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Abstract We consider the problem of finding a model-free upper bound on the price
of an American put given the prices of a family of European puts on the same under-
lying asset. Specifically, we assume that the American put must be exercised at either
T1 or T2 and that we know the prices of all vanilla European puts with these matu-
rities. In this setting, we find a model which is consistent with European put prices,
together with an associated exercise time, for which the price of the American put is
maximal. Moreover, we derive the cheapest superhedge. The model associated with
the highest price of the American put is constructed from the left-curtain martingale
coupling of Beiglböck and Juillet (Ann. Probab. 44:42–106, 2016).
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1 Introduction

This article is motivated by an attempt to understand the range of possible prices of
an American put in a robust, or model-independent, framework. In our interpretation,
this means that we assume we are given today’s prices of a family of European-style
vanilla puts (for a continuum of strikes and for a discrete set of maturities). The
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goal is to find a consistent model for the underlying for which the American put has
the highest price, where by definition a model is consistent if the discounted price
process is a martingale and the model-based discounted expected values of European
put payoffs match the given prices of European puts.

This notion of model-independent, or robust, bounds on the prices of exotic op-
tions was introduced in Hobson [17] in the context of lookback options, and has
been applied several times since; see Brown et al. [8] (barrier options), Cox and
Obłój [11] (no-touch options), Hobson and Neuberger [19] and Hobson and Klim-
mek [18] (forward-start straddles), Carr and Lee [9] and Cox and Wang [12] (vari-
ance options), Stebegg [27] (Asian options) and the survey article Hobson [24]. The
principal idea is that the prices of the vanilla European puts determine the marginal
distributions of the price process at the traded maturities (but not the joint distribu-
tions) and that these distributional requirements, coupled with the martingale prop-
erty, place meaningful and useful restrictions on the class of consistent models. These
restrictions lead to bounds on the expected payoffs of path-dependent functionals, or
equivalently, to bounds on the prices of exotic options.

In addition to the pricing problem, there is a related dual or hedging problem.
In the dual problem, the aim is to construct a static portfolio of European put op-
tions and a dynamic discrete-time hedge in the underlying which combine to form
a superhedge (pathwise over a suitable class of candidate price paths) for the exotic
option. The value of the dual problem is the cost of the cheapest superhedge. There is
a growing literature, beginning with Beiglböck et al. [5] for discrete-time problems,
and Galichon et al. [15] in continuous time, which aims to explain how to formulate
the problem in such a way that there is no duality gap, i.e., the highest model-based
price is equal to the cheapest superhedge, either for specific derivatives or in general.

Many of the early papers on robust hedging exploited a link with the Skorokhod
embedding problem (Skorokhod [26, Sect. 7]). For example, in the study of the look-
back option in Hobson [17], the consistent model which achieves the highest look-
back price is constructed from the Azéma and Yor [2] solution of the Skorokhod
embedding problem. More recently, Beiglböck et al. [5] (see also Dolinsky and
Soner [14] and Touzi [29]) have championed the connection between robust hedging
problems and martingale optimal transport. In this paper, we make use of the left-
curtain martingale coupling introduced by Beiglböck and Juillet [4] and developed
by Henry-Labordère and Touzi [16] and Beiglböck et al. [6].

The study of American-style claims in a robust framework was initiated by Neu-
berger [25]; see also Hobson and Neuberger [20], Bayraktar and Zhou [3] and Ak-
samit et al. [1]. (There is also a paper by Cox and Hoeggerl [10] which asks about the
possible shapes of the price of an American put, considered as a function of strike,
given the prices of co-maturing European puts.) The main innovation of the present
paper is that rather than focusing on general American payoffs and proving that the
pricing (primal) problem and the dual (hedging) problem have the same value, we
focus explicitly on American puts and try to say as much as possible about the struc-
ture of the consistent price process for which the model-based American put price is
maximised, and the structure of the cheapest superhedge.

Our problem can be cast as follows. Let M = (M0 = μ̄,M1 = X,M2 = Y) repre-
sent the discounted price of an underlying asset, where μ̄ is a known constant. The
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laws of X and Y are presumed to be given and L(X) = μ and L(Y ) = ν, where μ and
ν are (integrable) probability measures on R with mean μ̄. Given a martingale model
(a filtered probability space supporting a stochastic process M which is a martingale),
we consider an American put on M with strike K . The option may only be exercised
at time 1 or time 2; if the put is exercised at time 1, the payoff is (K1 − X)+, if the
put is exercised at time 2, the payoff is (K2 − Y)+. Here K1 and K2 represent the
discounted strikes of the put. For any martingale model, the model-based price of the
American put is then given by the expected value of the payoff calculated under the
best available stopping time (defined with respect to the filtration associated to the
given model, and taking values in time 1 or time 2). Our primal problem is to find
the highest possible model-based price of the American put, i.e., the highest expected
payoff, where expectations are calculated under the probability measure of a consis-
tent model (a model under which M is a martingale and has the given laws at times 1
and 2).

There is a corresponding dual or hedging problem of finding the cheapest super-
hedge based on static portfolios of European puts and a piecewise constant holding
of the underlying asset; see Sect. 2.2.

Our main achievement is as follows:

Main result 1.1 Suppose μ is continuous. The highest model-based expected pay-
off of the American put is equal to the cheapest superhedging price. Moreover, the
highest model-based expected payoff is attained by the model associated with the
left-curtain martingale coupling of Beiglböck and Juillet [4] (and a judiciously cho-
sen stopping rule). Further, we can characterise the cheapest superhedging strategy,
and it is one of four possible types.

For fixed μ,ν and K1 > K2, there is typically a family of optimal models. Fixing
μ and ν but varying K1 and K2, it turns out that there is a model which is optimal
for all K1 and K2 simultaneously. This model is related to the left-curtain coupling
of Beiglböck and Juillet [4].

The remainder of the paper is structured as follows. In the next section, we for-
mulate precisely our problem of finding the robust, model-independent price of an
American put. We also explain how the pricing problem is related to the dual prob-
lem of constructing the cheapest superhedge. In Sect. 3, we assume that μ is con-
tinuous, transform the primal pricing problem into a martingale optimal transport
(MOT) problem, and show by studying a series of ever more complicated setups how
to determine the best model and hedge.

By weak duality, the highest model price is bounded above by the cost of the
cheapest superhedge. Hence, if, on the one hand, we can identify a consistent model
and stopping rule, and, on the other hand, a superhedge such that the expected payoff
in that model with that stopping rule is equal to the cost of the superhedge, then we
must have identified an optimal model and an optimal stopping rule together with an
optimal hedging strategy. Moreover, there is no duality gap. This is the strategy of
our proofs. One feature of our analysis is that wherever possible, we provide picto-
rial explanations and derivations of our results. In our view, this helps bring insights
which may be hidden under calculus-based approaches.
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2 Preliminaries and setup

2.1 The financial model and model-based prices for American puts

Suppose time is discrete and interest rates are non-stochastic. Without loss of gen-
erality, we may identify trading times with the nonnegative integers t = 0,1,2. Let
M = (Mt)t=0,1,2 be the discounted asset price which we expect to be a martingale
under a pricing measure. We assume M0 is known at time 0.

We are interested in pricing an American put with strike K and maturity 2. Under
the bond price numeraire, this corresponds to a put with strike K1 at time 1 and K2
at time 2 (and K1 > K2 provided interest rates are strictly positive, which we now
assume without further comment). Note that we do not allow exercise at t = 0.

We suppose we are given European put prices for maturities 1 and 2 for a con-
tinuum of strikes. By classical arguments (e.g. Breeden and Litzenberger [7]), it is
possible to infer the laws of the price of the asset, and hence the laws of the dis-
counted asset price. Denote the law of X = M1 by μ and the law of Y = M2 by ν. It
follows from Jensen’s inequality that if μ and ν have arisen from sets of European put
options in this way, μ and ν are in convex order, and we write μ ≤cx ν (see Sect. 2.4
for a further discussion of the properties of μ and ν).

Definition 2.1 (Hobson and Neuberger [21]) Suppose we have μ ≤cx ν and
let S = (Ω,F ,P,F = (F0,F1,F2)) be a filtered probability space. We say that
M = (M0,M1,M2) = (μ̄,X,Y ) is an (S,μ, ν)-consistent stochastic process and
write M ∈M(S,μ, ν) if

(1) M is an S-martingale;
(2) L(M1) = μ and L(M2) = ν.

We say that (S,M) is a (μ, ν)-consistent model if S is a filtered probability space
and M is an (S,μ, ν)-consistent stochastic process. Where μ and ν are clear from
the context, this is sometimes abbreviated to a consistent model.

Let B1 ∈ F1. Define the stopping time τB1 by τB1 = 1 on B1 and τB1 = 2 on Bc
1 .

(Conversely, any stopping rule taking values in {1,2} has a representation of this
form.) Suppose (S,M) is a (μ, ν)-consistent model. The (S,M)-model-based ex-
pected payoff (MBEP) of the American put under the stopping rule τB1 is

A(B1,M,S) = E[(KτB1
− MτB1

)+].
Then, optimising over stopping rules under the model (S,M), the model-based price
of the American put is A(M,S) = supB1∈F1

A(B1,M,S). The highest model-based
expected payoff for the American put is

P = P(μ, ν) = sup
S

sup
M∈M(S,μ,ν)

A(M,S).

Amongst the class of consistent models, there is a natural and important class
of models which we call the class of canonical models. Although we typically ex-
pect nonnegative prices in the finance context, in this definition and the mathematical
analysis which follows, we allow measures μ and ν supported on R.



Robust bounds for the American put 363

Definition 2.2 Suppose μ ≤cx ν. We call (Ŝ = (Ω̂, F̂ , P̂, F̂ = (F̂0, F̂1, F̂2)), M̂)

a canonical (μ, ν)-consistent model if (Ŝ, M̂) is a (μ, ν)-consistent model such that
Ω̂ = R × R, F̂ = B(Ω̂), M̂1(ω1,ω2) = ω1, M̂2(ω1,ω2) = ω2 and such that F̂0 is
trivial, F̂1 = σ(M̂1) and F̂2 = σ(M̂1, M̂2). Then B̂1 ∈ F̂1 can be identified with an
element B̂ in B(R) via B̂1 = B̂ ×R.

In the canonical setting, different models (consistent or not) can be parametrised
by a probability measure π on R

2. To simplify the notation, we write M̂π for the
canonical model (Ŝπ = (Ω̂, F̂ , P̂π , F̂), M̂), where P̂π is the probability measure such
that P̂π [X ∈ dx,Y ∈ dy] = π(dx, dy).

Define P̂ = sup sup
B̂∈B(R)

E[(Kτ
B̂

− Mτ
B̂
)+], where the first supremum is taken

over canonical (μ, ν)-consistent models and τ
B̂
(ω) = 1 if X(ω) ∈ B̂ and τ

B̂
(ω) = 2

otherwise. Clearly, since the set of canonical consistent models is a subset of the set
of all consistent models, we have P̂ ≤ P .

In this paper, we concentrate on the case where μ is continuous. In that case, we
show that P̂ = P . However, if μ has atoms, the situation becomes more delicate,
as pointed out in Hobson and Neuberger [20]; see also Hobson and Neuberger [21],
Bayraktar and Zhou [3] and Aksamit et al. [1]. On the one hand, we must allow a
wider range of possible candidates for exercise-determining sets B1. On atoms of X,
we may want to sometimes stop and sometimes continue, although we must still
take stopping decisions which do not violate the martingale property of future price
movements. On the other hand, the functions Td , Tu that characterise the left-curtain
coupling (see Sect. 2.5) become ill-defined on the points where μ has atoms. Then
it is not clear how the optimal model can be identified. For these reasons, we must
extend our notion of a martingale coupling and generalise, in a useful fashion, the
left-curtain martingale coupling of Beiglböck and Juillet [4] to the case with atoms.
The appropriate extension of the left-curtain coupling to the case with atoms in μ is
discussed in a companion paper [22]; in the present paper, we focus on the financial
aspects of our results, namely the application to the robust hedging of American puts.

2.2 Superhedging

The following notion of a robust superhedge for an American option was first in-
troduced by Neuberger [25]; see also Bayraktar and Zhou [3] and Hobson and Neu-
berger [20].

We work in discounted units over two time-points. Consider a general American-
style option with payoff a if exercised at time 1, and payoff b if exercised at time 2,
where a : R →R+ and b :R → R+ are positive functions.

Definition 2.3 (φ,ψ, (θi)i=1,2) is a superhedge for (a, b) if for all x, y ∈R,

a(x) ≤ φ(x) + ψ(y) + θ1(x)(y − x), (2.1)

b(y) ≤ φ(x) + ψ(y) + θ2(x)(y − x). (2.2)

The hedging cost (HC) associated with the superhedge (φ,ψ, (θi)i=1,2) is given by

C = C
(
φ,ψ, (θi)i=1,2;μ,ν

) =
∫

φ(x)μ(dx) +
∫

ψ(y)ν(dy),
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where we set C = ∞ if
∫

φ(x)+μ(dx) + ∫
ψ(y)+ν(dy) = ∞. We let H(a, b) be the

set of superhedging strategies (φ,ψ, (θi)i=1,2).

The idea behind the definition is that the hedger purchases a portfolio of maturity-1
European puts (and calls) with payoff φ and a portfolio of maturity-2 European puts
(and calls) with payoff ψ . (The fact that this can be done and has cost C follows from
arguments of Breeden and Litzenberger [7].) In addition, if the American option is
exercised at time 1, the hedger holds θ1 units of the underlying between times 1
and 2; otherwise the hedger holds θ2 units of the underlying over this time-period.
In the former case, (2.1) implies that the strategy superhedges the American option
payout; in the latter case, (2.2) implies the same.

The dual (superhedging) problem is to find

D = D(a, b;μ,ν) = inf
(φ,ψ,(θi )i=1,2)∈H(a,b)

C
(
φ,ψ, (θi)i=1,2;μ,ν

)
.

Potentially, the space H = H(a, b) could be very large and it is extremely useful
to be able to search over a smaller space. The next lemma shows that any convex ψ

with ψ ≥ b can be used to generate a superhedge (φ,ψ, (θi)i=1,2).
For a convex function χ , let χ ′+ denote the right derivative of χ .

Lemma 2.4 Suppose ψ ≥ b with ψ convex. Define φ = (a −ψ)+ and set θ2 = 0 and
θ1 = −ψ ′+. Then (φ,ψ, (θi)i=1,2) is a superhedge.

Proof We have

b(y) ≤ ψ(y) ≤ φ(x) + ψ(y) = φ(x) + ψ(y) + θ2(x)(y − x)

and (2.2) follows. Also, by the convexity of ψ , ψ(x) ≤ ψ(y) − ψ ′+(x)(y − x) and

a(x) ≤ (
a(x) − ψ(x)

)+ + ψ(x) ≤ φ(x) + ψ(y) + θ1(x)(y − x).

Hence (2.1) follows. �

Let H̆ = H̆(b) be the set of convex functions ψ with ψ ≥ b. For ψ ∈ H̆, we can
define the associated hedging cost C̆(ψ;μ,ν) by

C̆(ψ;μ,ν) = C
(
(a − ψ)+,ψ, θ1 = −ψ ′+, θ2 = 0;μ,ν

)

=
∫ (

a(x) − ψ(x)
)+

μ(dx) +
∫

ψ(y)ν(dy).

The reduced dual hedging problem restricts attention to superhedges generated from
ψ ∈ H̆ and is to find

D̆ = D̆(a, b;μ,ν) = inf
ψ∈H̆(b)

C̆(ψ;μ,ν).

Clearly, we have D ≤ D̆; we shall show that D = D̆ for the American put.
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2.3 Weak and strong duality

Let (S,M) be a (μ, ν)-consistent model and let τ be an arbitrary stopping time in
this framework. The expected payoff of the American put under this stopping rule is
E[(Kτ−Mτ)

+]. Conversely, let ψ be any convex function with ψ(y) ≥ (K2−y)+ and
let φ(x) = ((K1 −x)+ −ψ(x))+ and θi(x) = −ψ ′+(x)I{i=1}. Then for any i ∈ {1,2},
we have (Ki−Mi)

+ ≤ ψ(M2)+φ(M1)+θi(M1)(M2−M1) and hence for any random
time τ taking values in {1,2}, (Kτ −Mτ)

+ ≤ ψ(M2)+φ(M1)+ θτ (M1)(M2 −M1).
Then E[(Kτ − Mτ)

+] ≤ E
X∼μ,Y∼ν[φ(X) + ψ(Y )] and we have the weak duality

P ≤ D.
In Sect. 3, we show that we can find (Ŝ∗, M̂∗, B̂∗), with (Ŝ∗, M̂∗) a canonical

(μ, ν)-consistent model and B̂∗ ∈ B(R), and ψ∗ ∈ H̆ such that

A(B̂∗ ×R, M̂∗, Ŝ∗) = C̆(ψ∗;μ,ν).

Then A(B̂∗ ×R, M̂∗, Ŝ∗) ≤ P̂ ≤P ≤ D ≤ D̆ ≤ C̆(ψ∗;μ,ν); but since the two outer
terms are equal, we have P = D and strong duality. Moreover, (Ŝ∗, M̂∗) is a canoni-
cal, consistent model which generates the highest price for the American put (and τ ∗
given by τ ∗ = 1 if and only if X ∈ B̂∗ is the optimal exercise rule), and ψ∗ generates
the cheapest superhedge.

2.4 Measures and convex order

Given a finite and integrable measure η (not necessarily a probability measure) on R,

define η̄ =
∫
R

xη(dx)∫
R

η(dx)
to be the barycentre of η. Let Iη be the smallest interval con-

taining the support of η, and let {
η, rη} be the endpoints of Iη . Define the func-

tion Pη : R →R+ by Pη(k) = ∫ k

−∞(k − x)η(dx). Then Pη is convex and increas-
ing and represents the discounted European put price, expressed as a function of
the strike, if the discounted underlying has law η at maturity. In addition, we have
{k : Pη(k) > η(R)(k − η̄)+} ⊆ Iη . Note that Pη is related to the potential Uη defined
by Uη(k) := ∫

R
|k − x|η(dx) by Pη(k) = 1

2 (Uη(k) + (k − η̄)η(R)).
For any real numbers c < d and a measure η, let ηc,d be the measure given by

ηc,d(A) = η(A ∩ (c, d)), A ∈ B(R). Let η̃c,d = η − ηc,d .
Two measures η and χ are in convex order, and we write η ≤cx χ , if and only if

η(R) = χ(R), η̄ = χ̄ and Pη(k) ≤ Pχ(k) on R (or equivalently, if
∫
R

f dη ≤ ∫
R

f dχ

for any convex f : R → R). Necessarily, we then have 
χ ≤ 
η ≤ rη ≤ rχ . Let
Π(η,χ) be the set of martingale couplings of η and χ , i.e.,

Π(η,χ) = {π ∈ P(R2) : π has first marginal η and second marginal χ,

and (2.3) holds},
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where P(R2) is the set of probability measures on R
2 and (2.3) is the martingale

condition
∫

x∈B

∫

y∈R
yπ(dx, dy) =

∫

x∈B

∫

y∈R
xπ(dx, dy)

=
∫

B

xη(dx), ∀B ∈ B(R). (2.3)

By a classical result of Strassen [28], Π(μ,ν) is nonempty if and only if μ ≤cx ν.
Note that there is a 1–1 correspondence between canonical, (μ, ν)-consistent models
and elements π ∈ Π(μ,ν), given by P̂[M̂1 ∈ dx, M̂2 ∈ dy] = π(dx, dy).

Given π ∈ Π(μ,ν), we say π maps A ⊆ R to B ⊆ R if π(A×R) = π(A×B) (or
equivalently, if under the canonical model, M̂1 ∈ A implies M̂2 ∈ B almost surely).
We say π maps A onto B if π(A ×R) = π(A × B) = π(R× B) (or equivalently, if
under the canonical model, M̂1 ∈ A if and only if M̂2 ∈ B almost surely). Finally, we
say π is constant on A if π(C × R) = π(C × C) for all C ⊆ A (or equivalently, if
M̂2 = M̂1 almost surely on {M̂1 ∈ A}).

For a pair of measures η,χ on R, let the function D = Dη,χ :R → R+ be defined
by Dη,χ (k) = Pχ(k)−Pη(k). Note that if η,χ have equal mass and equal barycentre,
then η ≤cx χ is equivalent to D ≥ 0 on R. Let ID = [
D, rD] be the smallest closed
interval containing {k : Dη,χ (k) > 0}. If ID is such that ID ⊆ Iχ , then we must have
η = χ on [
χ , 
D) ∪ (rD, rχ ].

The following lemma tells us that if Dη,χ (x) = 0 for some x, then in any martin-
gale coupling of η and χ , no mass can cross x. The result is well known and can be
traced back (at least) to Hobson [23, Sect. 2].

Lemma 2.5 Suppose η and χ are probability measures with η ≤cx χ . Suppose that
D(x) = 0. If π ∈ Π(η,χ), then

π
(
(−∞, x) × (x,∞)

) + π
(
(x,∞) × (−∞, x)

) = 0.

It follows from Lemma 2.5 that if there is a point x in the interior of the interval Iη

such that Dη,χ (x) = 0, then we can separate the problem of constructing martingale
couplings of η to χ into a pair of subproblems involving mass to the left and right
of x, respectively, always taking care to allocate the mass of χ at x appropriately.
Indeed, if there are multiple xj with Dη,χ (xj ) = 0, then we can divide the problem
into a sequence of ‘irreducible’ problems,1 each taking place on an interval Ii such
that D > 0 on the interior of Ii and D = 0 at the endpoints. All mass starting in a
given interval is transported to a point in the same interval. However, in our setting,
in addition to specifying a model (or equivalently a martingale coupling), we also
need to specify a stopping rule, and this needs to be defined across all irreducible
components simultaneously. For this reason, we do not insist that D > 0 on the inte-
rior of Iχ , although this will be the case in the simple settings in which we build our
solution.

1The terminology ‘irreducible’ is due to Beiglböck and Juillet [4], although the idea of splitting a problem
of constructing a martingale coupling into separate components is also present in the earlier papers of
Hobson [23] and Cox [13].
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2.5 The left-curtain coupling

The left-curtain coupling (or martingale transport) was introduced by Beiglböck and
Juillet [4] and further studied by Henry-Labordère and Touzi [16] and Beiglböck
et al. [6].

For real numbers c, d with c ≤ x ≤ d , define the probability measure χc,x,d by
χc,x,d = d−x

d−c
δc + x−c

d−c
δd with χc,x,d = δx if (d − x)(x − c) = 0. Note that χc,x,d has

mean x. χc,x,d is the law of a Brownian motion started at x evaluated on the first exit
from (c, d).

Lemma 2.6 (Beiglböck and Juillet [4, Corollary 1.6]) Let μ,ν be probability mea-
sures with μ ≤cx ν and assume that μ is continuous. Then there exists a pair
of measurable functions Td : R → R and Tu : R → R with the properties that
Td(x) ≤ x ≤ Tu(x), that Tu(x) ≤ Tu(x

′) and Td(x′) /∈ (Td(x), Tu(x)) for all x < x′,
and that if we define πlc(dx, dy) = μ(dx)χTd(x),x,Tu(x)(dy), then πlc ∈ Π(μ,ν).
πlc is called the left-curtain martingale coupling.

Note that there is no claim of uniqueness of the functions Td,Tu in Lemma 2.6.
Indeed, Td,Tu are unique only μ-a.s. (see Beiglböck et al. [6, Proposition 3.4]). For
example, the definitions of Td and Tu are immaterial outside [
μ, rμ]. Further, if
Tu has a (necessarily upward) jump at x′, then it does not matter what value we
take for Tu(x

′) provided Tu(x
′) ∈ [Tu(x

′−), Tu(x
′+)]. (Since we are assuming μ

is continuous, the probability that we choose an x-coordinate value of x′ is zero.)
More importantly, if (Td, Tu) satisfy the properties of Lemma 2.6 and if Tu(x) = x

on an interval [x, x), then we can modify the definition of Td on [x, x) to either
Td(x) = x or Td(x) = Td(x−) and still satisfy the relevant monotonicity properties.
Henry-Labordère and Touzi [16] resolve this indeterminacy by setting Td(x) = x on
the set {Tu(x) = x} and also taking Tu and Td to be right-continuous.

In the sequel, we follow Henry-Labordère and Touzi [16] by taking Td(x) = x on
the set {Tu(x) = x}, but we do not make right-continuity assumptions on Td and Tu.
Also we write (f, g) in place of (Td, Tu). Our functions f and g will eventually be
defined on R (see Sect. 3.3.5), but for now we define them just on [
μ, rμ].

Lemma 2.7 Let (Td, Tu) be a pair of functions satisfying the properties in Lemma 2.6.
Suppose they lead to a solution πlc ∈ Π(μ,ν). On [
μ, rμ], set g(x) = Tu(x);
on {g(x) > x}, set f (x) = Td(x); and on {g(x) = x}, set f (x) = x. Then (f, g)

are such that f (x) ≤ x ≤ g(x) and for all x′ > x, we have g(x′) ≥ g(x) and
f (x′) /∈ (f (x), g(x)). Moreover,

μ(dx)χf (x),x,g(x)(dy) = μ(dx)χTd(x),x,Tu(x)(dy).

Proof The property f (x) ≤ x ≤ g(x) is immediate; so we only need to check
that for x′ > x, we have g(x′) ≥ g(x) and f (x′) /∈ (f (x), g(x)). Monotonic-
ity of g is inherited from monotonicity of Tu. If g(x) = x, then f (x) = x and
f (x′) /∈ (f (x), g(x)) = ∅. If g(x) > x and g(x′) > x′, then

f (x′) = Td(x′) /∈ (
Td(x), Tu(x)

) = (
f (x), g(x)

)
.
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Fig. 2.1 Stylised plot of the
functions f and g in the general
case (with no atoms). Note that
on the set {g(x) = x}, we have
f (x) = x

Finally, if g(x) > x and g(x′) = x′, then

f (x′) = x′ /∈ (
f (x), x′ = g(x′)

) ⊇ (
f (x), g(x)

)
. �

Figure 2.1 gives a stylised representation of f and g in the case where ν has no
atoms. (Atoms of ν lead to horizontal sections of f and g; see Sect. 3.6.) In the
figure, the set {g(x) > x} is a finite union of intervals whereas in general it may be a
countable union of intervals. Similarly, in the figure, f has finitely many downward
jumps whereas in general, it may have countably many jumps. Nonetheless Fig. 2.1
captures the essential behaviour of f and g.

Suppose ν is also continuous and fix x. Under the left-curtain martingale coupling,
mass in the interval (f (x), x) at time 1 is mapped to the interval (f (x), g(x)) at
time 2. Thus the points f (x), g(x) with f (x) ≤ x ≤ g(x) are solutions to

∫ x

f

μ(dz) =
∫ g

f

ν(dz), (2.4)

∫ x

f

zμ(dz) =
∫ g

f

zν(dz). (2.5)

Essentially, (2.4) is a preservation-of-mass condition and (2.5) is preservation of the
mean and the martingale property. If ν has atoms, then (2.4) and (2.5) become

∫ x

f

μ(dz) =
∫

(f,g)

ν(dz) + λf + λg, (2.6)

∫ x

f

zμ(dz) =
∫

(f,g)

zν(dz) + f λf + gλg, (2.7)

respectively, where 0 ≤ λf ≤ ν({f }) and 0 ≤ λg ≤ ν({g}).
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Returning to the case of continuous μ and ν, for fixed x, there can be multiple
solutions to (2.4) and (2.5). If, however, we consider f and g as functions of x and
impose the additional monotonicity properties of Lemma 2.6 (i.e., g(x) ≤ g(x′) and
f (x′) /∈ (f (x), g(x)) for x < x′), then typically, for μ-almost all x, there is a unique
solution to (2.4) and (2.5). However, there are exceptional x at which f jumps and at
which there are multiple solutions; see Sect. 3.3.

Remark 2.8 In a related problem, Hobson and Klimmek [18] show how under natural
simplifying assumptions, including the dispersion assumption below (see Assump-
tion 3.3), upper and lower functions can be characterised as solutions of a pair of
coupled differential equations. In our case, (f, g) solve a pair of coupled differen-
tial equations on an interval [e−, rμ), obtained from differentiating (2.4) and (2.5),
namely

df

dx
= − g − x

g − f

ρ(x)

η(f ) − ρ(f )
,

dg

dx
= x − f

g − f

ρ(x)

η(g)
,

with the initial condition f (e−) = e− = g(e−). In addition, see Henry-Labordère and
Touzi [16, Eqs. (3.10) and (3.9)], where the construction of Td and Tu is exactly based
on the resolution of (2.4) and (2.5).

3 Robust bounds for American puts when μ is atom-free

3.1 Problem formulation

Our goal in this section is to derive the highest consistent model price for the Amer-
ican put. We begin by giving a concise reformulation of the primal problem (recall
Sect. 2.1) as a problem of martingale optimal transport (MOT), and stating the main
theorem (Theorem 3.1). Then we first study the problem in a simple special case,
second generalise to a case which exhibits all the main features and third present the
analysis in the general case.

Recall the definition of the canonical (μ, ν)-consistent model (abbreviated to M̂π )
for which P̂[M̂1 ∈ dx, M̂2 ∈ dy] = π(dx, dy), where π ∈ Π(μ,ν). For a pair of fixed
constants K1 and K2, the problem we consider is to find

P̂ := sup
π∈Π(μ,ν)

sup
B∈B(R)

E
L(X,Y )=π

[
(K1 − X)+I{X∈B} + (K2 − Y)+I{X/∈B}

]
.

Note that P̂ corresponds to the highest model-based price of the American put over
the specific subset of consistent models, and therefore P̂ ≤ P . By weak duality (recall
Sect. 2.3), it follows that P̂ ≤P ≤ D ≤ D̆.

Throughout this paper, we assume that μ has no atoms. The same assumption
is made in (parts of) Beiglböck and Juillet [4], Henry-Labordère and Touzi [16] and
Beiglböck et al. [6]. The extension of the left-curtain martingale coupling to the case
where μ has atoms is the subject of Hobson and Norgilas [22].
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Theorem 3.1 Suppose μ has no atoms. Then P̂ = P = D = D̆.

We begin by considering a couple of degenerate cases.
We say the put is in the money at time 1 (respectively time 2) if X < K1 (re-

spectively Y < K2). If the inequality is reversed, then the put is out of the money. If
K1 ≤ 
μ, then the American put is always out of the money at time 1, and the Amer-
ican put is equivalent to the European put with strike K2 and maturity 2. Since puts
with strike K and maturity 1 are costless for K ≤ 
μ, a simple superhedging strat-
egy is to purchase one European put with strike K1 and sell one European put with
strike K2, both with maturity 1, and also purchase one European put with strike K2

and maturity 2. (This strategy is of the form discussed in Lemma 2.4 and is generated
by ψ(y) = (K2 −y)+.) The cost of this hedge is Pν(K2); this is also the model-based
expected payoff of the American put under any consistent model.

If K1 ≤ K2, then E[(K2 − Y)+|X] ≥ (K2 − X)+ ≥ (K1 − X)+ and τ = 2 is op-
timal. Again, the American put is equivalent to the European put with strike K2 and
maturity 2. In this case, for a superhedge, it is sufficient to purchase one European
put with strike K2 and maturity 2. By Lemma 2.4 (with ψ(y) = (K2 − y)+ and
φ = 0), this generates a superhedge with cost Pν(K2). Again, this is the model-based
expected payoff of the American put under any consistent model.

For the remainder of the paper, we make the

Standing Assumption 3.2 K1 > max{
μ,K2}.

3.2 American puts under the dispersion assumption

3.2.1 The left-curtain coupling

The goal in this section is to present the theory in a simple special case, and to il-
lustrate the main features and solution techniques of our approach unencumbered by
technical issues or the consideration of exceptional cases. The following assumption
is a small modification of one introduced by Hobson and Klimmek [18]; see also
Henry-Labordère and Touzi [16]. For illustration, see Fig. 3.1.

Assumption 3.3 (Dispersion assumption) Laws μ and ν are absolutely continuous
with continuous densities ρ and η, respectively; ν has support on (
ν, rν) ⊆ (−∞,∞)

and η > 0 on (
ν, rν); μ has support on (
μ, rμ) ⊆ (
ν, rν) and ρ > 0 on (
μ, rμ). In
addition:

• (μ − ν)+ is concentrated on an interval E = (e−, e+) and ρ > η on E;
• (ν − μ)+ is concentrated on (
ν, rν) \ E and η > ρ on (
ν, e−) ∪ (e+, rν).

If μ ≤cx ν are centred normal distributions with different variances or distinct
lognormal distribution with common mean, then Assumption 3.3 is satisfied.

Under the dispersion assumption, {k : Dμ,ν(k) > 0} is an interval and D = Dμ,ν

is convex to the left of e−, concave on (e−, e+) and again convex above e+.
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Fig. 3.1 Sketch of the densities
ρ and η and the locations of
f = f (x), g = g(x) for given
x > e−. Time-1 mass in the
interval (f, x) stays in the same
place if possible. Mass which
cannot stay constant is mapped
to (f, e−) or (x, g) in a way
which respects the martingale
property

Lemma 3.4 (Henry-Labordère and Touzi [16, Sect. 3.4]) Suppose that Assump-
tion 3.3 holds. For all x ∈ (e−, rμ), there exist f,g with f < e− < x < g such that
(2.4) and (2.5) hold. Moreover, if we consider f and g as functions of x on (e−, rμ),
then f and g are continuous, f is strictly decreasing and g is strictly increasing,
limx↓e− f (x) = e− = limx↓e− g(x), limx↑rμ f (x) = 
ν and limx↑rμ g(x) = rν .

The principle behind the left-curtain martingale coupling in Beiglböck and Juil-
let [4] is that they determine where to map mass at x at time 1 sequentially working
from left to right. In our current setting, there is an interval (
μ, e−] on which mass
can remain unmoved between times 1 and 2. To the right of e−, we can define f,g

in such a way that mass is moved as little as possible. This leads to the ODEs in
Remark 2.8.

3.2.2 The American put

Suppose K1 ∈ (e−, rμ] and suppose f and g are constructed as in Lemma 3.4. Define
Λ : [g−1(K1),K1] → R by

Λ(x) = (K2 − f (x)) − (K1 − x)

x − f (x)
− K1 − x

g(x) − x

= g(x) − K1

g(x) − x
− K1 − K2

x − f (x)
. (3.1)

Pictorially Λ is the difference in slope of the two dashed lines in Fig. 3.2.

Lemma 3.5 Suppose K1 ∈ (e−, rμ] and f (K1) < K2. Then there is a unique
scalar x∗ = x∗(μ, ν;K1,K2) ∈ (g−1(K1),K1) such that Λ(x∗) = 0. Moreover,
f (x∗) < K2 and

K2 − f (x∗)
g(x∗) − f (x∗)

= K1 − x∗

g(x∗) − x∗ = (x∗ − f (x∗)) − (K1 − K2)

x∗ − f (x∗)

= 1 − K1 − K2

x∗ − f (x∗)
. (3.2)
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Fig. 3.2 Sketch of put payoffs
with points x, f and g marked.
Λ(x) is the difference in slope
of the two dashed lines

Fig. 3.3 Sketch of functions f

and g under the dispersion
assumption, with the regions
K2 < f (K1) and K2 > f (K1)

shaded. This is a simple special
case of Fig. 2.1

Proof First, from the continuity and monotonicity properties of f and g, we
have that (see Fig. 3.2) Λ is continuous and strictly increasing. Moreover,
Λ(g−1(K1)) = − K1−K2

g−1(K1)−(f ◦g−1)(K1)
< 0 and Λ(K1) = K2−f (K1)

K1−f (K1)
> 0 by hypothe-

sis. Hence there is a unique root to Λ = 0. At this root, the equalities in (3.2) hold. �

Suppose K1 > e− and f (K1) < K2 and that x∗ = x∗(μ, ν;K1,K2) ∈ (e−,K1) is
such that Λ(x∗) = 0. It is easy to find a martingale coupling π of μ and ν such that π

maps (f (x∗), x∗) onto (f (x∗), g(x∗)), and such that π is constant on (−∞, f ∗).
For example, we may take π̂ = πlc = πlc(μ, ν), the left-curtain martingale cou-
pling of Beiglböck and Juillet [4]. More generally, let πx∗ ∈ Π(μ,ν) be any mar-
tingale coupling such that πx∗ maps (−∞, f (x∗)) to itself, maps (f (x∗), x∗) onto
(f (x∗), g(x∗)), and maps (x∗,∞) to (−∞, f (x∗)) ∪ (g(x∗),∞). The martingale
coupling represented in Fig. 3.3 has this property.

Consider a canonical (μ, ν)-consistent model M̂πx∗ , under which the correspond-

ing probability measure P̂ is given by P̂[X ∈ dx,Y ∈ dy] = πx∗(dx, dy). Let τ ∗ be
the stopping time such that τ ∗ = 1 on (−∞, x∗) and τ ∗ = 2 otherwise. Our claim in
Theorem 3.6 below is that M̂πx∗ and the stopping time τ ∗ are such that the model-
based price of the American put under this stopping time is the highest possible, over
all consistent models.
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Continue to suppose K1 > e− and f (K1) < K2. Now we define a superhedge of
the American put. Let ψ∗ be the function

ψ∗(z) =

⎧
⎪⎨

⎪⎩

K2 − z, z ≤ f (x∗),
(g(x∗)−z)(K2−f (x∗))

g(x∗)−f (x∗) , f (x∗) < z ≤ g(x∗),
0, z > g(x∗).

(3.3)

Note that by construction and by (3.2), K2−f (x∗)
g(x∗)−f (x∗) = K1−x∗

g(x∗)−x∗ . Therefore, we have

that ψ∗(x∗) = K1 − x∗. Moreover, ψ∗ is convex and satisfies ψ∗(z) ≥ (K2 − z)+.
Hence by Lemma 2.4, ψ∗ can be used to generate a superhedge (ψ∗, φ∗, (θ∗

i )i=1,2).
In the following theorem, we assume that the American put is not always strictly

in the money at time 1 (or equivalently, K1 ≤ rμ). Discussion of the case K1 > rμ is
postponed until Sect. 3.3.5 below.

Theorem 3.6 Suppose Assumption 3.3 holds and K1 ≤ rμ.
(1) Suppose K1 ∈ (e−, rμ] and f (K1) < K2. The model M̂πx∗ described in the

previous paragraphs is a canonical (μ, ν)-consistent model for which the price of the
American option is the highest. The stopping time τ ∗ is the optimal exercise time. The
function ψ∗ defined in (3.3) defines the cheapest superhedge. Moreover, the highest
model-based price is equal to the cost of the cheapest superhedge.

(2) Suppose that we have either Case A: K1 ≤ e− or Case B: K1 ∈ (e−, rμ], to-
gether with f (K1) ≥ K2. Then there exists a canonical, consistent model under which

{Y < K2} = {X < K2} ∪ {X > K1, Y < K2} a.s.

and any model with this property, with the stopping rule τ = 1 if X < K1 and τ = 2
otherwise, attains the highest consistent model price. The cheapest superhedge is
generated from ψ(x) = (K2 − x)+, and the highest model-based price is equal to the
cost of the cheapest superhedge.

Remark 3.7 In Part 2 of Theorem 3.6, the left-curtain coupling generates a model for
which {Y < K2} = {X < K2} ∪ {X > K1, Y < K2}, and hence when associated with
the stopping rule of the theorem, this attains the highest consistent model price.

Proof (1) Suppose K1 > e− and f (K1) < K2. Then by Lemma 3.5, there is a unique
x∗ ∈ (g−1(K1),K1) such that Λ(x∗) = 0. For this x∗, we can find f ∗ = f (x∗) and
g∗ = g(x∗) with f ∗ < K2 and K1 < g∗ such that K2−f ∗

g∗−f ∗ = K1−x∗
g∗−x∗ ; see Fig. 3.4. For

typographical reasons, we abbreviate this (x∗, f ∗, g∗) to (x, f, g) for the rest of this
proof.

Since ν is continuous, we have that f,x, g solve (2.4) and (2.5). The elements
f,x, g can be used to define a model using the construction after Lemma 3.5 above.
For this model, we can calculate the expected payoff of the American put. At the
same time, we can use (f, x, g) to define a superhedge. The remaining task is to
show that the cost of the superhedge equals that of the model-based expected payoff.
Then by the discussion in Sect. 2.3, we have found an optimal model and a cheapest
superhedge.
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Fig. 3.4 A combination of
Figs. 3.3 and 3.2, showing how
they jointly define the best
model and best hedge. By
adjusting x, we can find x∗ such
that Λ(x∗) = 0. Together the
quantities (f (x∗), x∗, g(x∗))

define the optimal model,
stopping time and hedge

The model-based expected payoff (MBEP) of the American put (for this model
and stopping rule) is

MBEP =
∫ x

−∞
(K1 − w)μ(dw) +

∫ f

−∞
(K2 − w)(ν − μ)(dw)

= Pμ(x) + (K1 − x)P ′
μ(x) + D(f ) + (K2 − f )D′(f ).

Now we consider the hedging cost (HC). Set Θ = K2−f
g−f

∈ (0,1). Note that since

x has Λ(x) = 0, we have Θ = K1−x
g−x

. Recall the definition of ψ∗ in (3.3). Then

ψ∗(y) = Θ(g − y)+ + (1 − Θ)(f − y)+.

Following Lemma 2.4, we can use ψ∗ to generate a superhedging strategy. The hedg-
ing cost (HC) of this strategy is

HC = ΘPν(g) + (1 − Θ)Pν(f ) + (1 − Θ)
(
Pμ(x) − Pμ(f )

)
, (3.4)

where the first two terms arise from the purchase of the static time-2 portfolio ψ∗ and
the third comes from the purchase of the time-1 portfolio ((K1 − w)+ − ψ∗(w))+.
The expression in (3.4) can be rewritten as

Pμ(x) + D(f ) + Θ
(
Pν(g) − Pν(f ) − Pμ(x) + Pμ(f )

)
.
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Now we consider the difference between the hedging cost and the model-based
expected payoff. First recall that Pχ(k) = ∫ k

−∞(k − x)χ(dx), χ ∈ {μ,ν}, and that
D(k) = Dμ,ν(k) = Pν(k) − Pμ(k). Then (2.4) and (2.5) can be rewritten as

P ′
μ(x) − P ′

μ(f ) = P ′
ν(g) − P ′

ν(f ), (3.5)
(
xP ′

μ(x) − Pμ(x)
) − (

f P ′
μ(f ) − Pμ(f )

) = (
gP ′

ν(g) − Pν(g)
)

− (
f P ′

ν(f ) − Pν(f )
)
. (3.6)

We find

HC − MBEP = Θ
(
Pν(g) − Pν(f ) − Pμ(x) + Pμ(f )

)

− (K1 − x)P ′
μ(x) − (K2 − f )D′(f )

= Θ
(
gP ′

ν(g) − xP ′
μ(x) − f D′(f )

)

− (K1 − x)P ′
μ(x) − (K2 − f )D′(f )

= Θ
(
(g − x)P ′

μ(x) + (g − f )D′(f )
)

− (K1 − x)P ′
μ(x) − (K2 − f )D′(f )

= P ′
μ(x)

(
Θ(g − x) − (K1 − x)

) + D′(f )
(
Θ(g − f ) − (K2 − f )

)

= 0,

where we use (3.6), (3.5) and the definition of Θ , respectively. Optimality of the
model, stopping rule and hedge now follows.

(2) Now suppose K1 ≤ e−. Consider an exercise rule in which the American put
is exercised at time 1 if it is in the money, otherwise it is exercised at time 2, and
a model in which mass below K1 at time 1 stays constant between times 1 and 2.
(This is possible since μ ≤ ν on (−∞, e−) and K1 ≤ e−.) The expected payoff of the
American put is
∫ K1

−∞
(K1 − x)μ(dx) +

∫ K2

−∞
(K2 − y)(ν − μ)(dy) = Pμ(K1) + Pν(K2) − Pμ(K2).

(3.7)
Alternatively, suppose K1 > e− and f (K1) ≥ K2. Then under the left-curtain mar-
tingale coupling, mass below K2 at time 1 stays constant between times 1 and 2
(note that K2 ≤ f (K1) ≤ e−), and mass between K2 and K1 at time 1 is mapped to
(K2,∞). Then, mass which is below K2 at time 2 was either below K2 at time 1,
or above K1 at time 1. The expected payoff under this model (using a strategy of
exercising at time 1 if the American put is in the money) is again given by (3.7).

Now consider the hedging cost. Let ψ(y) = (K2 − y)+. If we define φ as in
Lemma 2.4, we find φ(x) = (K1 −x)+−(K2 −x)+ = (K1 −(x∨K2))

+, see Fig. 3.5,
and the superhedging cost is

HC = Pν(K2) + Pμ(K1) − Pμ(K2).

Hence the model-based expected payoff equals the hedging cost. �
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Fig. 3.5 Sketch of put payoffs
with ψ(y) = (K2 − y)+ and
φ(x) = (K1 − x)+ − (K2 − x)+

3.3 Two intervals of g > x and one downward jump in f

We now relax the dispersion assumption to the case where f is not monotone. The
simplest situation when this may arise is when there are two intervals on which
g(x) > x. We do not contend that there are many natural examples which fall into
this situation, but rather that this intermediate case illustrates phenomena which are
to be found in the general case, but which were not to be found under the dispersion
assumption.

Assumption 3.8 (Single-jump assumption) Laws μ and ν are absolutely continuous
with continuous densities ρ and η, respectively; ν has support on (
ν, rν) ⊆ (−∞,∞)

and η > 0 on (
ν, rν); μ has support on (
μ, rμ) ⊆ (
ν, rν) and ρ > 0 on (
μ, rμ). In
addition:

• (μ − ν)+ is concentrated on E = (e1−, e1+) ∪ (e2−, e2+) with e1+ < e2−, and ρ > η

on E;
• (ν−μ)+ is concentrated on (
ν, rν)\E and η > ρ on (
ν, e

1−)∪(e1+, e2−)∪(e2+, rν);
• there exist f ′ < e1− and x′ ∈ (e1+, e2−) such that

∫ x′

f ′
μ(dz) =

∫ x′

f ′
ν(dz) and

∫ x′

f ′
zμ(dz) =

∫ x′

f ′
zν(dz). (3.8)

Under Assumption 3.8, it is possible to find functions g : (
μ, rμ) → (
ν, rν) and
f : (
μ, rμ) → (
ν, rν) with the properties (see the lower part of Fig. 3.6)

(1) g(x) = x on (
μ, e1−] ∪ [x′, e2−];
(2) g(x) > x on (e1−, x′) ∪ (e2−, rμ);
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Fig. 3.6 Picture of f and g

under Assumption 3.8

(3) g is continuous and strictly increasing;
(4) f (x) = x on (
μ, e1−] ∪ [x′, e2−];
(5) f : (e1−, x′) → (f ′, x′) is continuous and strictly decreasing;
(6) f : (e2−, rμ) → (
ν, e

2−) \ (f ′, x′) is strictly decreasing;
(7) there exists x′′ ∈ (e2−, rμ) with the property that f jumps at x′′ and satisfies

f (x′′−) = x′ > f ′ = f (x′′+). Away from x′′, f is continuous on (e2−, rμ).
By construction, we have that

∫ x′′

x′
μ(dz) =

∫ g(x′′)

x′
ν(dz) and

∫ x′′

x′
zμ(dz) =

∫ g(x′′)

x′
zν(dz), (3.9)

so that if mass in (x′, x′′) at time 1 is mapped to (x′, g(x′′)) at time 2, then the total
mass and mean are preserved. Further, given that (f ′, x′) satisfy (3.8), we also have

that
∫ x′′
f ′ μ(dz) = ∫ g(x′′)

f ′ ν(dz) and
∫ x′′
f ′ zμ(dz) = ∫ g(x′′)

f ′ zν(dz). In particular, given
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(3.8) and (3.9), the pair of equations

∫ x′′

f

μ(dz) =
∫ g(x′′)

f

ν(dz) and
∫ x′′

f

zμ(dz) =
∫ g(x′′)

f

zν(dz)

has two solutions for f , namely f =x′ and f =f ′. Hence, in defining the left-curtain
martingale coupling, there are two choices for f at x′′: we may take f (x′′) = x′ or
f (x′′) = f ′. Rather than assuming one of these choices (for example by requiring
left-continuity of f ), it is convenient to allow f to be multi-valued. Then, for each x

such that g(x) > x, let ℵ(x) = {f : (f, x, g(x)) solves (2.4) and (2.5)}. Then we have
that in the setting of Assumption 3.8, for x > e−, |ℵ(x)| = 1 except at x′′ and there
ℵ(x′′) = {f (x′′+), f (x′′−)} = {f ′, x′}.

Recall the definition Λ(x) = g(x)−K1
g(x)−x

− K1−K2
x−f (x)

. If f is multi-valued, then Λ is also
multi-valued. In Sect. 3.2, one of our main steps was to find x such that Λ(x) = 0,
and our aim is similar here.

Introduce Υ = ΥK1,K2(f, x, g) which is defined for f ≤ K2, x ≤ K1 ≤ g by

Υ (f,x, g) = (K2 − f ) − (K1 − x)

x − f
− K1 − x

g − x
= g − K1

g − x
− K1 − K2

x − f
.

Instead of seeking x which is a root of Λ(x) = 0, our goal is to find (f, x, g) with
g = g(x) and f ∈ ℵ(x) such that Υ (f,x, g) = 0.

For a fixed K1, the value of K2 such that Υ (f ′ = f (x′′+), x′′, g(x′′)) = 0 is
given by K2 = f ′ + (K1 − x′′) g(x′′)−f ′

g(x′′)−x′′ . On the other hand, if we define K2 by

K2 = x′ + (K1 − x′′) g(x′′)−x′
g(x′′)−x′′ , we get Υ (x′ = f (x′′−), x′′, g(x′′)) = 0. This moti-

vates the introduction of the linear increasing functions Lu, Ld : [x′′, g(x′′)] → R

defined by

Lu(x) = x′ + (x − x′′) g(x′′) − x′

g(x′′) − x′′ , (3.10)

Ld(x) = f ′ + (x − x′′) g(x′′) − f ′

g(x′′) − x′′ . (3.11)

Pictorially, Ld and Lu are the lower and upper boundaries, respectively, of the dotted
triangular area G in Fig. 3.7.

From Fig. 3.7, we identify four regions (and various subregions) on which four dif-
ferent hedging strategies will be needed in order to find the cheapest superhedge for
the American put. (Compare this with two regimes under the dispersion assumption
in Fig. 3.3.)

Define

R1 = {(k1, k2) : e1− < k1 < x′, f (k1) < k2 < k1},
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Fig. 3.7 Picture of f and g in
the single-jump case, now with
4 regions shaded (cross-hatched,
diagonally, dotted and blank)

which we write more compactly as R1 = {e1− < k1 < x′, f (k1) < k2 < k1}. Using the
same compact notation, define

R2 = {e2− < k1 < x′′, f (k1) < k2 < k1} ∪ {k1 = x′′, x′ < k2 < k1},
R3 = {x′′ < k1 < g(x′′),Lu(k1) ≤ k2 < k1},
R4 = {x′′ < k1 < g(x′′), f (k1) < k2 ≤ Ld(k1)},
R5 = {g(x′′) ≤ k1 ≤ rμ,f (k1) < k2 < k1},
B1 = {
μ ≤ k1 ≤ e1−, k2 < k1} ∪ {e1− < k1 < x′, k2 ≤ f (k1)}

∪ {x′′ < k1 ≤ rμ, k2 ≤ f (k1)},
B2 = {x′ ≤ k1 ≤ x′′, k2 ≤ f ′},
B3 = {x′ ≤ k1 ≤ e2−, x′ ≤ k2 < k1} ∪ {e2− < k1 ≤ x′′, x′ ≤ k2 ≤ f (k1)},
G = {x′′ < k1 < g(x′′),Ld(k1) < k2 < Lu(k1)},
W = {x′ ≤ k1 ≤ x′′, f ′ < k2 < x′},

and set R = ⋃5
i=1 Ri and B = ⋃3

i=1 Bi . In general, on the boundaries between the
regions, the boundaries could be allocated to either region. However, we allocate
points on the boundary to the region where the hedge is simplest.

Note that R∪B ∪ G ∪W = {(k1, k2) : 
μ ≤ k1 ≤ rμ, k2 < k1}.

3.3.1 Case (K1,K2) ∈R

Lemma 3.9 Suppose that we have (K1,K2) ∈ R. Then there exist a
unique x∗ = x∗(μ, ν;K1,K2) ∈ (g−1(K1),K1) and f ∗ ∈ ℵ(x∗) such that
Υ (f ∗, x∗, g∗ = g(x∗)) = 0.

Proof Suppose that (K1,K2) ∈ R1 ∪ R2 ∪ R5. Consider Λ : [g−1(K1),K1] → R

defined by (3.1). Note that for this choice of (K1,K2), f and g are both continuous
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on [g−1(K1),K1]; see Fig. 3.6. Hence Λ(x) = Υ (f (x), x, g(x)) is also continuous.
Then the same argument as in the proof of Lemma 3.5 shows that there exists a unique
x∗ = x∗(μ, ν;K1,K2) ∈ (g−1(K1),K1) such that Λ(x∗) = 0.

Now suppose (K1,K2) ∈ R3 ∪ R4 and consider Λ as before. Recall that Λ is
increasing, Λ(g−1(K1)) < 0 and Λ(K1) > 0. On the other hand, g−1(K1) < x′′ and
hence Λ has an upward jump at x′′ (since f has a downward jump at x′′). There are
two cases depending on whether (K1,K2) ∈ R3 or R4.

(1) Suppose that K2 > Lu(K1). Then we have Λ(x′′−) > 0. Moreover, since
Λ(g−1(K1)) < 0, the continuity of Λ on (g−1(K1), x

′′) guarantees that there ex-
ists a unique scalar x∗ = x∗(μ, ν;K1,K2) ∈ (g−1(K1), x

′′) such that Λ(x∗) = 0.
If K2 = Lu(K1), then Υ (x′, x′′g(x′′)) = 0 and we take x∗ = x′′, g∗ = g(x′′) and
f ∗ = f (x′′−) = x′.

(2) Suppose that K2 < Ld(K1). Then Λ(x′′+) < 0. Further, since Λ(K1) > 0,
there exists a unique x∗ = x∗(μ, ν;K1,K2) ∈ (x′′,K1) such that Λ(x∗) = 0. If
K2 = Ld(K1), then Υ (f ′, x′′, g(x′′)) = 0 and we take x∗ = x′′, g∗ = g(x′′) and
f ∗ = f (x′′+) = f ′. �

By Lemma 3.9, for (K1,K2) ∈ R, there exists (f ∗ ∈ ℵ(x∗), x∗, g∗ = g(x∗)) such
that Υ (f ∗, x∗, g∗) = 0. Suppose (K1,K2) ∈R1 ∪R4 ∪R5. In this case, we let M̂πx∗
be a canonical (μ, ν)-consistent model (recall that M̂π is the abbreviated notation
for the canonical model (Ŝπ , M̂) for which P̂[X ∈ dx,Y ∈ dy] = π(dx, dy)). Here
πx∗ ∈ Π(μ,ν) is a martingale coupling that is constant on (−∞, f ∗), maps (f ∗, x∗)
onto (f ∗, g∗) and (g∗,∞) to (−∞, f ∗) ∪ (g∗,∞).

Recall the proof of Theorem 3.6. There, to show that MBEP = HC, we used the
fact that for the canonical model M̂πx∗ , πx∗ is constant on (−∞, f ∗) and maps
(f ∗, x∗) onto (f ∗, g∗). In fact, the equality MBEP = HC holds for any canonical
model for which the associated martingale coupling has the same property. Then the
mass that is ‘unexercised’ at time 1 and is in the money at time 2 has time-2 law
given by (ν − μ)|(−∞,f ∗), where f ∗ < e−. When f (x′) < e1− (as is the case when
(K1,K2) ∈ R1 ∪ R4 ∪ R5), the same proof applies, so that MBEP = HC and we
have optimality. On the other hand, if (K1,K2) ∈ R2 ∪ R3, then it is not the case
that f ∗ < e1− and thus, in order to specify the optimal model, we need to impose
additional structure on the coupling μ̃f ∗,x∗ �→ ν̃f ∗,g∗ .

Suppose that (K1,K2) ∈ R2 ∪ R3. Then x′ < f ∗ so that (f ′, x′) ∩ (f ∗, g∗) = ∅.
From the defining properties of f ′ and x′, we see that there exists a martingale
coupling, which we term πx′,x∗ ∈ Π(μ,ν), which is constant on (−∞, f ′) and
(x′, f ∗), maps (f ′, x′) onto itself and (f ∗, x∗) onto (f ∗, g∗), and maps (x∗,∞) to
(−∞, f ′) ∪ (x′, f ∗) ∪ (g∗,∞).

If (K1,K2) ∈ R1 ∪R4 ∪R5, we have the canonical model M̂πx∗ , and in the case
when (K1,K2) ∈ R2 ∩ R3, we have M̂πx′,x∗ . For both models, we consider a candi-
date stopping time τ ∗ = 1 if X < x∗ and τ ∗ = 2 otherwise, and a candidate super-
hedge (ψ∗, φ∗, (θ∗

i )i=1,2) generated by the function ψ∗ defined in (3.3).

Theorem 3.10 Suppose Assumption 3.8 holds and (K1,K2) ∈ R. Then, depending
on whether (K1,K2) is in R1 ∪R4 ∪R5 or R2 ∪R3, the models M̂πx∗ and M̂πx′,x∗
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and the stopping time τ ∗ are the consistent models for which the price of the Ameri-
can option is the highest. The function ψ∗ defined in (3.3) defines the cheapest super-
hedge. Moreover, the highest model-based price is equal to the cost of the cheapest
superhedge.

Proof If (K1,K2) ∈R1 ∪R4 ∪R5, then the proof is essentially the same as the proof
of the first case in Theorem 3.6. We repeat the main steps for convenience. First find
x∗ ∈ (g−1(K1),K1) and f ∗ ∈ ℵ(x∗) such that Υ (f ∗, x∗g∗ = g(x∗)) = 0. If x∗ = x′′,
we find f ∗ = f (x′′+) = f ′. Under the candidate model M̂πx∗ , mass below f ∗ at
time 1 is mapped to the same point at time 2 (which is possible since f ∗ < e1−), and
mass in (f ∗, x∗) is mapped onto (f ∗, g∗), while mass above x∗ is either mapped to
below f ∗ or to above g∗. Then under the candidate stopping rule τ ∗, the model-based
expected payoff is equal to the cost of the hedging strategy generated by ψ∗, i.e.,

MBEP =
∫ x∗

−∞
(K1 − w)+μ(dw) +

∫ f ∗

−∞
(K2 − w)+(ν − μ)(dw)

= Pμ(x∗) + (K1 − x∗)P ′
μ(x∗) + D(f ∗) + (K2 − f ∗)D′(f ∗)

= HC.

Now suppose that (K1,K2) ∈ R2 ∪ R3. Then by Lemma 3.9, there exist a
unique x∗ ∈ (g−1(K1), x

′′] and f ∗ ∈ ℵ(x∗) such that Υ (f ∗, x∗, g∗ = g(x∗)) = 0.
If x∗ = x′′, then we have f ∗ = f (x′′−) = x′. Then, since ν is continuous, we have
that f ∗, x∗, g∗ solve (2.4) and (2.5). Note, however, that x′ ≤ f ∗ < e2−.

Under the candidate model M̂πx′,x∗ , mass in (f ′, x′) at time 1 is mapped onto
the same interval at time 2. Also, mass below f ′ and mass in (x′, f ∗) at time 1 is
mapped to the same point at time 2, and mass in (f ∗, x∗) is mapped onto (f ∗, g∗).
Mass above x∗ is either mapped to below f ′, to (x′, f ∗), or to above g∗. In particular,
(ν − μ)|(−∞,f ′)∪(x′,f ∗) is the law of the mass that was not ‘exercised’ at time 1 and

is in the money at time 2. From (3.8), we have
∫ f ′
x′ (K2 − w)(ν − μ)(dw) = 0. Then

MBEP =
∫ x∗

−∞
(K1 − w)μ(dw) +

∫ f ′

−∞
(K2 − w)(ν − μ)(dw)

+
∫ f ∗

x′
(K2 − w)(ν − μ)(dw)

=
∫ x∗

−∞
(K1 − w)μ(dw) +

∫ f ∗

−∞
(K2 − w)(ν − μ)(dw)

−
∫ x′

f ′
(K2 − w)(ν − μ)(dw)

=
∫ x∗

−∞
(K1 − w)μ(dw) +

∫ f ∗

−∞
(K2 − w)(ν − μ)(dw)

= Pμ(x∗) + (K1 − x∗)P ′
μ(x∗) + D(f ∗) + (K2 − f ∗)D′(f ∗)

= HC. �
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3.3.2 (K1,K2) ∈ B = B1 ∪B2 ∪B3

Theorem 3.11 Suppose that Assumption 3.8 holds and (K1,K2) ∈ B. Then there is
a consistent model for which {Y < K2} = {X < K2} ∪ {X > K1, Y < K2} a.s. and, if
x′ < K2, {f ′ < X < x′} = {f ′ < Y < x′}. Any model with these properties and with
the stopping rule τ = 1 if X < K1 and τ = 2 otherwise attains the highest consistent
model price. The cheapest superhedge is generated from ψ(x) = (K2 − x)+, and the
highest model-based price is equal to the cost of the cheapest hedge.

Proof Let ψ(y) = (K2 − y)+. As in Lemma 2.4, define a corresponding φ. We find
that φ(x) = (K1 − x)+ − (K2 − x)+, and the superhedging cost (which is the same
for all the cases) is

HC = Pν(K2) + Pμ(K1) − Pμ(K2).

Suppose (K1,K2) ∈ B1. Then using the properties of f and g and the left-curtain
coupling, we see that the proof that the model-based expected payoff is equal to the
hedging cost is the same as in the second case of Theorem 3.6. In particular,

MBEP =
∫ K1

−∞
(K1 − x)μ(dx) +

∫ K2

−∞
(K2 − y)(ν − μ)(dy)

= Pμ(K1) + Pν(K2) − Pμ(K2).

Now suppose (K1,K2) ∈ B2. Then under the left-curtain coupling, mass from
(f ′, x′) at time 1 is mapped onto the same interval at time 2. Therefore mass which is
below K2 at time 2 was either below K2 at time 1, or above x′ at time 1. Therefore,
we again have

MBEP =
∫ K1

−∞
(K1 − x)μ(dx) +

∫ K2

−∞
(K2 − y)(ν − μ)(dy).

Finally, suppose (K1,K2) ∈ B3. We again utilise the fact that under the left-curtain
coupling, mass from (f ′, x′) at time 1 is mapped onto the same interval at time 2. In
both cases, the mass which is below K2 at time 2 was either below K2 at time 1,
or above K1 at time 1. In particular, the law of the mass that can be ‘exercised’ at

time 2 is given by (ν − μ)|(−∞,f ′)∪(x′,K2). Then using
∫ x′
f ′ (K2 − z)(ν − μ)(dz) = 0,

we again have

MBEP =
∫ K1

−∞
(K1 − x)μ(dx) +

∫ f ′

−∞
(K2 − y)(ν − μ)(dy)

+
∫ K2

x′
(K2 − y)(ν − μ)(dy)

=
∫ K1

−∞
(K1 − x)μ(dx) +

∫ K2

−∞
(K2 − y)(ν − μ)(dy),

which ends the proof. �
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Fig. 3.8 Picture of f and g

along with superhedge for
(K1,K2) ∈ W

3.3.3 (K1,K2) ∈W

Suppose (K1,K2) ∈W . For this case, we associate the following superhedge: let ψx′

be given by

ψx′
(z) =

⎧
⎨

⎩

K2 − z, z ≤ f ′,
(K2 − f ′) − (z − f ′)K2−f ′

x′−f ′ , f ′ < z ≤ x′,
0, z > x′;

(3.12)

see Fig. 3.8. Since ψx′
is convex and ψx′

(z) ≥ (K2 − z)+, we can use Lemma 2.4 to
generate a corresponding superhedging strategy (ψx′

, φx′
, (θx′

i )i=1,2).

Theorem 3.12 Suppose Assumption 3.8 holds and (K1,K2) ∈ W . Then there is a
consistent model for which {f ′ < X < x′} = {f ′ < Y < x′}, and any model with this
property and with the stopping rule τ = 1 if X < K1 and τ = 2 otherwise attains the
highest consistent model price. The cheapest superhedge is generated from ψx′

de-
fined in (3.12), and the highest model-based price is equal to the cost of the cheapest
hedge.

Proof First note that

ψx′
(z) = Θ(x′ − z)+ + (1 − Θ)(f ′ − z)+,



384 D. Hobson, D. Norgilas

where Θ = K2−f ′
x′−f ′ . Since x′ < K1, we have

φx′
(w) + ψx′

(z) = (K1 − w)+ − ψx′
(w) + ψx′

(z)

= (K1 − w)+ + Θ
(
(x′ − z)+ − (x′ − w)+

)

+ (1 − Θ)
(
(f ′ − z)+ − (f ′ − w)+

)
.

It follows that HC = Pμ(K1) + ΘD(x′) + (1 − Θ)D(f ′) is the cost of this strategy
(under any consistent model).

Now consider the model-based expected payoff. From (3.8), it follows that μf ′,x′
and νf ′,x′ have the same mean and mass and are in convex order. Moreover, the same
holds for μ̃f ′,x′ and ν̃f ′,x′ . Therefore, there exists a martingale coupling, which we
term πx′ ∈ Π(μ,ν), which is constant on (−∞, f ′) and maps (f ′, x′) onto itself. It
follows that under this model, the law of the mass that can be ‘exercised’ at time 2 is
given by (ν − μ)|(−∞,f ′).

Note that since f ′ and x′ satisfy (3.8), and hence
∫ x′
f ′ (x′ − w)(ν − μ)(dw) = 0,

D(x′) − D(f ′) =
∫ x′

−∞
(x′ − w)+(ν − μ)(dw) −

∫ f ′

−∞
(f ′ − w)+(ν − μ)(dw)

=
∫ f ′

−∞
(x′ − f ′)(ν − μ)(dw) +

∫ x′

f ′
(x′ − w)(ν − μ)(dw)

= (x′ − f ′)
∫ f ′

−∞
(ν − μ)(dw).

Then given that we stop at time 1 if X < K1 and at time 2 otherwise, we have

MBEP =
∫ K1

−∞
(K1 − w)+μ(dw) +

∫ f ′

−∞
(K2 − w)+(ν − μ)(dw)

=
∫ K1

−∞
(K1 − w)μ(dw) +

∫ f ′

−∞
(f ′ − w)(ν − μ)(dw)

+ (K2 − f ′)
∫ f ′

−∞
(ν − μ)(dw)

= Pμ(K1) + D(f ′) + Θ
(
D(x′) − D(f ′)

)

= Pμ(K1) + ΘD(x′) + (1 − Θ)D(f ′) = HC,

as required. �

3.3.4 (K1,K2) ∈ G

Recall from (3.10), (3.11) the construction of Lu and Ld . For K1 ∈ (x′′, g(x′′))
and K2 ∈ (Ld(K1),Lu(K1)), there does not exist any x∗ ∈ (g−1(K1),K1) such
that Λ(x∗) = 0; instead we have that Λ(x′′−) < 0 < Λ(x′′+). On the other hand,
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from (3.9) we have that there exists a martingale coupling of μx′,x′′ and νx′,g(x′′).
Moreover, note that the restrictions of μ̃f ′,x′ to (x′, x′′) and ν̃f ′,x′ to (x′, g(x′′))
are equal to μx′,x′′ and νx′,g(x′′), respectively. Then we define a martingale coupling
πx′,x′′ ∈ Π(μ,ν) which is constant on (−∞, f ′), maps (f ′, x′) onto itself, (x′, x′′)
onto (x′, g(x′′)), and (x′′,∞) to (−∞, f ′)∪(g(x′′),∞). Let M̂πx′,x′′ be the canonical

model under which P̂[X ∈ dx,Y ∈ dy] = πx′,x′′(dx, dy). Note that the model M̂πx′,x′′
is a refinement of M̂πx′ used in the proof of Theorem 3.12.

Given x′ and thus also x′′, we define the superhedge as follows. First define linear
functions �1 : [f ′, x′] → R and �2 : [x′, g(x′′)] → R by

�1(x) = (K2 − f ′) − (x − f ′) (K2 − f ′) − �2(x
′)

x′ − f ′ ,

�2(x) = (
g(x′′) − x

) K1 − x′′

g(x′′) − x′′ .

Then �1(f
′) = (K2 −f ′), �1(x

′) = �2(x
′), �2(x

′′) = K1 −x′′ and �2(g(x′′)) = 0.
Moreover, direct calculation shows that −1 < �′

1(x) < �′
2(x) < 0. Now define a

function ψx′,x′′
by

ψx′,x′′
(z) =

⎧
⎪⎪⎨

⎪⎪⎩

K2 − z, z ≤ f ′,
�1(z), f ′ < z ≤ x′,
�2(z), x′ < z ≤ g(x′′),
0, z > g(x′′).

(3.13)

By construction, ψx′,x′′
is convex and ψx′,x′′

(z) ≥ (K2 − z)+ (see Fig. 3.9), and thus
by Lemma 2.4, it can be used to construct a superhedge (ψx′,x′′

, φx′,x′′
, θ

x′,x′′
1,2 ).

Theorem 3.13 Suppose Assumption 3.8 holds and (K1,K2) ∈ G. The model M̂πx′,x′′
and the stopping time τ = 1 if X < x′′ and τ = 2 otherwise attain the highest con-
sistent model price. Moreover, ψx′,x′′

defined in (3.13) generates the cheapest su-
perhedge, and the highest model-based price is equal to the cost of the cheapest
superhedge.

Proof The candidate canonical model is associated with the martingale coupling
πx′,x′′ which is constant on (−∞, f ′), maps (f ′, x′) onto itself, maps (x′, x′′) onto
(x′, g(x′′)), and (x′′,∞) to (−∞, f ′) ∪ (g(x′′),∞). Then for the candidate stopping
time τ (exercise at time 1 if X < x′′ and at time 2 otherwise), we have that the law
of Y (under M̂πx′,x′′ ), on the event that the option was not exercised at time 1, is given
by (ν − μ)|(−∞,f ′)+ν|(g(x′′),∞). Therefore

MBEP =
∫ x′′

−∞
(K1 − w)+μ(dw) +

∫ f ′

−∞
(K2 − w)+(ν − μ)(dw)

= Pμ(x′′) + (K1 − x′′)P ′
μ(x′′) + D(f ′) + (K2 − f ′)D′(f ′).
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Fig. 3.9 Picture of f and g

along with superhedge for the
dotted region G. The hedge

function ψx′,x′′
has a kink at x′

Now consider the hedging cost generated by ψx′,x′′
. Let us define the quanti-

ties Θ1 = K2−f ′−�2(x
′)

x′−f ′ = −�′
1 and Θ2 = K1−x′′

g(x′′)−x′′ = −�′
2. Note that we can rewrite

(3.13) as

ψx′,x′′
(z) = Θ2

(
g(x′′) − z

)+ + (Θ1 − Θ2)(x
′ − z)+ + (1 − Θ1)(f

′ − z)+.

Then

φ(z) = (1 − Θ1)
(
(x′ − z)+ − (f ′ − z)+

) + (1 − Θ2)
(
(x′′ − z)+ − (x′ − z)+

)
,

and thus the hedging cost is

HC = Θ2Pν

(
g(x′′)

) + (1 − Θ1)D(f ′) + (1 − Θ2)Pμ(x′′) + (Θ1 − Θ2)D(x′)

= Pμ(x′′) + D(f ′) + Θ1
(
D(x′) − D(f ′)

)

+ Θ2

(
Pν

(
g(x′′)

) − Pν(x
′) − Pμ(x′′) + Pμ(x′)

)
.

Now using (3.8) and the fact that g(x′) = x′, we have that D′(f ′) = D′(x′) and
f ′D′(f ′) − D(f ′) = x′D′(x′) − D(x′). Hence

Θ1
(
D(x′) − D(f ′)

) = (K2 − f ′)D′(f ′) − �2(x
′)D′(f ′). (3.14)
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Fig. 3.10 The various cases for
K1 > rν in the setting of
Sect. 3.3

Moreover, (3.9) gives that

Θ2

(
Pν

(
g(x′′)

) − Pν(x
′) − Pμ(x′′) + Pμ(x′)

)

= Θ2

(
g(x′′)P ′

ν

(
g(x′′)

) − x′′P ′
μ(x′′) − x′D′(x′)

)

= Θ2

((
g(x′′) − x′′)P ′

μ(x′′) + (
g(x′′) − x′)D′(x′)

)

= (K1 − x′′)P ′
μ(x′′) + �2(x

′)D′(f ′). (3.15)

Then combining (3.14) and (3.15), we conclude that HC = MBEP. �

3.3.5 K1 > rμ

In Lemma 3.4 and under the dispersion assumption, we have constructed f and g, but
only on the interval (e−, rμ]. More generally, when μ is continuous, the arguments of
Beiglböck and Juillet [4] and Henry-Labordère and Touzi [16] allow us to construct
Td = f and Tu = g on [
μ, rμ] for arbitrary laws μ ≤cx ν. For their purposes, the
definitions of f and g outside the range of μ are not important since they have no
impact on the construction of the left-curtain martingale coupling.

Nonetheless, we can extend the definitions of f and g to R in a way which respects
the conditions in Lemma 2.6, by setting

f (x) = x = g(x), −∞ < x ≤ 
μ,

f (x) = 
ν and g(x) = rν, rμ < x < rν,

f (x) = x = g(x), rν ≤ x < ∞.

We shall show that with these definitions for f and g, the analysis of the previous
sections extends to the case K1 > rμ; see Fig. 3.10.
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Suppose that rν > rμ and rμ < K1 < rν . Then Λ(rμ) = rν−K1
rν−rμ

− K1−K2
rμ−
ν

and

Λ(rν−) = ∞. If Λ(rμ) ≥ 0 and Λ is continuous, then there exists x∗ ∈ [
μ, rμ] such
that g(x∗) > x∗ and Λ(x∗) = 0. Then, exactly as in Sect. 3.2.2, we can construct
a model, stopping time and superhedge such that the model-based expected payoff
equals the hedging cost, and hence the model, stopping time and hedge are all opti-
mal. The model could be based on the left-curtain coupling, and the optimal exercise
rule is to exercise the American put at time 1 if X < x∗. Even if Λ is not contin-
uous, there may exist x∗ such that Λ(x∗) = 0 and the same arguments apply (see
Sect. 3.3.1). If not, then we are in the setting of Sect. 3.3.4, but again we can identify
the optimal model and hedge. Essentially, the case Λ(rμ) ≥ 0 is covered by a direct
extension of existing arguments. Note that Λ(rμ) ≥ 0 is equivalent to

K2 ≥ K1 − (rμ − 
ν)(rν − K1)

rν − rμ
.

Now suppose rμ < K1 < rν and K2 < K1 − (rμ−
ν)(rν−K1)

rν−rμ
. Then Λ(rμ) < 0, and

since Λ(rν−) = ∞ and Λ is continuous on [rμ, rν] (note that we have defined f and
g to be constant on this range), there must exist x∗ ∈ (rμ,K1) such that Λ(x∗) = 0.
It is always optimal to exercise at time 1, and any martingale coupling can be used to
generate a model which attains the highest model-based price Pμ(K1) = (K1 − μ).
A cheapest superhedge is generated by

ψ(y) = K2 − 
ν

rν − 
ν

(rν − y)+ + rν − K2

rν − 
ν

(
ν − y)+. (3.16)

The cost of this hedge is

K2 − 
ν

rν − 
ν

Pν(rν) + rν − K2

rν − 
ν

Pν(
ν) + Pμ(K1) − K2 − 
ν

rν − 
ν

Pμ(rν) − rν − K2

rν − 
ν

Pμ(
ν)

= K2 − 
ν

rν − 
ν

(rν − μ̄) + (K1 − μ̄) − K2 − 
ν

rν − 
ν

(rν − μ̄) = K1 − μ̄.

Finally, if K1 > rν , then Y < K1 almost surely under any consistent model and

E[(K2 − Y)+|F1] ≤ E[(K1 − Y)+|F1] = E[K1 − Y |F1] = K1 − X.

Therefore, it is always optimal to exercise the American put at time 1. If K2 > rν
or K2 < 
ν then we are in the case studied in Sect. 3.3.2 and the cheapest hedge is
generated by a time-2 payoff ψ(y) = (K2 − y)+. If K2 ∈ [
ν, rν], then we are in the
case studied in Sect. 3.3.3 and the cheapest superhedge is generated by ψ = ψ(y),
where ψ is given by (3.16). In either case, the highest model-based expected payoff
is Pμ(K1) = (K1 − μ̄), and this is also the cost of the superhedge; see Fig. 3.10.

3.4 Intervals where ν has no mass, or ν = μ

The definition of the left-curtain martingale coupling (recall Lemma 3.4) only re-
quires that g = Tu is increasing, and not that it is continuous. In general, g may have
jumps; such jumps occur when there is an interval on which ν places no mass.
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Fig. 3.11 Sketch of put payoffs with points x̂, f̂ and ĝ marked

If g has a jump, then we need to adapt the superhedge. Suppose g has a
jump at x̂ (which has to be upwards since g is increasing) and f is continuous
at x̂. Suppose further that K1 is such that x̂ ∈ (g−1(K1),K1). Then as before, we
should like to find x∗ ∈ (g−1(K1),K1) such that Λ(x∗) = 0. Recall that Λ is in-
creasing and suppose Λ(g−1(K1)) < 0 < Λ(K1). If Λ(x̂−) < 0 and Λ(x̂+) > 0,
then there will be no solution to Λ = 0. However, by keeping x = x̂, f̂ = f (x̂)

fixed in (3.1) and varying g only, we can find ĝ ∈ (g(x̂−), g(x̂+)) such that
(ĝ − K1)/(ĝ − x̂) = (K1 − K2)/(x̂ − f̂ ) so that Υ (f (x̂), x̂, ĝ) = 0. Then the can-
didate (and indeed optimal) superhedging strategy is generated by ψ∗ given in (3.3),
with (f ∗, x∗, g∗) = (f̂ , x̂, ĝ); see Fig. 3.11. Moreover, since ν does not charge
(g(x̂−), g(x̂+)), the triple (f̂ , x̂, ĝ) solves the mass and mean equations (2.4) and
(2.5). The strong duality between the model-based expected payoff and the hedging
cost follows as before.

Alternatively, suppose f has a downward jump at x̄. This can happen if ν = μ on
(f (x̄+), f (x̄−)). Suppose that K1 is such that x̄ ∈ (g−1(K1),K1) and Λ(x̄−) < 0
and Λ(x̄+) > 0, so that again we cannot find x ∈ (g−1(K1),K1) with Λ(x) = 0.
We can deal with this similarly as in the case of a discontinuity in g: we first
choose f̄ ∈ (f (x̄+), f (x̄−)) such that Υ (f̄ , x̄, g(x̄)) = 0, and then consider a hedg-
ing strategy generated by ψ∗ with (f ∗, x∗, g∗) = (f̄ , x̄, g(x̄)). Note that μ = ν on
(f (x̄+), f (x̄−)); so if (2.4) and (2.5) hold for some f ∈ [f (x̄+), f (x̄−)] (with
x̄, ḡ), then they hold for all f in this interval. It follows that we can construct a
coupling in which (f̄ , x̄) is mapped to (f̄ , ḡ), and strong duality holds.

In the case of f and g jumping simultaneously, we have a pictorial representa-
tion of the regions of pairs (K1,K2) which lead to a hedging strategy which has to be
adapted as above; see Fig. 3.12. If g has a jump at x̂, then Λ(x̂−) < 0 and Λ(x̂+) > 0
is equivalent to the point (K1,K2) lying in the interior of a triangle with vertices
{(g(x̂−), g(x̂−)), (g(x̂+), g(x̂+)), (x̂, f (x̂))}. On the other hand, if f jumps down-
wards at x̄, then Λ(x̄−) < 0 and Λ(x̄+) > 0 is equivalent to the point (K1,K2) ly-
ing in the interior of a triangle with vertices {(x̄, f (x̄−)), (x̄, f (x̄+)), (g(x̄), g(x̄))}
(compare this with the region G).

Exceptionally, we may have simultaneous jumps in g and f at x̌. Then the
set of (K1,K2) for which these arguments are needed is a quadrilateral with ver-
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Fig. 3.12 Atoms of ν correspond to flat sections in f and g. Regions of no mass of ν correspond to jumps
of f and g

tices {(x̌, f (x̌−)), (x̌, f (x̌+)), (g(x̌+), g(x̌+)), (g(x̌−), g(x̌−))}. In particular, then
there are multiple pairs (f̌ , ǧ) with f̌ ∈ (f (x̌+), f (x̌−)) and ǧ ∈ (g(x̌−), g(x̌+))

such that Υ (f̌ , x̌, ǧ) = 0, so that an optimal hedging strategy is not unique.

3.5 The general case for continuous ν

In the previous sections, we have shown how the left-curtain coupling can be used to
find an optimal model, exercise strategy and a superhedge, under the assumption that
both μ and ν are continuous together with further regularity and simplifying assump-
tions which we labelled the dispersion assumption and the single-jump assumption.
Under the latter assumption, the existence of points that solve (3.8) led us to iden-
tify two further types of hedging strategy that were not present under the dispersion
assumption, making four in total.

If we relax the assumptions further and require only that both μ and ν are con-
tinuous, then we expect that in some cases there may exist multiple pairs (f ′

i , x
′
i ),

i = 1,2,3, . . . , that solve (3.8). Note that from the monotonicity of g, we can write
{x : g(x) > x} as a countable union of intervals, and on each such interval, f is
decreasing. f jumps over the intervals (f ′

i , x
′
i ) identified above (at least those with

x′ to the left of the current value of x). In particular, f has only countably many
downward jumps. Figure 2.1 is a stylised representation of the general left-curtain
martingale coupling, not least because in the figure f has only finitely many jumps.
Starting from Fig. 2.1 and using the constructions in Sect. 3.3, we can divide the
area of all (K1,K2 < K1) into four regions; see Fig. 3.13. They key point is that
these four regions are characterised exactly as in the cases described in Sect. 3.3. For
given (K1,K2), we can determine which of the types of hedging strategy is a candi-
date optimal superhedge, and determine a candidate optimal stopping rule. (We can
always use the model associated with the left-curtain martingale coupling πlc.) The
fact that these candidates are indeed optimal can be proved using exactly analogous
techniques to those used in Sect. 3.3.



Robust bounds for the American put 391

Fig. 3.13 General picture of f,g with shading of regions. There remain four types of shading correspond-
ing to four forms of optimal hedge

More specifically, we can divide {(k1, k2) : k2 < k1} into two disjoint regions,
{(k1, k2) : k2 ≤ f (k1)} and {(k1, k2) : f (k1) < k2 < k1}. We can divide the former
into two further regions W = {(k1, k2) : k2 < k1,∃x ≤ k1 with f (x) < k2 < g(x)}
and B = {(k1, k2) : k2 ≤ f (k1)}\W . The latter we again divide into two regions G and
R = {(k1, k2) : f (k1) < k2 < k1} \ G. Here we can write G = ⋃

x:f (x−)>f (x+) �(x),
where �(x) is a triangle with vertices {(x, f (x+)), (x, f (x−)), (g(x), g(x))}. Then
on each of the regions W , B, G and R, we have a superhedge exactly as described
in Sect. 3.3. Moreover, again by the arguments of Sect. 3.3, we can show that the
hedging cost associated with the superhedging strategy is precisely the model-based
expected payoff of the American put under the martingale coupling πlc (and candi-
date stopping rule), thus proving the optimality of the hedge and of the model/exercise
rule.

For example, suppose (K1,K2) ∈ W . (The cases for (K1,K2) ∈R∪B are gener-
ally even simpler, and for (K1,K2) ∈ G, the story is roughly equally involved.) Recall
that under the (single-jump) Assumption 3.8, in order to show that MBEP = HC, we
used the existence of x̄ and f̄ satisfying (3.8) together with the fact that

∫

y

∫

x>K1

(K2 − y)+πlc(dx, dy) =
∫ f̄

−∞
(K2 − y)(ν − μ)(dy). (3.17)

Then for general probability measures μ and ν, provided we can find x̄, f̄ satisfying
(3.8) and (3.17), the proof that MBEP = HC and hence of optimality follows exactly
as in Theorem 3.12.
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Lemma 3.14 Suppose (K1,K2) ∈ W . Then there exist x̄, f̄ such that

f̄ < K2 < x̄ ≤ K1 and
∫ x̄

f̄

ziμ(dz) =
∫ x̄

f̄

ziν(dz), i ∈ {1,2}, (3.18)

and such that under the left-curtain coupling, we have

{X > K1, Y ≤ K2} = {X > K1, Y ≤ f̄ } = {Y ≤ f̄ } \ {X ≤ f̄ } a.s.,

so that (3.17) holds.

Proof Define X = XK1,K2 = {x : x ≤ K1, f (x) < K2 < g(x)}. Since (K1,K2) is
in W , XK1,K2 is nonempty. Define x̂ = sup{x : x ∈ X }. We show that x̂ and a suitably
defined f̂ are such that (3.17) and (3.18) hold.

First suppose that x̂ < K1. Suppose further that g(x̂) > x̂. Take x̃ ∈ (x̂, g(x̂)∧K1).
Then g(x̃) ≥ g(x̂) > x̃. Also f (x̃) /∈ (f (x̂), g(x̂)) and if f (x̃) ≥ g(x̂), then we have
f (x̃) ≥ g(x̂) > x̃ which is a contradiction. So f (x̃) ≤ f (x̂) < K2 < g(x̂) ≤ g(x̃), and
then x̃ ∈ X , contradicting the maximality of x̂. Hence g(x̂) ≤ x̂ (and thus g(x̂) = x̂).
But then f (x̂) = x̂ and x̂ /∈ X .

Hence there exists (xn)n≥1 such that xn ∈ X and xn ↑ x̂. Let g(x̂−) = limg(xn).
By the same argument as above, we cannot have g(x̂−) > x̂. Hence x̂ = g(x̂−) > K2.

Now suppose x̂ = K1 > K2. Then K1 /∈ X because we cannot have both
K2 ≤ f (K1) and f (K1) < K2 < g(K1). Hence there exists (xn)n≥1 such that xn ∈ X
and xn ↑ x̂. Let gn = g(xn) and fn = f (xn). If g(K1) > K1, then there exists n0 such
that for all n ≥ n0, gn > K1. Then f (K1) /∈ (fn, gn) and therefore f (K1) ≤ fn < K2,
contradicting K2 ≤ f (K1). Hence g(x̂−) = g(K1−) = K1.

In either case, x̂ /∈ X and there exists (xn)n≥1 such that xn ∈X , xn ↑ x̂ and (fn)n≥1

is a decreasing sequence while (gn)n≥1 satisfies gn ↑ x̂. Let f̂ = limn→∞ fn. Then

∫ xn

fn

ziμ(dz) =
∫ gn

fn

ziν(dz), i ∈ {1,2},

and by taking limits, we have that x̂ and f̂ solve (3.18). Note also that x̂ > K2.
We are left to show that x̂ and f̂ solve (3.17). This follows from the fact that

f̂ < K2, together with the set identifications

{X > K1, Y ≤ K2} = {X > K1, Y ≤ f̂ } = {X > f̂ ,Y ≤ f̂ } = {Y ≤ f̄ } \ {X ≤ f̄ }.
�

Remark 3.15 The set {x : g(x) > x} is a collection of intervals and we let I+ denote
the set of right endpoints of these intervals. As remarked above, Fig. 3.13 is drawn
in the case of ‘finite complexity’ in the sense that the set I+ contains a finite num-
ber of elements. The results extend easily to countable I+, provided I+ contains no
accumulation points.

In general, I+ may contain an accumulation point, and as discussed in Henry-
Labordère and Touzi [16], care is needed in the construction of the left-curtain map-
pings (Td, Tu) in this case. However, from our perspective, such subtleties do not
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cause a problem. The reason is that we do not aim to derive the left-curtain coupling,
but rather take the left-curtain coupling as a given and use it to solve the put pricing
problem.

Our construction of the best model and the cheapest hedge is local in the sense that
when in Fig. 3.13, we examine in which region the point (K1,K2) lies, the fine detail
of the picture in other parts of (k1, k2)-space is not important. So the existence of
accumulation points can only be an issue if K1 is equal to one of those accumulation
points.

Let x∞ be such an accumulation point in I+ and suppose K1 = x∞. Depending
on the value of K2, then either there exists (x′, f ′) with f ′ < K2 < x′ such that (3.8)
holds or not. In the former case, we can follow the analysis of Sect. 3.3.3, and in the
latter, Sect. 3.3.2; in either case, we construct a model and hedge such that the model
price and hedging cost agree, thus proving optimality of both.

3.6 Atoms in the target law

When ν has atoms, the preservation-of-mass and mean conditions become (2.6) and
(2.7), respectively. In particular, atoms of ν correspond to the flat sections in f or g;
see Fig. 3.12. In this case, we still can find all the optimal quantities as before. In
particular, Λ(x) := g(x)−K1

g(x)−x
− K1−K2

x−f (x)
is strictly increasing in x, even if f and/or g is

constant. Hence we can find solutions to Λ = 0 (more generally solutions x,f ∈ ℵ(x)

to Υ (f,x, g = g(x)) = 0) exactly as before. The superhedge is unchanged. A little
care is needed in constructing the optimal model, but under the associated martingale
coupling, mass in (f (x∗), x∗) is mapped onto (f (x∗), g(x∗)) together with (poten-
tially) atoms at f (x∗) or g(x∗). Specifically, given f ∗, x∗, g∗, we can find λ∗

f and

λ∗
g such that (2.6) and (2.7) hold. Then in any optimal canonical model M̂π , π is

constant on (−∞, f ∗), and the law of M̂2 on the event {M̂1 ∈ (f ∗, x∗)} is νx∗ which
is defined to be νx∗ = ν|(f ∗,g∗) + λ∗

f ∗δf ∗ + λ∗
g∗δg∗ . We also find that the law of M̂2

on the event {M̂1 ∈ (x∗,∞)} is ν − νx∗ − μ|(−∞,f ∗).

4 Discussion and extensions

4.1 The role of the left-curtain coupling

For any pair of strikes (K1,K2), the left-curtain model attains the highest expected
payoff for the American put. However, although it optimises simultaneously across
all pairs of strikes, it is not (in general) optimal for linear combinations of American
puts. For example, if we consider a generalised American option with payoff a if
exercised at time 1 and b if exercised at time 2, where a(x) = ∑J

j=1(K
j

1 − x)+ and

b(y) = ∑J
j=1(K

j

2 − y)+ (with K
j

2 ≤ K
j

1 for each j ), then the model associated with
the left-curtain coupling is typically not optimal. The reason is that a model (S,M)

is only optimal when it is combined with the best stopping rule, and the optimal
stopping rule does depend on (K1,K2).
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Conversely, although the model associated with the left-curtain coupling is optimal
(simultaneously across all pairs (K1,K2)), we do not need the full power of this
coupling when we work with fixed (K1,K2). In the dispersion assumption case, all
we need is a coupling in which (f (x∗), x∗) is mapped onto (f (x∗), g(x∗)) where x∗
is such that Λ(x∗) = 0, and (−∞, f ∗) is mapped to itself, but not necessarily in a
constant fashion. There are many martingale couplings which have this property.

The intuition behind the optimality of the left-curtain coupling is as follows. With
American puts, there is a tension between the time-decay of the option payout pro-
moting early exercise, and the convexity of the payoff function promoting delay. If
the aim is to maximise the payoff of the option, then any paths which are in the money
at time 1 and will remain in the money are best exercised at time 1. However, once
a path has been exercised, any further volatility is irrelevant. In particular, when de-
signing a candidate optimal model, we should try to keep paths which are exercised
at time 1 constant (or near constant) whenever possible. Thus the probability space
should be split into two regions: one region where the put is in the money at time 1
and is exercised, and thereafter paths move little, and a second region where the put
is out of the money at time 1 (and sometimes just in the money, but left unexercised
at time 1), and then paths move a long way between times 1 and 2. The left-curtain
coupling has this property.

4.2 Multiple exercise times

It is natural to ask if it is possible to extend the analysis to American puts which
can be exercised at multiple dates (T1, T2, . . . , TN) where N > 2, or equivalently to
martingales M = (Mn)0≤n≤N with marginals (μn) where μ1 has mean M0 = μ̄ and
μn ≤cx μn+1 for 1 ≤ n ≤ N − 1. It is clear that many of the ideas extend naturally to
the multi-marginal case. However, the number of types of hedging strategy may grow
exponentially with N . This is left as future work.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Aksamit, A., Deng, S., Obłój, J., Tan, X.: Robust pricing-hedging duality for American options in
discrete time financial markets. Math. Finance (2019). Forthcoming, available online at https://doi.org/
10.1111/mafi.12199

2. Azéma, J., Yor, M.: Une solution simple au problème de Skorokhod. In: Dellacherie, C., et al. (eds.)
Séminaire de Probabilités, XIII. Lecture Notes in Math., vol. 721, pp. 90–115. Springer, Berlin (1979)

3. Bayraktar, E., Huang, Y.J., Zhou, Z.: On hedging American options under model uncertainty. SIAM
J. Financ. Math. 6, 425–447 (2015)

4. Beiglböck, M., Juillet, N.: On a problem of optimal transport under marginal martingale constraints.
Ann. Probab. 44, 42–106 (2016)

https://doi.org/10.1111/mafi.12199
https://doi.org/10.1111/mafi.12199


Robust bounds for the American put 395

5. Beiglböck, M., Henry-Labordère, P., Penkner, F.: Model-independent bounds for option prices—
a mass transport approach. Finance Stoch. 17, 477–501 (2013)

6. Beiglböck, M., Henry-Labordère, P., Touzi, N.: Monotone martingale transport plans and Skorokhod
embedding. Stoch. Process. Appl. 127, 3005–3013 (2017)

7. Breeden, D.T., Litzenberger, R.H.: Prices of state-contingent claims implicit in option prices. J. Bus.
51, 621–651 (1978)

8. Brown, H., Hobson, D.G., Rogers, L.C.G.: Robust hedging of barrier options. Math. Finance 11,
285–314 (2001)

9. Carr, P., Lee, R.: Hedging variance options on continuous semimartingales. Finance Stoch. 14, 179–
207 (2010)

10. Cox, A.M.G., Hoeggerl, C.: Model-independent no-arbitrage conditions on American put options.
Math. Finance 26, 431–458 (2016)

11. Cox, A.M.G., Obłój, J.: Robust pricing and hedging of double no-touch options. Finance Stoch. 15,
573–605 (2011)

12. Cox, A.M.G., Wang, J.: Root’s barrier: construction, optimality and applications to variance options.
Ann. Appl. Probab. 23, 859–894 (2013)

13. Cox, A.M.G.: Extending Chacon–Walsh: minimality and generalised starting distributions. In:
Donati-Martin, C., et al. (eds.) Séminaire de Probabilités, XLI. Lecture Notes in Math., vol. 1934,
pp. 233–264. Springer, Berlin (2008)

14. Dolinsky, Y., Soner, M.: Martingale optimal transport and robust hedging in continuous time. Probab.
Theory Relat. Fields 160, 391–427 (2014)

15. Galichon, A., Henry-Labordère, P., Touzi, N.: A stochastic control approach to no-arbitrage bounds
given marginals with an application to lookback options. Ann. Appl. Probab. 24, 313–336 (2014)

16. Henry-Labordère, P., Touzi, N.: An explicit martingale version of the one-dimensional Brenier theo-
rem. Finance Stoch. 20, 635–668 (2016)

17. Hobson, D.G.: Robust hedging of the lookback option. Finance Stoch. 2, 329–347 (1998)
18. Hobson, D.G., Klimmek, M.: Robust price bounds for the forward starting straddle. Finance Stoch.

19, 189–214 (2015)
19. Hobson, D.G., Neuberger, A.: Robust bounds for forward start options. Math. Finance 22, 31–56

(2012)
20. Hobson, D.G., Neuberger, A.: More on hedging American options under model uncertainty. Preprint

(2016). Available online at arXiv:1604.02274
21. Hobson, D.G., Neuberger, A.: Model uncertainty and the pricing of American options. Finance Stoch.

21, 285–329 (2017)
22. Hobson, D.G., Norgilas, D.: The left-curtain martingale coupling in the presence of atoms. Ann. Appl.

Prob. 29, 1904–1928 (2019)
23. Hobson, D.G.: The maximum maximum of a martingale. In: Azéma, J., et al. (eds.) Séminaire de

Probabilités, XXXII. Lecture Notes in Math., vol. 1686, pp. 250–263. Springer, Berlin (1998)
24. Hobson, D.G.: The Skorokhod embedding problem and model-independent bounds for option prices.

In: Carmona, R.A., et al. (eds.) Paris–Princeton Lectures on Mathematical Finance 2010. Lecture
Notes in Math., vol. 2003, pp. 267–318. Springer, Berlin (2011)

25. Neuberger, A.: Bounds on the American option. Preprint (2007). Available online at https://papers.
ssrn.com/sol3/papers.cfm?abstract_id=966333

26. Skorokhod, A.V.: Studies in the Theory of Random Processes. Addison-Wesley Publishing Co., Inc.,
Reading (1965)

27. Stebegg, F.: Model-independent pricing of Asian options via optimal martingale transport. Preprint
(2014). Available online at arXiv:1412.1429

28. Strassen, V.: The existence of probability measures with given marginals. Ann. Math. Stat. 36, 423–
439 (1965)

29. Touzi, N.: Martingale inequalities, optimal martingale transport, and robust superhedging. ESAIM
Proc. Surv. 45, 32–47 (2014)

http://arxiv.org/abs/arXiv:1604.02274
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=966333
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=966333
http://arxiv.org/abs/arXiv:1412.1429

	Robust bounds for the American put
	Abstract
	Introduction
	Preliminaries and setup
	Financial model
	Superhedging
	Weak and strong duality
	Measures and convex order
	The left-curtain coupling

	Robust bounds when µ is atom-free
	Problem formulation
	Dispersion assumption
	The left-curtain coupling
	The American put

	Single jump in f
	Case (K1,K2) inR
	(K1,K2) inB= B1 cupB2 cupB3
	(K1,K2) inW
	(K1,K2) inG
	K1 > rµ

	Intervals where nu has no mass, or nu= µ
	The general case for continuous nu
	Atoms in the target law

	Discussion and extensions
	The role of the left-curtain coupling
	Multiple exercise times

	References


