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Abstract

This paper introduces the GBT-L, a novel class of Graph-based Transform within the con-
text of block-based predictive transform coding. The GBT-L is constructed using a 2D
graph with unit edge weights and weighted self-loops in every vertex. The weighted self-
loops are selected based on the residual values to be transformed. To avoid signalling any
additional information required to compute the inverse GBT-L, we also introduce a coding
framework that uses a template-based strategy to predict residual blocks in the pixel and
residual domains. Evaluation results on several video frames and medical images, in terms
of the percentage of preserved energy and mean square error, show that the GBT-L can
outperform the DST, DCT and the Graph-based Separable Transform.

1. Introduction

Block-based predictive transform coding (PTC) is a popular coding technique due to
its simplicity and excellent energy compaction abilities through the use of orthogo-
nal transforms [1, 2]. PTC has been used to compress natural images and videos,
screen content and medical images [3, 4, 5]. PTC incorporates lossless and lossy
compression and prediction methods based on intra-prediction, and motion estima-
tion and compensation [6, 7]. Even though lossless compression guarantees the exact
reconstruction of the data, it may fail to achieve high compression ratios. Lossy
compression, on the other hand, can provide higher compression ratios through, for
example, efficient quantization of the transformed data [8, 9].

In general, lossy compression is based on applying an orthogonal transform on
the signal to expand it into a set of orthogonal bases, with the expectation that most
of the signal’s information is captured by a few basis functions. This is followed
by quantization of the resulting coefficients. For any arbitrary signal with a known
covariance function, it is well known that the Karhunen Love Transform (KLT) is the
linear transform with the best energy compaction property. The KLT basis functions
of natural images are close to those of the Discrete Cosine Transform (DCT) [10].
Hence, the DCT is widely considered as the best transform for image compression.
Unfortunately, the DCT offers little adaptability to the characteristics of the data as
a fixed transform is usually applied to all images.

The Graph-based Transform (GBT) [11] is proposed as an attractive option to
address some of the issues of the DCT. Thanks to the fact that the GBT accounts
for the data correlation through the use of a graph structure, it has excellent data
decorrelation and energy compaction properties. Recently, Pavez et al. [12] showed
that several variants of the 1D DCT and 1D Discrete Sine Transform (DST) can be
computed as a GBT based on a line graph with unit edge weights and self-loops in
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Figure 1: (a) Line graph with self-loops in the first and last vertices. (b) 1D residual signal
predicted by the horizontal mode. (c) First basis function of a GBST designed for the
horizontal mode. (d) 1D residual signal predicted by the horizontal mode for a noisy signal.

the first and last vertices (see Fig. 1(a)). Based on this fact, the authors learn the
self-loop weights that produce efficient Graph-based Separable Transforms (GBSTs)
for block-based PTC of intra-predicted video frames. They show how the first basis
function of their learned transforms can accurately represent the residual signal. This
is exemplified in Fig. 1(b)-(c), where the first basis function of their learned GBST
for the horizontal prediction mode is plotted. One can easily note that the function
vanishes on the left side and increases on the right side. This behavior resembles the
shape of this ideal 1D residual signal, in which the error is expected to be small in the
leftmost pixel location (i.e., the one closest to the reference pixel) and increase with
the distance from the reference. In practice, however, the residual signals may not
always have an ideal behavior. For example, a row of residual values computed by the
horizontal prediction mode may have a relatively flat shape if the image is smooth, or
several peaks and valleys if the image is noisy (see Fig. 1(d)). A GBT whose first basis
accurately represents the residual signal, irrespective of the prediction mode, has the
potential to provide better data decorrelation and energy compaction properties.

This paper thus proposes the GBT-L, a novel class of GBT based on a 2D graph
with unit edge weights and weighted self-loops in every vertex. The GBT-L accurately
captures the characteristics of a residual block by computing the self-loop weights
according to the residual values. Since the GBT-L is based on a 2D graph, it accounts
for the correlation among all values to be transformed. To avoid signaling additional
information required to compute the inverse GBT-L within the context of block-
based PTC, we also propose a coding framework that uses a template-based strategy
to predict the residual blocks to be transformed. The GBT-L is evaluated on a wide
range of video frames and medical images. Our results show that the GBT-L attains
better energy compaction properties and a higher reconstruction quality than the
DST, DCT and the Graph-based Separable Transform (GBST).

The rest of this paper is organized as follows. Section 2 describes the proposed
GBT-L. Section 3 explains the coding framework that integrates the template-based
strategies to predict residual blocks. Section 4 presents and discusses the performance
evaluation results and Section 5 concludes this paper.

2. Proposed GBT-L

Let us consider an image to be encoded using block-based PTC via angular intra-
prediction, which is a common prediction method used in many modern video codecs,
including the High Efficiency Video Coding (HEVC) standard [13, 14]. For each block
in the imaging data, intra-prediction yields a residual block computed as the difference
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Figure 2: (a) Residual signal generated by intra-prediction for the Y component of a video
frame from the sequence BlowingBubble. (b),(c) A sample 4×4 residual block and its actual
values. (d) Normalized residual values. (e) 2D graph (4-connect) with unit edge weights
and self-loops in each vertex.

between the predicted and the original block. Let us denote such a (square) residual

block as s ∈ R
√
N×
√
N , where N is the total number of residual values. The block s

can be represented as an undirected weighted graph, G = (V,E,A), where V is the
set of N nodes V = {vn}Nn=1, E is the set of all edges, and A ∈ RN×N is the symmetric
weighted adjacency matrix. The entry Aij in A represents the weight of the edge eij
connecting vertices vi and vj. The GBT-L assumes a 4-connected pattern with self-
loops in every vertex as shown in Fig. 2. Consequently, Aij = 1 for i 6= j, i.e., the
weight of any edge connecting two adjacent nodes is always 1. The self-loop weights,
i.e., the diagonal entries of A, are computed based on the normalized residual values.
For node vi, Aii is given by:

Aii =
vri −minV

maxV −minV
, (1)

where vri is the residual value of vi and minV , maxV are the minimum and maximum
residual value of the nodes in set V .

The GBT-L is constructed by the eigen decomposition of the generalized Lapla-
cian, L, computed as L = D−A, where D is the diagonal degree matrix, whose nth

diagonal element is equal to the sum of the weights of all edges incident onto node
vn. The eigen decomposition of L is used as the orthogonal transform for the resid-
ual block, since it has a complete set of eigen vectors with real, non-negative eigen
values. Fig. 2 shows a residual frame with 4 × 4 blocks and the 4-connected graph
with self-loops in each vertex for a sample block. Note that the self-loop weights are
between 0 and 1.

In order to attain excellent data decorrelation and energy compaction properties,
the GBT-L is based on a 2D graph. Moreover, the first basis function of the GBT-
L should accurately resemble the behavior and overall-shape of the residual signal.
The work in [12] shows that the eigen decomposition of a combinatorial Laplacian of
a line graph with unit edge weights and no self-loops corresponds to the DCT. By
setting the self-loop weight to 1 for the first vertex of such line graph, the resulting
transform is equivalent to the DST-7. That work also shows that by varying the self-
loop weights of the first and last vertices, one can produce GBTs whose first basis
function closely resembles the characteristics of the residual data being transformed.
This is the motivation behind adding a self-loop weight to each node of the 2D graph
used by the GBT-L. These weights are computed based on the residual values, as
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Figure 3: Normalized residual values of an 8×8 block computed by the (a) DC, (b) vertical,
and horizontal modes. (d-f) First basis function of the corresponding GBT-L.

specified by Eq. (1). Fig. 3 shows the 2D plot of various 8× 8 residual blocks and the
2D plot of the first basis function of their corresponding GBT-L. One can note that
the first basis function indeed resembles the residual signal and follows its general
shape. This, as will be shown in Section 4, allows to preserve more of the signal’s
energy with only a few coefficients.

3. Proposed Coding Framework

As explained in Section 2, the GBT-L is based on a 2D graph with unit edge weights
and self-loops in every vertex. This, however, requires sending additional information
to the decoder to reconstruct the 2D graph needed to compute the inverse GBT-L.
To tackle this issue, we propose a coding framework that does not require sending
such additional information.

Our framework is depicted in Fig. 4. At the encoder side, we employ a template-
based strategy [15, 16] to predict each

√
N ×

√
N residual block by only using the

previously encoded and reconstructed blocks. Each predicted residual block is repre-
sented as a 2D graph with self-loops in each vertex and unit weight edges following
a 4-connected pattern. The GBT-L is then computed based on this graph and used
to transform the actual residual block. By following such a prediction strategy, it is
possible to recover the residual block at the decoder without signalling any additional
information, as the exact same prediction can be performed at the decoder [17] (see
Fig. 4(b)). Specifically, based on the residual block predicted by the encoder, the
same 2D graph can be computed to obtain the inverse GBT-L.

We propose two different template-based strategies to predict residual blocks:
template matching and weighted template pooling. Template matching searches for
the most similar blocks to the target block based on the similarity of their templates,
where the template of a block is the area surrounding the block to the left and above
[18, 19]. Fig. 5 depicts a sample target template, denoted by x, and the corresponding
target block to be predicted, denoted by P. The target template is estimated by
using the k = 5 most similar candidate templates, t1, t2, ...tk. We use the sum of
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Figure 4: Block diagram of the proposed framework for (a) encoding and (b) decoding.
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Figure 5: (a) Search window used to find blocks to predict the target block. (b) Sample
target template and target block.

absolute differences (SAD) between the target template and a candidate template as
the criterion to select these k templates. P is then predicted as a weighted average of
the candidate blocks P1, ...Pk, one for each of the k-most similar candidate templates.

Weighted template pooling uses a weighted average of all the previously encoded
and reconstructed blocks to predict the target block. The weights used to average
these blocks are computed based on the similarity of their templates with the target
template, in terms of the SAD. We use templates of 4 rows and 4 columns, which
results in 72 samples surrounding a block to the left and above (see Fig. 5(b)).
The higher the similarity among the target and the candidate templates used for
prediction, the higher the prediction accuracy of the target block. We perform the
template-based strategies in two domains: the residual and pixel domains.
Template-based prediction in the residual domain: The prediction of the tar-
get residual block is performed by using the residual signals of previously encoded
and reconstructed blocks. This is illustrated in Fig. 6, where one can see that all
candidate templates and blocks contain residual signals. For the case of template
matching, we first use optimization by least square approximation to estimate, from
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the k-most similar candidate templates, the target template:

min
w
‖x−Tw‖22 s.t.

∑
k

wk = 1, (2)

where vector x contains the residual values of the target template, matrix T contains
the residual values of the k-most similar candidate templates, and w = [w1, · · · , wk]
is a weight vector. The nth target residual block, Pn, is then predicted as as P̃n by
using the k-most similar candidate blocks, as follows:

P̃n = w1P1 + w2P2 + ... + wkPk. (3)

For the case of the weighted template pooling strategy, the residual signals of the
n− 1 previously encoded and reconstructed blocks are used to predict the nth target
residual block, as follows:

P̃n = w1P1 + w2P2 + ... + wn−1Pn−1, (4)

where the weight for the jth candidate block is:

wj = e
‖x−tj‖

2
2

h2 , (5)

where tj is the jth candidate template and h is the average of standard deviation of
the samples of the j − 1 candidate templates.
Template-based prediction in the pixel domain: The prediction of the target
residual block is performed by using the previously encoded and reconstructed blocks.
In other words, the target block is first predicted in the pixel domain. This predicted
target block is then subtracted from the corresponding predicted block computed by
angular intra-prediction to compute the predicted residual block. This is illustrated
in Fig. 7. For the case of template matching, we first compute Ĩn, the predicted block
for the nth target block in the pixel domain, denoted by In, as follows:

Ĩn = w1I1 + w2I2 + ... + wkIk, (6)

where I1,I2,...,Ik are the k-most similar candidate blocks in the pixel domain, and
w1,w2,...,wk are the weights as computed by Eq.(2). Note that in the pixel domain,
Eq. (2) uses templates comprising pixel values instead of residual values.

For the case of weighted template pooling, we predict In using the n−1 previously
coded and reconstructed blocks, as follows:

Ĩn = w1I1 + w2I2 + ... + wn−1In−1, (7)

where weights w1,w2,...,wn−1 are computed by Eq. (5) with candidate templates
comprising pixel values. We subtract Ĩn from the corresponding predicted block
computed by angular intra-prediction to produce the predicted residual block, P̃n.



Table 1: Average PE (in %) and MSE using a small percentage of the largest coefficients.
Percentage of coefficients used

1% 3% 5% 7% 10%

PE MSE PE MSE PE MSE PE MSE PE MSE

KLT 54.58 45.42 87.65 13.61 89.73 12.19 91.19 11.39 92.87 10.44

GBST 18.56 81.92 47.11 53.95 58.65 42.17 66.63 34.34 74.51 26.51

GBT-LA 25.15 74.72 51.26 49.19 61.51 39.25 68.20 32.84 75.09 26.07

DCT 17.49 82.27 40.44 60.27 52.36 48.46 60.97 40.47 69.64 31.86

DST 16.94 82.74 39.37 61.36 51.33 49.81 59.50 41.74 68.08 33.57

GBT-LTres 17.11 82.58 39.67 60.95 51.79 49.32 60.13 41.31 68.95 32.62

GBT-LTpix
17.67 81.98 40.70 59.96 52.72 48.29 60.89 40.57 69.52 32.25

GBT-LWres 17.20 82.54 39.78 60.76 51.76 49.35 59.99 41.23 68.72 32.78

GBT-LWpix
17.67 81.97 40.72 59.88 52.93 48.01 61.12 40.10 69.74 31.67

GBT-LPI 17.56 82.17 40.49 60.18 52.65 48.50 60.90 40.45 69.57 31.98

4. Performance Evaluation

The proposed GBT-L and our coding framework are evaluated on 30 different YUV
frames of standard test video sequences of class A, B, C, D, E and screen content
(SC). We also use pathology images in RGB format from the Center for Biomedical
Informatics and Information Technology of the US National Cancer Institute [20]
in the evaluation. We use the 35 intra-predicton modes of HEVC to compute the
residual blocks. We use blocks of 8 × 8 pixels on the Y and G components of the
video frames and pathology images, respectively.

We compare the performance of the GBT-L using template matching in the resid-
ual (GBT-LTres) and the pixel (GBT-LTpix

) domains, the GBT-L using weighted tem-
plate pooling in the residual (GBT-LWres) and the pixel (GBT-LWpix

) domains, the
GBT-L using the prediction inaccuracy modelling (GBT-LPI) proposed in our previ-
ous work [17], the DCT, and the DST as implemented in HEVC.

The performance of all transforms is measured in terms of the percentage of pre-
served energy (PE) by reconstructing the image using a sub-set of the largest coef-
ficients, and the corresponding MSE. No quantization is used to clearly understand
the advantages of each transform in terms of energy compaction and reconstruction
error using the largest coefficients. The sub-set of coefficients used for reconstruction
is selected by setting a threshold that indicates the minimum absolute value that
the coefficients in the sub-set should have. By gradually decreasing an initial large
threshold, this approach gradually includes in the sub-set the largest coefficients.
Consequently, we do not follow any conventional scanning pattern as commonly done
in modern codecs. This strategy allows selecting the largest coefficients, regardless of
their frequency type.

Our evaluations also include three baseline transforms: the KLT, the GBT-L when
the graphs are computed using the actual residual blocks (GBT-LA), and a GBST with
self-loops in every vertex, whose weights are computed by Eq.(1) using actual residual
values. Note that these baselines require the signaling of additional information to
compute the corresponding inverse transforms. Evaluation of the GBT-LA, however,
allows confirming the advantages of using 2D graphs with self-loops in every vertex
and unit edge weights. Evaluation of the GBST allows confirming the advantages of
using 2D graphs to design the transform.
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Figure 8: (a,b) PE (%) and (c,d) MSE vs. percentage of coefficient used for reconstruction
of a frame of sequence KristenAndSara.

Table 1 presents the average PE (%) and MSE values for all evaluated data using a
small percentage of coefficients. As expected, the KLT provides the best performance.
Compared to the GBST, the GBT-LA attains higher PE and lower MSE values. This
confirms the advantages of constructing GBTs using 2D graphs. For example, by
using only 5% of the largest coefficients , the GBT-LA can preserve 4.87% more energy
than the GBST. The GBT-LA also outperforms the DCT and DST. The GBT-LA can
preserve 19.83% and 17.47% more energy than the DST and DCT, respectively, by
using only 5% of the largest coefficients. This confirms the advantages of using self-
loops in every vertex of the 2D graph.

On average, the GBT-LWpix
attains the best performance among the transforms

that require signaling no additional information to the decoder. The GBT-LWpix

preserves 3.11% and 1.08% more energy than the DST and DCT if only 5% of the co-
efficients are used. Note that the GBT-L, when paired with template-based prediction
in the residual domain, tends to perform poorly compared to using template-based
prediction in the pixel domain. Predicting residual values is more challenging than
predicting pixel values, as residual signals involve signed values [14]. Consequently,
the template-based strategies in the residual domain are expected to attain less ac-
curate predictions, hindering the performance of the GBT-L. In other words, the
performance of the GBT-L is expected to improve as the prediction accuracy of the
residual blocks improves.

Table 2 presents the performance for each image class when 7% of the largest
coefficients are used for reconstruction. We can see that for class A, B, and C frames



Table 2: Average PE (%) and MSE per image class using 7% of the largest coefficients.
Class A Class B Class C Class D Class E Pathology Class SC

PE MSE PE MSE PE MSE PE MSE PE MSE PE MSE PE MSE

KLT 89.89 12.43 94.20 12.47 93.20 8.37 92.15 9.37 89.42 14.19 89.88 10.63 89.58 12.30

GBST 78.61 21.98 54.45 48.43 60.11 40.85 64.76 36.19 73.98 27.06 75.31 25.08 59.95 40.78

GBT-LA 80.11 20.48 55.84 46.99 61.59 39.39 66.19 34.68 75.45 25.54 76.77 23.61 61.46 39.25

DCT 72.45 29.17 49.51 54.04 53.73 47.45 59.20 41.68 67.64 34.23 69.62 30.66 54.67 46.11

DST 69.43 31.42 48.69 54.20 52.34 48.65 57.76 42.85 66.51 35.25 67.68 32.73 54.13 46.91

GBT-LTres 71.90 29.15 48.23 55.00 52.98 48.09 58.43 42.31 66.43 36.45 69.26 31.16 53.74 47.07

GBT-LTpix
71.88 29.71 49.23 54.68 54.30 46.70 58.55 42.15 67.38 34.49 69.75 30.65 55.20 45.63

GBT-LWres 71.85 28.91 48.22 55.22 52.87 48.45 58.17 42.44 65.85 35.32 69.45 31.02 53.57 47.25

GBT-LWpix
72.64 28.44 50.38 52.59 54.63 46.37 58.69 42.04 67.25 34.38 69.76 30.60 54.85 46.01

GBT-LPI 72.13 28.95 49.36 53.91 54.35 46.69 58.60 42.02 67.51 34.97 69.58 30.81 54.54 46.14

and pathology images, the GBT-LWpix
attains the best performance among those

that require no extra signalling information. For class D and E, the DCT is the
best transform. Frames of these two classes depict several smooth regions. The
DCT is then well-suited for this content, as it approximates the KLT basis functions
of natural images. Fig. 8 plots the PE (%) and MSE values vs. the percentage
of coefficients used for reconstruction of a video frame, where the MSE values are
normalized with respect to the maximum value attained when no coefficients are
used for reconstruction. Note that the GBT-LA clearly outperforms the DCT and
DST. The GBT-LWpix

indeed outperforms all other transforms that require no extra
signalling information.

5. Conclusion

In this paper, we proposed the GBT-L, a new class of GBT constructed based on a
2D graph with unit edge weights and weighted self-loops in every vertex. We showed
that the first basis function of the GBT-L closely resembles the residual block to be
transformed, which allows to preserve more energy by using a small percentage of
the largest coefficients. We also presented a coding framework that allows employing
the GBT-L on intra-predicted residual blocks without the need to signal information
about the graphs to the decoder. The framework uses template-based strategies
to predict the residual blocks in the residual or pixel domains. We evaluated the
performance of the GBT-L in terms of the PE (%) and MSE when a small percentage
of the largest coefficients are used for reconstruction. Evaluation results show that,
as the prediction accuracy of the residual blocks improves, the improvements of the
GBT-L over the DCT, DST and the GBST also increase. When only 5% of the largest
coefficients are used, the GBT-L, when computed based on actual residual blocks, can
preserve up to 19.83% and 17.47% more energy than the DST and DCT, respectively.
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