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Ultra-short term HRV features as surrogates
of short term HRV: a case study on mental
stress detection in real life
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Abstract

Background: This paper suggests a method to assess the extent to which ultra-short Heart Rate Variability (HRV)
features (less than 5 min) can be considered as valid surrogates of short HRV features (nominally 5 min). Short term
HRV analysis has been widely investigated for mental stress assessment, whereas the validity of ultra-short HRV
features remains unclear. Therefore, this study proposes a method to explore the extent to which HRV excerpts
can be shortened without losing their ability to automatically detect mental stress.

Methods: ECGs were acquired from 42 healthy subjects during a university examination and resting condition. 23
features were extracted from HRV excerpts of different lengths (i.e., 30 s, 1 min, 2 min, 3 min, and 5 min). Significant
differences between rest and stress phases were investigated using non-parametric statistical tests at different time-
scales. Features extracted from each ultra-short length were compared with the standard short HRV features, assumed
as the benchmark, via Spearman’s rank correlation analysis and Bland-Altman plots during rest and stress phases. Using
data-driven machine learning approaches, a model aiming to detect mental stress was trained, validated and tested
using short HRV features, and assessed on the ultra-short HRV features.

Results: Six out of 23 ultra-short HRV features (MeanNN, StdNN, MeanHR, StdHR, HF, and SD2) displayed consistency
across all of the excerpt lengths (i.e., from 5 to 1min) and 3 out of those 6 ultra-short HRV features (MeanNN, StdHR,
and HF) achieved good performance (accuracy above 88%) when employed in a well-dimensioned automatic classifier.

Conclusion: This study concluded that 6 ultra-short HRV features are valid surrogates of short HRV features for mental
stress investigation.

Keywords: Heart rate variability (HRV), Ultra-short term HRV analysis, Mental stress detection, Data-driven machine
learning

Background
Stress is defined by the American Psychological Associ-
ation as “the pattern of specific and nonspecific re-
sponses an organism makes to stimulus events that
disturb its equilibrium and tax or exceed its ability to
cope” [1]. In particular, mental stress has been defined
by Lazarus and Folkman as a form of stress that occurs
because of how events in one’s external or internal en-
vironment are perceived, resulting in the psychological
experience of distress and anxiety [2, 3]. In humans,
mental stress has been investigated using several

cognitive stressors in laboratory (e.g., computer work
tasks, Stroop color word test, arithmetic tasks, game
tasks) or in real-life scenarios (e.g., public speech tasks,
academic examinations, during surgeries) [4]. Mental
stress can manifest itself as many different symptoms
and signs, ranging from physiological (i.e., increased
heart rate, sweating) to psychological (i.e., anxiety) and
behavioral (i.e., altered sleep patterns) manifestations.
Moreover, subjects may experience these to varying
degrees [5, 6]. In this study, mental stress is investigated
during a verbal academic examination, which has shown
to be a stressful situation resulting in accentuated
sympathovagal antagonism [7–9]. Although different
concerns have been raised about academic examination
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as stressor due to arousal or other feelings, it has shown
to be a reliable cognitive stressor [8–10]. In this study,
the rest phase was acquired in a period where subjects
were not under any academic pressure.
Mental stress has been investigated in various fields

due to its detrimental effects on the daily routine [11].
In fact, whereas some kinds of stress may be beneficial
by allowing humans to respond to threats in their envir-
onment, mental stress can also decrease attentional re-
sources, impair working memory and memory retrieval,
and overload cognitive systems [6, 12]. Stress influences
judgment and decision-making, and has been shown to
reduce human performance [4, 13]. There is a need to
better understand the impact of stress on cognition and
performance, especially in high-risk domains such as
military, policing, surgery, aviation, driving, and
elite-level sport, in which risks or threats are prevalent
and they can result in devastating consequences [4, 14].
Although in the existing literature there are multiple

physiological signals used to detect stress, such as gal-
vanic skin response, blood pressure, electroencephalo-
gram, respiration rate, and electrocardiogram (ECG),
heart rate variability (HRV) is currently one of the most
investigated methods for assessing mental stress [4].
Moreover, HRV is a more sensitive measure of stress
than heart rate alone [15]. HRV describes the variations
of the intervals between consecutive peaks of the
R-waves in an ECG and it can be analyzed in the time,
frequency and non-linear domains. HRV analysis can be
performed on 24 h nominal recordings (defined as long
term HRV analysis), 5 min recordings (defined as short
term HRV analysis) or shorter recordings [16]. In this
paper, ultra-short term HRV analysis is defined as the
analysis performed on HRV excerpts shorter than 5 min.
During mental stress, there is an activation of the sym-

pathetic nervous system and a withdrawal of the para-
sympathetic nervous system [5], which results in
significant changes in many HRV features [4, 17]. Previ-
ous studies have shown that long and short HRV fea-
tures change consistently during mental stress and that
they are able to reliably capture stress in laboratory and
real-life scenarios [4, 5, 18–20]. However, much less work
has been done on real-life stress detection via ultra-short
term HRV analysis. The demands of ultra-short term HRV
analysis for monitoring individual’s well-being status is
increasing, due to the diffusion of wearable sensors in the
healthcare and consumer devices such as mobile phones
and smart watches [21, 22]. In e-health monitoring, in
fact, the conventional 5min recordings might be unsuit-
able, due to real-time requirements. Ultra-short term
HRV analysis, especially in combination with wearable
sensors, may allow continuous and real time monitoring
of an individual’ stress levels, which is important in some
circumstances or jobs (e.g., surgeons, airplane pilots).

However, numerous challenges have arisen by shortening
HRV excerpts below 5min. In fact, a recent literature re-
view highlights the lack of rigorous methods utilized to
explore the extent of which ultra-short HRV features can
be used to estimate short term ones [22]. In medicine,
particularly in clinical trial designs, in order to cope with
this kind of problems, the concept of surrogate endpoint
(or marker) was introduced [23, 24]. However, proving
whether a marker is a valid surrogate of a real clinical out-
come can be quite difficult, and combination of appropri-
ate statistical and correlation tests is required, as detailed
elsewhere [22]. In a previous study [25] we explored the
feasibility of using ultra-short HRV features for mental
stress automatic detection basing on descriptive statistics
and without developing a systematic method to identify
reliable surrogates for short HRV features.
To the best of the authors’ knowledge, none of the

studies investigating ultra-short HRV features has pro-
posed a robust methodology to assess if ultra-short HRV
features are valid surrogates of short ones to detect
stress [22]. There have been some attempts to investi-
gate the reliability and accuracy of ultra-short term HRV
analysis [15, 23, 24, 26–42], but only one study investi-
gated the validity of ultra-short HRV features in a more
rigorous way [39]. However, the authors in [39] only
considered 2 time domain HRV features under one
standard condition (i.e., rest phase).
Therefore, the current study is the first proposing a

rigorous method to assess the validity of ultra-short
HRV features for detecting mental stress. The current
paper aims to show to what extent HRV features are
reliable and accurate to automatically detect mental
stress when moving from short (used as benchmark) to
ultra-short term HRV analysis. Moreover, the proposed
method could be suitable for other applications using
ultra-short term HRV analysis to detect an adverse
healthcare event.

Methods
Dataset
The data analyzed in the current study were acquired
from 42 healthy students in the School of Biomedical
Engineering of the University of Naples Federico II
(Italy) as described in a previous study [7]. Melillo et al.
assumed that verbal university examinations was a valid
real-life stressor [7]. This hypothesis was previously
proposed by other studies [8, 9] and confirmed by a
systematic literature review proving that HRV features,
computed during a verbal examination, presented a
similar behavior as those acquired using other stressors
[4]. As described in Melillo et al. [7], the data were
acquired in two different days: the first recording was per-
formed during an ongoing university verbal examination
(i.e., stress phase) before Easter break (which in Italy last
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less than 10 days), while the second one was taken in con-
trolled resting condition (i.e., rest phase) after the
vacations, far away from stress induced from study rou-
tines. During the rest phase, subjects were invited to sit on
a comfortable chair and they were induced to talk, as they
had done during the verbal examination, as talk has
proven to alter respiration and therefore, HRV features
[43]. Ethical permission was sought from the Local Ethic
Committee. A commercial electrocardiograph (Easy ECG
Pocket, manufactured by Ates Medical) was used to ac-
quire 3-lead clinical research ECG signals, with a sampling
frequency of 500Hz and a resolution of 12 bits per sam-
ple. Kendall™ 530 series foam electrodes were used as they
are designed for superior performance including adult
stress, holter and diaphoretic applications. Electrodes were
placed to the subjects’ chest according to the standard
guidelines [44]: one electrode was placed under right clav-
icle near right shoulder within the rib cage frame; the sec-
ond electrode was placed under left clavicle near left
shoulder within the rib cage frame; the third electrode
was placed on the left side below pectoral muscles lower
edge of left rib cage. Subjects were helped by expert staff
of their gender to position the electrodes.
The resting condition was measured at the same time

slot as for the stress phase, in order to minimize circa-
dian cycle effects on the HRV, and in the same men-
strual cycle for women, as this is also a relevant measure
for HRV features [7, 45]. The participants were exam-
ined under standard conditions during rest and stress
phases: in the same quiet room, at a comfortable
temperature, while sitting. Data acquisitions were carried
out in the morning for both rest and stress phases be-
tween 9 a.m. and 12 p.m.
Three-lead ECG was recorded for at least 30 min. The

first 15 min (i.e., adaptation time) were excluded and
one ECG excerpt of 5 min was extracted and analyzed.
Participants were invited to refrain from drinking alco-

hol and to limit their tea and coffee intake (2 cups max.)
in the 24 h prior to the acquisitions, as alcohol, caffeine
and tea have shown to alter HRV features [46].
The participants enrolled in the study had no history

of heart disease, systemic hypertension, metabolic disor-
ders or other diseases potentially influencing HRV. They
were not obese and did not consume medication, drugs
or alcohol in the 24 h preceding the experiments. All of
the participants signed specific informed consent form
before the acquisitions. More details on the protocol can
be found in [7].

HRV analysis
As shown in Fig. 1, the RR interval time series were ex-
tracted from ECG recordings using an automatic QRS
detector, WQRS, available in the PhysioNet’s toolkit
[47], based on nonlinearly scaled ECG curve length

features. Details on ECGs pre-processing used in the
PhysioNet’s toolkit can be read in Zong et al. [48]. The
automatic QRS detection was followed by visual inspec-
tion and manual correction. QRS review and correction
was performed using WAVE, which is the graphical user
interface to visualize biomedical signals provided by Phy-
sioNet and includes facilities for interactive annotation
editing. Additional details can be found elsewhere [49].
The fraction of total RR intervals labelled as normal-

to-normal (NN) intervals was computed as NN/RR ratio.
When ectopic beat correction methods are not adopted,
and more than one RR excerpt is available per each sub-
ject, the NN/RR ratio is used to identify a window of
time of sufficient quality, excluding those windows of
time in which this ratio is lower than a threshold.

Fig. 1 HRV processing workflow. ECG: Electrocardiogram; NN/RR is
the ratio of the total RR intervals labelled as NN (normal-to-normal
beats); short term: HRV is analyzed in 5 min excerpts; ultra-short
term: HRV is analyzed in excerpts of 3, 2, 1 and 0.5 min length
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Thresholds of 80% [47] and 90% [50] have been pro-
posed. In studies enrolling only healthy and young sub-
jects, a lower NN/RR ratio is associated with movement
artifacts. In the current study, in which subjects were
healthy and young, sitting in a comfortable position, a
threshold of 90% was chosen and still no records were
excluded. Therefore, short HRV features were computed
from the first 5 min after the adaptation time for all of
the participants.
The same 5-min excerpts were later used to extract

shorter NN excerpts (Fig. 2, left-hand side) from which
the ultra-short HRV features were computed. The initial
choice of extracting the central excerpts was arbitrary.
Therefore, we decided to assess this choice by repeating
the extraction from different locations within the 5-min
excerpt (Fig. 2, right-hand side). This was done only
with the shortest significant time length excerpt,
resulting from the statistical significance and correl-
ation analysis.
The HRV analysis was performed using Kubios soft-

ware [51]. Time and frequency features were analyzed
according to international guidelines [16], whereas non-
linear features were analyzed as described in [7]. Spectral
analysis can be performed by different methods, which
are classified as non-parametric, such as the Fast Fourier
Transform (FFT), and the autoregressive method (AR).
The FFT has the advantage of the low computational
cost. However, it has limitations such as a poor
spectrum resolution, mainly when short data excerpts
are used, and leakages. On the other hand, the AR
method became popular because it produces a spectrum
with better resolution when short data excerpts are used,
and the spectrum can be divided into independent
components. Therefore, frequency domain features were
extracted from power spectrum estimated with autore-
gressive (AR) model methods. As reported in Additional
file 1: Table S11 23 HRV features were extracted from

5-min, 3-min, 2-min, 1-min, and 30-s excerpts and sub-
sequently analyzed.
However, some HRV features were not computable in

ultra-short time excerpts. In fact, it is recommended that
spectral analyses are performed on recordings at least 10
times longer than the wavelength of the lower frequency
limit that is at least 2 min for the Low Frequency power
(LF). Therefore, LF was not computed for excerpts
below 2min along with LF/HF ratio and total power.
Additionally, High Frequency power (HF) was not
computed for excerpts below 1min [16]. As far as
non-linear HRV features are concerned, less has been
explored in the existing literature. However, approximate
entropy (ApEn) values were excluded for length below
3 min, since they have shown to be unreliable due to
the small number of samples presented in the RR
series [31, 52, 53]. Moreover, when the length of the
data was reduced to 30 s, most of the non-linear fea-
tures became non-computable, due to the lack of
samples. The entire list of features calculated for the
different excerpt lengths is reported in Table 1.

Multiscale HRV comparison: Short vs ultra-short
Median (MD), standard deviation (SD), 25th and 75th per-
centiles were calculated for all of the subjects to describe
the distribution of HRV features during rest and stress
phases at 5 min, 3min, 2 min, 1min, and 30 s (see Add-
itional file 1:Table S2-S6). Moreover, a non-parametric
statistical significance test and a correlation analysis were
performed in parallel, as shown in Fig. 3, in order to select
the subset of ultra-short HRV features that were good sur-
rogates of short HRV features.

Non-parametric statistical significance and inter-group
assessment
The non-parametric Wilcoxon signed-rank test was used
to investigate the statistical significances (p-value< 0.05)

Fig. 2 Segmentation process. The ultra-short HRV features were extracted from the central position of the 5 min NN excerpts (left-hand side). This
procedure was repeated for the shortest significant length of NN excerpts. The shortest excerpts were extracted from different positions, without
overlapping (right-hand side)

Castaldo et al. BMC Medical Informatics and Decision Making           (2019) 19:12 Page 4 of 13



of the HRV feature variations between stress and rest
phases for each excerpt length (i.e., 5 min, 3 min, 2 min,
1 min, and 30 s).
The increase or decrease of the HRV feature median

between rest and stress phases was reported, referred as
median trend or feature trend, using the following con-
vention [4, 54, 55]:

� Two arrows, ↓↓ (or ↑↑) were used to report a
significant (p-value< 0.05) decrease (or increase) of a
feature median during the stress phase;

� One arrow was used for non-significant variations:
↓ (or ↑) indicated a non-significant (p-value> 0.05)
decrease (or increase) of a feature median during the
stress phase.

Trend analysis consisted in inspecting inter-group
changes (i.e., increase or decrease) of HRV feature me-
dian across time scales.
An HRV feature was assumed to maintain the same

behavior across the 5 different time-scales (5 min, 3 min,
2 min, 1 min, and 30 s) if:

� the Wilcoxon’s test p-value was less than 0.05
between rest and stress phases over all time scales;

� the ultra-short HRV feature’s median trend was
changing between rest and stress phases consistently
with the equivalent short HRV feature.

Correlation analysis and Bland-Altman plots as intra-group
assessment
An intra-group assessment was carried out using the
Spearman’s rank correlation and Bland-Altman plots to
investigate to what extent an ultra-short HRV feature
was correlated with the equivalent short HRV feature
during rest and stress conditions. For instances, Mean-
NN3min (i.e., computed at 3 min during rest) VS Mean-
NN5min (i.e., computed at 5 min during rest).
The statistical significance of this association was dem-

onstrated by a p-value (prho) lower than 0.05. As first
screening, each ultra-short HRV feature was investigated
against the equivalent short HRV feature during resting
condition (Fig. 3). In addition, each ultra-short HRV fea-
ture was also explored during stress condition. However, a
correlation coefficient is blind to the possibility of bias
caused by the difference in the mean or standard deviation
between two measurements; in other words, a strong cor-
relation does not necessarily imply a close agreement.
Therefore, Bland-Altman procedure was used to calculate
95% LoA (Limits of Agreement) [56]. In contrast to the
traditional Bland-Altman plots, the measurements of the
5min was plotted on the x-axis [39]. The bias was calcu-
lated as the median difference between the HRV features
at 5min and the ultra-short HRV features.

Surrogate feature subset selection
At this stage, it was assumed that an ultra-short HRV feature
was a valid surrogate of the equivalent short one, only if:

� the feature maintained the same behavior between
rest and stress conditions at each time scale;

� the ultra-short HRV feature was highly and signifi-
cantly correlated (i.e. rho> 0.7 and prho < 0.05), with
the equivalent short feature, over all of the time
scales in both rest and stress phases.

Classification and performance evaluation
Short HRV features (benchmark) were used to train,
validate and test an automatic classifier to detect
mental stress. The performance of this classifier was
then tested inputting ultra-short HRV features in
order to assess the discriminant power of ultra-short
term HRV analysis.
To reduce overfitting problems and bias in the overall

accuracy of the classifier, the whole dataset was randomly
split per subject into two folders: folder 1 (60%) was
used for feature selection, training and validation of

Table 1 HRV feature trends

HRV Features 5 min 3 min 2 min 1 min 30 sec

MeanNN ↓↓ ↓↓ ↓↓ ↓↓ ↓↓

StdNN ↓↓ ↓↓ ↓↓ ↓↓ ↓↓

MeanHR ↑↑ ↑↑ ↑↑ ↑↑ ↑↑

Std HR ↑↑ ↑↑ ↑↑ ↑↑ ↑↑

RMSSD ↑ ↑ ↑ ↑ ↓

NN50 ↑ ↑ ↑ ↑ ↑

pNN50 ↓ ↓ ↑ ↓ ↓

LF ↓↓ ↓↓ ↓↓ – –

HF ↓↓ ↓↓ ↓↓ ↓↓ –

LF/HF ↓↓ ↓↓ ↓↓ – –

TotPow ↓↓ ↓↓ ↓↓ – –

SD1 ↑ ↑ ↑ ↑ ↓

SD2 ↓↓ ↓↓ ↓↓ ↓↓ ↓↓

ApEn ↓↓ ↓↓ – – –

SampEn ↓↓ ↓↓ ↓↓ ↓↓ –

D2 ↓↓ ↓↓ ↓↓ ↓↓ –

dfa1 ↓↓ ↓↓ ↓↓ ↓↓ –

dfa2 ↑ ↑ ↑ ↓ –

RPlmean ↑↑ ↑↑ ↑↑ ↑ –

RPlmax ↓↓ ↓↓ ↓ ↑ –

REC ↑↑ ↑↑ ↑↑ ↑ –

RPadet ↑↑ ↑ ↑ ↓ –

ShanEn ↑↑ ↑↑ ↑↑ ↑↑ –

Trend ↓↓ (↑↑): significantly lower (higher) under stress (p < 0.05), ↓(↑) lower
(higher) under stress (p > 0.05), − not computable
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the classifiers; folder 2 (40%) for testing the classifier.
The reasoning behind this split is that a classifier
should be tested on a set of data that is independent
of the training data [55, 57]. Moreover, although the
best approach is to select the minimum set of fea-
tures using a different folder from the one adopted to
train the machine learning classifier [55, 57], due to
the small number of subjects, feature selection, train-
ing and validation were performed on the same folder
(folder 1).

HRV feature selection for modelling
In order to minimize the over-fitting risk in a machine
learning model, the number of features used in the
model and its cardinality should be limited by the num-
ber of subjects presenting the event to detect (i.e., stress)
in each folder [57]. Moreover, a significant small set of

clinical features strongly simplifies the physiological
interpretation of results, by directing attention only on
the most informative features [57]. In addition, although
the best approach is to select the minimum set of
features using a different folder from the one adopted to
train the machine learning model [55], due to the small
number of subjects in this study, feature selection and
model training were performed on the same folder
(folder 1: 25 subjects). Because 5 min is defined as stand-
ard length for short term HRV analysis, the feature
selection was performed using 5-min HRV features.
Among the 23 HRV features initially computed, only
those that showed to be good surrogates in the
ultra-short time excerpts entered the feature selection
process to build a classifier.
The feature selection was based on two main stages

(Fig. 4): the relevance analysis and the redundancy

Fig. 3 Methodological workflow for the identification of the good surrogates. This process was repeated for each HRV feature at each time scale.
The complete list of feature computed at each time scale is reported in Table 1. p: p-value; trend analysis: ↓↓ (↑↑): significantly lower (higher) under
stress (p < .05), ↓(↑) lower (higher) under stress (p > .05); rho: Spearman’s rank coefficient, prho: Spearman’s rank p-value

Fig. 4 Framework of feature selection
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analysis. The former was performed using the Wilcoxon
signed-rank test. The latter consisted in selecting only one
feature from each cluster of features mutually correlated
using Spearman’s rank correlation to reduce multicolli-
nearity in the models. More details can be found in [55].

Machine learning methods
Five different machine-learning methods were used to
develop classifiers aiming to automatically detect mental
stress based on short HRV features: Support Vector Ma-
chine (SVM), which belongs to a general field of
kernel-based machine learning methods and are used to
efficiently classify both linearly and non-linearly separable
data [58]; Multilayer Perceptron (MLP) consists of an
artificial neural network of nodes (processing elements)
arranged in layers [59]; Neighbor Search (IBK), which
finds a group of K objects in the training set that are the
closest to the test object, bases the assignment of a label
on the predominance of a particular class in the neighbor-
hood [60]; C4.5 builds decision trees from a set of training
data, using the concept of information entropy [61];
Linear Discriminant Analysis (LDA) aims to find linear
combinations of the input features that can provide an ad-
equate separation between two classes [62].
Regarding model parameters, for the MLP classifier,

the learning rate was varied from 0.3 to 0.9, the momen-
tum from 0.2 to 1, the number of excerpts from 100 to
2000 and the number of hidden layers was set to 1 with
3 units [63, 64]; for the SVM, polynomial kernel function
was used, varying the degree from 1 to 5. As regards
IBK, it was trained with K equals to 1, 3 and 5 due to
the binary nature of the classification problem [65]. C4.5
trees were developed by varying confidence factor (CF)
for pruning from 0.05 to 0.5, minimum number of in-
stances (ML) per leaf from 2 to 20. The algorithm pa-
rameters were tuned during training on folder 1.
Each of those methods was used with all of the combi-

nations of relevant and non-redundant HRV features.
The Weka platform for knowledge discovery (version

3.6.10) (University of Waikato) was used to train, valid-
ate and test the classification models. This platform was
issued as an open source software under the GNU Gen-
eral Public License [63].

Training, validation and testing
The training of the machine-learning models (including
feature selection and algorithm parameter tuning) was
performed on the folder 1 (25 subjects) and using 5-min
HRV features (benchmark). Folder 1 was also used to
validate the classifier using a k-fold cross-validation
technique. The choice of the k-value is crucial in order
to achieve high overall accuracy and reduce bias in the
model. As a rule of thumb, the k-value should allow
each of the k-folds to have at least 10 occurrences

presenting the events to detect. Therefore, the 3-fold
person-independent cross-validation approach was used
to validate the models in folder 1 [55].
Binary classification performance measures were adopted

according to the standard formulae reported in [66, 67].
Among the five different machine-learning methods

used to train, validate and test the classifiers (SVM,
MLP, IBK, C4.5, and LDA), the best-performing model
was chosen as the classifier achieving the highest Area
under the Curve (AUC), which is a reliable estimator of
both sensitivity and specificity rates.
The model was then tested on folder 2 (17 subjects)

using the short and ultra-short HRV features, in order to
assess their efficacy in automatically detecting mental
stress. Binary performances were computed again, but
this time to observe how the performance of the model
changed across different time-scales.

Results
ECGs recorded from 42 healthy subjects (19 female, 23
male) were analyzed in the current study. Subjects were
aged 18 to 25 years old (age: 21.5 ± 3.5), were no obese (BMI
22.3 ± 2.7) and were not taking any medication for the dur-
ation of the study. HRV features median (MD), standard de-
viation (SD), 25th and 75th percentiles calculated on 5-min,
3-min, 2-min, 1-min, and 30-s NN data series are given in
the Additional file 1: Table S2-S6, respectively.2

Multiscale HRV comparison: Short vs ultra-short
Table 1 summarizes the results of the significance and
trend analysis, presenting the HRV features’ median
trend at each time-scale. Table 1 also reports the HRV
features calculated for the different excerpt lengths (i.e.,
features indicated with ‘-’ were not computable).
As shown in Table 1, from 5-min excerpts of NN data

series, 18 out of the 23 selected HRV features showed
significant changes from resting to stress conditions.
Twelve out of these 18 features decreased significantly
during stress phase, while the remaining 6 features
(MeanHR, StdHR, RPlmean, REC, RPadet and ShanEn)
showed a significant increase.
The second column in Table 1 demonstrates that from

3-min excerpts of NN data series all of the 23 features
were computable, and 12 features decreased significantly
during stress, while 5 (MeanHR, StdHR, RPlmean, REC,
and ShanEn) increased significantly. However, RPladet
which showed significant increase during 5 min, failed to
show any significant change when the data length was
shortened below 5min.
The changes in the features extracted from 2-min ex-

cerpts, shown in the third column of Table 1, present
the same significant trends as the 3-min features, apart
from ApEn, which is not computable, and RPlmax,
which is no longer significant (p-value< 0.05).
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The changes in the features extracted from 1-min ex-
cerpts, shown in the fourth column of Table 1, present
the same significant trends as the 2-min features, except
for 3 HRV features (LF, LF/HF ratio, TotPow), which are
not computable, and 2 HRV features (RPlmean and
REC), which are no more significant (p-value< 0.05).
The changes in the features extracted from 30-s ex-

cerpts, shown in the fifth column of Table 1, present the
same significant trends as the 1-min features, apart from
those features that are not computable.
Table 2 shows the results of the correlation analysis

used to select the subset of ultra-short HRV features
that were good surrogates of short HRV features. The
correlation analysis was run between ultra-short HRV
features and the equivalent short ones. This analysis
was not used to eliminate multicollinearity between
features but to investigate the interdependence be-
tween an ultra-short HRV feature and its equivalent
in 5-min excerpt.
Time domain HRV features maintained a significantly

high correlation coefficient at 3 min, 2 min, and 1min.
Conversely, from 30-s excerpts, StdNN showed a

Spearman coefficient above 0.70 at rest and below 0.70
during stress, while StdHR showed a Spearman coeffi-
cient below 0.70 during both rest and stress phases. Re-
garding frequency-domain HRV features, they showed to
be highly correlated with the equivalent short HRV fea-
tures at each time-scale (i.e., from 3min to 1 min) dur-
ing both resting and stress phases. As far as non-linear
features are concerned, SD1 maintained a constant be-
havior between short and ultra-short term during rest
and stress phases while SD2 was less correlated at 30 s
during stress. ApEn, SampEn, D2, RPlmean, RPlmax,
REC, RPadet and ShanEn showed to be highly correlated
with short HRV features over 3-min excerpts during
resting and stress conditions, while they resulted less
correlated in shorter time-scales. In general, HRV fea-
tures resulted less correlated in resting than during
stress conditions. This is most likely due to the fact that
HRV showed a more depressed dynamic during stress
phase. Similar behaviors have been observed in other
studies [68].
Due to this first analysis, the HRV features computed

on 30-s excerpts were at this point excluded from the

Table 2 Correlation analysis of ultra-short HRV features vs equivalent short ones

Rest Phase Stress Phase

HRV Features 3 vs 5 min 2 vs 5 min 1 vs 5 min 30 s vs 5 min 3 vs 5 min 2 vs 5 min 1 vs 5 min 30 s vs 5 min

MeanNN 0.984 0.890 0.975 0.936 0.985 0.937 0.955 0.964

StdNN 0.954 0.875 0.905 0.749 0.962 0.912 0.791 0.640

MeanHR 0.984 0.891 0.975 0.947 0.985 0.938 0.954 0.964

StdHR 0.914 0.789 0.796 0.635 0.971 0.904 0.784 0.696

RMSSD 0.961 0.914 0.946 0.859 0.983 0.928 0.915 0.852

NN50 0.972 0.883 0.949 0.822 0.971 0.920 0.905 0.894

pNN50 0.967 0.882 0.943 0.818 0.969 0.915 0.913 0.881

LF 0.894 0.886 – – 0.921 0.916 – –

HF 0.915 0.906 0.901 – 0.925 0.915 0.798 –

LF/HF 0.830 0.839 – – 0.846 0.807 – –

TotPow 0.897 0.882 – – 0.900 0.905 – –

SD1 0.961 0.914 0.945 0.862 0.983 0.928 0.915 0.852

SD2 0.956 0.865 0.876 0.707 0.941 0.898 0.755 0.694

ApEn 0.771 0.169 – – 0.918 0.790 – –

SampEn 0.855 0.666 0.681 – 0.931 0.826 0.599 –

D2 0.922 0.674 0.330 – 0.967 0.876 0.816 –

dfa1 0.661 0.687 0.637 – 0.927 0.908 0.799 –

dfa2 0.633 0.611 0.673 – 0.767 0.563 0.485 –

RPlmean 0.837 0.708 0.645 – 0.901 0.730 0.503 –

RPlmax 0.738 0.588 0.583 – 0.896 0.737 0.678 –

REC 0.880 0.643 0.608 – 0.892 0.689 0.513 –

RPadet 0.852 0.645 0.495 – 0.948 0.817 0.642 –

ShanEn 0.795 0.661 0.614 – 0.907 0.720 0.463 –

All the correlations resulted significant (prho < 0.05); in bold Spearman’s correlation coefficient (rho) greater than 0.7; −: not computable

Castaldo et al. BMC Medical Informatics and Decision Making           (2019) 19:12 Page 8 of 13



rest of the study due to the low number of HRV features
behaving coherently with the benchmark. The results
from the correlation analysis were supported by the vis-
ual inspection of the Bland-Altman plots. A decrease in
bias and in width of the 95% LoA was observed as the
excerpts length increased for all of the HRV features. A
representative example is shown in Additional file 2:
Figure S1 and Additional file 3: Figure S2.
As a result, MeanNN, StdNN, MeanHR, StdHR, HF

and SD2 were selected as valid surrogates of short HRV
features to investigate mental stress, as they displayed
consistency across all of the excerpt lengths (i.e., from 5
to 1 min). Moreover, the discrimination power to auto-
matically detect stress of these features across all of the
excerpt lengths (i.e., from 5 to 1 min) was also corrobo-
rated as detailed in the section below.

Classification and performance measurement
Regarding the feature selection process, all of the six
HRV features (MeanNN, StdNN, MeanHR, StdHR, HF,
and SD2), selected as valid surrogates of short HRV fea-
tures resulted also relevant in folder 1. This was not a
trivial result given the lower number of subjects in-
cluded in folder 1. In fact, a reduction in the number of
subjects may result in an increase of p-values. As result
of the redundancy analysis the minimum set of relevant
but mutually non-correlated features resulted to be:
MeanNN, StdHR, and HF.
Each machine learning method was trained and vali-

dated with this combination of short HRV features
(MeanNN, StdHR, and HF) using folder 1. The classi-
fiers were then tested on short HRV features using folder
2 as shown in Table 3.
According to the criteria defined above, the IBK

classifier showed the highest AUC with 88% sensitiv-
ity, 100% specificity, 94% accuracy, and 99% AUC,
using MeanNN, StdHR and HF as HRV features.
Therefore, the IBK was chosen as model to automat-
ically detect mental stress.

The IBK model was then tested using ultra-short HRV
features in folder 2 to further evaluate their capability to
automatically detect mental stress (Table 4).
The length of data seemed to slightly affect the per-

formance of the model. However, as shown in Table
4, the model outperformed in 3-min time-scale with
97% AUC.
Compared to the short term performances, sensitivity

increased by 6% and specificity decreased by 6% respect-
ively using 3-min excerpts. Nevertheless, the model
achieved good performances also using 1-min HRV ex-
cerpts. After observing these results, the model was also
assessed on consecutive 1-min excerpts (as shown in
Fig. 2, right-hand side) within the 5-min NN data series
in order to understand if the performances were chan-
ging significantly according to the extracted excerpts. In
fact, the performances using 1-min HRV features
showed to be constantly good with 86 ± 4.1% sensitivity,
95 ± 4.4% specificity and 92 ± 3.75% accuracy.

Discussion
The current study aimed to investigate if ultra-short
HRV features are valid surrogates of short ones to auto-
matically detect mental stress. This is a topic of growing
interest. In fact, the continued rise of consumer wearable
devices able to instantaneously assess mental stress level
is raising the attention of the scientific community
around the use of HRV features computed over excerpts
shorter than 5 min [22].
Differently from Melillo et al. [7], this study explored

the validity of ultra-short HRV features as surrogates of
short HRV features to detect mental stress in real-life
scenario. Moreover, in Melillo et al. [7] only non-linear
HRV features were analyzed in 5-min excerpts and
employed to develop a linear classifier.
Regarding the methodology, this study presents an in-

novative method to assess the minimum length of HRV
excerpts to detect mental stress in healthy young
subjects. In fact, to the best of the authors’ knowledge
[22], only two studies evaluated the reliability of
ultra-short HRV features during stress condition, but
only using statistical significance tests, which as demon-
strated in this study are not sufficient to draw any
conclusion [31, 69]. In fact, differently from the methods
described in the current paper, Pereira et al. used only a

Table 3 Model performance measurements estimated on the
test set (Folder 2) on 5 min excerpts

Method Parameters AUC SEN SPE ACC

MLP LR = 0.3; ML = 0.2;
NE = 500

98% 100% 88% 94%

SVM PolyKernel, E = 1.0 88% 88% 88% 88%

C4.5 CF = 0.25; ML = 2 94% 88% 100% 94%

IBK K = 3 99% 88% 100% 94%

LDA – 98% 88% 100% 94%

MLP Multilayer Perceptron, SVM Support Vector Machine, C4.5 decision trees,
IBK Neighbor Search, LDA Linear Discriminate Analysis, AUC area under the
curve, SEN sensitivity, SPE specificity, ACC accuracy

Table 4 Model performance measurements on different time-
scale excerpts

Duration AUC SEN SPE ACC

3min 97% 94% 94% 94%

2min 93% 94% 88% 91%

1min 93% 82% 94% 88%

AUC area under the curve, SEN sensitivity, SPE specificity, ACC accuracy
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parametric statistical test (one-way ANOVA) to deter-
mine which HRV features (i.e., 220, 150, 100 and 50 s)
could discriminate between rest and stress sessions (p <
0.05) with small windows of analysis [69]. For their part,
Salahuddin et al. used the non-parametric Kruskal–Wal-
lis test to assess that ultra-short term analysis was not
significantly different to the short term analysis if the
p-value was greater than 0.05 and Wilcoxon sign-rank
test (p < 0.05) to find the shortest duration that distin-
guished between rest and stress phases. However, no
correlation or machine learning methods were utilized
to validate their findings. Moreover, if the p-value is
greater than 0.05 then the null hypothesis cannot be nei-
ther rejected nor accepted [70]. Therefore, no conclusion
can be drawn using only the statistical significance tests,
which make the results reported in [31] not sufficiently
reliable. Hence, it is difficult to compare the results re-
ported in [31] with the one reported in the current
paper. Unfortunately, this study has been used to sup-
port the majority of works related to mental stress de-
tection using ultra-short HRV features [31]. In fact,
many wearable systems [28, 41, 42] and scientific studies
[26–28, 30, 32, 41, 42] monitoring stress via ultra-short
term HRV analysis have based their feature selection on
Salahuddin et al. [31] results, which should be read more
carefully.
Other studies have investigated the reliability and ac-

curacy of ultra-short HRV features in different condi-
tions (e.g., athletic performance, acoustic sounds and
controlled resting conditions) [33–36, 38, 39]. However,
none of these studies employed rigorous statistical ap-
proaches to identify ultra-short HRV features as good
surrogates of short term ones [22].
Differently from our study, few studies only employed

correlation tests to prove that ultra-short term HRV fea-
tures behaved as good surrogates of short-term ones,
concluding that ultra-short HRV features were good sur-
rogates of short-term ones if significantly correlated with
their equivalent short HRV features [34, 35, 38]. This re-
sult is arguable because, as demonstrated in our study,
although an appropriate correlation test is the first step
for the identification of a good surrogate, a much stron-
ger condition than correlation is required to identify a
surrogate [22, 71].
Other studies performed both statistical significance

test and correlation analysis in alignment with our study,
but they presented various methodological ambiguities
[33, 36, 39]. For more details refer to [22]. Only one
study investigated HRV features in time domain in 10,
30 and 120 s compared to 5 min, using a more rigorous
method [39]. In fact, they used Pearson correlation, after
log transforming HRV features, Bland-Altman plots and
Cohen’s d. However, although the approach used in
Munoz et al. [39] to assess the validity of ultra-short

HRV features seems more rigorous than other studies
[22], they only investigated 2 time domain HRV features
(SDNN and RMSSD) in resting condition.
Regarding our results, the statistical analysis in the

short term showed a significant depressed HRV during
stress, in agreement with the previously published litera-
ture [4]. Ultra-short term HRV features also resulted in
being significantly depressed during mental stress over
each time-scale. Concerning the HRV features in time
domain, all of them maintain the same behavior across
the 5 different time-scales (i.e., 5 min, 3 min, 2 min, 1
min, and 30 s). Moreover, four of them (MeanNN,
StdNN, MeanHR and StdHR) were also significantly dif-
ferent between rest and stress phases and were signifi-
cantly correlated (Spearman’s rank rho> 0.7) across
time-scales (i.e., each ultra-short vs short time-scale per
each feature). These results, achieved with a more robust
method, confirm the findings of Baek et al. [36],
McNames and Aboy [35], Nussinovitch et al. [34], Per-
eira et al. [69] and Munoz et al. [39], which showed that
MeanNN, StdNN, MeanHR are reliable for length from
5 to 1 min in a controlled resting condition. However,
some HRV features that showed to be good surrogates
in the existing literature, failed to show good results in
the present study. Our interpretation of this result is that
the method used in the present study is based on more
stringent and reliable requirements, compared to other
studies, which demonstrated significant methodological
limitations [22]. Concerning the HRV features in fre-
quency domain, it is well-known that a minimum of 1
min is required to estimate HF and a minimum of 2 min
is required to estimate LF component [16, 36]. Accord-
ingly, the present study showed that for HRV features in
frequency domain such as LF, the minimum length is 2
min. However, HF component could be extracted from
1-min excerpts, as confirmed by the fact that in this
study HF resulted to be a good surrogate of the 5 min
equivalent. In fact, as also proved by Baek et al. [36], LF
had a very low Pearson coefficient below 2min whilst
HF below 1min. In relation to non-linear HRV features,
no study has investigated their reliability in excerpts
shorter than 5 min. The current study empirically dem-
onstrated that they lose their utility for excerpts below 3
min due to computational problems. In fact, non-linear
HRV features require a high number of samples in order
to appreciate the dynamics of the heartbeat series over
time. Only two HRV non-linear features (SD1 and SD2)
showed to be good surrogates over 3, 2 and 1-min
lengths as also shown by Nardelli et al. [38].
Although our study employed only 42 healthy subjects

to develop a model to automatically detect stress, it is
able to detect stress with higher accuracy than the
models presented in the existing literature [7, 15, 20, 23,
24, 27–29, 32, 72].
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Three studies proposed a model to detect mental
stress using short term HRV analysis [7, 20, 72], whilst
seven studies developed a model for the detection of
mental stress using ultra-short HRV features [15, 23, 24,
27–29, 32]. Melillo et al. [7] adopted the same dataset as
in this study and proposed a model based on LDA,
employing only three HRV non-linear features: SD1,
SD2 and ApEn in short term HRV analysis. The model
proposed in their study, achieved sensitivity, specificity
and accuracy, of 86, 95 and 90%, respectively, which are
lower than the ones achieved by the model developed in
this study. Whereas Traina et al. [72] studied the Pear-
son correlation between frequency domain measures be-
fore and after the stress session, demonstrating that
those correlations were significant. However, as dis-
cussed above, the Pearson correlation lays on the as-
sumption that the HRV measures are normally
distributed, yet HRV frequency measures are not. In
2015, Munla et al. [20] used an SVM-RBF classifier using
time and non-linear HRV features, with only 16 different
individuals, to predict drivers’ stress with an accuracy of
83%. However, no validation or testing was applied in
that study.
Mayya et al. [28] proposed a method for automatically

detecting mental stress using smartphone and focusing
on 1-min HRV features. The model was built on the as-
sumption that ultra-short HRV features were relevant
according to the available literature [31], which has been
proved to lack of a robust method to identify ultra-short
HRV features that are good surrogates of short HRV fea-
tures [22]. They used a multinomial logistic regression
applied to 2 features, RMSSD and dfa1, which were ex-
cluded in our study, and achieved 80.5% accuracy, which
is lower than the accuracy achieved in the present study,
supporting the idea that an suboptimal ultra-short fea-
ture selection generates low performances. Choi et al.
[24], Brisinda et al. [27] and Sun et al. [32] also proposed
a method to automatically detect mental stress focusing
on 4-min, 2-min and 1-min HRV features respectively.
Also in these studies, the models were built on the as-
sumption that ultra-short HRV features were relevant
according to the available literature, although Brisinda et
al. [27] confirmed their findings using only ICC analysis.
These studies used linear classifiers achieving accuracy
lower than the one achieved in the current study. Other
models were developed using ultra-short term HRV ana-
lysis along with other physiological measurements but
they are not discussed here [15, 29, 32]. To conclude,
none of those papers achieved better results than the
one presented in this study. This also supports our con-
vincement that a reliable identification of good surro-
gates is important to identify a good set of features
aiming to detect mental stress. However, it is important
to highlight that these studies employed protocols and

sample sizes different from our study and therefore, a
strict comparison of the classifiers’ performance may be
equivocal [15, 23, 24, 27–29, 32].
The current study showed that IBK was able to detect

stressed subjects with 88, 100, 94% of sensitivity, specifi-
city and accuracy respectively, using short HRV features
(MeanNN, StdHR and HF). IBK was the most recurrent
machine learning used among the papers identified in
the existing literature [23, 24, 29].
Finally, it is useful to mention that the proposed

methodology could be used in any application aiming
to automatically detect a condition using ultra-short
HRV features. In particular, the proposed method can
improve the identification of the minimal length of
HRV excerpts enabling the detection of an anomaly
in real time.

Conclusion
Currently, 5-min recordings are regarded as being an ap-
propriate option for HRV analysis to detect mental stress
in healthy subjects. However, the continued rise in the
interest of everyday wearable devices being able to in-
stantaneously assess mental stress level is rising the at-
tention of the scientific community around the use of
RR interval shorter than 5 min.
This study demonstrates that not all the ultra-short

HRV features are good surrogates of short term ones. In
fact, only six ultra-short HRV features resulted to be
good surrogates of short term ones: MeanNN, StdNN,
MeanHR, StdHR, HF, and SD2. Those six features dis-
played consistency across all the excerpt lengths (i.e.,
from 5 to 1 min) and MeanNN, StdHR and HF showed
good performance if employed in a well-dimensioned
automatic classifier.
Moreover, an automatic classifier based on IBK is able

to detect stressed subjects with very high performances,
using 3-min HRV analysis, and relatively good perfor-
mances using 1-min HRV excerpts. The former achieved
sensitivity, specificity and accuracy of 94, 94 and 94% re-
spectively and the latter achieved sensitivity, specificity
and accuracy of 82, 94 and 88% respectively.
Therefore, we conclude that it is possible to automat-

ically detect mental stress using ultra-short HRV features
with excerpts not shorter than 1 min. According to the
specific application, 3- or 2-min excerpts could be pref-
erable, because features having a clear physiological sig-
nificance (e.g., HF and LF) remain computable.

Endnotes
1Supplementary materials are available in the support-

ing document
2Supplementary materials are available in the support-

ing document
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