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- IV

SUMMARY

We study the bordism algebra of immersions of closed smooth 

manifolds in closed smooth manifolds. We give two sets of polynomial 

generators. We obtain a splitting in terms of bordism groups of 

vector bundles with structural group E /0(k) and a splitting in 

terms of bordism of covering spaces and vector bundles. We study the 

problem of reducing, modulo bordism, the structural group Er /0(k) 

to the subgroup / 0(k) by calculating some characteristic numbers.
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INTRODUCTION

In this thesis we study the bordism of immersions of closed smooth 

manifolds in closed smooth manifolds and its relation with the Dyer-Lashof 

operations. We shall describe its contents chapter by chapter.

In chapter 1 we give two sets of generators for the bordism of 

embeddings of closed smooth manifolds in closed smooth manifolds. One set 

of generators is given in terms of Milnor manifolds and the other one in 

terms of projective spaces. To do this we study, in the first section, 

the relation between bordism and homology and the multiplicative properties 

of the Thom class as a map of spectra.

Chapter 2 deals with the Dyer-Lashof operations. We begin with

some details about the homology mod. 2 of the spaces EG * Xr , where
G

G is a subgroup of the symmetric group of degree r. We need these 

results, in the case r=2 to define the operations and in the general 

case for the calculations in chapter 7. We then give the definition of 

the operations in the homology mod. 2 of any é'^-space, where

is the cubes operad, following [13 & 16] . In section 3 we define the 

operations in unoriented bordism N*(_). The general properties of

these operations were studied in [28 & 39] . In section 4 we see that 

the operations in bordism correspond to the operations in homology under 

the Thom homomorphism y: N*(_)-*• H*(. ; 7L̂  ).

In chapter 3 we give two sets of polynomial generators for the bordism 

of immersions of closed smooth manifolds in closed smooth manifolds in
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codimension k that we denote by I(*, k), k>0. For this we use a 

theorem of P. Schweitzer [40] that gives an isomorphism of 

N*-algebras I(*, k) a N*(Q MO^) then we obtain the structure of 

N*(Q M0k) in terms of the operations using the calculations of

□1 & 16] in homology, then we give an interpretation of the operations 

in terms of irrmersions and finally we use the generators for the 

bordism of embeddings that we obtained in chapter 2.

In chapter 4 we use the results in C28] and [43] to get a 

splitting of the groups I(n,k), for n ^o, k > 0 in terms of bordism 

groups of vector bundles with structural group £-[0(k), where f 

denotes the wreath product. Using this splitting we can associate to 

a self-transverse representative in a bordism class of immersions, the 

characteristic numbers associated to this bundles and then we obtain 

that two self-transverse immersions are bordant if and only if their 

characteristic numbers are the same.

In chapter 5 we use some results of A. Borel C5] on homogeneous 

spaces to show that any (rk)-vector bundle over a closed smooth manifold 

is bordant to a vector bundle with structural group Er /0(k).

In chapter 6 we use the method of F.W. Roush for classifying

transfers [1] to give an interpretation of the groups W*(EE * B0(k)r)
r

in terms of bordism of pairs (M, £) where M -*■ M is an r-covering over 

a closed smooth manifold M and 5 is a vector bundle over M.
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We see the relation of this with Atiyah's direct image construction and 

we get another interpretation for the splitting of the bordism of 

immersions.

Chapter 7 deals with the problem of reducing, modulo bordism, the 

structural group of a bundle with group Z^ f 0(k) to the subgroup 

Z r /0(k).

In section 1 we study the edge homomorphisms of a spectral sequence 

converging to H*(EZr£ X1";^)» f°r anX space X of finite type; 

in section 2 we give a brief account of the work of 6. Segal [41] 

on the cohomology of topological groups and some other related results 

and in section 3 we use the results of the previous 2 sections to 

calculate some of the characteristic numbers defined in chapter 4 to 

give examples related to the problem of Cyclic reduction modulo bordism.

Finally, in chapter 8 we use the operations to show that

the Dyer-Lashof operations in the mod. 2 homology of an Eilenberg-Mac Lane 

space K(A,n) are zero for any abelian group A. An algebraic proof, 

for the case A = TL̂ , can be found in [32].



Chapter 1 : Generators for the Bordism of embeddings

In this chapter we give 2 sets of generators for the bordism of manifolds in 

manifolds. To do this we first study the relation between bordism 

and homology.

1.1 The Thom class

We denote by MO the Thom spectrum for unoriented cobordism, its 

k-th space M0|̂ = T(Y (k)) is the Thom space for the universal k-vector 

bundle over B0(k). We denote by H Z 2 the Eilenberg-Mac Lane 

spectrum with coefficients Z / 2 Z = Z 2, its k-th space !H Z 2)k =

= K( Z2> k) is the Eilenberg-Mac Lane space of type ( 7L̂ , k). Both 

are ring spectra C 4  9],

1.1) Proposition [10] . The Thom classes t ^ ^  £ H^(MO^; ^ 2) =

= [M0|C> K( Z 2, k)] define a map of ring spectra t-- M O - » H Z 2.

1.2) Definition.- Any map of spectra f: E -*• F defines a natural 

transformation f: E*(_) -*• F*(_) between the cohomology theories 

defined by E and F, and a natural transformation f:E*(_) ■+ F*( _) 

between the homology theories. For details see [49] . In particular 

we have t: M0*(_) -» H*( _ ; Z 2) and t: M0*(_) -» H*( _ ; H^).

1.3) Definition. C49] . Let E be a ring spectrum and X,Y pointed
~ n ~ N. ~

spaces- then we have products E (X)®E (X a  Y)— » E (Y) (slant product)
H H r

Ep(X)® Eq(Yl—*• ^p+q(x A Y) (smash product or cross product (x) in the 

unreduced case). And similarly for cohomology EP(X1® EP (Y) ̂ » Ep+c,(XaY).
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1.4) Proposition ~ Let f; E -*■ F be a map of ring spectra then

a) f (a/v b)= f (a) A f (b)

b) f (a\ b)= f (a) \ f(b)

c) f(x A y)= f(x) a f(y)-

Proof.- We shall prove a) The proof of b) and c) are entirely 

analogous.

Let y: E a E E and ry F a F -> F be the product maps. Let a e E n(X)

and btEm (Y) be represented by Sn E a X and Sm — ^-»-Ea Y, where 

Sn denotes the suspension spectrum of the n-sphere. Then f(aA b) is

represented by s"a Sm A h -(E a X) a (Ea Y) -^-*(Ea E) a (X a Y)
f A l

E a X a Y ----- 1- Fa (X A Y) and f(a) A f(b) is represented by

SnA Sm ---------------------- -(Fa X) a (Fa Y) --- -(FaF)a (XaY)— »Fa (XaY1
(fAl)» g A (fA 1)° h rF T*1

To see that they are homotopic we use 3 facts: 1) The smash product is 

a bifunctor on the homotopy category of spectra [49] . 2)T   ̂ and T  p

are natural equivalences on the same category [49] . 3) As f is a map

of ring spectra then n°(fa f) ~ f » y. Then we have

(f a 1 )* (y a 1) ° t £° (gA h ) s  (f ° y) a 1 ° Z£° (g a  h) ^

« n*(f a f) a 1c V ( 9  a h) > (nAl)«(fA f)A l°rfc(g Ah)|

« (n° l)°rF » (f A 1)a  (f Al)c(gA h) = (n A 11 °r ° (f a 1)° g A (f a 1)c h.

□

1.51 Corollary.-^ Let f: E -*■ F be a map of ring spectra, then a) if 

X is an H-space f: E*(X) F*(X) preserves the Pontrjagin product.

Let <,> denote the Kronecker product and n the cap product, then 

b) <f(x), f(y)> = f <x,y> ; c) f(anb)= f(a)n f(b).



Proof.- a) Let m: XxX -*■ X denote the product map- by prop. 1.4.a) 

f preserves the cross product, and as f is natural we have f(a*b)= 

f m*(a k b)= m* f(axb)= m*(f (a) x f (b] = f fa) • f fb).

b) by 1.4.b) f preserves the slant product so <f(x), f(y)> =

=ffx)\ffy)= f(x\y)= f <x,y> . c) by 1.4.b) and naturality we have 

f(a„b)= f(a\ A*(b}) = f(a)\fA*(b)= f(a)\A* f(b)= f(a)„f(b).

□

1.6) P.emark.- The universal Thom class in cobordism is an element in 

M0°(M0)= [ MO,MO ] given bv the identity [10] . . Hence t: M0°(M0) —»

sends the universal Thom class in cobordism to the 

universal Thom class in Z 2-cohomology.

2
1.7) Definition.- Let T denote the category of topological pairs

(X,A), A c X. For a fixed pair (X,A) define a singular manifold in 

(X,A) to be a map f:(M,dM) -* (X,A) where M is a compact C°° 

manifold of dimension n . Such a map is said to bord if there is a 

compact C" manifold V of dimension n+1 and a map F: V -* X such 

that i) there is an embedding e: ii) F I3V°e= f,iii)

iii) F( S V- e  (M) )cA. Two singular manifolds (M,aM,f) and (N,c)N,g) 

will be called bordant if their disjoint union (Mufl, JMuSN, f-u g) 

bords. This is an equivalent relation and we write A /nfX,A) for the 

set of equivalence classes. AJ *(_) is a generalised homology theory 

on T2 [15 ] .

The Thom-Pontrjagin construction defines a natural transformation of 

homology theories <J) ) -* M0*[_) [15 ] . By Thom's theorem 4>. Ai. (pt)-*

~»M0*fpt) is an isomorphism so cp is an equivalence on the category 

of finite C.W pairs. One can easily prove that A'*(_) satisfies the 

wedge axiom and the weak homotopy equivalence axiom so <}> is an equivalence 

on T2 [49]-
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1.8) Definition,- We define a natural transformation

H :A/*f ) -*■ H*f ; Z^) by ,Ai[ M,f >  f*(o(M)) where o(M) is the 

fundamental class mod. 2 of M. This is well defined and Thom proved 

that it is surjective [50]

1.9) Theorem [15] . The /T*-module A/*(X) is free. A family {a^}.,j

of homogeneous elements in A'*(X) is an /v*-basis if and only if

ip(a. )}.j e j is a Z 2-basis for H*(X ; Z^).

To finish this section we shall prove that under the isomorphism tf> , 

t and y coincide. For this recall that if M is a closed smooth 

n -manifold then the fundamental class of M in geometric bordism, 

wich we denote cr(Ml, is given by §(M)=[ M,id] e A/n(Ml.

1.10) Lemma.- y is the unique natural transformation that sends the 

fundamental class in bordism of a closed smooth manifold to its 

fundamental class mod. 2.

Proof.- y($(M))=y [M,id] = id*(a(M))= cr(M), so y has this property. 

Now suppose e is a natural transformation with this property and let 

[M,f]e A/n(x)» then we can write [M,f] = f* [M, id] = f*( &(M)). So 

0 [M,f] = e f*c 5iM))= f* e( &(M))= f*( a(M))=y [M.f] .

1.11) Proposition.- The following diagram commutes MO*(X) — ► H*(X: Z^)

□

□

t

/V*l* )

_
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Proof.- by 1.10) it is enough to show that t°cf> sends tne fundamental 

class ct(M) to tr(M) for a closed smooth manifold M. To see this we 

use the following definition for the fundamental class [49] . Consider 

an embedding Mn c— <- Sn+  ̂ with normal bundle v , let Y denote the 

Thom isomorphism in 2Z2-homology, c: Sn+k-+-T(v) the collapsing map 

and ie Hn+|c(Sn+ic; 22) the generator then o(M)= Y( c*(i )).

Similarly <(>£a(M))= Y( c*(°)) where y is the Thom isomorphism in 

M0*(_) and ii e M0n,k(Sn+^). Now recall that the Thom isomorphism is 

given by Y(x) = p*(t(v )r>x ) where p is the projection of v, and
o o
Y (x )= p*( t(v )n x )• By 1.5 c) t preserves cap products and by

- C
1.6 t(t(v ))= t(v ), as t is a map of ring spectra t(f)=x , so 

we have t<|> (ct (M))= t Y (c*(i))= Y t(c*(°))= Y c* t(‘) = Y c*( i )= a(M).

□

§1.2 The bordism of B0(k)

In this section we shall give generators for M*(B0(k)).

1.12) Definition.- Given a vector bundle we denote by e(5 )

and e(£), the Euler classes of £ in cobordism and 22-cohomology 

respectively. The element e(y(l)) eM0'(B0(l)l satisfies the 

properties for the existence of generalised Stiefel-Whitney classes in 

cobordism [45 ] , these classes are called Conner-Floyd classes, and

are denoted by w.f_). For an n-vector bundle £, e(£)= w (£).

1.13) Remark.- If £ is a vector bundle over a space X, and

z: X -+■ T£ is the inclusion of the zero section then by definition 

ef£)= z*(t(£)) and e(£)= z*(t(£)). As t is natural then by 1.6



we have that t(!(£))= e(^). The fact that t(l(y(l))= e(y(l)) 

together with the multiplicative and naturality properties of t imply 

that t(wi (?)}= w. (O.

1.14) Definition.- We have that M0*(B0(l))s M0*(pt) [[e(y(l))]] and

H*(B0(1); 2 2)s [e(y(l)) ] [49]. We then have unique elements

(3.e W.(B0(1)) and p.e H.(B0(1);22) with the property

<e(y (1J)1 , (L >= and < e(y(l) )n, (3j > = 5 . j . We def ine

Bq= [ {p o i n t W  BO(1)] and Bq the generator of HQ(B0(1);Z 2).

1.15) Proposition.- Consider elements B^e (BO(1)) and B^H^ (BO(1) ;Z>)
o

as defined in 1.14) then u(B-)= .

Proof.- For simplicity let us write e for e(y(l)) and e for 

e(y (1)). By 1.4) tCe1 )= tiS)1 and by 1.13) t(e)=e. So using the 

formula 1.5 b) we have ■«e1, t($ .) > = < ¿(I1), t(B •) > = t <e\ B . > =
J J J

= t(<5..)=6.., and hence t(B.)=B-> as we have identified t with
■ J ' J J J

u(l.ll) then u(B°i)=Bi .

□

In order to get the generators for N*(B0(k)) we shall first give a 

basis for H*(B0(k); TL̂ ).

For this recall that H (B0(k); Z 2)= Z 2 [w-j (k)).... wk(y(k))] [491-

Let € k= y (1)x.. x y (1) the k-fold product of the bundle Y  (1). This 

is a k-vector bundle over B0[l)x,..x B0[1).

Let mk: B0(l)x...x B0(1) B0[k) be a classifying map for .

Then one can show C49l that mk(ŵ  (v (k)))= ct^ u  ̂,u2.... uk), where

o. is the i-th symmetric polynomial in the variables u-j ,u2,... ,uk 

where Uj= Pj(e ) and p^: B0(l)x...x BO(l)-*- BO(1) is the projection
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on the j-th coordinate. As mk is a ring homomorphism and any element 

can be written uniquely as 1 4 wj1'. .. then m^iZd« w^’ ,... ,wk * )*

= Z dot oj“'. . . . so m£ is an isomorphism onto the symmetric sub­

algebra S c  H*(B0( I )x.... x B0(1);ZZ2).

Now for each sequence Os i < .... < i. consider the monomial
U  i2 \u. u_ ... u. and let S. . be the smallest symetric Doly-
1 K 1 -j > • • 1i

nomial containing this monomial, as S = Z 2 [o^, a2,..-,o^] then it

is clear that the polynomials S. . are a basis for S. As mi*
'1 ’ ” * ’ ' k K

is an isomorphism onto S then we get:

1.16) Proposition.- For each collection 0 < s i'2 s ,...,< ik the

elements a- . e H*(B0(k); 2,) such that mf(a. . )=11 » • • • > 1 k
= Si are a basis for H*(B0(k); Z 2).

□

1-17) Proposition.- Consider the elements 3. eĤ  (B0(1 ) ; TL̂ ) and the

map mk: B0(1 )x,... ,xB0(l ) -*• B0(k) as above, then

%  (B- x g. x -... xg. ) for each collection 0 < i < ....  <i.
K* 1i n2 ‘k K
forms a basis for H*(B0(k); 2 2).

Proof.*- All modules are finitely generated < , > is non-singular and

by 1.16)'{a* _• } for collection 0<i <,..., <i. is a basis

for H*(B0fk); Z 2), so we are going to see that its dual basis is

{ m. *(B- x.... x B, )} . For this we use the following facts [49] :
K *1 Tk

< , > is bilinear and satisfies < f*(x),y > = <x,f*(y)> and

<xxy, ax b > = < x,a > <y,b>. If pj is the projection on the j-th

factor then Uj= pj (e)= 1 x 1 x.. .x e x 1 x ...x 1 . If v denotes the cup



then (x x') x (yvy')=(xxy)w (x'xy1).

We can then write:

< a

■< st

i v A . ^ , "  ••• " V ’ ■ <mKca' , , - - V ’ v  * ■

11 n" 2  ̂k, j X .... xp. > = <u,'u9 ... +...+.. R. X...Xg . >
1 f1k J 1 Jk 1 2 k  PJ-, p Jk

11 ^2 ’k
= < U1 u2 ••• \  • ^x... B,- > + other 

Jk

’l 1_2 \= < e  x e x...xe , g. x
J1

...x Bj > + i 
Jk

11 12= < e , B- > < e , Bj >..
J1 J2

ik.< e \  g. > + 
Jk

= < 1 if i 1 = Ji» 12= J'2»-" ’ V J'k
^0 otherwise.

1.18) Proposition.- An W*-basis for W*(B0(k)) is given by the elements 

mk*( ) for each collection Osi s ...< ik .

Proof.- p is natural and by 1-4 a) it preserves products. By 1.15)

p(§-)= 8,- so we have v m. (g x...x 1. )=m. p (|. x-..x &  ) =
* 1 ’k K* 71 n k

=mk (¿ifa x...xu§. )= m. ( 8,- x...x B . ).
*■* l lk K* * i > k

By 1.17) these elements are a Z 2-basis for H*(B0(k); Z 2) so by 1.9)

{m. ( L  x..-x L  )M s an N*-basis.
K* n l n k

□

We now give specific representatives for the elements §.,• e W -fBO(1)).

6
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We take as BO(1) the infinite real projective space p00 .

1.19] Definition.- Let Pm be the real projective m-space with

coordinates x = [x0,...,xm ] j for U  mi n let Hm n=
m

= {( Cxi j Cy] ] P x P i I x.y. = 0 }. H is a closed smooth
i=0 1 1 m

manifold of dimension m+n-1 called Milnor manifold- H „ ism,n
fibred as Pn_1 -+■ n —  Pm where the projection is induced by 

the proiection Pm x Pn ■+■ Pm .

1.20) Proposition.- [10] Let vm be the restriction of Y (1) to Pm ,

and y b y  the external tensor product over P01* Pn, then

e(v b  y„) e MO'(Pm>< Pn) is the Poincare dual of [ H ^ P l"x Pn l . v m n ' m,n

1.21) Definition.- We define b^e ^(P00 ) to be the class of:

H-j [, c— *• P1 x Pk — -— * Pk c— -— *■ P°° , where pk is the projection on 

P and i the inclusion. We will show that these elements can be taken 

as for this we need the following 2 propositions-

1.22) Proposition.- With the notation as above e(y(l)) n b^= bk_-|

Proof - It is clear that 1 and 2 commute and that 3 is a pull-back:

,kP x Pk __Pk

idxj.

Px Pk_1

Jk
,k-l

Yj s --- *Y| si Yk

,k-l k-1

Pk-1
P ^ ' 1- P x P*

idxj.

let us write 0̂ =  [ H-| p’x Pk ] .Then using the fact that f*(f*(x)ny) = 

x n  f*fy) [493, we have:
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e ( Y C D ) n b k = e(Y(l)ln(Lk° f>k5*(«k)=(ik° PkU  [ (\° fkH e ( r ( l ) ) n « k l =

= K r kP " a J  ®

On the other hand by prop. 1.20) Otk_i = efY^B^^ln a(P*x Pk ^). and 

by 3 e(Y1a Y k_1 ) = C1 x jk)*Ce(Y1Q Y fc)). Then we have:

bk-l = pk-l ^ * ^ k - l ^ I ^ k  Jk pk-l ̂ *(ak-l ^ k  pk M  ̂  d* J V * (ak - l )) =

= (Tk° Pk)*[ fidxjk)*((idxjk)* lfY10Yk)n(T(P1x Pk-1)) ] =

= (ikoPk)*[e(Y1 0Y k)n(idx jkl* <7 (P1* Pk‘]) ®

But e(Yk) is Poincare” dual to C Pk-  ̂c---->Pk ] [T°j . So lx§(Yk l

is Poincare' dual to Px > p'x pk = f i d x j k ),̂cr (P1x Pk ‘) and

0(k is Poincare' dual to e(Y-|HYk), hence their cap products are the 

same (recall that (xu y)«-i z=xn (y r,z) 91), so ® = ® ,  i e., 

e(Y(l))nbk= bw  .
□

1.23) Proposition [ H-j n ] = 0 in a/^ (n^l)

Proof.- ^  ^P(Y-|©£n), where P(_) is the projective bundle 

associated to Y ^ ® £ n and £ n is the trivial n-bundle [lo] .

For this we follow the method in [IS] to compute the characteristic 

classes of the tangent bundle of a projective bundle.

Let § be a k-vector bundle over a closed n-manifold V. Let

W p W 2 ,...,wn be the Stiefel-Whitney classes of V and v-j, v2.... vk

those of § . Let c e H1(Pf§); 71̂ ) be the euler class of the canonical

line bundle over P(§). Then Bore! and Hirzebruch proved that Lèi

w 1(P(§))= Z- ( k'P )p*(w v ) c q .
J p+q+r=j \ q ' H



I

-  n  -

In our case ® e n oyer R1 so, w.=0,i>0, v^=e=e(v-|) and

v.j=0,i >1 then wj(P(y -j ®  e") J= ( j )cJ + ( j-l ) cj"] p*fe).

Let us write Wj= w^(P(Yj ®  en )) and ^ |n+M  = / n \ . then

Wj= i n+M cn  j _ / n+n cJ-1 d *

\ j-i

n+1 l J /
cJ ' p (e).

Now consider j-| + j2+...+ jk= n+1, 

k /n+1 \ n+i
w. w. ... w. = n . cn + 
J1 J2 h  r=l V Jr 1

(the other terms are zero because e = 0).

then

k k / n+1
Z Js. n (
s=l n+i Lr-l 1 Jr

e2= 0).

cn P*(e))

Now recall that for any vector bundle €, H (P(5); 7L̂ ) =

= H*(V) i 1 ,c,c2,... ,ck_13 and that ck=p*(wk(5))+.. .+p*(w-j (5))ck 1 

[4 93. So in our case cn+^= cnp*(e).

k / n+1 k j k / n+1 \
Hence w. w. .. 

J1 J2
..w. = 

Jk
n

( Jr
+ £ —  n )

r=l s=l n+1 r=l VJr '
cnp*(e)

k
But Z

S = 1

w iJ1 wiJ2

But £ j = n+1 so both terms in the parenthesis are equal,hence

....w. = 0, and by a theorem of Thom [50] , [H(l,n)] = 0. 
Jk

□

1.24 Corollary.- The elements b^ex/^P ) given by the Milnor 

manifolds are the duals of 1^.)^ .

Proof.- We have that <x«y,z> = <x,yn z > [49], So <I(y-j )̂  , bk >

= <1, e(y11 n ... n e(Y-| )n bk > this is, by 1.22, equal to < 1, t>k_j>
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I < 1, bQ > = 1 if k=j

1 < 1. bk_j> = K.j ] = 0 if k* j by 1.23

□

1.25) Corollary.- An N*-basis for W*fB0(k)) is given by the

elements (b. x,...,b. ) for each collection 0 ¿i, s...s i ;
il ik l k

|<
where mk classifies y (1) .

Proof.- by 1.24, bk= Bk> so the result follows from 1.18).

□

To finish this section we shall give a second N*-basis for N*(B0(k)).

1.26) Proposition.- The elements 

an W*-basis for N*(P°°).

CP"^— -*• P“]e
9n

Wn (P°°)» n> 0 form

Proof.- By 1.9 it is enough to show that the elements y[ Pn -̂>- P°°] , 

n ^0 are a Z 2~basis f°r P ; Z 2) For this consider 

< e(y (l))1 ,u [Pj, gj ] > =< e(Y(l ))n, gj*a(PJ)> =< 9jO( Y(1) , o(PJ )> =

= < eiYj)1 ,ct(Pj')> .

Now if i4j this product is clearly zero. If i=j, then we know 

H*(P^; Z 2)= Z 2 [e(Yj) ] /e^Y xj+1 so (PJ) = TL2 with generator

o‘(P':i), as <,> is non-singular then <e(Yi )J , <j( P“1 )> =1.

Hence n[Pn, gnl = p n .
□

l. 21) Corollary .- An N*-basis for W*CB0(k)) is given by the elements

m. (C P11 , g- 1 x...x CP1*6, 9.- 1) for each collection 0< i, s... si. ,1̂ 1 k I K
u

where mk classifies y O) .
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Proof.- By 1.9 it is enough to show that

i •) ik
Mm, C CP .9.- 3 x ...x [P ,g. 3 ] are a 2,-basis for H*CB0(k); 2Z„J. 

k* ^  1 k 2 l
P is natural and multiplicative (1.4a)} and by 1.26 p[Pn,gn3 = Bn

so we have pm. (CP ,g ] x...x[ P K,g. ] )=m. (£,- x...x B- ).<* ^  ik k* ik

But by 1.17 these elements are a Z 2-basis Cor H*(B0(k); ZZ2) .

§1.3) Bordism of embeddings

In this section we shall give generators for the bordism of embeddings. 

We will use these generators in chapter 3 to study the bordism of 

immersions.

1.28) Definition.- Given 2 embeddings f: M —*■ N, g: M 1 — ► N*, where 

M, M 1 are closed smooth n-manifolds and N,N' are closed smooth 

(n+k)-manifolds, we say that they are bordant if there exists an 

embedding F: V — *■ W such that i) V is a compact smooth (n+l)-mani-

fold with a diffeomorphism 9Vs M ilM' and W is a compact smooth 

(n+k+1)-manifold with a diffeomorphism 3Ws N^N'. ii)The following 

diagrams commute: M ^ M i i M ' s S V c  V M' V

f I 1 F gl I f

N ^ N i i N ' s 3 H c W  N 1 *— ► N jj. N 1 = 3W c W

This is an equivalence relation and the set of equivalence classes is 

denoted by Emb(n,k.). We denote by C f:M -*■ N ] the equivalence class 

of an embedding f. We can make Emb(n,k) into a group by considering 

disjoint union of embeddings. We can make Emb(*,k) into an N*-module 

by defining CM'3 • Cf:M — * N3 = CM'xM1̂ f- M'xN] .
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1.29) Theorem [54-].-The Thom-Pontrjagin construction defines an 

isomorphism of N*-modules Emb(n,k)s N +[c(M0k).

□

To define the generators for Emb(*,k) we need 2 results.

1.30) Definition.- Let (X.Xq ) he a pointed space and

f:(M, 3M) (X, Xq ) a map, where M is a smooth manifold, we define

M — — ► X as follows:

M= M o M is the double of M, which is well defined up to diffeo- 

morphism [ 9 ] and f is the map induced by the map M.U.M c > X 

where c(a)=XQ, for all ae M.

1.31) Proposition.- Let ( X , X q ) be a pointed space and i: { X q  } <̂->-X 

the inclusion. Let d: Mn(X,XQ) -*• Wn(X) be defined by d[M,f >[M,f ], 

where M is as above, then 'E : Wn © Wn(X,XQ) —>-Wn(X) given by 'E(a,b) = 

=i*(a) + d(b) is an isomorphism.

Proof.- Consider the exact sequence of the pair (X,{ Xq } ), and notice 

that the inclusion i t i x g l ^ X  has the con stmt map p:X->- { x q } as 

a left inverse so we get a short exact sequence :

V  x0 } —  Wn(X’{x0 } >-*0-

One can see that 4> : Wn(X)-*- Nn ©  Wn(X,xQ) given by $ (y)=(p*(y),j*(y)) 

is an isomorphism and from this it is clear that j* restricted to 

ker p* is an isomorphism. We claim that d: ^(X,Xq )->- Nn(X) is the 

inverse. To see this let [ M,f] £^(X,{ Xq } ) and consider 

j* d CM,f] , this element is represented by the map

(M.0) — (X, xQ). Define F: M*I X by F(z, t)= f(z).
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Then 9(M*I)= Mx{0}u M x  {1} and we can identify M with M* (0) 

and embedd M*-*- M*{1} in such a way that f|M=f ; then f |m ><{0} = f, 

F | M c M x ( l }  = f|M= f and F(Mx i 1 }-M]= X so (M*r, F) is a bordism 

between (M.f) and (M.f), i.e. j*d [M,f] = [M.f] .

And now it is clear that V(a,b)= i*(a)+ d(b) satisfies <f>c V=id so 

Vis an isomorphism.
□

1.32) Definition.- Let £=(E,p,B) be a vector bundle over a space B.

Let N -JL* B be a map, where N is a manifold. Given a Riemanr.ian

metric on £, denote by D(£), S(£) the disc bundle and the sphere

bundle respectively. Consider the pull-back g*(£) over N. If we

give g*(£) the pull-back metric then the map between total spaces

induces a map g: (D(g*(£), S(g* OWD(C).S(?)). Let q:(D(£); S(£))-*

-*■ (T(£), *) denote the identification map, then we get a map g : 
:(D(g*§),S(g*s>) — * (T(S),*)} where D(g*£) is a manifold with boundary of

dimension equal to dim N + dim £.

1.33) Proposition.- Let £=(E,p,V) be a smooth n-vector bundle, then 

<(>: wn(v) Wn+k(T?’*̂  9iven by 4>[N.g] = [D(g*S), q1 g ] is an isomorphism.

Proof.- Let V :Wf|+|<(TC,*) -*■ N (V) be defined as follows: let 

[M,f]eWn+k(T £,*) then we have a map (M, 9M) — (11, *), consider 

a map fg homotopic to f such that fg is smooth throughout 

f^ (T£ - *), and is transverse to the zero cross-section, define 

*(>[M,f ]=[f'\zero section) ,f0 | f^1 (zero section)] . f is the Thom isomorphism 

in bordism [io).As the map g is induced by a map of bundles it is clear 

that 'f't><|>[N,9]s[N,g]so ¡p is an isomorphism.
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1.34) Definition,- Let HQ^n) c P1x Pn be a Milnor manifold, we

denote by H the restriction to H(l,n) of the line bundle

P1 x vn -*■ P1 x Pn. For each collection 0$i^ $...£ i'k, consider

D( H. x ff. x ...x f f ] the double of the disc bundles, and take the 
’l 12 Tk

embeddings H(1 t,]x...x H(l, i.) — ► D(H. x...x H. ) as the zero
i i 1 k

section. Similarly we have P x...xP — >D( y* x...y.y. ).We also consider the
’l ’k

empty collection and to this one we associate the embedding 0c-{point}. With 
this notation we have:

1.35) Theorem.- a) The embeddings

Hfl, i, )x.. .xH(i, i.l — ► D(fff x...x ff. ) for each collection 
i K 11 1 k

0< i^s ...< ik are an N*-basis for Emb(*, k).
i. i. ---- -

b) The embeddings P x...x P — D(y,- x ...x y_. ) for each collection
nl \

0£ i-j £. ..£ i'k are an W*-basis for Emb(*, k).

Proof.- By 1.29 Emb(*,k) £ N*(M0k). By 1.31) Y: N* ®  N*(M0k ,*)-/V/,('NOk) 

given by '{'(a.b^ i*(a)+ d(b) where d is given by the double construc­

tion, is an isomorphism, and by 1.33) <(> : W*(B0(kl) W*(M0k, *) given

by the disc bundle construction is an isomorphism. By 1.25) An

W*-basis for N*(B0(k)) is given by the elements m. (b. x...xb. )
k* 1-,

for O^i-j s... <ik , but we have a pull-back:

tf. x...x H,
‘1

"’xY, )x...xCPxY. ) — Y. x.. .xY. —*- Y(1 )x..,xY(l )-*Y(k) 
’l \  T1 \

H(l,i,)x ... x H(l,i. )->(P1xpll)x...x(P1 xpik) - V 1x...xp1k-*P“x...xPoo--.B0(k) l k mk

By 1.21) an N*-basis for N*(B0(k)) is given by the elements
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ll (kmu (CP 1, g-. D X...XC P ]) for 0< i, <... < t. , and we have a
K* i-j i *•

pull-back:

Yf x...x y.

’ I k
p 'x...x p K -

-» Y ( l )  x . . . x  Y ( l )  —*■ y(.k)

1 !
gT~x...xg. ’ p *•••* P - H - B O Wl 1 If, IV

Finally, it is clear that when we apply the Thom-Pontrjagin construction 

we get the embeddinqs stated in the Theorem.
□
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Chapter 2.- The Dyer-Lashof Operations

In this chapter we define Dyer Lashof operations in homology and in 

bordism and study their relationship.

§2.1) The Homology mod.2 of EG x Xn

In this section we give some results about H*(EG £ Xn; Z 2) that we 

shall need later. To make the notation simpler we shall denote the mod.2 

homology by H*(_).

2.1) Definition.- Let Gc 2̂  be a subgroup of the symmetric group of

degree n. Let EG be a contractible space on which G acts freely 

on the right. Let X be a space and define an action Xn x G -*• Xn on

the n-fold product of X by (x^,.. ,xn) ' =Cxa^  j.... xo(n))» then G

acts diagonally on EGX Xn and we denote by EG * Xn the quotient space. 

This construction is functorial, given a map

f : X Y, id x fn: EG* Xn EGx Yn , induces a map 

id x fn: EG x Xn -> EG x Yn .h <=» Q

Notice that as the action on EG is free then the action on EGxXn is 

also free and if X is Hausdorff the projection p:EGxXn -*• EG £Xn is 

a covering projection [44 3.

Let S*( ) denote the singular chain complex with Z 2 coefficients and 

Z 2 [G ] the group ring of G with coefficients in TL̂ . The action of

G on EG x xn induces a Z 2 [G 3-module structure on S*(EG*Xn); if

we give Z 2 the trivial G action we have:

2.2) Lemma [ 30 3: S*(EGxXn) is Z 2C G 3-free and we have a natural
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isomorphism S*(EGxXn) %■ S*(EG * X n) given by

(|> (ax 1)= p,,(a),
□

The actions of G on EG and Xn also induce ZpCGl-module structures 

on S*(EG) and S*(Xn). We define a Z 2[G>module structure on 

S*(EG) ®  S*(Xn) by (v*t)*a = r-c &fcr

2.3) Lemma.- We have a G-equivariant chain equivalence 

a : S*(EGxXn)-x S^(EG)® S*(Xn) with a homotopv inverse £ which is also 

G-equivariant. Furthermore the chain homotopies a°g-l, g0^  are 

also G-equivariant, and a and g are natural.

Proof.- By the Eilenberg-Zilber Theorem, we have a chain equivalence 

a of Zp-modules with homotopy inverse g . We will show that they are 

G-equivariant. For this recall that to define a you consider the 

category Tx T, where T is the category of spaces, and the functors 

F(X,Y)= S*(XxY) and G(X,Y)= S*(X)<8 S*(Y), and a: F -*• G and 

g : G F are natural, so in particular for aeG we have homeomorphisms

a : EG -»-EG and 5 : Xn Xn given bv a(e)=e-a and 5(b)=b-<7, so we 

have a morphism in TxT, (a ,a ):(EG,Xn) (EG,Xn) and hence a commutative 

diagram S*(EGxXn) S*(EG)®> S*(Xn)

(ax a ) ff
' 1

S*(EGxXn) —  
a

>'
S*(EG)® S*(Xn)

But the commutativity says precisely that a is G-equivariant. Similarly 

with g. Furthermore the theorem says that a°g and gca are chain 

homotopic to the identity in a natural way so we can repeat the argument 

above to show that the chain homotopies are also G-equivariant.
□



20

2.4) Corollary.* We have a natural chain equivalence:

S*(£ G x Xnl 2 % 2 2 * S*(EG)0 S*(X°) z ®  Z 2 .

2 2 □

2.5) Lemma.- S*(EG)® S*(Xn) <g> Z, and S*(EG) <g> S*(Xn) are
Z 2CG1 c 2 2CG1

naturally isomorphic.

Proof.- One can easily verify that a ®  b « 1 i-*- a® b is a natural
Z 2 G G

isomorphism.
□

Let us denote by S*(X)®n the tensor product S*(X)®.. .& S*(X),

n-times. We would like to put S*(X)g n instead of S*(Xn) in

S*(EG) <8 S*(Xn) but there is no equivariant chain equivalence 
Z 2CG]

between S*(X)S n and S*(Xn). (This would imply for n=2 that all 

Steenrod squares are zero), so we need a generalisation of the Theorem 

of acyclic models due to Dyer and Lashof.

2.6) Definition.- Let C be a category and G a finite group. We

say that C is a G-categary if for each geG we have a functor

g: C -> C such that i) e= id (where e is the zero of the group);

ii) g-j g2 = 9-|C §2 • ^  t) denotes the category of chain complexes and

F: C -y is a functor, we say that F is a G-functor if for each

qiG there is a natural transformation a : F -*• Fcg such that
’ 9
i) a = id. ii) a

glg2
= a„

Let W be a chain complex, we denote by its n-skeleton,

i.e., = / Wr if r $ n

0 tf r > n .
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If W and V are any Z 2 [$]-chain complexes, and K and L 

G-functors we make Wg>K and V®L into G-functors by having G 

act on both factors.

2.7) Theorem [16 Let K,L be G-functors, W and V ^[G ] -  

chain complexes and f: K -*• L a natural transformation. If W is 

G-free, if K is free and L is acyclic (for some set of models 

rrnc C) and if f is equivariant in dimension zero; then given any 

G-equivariant chain map t: W V.

a) There exists a natural G-equivariant chain map F: W & K ->• V ® L, 

satisfying:

1) F(W(n) ® K(X))c V (n)®L(X), all n.

2) F(w « a) = t(w) « f(a), weW, aeKg(X)

b) If t, t-j : W V are G-eauivariantly chain homotopic, and F, F-j 

are any two chain maps satisfying 1) and 2) above for t, t-j respect­

ively, then F and F-j are G-equivariantly chain homotopic.

c) We may further choose F so that given any zero dimensional G- 

generator eQ of W, F(eQ ® a)= t(eQ)® f(a), aeK(X).

□

2.8) Proposition.- We have a natural chain homotopy equivalence

S*(EG) ®  S*(Xn)^»B* ®  S*(X)® n , where B* is the normalized
Z 2[G] Z 2[G1

Bar resolution of over the group G.

Proof.- We apply theorem 2.7 to the following case. C the category 

Tn= T x...x T where T is the category of topological spaces. We can 

make C into a G-category by defining for c r e G c £ n , 5 : C C by



22 -

® (X1.... Xn)=(V - > (-,> v - , X r i(n)) and in the obvious way

in morphisms. The functors are KfX-|.... Xp)=S*0<i x.. .x Xp) and

L(X-|.... Xn)= ^*(X)® n. Both are G-functors because for each creG we

have natural transformations K -*■ K°cx and @ a : L ■* L°& given by

aCT. CX1.... Xn)= ho-# where ha (;X].... xp)=( x^., (1)... (n) ) and

CX-j.... ,Xn)(a-|G: .. .g> an)= aff-i(D® ...® aCT-i(n) ( as we are working 

over 2̂ there is no need to introduce the usual change of signs).

Both functors are clearly free and acyclic on the usual models

^1= i(2L....  /L )) . We take as f:S*(X,x...x X J h-s*(X)® n
^1 ^ n  q. >, 0 1 n

the chain equivalence given by the Eilenberg-Zilber theorem which in

dimension zero is G-equivariant because it sends xn) to

X-j® .. .«>xn.

Finally, as EG is contractible and has a free G-action S*(EG) is a 

free ZZ2[G] resolution of TL̂ . The Bar resolution B* is also a free 

resolution of H^ over G so we have a G-equivariant chain equivalence 

t: S*(EG) 5 b* [21 ] .

Then by 2.7) We have a natural G-equivariant chain equivalence

S*(EG)® S*(Xn) -+ B*® S*(X)® n which gives a natural chain equivalence

F: S*(EG) ®  S*(Xn) 3-, B* ®  S*(X)®n .
ZoCG] Z-[G]

□

2.9) Proposition.- B* ®  S*(X)& n is chain homotopy equivalent to
Z ^ G l

B* ®  H*CX)®n , where we consider H*CX)^n as a chain complex with 
Z 2 CG]

trivial boundary.
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and in the obvious way

in morphisms. The functors are KTX-j,... ,Xn )=S*(X.jX.. .x XR) and

have natural transformations â : K K"? and @ a :L ■+ L°c given by

over Z 2 there is no need to introduce the usual change of signs). 

Both functors are clearly free and acyclic on the usual models

the chain equivalence given by the Eilenberg-Zilber theorem which in 

dimension zero is G-equivariant because it sends (x)S... x n) to 

X -j ® • • • &  X ̂ .

Finally, as EG is contractible and has a free G-action S*(EG) is a 

free ZZ2[G] resolution of 7L2. The Bar resolution B* is also a free 

resolution of Z 2 over G so we have a G-equivariant chain equivalence 

t: S*(EG) 5 b* C21 ] .

Then by 2.7) We have a natural G-equivariant chain equivalence 

S*(EG)® S*(Xn) ■* B*g S*(X)® n which gives a natural chain equivalence

L(X-|.... XnJ= ^*(X)® n. Both are G-functors because for each oeG we

aa.. fX1.... ,Xn )= ha# where ha C*!. 

ĉr X̂1.... Xn )(a16.. . e a n)= a0"1n)

xn)= h°# where h a txl ......... 3<n)=(xcr. 1 n ) . . . , x 0--i(n) ) and

Xn)(a-j<s . . . 0  an)= ag-ip)®  . . ( as we are working

F: S*(EG) ®  S*(Xn) 3^, B. 
2 2CG]

'* ®  S*(X)®n
Z 2CG]

□

2.9) Proposition.- B.Proposition.- B* ®  S*(X)^ n
Z ^ G ]

is chain homotopy equivalent to

®  H*CX)®n , where we consider
z 2 cg ]

® nH*CX) as a chain complex with

trivial boundary.
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Proof,- Consider id: H*(S*(X),3) H*(H*(X),0), as we are working

over » there exists a chain equivalence a : S*(X) ■* H*(X) such 

that a*= id. Recall that B* is G-free, then the fact that

id is a chain equivalence follows from lemma 5.2 of (.45]

which says that if 2 chain maps fg,f.|: ^ "*■ N are chain homotopic and

W is a G-free chain complex then id®f®n, id -W® M®" —>W® N®n are
e, o ’ £, i $ $

chain homotopic.
□

2.10) Corollary.- There exists a natural isomorphism 

H*(EG x Xn) a H*(B* ®  H*(xf n) .
g z 2cg:

Proof.- by 2.2, 2.4, 2.5 and 2.8 we have

S*(EG x 
G
Xn)sS*(EGxX") Z^cG) Z2>~s*(EG)z« s*(Xn)2JCG]Z 2-

s S*(EG) ®  S*(Xn) B* ® S*(X)S n which are all natural. and
z 2cgi z 2cg:

by 2.9) B* ®  S* (X) ® " = B * ® H*(X)® n , in this case if we have
Z^G] G3

a map f: X -Y then S*(X). a >H*(X)

if*

S*(Y)
a

>H*(Y)

is

(f 

(t 

i s

chain homotopy commutative because the maps induced in homology 

*° a )*= f*° a *= f*= (a ° f* )* are the same [30 ] , hence

d ®  f* ) (td ® a ) ? (id ® f# ) ° (ic fj* Iso the isomorphism 
G G G £ *

natural.

Now we want to see that the isomorphism 2.10 is independent of the 

choice of EG.
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2.11) Proposition.- Let E'G be a contractible space with a free

G-action and <f>: EG E'G a G-equivariant map. Let

<p x id ;EG x xn -► E'G x Xn be the induced map, then the following 
G G G

diagram commutes: H*(EG x Xn) — Z-^H*CB* ®  n)
G Z 2[G]

(d»:id)*
G

H*(E'G x Xn) 
G

Proof.- Consider the following diagram:

S*(EGxXn)sS*(EGxXn)sZ =S*(EG)«S*(Xn)«ZZ2*S*(EG)® S*(Xn)=B*«5*(X)' 
G G G G G

®  n

(4>xid) (<j)xi d) 8i d 6 gidsid 
* G

. 8id id

S*(E'GxXn)-S*(E'GxXn)«£ Z ?=S*(E-G)«S*(Xn) ^ sS*(E'G)«S*(Xn)=B*»S*(X) 
G G G c G G

«n

The first 3 squares are clearly commutative (the second one by naturality 

of the Eilenberg Zilber Theorem). We will show that the fourth one is 

chain homotooy commutative. For this we shall apply 2.7) part b). 

t
We have S*(EG)----*■ B* , as the 3 chain

<i>

S*(E

Complexes are resolutions of over G, we have chain equivalences 

t and t* . If we consider t and t' ° <J># , then both commute with the 

augmentation and both lift id: Z2 Z,, hence t'°<t>#- t.
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Now we apply 2.7) as we did before to get chain equivalences

F: S*(£G® S*(Xn)=B.®S*(X)®n associated with t and 
G G

F': S*(E'G)aS*(Xn)^B ®S*(X)® n associated with t'. So now consider 
G G

F'°<i> Sid. As <(>,. sid preserves the filtration then so does F,0<t> <sid 
G G * G

and F'°<^sid(ws a)= F ‘(<f> (w)& a)= t*$ (w)® f(a), for all weS*(EG) t

aeS (Xn). Hence F,0(<t> sid) satisfies i )and ii) of 2.7) with respectu G

to t'° <t> , but we saw that t'°<j> = t so by 2.7. b) F'°(tp sid)= F.

§2.2 Dyer-Lashof operations in homology

LetS be an E^.-operad and X a ¿’-space C34l. We can then define

natural homomorphisms Q.: Hn(X; ■* H2n+.(X; Z^) for all i,n £ 0

called Dyer-Lashof operations as follows. As X is a ¡¿-space we have 
. V. Or

structure maps & (r) x X -*■ X, where the spaces <f(r) are contract­
or

ible with a free j^-action. We are interested in the case r=2.

By 2.10) We have a natural isomorphism

H*(£(2)„xX2; 2,) = H*(B* ®  H*(X)®2) where B* is the normalized
22 2 ZZ2CI2]

Bar resolution for over so B„ is a free - module2 2 n 2 2
in one generator en> If we denote E2= {1,T} then 3(en) = (l+T)en_-j, 

with this notation we have:

2.12) Proposition Let ia.,} be an ordered basis for
J jeJ

H*(X; Z 0) then a Z„-basis for H*(B* ®  H^CX)® 2) is given by the
* d n i z£

following elements
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f e,, ® a4 ® a4 
r  j j

r

e0 |  aj ®  aR , J

2.13) Lemma.- We have a homomorphism 

- H?n+ifB* ® H*CX]®2) given by

0 jej 

< k

□

h1: Hn(X; ZZ2) * 

h. (a)= e.® a ®  a .
h

Proof.- h.(a+b)=e.®> (a+b)®(a+b)=e.® asa+e.® b®b+e.®> (a® b+b® a) ,
h  h  \  \

but 3Ce-+-| ® a® b) = (l+T)ei-+  ̂ ® a® b=e.® (asb+b®a), hence 

h.(a+b)= h^(a)+h^(b).

2.14) Definition.- Let g" be an E^-operad and X a ¿"-space, then

with the notation as above, we define homomorphisms : Hn(X; TL̂ )

H2n+i (X ’ ^2) by comPos1'ti°n Hn(X)

e.

hi
H2n+i(B*

"2 [ x2p
H*(X)®2 )-

H2n+i (¿’(2)r  x2)l2
■ '2* H2n+i (X).

2.15) Theorem Cn.ifc.lilrLet Qs: Hn(X; Z 2) -*Hn+s(X;Z2) be defined by 

Qs= Qs_n » where Q$_n is as in 2.14, then the operations Qs 

satisfy:

i) The Qs are natural with respect to maps of ¿"-spaces.

ii) Qs (X)=0 if deg x > s.

iii) QS (X)= x2 if deg x=s.

iv) Cartan formula: Qs(x y)= E Q1(x) Q^(y).
i+j=s

v) Qsa = a Qs, where a: Hn(fi X) -*• H +i(X) is the homology suspension.
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vi) Adem relations: if r>2s then QrQS=Z/^ s ^ W r+S 1
i \2i -r /

vii) Nishida. relations: Let Sr be the dual of the Steenrod square

2.16) Note.- If X is an infinite loop space, i.e., if we have spaces 

Y such that X sf2rY , r^ 1 : then X is a £? -space, where g  is 

the cubes operad which is an E^-operad. The structure maps are defined 

as follows [34 3:

These actions are compatible for different r giving an action of 

êa> = lim €r . So if X is an infinite loop space we have Dyer-Lashof

operations Qs: Hn(X; Z 2) -*■ Hn+s(X; TL̂ ) for all n,s > 0.

§2.3) Dyer-Lashof operations in Bordism

In this section we shall define Dyer-Lashof operations in the bordism 

of a cf^-space , the cubes operad). For this we begin by defining 

functions q": ws(X) -+ N2s+r(sn^  Xx X).

2.17) Definition.- Let (M,f) be a pair where f:M -> X is a map from 

a closed smooth s-manifold to a space X, define the map yJ)(M,f) by

q*
Si thenq

D

0n : i?r(n)x (nr Yr)n - nrYr is given by

6n C(c-|.....cn )»(«i..... an)): (Ir,3lr) (Yr, *) is the map sending any
-1x elm c. to a. (c. (x)) and any point outside u Im c,. to * . 

1 1 1 i=l 1

r

Sn x X2 , where v • Sr Sn is the inclusion,
z2

r < n<oo .
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On disjoint unions \p JJ satisfies the following; ^ ( M u N ,  fug)
n O

.___ _ _____ r* Sn * X which can be written as:
2̂ l^ c fu g  )2 e2

= Sr_x (MaN)2

(Sr * M2, irx f2)iL(SrTx M 2,irx g2]u(SrxHxN, $) where

p°ixfxg , p the projection of the double covering.

2.18) Lemma.- Suppose (M,f) is bordant to (N,g) then (SrxMxN,(J> )

bords in Sn * x2 .
z

Proof.- As (M,f)~. (M,g) then we have a manifold V and a map

F: V -+■ X such that aVsMuN and F |M= f, F[N=g. Consider

M x VjiV x M, then 3(MxV)= MxMa MxN and 3(VxM)=MxMu NxM, taking

id: MxM -*■ MxM we can glue MxV to VxM [9] to form the manifold

MxV . u  VxM, whose boundary is MxNaNxM, we have an action of ^  
°MxM

on this manifold coming from the action on MxVaVxM given by

T(x,?)=(*,*).

We also have a map M W a  VxM p ^ - XxX, as F |M=f this map passes

to the quotient to give a Z^-cqtiivariamt map

MxV id kj VxM 
M xM fxF. XJ Fxf 

ldM>iM
•XxX. So we can define

Sr? (MxV. ,u VxM)-- 77Ze-----V ld«,M

We clearly have 3(Srx CMxV ^  u
‘MxM

-» Sn* XxX. 

VxM))sSrxMxN cLnd as F |N= g we have

a commutative diagram:
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On disjoint unions y JJ satisfies the following; \f£(Mu.N, fug) =

* Sn * X2 which can be written as:

<)> = p°txfxg , p the projection of the double covering.

2.18) Lemma.- Suppose (M,f) is bordant to (N,g) then (SrxMxN,<(> ) 

bords in Sn * X2 .

Proof.- As (M,f)~> (N,g) then we have a manifold V and a map 

F: V -* X such that 3VsMuN and F |M= f, F|N=g. Consider 

Mx Vii Vx M, then 3(MxV)= MxM jl MxN and 3(VxM)=MxMu NxM, taking 

id: MxM -*• MxM we can glue MxV to VxM [9] to form the manifold 

MxV . . u  VxM, whose boundary is MxNji NxM, we have an action of

on this manifold coming from the action on MxVn.VxM given by 

T(x,?)=(z,x).

We also have a map M*Vii VxM XxX, as F |M=f this map passes

to the quotient to give a Sg-equivariant map

We clearly have 3(Srx (MxV . . u  VxM))sSrxM*N a.nd as F |N= g we have

2

So we can define

♦ Sn* XxX. 
e.

a commutative diagram:
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Sr x (MxV -jU  Y*M)
lcVuM

T X (fxF . . u  Fxf)
--- iiiii--- + sn* x><x

h

t
Sr x (MxNiiNxM)

u
SrxMxN $ =T.x Cfxg)i»C9xf)

2.19) Remark.- Notice that if r< n, then (SrxMxN, ) bords in Snx X2
z2

even without the asumption (M,f)~(N,g). We only have to consider an

2.20) Proposition.- If (M,f) bords in X then ^n(M,f) bords in

Sni XxX.
h2

Proof.- As (M,f) bords in X we have a manifold V and a map 

F: V -*• X such that 3V s M and F |M= f.

Let and be the upper and lower hemispheres of S r respectively.

We denote i+= i|D^ and t_ = i|D^ .

By straightening the corners [ 9 1 we can define manifolds with boundary 

and maps: D^xMxV  ̂xfx|r>Sn»X*X ; S1"'1 xV*VtxpxF>SnxXxX 3 D^xVxt^  xFx^SnxXxX.

We have a Zg-action on the union of these manifolds given by 

T(t,x,y) = (-t,y,x) sending D^x MxV to D^xVxM and T(t,y-|,y2)=

= C“t.y2,y..) sending S xVxV to itself^the maps are clearly equivariant.

extension \ : Sr =— — >■ Sn and then SrxMxN
1 P'-(lXfxQ) Sn X  XxX

Lo

commutes.
□

The boundaries are as follows:
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3(D%MxV)=Sr " 1xMxV D*fx MxM ; 3( S r'1 x V * V  ) =
+ Sr"i MxM +

= u  S T'xVxK  ; 3fDrxVxM)=Sr ' 1xVxM n o ' DrxM*M.
Sr ]xMxM '

Now Sr_1xHxVc 3 (D̂  xMxV) and Sr_1xMxVc 3(Sr_1xVxV), a c o l la r  o f 

Sr x̂M in  xM gives a c o lla r  fo r Sr ~̂ x MxV in D^x MxV and a 

c o lla r  o f Sr-1x M in  Sr_ x̂ V gives a c o lla r  fo r Sr " 'x  MxV in  

Sr_^xVxV; the same applies fo r Sr_ x̂ VxMc 3 (Sr - ^xVxV) and 

Sr ] x VxMc3(D^ xVxM). Hence we can form the smooth manifold:

D*fx MxV „ , o  sr-1 x VxV _ , o '  Dr xVxM, whose boundary is  
+ Sr_1xMxV Sr  x VxM "

xMxM o  Dr xMxM s Sr x MxM. This manifold has a free  I , -a c t io n  
Sr ” x M*M " c

coming from the one we gave above and we have a E 2 _equ ivarian t map to

Sn x XxX from the maps defined before. Passing to the quotien t we get

a manifold with boundary Sr * MxM and a map to Sn 2 XxX extending

ly*  f><f .
2 □

2.21) D e fin it io n .-  We define q" : WS(X) •+• ^ s + r^ E  XxX)> r  s n s «> .

by qn[ M ,f]  n(M,f) ] =[ Sr x M2 , i x f ^ ]  . These operations were 
r r *2 

defined, when X is  a closed manifold, in [51]  .

2.22) P ropos it ion .- q" is  well defined and is  natural.

P roo f.- [M ,f] = [N,g] <=>CM,f)~ (N,g)<=>(Mu N, f i ig )  bords in X,

by 2.20 y^CMuN , f i ig )  bords in  Sn* XxX. But v "(Mji N, fn. g) =

= V^(M,f ) i i^ ( iv }cj)ii(Sr x Mx N 4>) and by 2.18) (Sr x MxN,c}>) bords in

Sn £ XxX. Hence i/'?(M»f)/x'Yr(N»g). The na tu ra lity  is  c le a r.
2 □
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2.23) Proposition.- If r< n f q" is a homomorphism.

Proof.- qj ([ M,f3 + [N,gD)sqJ [M*N, fj.gl = Cf"(MuN, f^g}3 =

(NjS)-»!-(Srx M* N,<p) ] . As r< n then, by 2.19,

(S’xMxN.è) bords in Sn* X2, hence q" is a homomorphism.
1*2 r

□

2.24) Definition.- Let X be a é^-space then we define operations 

Qr: Wn(X) N2n+r(X) as follows: €J2.) is ^-equivar-iaintly homotopy 

equivalent to S°° [=,4], so vie have a homotopy equivalence

S“ x XxX = (2)2 XxX. Q is the composition:
¿*2 00 ¿*2 ^

^  CO

Vn(X) W2n+r(S“ ^  X x X ) ^ W 2n+r(^( 2)-2 XxX) W2n+r(X).

We can use upper indices as we did with the operations in homology, we 

define Qr: Wn(X) - Nn+r(X) by Qr = Qr_n .

2.25) Theorem [2,3 91.* Let X be a é^-space then the operations 

Qr: Nn(X) - Nn+r(X) satisfy:

i) They are natural with respect to maps of é^-spaces.

ii) Qr(X)=0 if deg x > r.

iii) Qr(X)=x2 if deg x=r .
~ 2^ ~ ~

iv) Cartan formula: Q (x-y)= z ( Z ( n Pm )) Qn-(x) Q,(y)
r 0<i+jsn mk k mk 1 J

where Z m. 2 = n-(i+j)
k i O  K

v) Qr a = o ^ r where a: Wn(fl X) - Nn+-|(X)

vi) Adem relations: Let a e w (X) then in N4n+Z(s°°x (S"x XxX)2),
Z2 2-2.

there are relations modulo decomposable classes of the form:
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OO OQ P A k-1 -1 w
Sr S5(a)= . ^ t - k - Z i ) ^j+i V t - i i a) for each r,s such that 2s+r=z

and j,t are respectively the smallest and largest integers s=0 such 

that 3j + 2t= z and k is determined by r= j+2k, s=j+t-k and if 

t= 3p+q, q=0,l,2 then p< ks t.

□

§2.4) Relation between the operations in bordism and in homology

To give this relation we study first H*(Sn_xXxX; Z,), for this we
l2 *■

only need 2 new propositions.

2.26) Proposition.- Let be the n-skeleton of the Bar resolution

for Zg over Z^, then we have a natural chain equivalence 

B*n z^rz i s*0<)®2 “ s*(sn) I ®  S*(X2).
^ 2 U 2J Zz ^ l ]

Proof.- We define a ẑ -eqijivair-iant chain map trB^U-S^S11) as follows: 

as B^n ) is E2-free witfl generator eg, we define t0(eQ)= xQ, XgeS11.

As H. (Sn)= / Z 2 it i=n we can define t-|,...,t -j, and tn by

l 0 otherwise

sending 1 en+ Ten to the generator of Hn(Sn). We put t.= 0 if
(n), -> (Sn) is ani> n. Then t is a chain map such that H.(B^ 

isomorphism for all i. As both complexes are I2~free then t is a 

chain equivalence. Applying 2.7 as we did in 2.8 we get the natural 

chain equivalence B ^  Z^[£21S*^X^  2 ~ s*CSn) z ® [Z^ S* ^ 2) •

2.27) Proposition.- We have a chain homotopy commutative diagram
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B*n) z ®  , S*(X)® 2 - ^  S*(Sn) ®  S*(X2) 
2 CZ2 n Z 2 CZ,]

t-® id ' « I 1id

B* ®  S*(X)
Z 2 C%]

®  2
S*(s“ ) &  S*(X2)

where i: Sn ^ S tt , and the equivalences are the ones from 2.26 and

2.8.
Proof.- We want to apply 2.7 b). For this consider

BIn) — ^ S * ( S n)

S*(S )

t was constructed in 2.26 and t in 2.8. Consider i ®  t and

t*i : B ^  -*-S*(S°°), both compositions clearly lift id: Z

B*n  ̂ is I^-free and S*(S°°) is a resolution of then [ 301 

i*c t= t°\. Mow apply 2.7 to the case W= B^n), K(X)=S*(X)® 2 

V= S*(S°°), L= S*(X2). We have chain maps:

B[n><s S*(X)®2-i-S*(Sn)®S*(X2)i- ^ i U  S*(S”)gS*(X2)

2

-*• Z 0, as

i® id > B*® S*(X)'

Wotice that by construction G is natural and satisfies 2.7) i), ii)

with respect to t, as i^&id clearly preserves the filtration so does

i id ° G; and if w eB^n), aeS0(X)® 2 then i id ° G(w® a)=

=i.̂ » id(tCa)® f(a))=i # t(a)®f(a), where f: S*(X)® 2_2>S*(X2), so

i#® i d t G satisfies i), ii) with respect to i #° t. Similarly

fî ais id satisfies t,ii) with respect to t"x. Hence by 2.7 b)

O'# « id) c G- H (\ <3 id).
Z2 Z2 □
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2.28) Lemma,-

H*(Sn x XxX)s 
*2

We have a natural isomorphism

H*(BÌn) ®  H*(X)®2).
^ Ì Z 21

Proof.- The same as 2.10, except that instead of using 2.8, we use 2.26.
□

2.29)0efinition.- Define natural functions q":Hs(X)-*-H2s+r(Sn x XxX) ,0sr<n<°> 

by the composition: H$(X) J)r,H2s+r(B^n'| H*(X)®2).=,H2s+r(Snx XxX) where 

h£(a)= er®a®a. When r <n, then the hn are homomorphisms, as in 2.13,

and hence the q” are also homomorphisms.

2.30) Proposition.- Let i Sn_* S 30 be the

commutative diagram
qrH (XI r ,

oo \
(i x id) 
z 2

qr
H2s+r(S\  X>*>

Proof.- The definition of qr and qr gives the following diagram

H S ( X ) 2> H2s*r<sn £,*■*>

(1 l id)*
2

.x 2

(if id)*

H2s+r(B* | H*(X) ) s'* H2s+r(S ? XxX)

The triangle is clearly commutative, one can easily check that the 

equivalences used in the definition of the isomorphisms commute, the 

only one that is not immediate follows from 2.27 .

0
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2.31) Proposition.- Suppose M is a connected manifold of dimension 

m with fundamental class o(M), then a (SnxMxM)= qn(a(M)).

Proof.- Consider q11: H (M) ^n in'- ' ^2m+n^S I MXM ). As M is connected then

Sng MxH is also connected so that ^2m+nCSn z M*^) s ^2" Consider

the inclusion ixid: Sn *y MxM^-s”0 * MxM .
Z2 ¿2 l2

By 2.30) (i xjd)* q"= q” hence (i x^id)*0 q^iM))» qn(a(M))/ 0

because by 2.12 it belongs basis for the homology of S°°y MxM, hence

q"CCT(M))>iO so q"(ofM))= o(Sn x MxM).
22 □

2.32) Proposition.- WSCX)

HS(X)

W2s+r(S Z2 XxX)

I "
H2s+r<S 22 XxX^

commutes.

Proof.- Notice that the elements [M,f] e X'S(X) with M connected 

generate, so we can assume M is connected. We have that

q“ CM,f] = [Sr* M>i1, i * fxf 1, and we have a commutative diagram
r ¿2 ¿<2

1 xf X f
Srx M x M  --- *2---, s ”  X  xxX

l 2 l 2

then p q” CM,f] =p [ Sr* MxM, i * fxf ] = r i2 ¿ 2

= Ci* fxf)* q(Srx MxM) 
l 2 l 2
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Chapter 3 Generators for the Bordism of immersions 

§3.1) Bordism of immersions

All manifolds are compact and smooth, A smooth map f: M -► N is an 

immersion if at each point x e M the differential dfx: Tx M T ^ ^ N  

has rank=dimension of M on the tangent space Tx M of M at x.

3.1) Definition.- Given two immersions f: M N, f': M" -*-N', where 

M, MJ N, N' are closed and dim M= dim M'= n, dim M= dim N’= n+k, we 

say that they are Bordant if there exists an immersion F: V + W  such 

that i) dim V= n+1, and there is a diffeomorphism

dim W= n+k+1 and there is a diffeomorphism BWsNiiN'. ii) the following 

diagrams commute: BVcV H'm - M jlM's 9Vc  V

f F f' F

N ^ N jiN's 3 W c H  N ' ^ N u N '  s B W c W

It is convenient to assume that every bordism F: V -*■ W satisfies that 

F is transverse to 3W, and this can always be achieved by modifying F 

by a small homotopy. Under this assumption, the proof of the transiti­

vity of the relation reduces to attaching the two bordisms along the 

common immersion. Consequently it is easy to see that bordism of immer­

sions is an equivalence relation.

3.2) Definition.- We denote by I(n,k) the set of equivalence classes, 

modulo bordism, of all immersions of closed manifolds f: M -+ N where 

dim M=n, dim N= n+k, k, m >D. The equivalence class of f: M ■+ N is 

denoted by [f: M N] .

3.3) Proposition.- [401 I(*,k) is an W*- algebra with the following

products:
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a) [ f: M -* N] +[ f’: M'-» N* J =C f ^ f :  MuM' ]

b) [ M * ] * [ f: M -► N 3 = [ i d x f: M' x M -*M' x N]

c) [ f: M - N] • [ f 1: M' -+N' ] = [ f x idoi idxf1: M xN'ji. NxM' —*NxN' ]

3.4) Definition.- Given two immersions fg,f.j: M -*■ N we say that they 

are regularly homotopic if there exists a homotopy H: Mx I ->N such 

that i) for each te I, H(x,t) is an immersion, H(x,0)=fg(x),

H(x,l)= f-j(x). ii) The differentials d H(x,t): TM-c TN form a homotopy. 

H is called a regular homotopy.

3.5) Proposition.- If two immersions fQ , f,: M ■+• N are regularly 

homotopic then they are bordant.

Proof.- Let H be a regular homotopy between fg and f-j, then we 

can approximate H by a regular homotopy H1, between fg and f-|, 

such that H' is smooth [371 , then the map F: Mxl -*■ Nxl given by

F(x,t)=(H‘(x,t),t) is an immersion and it is a bordism between fg 

and f-j.

3.6) Definition.- We define ct̂ : I(n,k) — * Wn+k(Q M0k) as follows: 

Let [ f: M -► N] c I(n,k), we can find an embedding fg: M Nx]Rr , 

(taking r> n-k+1) such that fQ is regularly homotopic to

□

■f p
M — xIR , as regular homotopy preserves normal bundles we have

and let e: D(\y © e1")“1-* N x ]Rrc-* (N xIR)* = Sr(N+ ), we can now define 

a map t^: Sr(N+) SrT( v^) = T( ®  cr) by

if y e e(D( vf ®  er))

if y £ Sr(N+ )- e(D(vf ® e r])
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where q : D C \ ^ ® e r )-* D( vp© e r)/S( v f ©  er) is the identification

that induces a map of Thom spaces TCv.p) -*-M0k » so we can take the

we get N c N+ s2rSrM0^ c Tim i2rSrM0^=Q M0k*, then

c^[ f: M N ] £ Wn+k(QM0k) 1S the class of this map.

We can also define 5̂ : W p+k(Q M0k) I(n,k) as follows: given 

N —  -»QMOk then as N is compact, cp factors through i2rSrM0k for

if k > 0 we can apply Hirsch's theorem [22] and obtain an immersion 

<p i: M N regularly homotopic to 4>q . We define [N,<f]= [<j> •,M-»N] 

With these definitions we have:

3.7) Theorem [40lr ak: I(*, k) -*■ N*(Q M0k), k >0, is an isomorphism 

of ,V*-algebras, with inverse crk.
D

In the case of codimension k=0 we can obtain the following result.

3.8) Proposition.- We have an isomorphism of W*-algebras

M.( ]i B I )_i.,I(*,0), where the H-space structure on li B I
- n r V -,n

p -J-
map, S ( _) is the r-th suspension and X — X u { + } .

We have a pull-back

I i{
M ---- » B0(k)

composition: Sr(N+)— — > Sr(T vf) -S. SrM0k , and taking the adjoint

some r so we have the adjoint 4> : Sr(N+ ) -*■ SrM0k> We can then find 

a map homotopic to adj.cf such that it is differentiable on 

Nx IRr— »D(y(k) © er) and transverse to the zero section, taking the 

inverse image of the zero section gives an embedding cp Q: M IRr

whose normal bundle has the form ^  ffi er, for some bundle E. . Then

riO
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3.9) Definition.- In chapter 2 we defined Dyer-Lashof operations

V  HnCX)-* H2n+i(X) and HnCX> - » n + j W  such that Qj-n • 
for any ¿^-space X. Given a sequence I = (i-].... i'r) we say that

it is monotone if 0< i] s i^i ...< ir , ri 0, and we consider the 

iterated product QT= Q- Q ...... Q.
1 H  12 V

Given a sequence J= (j-j.... j ) we define its excess

e(J) = j-|_ Jg---” J'r and we call J admissible if < 2j^+-| for

J J-i Jp Jr
Is t< r, and we take the iterated product Q = Q Q ... Q 

We have similar definitions for the operations : Nn(X)-* W2n+1-(X) 

and QJ: Nn(X)- Wn+j(X) where QJ'= Qj_n .

For any pointed space X, QX= Ijm firSrX is an infinite loop space,
2 rwith deloopings Q(SX), 0(S X),.... Hence it is a ^-space (2.16)

and we have Dyer-Lashof operations defined on H*(Q X) and on N*(QX).

3.10) Lemma.- For any spectrum E, x*: E*(X) ■* E*(0X) is a split 

monomorphism.

Proof.- Following [16] for any spectrum F we define a spectrum

QF by (QF) = Sn i2nF„ with structure maps S Sn finF Sn+1ftn+1F' n n r n n+1

given by Sn+  ̂ finen where en:lV n F n+r In particular we have

QS“ X and clearly E*(QX)= E*(QS“ X); xR: X -*• nnSnX induces a map of

spectra x : S°° X ->■ QS*” X given by vn= Snxn and we have an evaluation

map vn: SnfinSnX SnX which also induces a map of spectra

v: Q(S°° X) -*■ S°°X, as vn° Snxn= id then vo:i = id.

§3.2) Calculation of N*(QX)

□
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3.9) Definition.- In chapter 2 we defined Dyer-Lashof operations 

Qi: HnCX)+ H2n+i(X) and Qj: Hn(X) - H n+jCX) such that QJ'= Qj-n , 

for any ^-space X. Given a sequence I=(i,,...,ir) we say that

§3.2) Calculation of N*(QX)

it is monotone if 0< i1 s 1'< .. .< i , r> 0, and we consider the

iterated product Q r  Qt Qi •••i 1-, i2 ..Q, •
r

Given a sequence (ji»... ,jp) we define its excess

®(^)- J i" J2™ • ■ ■ - j and we call J admissible if jt < 2ĵ .+1 for

1 J1 J p J „
Is t< r, and we take the iterated product Q = Q Q ... Q .

We have similar definitions for the ooerations Q.: N (X)+ N„ .(X). l n' ' 2n+i' '
and QJ: Nn(X)- Wn+j(X) where Qj= Qj_n .

For any pointed space X, QX= ljm firSrX is an infinite loop space,
2 rwith deloopings Q(SX), 0(S X)..... Hence it is a ^-space (2.16)

and we have Dyer-Lashof operations defined on H*(Q X) and on N*(QX).

3.10) Lemma.- For any spectrum E, t*: E*(X) -*■ E*(QX) is a split 

monomorphism.

Proof.- Following [16] for any spectrum F we define a spectrum 

QF by (QF)n= Sn finFn with structure maps S Sn finFn -*■ Sn+ îln+1 Fn+^

aiven by Sn+  ̂ ilnen where en: Fn"*" U Fn+T In particular we have 

QS°° X and clearly E*(QX)s E*(QS“ X); \n: X -*■ finSnX induces a map of 

spectra i : S°° X -+■ QS“ X given by vn= Snvn and we have an evaluation 

map vp: SnfinSnX SnX which also induces a map of spectra 

v: Q(S” X) -*■ S°°X, as vn° Snin= id then = id.

□
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3.111 Theorem Cil 3Cie.DC 1 3 3 Let X be a connected space and let

^*ci^aeA be 3 2 2_baS1S f0r ^*(X) c N*(QX) then we bave an 

isomorphism of 2,,-algebras

H*(QX) s 2 2 [Qj (xa ) I lis monotone, aeA]

= Z 2 [QJCxq) ! Jis admissible and e(J)>dim x^.aeA}

□

3.12) Theorem.- Let X be a connected space and let (y } be a
r a a e A

W*-basis for N*(X) c W*(QX), then we have an isomorphism of N*-algebras 

w*(QX)s W*EQj(ya) II is monotone , a e A ]

= w* QJ (ya)l J is admissible and e(J)>dim yQ,aeA]

Proof.- Consider a monomial Qj ) Qj ) ,...,Qj )
r  ̂ r m m

each I monotone, then p(QT (y ) 1Q'T (y ) 2...Q, (y )rm ) 
s M  5,1 l2 “2 m °m

by 1.5

|A p p

= Qt (v(y- )) 1 Qt (p(y„ )) 2... Q, (v(y„ )) m by 2.33

As {y } is an a/.-basis for A/*(X), then by 1.9, the elements 

{y(ya)>a€:A are a Z^-basis for H*(X) and hence by 3.11

p(Q! Cy ) 1 Qj (y )r2... Qj (y* i S  is a TL -basis for H*£QX),
1 2 m m

~ rl ~ r2 rmso by 1.9 , the monomials QT (yai) Q. (ya ) ...qT (y ) m are
1 2 ‘m m

an N*-basis for W*(QX).

□
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3.13) Definition.- We define operations Qr: I(n,k) -*• I(2n+k+r,k), k > 0, 

by the commutativity of the following diagram:

Qr
I(n,k)-------*- I(2n+k+r, k)

■I I-
W «  H0k> V  ^ ( W k)«-W *k>

A

The purpose of this section is to give a description of Qr. In order 

to do this v/e need to Drove some results.

3.14) Proposition.- Let f: M -*■ N be an immersion and p: N -*• N a 

covering space, consider the maos associated to f and p by the 

Thom-Pontrjagin construction t̂-: S°°(N+) s'̂ Tv.p) and

tp: S°°(N+) -+ S“(N+). Then the following diagram is homotopy commutative

S°°(N+) — S°°(Tvf)

tpX\  tf
S°°( N+)

§3.3) Geometric interpretation of the operations Qr:N*(QM°|<)-’’N*(QM0|<)

Proof.- With r large enough we can find embeddings 4> , n such that

11 ---* N M ---p— >• N commute.

As the normal bundle of II is trivial, we can find an embedding 

N x IR^c— N x P r whose restriction to the zero section is IT.
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We have s ©  er , so take a tubular neighbourhood

©  er c— *• N x IRr; and for p°f consider the composition
&

vf ©  e " N  x P r Y n xlRr. Then we have tp: Sr(N+) - Sr(N+)

3.15) Definition.- Let S be the category of C.W.-spectra and C the 

category of pointed C.W.-complexes we denote by K°°: S -*■ C the functor 

that associates to each spectrum the zeroth space of the associated 

fi-spectrum [H.

3.16) Remark.- The functors and S°°;C-*s. induce functors in the

homotopy categories, which we denote with the same symbols. These 

induced functors are adjoint [ i ] . This means that for each pair

Xe C , Ee S , we have bijection adj.: [S°°X ,El-»[x,fi” E] which is 

natural in X and E. The naturality in E implies that 

-adj. (g ° f)= n° g°adj.f , and the naturality in X implies that 

adj. (f° S°°h)= adj.f ° h. [51].

' <p n

given by tp(y,v)= h_1(y,v) if (y,v;6 imh and tf:Sr(N+)^Sr(Tvf)

* otherwise

given by On the other hand
tp0f: Sr(N+)-> Sr(T Vf)

' * otherwise

is given by t 0f(y,v)=| (h‘ <f)_1 (y.v) if (y,v)e im(hc )

* otherwise

So then if (y,v)e im (h°$>) we have tD<>f (y ,v) = (hc4>)-1 (y,v)=

= 4,_1 h 1 (y,v)= tfc tp(y,v). and if (y,v)t im (h'<f) then 

tp0f(y,v)= * and if (y,v)e im h then tf(tp(y,v))=* or if

(y.v) 4 im h then tf t (y,v)= * .
□
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3,17) Proposition.- Let f: M -*• N be an immersion and V a manifold 

and consider the immersion idxf: VxM-*VxN. If the Thom-Pontrjagin map

of f is given by Ss(N+ )— l ss(TVf) - ^ - S s(MOk) then the Thom- 

Pontrjagin map of idxf is given by

V+a Ss (N+ )~— - ^ V +ASs( r ^ ) - 5 s s(TVv:)-5!i-i.Ss(M0k) where n is the 

projection on the second factor.

Proof.- Consider an embedding M N xlR such that _ Nx IR commutes, 
f

Take the embedding VxM c- VxN*lRs, then if e:v^-> Nx IRS is a

tubular neighbourhood of M in Nx IRS, Vxvi c— >-VxNx]Rs is a tubular
T lxe

neighbourhood of VxM in VxNxRs, therefore we get a map 

(VXNX IRS)*---x T(Vxvf)

II! Ill
V+A N+a SS ---*■ V+ a T(vf)

III HI
V+a SS(N+)----- ► V+a SSTv ,

id a tf

and we have a pull-back V*v, y(k)
4 4 4

VxM -*• M + BO (k)

where the first square is induced by the projection on the second factor.
□

We now recall the definition of the Kahn-Priddy transfer for coverings

m c z f  ].

3.18) Definition.- Let p: X ■+• Y be an n-covering (X,Y C.W. complexes) 

we want to define a transfer map S°°(Y+) S°°(X+) for this we define the

principal £n-bundle associated to p as follows:



consider X= {(x-j,..., x^} Xn [ x^ i x̂  if i^j and p(x-j )=,. ,=p(xn)} , 

then we have a free ^-action on X by permuting the coordinates.

As the spaces €  Jinl are Zn~free and contractible they classify principal 

£ -bundles so we have a pull-back X x >6 fn)

I I
X/In- . ^ C n ) / 2 n

We define a map <p: Y a X/In-»-^(n) * Xn by
An

<KX]....xp)= [X(x .... x ), (x^,... ,xn) ] and we call the unique map

extending <j>, T: Y+— ’•¿’co(n) £ (X+)n the pretransfer.
n

Consider the inclusion X+ Q(X+), and recall that as Q(X+ ) is an

infinite loop space we have structure maps 6 ^ ( n ) *  Q(X+ )-»Q(X+ ), we call
00 Ln

the following composition or its adjoint the transfer.

Y+ -1 * £ > )  ? (X+)n---* (ijn)* (Q X+)P — ^-*-Q(x+)

L n

Notice that as X is defined up to equivariant homotopy, T is defined 

up to homotopy.

3.19) Proposition.- Let p: N —i-N be an n-covering, where N,N are 

closed smooth manifolds, then the Thom-Pontrjagin map associated to p, 

adj t : N -*-Q(N+ ) and the transfer for p , T(p): IM-+Q(N+ ) are homotopic.

Proof.- Let e: N<̂ -<-Nxlr be an embedding, where Ir is the interior 

of the r-cube, r large enough, such that the following commutes
o p

N x Ir

N ---- ► N
P

— as the normal bundle of e is trivial we can find an embedding
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e: NxIr c_»NxIr such that the following diagram commutes

p°proj

Observe that we can embed N c >N*Ir by e(x)=(x,c), where c is the 

center of !r, such that e ° e  = e so that e is a neighbourhood of N 

in N*Ir .

Now we can apply the Thom-Pontrjagin construction to get a map
r -i-
S (N ) — c-» S (N ) . We want to compare this map with the transfer for

the cover N — ->• N, so to define T: N+ =;(N/z S (n)x (N+)n we P n 1 oo' 1
need a pull-back N -- &  (n)

_ I I
N/Zn=N---, t? (n)/Tn oo' " n

Define A as follows: recall that xeN is given by x=(x-|,... ,xn) 

such that p(x-j ) = .. .=p(xn) then each xi gives (x^}xlrc_? k, {y}xfr ,

we define A: N - (n)c* <£(n) by A(x].... xp) = (e 11, e |2.... e|n)

we are going to see that adj. tp= T(p).For this take y«N, then 

adj . tp(y) [t]= tp( t ,y)=je_1(y,t) if (y,t)e im e

otherwise

For a fixed y, if (y.tjiim e then there exists xi such that p(x.j) = y 

and e(xi,s)=(y,t). On the other hand given y«N, x(pHy)is given by 

T(puy>* x (x-j ,x2.... xn] = en° 1 * xn j[x1.... xn ] =

= ®n ^ xi»-**»xn l = ©nCx (xi • »xn),t(Xi).... \(xn) 3 =

= ® n ^  1 ’ 2* * * ’ * n’^ xl̂ ’ ‘ » ^ xn̂  ̂  •
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-1,But U  im e [.= in e , for a fixed y, and ix.(e |. '(t)) = (x^,s) 

where e|.(s)= t, i.e., e(x., s) = t .

3.20) Theorem.- The operations Qr: I(n,k) I(2n+k+r, k), k> 0, are 

gi ven by Q r f: M-* N] = [ f: Sr x N x M - » S r " N x N ]  where 

f(t,y,x)= [ t,y,f(x) ] .

Proof.- We can write f as the composition:

Sr x NxM
idŜ xNXf

•SrxfJxN -J-* S' X MxN 
2 1

By definition of Qr we have a commutative diagram:

Qr
I(n,k)----*■ I(2n+k+r,k)

Ia I *
W «  MOk> — f  "°k>

By 3.7) The element of Wn+k (Q MO^) associated to f: M ->■ N is given

by the adjoint of S°°(N+ ) - ^  s“(Tvf) S“(M0k). Let <£■ = adj. (S°°t ‘t )

then cf> : N -► 0M0k and Q^C is given by the composition

s" s” L Q M0k ^ M0k-h7T/cO(2)LQ M°k^  q Mok (*)
h  ^

By 3.14 and 3.17 we have a homotopy commutative diagram

S°°[(Sr 2 NxN)+ ]

s“[(Srx NxN)+ ]

ft
(SrxN)+/x S°°(N+ )

S T

id a "tf

S”(Tvf)

S°°TT

S“ (SrxN)+/y Tvf]

n
(SrxN)+ /x S°°Tv,

s°wo. (**)
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To prove the theorem we are going to show that (*) and the adjoint of 

(**) are homotopic, thus representing the same element in

W2(n+k)+r^ MOk5‘

To do this we are going to construct a transfer for the covering
r* p rS xNxN — — >- S * NxN as follows: consider the diagram:

SrxNxN ----► Sr c— ----► S“--- (2) oov

p! I I 1* * +
Sr x^'xN —  Pr c------ ► p“ ----* gJ2)/zz

where the first square is induced by the projection, all three maps are 

equivariant so the composition is equivariant and then it is a pull-back. 

By 3.18 we have a pretransfer T which in this case has the form 

T(t,y., ,y2)= [h“i(t),(-t,y2,yi), (t,y-|,y2)] . This gives a transfer for 

p that we denote by -c(p).

Now the map associated to the immersion Qr [f: M-*N] is given by the 

adjoint of (**) so by 3.16 it is homotopic to Qt°Qn°n“(ida t^) ° adj.tp 

By 3.19 ad.tp is homotopic to the transfer for p so in part- 

particular adj. t p-X(p) where x(p)is the transfer constructed above, 

in other words, the map associated to Qr Cf: M-f N1 is homotopic to

Qt * Q n c n“(idAtf)°X(p) (***)

Now consider the diagram on next page, the composition at the bottom is 

(***). The triangle commutes by definition of the transfer and the 

squares commute because all the maps are infinite loop maps, so the 

composition at the bottom and the one at the top are the same, but one
A

can easily verify that this composition is precisely Qr [N, f] .

□
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3,21) Proposition,- Let G be a compact topological group and 

ITcSp a subgroup. Suppose that we have continuous actions 

XxG + X, Yx n + 1  on spaces X,Y then Y* (X/G)r= Yx Xr/n / G , 

where "/ " denotes the wreath product. (We work in Steenrod's category 

of spaces).

Proof.- The action (Yx Xr)x n / <3 ->■ Yx Xr is given by

(y’ X1 ’ X 2 ......xr ) ‘ ( a , g 1 .g2 ...... gr )=(y-cr, , xa a ; g z ,...)x0.(r;-gr )

As G is compact, the quotients are Hausdorff and have the identifica­

tion topology so they are also in our category. Define 

f: Yx Xr+ Yx(X/G)r by f= idxpr where p: X -»X/G, then f is an 

identification [4T1 and one can easily verify that it induces a 

homeomorphism Yx Xr/n/ G Y* (X/G)r .

3.22) Theorem.-

a) The immersions Q. Q. ...Q. [H(l lCll )x.. .xH(l >a. )̂ -> D(tfa x...x Ha )]
1 t2 V  1 K l k

for each sequence 0< i ^  i2 s. ..s ir> r* 0 and each sequence

0 <a-| < .. < ak are polynomial generators over w* for I(*,k), k> 0.
. . . o n  a. ,---•

b) The immersions Q. Q. ... Q- C P x...x P *-*■ D(y x...* y )]
M  12 V  ai “k

for each sequence 0 < I-j s i2 s ... s i , r>0 and each sequence

0 ^  < ..£ a are polynomial generators over ^  for I(*,k), k > 0.

Proof.- By 3.7 we have an isomorphism of N*-algebras

a^: I(*,k) N*(Q M0^) and by 3.12 an isomorphism of W*-algebras

N*(Q MO.) sW* CQT(y ) [I is monotone, aeA] where {y } is an
k l a, a aeA

N*-basis for W*(M0k). The following diagram:
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E(*,k) IC*,K)

W*(MOk) W*(Q MOk}.

where j [M^~» N1 = CM---»N ], clearly
f f

commutes.

By 3.20 the following diagram commutes
A

Qr
I(*• k ) --- TL* !(*, k)

N*(Q MOk) ___» W*(Q M0k) 
^r

Hence a) follows from 1.35 a) and b) follows from 1.35 b).
□

3.23) Remark.- Let f: M -*-N be an immersion, then by 3.21, after n 

iterations of the operations Qr on f we get an immersion between 

manifolds of the form V/Hn ■+ W/Gn, where V is a product of spheres, 

copies of N and a copy of M, W is a product of spheres and copies of 

N and Hn= TL̂  x TL̂  JTL̂  x . •. * 2^ / ... / Z 2 c ^n= Z 2^^2 ^ ^  ̂ 2

(^T) n

(we define the inclusion gn: H Gn inductively by g-j: 0 -<-Z2 

9n+1(a»b )= (id> 9n(a) >b))•

and



■

- 53 -

Chapter 4: Multiple points of immersions and characteristic numbers

In this chapter we show that I(*,k) splits as the direct sum of certain 

bordism groups of bundles. We use this to define characteristic numbers 

for immersions.

§4.1) Multiple points of immersions

4.1) Definition.- Let X be a space, define the r-th. configuration

space F(X; r) of X by F(X;r)= {(x-,.... xp) [ x^X.x.^x^ if iVj}cXr

We have a free action of 2̂, on F(X;r) given by (x1.... xr)*cr =

=(*a(l )•” •• X<r(r))-

4.2) Definition.- Let f: M -*• N be an immersion and let fr: (M)r ■* (N)r 

be the r-fold product of f. We say that f is self-transverse if

fr|F(M;r) is transverse to the diagonal submanifold N c— »- (N)r for
A

all r. This means that if f (x-j )=.. .=f(xr)=y, x^Xj , then the vector 

spaces im(dfXi ),... ,im(dfX)_) are in general position in TN^.

4.3) Note: The set of self-transverse immersions is open and dense in the 

space Imm(M,N) of smooth immersions with the C’-topology [2.3], (As M is 

compact the weak and strong topologies coincide). The space Imm(M,N) is 

locally contractible f3T] i therefore any immersion is regularly homotopic 

to an immersion which is self-transverse, and then, by 3.5, given any class 

in I(n,k) we can find a representative that is self-transverse.

4.4) Definition.- Given a self-transverse immersion f: M ■* N we define 

the manifold Pr=(fr[ F(M;r))  ̂(A) . Using the fact that f is an 

immersion one can show that pr is compact [383. The free action of

2 on F(M;r) restricts to pr and the quotient Pr/^r is a manifold 

f p 1 called the manifold of r-tuple points.

We can also define the manifold of based r-tuple points as p /E i.where
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acts by permuting the first (r-1) coordinates.

We define maps fp: 1^/2^-*- N and <f>r: pr/Er_-,-*-M by frix^,... ,xr] 

= f(x1)(=f(x2) = ...=f(xr)), <()r[x1....xrJ = xp

We also define Nr(f)= {yeN| *(f~^(y))= r} and

M rc n =  f"1 (Nr cfj).

We denote by the normal bundle of the immersion f and by (v^)r 

the r-fold product.

With all this notation we have:

4.5) Proposition [38].- a) fr and <J>r are immersions with normal 

bundles vf = C(vf)r |pr ]/Zp and =[ (vf)r_1 {0>|pr ]/Sr_1

b) f” (Nr(f)) and <j)”^(Mr(f)) are open and dense in V̂ /Zy. and 

Pr/i:r_1 respectively; f restricted to f“1 (N (f)) and ^  

restricted to <f>̂ (Mr(f)) are diffeomorphisms onto N (f) and 

M (f) respectively.

C) fr(ur/E_)= nTf) = U  N.-(f)
i >r

d l i r/!M ) = M J )  = U  M.(f).
i £ r

□

4.6) Definition.- Let f: M -*• M be a self-transverse immersion of
oo

codimension k, and consider an embedding (f,e): M—*- Nx P  , and the
P

pull-back v - --- *■ y(k)

P q
B0(k)

Then we can define a morphism of bundles as follows:
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('•>f )r 1>V —---- * F( IR~, r )x  Y(k)r

idxqr

VL. ------------------ F(1R~, r)xBO(k)r
♦

Given by ¿(y.,.... yr)=(e pCy]),...,ep(yrJ, p(y]),..., p(yr)), and

iixi....,xr)-(e(x^)....,e(xr), p(Xi),...,p(x^))

We can easily verify that it is a pull-back square. The maps involved

are 2^-equivariant, so we can take the quotient under the actions of

By 4.5 a) (v^)r [ur /£r = v f , therefore we have a pull-back
r

<f>

V --------F( If. r) * Y(k)r
r V

v

u / zr r F( IP“ « r) x B0(k)r
2.r

§4.2) F( F°°; r) 2 B0(k)r as a classifying space 
Lr

4.7) Proposition.- F( IR°°; r) i B0(k)r= B(E / 0(k))
^r r

Proof.- We can write F(IR ; r)= Iim F( IRn; r). This space is Z -free
n-» r

and contractible [34] . Each F( IRn; r) is a manifold so it is normal 

and Hausdorff and it is closed in F(IRn+1; r) therefore F(IR°°, r) is 

normal and Hausdorff [53] and hence it is completly regular. Let EOfk) 

be the infinite Stiefel manifold of k-frames, this is also a limit of 

manifolds so the same argument shows that E0(R) is completly regular. 

Hence F( F 00; r)x E0fk)r is a contractible completly regular space.
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We define a free ^/O(k)-action on F( ]R°Vr)x E0(k)r by:

( a, bi  . b ^ , . . .  , br ) • ( a , A-j • »Â )=(^a'CT , ^0( 1 )  *^0(2) ^2 * * * " '

The group Er/0(k) is a compact Lie group so by a theorem of A. Gleason 

[11 the quotient map F( F°°; r)xE0Ck)r -* F( IR”; r)x E0(k)r/rr/0(k) 

is a principal /0(k)-bundle, and by 3.21,

F(IR“; r)x E0(k)r/2 / Ofk)3 F( P ”; r)* B0(k)r

4.8)Definition.- Let 0(k) x Er IR be the canonical action. Using

this action we define a linear action I / 0(k)x ( lRk)r ->• (IRk)r by:

(ct ’ A1.... V  (vl.... vr, = (V l ( l ) ' V l ( l ) .....V l ( r ) ' V l ( r )

where v.. e lFr. This action defines a representation £r/0(k)<-»- 0(kr). 

We then have a universal (rk)-vector bundle with structural group

yO(k): F( P~;r)xE0(k)r ^ ;Q(k)( P k)r - F(IR ;r)xEO(k)'/lr/0(k)

4.9) Proposition.- The universal vector bundle defined in 4.8 is 

isomorphic to F( P°°;r) * y(k)r

r
F( IR“ r) x B0(k)r

V

Proof.- By 3.21 we have homeomorphisms: F(IR”r)xE0(R)r/Ir 0(k) s

F(lP”;r)  * B0(k)r, and F( F ”;r)x(E0(k)x(Rk;7i: /0(k) s 
Lr

F(IR” r) x (E0(k) x IRk)r=F( F “;r)* y(k)r . 
zr 0(k) r

We also have a homeomorphism

d>: F(IR”; r)x E0(k)^/o(Kj ^ U  F( P°°;r)x (E0(k)xIRk)r/j:r/0Ck) 

given by q> Ea, (b^,.,. ,b^), (v-|,. • • ,v̂ ,)]l = Ea,(b^,Vi),..., (b^,v^) ]■

One can easily verify that the composition of both homeomorphisms commutes 

with the projections and that it is an isomorphism in each fiber.
□
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§4,3) The splitting of I(n,k)

In this section we assume that all spaces are compactly generated 

and Hausdorff and the base points are non-degenerate.

4.10) Definition.- Let be the r-cubes operad and the monad

associated, then for any pointed space (X,*) we have a space

CrX= !~j . A point of C^X is uniquely represented by a

function f: D -*■ X where D is a finite set of disjoint r-cubes in

Ir(interior of Ir) and f(D)c X -{*} . See[34] for details, 
p r*Let i : X + 2 S X be the inclusion and denote by yr the composition

CrX -------- Cr nrsrx — — »- firSrX, where $ is obtained by glueing

the structure maps 6;: (j) * (iIrSrX)J nrSrX, so we have thatJ r Ej

Yr t(c-|.... cr). (x1,...,xr)] : (Ir, 3lr) (SrX, *) is given by

| cT1 (t), ) if t e im c i

* if t ^ ¡j im c.
i=l 1

The Y r are compatible and we get a map y„ : Cb  X -»-ft00 S°̂ <= QX

4.11) Theorem [341.- If X is connected Yr: crx iirSr*X ,for all 

r « oo , is a weak homotopy equivalence.
□

When X is a Thom space there is a geometric proof in [28] of the 

- fact that is a weak homotopy equivalence.

4.12) Definition.- Using the spaces F( IRr; j) instead of <?r(j) we

can also construct, for each pointed (X,*), a space

C TOr X= -1L F(IRr; j)?. X'V- . A point of C^r X is uniquely 
^  j > 0 J m



represented by a function A X such that A is a finite subset 

of ]Rr and i|>(A) c X - {*}. In fact the operads and the configuration 

spaces are examples of coefficient systems and each coefficient system 

defines a functor from spaces to spaces as above [141 .

4.13) Proposition [28 3.-There exists a homotopy equivalence d 

d: C X *• C X , r $ oc,
□

4.14) Corollary. If X is connected then C ̂ <=° X is weak homotopy 

equivalent to QX.

Proof.- By 4.13 and 4.11 the composition C p«0<— QX , where 

d is a homotopy inverse for d, is a weak homotopy equivalence.
□

4.15) Definition.- Let p: _LL F( IR“;j)x X1-* -+ C p»X be the projection,
j >0 *

then we define a filtration for C as follows:

F„ CjpccX» p i  F( R ”; j)x Xj 
r "  j=0

4.16) Proposition [141 Fj_-jC c FT C jp«,X is a cofibration and

Fr  CF »X/Fr 7C F»X £ F ( IR0» * ?  (Xa  . . . a  X) =  Dr X .

^ □

4.17) Theorem.-[43 ][ 14) There exist maps of spectra

hr: S°° c nr1* ■*" s°°Drx» r -1 such that the induced map

h: S°° C TO.»X -*■ V S”D X is a homotopy equivalence.
1K r>l rr>i p

4.18) Definition.- We define the isomorphism

gk: I (n.kJ-^w^j^CC^MO^), k>0, by the commutativity of the following 

diagram:
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The isomorphism was defined in 3.5, y«, in 4.10 and d in 4.13.

Following [2 81 we can describe as follows:

Let f: M N be an immersion, for m large enough, we can find an 

embedding of the form (f,e): M c-*- Nx ]Rm . Let be the normal

bundle of f classified by a pull-back — — >- y(k)

P

M -----*■ B0(k)
^ - -1Extend f to an immersion f: -*■ N such that i) f (y) is finite

for all ye N. ii) (f, e°p): v̂. N xlR111 is an embedding.

Define ^(f): N C ̂ m M0R c C jR»M0|< by

e k(f)(y)= {(<j>(v), e°p(v))| f(v)=y} if ye im f 

* otherwise

4.19) Proposition.- The description above makes the diagram in the 

definition 4.18 commute .

Proof.- Consider the composition:

N — ^  CRn, MO^ — ► Cm M0k— ifsnVlOk , where d is a homotopy

inverse for the equivalence d. It was proved in [28] that its adjoint 

Sm (N+) Sm M0k corresponds to the Thom-Pontrjagin construction for the

embedding (f,e) : Me— » which is precisely the definition of ak.
□

To give the splitting of I(n,k) we need some other results.



4.20) proposition.- Let 

the stable map induced.

->SmY be a map and g: S°°X—  S°° Y 

oe a spectrum and consider the following

g: s V  

Let E

diagrams: 

En(S“X)
g*

■I-
En(X)

En(S Y)

Èn(Y)

Eni fS'X) n+mv ‘
i *  ~  m

—  W S Y>

En(X) En(Y)

Then the homomorphisms induced by both diagrams are the same.

Proof.- Consider the following diagram in the homotopy category of 

spectra:

En(S” X) = [£nS°° S°, E a  S°° X](--A9^  9*> [z’V s ' . E  S~Y]= En(S°° Y)

C^S" S°, E a YU = Ep (Y)Ên(X) = [EnSœ S°, E a X]

crn+ms°° s°, ^ E a X]

E , (SmX)=[Zn+mS”S°, EaS^X] n+m' ' (idAg)ir= g.

[Zn+mS°° S°, i  E A  Y]

I l

[£n+rnS°° S°, EASm AY] = En+m(SmY)

The isomorphism a is given by the natural equivalence E a X = E a S°°X.

The isomorphism Z. is given by the natural equivalence EE = E a S' and the 

composition 1° Z01 is the definition of the suspension isomorphism sm .

We are going to show that the maps induced by g* and g*. from 

i E  a  X to i*E a  Y are homotopic, this clearly implies the result.

For this consider the following diagram.
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-> zf(E a S" X) -^A4^-2l_ ¿"(E a S°° Y)

E a  Sm X — 14 * 9

Em E a X A a Y

The first square is homotopy commutative by naturality of the equivalence 

£ (Ea F) = E a e F; we have that jf’ g = S00g and ¿"s” X= S00 Sm X 

so the second square is homotopy commutative by naturality of the

4.21) Proposition.- Let (X, xQ) be a pointed space then the suspension 

isomorphism s: Nn(X,x0)-* Nn+1(SX, *) is given by s [N,g] =

= CNx I, p°gxid] , where p: X * I + SX is the identification map

Proof.- We use the following description of s [49] -.consider the triple 

(C(X), X, xQ) where C(X) is the cone of X. As C(X) is contractible 

then the boundary homomorphism 3: Nn+1 (C(X) ,X) Mn(X, xQ) of the 

exact sequence of the triple is an isomorphism, let q:(C(X), X) ■* (SX,*) 

be the projection then s is given by the composition

Let C N,g] e ^nCX»Xg), then we have g:(N,3N) (X,Xg), consider N x I,

by straightening the corners C91 we get a manifold with boundary

equivalence E ^ Z = E a S°°Z. Finally the composition of the three 

equivalences is precisely the equivalence on the outer arrows.
□

Nn(X. xQ) _|lU Nn+1(C(X),X) — 3*_ Nn+1(SX,*),

3(N x I)= 3Nx I N x 31, Consider the composition Nxl gxi~̂ XxI S C(X)
3Nx3I
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where p is the projection. Then we get a commutative diagram:

To prove this we have to show that a[NxI,p°gxid]=[a(NxI), g] is equal

F(y,t)= g(y), then we have that 3(3(NxI)x I)=a(NxI)x{0}o3(NxI)x{l} , 

so we identify a(NxI) with a(NxI)x{0} and we embed 

N ^  a(Mx I )x {1} by y *-+■ ([y ,0 ],1). Then F |N= g |N= g,

F(3(NxI)x {1 } - N)= Xg and F|a(NxI)x {0} = g, hence [3(NxI), g] = [N,g].

Therefore s[ N,g] = q*[ Nxl,p° gxid] , but q°p = p .

4.22) Definition.- We define homomorphisms

hp: * *) — *► Wm^Drf10k’ *)’ r by the commutativity of the

following diagram: Nm (C

where hr is the map of spectra of 4.17 .

Let f: N C be a map where N is a closed (n+k)-manifold,

9
a(N X  I X

N x I C(X)
p° gxid

where X<=-* C(X) by x i—»[ x,0] and g |Nx(0} = g and 

g(3(NxI)-Nx{0} )= Xg. We claim that a"1 [ N,g] =[ Nxl.pegxid] .

to [ N,g] in Wp(X, Xg), so consider a(Nx I)x I — X given by

□

MOm(S“ C F”MOk)— MOm(S°° W

and let i : ( N , 0 W  (N+ , +1 be the inclusion, we denote by 

f+ :(N+ »+) -*■ (C jrM0k,*) the extension of f to N+ and by

sm: Wp+k(N+ , +) Wn+k+mCSm (N+ ), *) the suspension isomorphism.n+k+m
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With this notation we have:

4.23) Proposition.- hrCN,fD = (sm )-1g* s™ [N,13 , where

g: Sm(N+) — * SmDr MO^, for m large enough, is a map representing the

stable map h ° S°° f+.

Proof.- We clearly have that LM,f3 = f* [N,i] and as N is compact

then the stable map h^0 S f+:S°°(N+ )-* S°° should be given by a

map g: Sm (N+) SmDrMOk, for some m, and its suspensions. Consider 

now the following diagram:

N n + k + m ( S > + ), * ) 9 * -» W . (SmD MO. , 
^  n+k+mv r k’

m t  ~ ms i -  f +

W N+* + > — *  Nn+k^C IR“-MOk’

= ! s

-  W Dr MOk> *)

CT t E *1° s I a
W (S” (N+) ) _

/ r-00 —  MOn+k<S“C lR-MOk> —  h„ -  MOn+k(S”DrMOk)

The 2 squares at the bottom commute, the first one by naturality of the 

equivalence E a  X = E a S X, and the second by definition of h . As 

the stable map hr° S°° f* is induced by g then by 4.20 the 

homomorphisms g* and (hr° s“ f+)* correspond under sm and a, i.e., 

the square at the top commutes, hence hr [N,f] =

=h f* CN.i] =(sm )_1 g* sm [N,13 . 
r □

4.24) Remark: Let £>(E,p,B) be a vector bundle, with Thom space T(£),

then the Thom space of the vector bundle F(IR ;r)* Er -
_ . r id* p

is given by F(lR;r) £ T(£) a  . . .  a TCÇ) s  D (TCç )). r

rF(lR ;r)£ B

4.25) Proposition.- The homomorphism given by the composition:
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U ".k )A .n wt,(cl f nok) J ^ V k (ci r Mok, .)

I r
U ( Dr MOk’ *>

s $

V ( r - l V ( F'f > ^ rB°(k)r)

where j: (C (C^MO^,*) is the inclusion and 4> is the

Thom isomorphism, sends the class of a self-transverse immersion

f: M •+■ N to the class [Pp/Ep, v^] , where is the manifold
r

of r-tuple points and v- classifies the normal bundle of the immersion
' r

fr: Vy/Tp -*N. For r=l it is [ M, vf ] .

Proof.- Let us denote by [(j>: N -*■ Cjp°°M0k1 the class of

Cf: M + N ]  , to evaluate 4>h [N,<J>] consider the following diagram:

Wn+k+m(Sm(N+), * ) - ^ W n+k+m(SmDrMOk, *)

t ■ t -
W N+’ + ) Nn+k(DrMOk> *>

~ $

Wn-(r-l)k^ 1R°c>'»r)^B0(k)r)

where g: Sm (N+ ) -*• SmDpMOk is a map inducing the stable map

hr° S°°<j)+: S°° (N+) -^S“ DrMOk. By 4.23) hr[N,0D= Csm )"1 g* sm [N,i] ,

now recall that DpMOk= Thom space of FC lR°°;r)^YCk)r’, hence

SmD MO. is the Thom space of CFC^°°»r)? ®  em. From the geometricr k ¿y
definition of the Thom isomorphism (1.33) it is clear that the composi- 

tion 4>(sm )"̂  is the Thom isomorphism for the bundle
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(F( JR°°; r)£y(k)r) ®  em , we denote this isomorphism by 5. 
r

<j> adJ hr
On the other hand by [281 the composition N--*CJR«>MOk ----- U Q Dr M0k

represents, under the Thom-Pontrjagin construction, the immersion 

Pr/J:r -+' N, but by 3.16 adj-^(adj hr°4>*)~hr° S"V , hence the map 

g: Sm N+ •+■ SmDrMOk inducing hrc S°°<p* is the Thom-Pontrjagin map for 

the embedding p ^ / Z c— *■ N xp,m

Finally by 4.21 we have that sm [N,i □ = [Nxlm , p] where p:NxIm -►Snl(N+ )

is the identification, hence 4> hr [N,<f>D= $(sm)-1 g*sm [N,i] =

-* s* cn x im , p: = [yr/z , vf i .
r

For r=l we get N — C IR°°M0k Q M0k, where e is the equivalence

of 4.14, so by 4.19 it is the map corresponding to f: M -+ N itself.

□

4.26) Definition.- By 4.7, F(IR°°; r)i B0(k)r= B(l /0(k)). Following
hr r

[15 ] we can give the following interpretation for the groups 

Wm (B(zr /0(k))). We consider (rk)-vector bundles E, with structural 

group £ / 0(k) over closed smooth m-manifolds. We say that a bundle 

E, M bords if there is an (r k)-vector bundle ? V with

structural group Zr /0(k) such that i) V is a compact smooth (m+1) 

manifold and there is a diffeomorphism M = 3V, ii) The pull-back of 5 

under the composition M s3V<^ V is isomorphic to E, . Two bundles 

£1, are bordant if their disjoint union bords* We denote

by N [z_ / 0(k): the set of equivalence classes which is made into a 

group by considering disjoint union of bundles. Given a bundle 5 p|

we denote its equivalence class by [£ -*■ M]. We give N*[Z /0(k)j an 

W*-module structure by defining [N ][ £ M] = [Nx£ nxm ].



4.27) Proposition [15].- He have an isomorphism of N*-modules 

N*(B(Zr /0(k)))^>N*[Ir /0(k)] given by CM,f] i— ► [f*(y) •+ M] , where 

y is the universal bundle over B(Z /0(k))).

□

4.28) Theorem.- There is an isomorphism

I(n»k) * Wn+k®  Wn [0(k)]© ©  Wn.(r_i ) k ^  /°(k) D given by

[ f: M-*- N] i-> ([N]} [v̂  —  M] , I [v^ -+■ Py./^] ) , for n> 0, k >0, where 

f is a self-transverse representative.

Proof.- By 4.18 We have an isomorphism I (n,k)-=*Wn+k(C 5f M0k). Let j be 

the inclusion (̂ RK>H0k, 0 ) c- > - ,*), then by 1.31 we have an isomorphism

N n+k(ClfNOk)- Wn+k ©  Nn+k(CDf°MOk’*) given by c N .«#>3  ̂ , j*CN, <t> 3 ).

rn+k(CrM0k,*) - ^°n+k^SOO<1R" ̂  (by 1.7 and susPension isom.)

s M°n+k( V  S“ DrM0k) (by 4.17)

s © M O  . (S°°D M0.) ( Because MO satisfies the 
r >1 n+k r k

wedge axiom).

« ® W Dr MOk.*-’

= Wn_(r_i ̂ k(F( IR°°;r) ̂  B0(k)r) (By the Thom isomorphism)

= ©  Wn-(r-l)k(B(Er /0(k^) <by 4-7)r si ' '

S ^  V(r-l)k ^ / 0 ( k ) ]  (by 4.27)

The fact that the isomorphism is as stated in the theorem follows from 

4.25 and the definition of the isomorphism in 4.27 .

□

4.29) Definition.- Let [ £ ■* M] e 0(k)] , then following [15]

we can define characteristic numbers for t as follows:
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for each cohomology class a eHJ(B(2r /0(k); Z 2) and each partition p

of m-j (i.e. a sequence 0 £i-| s...< ig such that i-j +... +i$= m-j)

there is associated a Stiefel-Whitney number of the form

< “0(M) 4y(a), o(M) >, where w (M)= u>. (M)u>. (M), and
M 9 p 11 12 1 s

<f)̂: M -*■ BfE^/Ofk)) is a classifying map for 5 . Notice that when a=l 

we get the ordinary Stiefel-Whitney numbers of M.

By 4.28) We can associate to each self-transverse immersion f: M ■* N

the characteristic numbers of N and of each of the normal bundles

vf, , v, which we call the characteristic numbers of f.r r-, t2

4.30) Proposition.- Let f: M -1- N and g: M' N 1 be self-transverse 

immersions then f and g are bordant if and only if their characteristic 

numbers are equal.

Proof.- The homology groups H*(B(Zr /0(k));ZZ2) are of finite type 

so by [is] the characteristic numbers of each normal bundle determine 

its bordism class. Therefore the result follows from 4.28.
□

Note: The result stated in [15] is for finite complexes however one 

can easily see that it is also true for spaces of finite type.
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Chapter 5: Reduction of the structural group modulo bordism 

In this chapter we shall use some results of A. Borel on homogeneous 

spaces to prove that any (rk)-vector bundle is bordant to a vector 

bundle with structural group Z^f 0(k).

5.1) Definition.- Let p: E ■* B be a fibration with fiber F. We

assume that B and F are path connected. We denote by {EP’P, d^}

the spectral sequence associated to p such that E^,q = Hp(B;h|P(F; ZẐ )).

where H^(F; Z )̂ denotes local coefficients. This spectral sequence 
★

converges to H (E; Z 2) C52] .

5.2) Definition.- We say that the fiber F of a fibration p: E -»• B 

is totally non-homologous to zero if the inclusion i: F<̂ — » E induces 

a surjective homomorphism in cohomology.

5.3) Theorem.-[42] Let p: E B be a fibration with fiber F such
★ ★

that F and B are path connected and H (F; Z 2) or H (B; Z 2) is 

of finite type. Then the spectral sequence {E ^ , d ^ } collapses and the 

the coefficients of E^’̂  are simple if and only if F is totally 

non-homologous to zero.
□

5.4) Lemma.- Let p: E ■+■ B be a fibration with fiber F, B and F path 

connected. If the spectral sequence {Ep,<̂ , d̂ ,} collapses then p 

is injective.

Proof.- We have a filtration of 
★
H (E; Z £): 0 c jp>°c jP“1 >1 C . . . C  J°’p = HP(E; Z 2).

P 0 P 0Consider the edge homomorphism e: E2’ -»E-j’

we have a commutative diagram C 5 z ]:

: P»0 then
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So if the spectral sequence collapses p is an isomorphism onto its 

image therefore p* is injective.
□

5.5) Definition.- Let X be a space such that H*(X; 7L̂ ) is of finite 

type, then we define the Poincare series of X by

P(X,t)= f dim H1(X; Z g K 1 • Given a first quadrant spectral sequence

{EP,q » dr> such that Ep,q has finite dimension for all r,p,q, we

can also define a Poincare series P(Er, t) by considering the graded

vector space { nEr > where nE = ©  Ep,q .
r p+q=n r

5.6) Proposition.-[5 1 Let p: E -*• B be a fibration with fiber F 

such that B and F are path connected and E,B and F are of finite 

type. Then P(E,t)= P(B,t) P(F,t) if and only if the spectral sequence 

{ Ep,q , dr> collapses and the coefficients of Ep,q are simple .

Proof-^>)We first show that the coefficients are simple. Let Sq(F) be 

the biggest subspace of Hq( F w h e r e  T-|(B) acts trivially, i.e., 

Sq(F)= E2,q= H°(B; Hq (F; Z ,,)). We shall prove by induction that 

Sq(F)= Hq(F;Z2). F°r 9=0> as p is connected, we have 

H°(F; 2 2)= Z 2= S°(F). Now assume it is true for all q< k, then

Ep*q = HP(B; Hq(F; Z ,))- HP(B; Z 2)®Hq(F; Z 2) for q <k.
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As dim H°(B; Z 2)=l then dim kE„= dim ©  E5,q = dim Hk(BxF; ZZ,)-
¿ p+q=k 2 2

- dim Hk(F; Z £)+dim Sk(F;2Z2). By hypothesis P(E, t)= P(B,t) P(F,t)= 

=P(BxF,t), therefore dim Hk(BxF;ZZ.)= dim Hk(E; Z 2) = dim kEro , hence 

dim kE2= dim kEn - dim Hk(F; Z 2)+ dim Sk(F).

But dim kE2 >y dim kEoo so dim Sk(F) •>, dim Hk(F;Z2), anc' as

Sk(F)c Hk(F; Z 2) then dim Sk(F)= dim Hk(F;ZZ2), i.e., Sk(F)= Hk(F;Z2)

Mow that we know that the coefficients are simple we can write

EP*q = HP(B; Z 2)®Hq(F; S-2) so P(E2 ,t)= P(B,t)P(F,t)=P(E,t)=P(Eoo,t),

hence P(E2,t)= P(E^, t). i.e., dim nE„= dim nE for all n> 0, so

£ dim E2,j" = Z dim E1 ,JCO . But each Ej,^ is a subquotient of
i+j=n i+j=n
Ei ,j
r so dim E ^  * dim eJ'j and then dim E1 < dim e!,j ,oo 2

therefore dim E1’*j = dim EÍ*joo 2 , and hence E1 s E’*j’ 00 2

<=) EP’P £ EP*q = Hp(B;Hq(F; Z 2))s HP(B; Z 2)® Hq (F; ZZ2). Therefore

Hn(E; Z 2)s ®  Eq,q s ©  Hp(B,ZL)aHq(F;Z?). Hence P(E,t) = 
p+q=n p+q=n

=P(B,t) P(F,t).
□

5.7) Definition.- Let p: E B be a numerable principal G-bundle,

where G is a topological group, and let <pp: B BG be a classifying 

map for p. We call the image of ‘f’p » <i>p• H*(BG; Z 2) H (B; Z 2),

the characteristic subalgebra of the bundle.

5.8) Definition.- Let G be a compact Lie group and H c G a closed 

subgroup, we say that H has the same 2-rank of G if there is a common 

maximal abelian subgroup isomorphic to Z 2 , we denote this subgroup by 

Q(n), and call n the 2-rank.
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We say that G/H verifies Hirsch‘s formula if

P(G/H. t) = (1-t ').... (1-t nl

0-tq ').... (l-tq")

where mi,...,mn are the degrees of the generators of H*(BG; Z 2) 

and ....qn are the degrees of the generators of H*(BH; Z 2).

5.9) Proposition tsl.-G be a compact Lie group and HcG a closed sub­

group of the same 2-rank. If G/Q(n) and H/Q(n) verify Hirsch's 

formula and if H*(H/Q(m); Z 2) is equal to its characteristic sub­

algebra then G/H verifies formula.

Proof.- Consider the following diagram: H <=---- -v G --- — *■ EQ(n)

|
H/Q(n)— * G/Q(n) — BQ(n)

1 j

where i is induced by the inclusion and j is a classifying map for 

q (p and q are principal bundles because G is a Lie group and H is 

a closed subgroup[46 ]). Hence j°i classifies p so by Hypothesis
•fc it

(j 0 i) is surjective so i is surjective. But this implies that the 

fiber of the fibration H/Q(n)c— ► G/Q(n) — G/H is totally non- 

homologous to zero so by 5.3 the spectral sequence of the fibration 

collapses and the coefficients of are simple, so by 5.6)

P(G/Q(n), t)= P(H/Q(n),t)P(G/H,t), as G/Q(n) and H/Q(n) verify Hirsch 

formula, then clearly G/H verifies Hirsch's formula.

's

□

5.10) Proposition [5].P(0(n)/Q(n), t)= (1-t) (1-t2)... (1-tn) and

0-t)n

H*(0(n)/Q(n); Z 2) is equal to its characteristic subalgebra.
□
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5.11) Proposition C5].P(B0(n) ,t)= (1-t)'1 (1-t2)"1... (l-tn)_1

5.12) Theorem Lsl.-Consider natural numbers n-|,n2,...,nk such that 

n-j+ n2+...+nk= n. Let i: 0(n^)x 0(n2)x...xO(nk)=— >0(n) be the inclu­

sion, then Bi: B(0(n-| )x... xO(nk))— >B0(n) induces a monomorphism in 

Z 2-cohomology.

Proof.- Consider the infinite Stiefel manifold E0(n), and define an

action of 0(n1)x ...x 0(nk) on E0(n) by e*(A-j.... Ak)=e*i(A1 ..,Ak).

In 4.7 we saw that E0(n) is completly regular, as 0(n-j) x... xO(nk) 

is a compact Lie group then by Glason's Theorem the quotient

E0(n)/0(n-| )x... xO(nk)= B(0(n^ )x... xO(nk)). Let

p: E0(n)/0(n-|)x... xO(nk)-<• E0(n)/0(n) be the projection, as this map 

is induced by an i-equivariant map then p=Bi Consider the fibration

0(n)/0(n1)x...x0(nk)ĉ  E0(n)/0(n1)x..^0(nk) T  E0(n)/0(n)

We want to apply 5.6 and for this we consider P(0(n)/0(n^)x...xO(nk),t). 

Notice that 0(n^)x...xO(nk) and 0(n) have the same 2-rank with 

Q(n)c 0(n-j )x...xO(nk)c 0(n), also notice that 0(n-| )x... xO(nk)/g^nj s

0(n1)x...xO(n|<)/g(ni)x >>>xQ(nk)S °tni }/Q(ni )x‘ * •x0(nk)/Q(nk)

By 5.10) 0(n.)/p(n  ̂ satisfies Hirsch's formula, for 1 s i s k, so

clearly the product satisfies Hirsch's formula. Furthermore By 5.10 

H*(0(n.j )/Q(n^); Z 2) is equal to its characteristic subalgebra so 

clearly H*(0(n-| )/Q(n1 )x.. ,xO(nk)/Q(nk)) is also equal to its 

characteristic subalgebra so by 5.9, 0(n)/0(n-| )x.. .x0(nk) verifies

Hirsch's formula so P(0(n)/0(n-| )*.. .x0(nk), t)= (1-t)(1-t2)... (l-tn)
k n.
nC l-t)__(l-t  ’ )
i=l
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By 5.11) P(B0(n),t)=(l-tf1(l-t2)'1 (l-t")’1 and

P(BO(n1)x...xBO(n, ),t)= n (1-t)-"*.., (1-t 1")'1 . Therefore we get 
1 K i=l

P(B0(rii )x.. .xBO(n^) ,t)= P(B0(n) ,t)Pf0(n)/0(n^ )x.. .xO(nk) }t) hence by

5.6 the spectral sequence of the fibration p collapses and by 5.4 
★ . ,

p is injective.
□

5.13) Theorem.- Let £ be an rk-vector bundle over a closed smooth 

manifold then E, is bordant to a vector bundle with structural group 

Zr /0(k).

Proof.- We have a commutative diagram: ^[Z^./0(k)l---»WmtO(rk)l

=1 1«
Nm (B(Zr /0(k)))_tyB0(rk))

The isomorphisms are those of 4.37, and j: £ / O(k)*-*- 0(rk). We are 

going to show that Bj^ is surjective. For this notice that we have a 

commutative diagram.

the inclusion of 5.12. Then B . ° B£^B(j° £)=Bi By 5.12 Bi * is 

injective, as all the homology groups are of finite type, then Bl* is 

surjective, hence Bj„ is surjective in mod. 2 homology. The naturality 

of the equivalence N*(X)S H*(X) ®  N* Ci81 implies that Bj is
77 *

Bj.

• • • 9A„) and i is r

□

5.14) Remark If k=2 in 5.13, one can give a proof of the theorem using 

the transfer as follows. Consider the fibration
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0(2r)/ j, / 0(2)°~* f 0(2))-!— » B0(2r). By a theorem of Hopf and Samelson 

[Z^] we have that x(°(2n)/N(T))=l, where N(T) is the normalizer 

of a maximal torus T in 0(2n). But N(T)= 1/0(2) [251 , so

x(0(2r)/2r / q (2)) = We can use now Becke>" and Gottlieb's transfer

for the fibration p [41 . This transfer was defined when the

base is a finite complex, but it was generalised in [12] to include 

the case when the base is infinite dimensional.

If t denotes the transfer for p then we get p*° t*= id so p* 

is surjective.
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0(2r)/ £ / 0(2)°~* /0(2))-L, B0(2r). By a theorem of Hopf and Samelson

[2^] we have that x(0(2n)/M(T))=1, where N(T) is the normalizer 

of a maximal torus T in 0(2n). But N(T)= Zr /0(2) C251 , so

x(0(2r)/2r j )= 1. We can use now Becker and Gottlieb's transfer 

for the fibration p [41 . This transfer was defined when the

base is a finite complex, but it was generalised in [12] to include 

the case when the base is infinite dimensional.

If t  denotes the transfer for p then v/e get p*° t * =  id so p* 

is surjective.
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Chapter 6: Another interpretation for the groups M*(F( IR°°;r) * B0(k) ) 

In this chapter we give an interpretation of N*(F( R°°;r)* B0(k)r) in
V

terms of covering spaces and arbitrary vector bundles, and apply this 

interpretation to the bordism of immersions.

§6.1) The functor EE * Yr ]
r r

In this section we use the method of F.W. Roush [il for classifying

transfers to give an interpretation of the functor [_ ,EE * Yr] .r l

6.1) Definition.- Let X and Y be spaces and consider pairs (X,[<)>] ) 

where X _JL» X is an r-covering over X and [¡¡>]e[X,Y] . We define a 

relation s , between these pairs as follows: (X, [<(>])s(X' , [4>']) if and 

only if i) There is a map of coverings X -Î!— » X' (i.e. a continuous

p nv /p '

map h making the triangle commute and such that it is a bisection on 

each fiber), ii) h Ccp1 3 =[<{>] (i .e. <j>‘ ° h =4>).

As a map of coverings is a homeomcrphism, this is clearly an equivalence

relation. We denote by F (X) the set of equivalence classes of
r ,Y

such pairs.

f
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6.3) Lemma.- The functor F ( ) is well defined
r,Y

Proof.- Suppose (X^,[p])s(X2,CP' ]), then we have a map of coverings

x2 - i U x j

q w  q
X„

such that p "  h = p . If we apply f we get the 
G

following diagrams: f*(X2) — ^  X2 -^-* Y f*(X£) — X2 — ► Y

{ q
X, -----► X, X. ---- ► X,i f d \ f d

We can then define h: f*(X2) -* f*(X2) by h(x1, x2) = (x-| ,h(x2)) 

this is well defined since (x-|,x2)e f*(X2)=> f(x-|) = q(x2)= q'h(x2). 

As h Is a map of coverings then so does h.

Finally define a homotopy H: f*(X2)x I Y by H(x-| ,x2,t)=G(x2,t). 

Then H(x-| ,x2,0)=G(x2,0)= p'h(x2) = p'f1 (x-j ,h(x2)) = p' » f1 » h(x.,,x2)

and H(x-| ,x2,l )=G(x2>1 ) = p(x2) = p f (x-j ,x2) therefore p‘of1 oh= p°f, 

i.e., h*[ p' of']=[p.f] .
□

6.4) Definition.- We define X, Ez * Yr] -*■ F (X) as follows:
A r,y

let r ={1,2.... r) , we have an action Er *r ■+• r given by o-i= a(i)

and a principal Zr~bundle EZr ><Yr -*■ EZr£ Yr so we can consider the
r

. r-covering associated EZr *Yr£ r — EZr£ Yr. Let f: Y-»-EZr£ Yr 

and consider the following pull-back: 

f*(n) — -—+■ EZp x Y r^ r Y

I" rf + -_  x ------ EZ * Yr
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where a[e,y1,... ,yr, i] = , then define i>x Cf]= Cf*(n),[a °f]]

To prove that is well defined we need a Lemma:

6.5) Lemma.- Let p: E B be a covering and f,g: X -*■ B such that 

f =g then we have a map of coverings f*(p)— ^  9*(P) such that gch=:f

Pf \  /Pg
X

Proof.- Let H: X xl + B be a homotopy such that HQ= f and H-j= g 

and consider the composition H°(pf *id): f*(p) xl-*- B then we have a 

commutative diagram * f
f (p) -----------, E

p , so we can find a

f * ( p ) x l ------------------------------► B

H° ( Pf  x i d )

lifting H making the diagram commute. Define h: f*(p) + X x E  by 

h(x,e) = (pf (x,e)=x, H(x,e,l)), notice that pH(x,e,l)= Hc (p^id^x.e.l ) = 

=H(x,l)= g(x) hence h: f*(p) -*■ g*(p). Also notice that when we 

change t in H(x,e,t) and we project under p we get H(x,t), as 

for each x, H(x,t) is a path from f(x) to g(x), then for each e 

over f(x) we get a lifting of this path beginning in e and ending in 

a point over g(x), i.e., h is a map of coverings. Finally g°h(x,e)= 

= g(x,H(x,e,l))= H(x,e,l) =H(x,e,0)= f(x,e), i.e., g-h =f .
0

6.6) Lemma.- 

natural .

:C X, El
'Er

Yr ] Fr,V(X) is well defined and it is

Proof.- Suppose 

a map of coverings

f »9: X -  E  * Yr 
u T"

f*(n) g*(n)

are homotopic then by 6.5 we have 

such that g°h=f hence a<> goh=a°f,i .e

X
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h*[<x « g ]=[a of] therefore (f*(n), Ca ° f ]) s(g*( H), [ a °  §]).

The naturality follows from the fact that f*g*(n) s(g°f)* (n).

□

6.7) Definition.- We define f :F„ „(X)-*- [ X, EE * Yr] as follows:
* * > Y » ¿y

given a pair (X,[ ()>]), consider the map X -*• EE * Xr defined in
rLr

3.18, by a slight abuse of notation we shall denote this map by T and

call it also pretransfer, consider the composition 
T idg <|,r

X — » EE * " ---  ' * EE S ' • ^ defined UP to homotopy and if
r r r r

$=;<()' then id* <pr = id* 4>,r therefore we can associate to (X»C4>] ) 
r r

the homotopy class of (idi $ )°T and we define
Lr

fxC X , = Cidg <(>r° T ] .

6.8) Lemma.- V(X) [X, EEr£ Yr] is well defined and it is‘X r,y
natural.

Proof.- Suppose (X-j, [<)>•]]) = (X2> [<f>2l) then we have a map of 

~ h ~ Hcoveri ngs

Pi\ / p ;

Y such that <|>2 ° h = cj>i

To define T we have to consider the principal ^-bundles associated. 

Consider the following map 8 : X-j X2 given by

6(x,.... xr)=(h(x1),...,h(xr)), as h is a map coverings this is well

defined and it is clearly E -equivariant, therefore we have a pull-back

diagram: _ 6 _ p o
X1 ---- * X2 — ^  E2r

i I l
X1/Er— * X2/Er----- BEr
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where pz classifies the principal Zr-bundle X,, -*■ Xg/E . Hence we 

can define the pretransfer T-j, for p-| using this pull-back and we 

get a commutative diagram:

1 x vr— * tLr i
r

id- h'

EZ * %  r 2

and as h° <{>2 — d>i we get a homotopy commutative diagram:

Ez

Combining these 2 diagrams we get that V [X^, [<b-| D 1= ^  [Xg, [4>2̂

By the same method one can also show that ¥ is natural.
X

□

6.9) Theorem.- The functors EZr£ Yr3 and Fr (_): T -*• Sets

are naturally equivalent. The equivalences are given by y and $ .

Proof.- We shall prove that yx $x= id. Let f: X -*■ Ezr£ Yr , then 

yv »$> Cf] = yv Cf*(n),Cot o fll . To obtain the pretransfer for f*(jl)
X X  X

notice that if we have an r-covering of the form E - r -»■ E/r then
£r r

the pretransfer T: E/z -+ Ee * (E x r)r is given byr rLr

TCe:=[ P(e),[ e,l],..., [e,r]] where we have a pull-back

E/Er --- > EZr/Zr
P
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Now let us apply this observation to the covering

E£ xY * r ---> El * Y , the classifying square for n is given by

E£r* Yr------ » Ez

1
proj.  ̂r

r r
e h y ----- * Ezr/zr

Ezrz Y" r ^ r z ^ V

• • • »Yp H = [e,[ e,y-|,.

Recall that we have a pull-back: f*(n)--- Ezrx Yr* r — *- Y

I , i
El * Y' 

rSr

Consider the following diagram:

Tf*n

Elrz Yr Tt

ez * f*(n)
Lr

id *fr
Lr

EjVzr<EV  Y

The composition at the top represents y $x [f;]. By choos'’n9 suitable 

classifying maps, as we have done before, one can prove that the square 

is homotopy commutative. The triangle clearly commutes so

<PX $x [f] = [id£ ar ° Tjj ° f ] , but the composition (id^x«")0 Tn is 

the identity, in effect, (id^xa1")0 T^Ce.y^,... ,yr] =
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given by the following pull back

E ^ x  Xr
%

E r
a

Y

One can easily verify that the composition at the top is precisely <{,

so 0Y ov [ x, [<(,]]=[X, [<(,] ].
A A n

§6.2) The direct image of a vector bundle

6.10) Definition .- Let p: X X be a r-covering and let g -*■ X be 

a k-vector bundle then Atiyah [3] defined an (rk)-vector bundle 

p*(£) -*■ X, called the direct image of £, whose fibers are given by 

P*U)X = ©  Ex •
X e p - 1( X )

Let us denote Fr B0(|<) (-) = Fr,|<(-) for simplicity, then the direct 

image construction defines a natural transformation Fr k( _ M e c t kr(_), 

where Vectkr(X) denotes the set of isomorphism classes of (kr)- 

vector bundles over X.

By 6.9 we have: Fr k( _ ) [-. EE^ B0(k)r]

direct
image +

[_, BO(kr)]
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We can choose a model for E e * B0(k)r that is paracompact as follows:

we can take Milnor's construction [351 for El and E0(k) which are

numerable C.W.-complexes, hence Ez^x E0(k)r is also a C.W.-complex

and therefore a paracompact space, as Er /0(k) is compact then the

projection map is closed and the quotient EErx E0(k)r/Ir/ 0(k) *

s Ee * B0(k)r (3.21) is Hausdorff and therefore paracompact. Recall 
nr

that Ee x E0(k)r is contractible and completly regular with a free 

Ep /0(k)- action so by Gleason's theorem [•*] we have 

EEr£ B0(k)r= B(Er /0(k)).

By Yoneda's lemma we have a bijection between natural transformations 

[ _ , E e * B0(k)r ] -*• [_, BO(kr)] and [ Ee * B0(k)r, BO(kr)] , so the
nr

direct image construction defines a homotopy class d: Ee * B0(k) ->-B0(kr).
rLr

6.11) Proposition.- Let i: Er fO(k)^-+ 0(r k) then Bi = d.

Proof.- By 6.9 we have a bijection Y : F„ . (X) -*[X,Ee * B0(k)r ] andA r j K r
by [2fe] the direct image of a vector bundle E, ■* X --- *• X is

classified by the map X — Ee * Xr -----■* Ee * B0(k)r=
rV  id* <(>r rV  

Lr

= B(E/0(k))---► BO(kr) where [ 4> ] classifies £. But VV(X, l) =
r Bi x

= [ id* <pr, T] , therefore Bi* ^(X, [<f>l)= d* ^(X, [$]), as is a

bijection then Bi* = d* for all X particular if X= Ee * B0(k)r ,
rir

so Bi*[ id ]= d* [id] -»[Bi] = [d] ,i.e., Bi = d.

□

6.12) Corollary.- Let E, be an (rk)-vector bundle over a paracompact 

space. Then the structural group of E, has a reduction to Er /0(k)

if and only if E, is isomorphic to the direct image of a k-vector bundle

over an r-covering.
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Proof.- By 6.9 and 6.11 we have a commutative diagram;

Fr,k (X)

direct
image

CX, ES 8 B0(k)r] 
r r

Bi*

Vectkr (X) --------*■ CX, BOC kr )]

zp /o(k)
If we denote by Vectkr (X) the set of isomorphism classes of

(kr)-vector bundles with structural group £r /0(k) then we get a 

commutative diagram:

£ /0(k)
Vectkr (X) -----

forgetful
functor

Vectkr (X) -------- -

[X, ES S B0(k)r] 
r>

Bi*

CX, B0( kr )]

The result follows from the commutativity of the following diagram:

Fr , k W

di rect 
image

V  0(k) 
Vectrk (X)

Forgetful
functor

§ 6.3) Another interpretation for N*(E2* Yr)
Tir

6.13) Definition.- We consider pairs (M»[<J>3) where M — ► M is an 

r-covering over a closed smooth n-manifold M and O l e C M ,  Y], We 

say that 2 pairs (M,[<|>]) and (N,[y]) are bordant, (M,C<J>])~(N,Cy]). 

if there exists a compact smooth (n+1 )-manifold W, an r-covering W -*• W
Ft

and a map W — *■ Y such that i) there is a diffeomorphism 3WsM jiN; ii)

ii) if we denote by i^: M ^ M n N  s3V*-*- W and by i :N <=-*MjiN W,
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then (tM*(W), [h*iM ] ) b (M,[<)>]) and (tN*(W), [ h M N] ) s(N,[^] ), 

where " s" is the equivalence relation defined in 6.1 .

6.14) Lemma.- The relation " defined above is an equivalence rela­

tion.
„ proj. <)>

Proof.- i) (M,[((>]) ~ (M,[()>]), in effect, take M x l ---- » M ----»Y

pxfd 

M x I

ii) It is obviously symmetric

iii) Suppose (M,[<}>]) ~ (N,[ÿ]) ~(T,[y]). Then we have compact 

manifolds V, W and r-coverings V, W and maps V 11 >Y , W »-Y 

such that 3VsMii.N, a W s N u T  and commutative diagrams:

M

1
M

N

1
N

V v _ h
V  -------► Y

I
V

- 1N,V

’m .v ■*N,V

1N W ~ J -!N,W ■> W * Y j 1T.W

’n .w

1
w

7J,W

w-

I
w

Y

Y

The maps satisfy: h o iM>v= <f> , ho iN>y = ip, j°iN>w= ip, 3ciT>w = Y •

To prove that (M»C4)I1) ~ ( T , )> we glue the manifolds V and W using

the embeddings i^ v and iN w , we call this manifold V y W and

3(V u W) s M jiT. Notice that if we have a finite covering over a manifold 
i

we can give the total space the structure of a manifold making the projec­

tion a local diffeomorphism. Furthermore as a manifold is locally path 

connected if the base is a compact manifold then the total space is also 

a compact manifold [331.
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We can then use the embeddings i^ v and i^ w to form the manifold

V u W. Clearly V u W is an r-covering over V u W. 
i i i

In order to define a map V y W — «Y we do the following: We have a

closed submanifold i^ y(N)c V so it has the homotopy extension property (V

is compact hence normal and a submanifold is a retract of a neighbourhood

[25] ). Consider the following diagram:

N c_ Nx I

’N.V 1N,VX,d

Vx I.

where H is the homotopy between h° i^ y and j° i^ w (recall that 

h “ iN v= T  ° i|\i therefore we can find a homotopy G making the

diagram commute. Consider G-j: V Y, then G-j= Gg= h and 

G-| o i^ v= jo iN w . Now we can define a map V y W ► Y by glueing 

G-| and j because both coincide on N.

Therefore we have a covering V » W + V u W which restricts to M

over M and to T over
■[ -\

T and a map p such that M <-*- V u W — 1*. Y

is G-| ° TM,V= h ° iM,V~ * and T <->• V y W Y 
i P

is j o V  Y • I.e.

(M, [<t>])~(T, [y]).

6.15) Definition.- We denote the set of bordism classes of pairs 

(M,[<)>])» where dim M=n, by Covn(r,Y). -We can make Covn(r,Y) into 

a group by defining [ M, [<j>]] + ]]* [M a N, ^]] . We can make

Cov*(r, Y) into an w*-module by defining [M]-[N,[$]] »[MxN.c^proj]].

6.16) Definition.- We define a function G: Covn(r,y) -*• wn(EJ:rj Yr)

as follows:
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l|> y.

consider a pair (M,r<t>])» then by 6.9 F„ ,.(M) — »[ H, E£ * Y ], so
r j Y r Lr

we define G[M,C«(.3D=C [$])] £ ^ ( E ^ *  Yr).

6.17) Lemma.- G is well defined and it is a homomorphism of N*-modules.

Proof.- First notice that for each pair (M,[$]) we have a well defined

element in Yr)because 2 homotopic maps induce the same element,
r

Now suppose (M, C<f>])~(N. > then we have a manifold V such that

3Vs H u N  and an r-covering V -*■ V with a map V ^ Y such that:

(iM*(V).[ h.iM ])s(M,[<t>]) and (iN*(V), [h«?N])s(N,Ci)»]). The pair

(V, [h]) gives a map y'Mv».rh])> x yr, and this map is a bordism
rhr

between (M,y (V, [h ])°iM) and (N,ip(V, ChD)°iN) so [h])°iM ] =

=  C N , ^ ( V , [ h ] ) o i N ]  ( * ) .

Now we compare C M,<|)(V,[h])°iM ] with [<f,]) ] . By hypothesis

(M,[(j)])s(iM*(V),[ hoiM ))= iM* (V,[h]) so as ip is natural we have 

<KM,[<f>])=iKiM*(V,[h])= iM* 'KV,[h]) = i|;(V,[h]>*iM . Hence [M,tKV,[h:)°iM ]= 

= [((>])]. In the same way [N,ij;(V, [h])‘iN ] = [N,t|j(N, [<jd) ] .

Combining this with (*) we get CM,i|;(M, [41]) ]=[N,i)j(N, ])] so G is

well defined. The fact that it is an N*-module homomorphism follows 

directly from the definitions.
□

6.18) Definition.- We define a function H: Nn(Elr* Yr) Covn(r,Y) as
r rfollows: consider [ M, f) e Nn(Ei:r£ Y'), by 6.9 we have

i>: CM, E2Li Yr] ---- F U(M), so we define H[M,f] = $ [f].
r r,y

6.19) Lemma.- H is well defined.

Proof.- First notice that given f: M -*• E o  Yr , 4>[fl is defined up to
Lr

isomorphism but clearly if 2 pairs are isomorphic then they are bordant.
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Now of [ M,f] =[ N,g] then the^e exists a compact manifold W such 

that a W s M u N  and a map h: W-^Ez^,* Yr such that h°iM= f and'M
h°ifj= g. If we take S>[ h] = (W, Ey]), then we have: h°iM= f<.=oiM*[h] ='M
=Cf3, as 4> is natural 4>[f]= 4>i..*[h]= iM*$[h]. In the same way 

i>[gl= i^*4>Ch], therefore $[f] and 4>[g] are bordant so H is well 

defined.
□

6.20) Theorem.- We have an isomorphism of N*-modules N*(Ez * Yr) =
Lr

=Cov*(r, Y).

Proof.- By 6.17 we have a homomorphism of N*-modules

G: Cov*(r,y)—*• W*(E£r£ Yr) and it follows from the definition 6.18
r r

and from 6.9 that H: W*(EIri Yr) -*■ Cov*(r,Y) is the inverse.
r □

§6.4) Application to the bordism of immersions

In 4.38 we gave a splitting of I(n,k) in terms of vector bundles

v, with structural group £ /0(k), in this section we identify the 
' r

covering spaces and vector bundles whose direct image are the bundles

v , .

6.21) Definition.- Let f: Mn Nn+k be a self-transverse immersion.

In 4.4 we defined compact manifolds pr c(M)r with a free

Z -action. We define a map tt,: (M)rx r -*• M by tt (x1,... ,x ,i )*x^ , 
r r tt-

consider the composition p x r c (M) x r ---» M, this map is

invariant under the action of £r and defines a map Trr:p x r M.

Let vf: M -*■ B0(k) be a classifying map for the normal bundle of the
TTr  V f

immersion f, then we can define a pair by : pr* r — — »M — U. B0(k)

u /£ Hr r
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Now we want to compare this covering with the covering defined with

W i *V/rr-l

vr^r

namely /£r-l^

X Y'

zr V  zr-l 
1

'zr
T

vr/zr

* W i by err =

we have an isomorpl

.ct e Zp. The i nverse

where

h-1 [ z] =[ z,id] .

To show that yr* zp/Zr_i and y *  ? are isomorphic we need the following 
r r

2 r  -Claim Let s __-j = {c, c ,...,c = id) , where

c= (1 2 ....r) and define a bisection f: z/z , -c r by f(c1 )= i,

then f is zr-equivariant.

Proof of claim.- Define p : zr-*- Zr by p(a)(i)= f(cr-f-  ̂(i))» we will 

show that p = id. For this recall that zr is generated by {c,(l r)}, 

we also have that p(o)(i)= f(a • c1 )= f(a'c1), hence f is equivariant 

<=> p(a) =a<—> f(ac')=a(i)i for all i<— > fc'= c® ^  for all 

i e r,a e {c , (1 r)} .

Case.- a = c. In this case we have pc^ = cc^= c ^  = cc^  if i <r 

and c c r= c = c c(r)=1 if i=r .

Case.- o *(1 i"). Let us denote t=(l r), so we want to show that 
p-i ^t(i) for all i e r. If i=l then tc t I. , so tc= ct^^"r .

If i=r, then as tce.Er_-| and t" = t we get t_1c«I -|<—> t=c.
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Finally if 1 <i < r then (tc1)'1 c1 = (c1)"1 tc1 e Ir.-, _> tc*= ct^ K

So we have proved that f is E-equivariant and we can then define an

isomorphism id 5 f
!*p V ^ - l  — yr

6.23) Proposition.- Let f: Mn -*■ Nn+  ̂ be a self-transverse immersion 

and let a = r,[v^°Tr]) be the pair defined in 6.21, then the

map ip(a): B0(k)r classifies the normal bundle of the

immersion f^: — »N

Proof.- We take EE = F( IR00; r), then by 4.6 , the normal bundle of

the immersion fp is classified by a map : vy./^ -*-F(IR°°;r)x B0(k)r
r r*

given by Vf [x].... xp : = [e(x1),... ,e(xr), vf(x1).... vf(x ) ] where
r

e: M -*• IR"3 is such that (f,e): M ■+ Nx ]R°° is an embedding and 

Vf-: M -*• B0(k) classifies the normal bundle of f.

On the other hand ^(a) is given by the following composition (6.7):

v/JL — (vl.5 r)r -  
r r V  >  i <

vr F( IR ; r ) * B0(k)
(vf° V

In the proof of 6.9 we saw that the pretransfer T could be given by

T [x-j.....xr] = CgCxi ..... xr ), [Xi.....xr> 1 ],... ,[x-j,...,xr ,r] ] where

g is given by a pull-back — ?->F(IR ;r)

1 I.
vrn r~* F( IR ;r)/Er

,...,e(x )) and then ifWe can define g(x-j,... ,xr) = (e(x-|)
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Cx1,...,xr]£vr/Sr we have id£ (\y ° TTr)r ° T Cx-|....xr >

~ i d ̂ C ) te(x-|),... ,e(xr) ,[Xi,... ,xr 1 1»««., Ex-|,...,Xp, r 1 1 -

- Cg (x*|), •.. ,e (x̂ ,) fv^(x-|) f... jV^(x^) ]=v.p fx-|,..«,Xy, 3.

6.24) Theorem.- There is an isomorphism

I(n,k) =Wn+k® N nC0(k)] ©  ©  Covn-(r-l)k (r* B0(k)) given by
r a 2 '

[f: M-N] m - /’[Nl.tVx-M] , 2 m *  r -£— UlL* BO (k j] )for n>0, k>0.
v T r s2j rlr

I
y /£L r r

where f is a self-transverse representative.

Proof.- The result clearly follows from 4.28, 6.20 and 6.23 .

□
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Chapter 7: Cyclic reduction modulo bordism

In this chapter we study the problem of reducing, modulo bordism, the 

structural group of a bundle with group ^  / 0(k) to the subgroup 

Z r /0(k).

§7.1) On the cohomology mod. 2 of EG ̂  Xr

In this section we study the edge homomorphisms of a spectral sequence 
★ r*

converging to H (EG* X ;Z,).
G i

7.1 )Proposition.- Let X be space such that H*(X; Z 2)sH*(X) is of 

finite type, then there is a natural isomorphism

H*(EG x Xr; Z 2) s H*(HomG (B*, H*(X)®r)), where B* is the normalized 

Bar resolution and H*(X)QP r is considered as a cochain complex with trivial 

boundary and G acting by permutation. For simplicity we denote Z 2EG1=G.

Proof.- By 2.10 , S*(EG x Xr)= B* ®  H*(X)® r , where H*(X)®r
G G

has trivial boundary. Therefore Horn (S*(EGxXr);Z 9)a
2 G ^

= Horn (B* x H*(X)® r,Z,). We can give to 
G

Horn^ (H*(X)® r;ZZ2) a right G-action as follows: given 

f: H*(X)® r -*■ Z 2 we define f • o * f » 5 where 5(a^ ®...®ar) =

= aa-l(1) ®  aa-l(r) *

Now we apply adjointness [21] to get Horn, (B* ®  H*(X)®r; 7L?) s
*2 G

= Homg(B*; Horn ̂  CH*(X)®r; Z 2)).

As H*(X) is of finite type then the homomorphism y .

Vi: Horn z (H*(X); Z 2)® r -  Horn ̂ ( H ^ X ) ®  r; ZZ2) given by
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y (f-| ® .. .«  fn)Cai «••• ® ar )= f-|Ca-|)........fn(.an) an "isomo>"phlsm

[«-4]. if we give Horn.- (H*CX);Z,)®r the usual right G-action
£ *-

by permuting the factors then y is G-equivariant, in effect, we have

y ((fl «... ® f r)*CT)(a1 ®...®ar)= fcĵ l) (al)....fa(r)^ar^* on the other

hand y(f1 &... «  fr)*cr(a1 ®.. .& ar)=y(f1 «.. .® fr)°a(a1 ®...®ar) =

= y(f-| ® . ..« fr)(aa_-|ci)«...« fCT(l)ia-|)... fa(r)(ar)‘

Therefore we have HomG(B*; Horn z (H*(X)<X> r; Z 2)) a 

s HomG(B*; Horn Z ^(H*(X);2Z2)® r).

Finally we have Horn ̂  (H*(X);Z2)=H (X;Z2). Combining all the 

equivalences we get:

Horn -jj (S*(EG x X r) ; 2 J = H o m 77 (B* ®  H*(X)® r; Z_) s 
^2 G  ̂ ^2 G i

2HomG (B*, Homz (H*(X) ®  r; ZZ2)) s HomG(B*; Horn 2 (H*(X); Z 2)® r) =
2 -2

^Hom^B*; H (X) ). This gives the isomorphism. To see that it is

natural recall that in 2.10, we proved that if f: X -> Y then we

have a chain homotopy commutative diagram S*(EG*Xr) = B*eH*(X)® r

(1

G

S*(EGxYr) = r
G G

The second isomorphism is given by adjointness which is natural. One can

easily verify that the third isomorphism is also natural. For the last
★

one recall that under Kronecker duality f corresponds to Horn™ (f*).
^2

□

7.2) Defintion.- To define the spectral sequence notice that 

HomG (B*; H*(X)®r) is the total complex of the bicomplex of cochains
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Lp’q = HomG(Bp ,(H*(X)® r)q), if we denote (B*,3) then the coboundaries are 

6-j :Lp,q->-Lp+1,q given by 61Cf)=f°3 and 62: Lp,q - Lp*q+1, ^ = 0, 

because H (X) ® r has trivial boundary.

We give a filtration for Tot Lp,q= HomG(B*;H*(X) r) as follows, the

p.th filtration in degree n is given by Fp(Tot*)n = ©  ,n~̂
i *P

We have a spectral sequence associated to this filtration [30] which

we denote by {Ep,q, d„ }.r r

7.3) Proposition.- The spectral sequence {Ep,q, dr} converges to 

H*(HomG(B*; H*(X)lX’n)) = H*(EGx Xr; 2Z2) and Ep,q ~ HP(G;(H*(X)® r)q).

Proof.- The filtration F of Tot Lp,q satisfies, in each degree n,

0 c Fn(Tot*)c Fn_1(Tot*)c ...c F°(Tot*)= Totn, i.e., it is the canonical 

filtration so by [30] the spectral sequence converges to H (TotLp,q)= 

=H*(HomG(B*; H*(X)®r)) which is isomorphic by 7.1 to H*(EG>^(r; Z 2).

The spectral sequence associated to a filtration satisfies

EP,q = Hp+q(Fp(-)/Fp+^(-)), and from the definition of our filtration

it is clear that [ Fp(Tot )/Fp+^(Tot*)] p+q = Lp,q ; as <$2= 0,

then Ep*q £ Hq(HomG(Bp,H*(X)® r))=HomG(Bp;(H*(X)® r)q). One can show

[30] that under this isomorphism the differential d-| coincides with 

the coboundary 6-| of Lp,q, therefore E^,q = HP(G; (H (X)® r)q).
□

7.4) Proposition.- The spectral sequence { Ep,q, dr} collapses.

Proof.- We recall the definition of the spectral sequence. Let us denote 

Tot*. C*. Let Zp,q . {ae FP Cp+q |6(a)e Fp+r Cp+q+1> where

« . « , * % •  Ep-q. 7f-Vzfü-q- ' *

of degree (r,l-r).

and dp[x]=[6(x)]
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Lp,q = Homç(Bp,(H (X)® r )q), if we denote (B*,3) then the coboundaries are 

6i:Lp’q+Lp+1’cl given by ô1Cf)=f°3 and ô2: Lp,q - Lp *q+1, ô2=0, 

because H (X) has trivial boundary.

We give a filtration for Tot Lp,q = HomG(B*;H*(X) r) as follows, the

p.th filtration in degree n is given by Fp(Tot*)n = ©  »n_1
i *p

We have a spectral sequence associated to this filtration [30] which

we denote by {Ep,q, d }.r r

7.3) Proposition.- The spectral sequence {Ep,q, dr} converges to

H*(HomG(B*; H*(X)® n)) a H*(EGxXr;ZZ2) and Ep,q ~HP(G;(H*(X)® r)q).
G

Proof.- The filtration F of Tot Lp,q satisfies, in each degree n,

0 c Fn(Tot*)c Fn_1(Tot*)c ...c F°(Tot*)= Totn, i.e., it is the canonical

filtration so by [30] the spectral sequence converges to H (TotLp,q)=

=H*(HomG(B*; H*(X)®r)) which is isomorphic by 7.1 to H*(EG*Xr ; Z 2).
G

The spectral sequence associated to a filtration satisfies

EP,q = Hp+q(Fp(-)/Fp+^(-)), and from the definition of our filtration

it is clear that [ Fp (Tot )/Fp+1(Tot*) ] p+q = Lp,q ; as ô2= 0,

then Ep,q s Hq (HomG (Bp,H*(X)® r))=HomG (Bp;(H*(X)® r)q ). One can show

[30] that under this isomorphism the differential d-j coincides with 

the coboundary 5-| of Lp,q, therefore Ep,q = HP(G; (H (X)® r)q ).
□

- 7.4) Proposition.- The spectral sequence { Ep,q, dr} collapses.

Proof.- We recall the definition of the spectral sequence. Let us denote 

Tot*- C*. Let Zp,q . (a- Fp Cp+q |ó(a)a Fp,r Cp+q+1> where

»eh ep.i . zp.q/zp:j-q-’ + 5zp:;*'-qt'-2
of degree (r,l-r).

and dr[x]=[5(x)]
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We shall show that d^: eP ,q —* Ep+r>q+l_r is zero If r ^ 2. For this 

let a= (0,0.... 0, ap, ap+1,ap+2.... an)e FP Cp+q=n, then

dr(0,0,...,0, ap»ap+]»ap+2»•••»an)= (0,0.... 0,62(ap),6i(ap)+62(ap+1) ,

5l^ap+l^+52^ap+2^,,-,,<5l^an ^ ’ We have that dr Ca:i=[ 6 â^  and 

6(a)e Fp+r Cp+q+1, so as ra2, then 62(ap)=0, (ap)+<52(ap+l )=0

and as 62= 0, then 6-j (3p) = 0. Consider the element

b=(0,0,...,0, 0,ap+i,ap+2>...,an), then b £ Fp+1 Cp+q and we have

6(b) = (0,0,.,. ,0, 0, ^2(®p+l ̂ ’ 1̂ (ap+l )+®2(ap+2l *‘" *̂ i (an̂  * as d2=

then 6(b)= d [a] , therefore d [a] = 0. r r
□

Now we want to show that the edge homomorphisms make the following 

diagrams commute:

EP,°----- * EP’° = JP*° c HP(HomG(B*; H*(X)® r))

II ” ill
HP(G)£ HP(BG; Z,)---- P----- HP(EG x Xr; Z 9)

i G i

Hq(HomG(B*; H*(X)®r))= J0,q

ill
Hq(EG x Xr; Z ?) ------------

. ★ 1

E0,q_ >E0,q c E0,q =(H*(x)« r )q

n
-------------------► Hq(Xr )

where p: EGxXr-*- BG is the projection and i: Xr̂ -<- EGxXr the inclu- 
G S

sion, and we have 0 c Jn,° c Jn ^ c . . . c  J^,n= Hn(Tot );Jn’®= E^’0 

and 0P.q/jP+l.q-l B Ep*q .

In order to do this we need to prove some preliminary lemmas.



7.5) Lemma.- Let h: Z 2 ® S*(Xr) -* S*(EG) <3 S*(Xr) be the chain map

X0E Sq (EG)* Eet 4’: S*(EGxXr)-* S*(EG)csS*(Xr) be the equivalence given
G G

by the composition of the equivalences 2.2 , 2.4 , 2.5 . Then the 

following diagram is chain homotopy commutative

where the ifi's are the equivalences given by the Eilenberg-ZiIber 

theorem, and n is the projection.

The composition on the left-hand side of the diagram is i and the one 

on the right-hand side is h . The second square commutes by the 

naturality of the Eilenberg-Zilber theorem. The definition of <J> clearly 

implies that the third one also commutes.

To prove that the first square commutes consider the functors S*(-) and 

S*(xQ ) ®  S*(_) from the category of spaces to the category of augmented 

"chain complexes, both are clearly free and acyclic on the usual models.

2
induced by the map of bicomplexes given by

G
1 ^  a -+• Xg ®  a, where

G

S*(Xr)— ^  S*(Xr)

h

S* (EG)«S*(Xr) 
G

Proof.- Consider the following diagram: S*(Xr) Z 2 S 2 S*<xr>

j

^*(xq )z ® )

S*(EGxXr) S*(EG)f2S*(Xr)

S*(EGxXr)--- 1
G

n

S*(EG)«S*(Xr)
G
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Now consider the chain maps and jo= , both are maps of augmented

chain complexes and are natural so by the acyclic models theorem [19] 

they are chain homotopic, i.e., the first square is homotopy commutative.

where h was defined in 7.5, f is given by the Eilenberg-Zilber theorem,

F is the equivalence defined in 2.8 , and h is given by h(l Y)~

= 1 e ®y, where e eBg=Z2[ G ] is the zero of the group.

Proof.- Recall that to get the equivalence F we have to give an 

equivalence t: S*(EG) •+ B*, we can choose t as follows: given any 

Xg e EG we can form a G-basis for Sg(EG) by considering x Q and 

one point from each of the other orbits under the action of G, we can 

define then tQ: Sg(EG) ■* Bg by sending this G-basis to leeBg=Z 2[G], 

and then define the other t̂  for i> 0 to get an equivalence t:

□

7.6) Lemma.- We have a commutative diagram
ih ®  f

h 1
S*(EG)aS*(Xr) B* ®  S*(X)S  r

h

G G

e
- Sn(EG) -*... h-S^EG) h-Sq (EG)— >Z2

t,n t t
e

■+■ B B,0 Z.2n

By 2.1 (c) , F(xn ®a)= t(xn)® f(a)=le®f(a), for all ae S*(Xr)
u G G G

so the diagram commutes.

□
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7.7) Lemma.- Consider Z2 as a chain complex concentrated in dimension 

zero and with trivial G-action, and let e ; S*(Xr)+ TL2 be the 

augmentation, then the following diagram is chain homotopy commutative.

S*(EG x Xr) 
G ♦

S*(EG) <8 S*(Xr) 
G

idG®c

S*(BG), ■S*(EG) ®  Z, 
G *■

Proof.- Consider the following diagram:

S*(EGxXr
G

llj&id „
• S*(EGxXr)® TL~ — %— ► (S*(EG)«S*(Xr))®Z -f S*(EG)® S*(Xr) 

G *■ - G L * G

q oid
“G

(id^EiSid

S*(BG)- ------S*(EG) T L ---- —
Y G s &i d

(S*(EG)ze Z 2)® Z 2

where q: EGx Xr EG is the projection on the first factor, and the 

composition at the top is cf>.

The following diagram clearly commutes EG*X EG and y and y'

E6*X
ip
BG

are given by y(a®l)=p (a), y'(bsl)= p' (b), therefore the first square 
G * G

commutes.

Using the acyclic models theorem, as we did in 7.5, one can show that

id ®e ■>ip=(£)0 q , therefore (id e°^)®id=! ((s)°q ) ®  id so the
Z 2 2 2 G * G

second square is chain homotopy commutative.

Finally notice that id®e = (s)«id° (id®e)®id ',Z~\ so the commutativity
G G z2 G

up to chain homotopy of the diagram above proves the lemma.
□
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7.8) Lemma.- We have a commutative diagram

S*(EG)®S*(Xr)----- S*(X)®r
G = G

id® e
G idG e

S*(EG) ®  2 2 t(sid ■» B* ®  Z 2
u Q b

where F is the equivalence defined in 2.8 , and induced by t.

Proof.- By 2. ^ ( 2 ) F(w®a) = t(w) ®  f(a) for all we S*(EG) ,a eSQ(Xr),
Q G

where f: S*(Xr) —  « S^(X)®r. As f is a chain map of augmented chain

complexes then we have (id®e) F(wea)= id®e(t(w)® f(a)=t(w)® ef(a)=t(w)®e(a),
G G G G G G

on the other hand (t ®id) (id®e)(wsa)= t@id(w®e(a))=t(w)® £ (a).
G G G G G G Q

7.9) Corollary.- We have a chain homotopy commutative diagram

S*(Xr

S*(EG x X') 
G

■ Z A  H*(X)® r
2 Ii *

B* ®H*(X)
G

«  r

where h (1 = le® ~l .
^2 G

Proof.- It follows from 7.5, 7.6 and the fact that the following diagram 

clearly commutes

id ® a S  u fvi®'r>
77 m ® r  TL ®
Z  2 2 ® S*(X) ----- ----- * 2 Z 2

B* ®  S*(X)S  r ------— —  B* ®H*CX)'
id~«a® G

S  r

where a is the equivalence defined in 2.9
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7.10) Corollary.- We have a chain homotopy commutative diagram

S*(EGxXr)
G

P* ..
S*(BG ) —

B* ®  H*(X)
G
id®E6

B* ®  2,G 2

®  r

Proof.- It follows from 7.7, 7.8, and the fact that the following 

diagram clearly commutes

id ©E 
Q

where a is the equivalence defined in 2.9 .

7.11) Proposition.- The horizontal edge homomorphism of the spectral 

sequence {Eq,q , dr > makes the following diagram commute:

Hq(Homr(B*;H*(X)® r))= J0,q E0,q-> E°,q c E°*q = (H*(X)® r)q

III
-----------------------► Hq(Xr)Hq (EG x Xr; Z„) 

G c

Proof.- Let ft : ®  H*(X)®r - B*®H*(X)®r be the chain map of

7.9 and consider the following diagram:
Hom-^ ( ft,id)

V ®  f. 77  ̂ “ -2Horn -j, (B* ®  H*(X) ; Zp)-------
*2 G

S J *
Horn g (B*; H*(X)® r) ---

Horn (Z, ®  H*(X)® r; Z ?) 
*2 *

I "
> Horn ̂  ( Z 2; H*(X)® r)
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The isomorphism on the left-hand side was defined in 7.1. The same 

arguments used in 7.1 give the isomorphism on the right-hand side. This 

diagram defines a chain map k and one can easily verify that it is 

given by h(z)=l<>i . where TL2 -»■ B* is defined by T(l)=lee BQ.

Mow consider the following diagram:

Horn ̂  (S*(EGx Xr);Z2) 4  Horn 2  (B*«s H*(X)® r; Z 2) ̂ H o m G (B*,H*(X)® r)
2 G 2 G

(*)
Hom^ (1 #»id) Hon^(ft,id)

Horn 2^(S*(Xr) ; TL£ Horn n ®  H*(X)®r;Z )ï.Hom^( Z 2;H' ( X r  ')<S> rx

By 7.9 the first square chain homotopy commutative and the second one 

commutes by definition of h .

Consider Horn,. (Z„;H*(X)®r) as the total complex of a bicomplex,
2 c

then using the same filtration as in 7.2, we get a spectral sequence 

{ .EP»q, } such that

.EP.q = iEP.q = | Hom^^i 2 2;(H*(X)®r)q) = (H*(X)®r)q if p=0 

I 0  if pjtO

The map h is induced by a map of bicomplexes so it induces a morphism 

of spectral sequences h : Eq,q 'Eq,q . Consider the following diagram

Hq ( EGXXr h  Hq (Homr ( B* ; H* (X )® r ) )-~E°' ** E, , E°,q - Horn (z2tel}(H'(X)ar)V = ( H * ( X ) ® TT

★i

Hq (Xr) -Hom^(Z2;(H*(X) )q ) = 'Eot1='E o,q
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The commutativity of the first square follows from (*). The other squares 

commute because h is a morphism of spectral sequences [301
□

7.12) Proposition.- The vertical edge homomorphism of the spectral 

sequence { E ^ ,  dr } makes the following diagram commute:

e£’° --------Ep,0 = Jp>0 c Hp (HomG(B*; H*(X)® r))

/  . ¡»
HP(G) s HP(BG; 2„) -------2------- -Hp (EGx Xn; 2,)

L G L

Proof.- Let id«e=g: B* ®  H*(X)® r — *■ B* ®  2, be the chain map of 7.10. 
G G _ G

Then, as in 7.11, we have a chain map g defined by the commutativity 

of the following diagram:
Horn^ (g,id)

Hom^ (B* & ̂ 2» ^2) ¥ Hom ̂  (B* <& H* (X) \ ^
2 G 2 G

i- I =
HomG(B*; Z 2) ................. -*■ HomG(B*, H*(X)® r)

9

One can easily verify that g is given by g(£)= where 

j: TL^+ H*(X)®r sends! to and l=[e]: SQ(X) + Z 2.

Consider the following diagram:

Hom z (B*& Z 2; 2 2)_► HomG (B*; Z 2)

Hom -t, (S*(EGxXr); 2,) 
2 2 G z

(*)

Hom -tj (B*® H*(X)®r;Z„)-*HomG(B*,H*(X)®r) 
^2 G s b

2 “-Z G L ^

H°m^(p^,id) Hom77 (g,id) 
2̂
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By 7.10 the first square is chain homotopy commutative and the second 

commutes by definition of g.

Consider HomG(B*, 2 2) as the total complex of a bicomplex, then using 

the same filtration as in 7.2 we get a spectral sequence {"Ep,q , dr"} 

such that "EP’q = / HP (G; Z 2) if q=0

The commutativity of the last square follows from (*). The other commute 

because g is a morphism of spectral sequences.

§7.2) Cohomology of topological groups

In this section we give some results on the cohomology of topological 

groups that we shall use in the next section.

7.13) Definition.- In C41] G. Segal showed how to define cohomology 

groups of a topological group G with coefficients in a topological 

abelian group A (on which G acts continuously ) by a derived functor 

method analogous to the one for defining cohomology of discrete groups. 

More specifically, let G be a compactly generated Hausdorff topological 

group and denote by G -Topab the category of compactly generated Hausdorff 

topological abelian groups on which G acts continuously and continuous 

G-equivariant homomorphisms.

0 if q^O

the map g induces a morphism of spectral sequences g:"Ep,q ■* Ep,q . 

Consider the following diagram:

*
g2 --id g p

EP’° = Hp (G;Z2) Ep,° ^  Hp(HomG(B*;Hr(X)x r) Hp(EGxXr;^)
= G

□
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We have the functor r*: G-Topab -*■ Ab , where Ab is the category of

abelian groups, which associates to AeG-Topab its G-invariant sub-
G

group r (A). Then using suitable resolutions he defines right derived 

functors Rn rG(-).

The relation of the groups Rn rG(A), when A is discrete, to the

cohomology of BG is as follows. Consider p: EG BG, we define a
r - 1sheaf of abelian group crA, on the space BG by crA(U) = Map (p (U),A),

Q
where Map (-,-) means G-equivariant maps. This is the sheaf of

continuous sections of EG*A BG. With this notation we have:
G

7.14) Theorem [411 If A is discrete then there is a natural 

isomorphism. Rn r G(A) s H n(BG;aA).
□

7.15) Corollary.- If A is discrete and the action GxA -»A is trivial 

then Rn TG(A) £ Hn(BG; A) .

Proof.- If the action is trivial we get the constant sheaf, and we can 

find a BG such that it is a C.W.-complex [491, so BG is paracompact, 

Hausdorff and locally contractible, therefore by [44],

Hn(BG; A)s Hn(BG; crA), and by 7.14, Hn(BG; cA)=Rn rG(A).

□

7.16) Definition.- Let Ae G-Topab, we denote by Kom(G.A) the abelian 

group of crossed homomorphisms from G to A (i.e., continuous functions 

f: G -*■ A such that f(g] g2)= f(g-,)+ g ^ f ^ ) )  modulo the subgroup of 

principal crossed homomorphisms (i.e., those f of the form

f(g)= g-a-a for some aeA).

7.17) Theorem [411 .- There is a natural isomorphism

R1 T G(A) s Kom(G.A).
□
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7.18) Corollary.- If A Is discrete and the action of G is trivial 

then there is a natural isomorphism H1 (BG;A)sHom(G;A) where ,Hom(G,A) 

is the group of continuous homomorphisms.

Proof.- By 7.15, H1 (BG; A)s R1 ̂ (A) and by 7.17 R1 rG(A) sKom(G.A); 

as the action of G is trivial then the crossed homomorphisms modulo

the principal crossed homomorphisms is just the continuous homomorphisms.

□

7.19) Definition.- Let AfG-Topab, a topological extension

0 —  A — !-» E -5-» G — »0 is an exact sequence of topological groups such 

that i is an embedding of A as a closed subgroup of E, p is a 

principal A-bundle inducing a topological isomorphism E/A s G, and the 

action of G on A induced by p coincides with the given action.

We say that two extensions 0 A — !-> E — G —»0 and

0 — »A — — > E1— P > G -»0 are isomorphic if there is a continuous

homomorphism f: E -*• E1 making the following diagram commutative

0 ------ A —  -----E— E— *- G ---- -0

II U II
0----- ►A--------E'---- - G ---- -0

1' P'

In this case f is clearly a topological isomorphism. We denote by 

Ext(G;A) the set of isomorphism classes of topological extensions.

We can make Ext(G;A) into a bifunctor as follows: given a continuous 

homomorphism 4,: G -+G\ <}>*: Ext(G' ;A) -*■ Ext(G,A) associates to an 

extension E, the pull-back extension: <$>*(E)-----*■ E

♦
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If y; A-»-A' is a continuous homomorphism then y*; Ext(G;A)-». Ext(G;A')

associates to an extension E, the extension Y*(E)= Ex A 1 where the
A

action Ax A'-»-A1 is given by a-a' = y(a)a'.

We can make Ext (G;A) into an abelian group as follows: given two exten­

sions E, E1 consider their product ExE', let a: G -*• Gx G be the 

diagonal, then the pull-back a*(Ex E ’) is an extension over G with 

fiber Ax A, and as A is abelian, the product map Ax A ii A is a 

continuous homomorphism, so we define E+E1 = y*A*(ExE').

7.20) Theorem [41].- There is a natural isomorphism R^r^(A)= Ext(G;A).

□

7.21) Corollary.- If A is discrete and the action of G on A is
2

trivial then there is a natural isomorphism H (BG; A)s Ext(G;A), where 

Ext(G;A) is the group of topological central extensions.

Proof.- By 7.15, H2(BG; A)sR2rG(A), and by 7.20, R2rG(A)s Ext(G;A), 

as the action of G on A is trivial then the topological extensions 

are central.
□

In the case G= 0(k) and A= Z 2> the Stiefel-Whitney classes are 

identified in terms of homomorphisms and extensions in the following 

theorem.

7.2 2) Theorem [ 2 9 ] a) w]e H1 (B0(k); Z 2)s Kom(0(k); ZZ2) corresponds

to the determinant map d; 0(k) -*■ •

b) In H2(B0Ck); Z 2)s ExtCO(k); Z 2) the correspon­

dence is as follows:

0*-*■ trivial extension; w2 *-*■ the pull-back under d: 0(k)—̂̂ 2
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extension 0+ Z 2 + Z4 + Z 2 -0 ; + w2 ►* 0 - Z - P i n  (k)-0(k)-*0

We can obtain w2 by considering the sum, defined in 7.19, of the
2 2extensions corresponding to and w^ + w2 .

□

We finish this section with two results that we shall need later.

7.23) Proposition.- Let G be a finite group, then Hn(BG; Z 2 [G ]) = 0 

for n > 0.

Proof.- Hn(BG; Z 2CG]) = Extnz j-G (̂ Z 2, Z.,[G]). By [20] we have

ExtZ 2CG]( 2 2’ Z 2CG:> a ExtZ[G]( Z ’ z 2[G])-

Let ...-*■ Fn F-] -*■ Fq -► Z -*• 0 be a free Z[G]-resolution of Z

and consider: ... ■+- Horn Z[G]^En ’Z 2EG^  Worn 2[G]^E1 ’ ̂ 2^G "̂

Horn 2[G]^E0* ̂ 2 EG^  G

Now, as G is finite, then Z 2[G] sHom z ( Z[G] ; Z 2), therefore, using 

adjointness, we have Horn 2 [g ](F*, Z 2CG])s HomztG1(F*, Horn Z (Z [G], Z 2))s

* Horn z ( Z[G]2 ®g ]F*, Z 2) = Homz (F*. Z 2).

We then have Hn(BG; Z 2[G])s Extnz[Gl ( Z, ZgCG]) sExt Z (ZZ , Z g) = 0 

for n > 0.
□

7.24) Definition.- Let G be a finite group and A a commutative ring, 

then H*(BG; A) is a graded ring with the cup product. Using the Bar 

resolution one can see that in terms of homomorphisms and extensions the 

cup product is given as follows:
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If we denote the group operation in G multiplicatively, then given 

a,3 e Horn(G,A)s h '(BG; A), a u pe Ext(G,A)~ H^(BG;A) is the extension 

0 A -*■ A* G -*■ G -*-0, where A* G is Ax G as a set and the group 

operation is defined by : (a-, ̂  )• (a2, g2) = (a1+ a2+o(g1 )B(g2),g-j g2), 

where a (9-|) ¡3 (g2) is the product in the ring A.

7.25) Definition.- Given a group G and a representation r: G -*-0(n), 

we define the Stiefel-Whitney classes of r by w^(r)= Br*(w1-), where 

Br : BG -»B0(n) and w-= w^(y(n)).

Using the definition of cup product given in 7.24 one can prove the 

following.

7.26) Proposition C293 .-Let <r e£n and denote by <a> the subgroup

generated by a and by i: <a>&*En the inclusion. Let 0(n)
2

be the permutation representation then w-|(p°i) = 0  if and only if 

(-1 )c2+c6+"‘"+c4k+2+‘”  = 1, where ĉ  is the number of i-cycles in 

the decomposition of a.
a

§ 7.3) Cyclic reduction modulo bordism

In order to study the cyclic reductions modulo bordism we need the 

following theorem.

7.27) Theorem [is].-Let <|> : X -*Y be a map between spaces of finite type 

(i.e. their mod. 2 homology is of finite type). The necesary and sufficient 

condition that CM ,f e N (Y) lie in the image of <|>*:Nn(X)- N p(Y) is 

that every characteristic number of [M,f] associated with an element

in the kernel of q : H*(Y, Z 2) -*H*(X; must vanish.
□
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Note: This theorem is stated for the case when X and Y are finite 

complexes but it is easy to see that all they have used is the assumption 

that each Hn(X; Z^) and Hn(Y, Z 2) iS finite dimensional over TL

7.28) Corollary.- Let X be a connected space of finite type then an 

element [M,f]€ Np(X) is contained in Np c Np(X) if and only if every 

characteristic number of p M,f] associated with a positive dimensional 

cohomology class is zero.

Proof.- Take x0 e X, and let i: ix0} =-*X be the inclusion, then 

i* : Hn(X) -*-Hn({x„}) is zero if n> 0 and an isomorphism if n=0. 

Therefore the result follows by applying 7.27 to the map i.
□

7.29) Proposition.- Let r be odd, then an r-covering over a closed 

manifold has a cyclic reduction modulo bordism if and only if it is 

bordant to the trivial covering.

Proof.- By 6.20 , the bordism of m-coverings is isomorphic to N*(BZr). 

Let i: Z r Er be the inclusion then an r-covering has a cyclic 

reduction modulo bordism if and only if it is in the image of 

Bi*: N*(B Z r) - N*(BZr). By [ 21 ] Hn(B 2Zr; Z 2)= 0 if n > 0 .

Therefore the characteristic numbers associated to any positive dimensional 

cohomology class of an element in imBi* are zero so by 7.28, im Bi*= N*.

□

7.30) Proposition.- Let r be even and consider Z p c S1 c c acting 

on S1 by complex multiplication, then the cyclic covering S1 -*■ S1/ 

is not bordant to the trivial covering.
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Proof.- The pap classifying the covering S1 -*-S'/Zr is given as 

follows. Let Z^ = {6,1,...,r-1} and r= fl,2,...,r} , consider the 

bisection f: r given by f(l) = 1, f(2)= 2,..., f(Fn)= r-1 and

f(0) = r, then the action of Z r on ZẐ , by translation corresponds, under

f to the usual inclusion i: therefore we have:
E Z r ¿f  , E  Z r j  Z , = I I r

B Z

If we take as E Z^= S , then we have a pull-back:

S' sEV z rr E l * r

I I I I
s' / s / Z r = B Z i r BZr

<t>

Therefore we have to consider [S’/Z^, Bi °93e W-j (Bzr) and by 7.2S it 

is enough to find a non-zero characteristic number associated to a positive 

dimensional class in H*(B ; Z 2).

Consider the permutation representation £r -̂ — *-0(r), and take

w-,(p)e H'(BLr; Z 2), by 7.18 and 7.22. a), W-] (p) corresponds to the

composition E — £-*• 0(r) — zz2, therefore Bi*(w1(p)) corresponds

to Z r- ± -  Er-S 0(r) - l . Z 2 , as r is even , then the permutation

(1 2 3 ... r) is odd so Bi* (w^p)) 1 0.

To evaluate ((>* we have the following [5 21 : H^BZ^ ; Z 2 ) a

a lim H’(S2n+1/Z ̂ Z ?); H, (S]/Z ; Z)s Z; H,(SM ®  ; Z)= Z .  (n si) 
n sO r 2 l r l r r

and the homomorphism (S2^ / Z r; Z) -*• H^(S2i,+ 1/® r,; Z) (for k< i.) is 

an isomorphism for q < 2k+l and an epimorphism for q = 2k+l.

By the universal coefficient theorem we have the following commutative 

diagram (for k < i):
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0-*H-|(S2k+1

I
/Zr;ZZ)®ZZ2-H1(S2k+1

I
/Zr;Z,) ̂ Tor(H0(S2k+1/Zr;Z ); Z £) - 0

0 ->H1 (S2£+1/C r ;Z Z )® 2 2 -^H1 (S 2£+1 / Z r^ ^ T o r ( H 0(S^T7Z^.;Z );Z2) + 0

The Tor groups are zero so applying duality we get:

Z 2)* H^S3/ ^  Z 2) iH’tS^Z^Zg) i

Hence $ : H1( B Z r; Z 2) H1 (S’/Z ; Z 2) is an isomorphism, and then

cj)*(Bi*(Wi (p ) 0, as the Kronecker product is non-degenerate, then 

< )* (w^p)), 0<S1/Zr)> t 0.

7.31) Proposition.- Let r be odd, then a vector bundle with structural 

group Zp/Oik), over a closed manifold, is bordant to a bundle with 

structural group Z  / 0(k) if and only if it is bordant to a bundle 

decomposed as the sum of r, k-vector bundles.

Proof.- We have an exact sequence 0 -+ 0(k)r->- Z / 0(k) + 2 r +0, 

therefore we have a covering B(0(k)r) —£->. B(Zr/o(k)), let x be

the transfer for this covering, then the composition

is the identity hence p* is surjective. By naturality of the isomorphism

N*(X) s H*(X;Z2) ®  n* , we have that p*; N*(B(0(k)r))-»N*(B(Zr / 0(k)) 
Z 2

is surjective. The following diagram clearly commutes:

□

2 r / 0(k)c— 1» Zr /0Ck) inducing a commutative diagram:

0(k)r
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N*(B(2Zr /0(k))
Bj*

N*(B(Sr /0(k)), as

P*=Bi

N*(B(0(k)r))

p* is surjective then 
im Bj* = im Bi* .

□

7.32) Proposition.- Let r be even then the vector bundle

5 = S1 x ( IRk)r - S"*/ 2 , where the action of Z on ( lRk)r is
Z r rr

• kgiven by cyclic permutation of the coordinates (v-|....vr), v-e F

(1 £ i < r), satisfies:

a) £ is not bordant, as Zr / 0(k) bundle, to the trivial bundle.

b) 5 is not bordant to a bundle decomposed as the sum of r k-

vector bundles.

Proof.- The bundle £ is classified by the map:

s’/Z r V  SX -  = B 2r ^ T  B ( Z r/ 0 ( k ) ) ^ -  B(zr /0(k))

To prove a) we need, by 7.28, a non-zero characteristic number 

associated to a positive dimensional class in H*(B(zr / 0(k)); Z 2). 

Consider the representation given by i / 0(k) -i- zr~Z 0(r), where

n(a, A1.... Ar)=a , and take w-, (p»m) e H1 (B( Er /0(k)); Z 2), by 7.18

and 7.22 this class corresponds to the composition:

z^ 0 ( k ) ^ i : r^ 0 ( r ) i  2 2, therefore (Bt*° Bj*)Cw1(p it)) corresponds

to the composition U Z r / 0(k) zrf 0(k)^*ir~£ 0(r) ^ Z 2

which is not zero because the permutation (1 2 ... r) is odd, so

Bi* Bj*(w-| (p«tt))^ 0. In the proof of 7.30 we saw that

<j>*; H1 (B 2 r; Z2) “ H^s'/Z,.; Z 2) was an isomorphism, when r is even
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so, as the product <,> is non-degenerate,

<(Bj Bi°4>)*(Wi (p °tt)) , a(S’/ Z r)> t 0.

To prove b) we need, by 7.27, a non-zero characteristic number associated 

to a class in the kernel of Bl*-. H*(B(z/0(k) ) ;Z2)-* H*(B(0(k)r) ; Z 2). 

Consider the class that we used in a), w.j(p°iT)e H'(B(Er/0(k) ) ; Z 2), 

then Bl* w,(po^) corresponds to the composition

0(k) /0(k)-ü 0(r) — TL̂ , but im^= ker it so Bi* w-j(p<>Tr)=0

and in a) we saw that <(Bj ° (po-jr) ) ,a(sV Z r)> = 0.

*2
(n >2) then this covering has no cyclic reduction (modulo bordism).

By 7.27 it is enough to find a non-zero characteristic number associated

The inclusion j: Z «=-*- Zr sends the generator to the permutation

On the other hand H*(B£2; Z 2)s Z 2[e] , where e eH'(BZ2; Z 2), and

0

We now give examples where there is no cyclic reduction.

7.33) Proposition.- Let

and consider the r-covering Sn* r Pn. If r / 4m+2 and n is evenLn

Proof.- We have a pull-back diagram:

to a class in the kernel of Bj*: H*(Bzr; Z 2) H*(B Z r; ZZ2). 

Consider the permutation representation p : £.-*-0(r) and take

wl(p)2 eH2(BZr; Z 2).

(1 2 3  ... r) and as r^4m+2, then by 7.26, Bj*(w^(p)2) = 0.

Ba*(w^(p)) corresponds to the composition E2 -^*Ir-^*0(r) — Z 2
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which is non-zero, therefore Ba*(w^(p))= e so Ba*(w-|(p)2)= e2 t 0.

We also have that [49] ^ : Pn=-* p°°= B 2̂  induces a homomorphism 

4> : H \ B 2̂; 2 2) -*H’(Pn; 2 2) such that it is an isomorphism if i ^ n, 

so if we denote <f>*(e)= en> then <j>* B a*(w-|(p)2) = e2 and as n is even 

then w-| (Pn)=en [3fe] . Hence < W] (Pn)n"2(Ba *)*(w1 (p)2) ,a(Pn) > =

= < e n " 2 e n* a ( P n )> = < ej  , a  (Pn ) >  t 0.

□

In order to give the examples in codimension greater than zero we need 

the following.

7.34) Proposition.- Consider the exact sequence

0 -*■ 0(k)r— 2  / 0(k)— *-2r -*• 0 and define a section

s: 2 r -*• Z / 0(k) by s(a)= (a,I,...,I), where I is the identity

(k x k)-matrix, then a class ze H2(B( 2 r /0(k)); Z 2) is zero if and
•k

only if Bi*(z) and Bs (z) are zero.

Proof.- We take B( 2  rO(k))= E Z * B0(k)r. The homology mod. 2 ofr r ¿-y
B0(k) is of finite type so by 7.3 we have a spectral sequence

{E^,q, dr> such that E^,qs HP(B 2 r;(H*(B0(k))® r)q) and converging

to H*(E 2  B0(k)r; 2 2); furthermore, by 7.4, this spectral sequence

collapses, so Ep,q = Ep,q and, as we are working over a field, there

is no extension problem therefore we have that

. Hn(B( 2  r 0(k)); 2„) s 0  Ep,q . 
r p+q=n

We have a filtration:

and if p: E 2  £  B0(k) r

En,0=Enj,0=Jn,0a  jn-1 .. c j0>n=Hn(BZr;H*(B0(k)) 

r._> B 2^ denotes the projection and

),
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v : BO(k)r *-+ EZZ £ BO(k)r the inclusion then by 7.11 and 7.12 we 
r

have commutative diagrams:

a) Hq (Homz  (B*; H*(B0(k)} ® r)) E° ,q= E2’q c E°,q=(H*(B0(k))® r)q
. . .  '
n

Hq ( E 2 r  z x  B 0 ( k ) r ;  Z , Hq(B0(k)r; Z 2)

b) Hp ( 2 r)cEP»° = eP»° = Jp,0c jP"1,1^ * H P(Hom77 (B*; H*(B0(k))® r)TL

211
HP ( B  2  ;  2 2 ) HP ( E V 2  B 0 ( k ) r ;  Z ? )

We have exact sequences 0 Jp+^,q  ̂ -*• Jp,q -*• E^,q + 0 

In the case n=2 we h a v e ©  0 •* J2,0 -»-J1,1 -*• E^’1 0

©  o - J1’1-? H2(BZZr ; H*(B0(k))®r)-E°’2+ 0

These groups are: e 2 , 0
oo

II m
ro

 r
o o ii J 2 ’ 0  =  H2 ( B  z r ;  2 Z 2 )

E 1 ’ 1
OO

-  E 1 ’ 1 = 
L 2

h ’ ( B  Z r ; ( H * ( B 0 ( k ) ) ® r ) 1 )

e 0 , 2
OO

_  r 0 , 2  .
■ tZ "

[ ( H * ( B 0 ( k )  ) ®  r ) 2 ] Z Z l"c E 0 , 2

The coefficients of E^*1 are

( H * ( B 0 ( k ) ) ® r )  = . 0
ir

( B 0 ( k )  ) ® . . . ® H  r ( B 0 ( k ) ) .

i 1+i 2 + . ..
* V '

permutation module, i.e., we have a basis which is invariant under the 

action of 2 r> in effect, let aQ £ H^(B0(k))s Z 2 and

a-je H1(B0(k)) s Z 2 be the generators, then we have a Z 2~basis of the 

form {(a-j ®  aQ ®...®  a0>0,...,0), (O.ag ®  a-j ® . .. ®  aQ),...,

(0,0.... 0, aQ ®  aQ ®... ®  a-j)} = S ; there is only one orbit under the
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action of Z r on S and the action Is free, therefore 

(H*(B0(k)® r)1 s Z 2 [ 2 r ] . Hence E^’1 = H1 (B Z r;(H*(B0(k))®r)1) =

= H^(BZr ; Z 2 [ 2^ ] ) and this is zero by 7.2 3. Then the exact sequence ©  

becomes E^*^= e |*^= > putting this in (D we

get an exact sequence 0 h-E2,0 — ^Uh2(B ZZr;H*(S0(k))® r)-E £°*2 0.

Combining this sequence with a) and b) we get a commutative diagram:

0 - E2,0— ^-*H2(B Z r; H*(B0(k))® r) J l ^ E ® ’2 -* 0

«1 1» I*
0 - H2(BZZ ;ZZ,) ----- ► H2(E2 £ B0(k)r;2?)— image t* -* 0r 2' p* r 2 r ^

Now notice that the bundle E 2 r | B0(k)r— ► B 2 f, has a section s

defined as follows: we take a point xe B0(k) then (x,x,...x)e B0(k)r 

is a fixed point under the action of 2.. so it defines a section 

S[ a] = [a, (x,x,...,x)] .

We can then define an isomorphism <j>: H (E 2 r |  BO(k) ; TL^)— *
= ? ^— >H (B Z r; Z 2) ©  image \* by $ (z) = (S*(z), i*(z)) so a class

Z £ H 2(E Z r ^  B0(k)r; Z 2) is zero if and only if S*(z) and i*(z) are 
r

zero.

Finally we identify S and t. with the maps of classifying spaces as 

follows. We are taking E( 2 r / 0(k))=E Z rx E0(k)r— » E Z rxE0(k)r/^,/ 0(k) =

~ EZZ * B0(k)r. The map S; B 2  — ►E 2 2  B0(k)r is induced by the 
r “ r ' r

inclusion E Z rc-» E ZZr x E0(k)r which is clearly s-equivariant so

Bs= S. The map i : B0(k)r- * E 2  * B0(k)r is induced by the inclusion
r

E0(k)r<=— * T x E0(k)r which is clearly i-equivariant so Bi = i .
___ r □
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7.35) Proposition,- Consider the vector bundle Sn* ( ]Rk)r_^ pn ,
k r %where acts on (IR ) by permuting the first two coordinates in
t,

(v-j ,v2»... .vr), v^e R , Is is r. If n is even and r ? 4m+2 then 

this bundle has no cyclic reduction (modulo bordism).

Proof.- The classifying map for the bundle Sn£ ( JR^)1"— >. Pn is given
E2

by the composition P c--- » P°° = B --->Bz --->- B(z /0(k)) where
4> c Bex r BY r

a : Z2 -*• is given by

a (T) 1 2 3....  r

2 1 3,..., r
and y. z Z f 0(k) is given by

y(o)= (a»I,...»I)

where I is the identity (kx k)-matrix.

By 7.27 it is enough to find a non-zero characteristic number associated 

with a class in the kernel of Bj* :H*(B(zr / 0(k)); Z 2) H*(B(Zr / 0(k) ;Z2)

Consider the representation Er / 0(k) ^ ■» Zr - p--» 0(r) and take 

w^peu)2 « H2(B(zr /0(k)); Z 2); then by 7.18 and 7.22, Bj*(w-, (p° tt) )

corresponds to the composition:

Z /0(k) i f 0(k) zr — ^  0(r) ZZv  Now if we take

P  d
Bs*(Bj*(w1(p<.ir))) where s: Z r - Z r /0(k), we get T L ^  zr— » 0(r) + Z 2, 

so as r  ̂4m+2 then by 7.2 , Bs*(Bj*(w-| (poir) )2) = 0 .

On the other hand if we take Bi*(Bj*(w-| (p° -it))) where i: O(k)1̂- ZZ^/ 0(k)
2

we get the trivial homomorphism so Bi*(Bj*(w-| (p07T)) )= 0. Therefore, 

by 7.34, Bj*(w^ (pQir)^)= 0.

Now we want to evaluate (BY°Ba0$) *(Wi (p °tt)2) • The element B<** BY *(w-j (pon)) 

corresponds to the composition



117 -

^2— /°(k) — >2̂ .-»- °(r) — ^  Z2» which is Just
a y  it p

a p d
2̂ ■*■ £p— * 0(r)--->Z2 , this composition is not zero so

Ba* By*(w-| (poir))= e where H*(Be2; Z 2)s 2Z2 [e] and, as in the proof

restriction of e to Pn. Finally, as n is even w^(Pn)= en so

< w1(Pn)n-2(BY" B a » * ( w 1(p=TT)2), a(Pn) > = < e"'2 e2, a(Pn)> = 

=<e", o(Pn)> / 0.

7.36) Remark.- In the proof of 7.35 we have to work with the second 

cohomology groups because of the following. From the calculations above 

one can easily obtain that H1 (B(Zr / 0(k));ZZ2) s 2Z2 ©  Z 2 and

H1 (B( / 0(k)); Z 2) =1 Z 2© Z 2 if r is even

l Z 2 if r is odd.

Let f: Er /0(k)-+Z2 be given by the composition

£r / 0(k) 0(r) — — . Z 2 and g by the composition

and Bj*(g)?i 0. If r is even Bj*(f) Bj*(g) and hence Bj* is an 

isomorphism.

of 7.3 3 we have that (By,Ba°<i>)*(w.| ( p °tt) 2 ) =  e2 where en is the

□

Sp/0(k) / Z 2 - ^ Z 2, where xp(cr, t1.... tp)= ti ••• V  »

then {f,g} is a Z 2~basis for H1 (B(Er /0(k)); Z 2).

Let j: Z r / 0(k)«-> Lr f 0(k) be the inclusion then
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Chapter 8.- Dyer-Lashof operations on Eilenberg-MacLane spaces

In this chapter we show that the Dyer-Lashof operations in the homology 

mod. 2 of an Eilenberg-Mac Lane space K(A,n) are zero, without using 

the cohomology of the spaces K(A,n) and hence this is valid for any abelian 

group A. An algebraic proof for the case k=TL^ can be found in [32] .

8.1) Definition.- Let X be an abelian topological monoid, then we

can make X a <f -space by defining g  (k) x xk ek by

6|̂  [c , x-j, x 2 , . . . ,  X|̂  ] = X-| '2 ••• k* Then, as we saw in chapter 2, we

have Dyer-Lashof operations in bordism Q^: Nn(X) N.2n+r (X) and in

homology Q^: Hn(X; Z 2) - H2n+r^X ’ Z2^' ^eca^  that the operations 

Q.j are given by the composition (2.24):

Wn(X) * W S l !  Xx X) ^ 2 n +r ( C ( 2 ) £  x* > - .(X) ,* N2n+rv 

S°° . If wewhere q“ [M,f]= [Sr * M»M, i fxf] and i : Sr<
I ¿ j £  ¿<2

denote by m: XxX ->• X the product in X and by in: X 2 X -► X the 

map induced by m, then it is clear from the definition of e2 that 

the operations Qr are given by the composition

m*

Nn(x) 2n+r(S" ? XxX) 
l 2

W X I2X) 2n+r(X), where

H : S°° * X x X + X  * X is the projection.

8.2) Definition.- Let M be a closed manifold, we denote by
1 r+] 

P(TM ©  er+ ) the projective bundle associated to the bundle TM ©  e ,

the sum of the tangent bundle of M and a trivial (r+1)-bundle.

Given a map f: M — »X consider the composition

P(TM ©  er+1) — !E-* M -i->X £ X , where p is the projection of the

projective bundle and g(a)= [ f(a), f(a) ].
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8.3) Proposition.- The pairs (Sr * Hx M,n° (\„x fxf)) and

(P(TM © e r+^), g°p) are bordant in X * X.
%

p x  "1
Proof.- Consider the manifold D xllxH and define a ^-action

wX "I
by (b,x.|,x2)' ("b » x2,x.j), where b eD , e M. Consider an

inclusion Dr+^ — 1j-> S°° such that the following diagram commutes

Then we have a variant map: Dr+  ̂x H x M ---->- S“x X>0(--->- X x X
jxfxf proj.

r+l
The action of ^  on D x Mx M is not free, the fixed points are

I
the image of the embedding e: M<^-D x Mx M given by e(a)=(0,a,a).

r+l
Notice that this embedding is the composition of M0-»- D >MxM ,

A ,P+lhence the normal bundle of e, ve satisfies ve s TM ©  e . We can 

find a tubular neighbourhood D = D ( v e) such that the action on D
o

coincides with multiplication by (-1) on D( v„) [9] . Let D
r+l °denote the interior of D, then the manifold D x Mx M-D has a free 

^-action and s(Dr+1 x Mx M-D)= Srx M x M a S(TM ® er+1), the restriction 

of proj.° j xf xf gives an equivariant map to XxX, which we denote 

by F.

By [4 81 we can find an equivariant homotopy H, leaving fixed 

Srx Mx M such that HQ = F; H1 and F coincide on the fixed points

and the value of H-| on D is given by the composition: 

q F |e(M)
D S D( ve) ---->e(M) ------ h. Xx X, where q is the projection of the

disc bundle. As everything we have done is Z2-equivariant we can pass 

to the quotients and then H-|/E2: Dr MxM-D/E^ -*• X £* X is a
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cobordism between ( Sr x M x M II°(\ x f * f) ) and

(S(TM© er+1)/S- = P(TM S> er+1), g - p).
□

8.4) Proposition.- If X is an abelian topological monoid then the 

operations Qr are zero, r> 0.

Proof.- By 2. 33 we have the following commutative diagram:

Nn(X) W2n+r(X)

v I
V X>Z 2> —  H2n+r(X^ 2)

The homomorphisms y are surjective so given XeH (XjZg) take 

[M,f] e ^n(X) such that p [M,f] = x; by 8.1 Qr[M,f] = m*It* q*[M,f], 

but by 8.3 n* q“[M,f] = [P(TM ®  er+^), g°p ]. The image
pxl

of the fundamental class ct(P(TM Q> e )) under

p*: H2n+r(P(™  ®  er+1); 22> - H2n+r(M; 2 2) = 0 is zer0 » therefore

Qr(x)= Qry[M,f] = Q [M,f3 = 0. r r r Q

8.5) Proposition.- Let A be an abelian group and let K(A,n) be an 

Eilenberg-Mac Lane space then the Dyer-Lashof operations on the homology 

mod. 2 of K(A, n) are zero.

Proof.- The space K(A,n) is an infinite loop space so it is a 

¡f^-space. By [213 there exists an abelian topological monoid K and 

a homotopy equivalence £ : K(A,n)^»K such that £ is a map of 

^-spaces where the j^-space structure for K is the one defined in 8.1 

Therefore we have a commutative diagram:
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Qr
Hn(K(A,n); 1 )̂ — L» H2n+1 (K(A,n); Z2) 

l* = = 4 ,

Hn(K; Z 2) -----^  H2n+r(K; Z 2)

By 8.4 the operations on K are zero and hence the operations on 

K(A,n) are also zero.

8.6) Remark.- The result above is not true for the operations Qr in

bordism. For example, if we take P°° = K(Z2,1), and

[Pn, il e Wn(P°°), where i: Pn,;-*- P°° , then if n is even,

Qq [Pn , il / 0 because Pn x Pn is not a boundary.
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