkyl or acyl group on the non-sulfonylated amine) have 

been reported, which is surprising given the potential for modification of the properties of the 

catalyst whilst retaining a basic nitrogen functionality and NH-bonding potential in the likely 

catalytic cycles. 

Ru
TsN NH2

Ph Ph

Cl

3b

iPr

Ru
TsN NH2

Ph Ph

Cl

3a

Ru
TsN NH2

Ph Ph

Cl

3c

Ru
TsN NH2

Ph Ph

Cl

3d

Figure 2. Asymmetric transfer hydrogenation (ATH) catalysts derived from (R,R)-TsDPEN.

Hence this review will specifically summarise developments in the use of N’-monoalkylated 

TsDPENs 4 and N’-(thio)monoacylated TsDPENs 5, and related derivatives containing 

alternative sulfonamide substituents (Figure 3). However the coverage will not include 

‘tethered’ complexes such as 6 as these have been reviewed previously.[4] Dialkylated 

TsDPEN derivatives will not be discussed, although some examples of their applications have 

been reported.[5]. Likewise, the applications of TsDPEN derivatives linked to an N’-imine or 

imidazoline will also not be described.[6] 
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NH HN

Ph Ph

R

N'-monoalkylated, N-
sulfonylated DPENs 4

NH HN

Ph Ph

X

R
O2SO2S

R' R'

Ru
N NTs

Ph Ph

Cl

H

N N

Ph Ph

O2S
R'NH NR2

Ph Ph

N',N'-dialkyl
derivatives

O2S
R'

R

Coverage in this review:

NH N

Ph Ph

O2S
R' R

Imine
derivatives

N'-mono(thio)acyated, N-
sulfonylated DPENs 5

X=O or S

Not covered in this review:

tethered catalysts 6
Imidazoline
derivatives

Figure 3. N’-monoalkylated and N’-mono(thio)acylated TsDPEN derivatives will be 

reviewed. 

2. Use of N-alkylated TsDPEN in asymmetric transfer hydrogenation and hydrogenation:

In one of the earliest papers on ATH by Noyori et al. [3f] in which formic acid/triethylamine 

(FA/TEA) was used in the reduction, some specific observations were made on the importance 

of the electronic and steric nature of both the 6-arene ring and the diamine. In terms of 

reactivity, complexes with an 6-benzene (3a) were found to be the most reactive, followed by 

p-cymene and mesitylene (3b, 3c) and finally hexamethylbenzene complexes (3d) were the 

least reactive. However the mesitylene and p–cymene-containing complexes 3b and 3c gave 

the best reduction enantioselectivities. More significantly, it was stated that the presence of the 

primary amine in the TsDPEN part was highly important and that ‘the NHCH3 analogue 

showed a comparable enantioselectivity but with much lower reactivity; the N(CH3)2 derivative 

gave very poor reactivity and stereoselectivity.’. In light of the accepted mechanism by which 

the hydride derivatives of catalysts 3a-d are believed to operate[2e,3], in which an N-H bond 

is essential, this is unsurprising. In 2011, Wills et al prepared and isolated the N’Me2 derivative 

of 3a and confirmed that it was a very poor catalyst for ketone ATH, but was effective at imine 

reduction (although products of low ee were formed), suggesting a different mechanism for 

imine reduction.[7].

In 2004, Ikariya and Koike reported a study on the rates of formation of formate derivatives of 

3a-3d (i.e. with a formate in place of Cl) from the corresponding ruthenium hydrides upon 

reaction with carbon dioxide [8]. Although most studies were focussed on the parent TsDPEN-
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derived complexes, an N’-methylated derivative was also studied, and the rates were 

comparable. However the ruthenium hydride with two N’ methyl groups, did not form the 

formate, indicating that the N-H bond was essential to the mechanism. 

In 2009, Wills et al. reported a systematic study on N-alkylated TsDPEN derivatives 7 (Figure 

4).[9] It was found that systematic variation of the alkyl group has some measurable effects, 

notably that addition of a methyl group actually generated a more active catalyst, and that the 

addition of linear alkyl chains has no detrimental effects on the catalysis of ATH of ketones or 

imines. The addition of more bulky chains reduced the activity of the complexes, although the 

ees were not significantly affected. An important observation was that the use of the 6-benzene 

ring in the complexes was essential; complexes containing a substituted arene did not work 

effectively as catalysts, presumably due to the increased steric hindrance. The sense of 

reduction of the cyclic imine which was tested with these and other derivatives suggested that 

an open transition state is operating, rather than the more established ketone reduction 

transition state in which the operation of a hydrogen bond from the N-H to the ketone is 

essential.

Ru
TsN N

Ph Ph

Cl

R
H

7

R=Me, Et, Pr,
Bn, iBu, (CH2)2Ph

O OH

N NH

Rate order:
R=Me>Et>H>Pr>iBu=Bn=(CH2)2Ph

H; 95% ee, Me; 96% ee, Et; 96% ee,
nPr; 96% ee, iBu; 98% ee, Bn; 95%
ee, (CH2)2Ph 96% ee

1 mol% cat 7

FA/TEA,
28 oC

1 mol% cat 7

FA/TEA,
28 oC

Rate order:
R=Me>H>Et>Pr=iBu>Bn>(CH2)2Ph

H; 80% ee, Me; 75% ee, Et; 79% ee,
nPr; 79% ee, iBu; 79% ee, Bn; 85% ee,
(CH2)2Ph 70% ee

Figure 4. A series of N’-alkylated TsDPEN complexes which were effective at ATH of ketones 

and imines.

 

Having the ability to add a functional group to the basic nitrogen atom of TsDPEN without 

detrimentally affecting the catalytic properties of the complexes potentially allows for 

moderation of activity towards specific targets and a means to link the catalysts to a functional 

group which can moderate its properties e.g. with respect to solubility. Further examples of 

what could be tolerated at the ‘basic’ nitrogen atom were reported by Wills et al. and are 

illustrated in Figure 5.[10,11,12] It was found that several functionalised N’-benzyl groups 
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could be added without significantly altering the catalytic and enantioselective properties of 

the reagents in ketone and imine reduction. Although acetophenone reduction and the reduction 

of a dimethoxydihydroisoquinoline proceeded in good ee, reductions of cyclic imines lacking 

a fused aromatic ring were much less enantioselective (Figure 4)[10], and these remain an 

ongoing challenge. A chain to a hydroxyl group could be added without reducing the 

enantioselectivity of the catalyst.[11] Other groups which could be added include anthracene 

and a tri(BIPY)Ru complex (Figure 5), to give complexes which were all still competent in the 

reduction of ketones, underlining a high level of tolerance of functionality at the basic nitrogen 

atom of the complex.[12]

Ru
TsN N

Ph Ph

Cl
H Rn

Ru
TsN N

Ph Ph

Cl
H

CO2Me/H

Ru
TsN N

Ph Ph

Cl
H

Ru
TsN N

Ph Ph

Cl
H

N

N

N

N

N
N

Ru

2 Cl

Figure 5. Examples N’-Alkylated TsDPEN derivatives which have been used in ATH of 

ketones and imines.

In an example published in 2015,[13] a tetraarylphosphonium (TAP)-functionalised ligand was 

prepared and converted to a Ru(II)-based catalyst 8 which was subsequently applied to the 

ATH of ketones in water (Figure 6). The salt was catalytically effective and a range of ketones 

were reduced in aq. FA/TEA (a 1.2:1.0 ratio was found to be optimal). Using this catalyst at 

40 oC, a good number of ketones could be reduced in high ee and conversion. The catalyst 

could also be recycled and reused a number of times by precipitation from solution using ether, 

thus taking advantage of the modified solubility properties of the catalyst, which also proved 

to be very stable.
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Ru
TsN N

Ph Ph

Cl
H

iPr

PPh3

ClO4

Run no.
1
2
3
4
5

Acetophenone reduction
(aq. FA/TEA 1.2:1, S/C=100)

time/h
7
7
7
16
36

conv/%
>99
>99
>99
>99
75

ee/%
94.7
95.0
95.2
94.9
92.1

TAP-Ru-TsDPEN 8

OHCl

14h, >99% conv.
89.6% ee (R)

Products of ketone reduction (40 oC, aq. FA/TEA 1.2:1, S/C=100)
using TAP-Ru-TsDPEN 8

OH

4h, >99% conv.
91.1% ee (R)

Cl

OHBr

7h, >99% conv.
89.9% ee (R)

OH

5h, >99% conv.
91.7% ee (R)

Br

OH

14h, >99% conv.
95.5% ee (R)

MeO

OH

n=1; 7h, >99% conv.
98.1% ee (R)
n=0; 5h, >99% conv.
96.8% ee (R)

n

X OH

X=O; 14h, >99% conv.
95.8% ee (R)
X=S; 14h, >99% conv.
95.5% ee (R)

Figure 6. Use of a tetraarylphosphonium (TAP)-functionalised catalyst 8 in the asymmetric 

reductions of ketones.

Examples have been reported of ATH catalysts supported on heterogeneous supports.[14] The 

catalyst (9) in the report by Ma et al. is linked through both groups to a phosphate-

functionalised polystyrene support (Figure 7).[15] The subsequent reaction of this to form an 

inorganic zirconium phosphate-phosphonate created a ‘pillared’ structure which could be 

separated after each catalytic use (using formic acid/trimethylamine in aqueous solution) by 

centrifugation and washing, and recycled. Throughout the recycling, the ee remained high, over 

five cycles, although there was evidence of some leaching of catalytic material from the system. 

Using the catalyst in aqueous solution permitted the reduction of a range of ketones in excellent 

conversions (yields >90% in most cases) and high ee. 

Ru
N N

Ph Ph

Cl
H

9

iPr

Ph PO3H

Ph

HO3P

O2
S

n

m

n

m
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Figure 7. A polystyrene-supported catalyst which was encapsulated into a zirconium 

phosphate-phosphonate inorganic support.

Touge reported the synthesis and applications of arene/Ru/TsDPEN complexes such as 10 

containing boronic acid groups attached to the basic nitrogen atom [16], and these are reported 

to form effective catalysts for asymmetric reductions (Figure 8A). A catalyst derived from an 

N’-phosphoric acid-functionalised TsDPEN derivative was also reported.

Ru
TsN N

Ph Ph

Cl
H

10

iPr

Ru
TsN N

Ph Ph

Cl
H

11

iPr

O
O

OH/Me
n

O OH

n n

n=2, 98% conv, 99% ee
n=1 97% conv. 99% ee

Ru
TsN N

Ph Ph

Cl
H

12

X

N

NN

Y

Reduction of acetophenone with 12
(FA/TEA 5:2, 1 mol% catalyst, 28 oC).

A Boronic-acid functionalised (arene)Ru complex:

B (arene)Ru complex containing PEG-ligand for aqueous solubility:

C (arene)Ru complex containing link via remote triazole group:

X
O
CH2
CH2

Y
(CH2)2OBn
Bn
methacrylate polymer

time/h
136
71
24-144

conv/%
99
97
up to 100

ee/%
96
95
90-95

B(OH)2

Reduction of cyclic ketones with 11
(HCO2Na, H2O, 1 mol% catalyst, rt).

Figure 8. Modified arene/Ru/TsDPEN catalysts containing links to the N’-nitrogen atom of 

the TsDPEN ligand.

A series of modified TsDPEN-containing ligands bearing N’-PEG chains (200-2000 Daltons) 

were prepared by Li et al. through a reductive amination of the PEG aldehyde with TsDPEN 

(Figure 8B).[17] These modified ligands worked effectively in aqueous transfer hydrogenation 

of ketones using sodium formation as the reducing agent. A range of ketone reductions were 

reported and, more significantly, the PEG-based catalysts could be reused multiple times by 

extracting the reduction product from solution using hexane, then adding fresh formic acid and 

substrate. A similar reagent, attached through formation of a triazole, to a soluble polymer 
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made from methacrylate units, was also reported and demonstrated to be almost as effective as 

the unsubstituted reagents (Figure 8C).[18]

Touge and Arai investigated the asymmetric hydrogenation, i.e. using hydrogen gas rather than 

ATH, of a series of challenging indole substrates using arene/Ru/TsDPEN catalysts [19] and 

were encouraged by the observation made previously [8,9] that addition of the methyl group to 

the basic nitrogen atom of the ligand resulted in the formation of a more active catalyst. Indeed 

this modification led to the preparation of cationic catalyst 13 which exhibited a much higher 

level of activity and was able to catalyse the reduction of 2-methyl indole with full conversion 

and high ee within a few hours using 5 bar or less hydrogen and at 10 oC (Figure 9). The use 

of cationic catalyst, i.e. where the ‘Cl’ is replaced by BF4 or TfO or some other bulky anion, 

has already been demonstrated to be important for the catalysis of hydrogenation, however the 

equivalent non N’-methylated catalyst was less reactive. 

The catalyst was also successfully applied to the reduction of a range of mono and di-

substituted (at the indole) substrates (Figure 9), giving the reduced products in high yields and 

enantioselectivities. 2,3-Disubstituted products were formed as the cis-diastereoisomers, 

whether cyclic or acyclic with respect to the newly-formed saturated ring. In each case the 

yields and ees were high and in one case the S/C was as high as 2000.

Ru
TsN N

Ph Ph

BF4

Me
H

13

iPr
N
H N

H

5 bar H2, 10 oC

7 h, HFIP

S/C 500, catalyst 13

R

N
H

R2

N
H

R2
5 bar H2, 0-30 oC

23-31 h, HFIP

S/C 100-2000, catalyst 13

R1 R1

>99% yield
96.2 % ee

Major product using
(R,R)-catalyst.
R1=R2=Me or
R1-R2 = (CH2)3 or (CH2)4
yield >99% in best cases
91-99% ee

N
H

OR

R=TBS: Using (S,S)-13:
94% yield, 92% ee
(30 oC, 7h)

R=Bn: Using (S,S)-13:
94% yield, 84% ee
(30 oC, 7h)

N
H

Using (S,S)-13:
90% yield, 90% ee
(30 oC, 7h)

O

O

N
H

CO2R

n=2, R=Et: Using (S,S)-13:
95% yield, 91% ee
(10 oC, 30h)

n=0, R=Me: Using (S,S)-13:
91% yield, 72% ee
(30 oC, 27h)

n
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Figure 9. Asymmetric reduction of indoles using the N’-methylated cationic complex 13; the 

non-N’-methylated complex was less active. 

Halogenated indoles and substrates containing sensitive protecting groups such as benzyloxy 

and acetals were also selectively hydrogenated without damage to the functionality, allowing 

a series of post-reduction functionalisations to be carried out, such as Pd-catalysed coupling 

reactions. 1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) was identified as the best solvent in these 

reductions and could be recovered and reused. 

In the same year (2016), Fan et al independently reported their results on indole hydrogenation 

using the triflate analogue 14 of the N’-methylated catalyst, which proved to be the best out of 

a series of catalysts tested [20]. Again the reductions could be achieved in high conversion and 

ee at ambient temperature and 1 atmosphere of hydrogen using S/C of 100. The catalyst was 

however also effective at an S/C of 1000, with only a small loss of enantioselectivity. Using 

the (R,R) catalyst, the product of R- configuration was formed and disubstituted compounds 

were formed as the cis products (Figure 10). In addition, Fan et al. reported the reduction of 

imines containing a 3,3-disubstituted structure, which also proceeded in high ee and 

conversion, although in this case the Ru complex containing an unsubstituted basic amine, and 

either a triflate or a phosphate counter ion, proved to be the best catalyst. Likewise the same 

unfunctionalised catalyst was effective at the kinetic resolution of certain examples. 
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Ru
TsN N

Ph Ph

OTf

Me
H

14

iPr
N
H

R1

N
H

R1

1 bar H2, rt

24 h, HFIP
1 mol% 14

N
R2

N
H

R2

R1
R1

R1
R1

N
H

R

R2

X
R2

X

R=Me; 94% yield, 96% ee (R)
R=nPr; 88% yield, 96% ee (R)
R=nBu; 92% yield, 97% ee (R)
R=n-Pent; 89% yield, 96% ee (R)

N
H

Me

X

X=Me; 93% yield, 95% ee (R)
X=OMe; 93% yield, 95% ee (R)
X=F; 94% yield, 94% ee (R)

N
H

R=H; 93% yield, 97% ee (R)
R=F; 92% yield, 97% ee (R)
R=Me; 90% yield, 96% ee (R)

R

N
H

X

n

n=0, X=H, 92% yield, 89% ee (R,R)
n=1, X=H, 91% yield, 95% ee (R,R)
n=1, X=Me, 94% yield, 90% ee (R,R)
n=1, X=F, 92% yield, 94% ee (R,R)
n=2, X=H, 73% yield, 99% ee (R,R)

N
H

85% yield, 40% ee (R)

N
H

53% yield, 42% ee (S)Ph

N
H

95% yield, 97% ee (R,R)

1 bar H2, rt

24 h, HFIP
or THF

1 mol% 14

Other reduction products formed using 14:

Figure 10. Asymmetric reduction of indoles using the N’-methylated cationic complex 14; the 

non-N’-methylated complex was more effective in the latter application. 

Fan et al. also reported the asymmetric hydrogenation of 2,2’-bisquinolines to form vicinal 

diamines using a series of [arene/Ru/TsDPEN] catalysts including 14-16 [21] (Figure 11). In 

several cases, the N’-methylated catalyst proved to be the best one in the application, although 

in others the unmethylated complex was better. An N’-benzyl complex 15 was tested but did 

not give improved results. Although the parent unsubstituted product is illustrated in Figure 11, 

a very wide range of substrates were tested, giving products in excellent yield and ee 

throughout; in the majority of cases the N’-Me catalyst was the most effective and gave the 

best result, although in some cases the unmethylated complex was slightly more efficient. In a 

series of mechanistic studies, including reduction of the enantiomerically pure semi-reduced 

product with each enantiomer of catalyst, it was established that the second reduction occurred 

with high diastereoselectivity, and was essentially fully controlled by the catalyst and not 
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significantly directed by the existing chiral centre. The products could be converted to 

derivatives such as the interesting asymmetric imidazolium salt 17.

 

50 atm H2

rt 18h, iPrOH
S/C 50, catalyst

N N NH HN

Ru
TsN N

Ph Ph

OTf

Me
H

14 >95% conv.

iPr

Ru
TsN N

Ph Ph

OTf

Bn
H

iPr

Ru
TsN N

Ph Ph

OTf

H
H

iPr

93:7 dl:meso
>99% ee

15 >95% conv.

93:7 dl:meso
>99% ee

16 >95% conv.

90:10 dl:meso
>99% ee

N N

BF4 17
R R

Figure 11. Asymmetric reduction of bis-quinolines using the cationic complexes 14-16. 

The asymmetric reduction of C=C bonds using arene/Ru(II)/TsDPEN catalysts has not been 

extensively reported however the example by Deng et al. contains some very good examples 

of selective reductions on highly activated alkenes. Usually two (non-ketone) electron-

withdrawing groups are required for best results (Figure 12).[22] The N-methylated and N-

ethylated ligands were used to form complexes in-situ. These worked effectively in the 

application but in this instance gave no improvement over the unsubstituted complex. The best 

results were obtained using TsDPEN catalysts containing modified sulfonamide groups; bulky 

groups being the most effective.

TsHN N

Ph Ph

Me
H TsHN N

Ph Ph

Et
H TsHN N

Ph Ph

H
H

3.5h, 97% yield
52% ee

10h, 96% yield
47% ee

4h, 98% yield
61% ee

NC CN Ligand + [(cymene)RuCl2]2
(catalyst formed in situ)

FA/TEA, 30 oC, THF

NC CN
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Figure 12. Asymmetric C=C reduction using arene/Ru(II) complexes formed from a series of 

TsDPEN ligands.

In some cases, TsDPEN-derived ligands can act in a tridentate fashion, with triazole and 

pyridine functionality (in 18 and 19 respectively) added to the TsDPEN, catalytically efficient 

complexes are formed with Ru3(CO)12. These reduce acetophenone derivatives at elevated 

temperatures in high ee using iPrOH as both the solvent and reducing agent, and in the absence 

of base (Figure 13).[23,24] The inclusion of both the tosyl and the triazole are essential for 

high activity with the ruthenium carbonyl reagent. A range of ketones were reduced in good ee 

(over 90% in the best cases) and notably ortho-substituted examples, which are often 

challenging substrates, gave products of high ee in the reductions. Both complexes are believed 

to form active ruthenium hydride complexes of a general structure similar to 20 (illustrated for 

the triazole derivative) which may be able to engage in hydrogen transfer to the ketone substrate 

through a transition state analogous to the Noyori-Ikariya [arene/Ru/TsDPEN] complexes 

described above.

Ru
TsN N

Ph Ph

N

H

20

O OH

1 mol% 18 or 19

iPrOH, 24h
TsN HN

Ph Ph

NBn
N

N

TsN HN

Ph Ph

N

N NBn

H

OC

CO
18

19

18 (triazole) up to 99% conv, 91% ee

X
X

0.33 mol% Ru3(CO)12

((2-OMe in 98% conv, 85% ee)

19 (pyridine) up to 100% conv, 94% ee
((2-OMe in 99% conv, 89% ee)

80 oC

Figure 13. Application of tridentate derivatives of TsDPEN/Ru3(CO)12 to ATH of ketones.

Several N-alkylated ligands, with simple iridium trichloride salts, have been applied to the 

asymmetric hydrogenation of ketones in good ees, the alkyl group offering the opportunity to 

optimise the ee to some extent.[25,26] An ‘N’,N’-diTsDPEN bridged derivative has been 

prepared and used in a Ni complexes in the ATH of acetophenone.[27,28] A related 

bisTsDPEN, with a phosphine between diamines, has been used with an Ir(I) source in 

propiophenone reduction. In this application, in iPrOH/KOH, products were formed in ees of 

up to ca. 75% when IrCl(COD)(PPh3)2 was used as the Ir source.[29] 

Page 12 of 36Organic & Biomolecular Chemistry

O
rg

an
ic

&
B

io
m

ol
ec

ul
ar

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 0
4 

Ja
nu

ar
y 

20
19

. D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

W
ar

w
ic

k 
on

 1
/4

/2
01

9 
3:

42
:2

8 
PM

. 

View Article Online
DOI: 10.1039/C8OB02889C

http://dx.doi.org/10.1039/c8ob02889c


13

3. Use of N-alkylated TsDPEN in asymmetric oxidation reactions. 

In 2007, Beller et al. reported the use of a N’-benzylated TsDPEN 21 for the asymmetric 

epoxidation of 1,2-disubstituted alkenes using FeCl3 as the metal.[30] This proved to be the 

best ligand of a series tested, and an improvement over TsDPEN itself, which gave a product 

of just 28% ee compared to the 47 % obtained using 21 (Figure 14). Application of the 

methodology to a range of substrates revealed that products of higher ees could be obtained; 

up to 97% ee for one substrate with the use of a slightly higher catalyst loading. This remains 

one of the few reported methods for asymmetric epoxidation reactions using a simple iron(III) 

salt and amine-based ligand. A detailed follow up paper by the same authors revealed that the 

system was also effective for the asymmetric epoxidation of monosubstituted alkenes, notably 

styrene derivatives, and further disubstituted substrates containing diverse substitutions.[31] A 

full mechanistic investigation using ESI-MS, UV-Vis and EPR spectroscopy indicated the 

presence of several iron complexes forming in situ and the formation of radical intermediates. 

An extension of the work using TsDPEN attached to multifunctional ligands e.g. 22 was 

reported in 2013 (Figure 14), which revealed an excellent level of reactivity and excellent 

selectivity in the best cases (up to 91% ee for stilbenes).[32] The larger size of the ligands 

provided a method for their recovery and reuse via precipitation and also through phase 

separation.

TsHN NHBn

Ph Ph

TsHN HN

Ph Ph

R2

R1

5 mol% FeCl3.6H2O
5 mol% H2pydic

12 mol% 21
2-methylbutan-2-ol, rt, 1h

O

Si

Si

422

+ 3 eq. H2O2

tButBu

100% conv, 82% ee

R2

R1
O

major product
(47% ee where R1=R2=Ph)

O
60% conv, 57% ee O

tBu

100% conv, 97% ee
(using 24 mol% catalyst 21)

21

O

OH
tBu

100% conv, 49% ee

O

Cl
tBu

57% conv, 33% ee

Epoxidation products formed using ligand 21:
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Figure 14.  Epoxidation of alkenes using an iron catalyst with an N’-benzyl TsDPEN ligand, 

and a dendrimeric derivative.

Malkov et al reported the use of a TsDPEN derived reagent 23 for the asymmetric epoxidation 

of allylic alcohols as a component of a vanadium-catalysed reaction, giving products of up to 

94% ee (Figure 15) [33]. Also pertinent to the area is work by Xiao on the use of the Fe catalyst 

24 for the catalysis of the oxidation of benzylic ethers to esters using oxygen gas as the oxidant 

(Figure 15).[34a] A closely related Fe(III) catalyst is also effective at the oxidative cleavage of 

C=C bonds (not illustrated).[34b]

TsHN N

Ph Ph

23 TsDPEN-derived ligand used in
vanadium-catalysed oxidation.

HO O

CHPh2

24 Fe catalyst for oxidation of benzylic
ethers to esters using O2

N
N

N
H

N
H

N

SO2ArArO2S

PhPh

Ph
Fe

THF

TfO OTf

Ar = p(tBu)C6H4

Figure 15. TsDPEN-derived ligand and iron complex used as catalysts. 

4. Use of N-alkylated TsDPEN in asymmetric organocatalytic reactions.

Several N’-functionalised derivatives of TsDPEN have been used in organocatalytic 

applications. An early example described the use of an enzyme mimic catalyst containing an 

amide, urea and TsDPEN-linked unit for the control of amine additions to cyclic unsaturated 

6-membered lactams. These were cleverly designed to bind at several positions to the 

substrates; several catalyst variations were tested including those containing a TsDPEN unit, 

and addition products of up to 62% ee were obtained.[35]

Ye et al. have reported a series of applications of TsDPEN-derived organocatalysts containing 

a primary amine, initially for control of asymmetric Michael additions of unsaturated lactones 

to enones (Figure 16).[36] In the examples shown, the enones contained alkyl or aryl 

substituents and gave products in very high ee. One example of a cyclic enone was featured 

and this was formed in 51% yield but still high ee (97% ee).
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TsHN HN

Ph Ph
R1 R2

O

+ O

O

R1 R2

O
O

O

H

H

iPr

H2N

CHCl3

acyclic compound:
65-86% yield
95-99% ee

50 oC, 72h

R1 = alkyl, aryl
R2 = aryl/alkyl

Figure 16. Asymmetric addition of unsaturated lactones to enones.

The use of an amine-containing TsDPEN to control the addition of a cyclic unsaturated lactam 

to an enone has been reported; the addition of N-Boc-L-Tryp was found to be essential for high 

enantioselectivity in the reaction (Figure 17).[37] The mechanism is reported to proceed via 

the formation of an enamine between the primary amine of the ligand and the enone, with 

addition of the enol form of the unsaturated lactam being directed by hydrogen bonding 

interactions with the tosylated diamine.

TsHN HN

Ph Ph

O

+ NBoc

O
O

BocN

O

H

H

iPr

H2N

CHCl3
N-Boc-L-Trp

15:1 98% ee

Figure 17. Asymmetric additions of cyclic lactam to an enone.

The use of the ligands used in the above reaction on a more complex substrate has been 

reported; note that the reactions had to be carried out at 50 oC; at a lower temperature the fully 

cyclised products were not formed (Figure 18).[38] Use of different catalyst enantiomers 

resulted in formation of diastereoisomeric products as would be expected from catalyst-control 

of the reactions. 
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TsHN HN

Ph Ph

+

NBoc

O

iPr

H2NN-Boc-L-Trp

O

O

O

MeO

H

15%

15%

O

O
MeO

H

BocN

O

O

50%

50 oC, 72h

TsHN HN

Ph Ph

iPr

H2NN-Boc-L-Trp

15%

15%

O

O
MeO

H

BocN

O

O

80%

50 oC, 72h

Figure 18. N’-Alkylated TsDPEN derivatives used to functionalise a complex enone substrate.

A squaramide-sulfonamide was applied to control a series of vinylogous aldol reactions.[39] 

A number of catalysts were tested and of these the TsDPEN-derived 25 gave a product of 92% 

ee in initial screening (Figure 19). The presence of the sulfonamide was shown to be critical 

for the high selectivity. However an alternative catalyst, bearing a single substituent on the 

diamine side chain, gave better results and was selected for further optimisation and successful 

application to a wide range of substrates. 

NH
N
H

Ph
Ph O

O

HN N

N
MeO

CHO

DCM, rt, 48 h

53% yield, anti:syn 80:20,
92% ee(anti)

S
O2

CF3

F3C

10 mol%

O
O+

O
O

OH

Cl Cl

25

Figure 19. Squaramide-based catalyst used in the asymmetric addition of cyclic lactone to an 

aldehyde.

The use of arene/Ru/TsDPEN to catalyse addition of acetylacetate to cyclic enones has been 

described. Alongside unfunctionalised TsDPEN, which gave the best results, were tested N’-

MeTsDPEN and other asymmetric catalysts.[40] A very wide range of TsDPEN derivatives 

were also tested in the addition of a -ketoester to nitrostyrene however the best one was 

TsDPEN itself and this was applied to a range of additions.[41] 
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5. Use of N-alkylated TsDPEN in Lewis acid-catalysed additions.

In a very recent paper[42], a complex of cobalt with ligand 26 was effective at the control of 

asymmetric additions of cyclic beta-ketoesters to nitrostyrene (Figure 20) in 91-98% ee. A 

variety of metals were tested, with cobalt (II) giving the best results and subsequent 

optimisation with respect to solvent and ratios of reagents delivering a system which was very 

efficient and enantioselective, even at 1 mol%. On the basis of a detailed mechanistic study 

and molecular modelling, the intermediacy of a bimetallic complex such as 27 in the catalytic 

cycle is speculated.

O

CO2Et Ph
NO2+

O

CO2Et

NO2
Ph

0 oC, DCE

1 mol%

3 mol% Co(acac)2
40 mol% N-methyl
morpholine

HNNH

NHTs TsHNPh

PhPh

Ph

OH

HNNH

N
Ts

N
Ts

Ph

PhPh

Ph

O
Co Co

O
O

OEt
27

26

Figure 20. Co(II)-catalysed addition of cyclic ketone to nitrostyrene.

A similar catalyst, based this time on Ni(II) and for Mannich addition to imines (Figure 21) has 

proved to be highly effective.[43] In this case, the best of the ligands, 28, contained a p-

nitrophenylsulfonamide substituent on each of the two DPEN units and a bridging phenol group 

was essential to the operation of the catalyst. In this case a Ni(II) metal is used and again a 

bimetallic complex is anticipated to be the active catalyst. 

+

1 mol% 28

HNNH

NH HNPh

PhPh

Ph

OH

SO2Ar SO2Ar

Ar=p(NO2)C6H4

CO2EtEtO2C NPh
Ts Ph

CO2Et

NHTs

CO2Et2 mol% Ni(OAc)2
92% yield, 97% ee

Figure 21. Asymmetric catalysis of addition of diethylmalonate to an imine.

6. Use of N-acylated TsDPENs in asymmetric organocatalytic reactions.
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Of a series of organocatalysts tested, 29a proved to be the most effective one for the formation 

of highly enantiomerically-pure 3-aminodihydrocoumarin products containing tertiary amine 

derivative groups which would otherwise be very difficult to prepare (Figure 22).[44] Using 5 

mol% catalyst, the cascade reaction could be scaled up to a gram scale for one example. 

O

N

O

Bn
+ -60 oC, THF

10 mol% 29q

N NHSO2(2,6-di(F)C6H3)

Ph Ph

O

O

N

CyN

NCy

H

Ph

O2N

Bn

NHCOPh

OOH

NO2
X X

Wide range of substrates
80-99% yield, 91-96% ee,
dr>19;1 in each case.

Figure 22. Guanidine catalyst used in asymmetric additions to nitrostyrene derivatives.

Another use of an analogous catalyst was reported for the synthesis of spirooxindoles using 

almost same catalyst. Following optimisation, a range of substrates were asymmetrically 

cyclised using catalyst 29b under mild conditions (Figure 23).[45] This included substrates 

which contain an NHTs in place of the OH of the side chain of the amide substrate.

-10 oC, 22 h, THF

5 mol% 29b
N NHSO2(2,4,6-tri(iPr)C6H2)

Ph Ph
O

N

CyN

NCy

H

70% yield, dr 11.5:1, e.r. 95:5 (major
diastereoisomer)

O

+

N
H

OH

O
N
H

O

O Ph

O

Figure 23. Spirooxindole synthesis using catalyst 29.

A cyclisation was also reported with an analogous ligand type to that described above, resulting 

in the formation of cyclohexanes through a Michael-Henry reaction sequence which created 

six stereogeneic centres in one step.[46] 

A further example of the same class of catalyst, in this case 30, was used to control the 

asymmetry of additions of alkynes to isatins to create a new chiral centre has been reported. 
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Products with ees of up to 96% were formed in this addition reaction (Figure 24).[47] A 

TsDPEN derived catalyst also promoted the reaction in 87% yield and 82% ee. 

CuI, 2,4,6-collidine

10 mol% 30
N NHSO2(2-napthyl)

Ph Ph
O

N

CyN

NCy

H

ee up to 96%,
up to 98% yield

N
H

O

O
N
H

O

HO Ph

1.2 eq. Ph

Figure 24. Asymmetric addition of alkynes to isatins.

7. Use of N-thiourea TsDPEN derivatives in asymmetric catalysis.

TsDPEN-based, thiourea-containing reagents have proved to be very successful as 

organocatalysts in a number of reactions. Wang has published several papers on diverse 

applications using 31 (which has come to be described by other researchers as ‘Wang’s 

ligand’). Ligand 31 has emerged as one of the best of a series generated and tested in the 

reaction of acetylacetone with nitrostyrene derivatives (Figure 25).[48] The catalyst was 

optimised with respect to the sulfonamide group, with the bis-(trifluoromethyl) being the 

optimal choice. The catalysts are understood to operate through an interaction of the 

thiourea/TsDPEN component with the nitro function and a hydrogen bonding interaction of the 

tertiary amine with the nucleophilic enol intermediate. These interactions co-operate to direct 

the reagents together in a controlled and selective manner. 

rt, Et2O, 1-2h

N HN

Ph Ph

H
N
H

S

NMe2

SO2

CF3

F3C
NO2

O O

+

NO2

O O

1 mol%

R R

up to 97% yield,
95-99% ee.

31

Figure 25. Wang’s ligand (31) applied to asymmetric additions to nitrostyrene.

Wang also reported the use of ligand 31 to direct the addition of -substituted--ketoesters to 

nitroolefins, giving products in up to 84% ee.[49] However in this case it was found that a more 
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effective catalyst could be produced by replacing the sulfonamide group with a hydroxyl group, 

resulting in improved diastereoisomeric ratios and ees in these cases. 

Ligand 31 was successfully applied to the control of the addition of nitroalkanes to nitroalkenes 

(Figure 26).[50] Using 10 mol% of the catalyst, at low temperature, an excellent level of 

versatility was demonstrated and products were formed in drs as high as 98:2 and in 99% ee in 

the best cases. Once again the tests indicated that the sulfonamide containing the two 

trifluoromethyl groups on the phenyl ring was the most selective one in this application, 

presumably reflecting the importance of the hydrogen-bonding interactions in the transition 

state for the addition (a catalyst containing an N-methylated sulfonamide led to no product). In 

one case the addition of 2-methyl-nitroethane was evaluated, giving an addition product in 88% 

yield and 64% ee. A range of aromatic groups could be tolerated (o-, m- and p- substituents as 

well as furyl and cinnamyl groups), and there was some scope for variation from nitroethane, 

with nitropropane and 2-phenylnitroethane also working well. 

DCM, -30 oC

N HN

Ph Ph

H
N
H

S

NMe2

SO2

CF3

F3C
NO2

R1

NO2

+

NO2

NO2R1

10 mol%

R R
R1=Me, R=H
87% yield,
98:2 dr
97% ee

H31

Figure 26. Diastereo- and enantioselective addition to nitrostyrenes.

In a further paper in 2010, catalyst 31 was once again found to be the best one of a series for 

the control of the addition of -aryl substituted cyclopentanones to nitroolefins.[51] This 

reaction generates two diastereoisomers as is the case with other additions, and however the 

addition is highly diastereoselective, and products with ees as high as 95% were generated for 

a wide range of substrates.

Xiao et al. tested a range of thiourea catalysts for activity in the addition reactions of thiols to 

a multi-unsaturated substrate, the thiourea being established as an excellent reagent for the 

activation of unsaturated nitro reagents. Once more, it was catalyst 31 that emerged as the best 

of the series tested (Figure 27).[52] In this reaction, a remarkable series of reactions takes place 

in a cleverly-designed sequence. Control of the initial addition of thiophenol to the nitroalkene 
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is critical and this is controlled by the catalyst thiourea group and associated hydrogen bonds. 

The diastereoselectivity of the subsequent cyclisation step results in formation of a complex 

ring system in a one pot process, which forms the basis of an efficient chroman ring synthesis. 

In further studies, triazoles and also anilines were found to be suitable replacements for the 

thiophenol in the addition step, giving products in ees of 92% and 86% respectively. A reaction 

at rt with 3 mol% 31 for 12h gave a product of 91% yield and 90% ee. 

DCM, 0 oC

N HN

Ph Ph

H
N
H

S

NMe2

SO2

CF3

F3C

NO2

3 mol%

48h, 70% yield
91% ee
dr >95:5

O OEt

O

SH

+

O

S
NO2

OEt

O

31

Figure 27. Addition/cyclisation reactions catalysed by 31.

The theme of thiophenol addition to unsaturated esters was extended by Wang et al in 2011, 

with a description of the use of catalyst 31 to control the addition of thiols to 4,4,4-

trifluorocrotonates in high ees; up to 95%.[53] The addition products could be cyclised to 

thiochromanones in high yield. One of the products is a key intermediate of the inhibitor of 

MMP-3, (R)-γ-trifluoromethyl γ-sulfone hydroxamate. Wang also described the use of 31 

successfully in the related additions of thiols to unsaturated esters containing a heavily 

fluorinated group in the ester.[54] The method can be adopted to synthesise an antidepressant 

agent, thiazemin.

A series of efficient asymmetric addition reactions of this to trifluorocrotonyl pyrazoles were 

also reported, similar to and related to the one above (53). Again it was catalyst 31 which 

proved to the most effective of those tested (Figure 28).[55]

Toluene, rt, <10min.

N HN

Ph Ph

H
N
H

S

NMe2

SO2

CF3

F3C

5 mol%

F3C N

O

+

N F3C N

O

N

RS
RSH

R is usually aromatic
yields >90%, ees up to 97%,
99% after recrystallsiation.31
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Figure 28. Asymmetric catalysis of thiol additions.

Thioadditions continue to be strong theme and a line of productive research using catalyst 31. 

In a 2013 paper, Wang described a desymmetrisation process through additions to spirocyclic 

oxindoles.[56] A further application of catalyst 31 was to the control of the addition of cyclic 

ketoesters to diethyl azodicarboxylate, representing an efficient method for the amination of 

the ketoester.[57] In this process, using up to 10 mol% of catalyst, the addition product was 

formed in up to 95% yield and 95% ee, at -78 oC. Again the multiple hydrogen bonding 

organocatalyst is able to strongly control the direction of the addition reaction. In the addition 

of a curcumin derivative to nitrostyrene, ligand 31 was reported to give an ee of 81% however 

an improved result was obtained in this instance by a closely-related organocatalysts containing 

a quinine group complimenting the TsDPEN /thiourea unit, in which case the conversion and 

ee could be pushed to 97 and 96% respectively.[58] An excellent result was obtained for a 

challenging addition/spirocyclisation which formed four contiguous stereocentres in one 

operation using catalyst 31 however (Figure 29).[59]

N HN

Ph Ph

H
N
H

S

NMe2

SO2

CF3

F3C

N
H

O

S

NO2

Toluene/DCM, rt, 0.5 h

76% yield
dr >20:1
94% ee

+
N
H

O

Ph
O

Ph

S
Ph

NO2

OH
Ph

31 BrBr

10 mol%

Figure 29. Four contiguous stereocenters formed by a one-pot Michael-Henry-cascade-

rearrangement reaction.

Xiao et al. reported an intramolecular crossed Rauhut-Currier reaction using thiourea 32, which 

emerged as the optimal catalyst of those tested.[60] In this case the initial addition of the 

CBzNHOBoc reagent was followed by its elimination to leave an unsaturated product with a 

single chiral centre in an ee as high as 92% (Figure 30). The reaction had to be run at low 

temperature in order to achieve the highest ee, at the cost of an extended reaction time. The 

reaction was applied to a range of substrates.
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CHCl3. -40 oC for one day,
-20 oC for five days.

N HN

Ph Ph

H
N
H

S

NMe2

SO2

NO2

20 mol%

92% yield, 92% ee

O OEt

O

O

NO2

OEt

O
1.2 eq. CBzNHOBoc

32

Figure 30. Intramolecular crossed Rauhut-Currier reaction catalysed by 32.

Shao et al., in 2016, found that catalyst 33 was ideal for the control of the addition reaction of 

an alkynone to nitrostyrene (Figure 31).[61] The activating group in the substrate was removed 

by careful treatment with acid at the end of the reaction; using a larger amount (2 eq) of TsOH 

resulted in formation of a -diketone. Extending the range of substrates was successful, with 

the most selective reactions giving products in up to 97% ee. In the mechanism, once more the 

thiourea forms a critical bond to the nitro group, with the direction of nucleophilic addition 

speculated to be directed by the other functional group via a series of hydrogen bonds. 

N NHTs

Ph Ph

H
N
H

S

NMe2

10 mol%

Ph
NO2

DCM, rtPh

O

OtBu

O
i)

ii) 0.2 eq. TsOH, H2O
toluene, 110 oC

Ph

O Ph

NO2

85% yield, 96% ee.

33

Figure 31. Asymmetric addition and decarboxylation.

Shi et al. reported a highly enantioselective cyclisation of 3-isothiocyanato oxindoles with 

trifluoromethylated 2-butenedioic acid diesters promoted by organocatalyst 34, which was the 

best ligand of a series used in the cycloaddition (Figure 32).[62] A wide range of functional 

groups are tolerated in the reaction, making it very versatile.
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TsHN HN

Ph Ph

HN N

N

MeO

N
R

O

NCS
BnO2C

CF3EtO2C N
R

O

R2
R2 HN

CO2Et

CO2Bn

S CF3

20 mol%

Toluene, rt, 12h

dr typically 20:1
ee from 90-96%

S

34

Figure 32. Enantioselective [3+2] cycloaddition.

The N-mesylated ligand containing a quinine group, 35 (similar to that used in Figure 32), was 

found to be effective at the control of the addition of 3-aryloxindoles to phenylvinylsulfone 

(Figure 33).[63] This represents a very elegant example of the ability of the modified thiourea 

to control additions to sulfones, presumably also through multiple hydrogen bonding 

interactions.

N
Boc

O

Ph

SO2Ph Toluene/CHCl3, -20 oC,
86% yield
94% ee

+

MsHN HN

Ph Ph

HN
N

N
MeO

S

N
Boc

O

Ph

PhO2S

20 mol%

35

Figure 33. Asymmetric Michael addition of 3-aryloxindoles to phenyl vinyl sulfone.

TsDPEN derivatives were one of a series in an addition reaction of aryloxazoles to a 1-1-

diphosphate ethene but was not the best of those tested.[64] The best catalyst was similar to 

the one used in Figure 33 but with a ArNH in place of the TsDPEN unit.

The reactions of isatins with isocyanoacetates have been studied using TsDPEN-containing 

thioureas as catalysts. Catalyst 35 was the best of a series tested in this application (Figure 

34).[65] In this case the isocyanate formed the basis of a second ring fused in a spiro fashion 

and under optimised conditions a good level of stereocontrol. Multiple hydrogen bonding 

interactions are again likely to be responsible for control of absolute stereochemistry here, and 

better results were obtained with some of the substituted substrates.
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N
R

O

O

NC

SO2Ph Et2O, 20 oC, 24h

+

MsHN HN

Ph Ph

HN
N

N
MeO

S

N
Bn

O

10 mol%

Ph

O

N
Ph

R=H 93% yield, >20:1, 80% ee
R=Bn 74% yield, 12:1 dr, 86% ee
R=Me 69% yield, 14:1, 77% ee
R=Ph 95% yield, 20:1, 70% ee

PhO2S35

Figure 34. Asymmetric cycloaddition reaction of isocyanoacetates to isatins.

Catalyst 35 once again proved effective in an asymmetric application – in this case the reaction 

of alpha-cyano ketones with isatylidiene malononitriles (Figure 35).[66] In this case the 

cascade cyclisation took place to form the heterocyclic product in remarkably high ees. The 

initial screening with the N-benzylated malononitrile gave a product of 72% but then switching 

to the N-methylated derivative with the addition of 1 mol% of morpholine at lower temperature 

raised the ee to 90%. The application was applied to a wide range of substrates, all of which 

gave products in very high yields of typically 98-99% and with ees as high as 97% in the best 

cases. 

N
Me

O
O

1 mol% morpholine
DCM, -10 oC

+

MsHN HN

Ph Ph

HN
N

N
MeO

S

N
Bn

O

2 mol%

Ph

98% yield, up to 90% ee

NC
CN

CN

O
Ph

CN

H2N

NC

35

Figure 35. Asymmetric synthesis of spiro[4H]-pyran-oxindoles.

Ligand 36 was optimised for use in addition to isatins (Figure 36).[67] There was a very 

interesting and unexpectedly positive effect from the addition of methanol. This was applied 

to a good range of targets and extended to acyclic alpha-keto esters with related ligands, 

although further screening and optimisation revealed an alternative ligand to be the optimal 
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one – containing a squaramide linkage and a dialkylated DPEN unit rather than a 

TsDPEN.[67b]

N
PNB

O

O

NC

OEt CHCl3 rt 9h

+

NH HN

Ph Ph

HN
N

N
MeO

S

N
PNB

O

5 mol%

O

S
O2

CF3

F3C

NC O OEt

O

50% MeOH

up to 97% yield
up to 99% ee

R R

36

Figure 36. Asymmetric Cyanoethoxycarbonylation of Isatins.

For the conversion of oxime tosylates to cyclic azirines by an intramolecular process, 

TsDPEN/thioureas were but were not the best ones of the series tested.[68] The use of Wang’s 

catalyst gave a product in 72% yield and 56% ee however. Ligand 37 was used in 

enantioselective reactions of ketimine with a pyrazoleamide (Figure 37).[69] The first reactions 

allowed for Nosyl cat. to give 60% yield, 98:2 dr and 97% ee before the conditions were 

optimised. Under same conditions a tosyl derivative gave a product of 53% yield, 97:3 dr and 

96% ee.

N
R

O

NBoc

CH3CN, 4Å MS, 25 oC

+

NH HN

Ph Ph

HN
N

N
MeO

S

N
R

O

10 mol% S
O2

84-97% yields
up to dr 99:1 and >99% ee

R R

O2N

NHBoc

Ar
O

N
N

N

N

Ar
O

37

Figure 37. Enantioselective Mannich reaction of pyrazoleamides with isatins.

Thiourea 38, containing a 4-nitrophenylsulfonamide and an attached basic nitrogen 

functionality, did prove to be the optimal one tested in the enantioselective Michael addition 

of 5H-oxazol-4-ones to unsaturated ketones (Figure 38).[70] Compared to other related 

catalysts these were found to be more effective and they are derived from L-tert-leucine. 

Products were obtaining in >90% ee in the best cases. 
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DCM, 50 oC, 72h

N
H

NH

PhPh

N
H

S

O2S

10 mol%

up to 98% yield
>30:1 dr in most cases
>99% ee in the best cases.

O2N

N

N

O

O

R1

Ph

R2 R3

O+

N

O

O

R1

Ph

R3

OR238

Figure 38. Asymmetric Michael addition of 5H-oxazol-4-ones to -unsaturated ketones.

Peng et al. reported an intramolecular addition to a nitrostyrene to form a 1,2-diamine in high 

ee. The TsDPEN-containing catalysts gave good results but in these cases the best results were 

obtained with a 1,2-cyclohexyldiamine-containing catalyst.[71]

The enantioselective addition of simple ketones, including acetone and acetophenone, to 

nitroolefins can also catalysed by thiourea/TsDPEN catalysts. In this case a series of catalysts 

containing adjacent primary amine functionality were evaluated and tested in the application. 

Of these the compound containing a TsDPEN and a cyclohexyldiamine proved to be highly 

effective (Figure 39).[72] In this case the primary amine is believed to form an enamine with 

the ketone reagent whilst the thiourea and TsDPEN bind the nitro group, serving to hold both 

reagents in close proximity and within a well-defined transition state for the addition reaction. 

Evidence for this was provided by the non-reactivity of N’.N’-dimethylated catalyst i.e. which 

was unable to form the required enamine.

15 mol% PhCO2H, CHCl3

NH NHTs

Ph Ph

N
H

S15 mol%

NH2

Ph

N

+
O

R

Ph
NO2

O
R 71-87% yield

97-99% ee

N NTs

Ph Ph

N

S

NH
NH NHTs

Ph Ph

N
H

S

NMe2

No addition using this catalyst:

OO
H

H H

Ph
NO2

Ph

Proposed mode
of addition:

39
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Figure 39. Asymmetric addition of ketones to nitrostyrene.

In a related later report by Shao et al. in 2017, the enantiomeric catalyst was found to be 

efficient at directing the addition of acetophenone to a complex nitroalkene in a high ee of 97% 

(Figure 40).[73] In this reaction the diastereoisomer of the catalyst (i.e. 40, derived from (S,S)-

TsDPEN rather than the (R,R)-TsDPEN) was less efficient, as was the mesyl derivative of the 

catalyst and a phosphorylated derivative. 

15 mol% 4-(MeO)C6H4CO2H
DCM, rt, 96h

NH NHTs

Ph Ph

N
H

S15 mol%

NH2+
O

R

NO2

O
R

75% yield, 97% ee.

NO2

Ph
Ph

40

Figure 40. Asymmetric additions to nitrodienynes.

Compounds containing a combination of proline and TsDPEN have been applied to 

asymmetric aldol reactions.[74] Amide 41 (Figure 41) was one of a series of catalysts for an 

asymmetric aldol reaction reported by Zhao and Samanta in 2006, and gave a product of 33% 

ee.[74a] The proline is believed to form an enamine intermediate in a key step in the 

mechanism. Singh et al published a detailed study on the synthesis of all four diastereosiomers 

of the catalysts and their applications to the asymmetric aldol reactions of ketones with 

aromatic aldehydes.[75] All of the isomers were effective catalysts, giving the aldol product of 

cyclohexanone with 4-fluorobenzene in 92:8-91:9 diastereoisomeric ratios and 87-90% ee, 

indicating that the proline residue was having the major effect and the TsDPEN unit a 

moderating one on the overall selectivity. Wills et al use a series of similar compounds for 

asymmetric transfer hydrogenation reactions of ketones; products of up to 90% ee were formed, 

with the proline component again dominating the selectivity but with a contribution from the 

TsDPEN unit.[76] 

NH NHTs

Ph Ph

O

NH
41
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Figure 41. Compound used in aldol reactions and transfer hydrogenations.

8. Miscellaneous asymmetric catalytic reactions using N’-alkylated or acylated TsDPEN 

derivatives.

Several papers have contained reports of the selective acylation of diarylmethyl compounds by 

acylation of a remote phenol, which is obviously a very challenging reaction. This has been 

achieved using a peptide or protein with a terminal amine group which acts as an acylation 

catalyst and in some of these applications some of the catalysts contain a TsDPEN 

functionality.[77,78,79,80] In the example in Figure 42, an optimised small peptide 42 was 

found to be highly effective at directing the reaction, as evidenced by the high ee obtained.[80] 

tBu

HO OH

tBu

HO OAc

up to 95% ee

Ac2O

N
NMe

BocHN

H
N

N
HO

NHR

O

O
H
N

O
N
H

O

OtBu

Ph

NHTs

Ph

42

Figure 42. Enantioselective remote acylation using a peptide catalyst.

In a very interesting application, an N-aryl TsDPEN derivative 43 was used to create a catalyst 

with a helical chirality which then acts to efficiently direct the asymmetric condensation of 

aldehydes with the phenol shown in Figure 43.[81]

OH DCM, -90 oC

N
Ph

NSO2CH2Ar

Ph

N

O

N

R

+ RCHO

O

CF3

N
Ph

ArH2CO2SN

Ph

O

CF3

P

2 mol%

87-99% yield
87-96% ee

R R43

Figure 43. Asymmetric catalysis using a hexacoordinated chiral phosphate ion.
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Building upon excellent results using silyl chloride reagents to promote asymmetric reactions, 

Leighton et al. reported the use of a silicon-based catalyst 44 for the asymmetric Diels-Alder 

reaction between methacrolein and cyclopentadiene in up to 37% ee (Figure 44).[82] However 

the analogous cyclohexyl diamine-derived ligand was better in this case, giving a product of 

94% ee (20 mol% catalyst, DCM, -78 oC, 8h). 

N

44

Si
Ph

Ph
Ts
N

O

Cl

tBu

tBu

Figure 44. Catalyst used in Diels-Alder reaction catalysis.

Some applications have been reported in which a N’-functionalised TsDPEN-derived catalyst 

was tested but was not the best in the application. In an indole functionalisation [83] a TsDPEN 

gave a product of only 23% ee and lower than for an analogous catalysts containing the 

cyclohexyldiamine backbone structure. A DPEN –based catalyst 45 was used in a 1,3 dipolar 

cycloaddition (Figure 45). The best ligand however contained a iBu group in place of the Ts 

group, and gave a product of 98% ee.[84]

EtO2C+ Ag+ catalyst
toluene , rt

CO2Et
Ph N CO2Me EtO2C

CO2Et

NH

CO2Me

Ph
major

86% yield, 78% ee after 21 h.

N
H

45

Ph

Ph NHTs
O

H
N

Ph O

Ph2P
4 mol%

Figure 45. Asymmetric 1,3 dipolar cycloaddition using a TsDPEN-based ligand.

In the addition of acrylonitrile to nitrostyrene, a cross Rauhut-Currier-type, Wang’s catalyst 

was evaluated and gave a product in 68% yield and 45% ee after 12 h.[85] A TsDPEN ligand 

is one in a series used in an asymmetric hydrosilylation of an imine in up to 90% ee with best 
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catalyst the TsDPEN example gave 92 yield/82% ee but the best were around 93-94% ee.[86] 

Addition of an indole to 2-amino-4H-chromenes where a TsDPEN-containing ligand was one 

of several studied but not the best. The best contained a simple di-meta-

(CF3)benzylsulfonamide group in place of the TsDPEN.[87]. The addition of alpha-amino 

aldehydes to 3-indoylmethanols using an enamine catalysts. TsDPEN-containing tested but not 

the best one – an OH-containing (in place of the NHTs) was the best one in this application.[88] 

TsDPEN catalysts were used in reactions of nitromethane derivatives in additions to enones. A 

simpler thiourea catalyst, containing a valinol-derived, tosylated diamine in place of the 

TsDPEN unit, was the best of the series tested.[89] Derivatives of TsDPEN have also featured 

in several catalysts based on the dppf scaffold.[90,91,92]

9. Conclusions.

In this review, we have highlighted the rich diversity of reagents which have been prepared 

from a single readily-available enantiomerically-pure building block and their numerous 

applications in asymmetric catalysis. In many cases, the TsDPEN-derived ligands and catalysts 

have proved to be the most effective of a series that were tested. Even after the development 

of a large number of reagents and applications, there is clearly still significant potential for 

further applications of TsDPEN derivatives to asymmetric catalysis, and no doubt further 

exciting developments will soon be reported. 
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