A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/113050/

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

ON IMMERSIONS AND DYER-LASHOF OPERATIONS

By Marcelo Alberto Aguilar

Thesis submitted for the degree of Doctor of Philosophy at the University of Warwick.

Mathematics Institute University of Warwick Coventry, England
December, 1984.

CONTENTS

Acknowledgements iii)
Summary iv)
Introduction v)
Chapter 1 : Generators for the bordism of embeddings. 1
§1.1) The Thom class. 1
§1.2) The bordism of $B O(k)$ 5
§1.3) Bordism of embeddings. 13
Chapter 2 : The Dyer-Lashof operations 18
§2.1) The homology mod. 2 of $E G \times X^{r}$. 18
§2.2) Dyer-Lashof operations in homology. 25
§2.3) Dyer-Lashof operations in bordism. 27
§2.4) Relation between the operations in bordism and in homology. 32
Chapter 3 : Generators for the bordism of immersions. 37
§3.1) Bordism of immersions. 37
§3.2) Calculation of $N_{\star}(Q X)$. 41
§3.3) Geometric interpretation of the operations 43$\tilde{Q}_{r}: N_{\star}\left(Q M 0_{k}\right) \rightarrow N_{\star}\left(Q M O_{k}\right)$.
Chapter 4 : Multiple points of immersions and characteristic numbers. 53
54.1) Multiple points of immersions 53
§4.2) $F\left(\mathbb{R}^{\infty} ; r\right)_{\Sigma_{r}}^{\times} B O(k)^{r}$ as a classifying space. 55
54.3) The splitting of $I(n, k)$. 57
Chapter 5 : Reduction of the structural group modulo bordism. 68
Chapter 6 : Another interpretation for the groups 75

$$
N_{\star}\left(F\left(\mathbb{R}^{\infty} ; r\right)_{r}^{\times} B O(k)^{r}\right)
$$

§6.1) The functor $\left[{ }_{-}, E \sum_{r}{ }^{\times}{ }_{r} Y^{r}\right]$. 75
56.2) The direct image of a vector bundle. 81
66.3) Another interpretation for $N_{\star}\left(E \Sigma_{r}{\underset{\Sigma}{\Sigma}}^{\frac{X}{r}} r^{r}\right)$. 83
§6.4) Application to the bordism of immersions. 87
Chapter 7 : Cyclic reduction modulo bordism. 91
§7.1) On the cohomology mod. 2 of $\underset{G}{E G} \underset{G}{ } \times X^{r}$. 91
§7.2) Cohomology of Topological groups. 102
§7.3) Cyclic reduction modulo bordism. 107
Chapter 8 : Dyer-Lashof operations on Eilenberg-Mac Lane spaces. 118
References 122

ACKNOWLEDGEMENTS

I wish to thank my supervisor, Dr. B.J. Sanderson, for introducing me to this subject and for his help during the preparation of this work.

I am grateful to the members of the Mathematics Institute for their hospitality during my stay in Warwick.

I would like to thank to my family for their encouragement especially to Vicky for her help and her excellent typing of the manuscript.

Finally, I would like to acknowledge the financial support I received from the Universidad Nacional Autónoma de México.

We study the bordism algebra of immersions of closed smooth manifolds in closed smooth manifolds. We give two sets of polynomial generators. We obtain a splitting in terms of bordism groups of vector bundles with structural group $\Sigma_{r} \mathcal{J}(k)$ and a splitting in terms of bordism of covering spaces and vector bundles. We study the problem of reducing, modulo bordism, the structural group $\Sigma_{r} \int O(k)$ to the subgroup $\mathbb{Z}_{r} \int O(k)$ by calculating some characteristic numbers.

INTRODUCTION

In this thesis we study the bordism of immersions of closed smooth manifolds in closed smooth manifolds and its relation with the Dyer-Lashof operations. We shall describe its contents chapter by chapter.

In chapter 1 we give two sets of generators for the bordism of embeddings of closed smooth manifolds in closed smooth manifolds. One set of generators is given in terms of Milnor manifolds and the other one in terms of projective spaces. To do this we study, in the first section, the relation between bordism and homology and the multiplicative properties of the Thom class as a map of spectra.

Chapter 2 deals with the Dyer-Lashof operations. We begin with some details about the homology mod. 2 of the spaces $E G \underset{G}{\times} X^{r}$, where G is a subgroup of the symmetric group of degree r. We need these results, in the case $r=2$ to define the operations and in the general case for the calculations in chapter 7. We then give the definition of the operations Q_{i} in the homology mod. 2 of any \mathscr{C}_{∞}-space, where \mathscr{b}_{∞} is the cubes operad, following [13 \& 16]. In section 3 we define the operations \tilde{Q}_{i} in unoriented bordism $N_{\star}(-)$. The general properties of these operations were studied in [28 \& 39]. In section 4 we see that the operations in bordism correspond to the operations in homology under the Thom homomorphism $\mu: N_{\star}(-) \rightarrow H_{\star}\left(-; \mathbb{Z}_{2}\right)$.

In chapter 3 we give two sets of polynomial generators for the bordism of immersions of closed smooth manifolds in closed smooth manifolds in
codimension k that we denote by $I(*, k), k>0$. For this we use a theorem of P. Schweitzer [40] that gives an isomorphism of N_{\star}-algebras $I(*, k) \cong N_{\star}\left(Q \mathrm{MO}_{k}\right)$ then we obtain the structure of $N_{\star}\left(Q M O_{k}\right)$ in terms of the operations \tilde{Q}_{i} using the calculations of [11 \& 16] in homology, then we give an interpretation of the operations \tilde{Q}_{i} in terms of immersions and finally we use the generators for the bordism of embeddings that we obtained in chapter 2.

In chapter 4 we use the results in [28] and [43] to get a splitting of the groups $I(n, k)$, for $n \geq 0, k>0$ in terms of bordism groups of vector bundies with structural group $\sum_{r} \int 0(k)$, where δ denotes the wreath product. Using this splitting we can associate to a self-transverse representative in a bordism class of immersions, the characteristic numbers associated to this bundles and then we obtain that two self-transverse immersions are bordant if and only if their characteristic numbers are the same.

In chapter 5 we use some results of A. Borel [5] on homogeneous spaces to show that any (rk)-vector bundle over a closed smooth manifold is bordant to a vector bundle with structural group $\Sigma_{r} \rho O(k)$.

In chapter 6 we use the method of F.W. Roush for classifying transfers [1] to give an interpretation of the groups $N_{\star}\left(E \sum_{r}{ }_{\Sigma}^{x} B O(k)^{r}\right)$ in terms of bordism of pairs (\tilde{M}, ξ) where $\tilde{M} \rightarrow M$ is an r-covering over a closed smooth manifold M and ξ is a vector bundle over \tilde{M}.

We see the relation of this with Atiyah's direct image construction and we get another interpretation for the splitting of the bordism of immersions.

Chapter 7 deals with the problem of reducing, modulo bordism, the structural group of a bundle with group $\Sigma_{r} \int O(k)$ to the subgroup $z_{r} \rho O(k)$.

In section 1 we study the edge homomorphisms of a spectral sequence converging to $H^{\star}\left(E \sum_{r}{\underset{\Sigma}{r}}^{x} X^{r} ; \mathbb{Z}_{2}\right)$, for any space X of finite type; in section 2 we give a brief account of the work of G. Segal [41] on the cohomology of topological groups and some other related results and in section 3 we use the results of the previous 2 sections to calculate some of the characteristic numbers defined in chapter 4 to give examples related to the problem of Cyclic reduction modulo bordism.

Finally, in chapter 8 we use the operations \tilde{Q}_{i} to show that the Dyer-Lashof operations in the mod. 2 homology of an Eilenberg-Mac Lane space $K(A, n)$ are zero for any abelian group A. An algebraic proof, for the case $A=\mathbb{Z}_{2}$, can be found in [32].

Chapter 1 : Generators for the Bordism of embeddings
In this chapter we give 2 sets of generators for the bordism of manifolds in manifolds. To do this we first study the relation between bordism and homology.

1.1 The Thom class

We denote by MO the Thom spectrum for unoriented cobordism, its k-th space $M O_{k}=T(\gamma(k))$ is the Thom space for the universal k-vector bundle over $B O(k)$. We denote by $H \mathbb{Z}_{2}$ the Eilenberg-Mac Lane spectrum with coefficients $\mathbb{Z} / 2 \mathbb{Z} \equiv \mathbb{Z}_{2}$, its k-th space $\left(H \mathbb{Z}_{2}\right)_{k}=$ $=k\left(\mathbf{Z}_{2}, k\right)$ is the Eilenberg-Mac Lane space of type $\left(\mathbb{Z}_{2}, k\right)$. Both are ring spectra [49].
1.1) Proposition [10]. The Thom classes $t_{\gamma(k)} \in \tilde{H}^{k}\left(\mathrm{MO}_{k} ; \mathbb{Z}_{2}\right)=$ $=\left[M O_{k}, K\left(\mathbb{Z}_{2}, k\right)\right]$ define a map of ring spectra $t: M O \rightarrow H \mathbb{Z}_{2}$. 1.2) Definition.- Any map of spectra $f: E \rightarrow F$ defines a natural transformation $\left.\left.\bar{f}: E^{*}()_{-}\right) \rightarrow F^{*}()_{-}\right)$between the cohomology theories defined by E and F, and a natural transformation $f: E_{\star}\left(\left(_{-}\right) \rightarrow F_{\star}\left({ }_{-}\right)\right.$ between the homology theories. For details see [49]. In particular we have $\overline{\mathrm{t}}: M 0^{*}(-) \rightarrow H^{*}\left(-; \mathbb{Z}_{2}\right)$ and $\mathrm{t}: M O_{\star}(-) \rightarrow H_{\star}\left(_; \mathbb{Z}_{2}\right)$.
1.3) Definition. [49] . Let E be a ring spectrum and X, Y pointed spaces. then we have products $\tilde{E}^{p}(X) \otimes \tilde{E}_{\overline{4}}(X \wedge Y) \leftrightharpoons \tilde{E}_{\bar{q}-p}(Y) \quad$ (slant product) $\tilde{E}_{p}(X) \otimes \tilde{E}_{q}(Y) \stackrel{\wedge}{\rightarrow} \tilde{E}_{p+q}(X \wedge Y)$ (smash product or cross product (X) in the unreduced case $)$. And similarly for cohomology $\tilde{E}^{P}(X) \otimes E^{q}(Y) \rightarrow \tilde{E}^{p+q}\left(X_{\wedge} Y\right)$.
1.4) Proposition - Let $f: E \rightarrow F$ be a map of ring spectra then
a) $f(a \wedge b)=f(a) \wedge f(b)$
b) $f(a \backslash b)=\bar{f}(a) \backslash f(b)$
c) $\bar{f}(x \wedge y)=\bar{f}(x) \wedge \bar{f}(y)$.

Proof.- We shall prove a) The pronf of b) and c) are entirely analogous.

Let $\mu: E \wedge E \rightarrow E$ and $\eta: F \wedge F \rightarrow F$ be the product maps. Let $a \in \tilde{E}_{n}(X)$ and $b \in \tilde{E}_{m}(Y)$ be represented by $S^{n} \xrightarrow{9} E \wedge X$ and $S^{m} \xrightarrow{h} E \wedge Y$, where S^{n} denotes the suspension spectrum of the n-sphere. Then $f(a \wedge b)$ is represented by $S^{n} \wedge S^{m} \xrightarrow{g_{\wedge} h}(E \wedge X) \wedge(E \wedge Y) \xrightarrow{r_{E}}\left(E_{\wedge} E\right) \wedge(X \wedge Y) \xrightarrow{\mu_{\wedge} I}$ $E \wedge X \wedge Y \xrightarrow{f \wedge l} F \wedge(X \wedge Y)$ and $f(a) \wedge f(b)$ is represented by $S^{n} \wedge S^{m} \xrightarrow[(f \wedge 1)^{\circ} g_{\wedge}(f \wedge 1)^{\circ} h]{ }(F \wedge X) \wedge(F \wedge Y) \xrightarrow[\tau_{F}]{\longrightarrow}\left(F_{\wedge} F\right)_{\wedge}\left(X_{\wedge} Y\right) \rightarrow F_{\wedge \wedge}\left(X_{\wedge} Y\right)$

To see that they are homotopic we use 3 facts: 1) The smash oroduct is a bifunctor on the homotopy category of spectra [49]. 2) τ_{E} and τ_{F} are natural equivalences on the same category [49]. 3) As f is a map of ring spectra then $\eta^{\circ}\left(f_{\wedge} f\right) \simeq f \circ \mu$. Then we have
$(f \wedge 1)^{\circ}(\mu \wedge 1)^{\circ} \tau_{\varepsilon}^{\circ}(g \wedge h) \simeq(f \circ \mu) \wedge 1^{\circ} \tau_{\varepsilon}^{\circ}(g \wedge h) \simeq$
$\simeq \eta^{\circ}(f \wedge f) \wedge 1^{\circ} \tau_{\epsilon}{ }^{c}(g \wedge h) \cong(\eta \wedge l)^{\circ}(f \wedge f) \wedge l^{\circ} \tau_{\epsilon}{ }^{c}(g \wedge h) \simeq$
$\simeq\left(\eta^{\circ} 1\right)^{\circ} \tau_{f} \circ(f \wedge l) \wedge(f \wedge l)^{\circ}(g \wedge h) \cong(\eta \wedge l)^{\circ} \tau^{\circ}(f \wedge l)^{\circ} g \wedge(f \wedge l)^{\circ} h$.
1.5) Corollary.- Let $f: E \rightarrow F$ be a map of ring spectra, then a) if X is an H-space $f: E_{*}(X) \rightarrow F_{\star}(X)$ preserves the Pontrjagin product. Let $<,>$ denote the Kronecker product and n the cap product, then b) $\langle\bar{f}(x), f(y)\rangle=f\langle x, y\rangle ; c) f(a \cap b)=\bar{f}(a) \cap f(b)$

Proof.- a) Let $m: X X X+X$ denote the product map. by prop. 1.4.a) f preserves the cross product, and as f is natural we have $f(a \cdot b)=$ $f m_{\star}(a \times b)=m_{\star} f(a \times b)=m_{\star}(f(a) \times f(b)=f(a) \cdot f(b)$.
b) by 1.4.b) f preserves the slant product so $\langle\bar{f}(x), f(y)\rangle=$ $=\dot{f}(x) \backslash f(y)=f(x \backslash y)=f\langle x, y\rangle$. c) by 1.4.b) and naturality we have $f(a \cap b)=f\left(a \backslash \Delta_{*}(b)\right)=\bar{f}(a) \backslash \underline{f} \Delta_{*}(b)=\bar{f}(a) \backslash \Delta_{*} f(b)=\bar{f}(a) \cap f(b)$.
1.6) Pemark.- The universal Thom class in cobordism is an element in $M O^{\circ}(\mathrm{MO})=[\mathrm{MO}, \mathrm{MO}]$ given bv the identity [10]. . Hence $\overline{\mathrm{t}}: M \mathrm{MO}^{\circ}(\mathrm{MO}) \rightarrow$ $\rightarrow \mathrm{H}^{\circ}\left(\mathrm{MO} ; \mathbb{Z}_{2}\right)$ sends the universal Thom class in cobordism to the universal Thom class in \mathbb{Z}_{2}-cohomology.
1.7) Definition.- Let T^{2} denote the category of topological pairs $(X, A), A \subset X$. For a fixed pair (X, A) define a singular manifold in (X, A) to be a map $f:(M, \partial M) \rightarrow(X, A)$ where M is a compact C^{∞} manifold of dimension n. Such a map is said to bord if there is a compact C^{∞} manifold V of dimension $n+1$ and a map $F: V \rightarrow X$ such that i) there is an embedding $e: M \hookrightarrow \partial V$, ii) $F\left(\partial V^{\circ} e=f, i i i\right)$ iii) $F(\partial V-e(M)) c A$. Two singular manifolds ($M, \partial M, f$) and ($N, \partial N, g$) will be called bordant if their disjoint union ($M \mu N, \partial M \mu \partial N, f \mu g$) bords. This is an equivalent relation and we write $N_{n}(X, A)$ for the set of equivalence classes. $N_{\star}\left(__{-}\right)$is a generalised homology theory on $T^{2}[75]$.

The Thom-Pontrjagin construction defines a natural transformation of homology theories $\phi: N_{\star}(-) \rightarrow M O_{\star}\left(C_{-}\right)[15]$. By Thom's theorem $\phi: N_{*}(p t) \rightarrow$ $\rightarrow M O_{\star}(p t)$ is an isomorphism so ϕ is an equivalence on the category of finite C.W pairs. One can easily prove that $N_{*}(-)$ satisfies the wedge axiom and the weak homotopy equivalence axiom so ϕ is an equivalence on T^{2} [49].
1.8) Definition.- We define a natural transformation $\mu: N_{*}() \rightarrow H_{\star}\left(; \mathbb{Z}_{2}\right)$ by $\mu\left[M_{\star} f\right]=f_{\star}(\sigma(M))$ where $\sigma(M)$ is the fundamental class mod. 2 of M. This is well defined and Thom proved that it is surjective [50]
1.9) Theorem [15] . The $N_{\star}^{\prime}-$ module $N_{\star}(X)$ is free. A family $\left\{a_{i}\right\}_{i \in I}$ of homogeneous elements in $N_{*}(X)$ is an N_{*}-basis if and only if $\left\{\mu\left(a_{i}\right)\right\}_{i \in I}$ is a \mathbb{Z}_{2}-basis for $H_{\star}\left(X ; \mathbb{Z}_{2}\right)$.

To finish this section we shall prove that under the isomorphism ϕ, \underline{t} and μ coincide. For this recall that if M is a closed smooth n-manifold then the fundamental class of M in geometric bordism, wich we denote $\circ(M)$, is given by $\delta(M)=[M, i d] \in N_{n}(M)$.
1.10) Lemma.- μ is the unique natural transformation that sends the fundamental class in bordism of a closed smooth manifold to its fundamental class mod. 2.

Proof.- $\mu(\delta(M))=\mu[M, i d]=i d_{\star}(\sigma(M))=\sigma(M)$, so μ has this property. Now suppose θ is a natural transformation with this property and let $[M, f] \in N_{n}(X)$, then we can write $[M, f]=f_{\star}[M, i d]=f_{\star}(\delta(M))$. So $\theta[M, f]=\theta f_{\star}(\delta(M))=f_{\star} \theta(\circ(M))=f_{\star}(\sigma(M))=\mu[M, f]$.
1.11) Proposition.- The following diagram commutes $M O_{\star}(X) \xrightarrow{t} H_{\star}\left(X: \mathbb{Z}_{2}\right)$

Proof.- by 1.10) it is enough to show that $t^{\circ} \phi$ sends the fundamental class $\delta(M)$ to $\sigma(M)$ for a closed smooth manifold M. To see this we use the following definition for the fundamental class [49] . Consider an embedding $M^{n} \longleftrightarrow S^{n+k}$ with normal bundle v, let Ψ denote the Thom isomorphism in \mathbb{Z}_{2}-homology, $c: s^{n+k} \rightarrow T(v)$ the collapsing map and $\quad \imath \in \tilde{H}_{n+k}\left(S^{n+k} ; \mathbb{Z}_{2}\right)$ the generator then $\sigma(M)=\Psi\left(c_{*}(\imath)\right)$. Similarly $\phi(\%(M))=\stackrel{\odot}{\Psi}\left(c_{\star}(i)\right)$ where $\stackrel{\circ}{\Psi}$ is the Thom isomorphism in $M O_{\star}(-)$ and $i_{i} \in \tilde{M O}_{n+k}\left(s^{n+k}\right)$. Now recall that the Thom isomorphism is given by $\Psi(x)=p_{*}(t(v) \cap x)$ where p is the projection of v, and $\stackrel{c}{\Psi}(x)=p_{\star}(\stackrel{\circ}{t}(v) \cap x)$. By $\left.1.5 c\right) t$ preserves cap products and by $1.6 \bar{t}(t(\nu))=t(\nu)$, as t is a map of ring spectra $t(i)=r$, so we have $\underline{t} \phi(\stackrel{\circ}{\sigma}(M))=\underset{t}{\Psi} \Psi\left(c_{\star}(i)\right)=\Psi \underset{t}{t}\left(c_{\star}\binom{i}{i}\right)=\Psi c_{\star} t\binom{i}{i}=\Psi c_{\star}(\imath)=\sigma(M)$.
§1.2 The bordism of $\mathrm{BO}(k)$
In this section we shall give generators for $N_{\star}(B O(k))$.
1.12) Definition.- Given a vector bundle ξ, we denote by $\stackrel{\circ}{(\xi)}$ and $e(\xi)$, the Euler classes of ξ in cobordism and \mathbb{Z}_{2}-cohomology respectively. The element $£(\gamma(1)) \in M O^{\prime}(B O(1))$ satisfies the properties for the existence of generalised Stiefel-Whitney classes in cobordism [49], these classes are called Conner-Floyd classes, and are denoted by $\quad \stackrel{\circ}{W}_{1}(-)$. For an n-vector bundle ξ, $£(\xi)=\stackrel{\circ}{n}_{n}(\xi)$.
1.13) Remark.- If ξ is a vector bundle over a space X, and $z: X \rightarrow T \xi$ is the inclusion of the zero section then by definition $\AA(\xi)=z^{\star}(\stackrel{\circ}{t}(\xi))$ and $e(\xi)=z^{\star}(t(\xi))$. As \bar{t} is natural then by 1.6
we have that $\bar{t}(e)(\xi))=e(\xi)$. The fact that $\bar{t}(e)(\gamma(1))=e(\gamma(1))$ together with the multiplicative and naturality properties of $\overline{\mathrm{t}}$ imply that $\bar{t}\left(\dot{w}_{i}(\xi)\right)=w_{i}(\xi)$.
1.14) Definition.- We have that $M O^{*}(B O(1)) \cong M O^{*}(p t)[[e(\gamma(1))]]$ and $H^{\star}\left(B O(1) ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}[e(\gamma(1))] \quad$ [49]. We then have unique elements ${ }_{\beta}{ }_{i} \in \tilde{N}_{i}(B O(1))$ and $\beta_{i} \in \tilde{H}_{i}\left(B O(1) ; \mathbb{Z}_{2}\right)$ with the property $\left\langle\mathrm{e}(\gamma(1))^{i}, \beta_{j}\right\rangle=\delta_{i j}$ and $\left\langle e(\gamma(1))^{i}, \beta_{j}\right\rangle=\delta_{i j}$. We define $\dot{B}_{0}=[\{$ point $\} \leftrightarrow B O(1)]$ and β_{0} the generator of $H_{0}\left(B O(1) ; \mathbb{Z}_{2}\right)$.
1.15) Proposition.- Consider elements $\dot{\beta}_{i} \in N_{i}(B O(1))$ and $\beta_{i} \in H_{i}\left(B O(1) ; \mathbb{Z}_{2}\right)$ as defined in 1.14) then $\mu\left(\dot{\beta}_{i}\right)=\beta_{i}$.

Proof.- For simplicity let us write \AA for $\AA(\gamma(1))$ and e for $e(Y(1))$. By 1.4) $\overline{\mathrm{t}}\left(\mathrm{e}^{i}\right)=\overline{\mathrm{t}}(\mathrm{e})^{i}$ and by 1.13$) \overline{\mathrm{t}}\left(\mathrm{e}^{\mathrm{e}}\right)=\mathrm{e}$. So using the
 $=t\left(\delta_{i j}\right)=\delta_{i j}$, and hence $t\left(\AA_{j}\right)=\beta_{j}$, as we have identified t with $\mu(1.11)$ then $\mu\left(\beta_{i}\right)=\beta_{i}$.
\square
In order to get the generators for $N_{\star}(B O(k))$ we shall first give a basis for $H_{\star}\left(B O(k) ; \mathbb{Z}_{2}\right)$.

For this recall that $H^{*}\left(B O(k) ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[w_{1}(\gamma(k)) \ldots . w_{k}(\gamma(k))\right]$ [49]. Let $\xi_{k}=Y(1) \times \ldots \times r(1)$ the k-fold product of the bundle $Y(1)$. This is a k-vector bundle over $\mathrm{BO}(1) x \ldots \times \mathrm{BO}(1)$.
Let $m_{k}: B O(1) \times \ldots \times B O(1)+B O(k)$ be a classifying map for ξ_{k}. Then one can show $[49]$ that $m_{k}^{*}\left(w_{i}(\gamma(k))\right)=\sigma_{i}\left(u_{1}, u_{2} \ldots \ldots u_{k}\right)$, where σ_{i} is the i-th symmetric polynomial in the variables $u_{1}, u_{2}, \ldots, u_{k}$ where $u_{j}=p_{j}^{*}(e)$ and $p_{j}: B O(1) \times \ldots \times B O(1) \rightarrow B O(1)$ is the projection
on the j-th coordinate. As m_{k}^{\star} is a ring homomorphism and any element can be written uniquely as $\sum_{\alpha} d_{\alpha} w_{1}^{\alpha_{1}} \ldots . . w_{k}^{\alpha_{k}}$ then $m_{k}^{*}\left(\sum_{\alpha} d_{\mu} w_{1}^{\alpha_{1}} \ldots . ., w_{k}^{\alpha_{k}}\right)=$ $=\sum_{\alpha} d_{\alpha} \sigma_{1}^{\alpha_{1}} \ldots . . \sigma_{k}^{\alpha_{k}}$ so m_{k}^{*} is an isomorphism onto the symmetric subalgebra $S \subset H^{\star}\left(B O(1) \times \ldots \times \times B O(1) ; \mathbb{Z}_{2}\right)$.

Now for each sequence $0 \leq i_{1} \leq \ldots \leq i_{k}$ consider the monomial $u_{1}^{i_{1}} u_{2}^{i_{2}} \ldots u_{k}^{i_{k}}$ and let $S_{i_{1}, \ldots, i_{k}}$ be the smallest symetric polynomial containing this monomial, as $S=\mathbb{Z}_{2}\left[\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}\right]$ then it is clear that the polynomials $S_{i_{1}}, \ldots, i_{k}$ are a basis for S. As m_{k}^{*} is an isomorphism onto S then we get:
1.16) Proposition. - For each collection $0 \leq i_{1} \leq i_{2} \leq, \ldots, \leq i_{k}$ the elements $a_{i_{1}}, \ldots, i_{k} \in H^{\star}\left(B O(k) ; \mathbb{Z}_{2}\right)$ such that $m_{k}^{\star}\left(a_{i_{1}}, \ldots, i_{k}\right)=$ $=S_{i_{1}}, \ldots, i_{k}$ are a basis for $H^{\star}\left(B O(k) ; \mathbb{Z}_{2}\right)$.

$$
\square
$$

1.17) Proposition. - Consider the elements $\beta_{q} \in H_{i}\left(B O(1) ; \mathbb{Z}_{2}\right)$ and the map $m_{k}: B O(1) x, \ldots, x B O(1) \rightarrow B O(k)$ as above, then $m_{k_{k}}\left(\beta_{i_{1}} \times \beta_{i_{2}} \times \ldots \times \beta_{i_{k}}\right)$ for each collection $0 \leq i_{1} \leq, \ldots, \leq i_{k}$ forms a basis for $H_{\star}\left(B O(k) ; \mathbb{Z}_{2}\right)$.

Proof.- All modules are finitely generated $<,>$ is non-singular and by 1.16) $\left\{a_{i_{1}}, \ldots, i_{k}\right\}$ for collection $0 \leq i_{1} \leq, \ldots, i_{k} \quad$ is a basis for $H^{*}\left(B O(k) ; \mathbb{Z}_{2}\right)$, so we are going to see that its dual basis is $\left\{m_{k *}\left(\beta_{i} x, \ldots, x \beta_{i_{k}}\right)\right\}$. For this we use the following facts [49]: \langle,$\rangle is bilinear and satisfies \left\langle f^{\star}(x), y\right\rangle=\left\langle x, f_{\star}\left(y_{i}\right\rangle\right\rangle$ and $\langle x \times y, a \times b\rangle=\langle x, a\rangle\langle y, b\rangle$. If P_{j} is the projection on the $j-$ th factor then $u_{j}=p_{j}(e)=1 \times 1 \times \ldots \times e \times 1 \times \ldots \times 1$. If u denotes the cup
then $\left(x \cup x^{\prime}\right) \times\left(y \cup y^{\prime}\right)=(x x y) \cup\left(x^{\prime} x y^{\prime}\right)$,
We can then write:
$\left\langle a_{i_{1}, \ldots i_{k}}, m_{k_{*}}\left(\beta_{j_{1}} \times \ldots \times \beta_{j_{k}}\right)\right\rangle=\left\langle m_{k}^{*}\left(a_{i_{1}}, \ldots, i_{k}\right), \beta_{j_{1}} \times \ldots \times \beta_{j_{k}}\right\rangle=$
$=\left\langle s_{i_{1}} \ldots \ldots i_{k} \beta_{j_{1}} \times, \ldots \times \beta_{j_{k}}\right\rangle=\left\langle u_{1} p_{u_{2}}^{i_{2}} \ldots u_{k}^{i}{ }_{k}+\ldots+\ldots \beta_{j_{1}} \times \ldots \times \beta_{j_{k}}\right\rangle=$
$=\left\langle u_{1}{ }_{1} u_{2}{ }_{2}{ }_{2} \ldots u_{k}^{i_{k}}, \beta_{j_{1}} x \ldots \beta_{j_{k}}\right\rangle+$ other terms $=$
$=\left\langle e^{i_{1}} \times e^{i_{2}} \times \ldots \times e^{i_{k}}, \quad \beta_{j_{1}} \times \ldots \times \beta_{j_{k}}\right\rangle+$ other terms $=$
$\left.=\left\langle e^{i} 1, \beta_{j_{1}}\right\rangle\left\langle e^{i}, \beta_{j_{2}}\right\rangle \ldots<e^{i_{k}}, \beta_{j_{k}}\right\rangle+$ other terms $=$
$= \begin{cases}1 & \text { if } i_{1}=j_{1}, i_{2}=j_{2}, \ldots, i_{k}=j_{k} \\ 0 & \text { otherwise. }\end{cases}$
1.18) ProDosition.- An N_{\star}-basis for $N_{\star}(B O(k))$ is given by the elements
$m_{k_{\star}}\left(\AA_{i_{1}} \times \ldots \times \AA_{i_{k}}\right)$ for each collection $0 \leq i \leq \ldots \leq i_{k}$.

Proof.- μ is natural and by 1.4 a) it preserves products. By 1.15)
$\mu\left(\beta_{i}\right)=\beta_{i} \quad$ so we have $\mu m_{k_{k}}\left(\beta_{i}, \ldots \times \xi_{i_{k}}\right)=m_{k_{*}} \mu\left(\beta_{i_{i}} \times \ldots \times \xi_{i_{k}}\right)=$ $=m_{k_{\star}}\left(\mu \dot{\beta}_{i_{1}} \times \ldots \times \mu \dot{\beta}_{i_{k}}\right)=m_{k_{k}}\left(\beta_{i_{1}} \times \ldots \times \beta_{i_{k}}\right)$.
By 1.17$)$ these elements are a \mathbb{Z}_{2}-basis for $H_{\star}\left(B O(k) ; \mathbb{Z}_{2}\right)$ so by 1.9$)$ $\left\{m_{k_{\star}}\left(\varepsilon_{i_{1}} \times \ldots \times{\stackrel{\circ}{i_{i}}}_{k}\right)\right\}$ is an N_{\star}-basis. ㅁ

We now give specific representatives for the elements $\dot{\beta}_{i} \in \tilde{N}_{\mathrm{i}}(B O(1))$.

We take as $B O(1)$ the infinite real projective space P^{∞}.
1.19) Definition.- Let p^{m} be the real projective m-space with coordinates $x=\left[x_{0} \ldots, x_{m}\right]$; for $1 \leqslant m \leqslant n$ let $H_{m, n}=$
$=\left\{([x],[y]) p^{m} \times p^{n} \mid \sum_{i=0}^{m} x_{i} y_{i}=0\right\}$. $H_{m n}$ is a closed smooth manifold of dimension $m+n-1$ called Milnor manifold. $H_{m, n}$ is fibred as $p^{n-1} \rightarrow H_{m, n} \rightarrow p^{m}$ where the projection is induced by the proiection $p^{m} \times p^{n} \rightarrow p^{m}$.
1.20) Proposition.- [10] Let γ_{m} be the restriction of $\gamma(1)$ to p^{m}, and $\gamma_{m}{ }^{2} \gamma_{n}$ the external tensor product over $p^{m} \times p^{n}$, then $e ̀\left(\gamma_{m} \otimes \gamma_{n}\right) \in M O^{\prime}\left(p^{m} \times p^{n}\right)$ is the Poincaré dual of $\left[H_{m, n} \hookrightarrow p^{m} \times p^{n}\right]$.
1.21) Definition.- We define $b_{k} \in N_{k}\left(P^{\infty}\right)$ to be the class of: $H_{1, k} \longleftrightarrow P^{l} \times P^{k} \xrightarrow{P_{k}} P^{k}{ }^{i_{k}} P^{\infty}$, where p_{k} is the projection on p^{k} and i_{k} the inclusion. We will show that these elements can be taken as $\dot{\beta}_{k}$, for this we need the following 2 propositions.
1.22) Proposition. - With the notation as above $£(\gamma(1)) \cap b_{k}=b_{k-1}$.

Proof . It is clear that 1 and 2 commute and that 3 is a pull-back:

1

let us write $\alpha_{k}=\left[H_{1, k} \leftrightarrow p^{\top} \times p^{k}\right]$. Then using the fact that $f_{*}\left(f^{*}(x) \cap y\right)=$ $x \cap f_{*}(y)$ [49], we have:
$\ddot{e}(r(1)) \cap b_{k}=\AA(\gamma(1)) \cap\left(i_{k}^{0} p_{k}\right)_{*}\left(\alpha_{k}\right)=\left(i_{k}^{0} P_{k}\right)_{\star}\left[\left(i_{k}^{\circ} p_{k}\right)^{*}\left(e(\gamma(1)) \cap \alpha_{k}\right]=\right.$

$$
\begin{equation*}
=\left(i_{k}{ }^{\circ} P_{k}\right)_{*}\left[\left(1 \times \varepsilon e^{\varepsilon}\left(Y_{k}\right)\right) \cap \alpha_{k}\right] \tag{d}
\end{equation*}
$$

On the other hand by prop. 1.20) $\alpha_{k-1}=e\left(\gamma_{1} \otimes \gamma_{k-1}\right) \cap \sigma\left(P_{\times}^{\prime} \times P^{k-1}\right)$, and by $3 \stackrel{\circ}{e}\left(Y_{1} \otimes Y_{k-1}\right)=\left(1 \times j_{k}\right)^{*}\left(e\left(Y_{1} \boxtimes Y_{k}\right)\right)$. Then we have:
$b_{k-1}=\left(i_{k-1}{ }^{c} p_{k-1}\right)_{*}\left(\alpha_{k-1}\right)=\left(i_{k}^{\circ} j_{k}^{c} p_{k-1}\right)_{*}\left(\alpha_{k-1}\right)=\left(i_{k}^{c} p_{k}\right)_{\star}\left(\left(i d \times j_{k}\right)_{*}\left(\alpha_{k-1}\right)\right)=$
$=\left(i_{k}^{\circ} P_{k}\right)_{\star}\left[\left(i d \times j_{k}\right)_{\star}\left(\left(i d \times j_{k}\right)^{\star} e^{e}\left(Y_{1} \propto Y_{k}\right) \cap \sigma\left(P^{1} \times P^{k-1}\right)\right)\right]=$
$=\left(i_{k}{ }^{\circ} p_{k}\right)_{*}\left[{ }^{\varepsilon}\left(\gamma_{p} \otimes Y_{k}\right) \cap\left(i d x j_{k}\right)_{\star} \sigma\left(P^{\top} \times p^{k-1}\right)\right.$
But $e^{\circ}\left(Y_{k}\right)$ is Poincaré dual to $\left[p^{k-1} c \stackrel{j_{k}}{\longrightarrow} p^{k}\right.$] [70]. So $1 \times £\left(Y_{k}\right)$ is Poincaré dual to $P^{7} \times P^{k-1} \underset{i d \times j k}{ } P^{1} \times P^{k}=\left(i d \times j_{k}\right)_{m} \sigma\left(P^{1} \times P^{k-1}\right)$ and α_{k} is Poincaré dual to ${ }^{\ell}\left(\gamma_{1} \boxtimes Y_{k}\right)$, hence their cap products are the same (recall that $(x \cup y) \cap z=x \cap(y \cap z)$ [49]), so (a) $=$ (b), i e., $\AA(Y(1)) \cap b_{k}=b_{k-1}$.
ㅁ
1.23) Proposition $\left[H_{1, n}\right]=0$ in $N_{n}(n \geqslant 1)$

Proof.- $H_{1, n+1} \cong P\left(Y_{1} \oplus \varepsilon^{n}\right)$, where $P(-)$ is the projective bundle associated to $\gamma_{p} \oplus \varepsilon^{n}$ and ε^{n} is the trivial n-bundle [10]. For this we follow the method in [75] to compute the characteristic classes of the tangent bundle of a projective bundle.

Let ς be a k-vector bundle over a closed n-manifold V. Let
$w_{1}, w_{2}, \ldots, w_{n}$ be the Stiefel-Whitney classes of v and $v_{1}, v_{2} \ldots, v_{k}$ those of ξ. Let $c \in H^{1}\left(P(\xi) ; \mathbb{Z}_{2}\right)$ be the euler class of the canonical iine bundle over $P(\xi)$. Then Borel and Hirzebruch proved that [6] $w_{j}(p(\xi))=\sum_{p+q+r=j}\binom{k-p}{q} p^{*}\left(w_{r} v_{p}\right) c^{q}$.

In our case $\xi=\gamma_{1} \oplus \varepsilon^{n}$ over p^{\prime} so, $w_{i}=0, i>0, \gamma_{1}=e=e\left(\gamma_{1}\right)$ and $v_{i}=0, i>1$ then $w_{j}\left(P\left(\gamma_{i} \notin \varepsilon^{n}\right)\right)=\binom{n+1}{j} c^{j}+\binom{n}{j-1} c^{j-1} p^{*}(e)$. Let us write $w_{j}=w_{j}\left(P\left(\gamma_{1} \oplus \varepsilon^{n}\right)\right)$ and $\frac{j}{n+1}\binom{n+1}{j}=\binom{n}{j-1}$, then $w_{j}=\binom{n+1}{j} c^{j}+\frac{j}{n+1}\binom{n+1}{j} c^{j-1} p^{*}(e)$.

Now consider $j_{1}+j_{2}+\ldots+j_{k}=n+1$, then
$\left.w_{j_{1}} w_{j_{2}} \ldots w_{j_{k}}=\prod_{r=1}^{k}\binom{n+1}{j_{r}} c^{n+1}+\sum_{s=1}^{k} \prod_{n+1}^{j_{s}}\left[\prod_{r=1}^{k}\binom{n+1}{j_{r}} c^{n} p^{*}(e)\right)\right]$
(the other terms are zero because $e^{2}=0$).
Now recall that for any vector bundle $\xi, H^{\star}\left(P(\xi) ; \mathbb{Z}_{2}\right) \cong$
$\cong H^{*}(V)\left\{1, c, c^{2}, \ldots, c^{k-1}\right\} \quad$ and that $c^{k}=p^{*}\left(w_{k}(\xi)\right)+\ldots+p^{*}\left(w_{1}(\xi)\right) c^{k-1}$.
[49]. So in our case $c^{n+1}=c^{n} p^{*}(e)$.
Hence $w_{j_{1}} w_{j_{2}} \ldots \ldots w_{j_{k}}=\left[\begin{array}{c}k \\ \prod_{r=1}^{k}\end{array}\binom{n+1}{j_{r}}+\sum_{s=1}^{k} \frac{j_{s}}{n+1} \prod_{r=1}^{k}\binom{n+1}{j_{r}}\right] c^{n} p^{*}(e)$
But $\sum_{s=1}^{k} j_{s}=n+1$ so both terms in the parenthesis are equal, hence $w_{j_{1}} w_{j_{2}} \ldots \ldots w_{j_{k}}=0$, and by a theorem of Thom $[50],[H(1, n)]=0$.

ㅁ
1.24 Corollary.- The elements $b_{k} \in N_{k}\left(P^{\infty}\right)$ given by the Milnor manifolds are the duals of $£\left(Y_{1}\right)^{k}$.

Proof.- We have that $\langle x \cup y, z\rangle=\langle x, y \cap z\rangle[49]$. So $\left\langle e ̊\left(\gamma_{1}\right)^{j}, b_{k}\right\rangle=$
$=\left\langle 1, \dot{e}\left(\gamma_{1}\right) \cap \ldots \cap \dot{e}\left(\gamma_{j}\right) \cap b_{k}\right\rangle$ this is, by 1.22 , equal to $\left\langle 1, b_{k-j}\right\rangle=$

$$
=\left\{\begin{array}{l}
<1, b_{0}>=1 \text { if } k=j \\
<1, b_{k-j}>=\left[H_{1, k-j}\right]=0 \text { if } k \neq j \text { by } 1,23
\end{array}\right.
$$

1.25) Corollary.- An N_{\star}-basis for $N_{\star}(B O(k))$ is given by the elements $\left(b_{i_{1}} \times, \ldots, b_{i_{k}}\right)$ for each collection $0 \leq i_{1} \leq \ldots \leq i_{k}$; where m_{k} classifies $\gamma(1)^{k}$.

Proof.- by 1.24, $b_{k}={ }^{\circ}{ }_{k}$, so the result follows from 1.18).

To finish this section we shall give a second N_{\star}-basis for $N_{\star}(B O(k))$.
1.26) Proposition.- The elements $\left[P^{n} \underset{g_{n}}{ } P^{\infty}\right] \epsilon N_{n}\left(P^{\infty}\right), n \geq 0$ form an N_{\star}-basis for $N_{\star}\left(P^{0}\right)$.

Proof.- By 1.9 it is enough to show that the elements $\mu\left[P^{n} \hookrightarrow P^{\infty}\right]$, $n \geq 0$ are a \mathbb{Z}_{2}-basis for $H_{\star}\left(P^{\infty} ; \mathbb{Z}_{2}\right)$ For this consider $\left\langle e(\gamma(1))^{i}, \mu\left[P^{j}, g_{j}\right]\right\rangle=\left\langle e(\gamma(1))^{i}, g_{j \star} \sigma\left(P^{j}\right)\right\rangle=\left\langle g_{j}^{\star} e(\gamma(1))^{i}, \sigma\left(P^{j}\right)\right\rangle=$ $=\left\langle e\left(\gamma_{j}\right)^{i}, \sigma\left(P^{j}\right)\right\rangle$.

Now if $i \neq j$ this product is clearly zero. If $i=j$, then we know $H^{*}\left(P^{j} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[e\left(\gamma_{j}\right)\right] / e\left(r_{j}\right)^{j+1}$ so $H^{j}\left(P^{j}\right) \cong \mathbb{Z}_{2}$ with generator $\sigma\left(P^{j}\right)$, as $<,>$ is non-singular then $<e\left(\gamma_{j}\right)^{j}, \sigma\left(P^{j}\right)>=1$.
Hence $\mu\left[P^{n}, g_{n}\right]=\beta_{n}$.
1.27) Corollary.- An N_{\star}-basis for $N_{\star}(B O(k))$ is given by the elements $m_{k_{*}}\left(\left[P^{i_{1}}, g_{i_{1}}\right] \times \ldots \times\left[P^{i_{k}}, g_{i_{k}}\right]\right)$ for each collection $0 \leq i_{1} \leq \ldots \leq i_{k}$, where m_{k} classifies $r(1)^{k}$.

Proof.- By 1.9 it is enough to show that
$\mu m_{k_{*}}\left(\left[P^{i}{ }^{1}, g_{i_{1}}\right] \times \ldots \times\left[P^{i_{k}}, g_{i_{k}}\right]\right)$ are a \mathbb{Z}_{2}-basis for $H_{*}\left(B O(k) ; \mathbb{Z}_{2}\right)$. μ is natural and multiplicative (1.4a)) and by $1.26 \mu\left[P^{n}, g_{n}\right]=\beta_{n}$ so we have $\mu m_{k_{*}}\left(\left[p^{i_{1}}, g_{i_{1}}\right] \times \ldots \times\left[p^{i_{k}}, g_{i_{k}}\right]\right)=m_{k_{*}}\left(\beta_{i_{1}} \times \ldots \times \beta_{i_{k}}\right)$. But by 1.17 these elements are a \mathbb{Z}_{2}-basis for $H_{*}\left(B O(k) ; \mathbb{Z}_{2}\right)$.
§1.3) Bordism of embeddings
In this section we shall give generators for the bordism of embeddings. We will use these generators in chapter 3 to study the bordism of immersions.
1.28) Definition.- Given 2 embeddings $f: M \rightarrow N$, $: M^{\prime} \rightarrow N^{\prime}$, where M, M^{\prime} are closed smooth n-manifolds and N, N^{\prime} are closed smooth ($n+k$)-manifolds, we say that they are bordant if there exists an embedding $F: V \rightarrow W$ such that $i) V$ is a compact smooth ($n+1$)-manifold with a diffeomorphism $\partial V \cong M_{\mu} M^{\prime}$ and W is a compact smooth ($n+k+1$)-manifold with a diffeomorphism $\partial W \cong N_{\mu} N^{\prime}$. ii)The following diagrams commute: $M \hookrightarrow M \mu M^{\prime} \cong \partial V \subset V \quad M^{\prime} \hookrightarrow M \mu M^{\prime} \cong \partial V \in V$

This is an equivalence relation and the set of equivalence classes is denoted by $\operatorname{Emb}(n, k)$. We denote by $[f ; M \rightarrow N]$ the equivalence class of an embedding f. We can make $\operatorname{Emb}(n, k)$ into a group by considering disjoint union of embeddings. We can make Emb (*,k) into an N_{\star}-module by defining $\left[M^{\prime}\right] \cdot[f: M \rightarrow N]=\left[M^{\prime} \times M^{i d x f} \xrightarrow{\left.M^{\prime} \times N\right]}\right.$.
1.29) Theorem [54].- The Thom-Pontrjagin construction defines an isomorphism of N_{\star}-modules $\operatorname{Emb}(n, k) \cong N_{n+k}\left(\right.$ MO $\left._{k}\right)$.

To define the generators for Emb(*,k) we need 2 results.
1.30) Definition. - Let $\left(x, x_{0}\right)$ be a pointed space and
$f:(M, 3 M) \rightarrow\left(X, X_{0}\right)$ a map, where M is a smooth manifold, we define $\widetilde{M} \xrightarrow{\widetilde{f}} X$ as follows:
$\tilde{M}=M_{\partial M} M$ is the double of M, which is well defined up to diffeomorphism [9] and \tilde{f} is the map induced by the map $M_{\mu} M \xrightarrow{f \mu c} X$ where $c(a)=X_{0}$, for all $a \in M$.
1.31) Proposition. - Let $\left(x, x_{0}\right)$ be a pointed space and i: $\left\{x_{0}\right\} \hookrightarrow x$ the inclusion. Let $d: N_{n}\left(x, x_{0}\right) \rightarrow N_{n}(x)$ be defined by $d[M, f]=[\tilde{M}, \tilde{f}]$, where \tilde{M} is as above, then $\Psi: N_{n} \oplus N_{n}\left(X, x_{0}\right) \rightarrow N_{n}(X)$ given by $w(a, b)=$ $=i_{\star}(a)+d(b)$ is an isomorphism.

Proof.- Consider the exact sequence of the pair ($X,\left\{x_{0}\right\}$), and notice that the inclusion $i:\left\{x_{0}\right\} \hookrightarrow X$ has the constant map $p: X \rightarrow\left\{x_{0}\right\}$ as a left inverse so we get a short exact sequence : $0 \longrightarrow N_{n}\left\{x_{0}\right\} \xrightarrow{i_{*}} N_{n}(x) \xrightarrow{j *} N_{n}\left(x,\left\{x_{0}\right\}\right) \rightarrow 0$.

One can see that $\phi: N_{n}(x) \rightarrow N_{n} \oplus N_{n}\left(x, x_{0}\right)$ given by $\phi(y)=\left(p_{*}(y), j_{*}(y)\right)$ is an isomorphism and from this it is clear that j_{*} restricted to ker p_{*} is an isomorphism. We claim that $d: N_{h}\left(X, x_{0}\right) \rightarrow N_{n}(X)$ is the inverse. To see this let $\left[M_{0} f\right] \in \mathcal{N}_{h}\left(X,\left\{X_{0}\right\}\right)$ and consider $j_{*} d[M, f]$, this element is represented by the map $(\tilde{M}, \varnothing) \stackrel{\tilde{f}}{ }\left(X, x_{0}\right)$. Define $F: \tilde{M} \times I \rightarrow X$ by $F(z, t)=\tilde{f}(z)$.

Then $\partial(\bar{M} \times I)=\tilde{M} \times\{0\} \cup \tilde{M} \times\{1\}$ and we can identify \tilde{M} with $\tilde{M} \times\{0\}$ and embedd $M \leftrightarrow \tilde{M} \times\{1\}$ in such a way that $\tilde{f} \mid M=f$; then $F \mid \tilde{M} \times\{0\}=\tilde{f}$, $F|M \subset \tilde{M} \times\{1\}=\tilde{f}| M=f$ and $F\left(\tilde{M} \times\{1\}-M \mid=X_{0}\right.$, so $(\tilde{M} \times I, F)$ is a bordism between (\tilde{M}, \tilde{f}) and (M, f), i.e. $j_{\star} d[M, f]=[M, f]$.
And now it is clear that $\Psi(a, b)=i_{\star}(a)+d(b)$ satisfies $\phi^{c} \Psi=i d$ so Ψ is an isomorphism.
1.32) Definition.- Let $\xi=(E, p, B)$ be a vector bundle over a space B. Let $N \xrightarrow{g} B$ be a map, where N is a manifold. Given a Riemannian metric on ξ, denote by $D(\xi), S(\xi)$ the disc bundle and the sphere bundle respectively. Consider the pull-back $g^{\star}(\xi)$ over N. If we give $g^{*}(\xi)$ the pull-back metric then the map between total spaces induces a map $\dot{g}:\left(D\left(g^{*}(\xi), S\left(g^{*} \xi\right)\right) \rightarrow(D(\xi) . S(\xi))\right.$. Let $q:(D(\xi) ; S(\xi)) \rightarrow$ $\rightarrow(T(\xi), *)$ denote the identification map, then we get a map $q^{\circ} \dot{g}:$ $:\left(0\left(g^{*} \xi\right), S\left(g^{*} \xi\right)\right) \rightarrow(T(\xi), *)$, where $D\left(g^{\star} \xi\right)$ is a manifold with boundary of dimension equal to $\operatorname{dim} N+\operatorname{dim} \xi$.
1.33) Proposition.- Let $\xi=(E, p, V)$ be a smooth n-vector bundle, then $\phi: N_{n}(V) \rightarrow N_{n+k}(T \xi, *)$ given by $\phi[N, g]=\left[D\left(g^{*} \xi\right), q^{\subset} \dot{g}\right]$ is an isomorphism.

Proof.- Let $\psi: N_{n+k}\left(T \xi,{ }^{*}\right) \rightarrow N_{n}(V)$ be defined as follows: let $[M, f] \in N_{n+k}(T \xi, *)$ then we have a map $(M, \partial M) \xrightarrow{f}(T \xi, *)$, consider a map f_{0} homotopic to f such that f_{0} is smooth throughout $f_{0}^{-1}(T \xi-*)$, and is transverse to the zero cross-section, define $\boldsymbol{\Psi}[M, f]=\left[f_{0}^{-1}\right.$ (zero section), $f_{0} \mid f_{0}^{-1}$ (zero section) $] . \psi$ is the Thom isomorphism in bordism [70]. As the map $\dot{\mathrm{g}}$ is induced by a map of bundles it is clear that $\psi^{\circ} \phi[N, g]=[N, g]$ so ϕ is an isomorphism.
1.34) Definition,- Let $H(1, n) \subset P^{7} \times P^{n}$ be a Milnor manifold, we denote by H_{n} the restriction to $H(1, n)$ of the line bundle $P^{1} \times Y_{n} \rightarrow P^{\gamma} \times P^{n}$. For each collection $0 \leqslant i_{1} \leqslant \ldots \leqslant i_{k}$, consider $D\left(H_{i_{1}} \times{\widetilde{H_{i}}}_{2} \times \ldots \times H_{i_{k}}\right)$, the double of the disc bundles, and take the embeddings $H\left(1, i_{1}\right) \times \ldots \times H\left(1, i_{k}\right) \rightarrow D\left(H_{i_{1}} \widetilde{x_{1}} \ldots \times H_{i_{k}}\right)$ as the zero section. Similarly we have $P^{i} 1_{x} \ldots \times P^{i} k \longrightarrow D\left({\widetilde{Y_{i}}{ }_{1} \times \ldots \times \gamma_{i_{k}}}_{k}^{k}\right.$. We also consider the empty collection and to this one we associate the embedding $\phi \subset\{p o i n t\}$. With this notation we have:
1.35) Theorem.- a) The embeddings
$H\left(1, i_{1}\right) \times \ldots \times H\left(1, i_{k}\right) \rightarrow D\left(H_{i_{1}} \widetilde{\times \ldots \times} \times H_{i_{k}}\right)$ for each collection $0 \leq i_{1} \leq \ldots \leq i_{k}$ are an N_{\star}-basis for $\operatorname{Emb}(*, k)$.
b) The embeddings $p^{i_{1}} \times \ldots \times p^{i_{k}} \rightarrow D\left(\gamma_{i_{i}} \widetilde{x \ldots \times \gamma_{i_{k}}}\right)$ for each collection $0 \leqslant i_{1} \leqslant \ldots \leqslant i_{k}$ are an N_{\star}-basis for $\operatorname{Emb}(*, k)$.

Proof.- By $1.29 \mathrm{Emb}(\star, \mathrm{k}) \cong N_{\star}\left(\mathrm{MO}_{\mathrm{k}}\right)$. By 1.31) $\Psi: N_{\star} \oplus N_{\star}\left(\mathrm{MO}_{\mathrm{k}}, *\right) \rightarrow N_{*}\left(\mathrm{MO}_{\mathrm{k}}\right)$ given by $\Psi(a, b)=i_{\star}(a)+d(b)$ where d is given by the double construction, is an isomorphism, and by 1.33$) \phi: N_{\star}(\mathrm{BO}(\mathrm{k})) \rightarrow N_{\star}\left(\mathrm{MO}_{k}, *\right)$ given by the disc bundle construction is an isomorphism. By 1.25) An N_{\star}-basis for $N_{\star}(B 0(k))$ is given by the elements $m_{k \star}\left(b_{i}{ }_{1} \times \ldots \times b_{i_{k}}\right)$ for $0 \leq i_{j} \leq \ldots \leq i_{k}$, but we have a pull-back:
$H_{i} \times \ldots \times H_{i_{k}} \longrightarrow\left(P^{1} \times Y_{i_{1}}\right) \times \ldots \times\left(P^{2} \times Y_{i_{k}}\right) \rightarrow Y_{i_{1}} \times \ldots \times Y_{i_{k}} \rightarrow Y(1) \times \ldots \times Y(1) \rightarrow Y(k)$

$H\left(1, i_{1}\right) \times \ldots \times H\left(1, i_{k}\right) \rightarrow\left(P^{1} \times P^{i} 1\right) \times \ldots \times\left(P^{1} \times P^{i} k\right) \rightarrow P^{i} 1_{x} \ldots \times P^{i_{k}} \xrightarrow[\rightarrow P^{\infty} \times \ldots \times P^{\infty} \underset{m_{k}}{B} B(k)]{ }$

By 1.27) an N_{\star}-basis for $N_{\star}(B O(k))$ is given by the elements
$\left.m_{k_{*}}\left(\left[p^{i}\right], g_{i_{1}}\right] \times \ldots x\left[P^{i_{k}}, g_{i_{k}}\right]\right)$ for $0 \leq i_{1} \leq 0 \leq i_{k}$, and we have a pull-back:

$p^{i_{1}} \times \ldots \times p^{i_{k}} \xrightarrow[g_{i_{j}} \times \ldots \times g_{i_{k}}]{ } P^{\infty} \times \ldots \times P^{\infty} \xrightarrow[m_{k}]{ } B O(k)$

Finally, it is clear that when we apply the Thom-Pontrjagin construction we get the embeddinas stated in the Theorem.

Chapter 2.- The Dyer-Lashof Operations
In this chapter we define Dyer Lashof operations in homology and in bordism and study their relationship.
§2.1) The Homology mod. 2 of $E G \underset{G}{x} x^{n}$
In this section we give some results about $H_{*}\left(E G \underset{G}{x} X^{n} ; \mathbb{Z}_{2}\right)$ that we shall need later. To make the notation simpler we shall denote the mod. 2 homology by $\left.H_{\star}()_{-}\right)$.
2.1) Definition.- Let $G \subset \Sigma_{n}$ be a subgroup of the symmetric group of degree n. Let $E G$ be a contractible space on which G acts freely on the right. Let X be a space and define an action $X^{n} \times G \rightarrow x^{n}$ on the n-fold product of x by $\left(x_{1}, \ldots, x_{n}\right)^{\cdot \sigma}=\left(x_{\sigma(1)} \ldots \ldots x_{\sigma(n)}\right)$; then G acts diagonally on $E G \times X^{n}$ and we denote by $E G \underset{G}{x} x^{n}$ the quotient space. This construction is functoria]. given a map
$f: X \rightarrow Y$, id $\times f^{n}: E G \times X^{n} \rightarrow E G \times Y^{n}$, induces a miop id $\frac{x}{G} f^{n}: E G \underset{G}{x} X^{n} \rightarrow E G \underset{G}{x} Y^{n}$.
Notice that as the action on $E G$ is free then the action on $E G \times X^{n}$ is also free and if X is Hausdorff the projection $p: E G \times X^{n} \rightarrow E G{ }_{G} x^{n}$ is a covering projection [44].
Let $S_{\star}()$ denote the singular chain complex with \mathbb{Z}_{2} coefficients and $\mathbb{Z}_{2}[G]$ the group ring of G with coefficients in \mathbb{Z}_{2}. The action of G on $E G \times X^{n}$ induces a $\mathbb{Z}_{2}[G]$-module structure on $S_{\star}\left(E G \times X^{n}\right)$; if we give \mathbb{Z}_{2} the trivial G action we have:
2.2) Lemma [30]: $S_{*}\left(E G \times X^{n}\right)$ is $\mathbb{Z}_{2}[G]$-free and we have a natural
isomorphism $\phi: S_{\star}\left(E G \times X^{n}\right) \underset{\mathbb{Z}_{2}[G]}{\otimes} \mathbb{Z}_{2} \cong S_{\star}\left(E G \underset{G}{x} X^{n}\right)$ given by $\phi(a \times 1)=p_{\#}(a)$.

The actions of G on $E G$ and x^{n} also induce $\mathbb{Z}_{2}[G]$-module structures on $S_{*}(E G)$ and $S_{*}\left(X^{n}\right)$. We define a $\mathbb{Z}_{2}[G]$-module structure on
$S_{\star}(E G) \frac{\otimes_{2}}{L_{2}} S_{*}\left(X^{n}\right)$ by $(r * t) \cdot \sigma=r \cdot \sigma \otimes t \cdot \sigma$
2.3) Lemma.- We have a G-equivariant chain equivalence
$\alpha: S_{*}\left(E G \times X^{n}\right) \rightarrow S_{\star}(E G) \otimes S_{\star}\left(X^{n}\right)$ with a homotopy inverse β which is also G-equivariant. Furthermore the chain homotopies $\alpha{ }^{\circ} \beta \approx 1, \beta^{\circ} \alpha \sim 1$ are also G-equivariant, and α and β are natural.

Proof.- By the Eilenberg-Zilber Theorem, we have a chain equivalence α of \mathbb{Z}_{2}-modules with homotopy inverse β. We will show that they are G-equivariant. For this recall that to define α you consider the category $T \times T$, where T is the category of spaces, and the functors $F(X, Y)=S_{\star}(X \times Y)$ and $G(X, Y)=S_{\star}(X) \otimes S_{\star}(Y)$, and $\alpha: F \rightarrow G$ and $\beta: G \rightarrow F$ are natural, so in particular for $\sigma \in G$ we have homeomorphisms $\bar{\sigma}: E G \rightarrow E G$ and $\bar{\sigma}: X^{n} \rightarrow x^{n}$ given $b v \quad \bar{\sigma}(e)=e \cdot \sigma$ and $\bar{\sigma}(b)=b \cdot \sigma$, so we have a morphism in $T \times T,(\bar{\sigma}, \bar{\sigma}):\left(E G, X^{n}\right) \rightarrow\left(E G, X^{n}\right)$ and hence a commutative diagram $S_{\star}\left(E G \times X^{n}\right) \xrightarrow{\alpha} S_{\star}(E G) \otimes S_{\star}\left(X^{n}\right)$

$$
S_{\star}\left(E G \times X^{n}\right) \rightarrow S_{\star}(E G) \otimes S_{\star}\left(X^{n}\right)
$$

But the commutativity says precisely that α is G-equivariant. Similarly with β. Furthermore the theorem says that $\alpha^{\circ} \beta$ and $\beta^{c} \alpha$ are chain - homotopic to the identity in a natural way so we can repeat the argument above to show that the chain homotopies are also G-equivariant.
2.4) Corollary.- We have a natural chain equivalence:

$$
S_{\star}\left(E G \times x^{n}\right) \mathbb{Z}_{2}^{\otimes}[G] \mathbb{Z}_{2} \simeq S_{*}(E G) \otimes S_{*}\left(x^{n}\right) \mathbb{Z}_{2}^{\otimes}[G] \mathbb{Z}_{2}
$$

2.5) Lemma.- $S_{*}(E G) \otimes S_{*}\left(X^{n}\right) \mathbb{Z}_{2}^{(8)}[G] \quad \mathbb{Z}_{2}$ and $S_{\star}(E G) \underset{\mathbb{Z}_{2}[G]}{\otimes} S_{\star}\left(X^{n}\right)$ are naturally isomorphic.

Proof.- One can easily verify that $a \otimes b \otimes 1 \mapsto a \otimes b$ is a natural isomorphism.

Let us denote by $S_{\star}(X)^{\otimes n}$ the tensor product $S_{\star}(X) \notin \ldots S_{\star}(X)$, n-times. We would like to put $S_{*}(X)^{8 n}$ instead of $S_{*}\left(x^{n}\right)$ in $S_{*}(E G) \underset{\mathbb{Z}_{2}[G]}{\otimes} S_{*}\left(X^{n}\right)$ but there is no equivariant chain equivalence between $S_{*}(X)^{8 n}$ and $S_{\star}\left(X^{n}\right)$. (This would imply for $n=2$ that all Steenrod squares are zerol, so we need a generalisation of the Theorem of acyclic models due to Dyer and Lashof.
2.6) Definition.- Let C be a category and G a finite group. We say that C is a G-category if for each $g \in G$ we have a functor $\overline{\mathrm{g}}: C \rightarrow C$ such that i) $\overline{\mathrm{e}}=\mathrm{id}$ (where e is the zero of the group); ii) $\bar{g}_{1} g_{2}=\bar{g}_{1}^{c} \bar{g}_{2}$. If y denotes the category of chain complexes and $F: C \rightarrow y$ is a functor, we say that F is a G-functor if for each ge G there is a natural transformation $\alpha_{g}: F \rightarrow F^{c} \bar{g}$ such that
i) $\alpha_{e}=$ id. ii) $\alpha_{g_{1} g_{2}}=\alpha_{g_{1}}{ }^{\circ} \alpha_{g_{2}}$.

Let W be a chain complex, we denote by $W^{(n)}$ its n-skeleton, i.e., $W^{(n)} r= \begin{cases}W_{r} & \text { if } r \leqslant n \\ 0 & \text { if } r>n .\end{cases}$

If W and V are any $\mathbb{Z}_{2}[G]$-chain complexes, and K and L G-functors we make $W \otimes K$ and $V \otimes L$ into G-functors by having G act on both factors.
2.7) Theorem [16].- Let K, L be G-functors, W and $V \mathbb{Z}_{2}[G]-$ chain complexes and $f: K \rightarrow L$ a natural transformation. If W is G-free, if K is free and L is acyclic (for some set of models $m \in C)$ and if f is equivariant in dimension zero; then given any G-equivariant chain map $t: W \rightarrow V$.
a) There exists a natural G-equivariant chain map $F: W \otimes K \rightarrow V \otimes L$, satisfying:

1) $\quad F\left(W^{(n)} \otimes K(X)\right) \subset V^{(n)} \otimes L(X)$, all n.
2) $F(w \otimes a)=t(w) \otimes f(a), w \in W, a \in K_{0}(X)$
b) If $t, t_{1}: W \rightarrow V$ are G-equivariantly chain homotopic, and F, F_{1} are any two chain maps satisfying 1) and 2) above for t, t_{1} respectively, then F and F_{1} are G-equivariantly chain homotopic.
c) We may further choose F so that given any zero dimensional Ggenerator e_{0} of $W, F\left(e_{0} \otimes a\right)=t\left(e_{0}\right) \otimes f(a), a \in K(X)$.
2.8) Proposition.- We have a natural chain homotopy equivalence
$S_{\star}(E G) \underset{\mathbb{Z}_{2}[G]}{\otimes} S_{\star}\left(X^{n}\right) \xlongequal{\cong} B_{\star} \mathbb{Z}_{2}^{\otimes}[G] \quad S_{\star}(X)^{\otimes n}$, where B_{*} is the normalized Bar resolution of \mathbb{Z}_{2} over the group G.

Proof.- We apply theorem 2.7 to the following case. C the category $T^{n}=T \times \ldots \times T$ where T is the categorv of topological spaces. We can make C into a G-category by defining for $\sigma \in G \subset \Sigma_{n}, \bar{\sigma}: C \rightarrow C$ by
$\sigma\left(X_{1}, \ldots, X_{n}\right)=\left(X_{\sigma^{-1}(7)}, \ldots, X_{\sigma^{-1}(n)}\right)$
and in the obyious way
in morphisms. The functors are $K\left(X_{1}, \ldots, X_{n}\right)=S_{*}\left(X_{1} \times \ldots X_{n}\right)$ and $L\left(X_{1}, \ldots, X_{n}\right)=S_{\star}(X)^{\otimes n}$. Both are Gafunctors because for each $\sigma \in G$ we have natural transformations $\alpha_{\sigma}: K \rightarrow K \circ \bar{\sigma}$ and $\beta_{\sigma}: L \rightarrow L^{\circ} \bar{\sigma}$ given by $\alpha_{\sigma}\left(x_{1}, \ldots, x_{n}\right)=h_{\sigma_{\#}}$ where $h_{\sigma}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{\sigma^{-1}}(1), \ldots, x_{\sigma^{-1}}(n)\right)$ and $\beta_{\sigma}\left(x_{1} \ldots ., x_{n}\right)\left(a_{1} \otimes \ldots \otimes a_{n}\right)=a_{\sigma^{-1}(7)} \otimes \ldots \otimes a_{\sigma^{-3}(n)}$ (as we are working over \mathbb{Z}_{2} there is no need to introduce the usual change of signs).

Both functors are clearly free and acyclic on the usual models $m=\left\{\left(\Delta_{q_{1}}, \ldots, \Delta_{q_{n}}\right)\right\} q_{i} \geqslant 0$. We take as $f: S_{\star}\left(x_{1} \times \ldots \times x_{n}\right)+S_{\star}(x)^{\otimes n}$ the chain equivalence given by the Eilenberg-Zilber theorem which in dimension zero is G-equivariant because it sends $\left(x_{1}, \ldots x_{n}\right)$ to $x_{1} \otimes \ldots \otimes x_{n}$.

Finally, as $E G$ is contractible and has a free G-action $S_{*}(E G)$ is a free $\mathbb{Z}_{2}[G]$ resolution of \mathbb{Z}_{2}. The Bar resolution B_{*} is also a free resolution of \mathbb{Z}_{2} over G so we have a G-equivariant chain equivalence $t: S_{*}(E G) \stackrel{\approx}{\rightrightarrows} B_{\star}[21]$.

Then by 2.7) We have a natural G-equivariant chain equivalence $S_{\star}(E G) \otimes S_{\star}\left(X^{n}\right) \xrightarrow{\approx} B_{\star} \otimes S_{\star}(X)^{\otimes n}$ which gives a natural chain equivalence $F: S_{\star}(E G) \underset{\mathbb{Z}_{2}[G]}{\otimes} S_{\star}\left(X^{n}\right) \xlongequal{\rightrightarrows} B_{\star} \underset{\mathbb{Z}_{2}[G]}{\otimes} S_{\star}(X)^{\otimes n}$.
2.9) Proposition.- $B_{\star} \mathbb{Z}_{2}^{\otimes G]} S_{\star}(X)^{\otimes n}$ is chain homotopy equivalent to $B_{\star} \mathbb{Z}_{2}^{\otimes G]} H_{\star}(X)^{\otimes n}$, where we consider $H_{\star}(X)^{\otimes n}$ as a chain complex with trivial boundary.
$\sigma\left(x_{1}, \ldots, x_{n}\right)=\left(x_{\sigma^{-1}(1)}, \ldots, X_{\sigma^{-1}(n)}\right)$
and in the obvious way in morphisms. The functors are $K\left(X_{1}, \ldots, X_{n}\right)=S_{*}\left(X_{1} \times \ldots X_{n}\right)$ and $L\left(X_{1} \ldots . X_{n}\right)=S_{\star}(X)^{\otimes n}$. Both are G-functors because for each $\sigma \in G$ we have natural transformations $\alpha_{\sigma}: K \rightarrow K \circ \bar{\sigma}$ and $\beta_{\sigma}: L \rightarrow L^{\circ} \bar{\sigma}$ given by $\alpha_{\sigma}\left(x_{1}, \ldots, x_{n}\right)=h_{\sigma_{\#}}$ where $h_{\sigma}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{\sigma^{-1}}(1) \ldots, x_{\sigma}{ }^{-1}(n)\right)$ and $\beta_{\sigma}\left(x_{1} \ldots . x_{n}\right)\left(a_{1} \otimes \ldots \otimes a_{n}\right)=a_{\sigma^{-1}(7)} \otimes \ldots \otimes a_{\sigma^{-1}(n)}$ (as we are working over \mathbb{Z}_{2} there is no need to introduce the usual change of signs).

Both functors are clearly free and acyclic on the usual models $m=\left\{\left(\Delta_{q_{1}}, \ldots, \Delta_{q_{n}}\right)\right\} q_{i} \geqslant 0$. We take as $f: S_{*}\left(x_{1} \times \ldots \times x_{n}\right) \rightarrow s_{\star}(x)^{\otimes n}$ the chain equivalence given by the Eilenberg-Zilber theorem which in dimension zero is G-equivariant because it sends ($x_{1}, \ldots x_{n}$) to $x_{1} \otimes \ldots \otimes x_{n}$.

Finally, as EG is contractible and has a free G-action $S_{\star}(E G)$ is a free $\mathbb{Z}_{2}[G]$ resolution of \mathbb{Z}_{2}. The Bar resolution B_{*} is also a free resolution of \mathbb{Z}_{2} over G so we have a G-equivariant chain equivalence $t: S_{\star}(E G) \underset{\approx}{\leftrightarrows} B_{\star}[21]$.

Then by 2.7) We have a natural G-equivariant chain equivalence $S_{*}(E G) \otimes S_{*}\left(X^{n}\right) \stackrel{\approx}{\rightarrow} B_{*} \otimes S_{*}(X)^{\otimes n}$ which gives a natural chain equivalence $F: S_{\star}(E G) \underset{\mathbb{Z}_{2}[G]}{\otimes} S_{\star}\left(x^{n}\right) \xlongequal{\leftrightharpoons} B_{\star} \mathbb{Z}_{2}^{\otimes}[G] \quad S_{\star}(X)^{\otimes n}$.
2.9) Proposition.- $B_{*} \mathbb{Z}_{2}^{\otimes}[G]$ $S_{*}(x)^{\otimes n}$ is chain homotopy equivalent to $B_{\star} \mathbb{Z}_{2}^{\otimes[G]} H_{\star}(X)^{\otimes n}$. where we consider $H_{\star}(X)^{\otimes n}$ as a chain complex with trivial boundary.

Proof, - Consider id: $H_{\star}\left(S_{\star}(X), \partial\right) \rightarrow H_{\star}\left(H_{\star}(X), 0\right)$, as we are working over \mathbb{Z}_{2}, there exists a chain equivalence $\alpha: S_{\star}(X) \rightarrow H_{\star}(X)$ such that $\alpha_{\star}=i d$. Recall that B_{*} is G-free, then the fact that $i d \otimes a^{8 n}$ is a chain equivalence follows from lemma 5.2 of [45] which says that if 2 chain maps $f_{0}, f_{7}: M \rightarrow N$ are chain homotopic and W is a G-free chain complex then $i d \otimes f_{0}^{\otimes n}, i d \otimes_{G} f_{1}^{\otimes n}: W \otimes M^{\otimes n} \rightarrow$ Wi $_{G} N^{\otimes n}$ are chain homotopic.
2.10) Corollary.- There exists a natural isomorphism
$H_{\star}\left(E G \underset{G}{\times} x^{n}\right) \cong H_{\star}\left(B_{\star} \underset{\mathbb{Z}_{2}[G]}{\otimes} H_{\star}(X)^{\otimes n}\right)$.
Proof.- by 2.2, 2.4, 2.5 and 2.8 we have
$S_{\star}\left(E G \times{ }_{G}^{n}\right) \cong S_{\star}\left(E G \times x^{n}\right) \mathbb{Z}_{2}^{\otimes}[G] \mathbb{Z}_{2} \simeq S_{\star}(E G) \mathbb{Z}_{2}^{\otimes} S_{\star}\left(x^{n}\right) \mathbb{Z}_{2}^{\otimes}[G] \mathbb{Z}_{2} \cong$
$\cong S_{\star}(E G) \underset{\mathbb{Z}_{2}[G]}{\otimes} S_{\star}\left(X^{n}\right) \approx B_{\star} \mathbb{Z}_{2}^{\otimes}[G] \quad S_{\star}(X)^{\otimes n}$ which are all natural; and
by 2.9) $B_{\star} \mathbb{Z}_{2}^{(\otimes)} S_{\star}(x)^{\otimes n} \simeq B_{\star} \underset{\mathbb{Z}_{\lceil }(G]}{\otimes} H_{\star}(x)^{\otimes n}$, in this case if we have
a map $f: X \rightarrow Y$ then $S_{\star}(X) \xrightarrow{\alpha} H_{\star}(X)$

$$
S_{\star}(Y) \underset{\alpha}{\longrightarrow} H_{\star}(Y)
$$

is chain homotopy commutative because the maps induced in homology $\left(f_{\star}{ }^{\circ} \alpha\right)_{\star}=f_{\star}{ }^{0} \alpha_{\star}=f_{\star}=\left(\alpha^{\circ} f_{\star}\right)_{\star}$ are the same [30], hence
 is natural.

Now we want to see that the isomorphism 2.10 is independent of the choice of EG.
2.11) Proposition.- Let E'G be a contractible space with a free G-action and $\phi: E G \rightarrow E ' G$ a G-equivariant map, Let $\underset{G}{x} \underset{G}{i d}: E G \underset{G}{x} x^{n} \rightarrow E^{\prime} G \underset{G}{x} x^{n}$ be the induced map, then the following diagram commutes: $H_{\star}\left(E G \times X^{n}\right) \xrightarrow{\cong} H_{\star}\left(B_{*} \mathbb{Z}_{2}^{\otimes}[G]^{\left.H_{\star}(X)^{\otimes n}\right)}\right.$

$$
\underset{G}{(\phi \times i d)_{*}}
$$

$$
H_{\star}\left(E^{\prime} G \underset{G}{x} \times x^{n}\right)
$$

Proof.- Consider the following diagram:

The first 3 squares are clearly commative (the second one by naturality of the Eilenberg Zilber Theorem). We will show that the fourth one is chain homotoby commutative. For this we shall apply 2.7) part b).

We have

Complexes are resolutions of \mathbb{Z}_{2} over G, we have chain equivalences t and t^{\prime}. If we consider t and $t^{\prime \circ} \phi_{\#}$, then both commute with the augmentation and both lift id: $\mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ hence $t^{10} \phi_{\#^{\sim}} t$.

Now we apply 2.7) as we did before to get chain equivalences
$F: S_{*}\left(E G \otimes S_{*}\left(X^{n}\right) \simeq B_{*} \otimes S_{*}(X)^{\otimes n}\right.$ associated with t and
$F^{\prime}: S_{\star}\left(E^{\prime} G\right)_{G} S_{\star}\left(X^{n}\right) \approx B_{\star} \otimes S_{\star}(X)^{\otimes n}$ associated with t. So now consider $F^{\prime 0} \phi_{A}$ ©id. As ϕ_{G} gid preserves the filtration then so does $F^{\prime 0} \phi_{k}$ gid and $F^{\prime \circ} \phi_{G} \mathcal{G i d}_{G}(w \& a)=F^{\prime}\left(\phi_{H}(w) \otimes a\right)=t^{\prime} \phi_{\#}(w) \& f(a)$, for all $w \in S_{*}(E G)$,
 to $t^{\prime \circ} \phi_{\|}$, but we saw that $t^{\prime \prime} \phi_{n} \simeq t$ so by 2.7. b) $F^{\prime \circ}\left(\phi_{a} \underset{G}{\text { बid }}\right) \approx F$.
§2.2 Dyer-Lashof overations in homology
Let E^{ℓ} be an E_{x}-operad and X a b-space [34]. We can then define natural homomorphisms $Q_{i}: H_{n}\left(X: \mathbb{Z}_{2}\right) \rightarrow H_{2 n+i}\left(X: \mathbb{Z}_{2}\right)$ for all $i, n \geq 0$ called Dyer-Lashof operations as follows. As X is a E-space we have structure maps $\ell(r) \Sigma_{r} \times X^{r}{ }_{r}^{\theta_{r}} X$, where the spaces $\ell(r)$ are contractible with a free Σ_{r}-action. We are interested in the case $r=2$.

By 2.10) We have a natural isomorphism
$\left.H_{\star}\left(b(2) \Sigma_{2}^{\times x^{2}} ; \mathbb{Z}_{2}\right) \simeq H_{\star}\left(B_{\star} \mathbb{Z}_{2}^{\otimes} \Sigma_{2}\right]_{\star} H^{*}(X)^{\otimes 2}\right)$ where B_{\star} is the normalized
Bar resolution for \mathbb{Z}_{2} over Σ_{2} so B_{n} is a free $\mathbb{Z}_{2}\left[\Sigma_{2}\right]$-module in one generator e_{n}. If we denote $\Sigma_{2}=\{1, T\}$ then $\partial\left(e_{n}\right)=(1+T) e_{n-1}$, with this notation we have:
2.12) Proposition [76]. Let $\left\{a_{j}\right\}_{j \in J}$ be an ordered basis for $H_{\star}\left(X ; \mathbb{Z}_{2}\right)$ then a \mathbb{Z}_{2}-basis for $H_{\star}\left(B_{\star} \stackrel{\otimes}{\mathbb{Z}} \Sigma_{2} \Sigma_{\star}(X)^{\otimes 2}\right)$ is given by the following elements

$$
\left\{\begin{array}{l}
e_{r} \otimes_{2} a_{j} \otimes a_{j}, \quad r \geqslant 0 \quad j \in j \\
e_{0} \otimes_{\Sigma_{2}} a_{j} \otimes a_{k}, j<k
\end{array}\right.
$$

2.13) Lemma.- We have a homomorphism $h_{i}: H_{n}\left(X ; \mathbb{Z}_{2}\right) \rightarrow$
$\rightarrow H_{2 n+i}\left(B_{*} \mathbb{Z}_{2}^{\otimes}\left[\Sigma_{2}\right] \quad H_{\star}(X)^{\otimes 2}\right)$ given by $h_{i}(a)=e_{i} \sum_{2} a \otimes a$.

Proof.- $\quad h_{i}(a+b)=e_{i} \otimes(a+b) \otimes(a+b)=e_{\Sigma_{2}} \otimes a \otimes a+e_{i} \otimes b \otimes b+e_{\Sigma_{2}}^{\otimes}(a \otimes b+b \otimes a)$, but $\quad \partial\left(e_{i+1}{\underset{\Sigma}{\Sigma_{2}}}^{a \otimes b}\right)=(1+T) e_{i+1}{\underset{\Sigma}{\Sigma_{2}}}^{a} a \otimes b=e_{i}{\frac{\otimes}{\Sigma_{2}}}(a \circledast b+b \otimes a)$, hence $h_{i}(a+b)=h_{i}(a)+h_{i}(b)$.
2.14) Definition.- Let E be an E_{∞}-operad and X a \mathscr{b}-space, then with the notation as above, we define homomorphisms $Q_{i}: H_{n}\left(X ; \mathbb{Z}_{2}\right) \rightarrow$ $\rightarrow H_{2 n+i}\left(x ; \mathbb{Z}_{2}\right)$ by the composition $H_{n}(x) \xrightarrow{h_{i}} H_{2 n+i}\left(B_{\star} \mathbb{Z}_{2}\left[\Sigma_{2} H_{\star}(x)^{\otimes 2}\right) \rightarrow\right.$ $\cong H_{2 n+i}\left(6(2)_{\Sigma_{2}^{*}} x^{2}\right) \frac{e_{2 *}}{} H_{2 n+i}(x)$.
2.15) Theorem $[11,76,13]:$ Let $Q^{s}: H_{n}\left(X ; \mathbb{Z}_{2}\right) \rightarrow H_{n+s}\left(X ; \mathbb{Z}_{2}\right)$ be defined by $Q^{s}=Q_{s-n}$, where Q_{s-n} is as in 2.14, then the operations Q^{s} satisfy:
i) The Q^{s} are natural with respect to maps of C-spaces.
ii) $Q^{S}(X)=0$ if deg $x>s$.
iii) $Q^{s}(x)=x^{2}$ if deg $x=s$.
iv) Cartan formula: $Q^{s}(x y)=\sum_{i+j=s} Q^{i}(x) Q^{j}(y)$.
v) $Q^{s} \sigma=\sigma Q^{s}$, where $\sigma: \tilde{H}_{n}(\Omega X) \rightarrow \tilde{H}_{n+1}(X)$ is the homology suspension.
vi) Adem relations: if $r>2 s$ then $Q^{r} Q^{s}=\sum_{i}\binom{i-s-1}{2 i-r} Q^{r+s-i} Q^{i}$
vii) Nishidz relations: Let $S_{q_{*}}^{r}$ be the dual of the Steenrod square S_{q}^{r} then $S_{q_{*}}^{r} Q^{r+s}=\sum_{i}\binom{s}{r-2 i} \quad Q^{s+i} S_{q_{*}}^{i}$.
2.16) Note.- If X is an infinite loop space, i.e., if we have spaces Y_{r} such that $X \cong \Omega^{r} Y_{r}, r \geq 1$; then X is a b_{∞}-space, where \mathfrak{b}_{∞} is the cubes operad which is an E_{∞}-operad. The structure maps are defined as follows [34]:
$\theta_{n}: \ell_{r}(n) \times\left(\Omega^{r} Y_{r}\right)^{n} \rightarrow \Omega^{r} Y_{r}$ is given by
$\theta_{n}\left(\left(c_{1}, \ldots, c_{n}\right),\left(\alpha_{1} \ldots \ldots \alpha_{n}\right)\right):\left(I^{r}, \partial I^{r}\right) \rightarrow\left(Y_{r}, *\right) \quad$ is the map sending any $x \in \operatorname{Im} c_{i}$ to $\alpha_{i}\left(c_{i}^{-1}(x)\right)$ and any point outside $\bigcup_{i=1}^{n} \operatorname{Im} c_{i}$ to *.
These actions are compatible for different r giving an action of $\mathfrak{b}_{\infty}=\lim _{r} \mathscr{C}_{r}$. So if X is an infinite loop space we have Dyer-Lashof operations $Q^{s}: H_{n}\left(X: \mathbb{Z}_{2}\right) \rightarrow H_{n+s}\left(X ; \mathbb{Z}_{2}\right)$ for all $n, s \geq 0$.
§2.3) Dyer-Lashof operations in Bordism In this section we shall define Dyer-Lashof operations in the bordism of a \mathcal{B}_{∞}-space (\mathscr{C}_{∞}, the cubes operad). For this we begin by defining functions $\quad \tilde{q}_{r}^{n}: N_{s}(x) \rightarrow N_{2 s+r}\left(S_{\Sigma_{2}^{n}}^{x} X \times X\right)$.
2.17) Definition.- Let (M, f) be a pair where $f: M \rightarrow X$ is a map from a closed smooth s-manifold to a space X, define the map $\Psi_{r}^{n}(M, f)$ by $s^{r} \Sigma_{2} \times M^{2} \frac{{ }_{\Sigma} \Sigma_{2} f^{2}}{} s^{n} \Sigma_{2}^{x} x^{2}$, where $: s^{r} \hookrightarrow s^{n}$ is the inclusion, $r \leq n \leq \infty$.

On disjoint unions ψ_{r}^{n} satisfies the following: $\psi_{r}^{n}\left(M_{\ell} N, f \mu g\right)=$ $=S^{r} \Sigma_{2}^{x}(M \mu N)^{2} \xrightarrow[\Sigma_{2}^{x}(f \mu g)^{2}]{ } S^{n} \sum_{\Sigma_{2}} x^{2}$ which can be written as:
$\left(S^{r} \frac{x}{\Sigma_{2}} M^{2},{ }^{1} \Sigma_{2}^{\times} f^{2}\right) \Perp\left(S_{\Sigma_{2}^{r}}^{r} N^{2},{ }_{\Sigma_{2}} \times g^{2}\right) \mu\left(S^{r} \times M \times N, \phi\right)$ where $\phi=p^{\circ}{ }^{2} \times f \times g$, p the projection of the double covering.
2.18) Lemma.- Suppose (M, f) is bordant to (N, g) then ($S^{r} \times M_{\times N} N, \phi$) bords in $s^{n}{\underset{\Sigma}{2}}_{x}^{\Sigma_{2}} x^{2}$.

Proof.- As $(M, f) \sim(N, g)$ then we have a manifold V and a map $F: V \rightarrow X$ such that $\partial V \cong M \mu N$ and $F|M=f, F| N=g$. Consider $M \times V \mu V \times M$, then $\partial(M \times V)=M \times M \Perp M \times N$ and $\partial(V \times M)=M \times M \mu N \times M$, taking id: $M_{x M} \rightarrow M_{x} M$ we can glue $M_{x V}$ to $V \times M$ [9] to form the manifold $M \times V$ i $\underset{M \times M}{U} V \times M$, whose boundary is $M \times N \Perp N \times M$, we have an action of Σ_{2} on this manifold coming from the action on $M \times V \Perp V_{x} M$ given by $T(x, z)=(z, x)$.
We also have a map $M \times V \Perp V \times M \underset{f \times F \Perp F \times f}{ } X \times X$, as $F \mid M=f$ this map passes to the quotient to give a Σ_{2}-equivariant map

 We clearly have $\partial\left(S^{r}{\underset{\Sigma}{2}}_{x}^{x}\left(M \times V{ }_{i d_{M \times M}}^{U} V \times M\right)\right) \approx S^{r} \times M \times N$ and as $F \mid N=g$ we have
a commutative diagram:

On disjoint unions $\psi \underset{r}{n}$ satisfies the following: $\psi_{r}^{n}\left(M_{\mu} N, f \Perp g\right)=$ $=S^{r} \Sigma_{2}^{x}(M \Perp N)^{2} \xrightarrow[\Sigma_{2}^{x}(f \Perp g)^{2}]{ } S^{n}{\underset{\Sigma}{2}}_{\times} x^{2}$ which can be written as:
$\left(S^{r} \times \Sigma_{2} M^{2},{ }^{2} \Sigma_{2}^{\times} f^{2}\right) \Perp\left(S_{\Sigma_{2}^{r}}^{\times} N^{2}, \Sigma_{2}^{\times} g^{2}\right) \Perp\left(S^{r} \times M \times N, \phi\right)$ where
$\phi=p^{\circ} 1 \times f \times g$, p the projection of the double covering.
2.18) Lemma.- Suppose (M, f) is bordant to (N, g) then $\left(S^{r}{ }_{x} M_{x} N, \phi\right)$ bords in $s^{n} \sum_{2}^{x} x^{2}$.

Proof.- As $(M, f) \sim(N, g)$ then we have a manifold V and a map $F: V \rightarrow X$ such that $\partial V \cong M u N$ and $F|M=f, F| N=g$. Consider $M \times V \Perp V \times M$, then $\partial(M \times V)=M \times M \Perp M \times N$ and $\partial(V \times M)=M \times M \Perp N \times M$, taking id: $M \times M \rightarrow M \times M$ we can g lue $M \times V$ to $V \times M$ [9] to form the manifold $M \times V$ id $\underset{M \times M}{\cup} V \times M$, whose boundary is $M \times N \Perp N \times M$, we have an action of Σ_{2} on this manifold coming from the action on $M \times V \Perp V_{x} M$ given by $T(x, z)=(z, x)$.
We also have a map $M \times V \mu V \times M \frac{}{f \times F_{\mu} F \times f} X \times X$, as $F \mid M=f$ this map passes to the quotient to give a Σ_{2}-equivariant map
$M \times V \underset{\operatorname{id}}{M \times M} \cup \underset{\sim \times M}{\cup} \underset{M \times M}{\cup} \underset{M \times f}{ } X \times X$. So we can define
$S^{r} \Sigma_{2}^{\times}\left(M \times V_{i d_{M \times M}}^{\cup} V \times M\right) \xrightarrow[\tau_{\Sigma_{2}}\left(f \times F_{i d_{M \times M}} F \times f\right)]{ } S^{n_{\Sigma_{2}}} \quad X \times X$.
We clearly have $\left.\partial\left(S^{r} \sum_{\sum_{2}}^{x}(M \times V) \underset{d_{M \times M}}{\cup} V \times M\right)\right) \approx S^{r} \times M \times N$ and as $F \mid N=g$ we have
a commutative diagram:

2.19) Remark.- Notice that if $r<n$, then ($S^{r} \times N \nmid N N$, bords in $S^{n} \frac{x}{\Sigma_{2}} x^{2}$ even without the asumption (M, f) $\sim(N, g)$. We only have to consider an extension

commutes.
\square
2.20) Proposition.- If (M, f) bords in X then $\psi_{r}^{n}(M, f)$ bords in $s_{\Sigma_{2}}^{n_{x}} x \times x$.

Proof.- As (M, f) bords in X we have a manifold V and a map $F: V \rightarrow X$ such that $\partial V \cong M$ and $F \mid M=f$. Let D_{+}^{r} and D_{-}^{r} be the upper and lower hemispheres of S^{r} respectively. We denote $\quad{ }^{1}=1 / D_{+}^{r} \quad$ and $\quad z_{-}=2 \mid D_{-}^{r}$.

By straightening the corners [9] we can define manifolds with boundary and maps: $D_{+}^{r} \times M \times V \xrightarrow[i_{+} \times f \times F]{ } S^{n} \times X \times x ; S^{r-1} \times V \times V \underset{1 \times F \times F}{ } S^{n} \times X \times X ; D_{-}^{r} \times V \times M \underset{L_{-} \times F \times f}{ } S^{n} \times X \times x$.

We have a Σ_{2}-action on the union of these manifolds given by $T(t, x, y)=(-t, y, x)$ sending $D_{+}^{r} \times M \times V$ to $D_{-}^{r} \times V \times M$ and $T\left(t, y_{1}, y_{2}\right)=$ $=\left(-t, y_{2}, y_{1}\right)$ sending $s^{r-1} \times V \times V$ to itself, the maps are clearly equivariant. The boundaries are as follows:
$\partial\left(D_{+}^{r} \times M \times V\right)=S^{r-1} \times M \times V \underset{S^{r-1} \times M_{\times}}{\cup} M_{+}^{r} D^{r} \times M \times M ; \quad \partial\left(S^{r-1} \times V_{\times} V\right)=$
$=S^{r-1} \times M_{x} V \underset{S^{r-1} \times M \times M}{\cup} S^{r-1} \times V_{x} M \quad ; \quad \partial\left(D_{-}^{r} \times V \times M\right)=S^{r-1} \times V \times M S^{r}{\underset{x M}{ } \times M}_{\cup}^{\cup} D_{-}^{r} \times M_{x} M$.
Now $S^{r-1} \times M_{\times} V \subset \partial\left(D_{+}^{r} \times M_{\times} V\right)$ and $S^{r-1} \times M_{x} V \subset \partial\left(S^{r-1} \times V \times V\right)$, a collar of $S^{r-1} \times M$ in $D_{+}^{r} \times M$ gives a collar for $S^{r-1} \times M \times V$ in $D_{+}^{r} \times M \times V$ and a collar of $S^{r-1} \times M$ in $S^{r-1} \times V$ gives a collar for $S^{r-1} \times M \times V$ in $S^{r-1} \times V \times V$; the same applies for $S^{r-1} \times V \times M \subset \partial\left(S^{r-1} \times V \times V\right)$ and $S^{r-1} \times V \times M \subset \partial\left(D_{-}^{r} \times V \times M\right)$. Hence we can form the smooth manifold:
 $D_{+}^{r} \times M \times M{ }_{S}^{r-I_{\times M}} \bigcup_{\times M} D_{-}^{r} \times M_{\times} M \cong S^{r} \times M_{\times} M$. This manifold has a free Σ_{2}-action
coming from the one we gave above and we have a Σ_{2}-equivariant map to $s^{n} \times x \times x$ from the maps defined before. Passing to the quotient we get a manifold with boundary $S^{r} \frac{x}{\Sigma_{2}} M \times M$ and a map to $s^{n} \sum_{\Sigma_{2}} x \times x$ extending ${ }^{r_{\Sigma}} \times f \times f$.
2.21) Definition.- We define $\tilde{q}_{r}^{n}: N_{s}(x) \rightarrow N_{2 s+r}\left(S_{\Sigma_{2}}^{n_{x}} X x x\right), r \leq n \leq \infty$. by $\tilde{a}_{r}^{n}[M, f]=\left[\psi_{r}^{n}(M, f)\right]=\left[s^{r}{\frac{x}{\Sigma_{2}}}_{2} M^{2},{ }_{\Sigma} \sum_{2}^{x} f^{2}\right]$. These operations were defined, when X is a closed manifold, in [51].
2.22) Proposition.- \tilde{q}_{r}^{n} is well defined and is natural.

Proof.- $[M, f]=[N, g] \Leftrightarrow(M, f) \sim(N, g) \ll(M \Perp N, f \Perp g)$ bords in X, by $2.20 \psi_{T}^{n}(M \mu N, f \mu g)$ bords in $S_{\Sigma_{2}}^{\Sigma_{2}} X \times X$. But $\psi_{T}^{n}(M \mu N, f \mu g)=$ $=\psi_{r}^{n}(M, f)_{\mu} \psi_{r}^{n}(N, g)_{\Perp}\left(s^{r} \times M \times N \phi\right)$ and by 2.18) ($\left.S^{r} \times M \times N, \phi\right)$ bords in $S^{n} x_{2} X \times X$. Hence $\psi_{r}^{n}(M, f) \sim \psi_{r}^{n}(N, g)$. The naturality is clear.
2.23) Proposition.- If $r<n, \tilde{q}_{r}^{n}$ is a homomorphism.

Proof.- $\tilde{q}_{r}^{n}([M, f]+[N, g])=\tilde{q}_{r}^{n}[M \mu N, f \mu g]=\left[\psi_{T}^{n}\left(M_{\mu} N, f \Perp g\right)\right]=$
$=\left[\psi_{r}^{n}(M, f)_{\mu} \psi_{r}^{n}(N, g) \mu\left(S^{r} \times M \times N, \phi\right)\right]$. As $r<n$ then, by 2.19, $\left(S^{r} \times M \times N, \phi\right)$ bords in $S_{\Sigma_{2}}^{n} x^{2}$. hence \tilde{q}_{r}^{n} is a homomorphism.
2.24) Definition.- Let X be a \mathcal{C}_{∞}-space then we define operations $\widetilde{Q}_{r}: N_{n}(X) \rightarrow N_{2 n+r}(X)$ as follows: $\mathscr{C}_{\infty}(2)$ is Σ_{2}-equivariantly homotopy equivalent to S^{∞} [34], so we have a homotopy equivalence $S^{\infty}{ }_{\Sigma_{2}} x x \times x \simeq e_{\infty}(2) \frac{x}{\Sigma_{2}} x \times x . \quad \tilde{Q}_{r}$ is the composition:
$N_{n}(x) \stackrel{\tilde{q}_{r}^{\infty}}{ } N_{2 n+r}\left(S^{\infty}{\underset{\Sigma}{\Sigma}}_{x} x \times x\right) \xrightarrow{\rightrightarrows} N_{2 n+r}\left(\varepsilon_{\infty}(2) \sum_{\Sigma_{2}}^{x} x \times x\right) \xrightarrow{\theta_{2 \star}} N_{2 n+r}(x)$.
We can use upper indices as we did with the operations in homology, we define $\quad \tilde{Q}^{r}: N_{n}(X) \rightarrow N_{n+r}(X)$ by $\tilde{Q}^{r}=\tilde{Q}_{r-n}$.
2.25) Theorem $[2,39]$.- Let x be a ϵ_{∞}-space then the operations $\tilde{Q}^{r}: \quad N_{n}(X) \rightarrow N_{n+r}(X)$ satisfy:
i) They are natural with respect to maps of $t_{s \infty}$-spaces.
ii) $\tilde{Q}^{r}(x)=0$ if deg $x>r$.
iii) $\tilde{Q}^{r}(x)=x^{2}$ if deg $x=r$.
iv) Cartan formula: $\tilde{Q}_{r}(x \cdot y)=\sum_{0 \leq i+j \leq n}\left(\sum_{m_{k}}\left(\prod_{k} P_{m_{k}}^{2^{k}}\right)\right) \tilde{Q}_{i}(x) \tilde{Q}_{j}(y)$ where $\sum_{k \geq 0} m_{k} 2^{k}=n-(i+j)$
v) $\quad \tilde{Q}^{r} \sigma=\sigma \tilde{Q}^{r} \quad$ where $\sigma: \tilde{N}_{n}(\Omega X) \rightarrow \tilde{N}_{n+1}(X)$
vi) Adem relations: Let $a \in N_{n}(X)$ then in $N_{4 n+z}\left(S^{\infty} \frac{x}{\Sigma_{2}}\left(S^{\infty} \frac{x}{\Sigma_{2}} X x\right)^{2}\right)$, there are relations modulo decomposable classes of the form:
$\tilde{q}_{r}^{\infty} \tilde{q}_{s}^{\infty}(a)=\sum_{i=0}^{p}\binom{k-i-1}{t-k-2 i} \tilde{q}_{j+i}^{\omega} \tilde{q}_{j+t-i}^{\infty}(a)$ for each r, s such that $2 s+r=z$ and f, t are respectively the smallest and largest integers ≥ 0 such that $3 j+2 t=z$ and k is determined by $r=j+2 k, s=j+t-k$ and if $t=3 p+q, q=0,1,2$ then $p<k \leq t$.
§2.4) Relation between the operations in bordism and in homology To give this relation we study first $H_{\star}\left(S^{n} \Sigma_{2}^{x} X \times X ; Z_{2}\right)$, for this we only need 2 new propositions.
2.26) Proposition.- Let $B_{\star}^{(n)}$ be the n-skeleton of the Bar resolution for \mathbb{Z}_{2} over Σ_{2}, then we have a natural chain equivalence $B_{\star}^{(n)} \mathbb{Z}_{2}^{\otimes}\left[\Sigma_{2}\right] S_{\star}(x)^{\otimes 2} \simeq S_{\star}\left(S^{n}\right) \mathbb{Z}_{2}\left[\Sigma_{2} S_{\star}\left(X^{2}\right)\right.$.

Proof. - We define a Σ_{2}-equivariant chain map $\tilde{t}: B_{*}^{(n)} \rightarrow S_{*}\left(S^{n}\right)$ as follows: as $B_{0}^{(n)}$ is Σ_{2}-free with generator e_{0}, we define $\tilde{t}_{0}\left(e_{0}\right)=x_{0}, x_{0} \in S^{n}$. As $\tilde{H}_{i}\left(S^{n}\right)=\left\{\begin{array}{l}\mathbb{Z}_{2} \text { if } i=n \text { we can define } \tilde{t}_{1}, \ldots, \tilde{t}_{n-1}, \text { and } \tilde{t}_{n} \text { by } \\ 0 \text { otherwise }\end{array}\right.$ sending $1 e_{n}+T e_{n}$ to the generator of $H_{n}\left(S^{n}\right)$. We put $\tilde{t}_{i}=0$ if $i>n$. Then \tilde{t} is a chain map such that $H_{i}\left(B_{*}^{(n)}\right) \xrightarrow{\tilde{t}_{n}} H_{i}\left(S^{n}\right)$ is an isomorphism for all i. As both complexes are Σ_{2}-free then \tilde{t} is a chain equivalence. Applying 2.7 as we did in 2.8 we get the natural chain equivalence $B^{(n)} \mathbb{Z}_{2}^{\otimes}\left[\Sigma_{2}\right]_{\star}(x)^{\otimes 2} \approx S_{\star}\left(S^{n}\right) \mathbb{Z}_{2}^{\otimes}\left[\Sigma_{2}\right] S_{\star}\left(x^{2}\right)$.
2.27) Proposition.- We have a chain homotopy commutative diagram

$$
\begin{aligned}
& B_{*}^{(n)} \mathbb{Z}_{2}^{\otimes}\left[\Sigma_{2}\right] S_{\star}(x)^{\otimes 2} \cong S_{\star}\left(S^{n}\right) \mathbb{Z}_{2}^{\otimes}\left[\Sigma_{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& B_{\star} \mathbb{Z}_{2}^{\otimes\left[\Sigma_{2}\right]} S_{\star}(X)^{\otimes 2} \simeq S_{\star}\left(S_{\mathbb{Z}_{2}^{\infty}}^{\infty} \otimes_{\left.\Sigma_{2}\right]}^{\otimes} S_{\star}\left(X^{2}\right)\right.
\end{aligned}
$$

where $\mathrm{i}: S^{n} \hookrightarrow S^{\infty}$, and the equivalences are the ones from 2.26 and 2.8.

Proof.- We want to apply 2.7 b). For this consider

\bar{t} was constructed in 2.26 and t in 2.8. Consider $i_{4 t}=\tilde{t}$ and $t^{c}:: B_{*}^{(n)} \rightarrow S_{*}\left(S^{\infty}\right)$, both compositions clearly lift id: $\mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$, as $B_{*}^{(n)}$ is Σ_{2}-free and $S_{*}\left(S^{\infty}\right)$ is a resolution of \mathbb{Z}_{2} then [30] $i_{*}{ }^{c} t \simeq t^{c}$. Now apply 2.7 to the case $W=B{ }_{*}^{(n)}, K(X)=S_{\star}(X)^{\otimes 2}$ $V=S_{*}\left(S^{\infty}\right), L=S_{*}\left(X^{2}\right)$. We have chain maps:

$$
\begin{aligned}
B_{*}^{(n)} \otimes S_{\star}(x)^{\otimes 2} \xrightarrow{\text { L }} \underset{\sim}{G} S_{\star}\left(S^{n}\right) \otimes S_{\star}\left(x^{2}\right)^{i, \otimes i d} \xrightarrow{\text { id }} S_{\star} \otimes S_{\star}(x)^{\otimes 2} \xrightarrow[H]{\cong}\left(S^{\infty}\right)
\end{aligned} S_{\star}\left(x^{2}\right)
$$

Notice that by construction G is natural and satisfies 2.7) i), ii) with respect to \tilde{t}, as i_{\sharp} id clearly preserves the filtration so does $i_{\#} \otimes i d^{\circ} G ;$ and if $w \in B_{*}^{(n)}, a_{\epsilon} S_{0}(X)^{\otimes 2}$ then $i \not{ }_{\#} \otimes d^{\circ} G(w \otimes a)=$ $=i . \otimes i d(\tilde{t}(a) \otimes f(a))=i_{\#} \tilde{t}(a) \otimes f(a)$, where $f: S_{\star}(x)^{\otimes} \xrightarrow{2} \cong S_{\star}\left(x^{2}\right)$, so
 H^{c} q id satisfies $\left.\mathrm{i}, \mathrm{i} i\right)$ with respect to t°. Hence by 2.7 b) (i\# $\left.\sum_{\Sigma_{2}}^{\otimes} i d\right)^{\circ} G=H\left(2 \sum_{\Sigma_{2}}^{\infty} i d\right)$.
2.28) Lemma, - We have a natural isomorphism
$H_{\star}\left(S^{n} \sum_{2}^{x} X \times X\right) \cong H_{\star}\left(B_{*}^{(n)} \mathbb{Z}_{2}^{\otimes\left[\Sigma_{2}\right]} H_{*}(X)^{\otimes 2}\right)$.

Proof.- The same as 2.10 , except that instead of using 2.8 , we use 2.26 .
2.29)Definition.- Define natural functions $q_{r}^{n}: H_{s}(X) \rightarrow H_{2 s+r}\left(S^{n} \frac{x}{2_{2}} X X X\right), O \leq r \leq n \leq \infty$ by the composition: $H_{s}(X) \xrightarrow{h_{r}^{n}} H_{2 s+r}\left(B_{n}^{(n)} \otimes_{\Sigma_{2}} H_{*}(X) \otimes 2\right) \cong{ }_{2 s+r}\left(S^{n} \frac{x}{\Sigma_{2}} X \times X\right)$ where $h_{r}^{n}(a)=e_{r} \otimes a \in a$. When $r<n$, then the h_{r}^{n} are homomorphisms, as in 2.13, and hence the q_{r}^{n} are also homomorphisms.
2.30) Proposition.- Let i: $S^{n} \hookrightarrow S^{\infty}$ be the inclusion, then we have a commutative diagram

Proof.- The definition of q_{r}^{n} and q_{r}^{∞} gives the following diagram

The triangle is clearly commutative, one can easily check that the equivalences used in the definition of the isomorphisms commute, the only one that is not immediate follows from 2.27 .
2.31) ProDosition,- Suppose $!1$ is a connected manifold of dimension
m with fundamental class $\sigma(M)$, then $\sigma\left(S_{\Sigma_{2}}^{n} \times M \times M\right)=q_{n}^{n}(\sigma(M))$.
Proof.- Consider $q_{n}^{n}: H_{m}(M) \rightarrow H_{2 m+n}\left(S_{\Sigma_{2}}^{n_{2}} M \times M\right)$. As M is connected then $S^{n} \times M \times M$ is also connected so that $H_{2 m+n}\left(S^{n} x_{\Sigma_{2}} M \times M\right) \cong \mathbb{Z}_{2}$. Consider the inclusion $i{ }_{\Sigma_{2}}$ id: $S^{n} \times_{\Sigma_{2}} M \times M \hookrightarrow S^{\infty} \frac{x}{\Sigma_{2}} M \times N$.
By 2.30) (i $\left.\frac{x}{\Sigma_{2}} i d\right) * q_{n}^{n}=q_{n}^{\infty}$ hence (i $\left.\frac{x}{\Sigma_{2}} i d\right) * q_{n}^{n}(\sigma(M))=q_{n}(\sigma(M)) \neq 0$ because by 2.12 it belongs basis for the homology of $s^{\infty} \Sigma_{2}, M \times M$, hence $q_{n}^{n}(\sigma(M)) \neq 0 \quad$ so $\quad q_{n}^{n}(\sigma(M))=\sigma\left(S^{n} x_{\Sigma_{2}}^{M \times M)}\right.$.
2.32) Proposition.- $N_{s}(x)-\tilde{q}_{r}^{\tilde{q}_{r}^{\alpha}} N_{2 s+r}\left(s^{\infty} \frac{x}{\Sigma_{2}} X x \times x\right)$
commutes.

Proof.- Notice that the elements $[M, f] \in N_{S}(X)$ with M connected generate, so we can assume M is connected. We have that $\tilde{q}_{r}^{\infty}[M, f]=\left[S_{\Sigma_{2}}^{r_{x}} M>1, i \frac{x}{\Sigma_{2}} f \times f\right]$, and we have a commutative diagram

then $\mu \tilde{q}_{r}^{\infty}[M, f]=\mu\left[S^{r_{x}} \Sigma_{2} M \times M, i \frac{x}{\Sigma_{2}} f \times f\right]=$
\qquad

$$
=\left(i \frac{x}{\Sigma_{2}} f^{2} \times f\right)_{\star} \sigma\left(S^{r} \frac{r_{x}}{\Sigma_{2}} M \times M\right)
$$

$$
\begin{aligned}
& =\left(i \times \Sigma_{2}^{\times} f \times f\right)_{\star} q_{r}^{r}(\sigma(M)) \text { by } 2.31 \\
& =\left(1 \times \Sigma_{2}^{\times} f \times f\right)_{\star}\left(i \Sigma_{\Sigma_{2}}^{\times} i d\right)_{\star} q_{r}^{r}(\sigma(M)) \text { by diag. above } \\
& =\left(1 \times \frac{\times}{\Sigma_{2}} f \times f\right)_{\star} q_{r}^{\infty}(\sigma(M)) \text { by } 2.30 \\
& =q_{r}^{\infty} f_{\star}(\sigma(M))=q_{r}^{\infty} \mu[M, f] \quad \text { by naturality }
\end{aligned}
$$

2.33) Corollary, - Let X be a \mathfrak{C}_{∞}-space then the following diagram commutes:

Proof.- Consider the following diagram

The first square commutes by 2.32), the other two by naturality of μ. The composition at the top is the definition of $\tilde{\mathrm{Q}}_{\mathrm{r}}$. The composition at the bottom coincides with Q_{r} by 2.11 .

Chapter 3 Generators for the Bordism of immersions
§3.1) Bordism of immersions
All manifolds are compact and smooth. A smooth map $f: M \rightarrow N$ is an immersion if at each point $x \in M$ the differential $d f_{x}: T x \| \rightarrow T_{f(x)}^{N}$ has rank=dimension of M on the tangent space $T \times M$ of M at x.
3.1) Definition. - Given two immersions $f: M \rightarrow N, f^{\prime}: M^{\prime} \rightarrow N^{\prime}$, where $M, M: N, N^{\prime}$ are closed and $\operatorname{dim} M=\operatorname{dim}!M^{\prime}=n, \operatorname{dim} N=\operatorname{dim} N^{\prime}=n+k$, we say that they are bordant if there exists an immersion $F: V \rightarrow W$ such that i) $\operatorname{dim} V=n+1$, and there is a diffeomorphism $\partial V \cong M \mu M^{\prime}$; dim $W=n+k+1$ and there is a diffeomorphism $\partial W \cong N \Perp N^{\prime}$. ii) the following diagrams commute: $\quad M \hookrightarrow M \Perp M^{\prime} \cong \partial V \subset V \quad M^{\prime} \subset M \Perp M^{\prime} \cong \partial V \subset V$

It is convenient to assume that every bordism $F: V \rightarrow W$ satisfies that F is transverse to ∂W, and this can always be achieved by modifying F by a small homotopy. Under this assumption, the proof of the transitivity of the relation reduces to attaching the two bordisms along the common immersion. Consequently it is easy to see that bordism of immersions is an equivalence relation.
3.2) Definition.- We denote by $I(n, k)$ the set of equivalence classes, modulo bordism, of all immersions of closed manifolds $f: M \rightarrow N$ where $\operatorname{dim} M=n, \operatorname{dim} N=n+k, k, m \geq 0$. The equivalence class of $f: M \rightarrow N$ is denoted by $[f: M \rightarrow N]$.
3.3) Proposition.- [40] $I(*, k)$ is an N_{\star} - algebra with the following products:
a) $[f: M \rightarrow N]+\left[f^{\prime}: M^{\prime} \rightarrow N^{\prime}\right]=\left[f_{\mu} f^{\prime}: M \mu M^{\prime} \rightarrow N_{\mu} N^{\prime}\right]$
b) $\left[M^{\prime}\right] \cdot[f: M \rightarrow N]=\left[i d \times f: M^{\prime} \times M \rightarrow M^{\prime} \times N\right]$
c) $[f: M \rightarrow N] \cdot\left[f^{\prime}: M^{\prime} \rightarrow N^{\prime}\right]=\left[f \times i d \mu i d \times f^{\prime}: M \times N^{\prime} \Perp N \times M^{\prime} \rightarrow N_{x} N^{\prime}\right]$
3.4) Definition.- Given two immersions $f_{0}, f_{1}: M \rightarrow N$ we say that they are regularly homotopic if there exists a homotopy $H: M \times I \rightarrow N$ such that i) for each $t \in I, H(x, t)$ is an immersion, $H(x, 0)=f_{0}(x)$, $H(x, 1)=f_{f}(x)$. ii) The differentials $d H(x, t): T M \rightarrow T N$ form a homotopy. H is called a regular homotopy.
3.5) Proposition.- If two immersions $f_{0}, f_{7}: M \rightarrow N$ are regularly homotopic then they are bordant.

Proof.- Let H be a regular homotopy between f_{0} and f_{1}, then we can approximate H by a regular homotopy H^{\prime}, between f_{0} and f_{1}, such that H^{\prime} is smooth [37] , then the map $F: M \times I \rightarrow N \times I$ given by $F(x, t)=\left(H^{\prime}(x, t), t\right)$ is an immersion and $i t$ is a bordism between f_{0} and f_{1}.

ㅁ
3.6) Definition.- We define $\alpha_{k}: I(n, k) \rightarrow N_{n+k}\left(Q M O_{k}\right)$ as follows: Let $[f: M \rightarrow N] \in I(n, k)$, we can find an embedding $f_{0}: M \rightarrow N \times \mathbb{R}^{r}$, (taking $r>n-k+1$) such that f_{0} is regularly homotopic to $M \xrightarrow{f} N \hookrightarrow N \times \mathbb{R}^{r}$, as regular homotopy preserves normal bundles we have $v_{f_{0}} \cong v_{f} \oplus \varepsilon^{r}$. Consider a tubular neighborhood $D\left(v_{f} \oplus \varepsilon^{r}\right) \hookrightarrow N \times \mathbb{R}^{r}$ and let e: $D\left(v_{f} \oplus \varepsilon^{r}\right) \hookrightarrow N \times \mathbb{R}^{r} \hookrightarrow(N \times \mathbb{R})^{*}=S^{r}\left(N^{+}\right)$, we can now define a map $t_{f}: S^{r}\left(N^{+}\right) \rightarrow S^{r} T\left(\nu_{f}\right)=T\left(\nu_{f} \oplus \varepsilon^{r}\right)$ by

$$
t_{f}(y)= \begin{cases}q e^{-1}(y) & \text { if } y \in e\left(D\left(\nu_{f} \oplus \varepsilon^{r}\right)\right) \\ * & \text { if } y \in S^{r}\left(N^{+}\right)-e\left(D\left(\nu_{f} \oplus \varepsilon^{r}\right)\right)\end{cases}
$$

where $q: D\left(v_{f} \oplus \varepsilon^{r}\right) \rightarrow D\left(\nu_{f} \oplus \varepsilon \varepsilon^{r}\right) / S\left(\nu_{f} \oplus \varepsilon^{r}\right) \quad$ is the identification map, $\left.S^{r}()_{-}\right)$is the r-th suspension and $X^{+}=X \cup\{+\}$.

We have a pull-back

that induces a map of Thom spaces $\tau_{f}: T\left(\nu_{f}\right) \rightarrow M O_{k}$, so we can take the composition: $S^{r}\left(N^{+}\right) \xrightarrow{t_{f}} S^{r}\left(T \nu_{f}\right) \xrightarrow{S^{r} \tau_{f}} S^{r_{M O}}{ }_{k}$, and taking the adjoint we get $N \subset N^{+}+5_{2}{ }^{r} S^{r} \mathrm{MO}_{k} \subset \lim _{r} \Omega^{r} S^{r}{ }^{M O_{K}}=Q \mathrm{MO}_{k}$; then
$q_{k}[f: M \rightarrow N] \in N_{n+k}\left(Q M O_{k}\right)$ is the class of this map.
We can also define $\bar{o}_{k}: N_{n+k}\left(Q: \mathrm{MO}_{k}\right) \rightarrow I(n, k)$ as follows: given $N \xrightarrow{\Phi} \rightarrow 0!0_{k}$ then as N is compact, ϕ factors through $\Omega^{r} S^{r} \mathrm{MO}_{k}$ for some r so we have the adjoint $\phi: S^{r}\left(N^{+}\right) \rightarrow S^{r_{M O_{K}}}$. We can then find a map homotopic to adj. Φ such that it is differentiable on $N \times \mathbb{R}^{r} \rightarrow D\left(\gamma(k) \oplus \varepsilon^{r}\right)$ and transverse to the zero section, taking the inverse image of the zero section gives an embedding $\varphi_{0}: M \rightarrow N \times \mathrm{IR}^{r}$ whose normal bundle has the form $\xi^{k} \oplus \varepsilon^{r}$, for some bundle ξ. Then if $k>0$ we can apply Hirsch's theorem [22] and obtain an immersion $Q_{1}: M \rightarrow N$ regularly homotopic to ϕ_{0}. We define $\bar{\phi}_{k}[N, \phi]=\left[\phi_{1}: M \rightarrow N\right]$ With these definitions we have:
3.7) Theorem [40]: $\alpha_{k}: I(*, k) \rightarrow N_{*}\left(Q M_{k}\right), k>0$, is an isomorphism of N_{\star}-algebras, with inverse \bar{x}_{k}.

In the case of codimension $k=0$ we can obtain the following result.
3.8) Proposition.- We have an isomorphism of N_{\star}-algebras
$N_{\star}\left(\underset{r \geq 0}{\|} B \Sigma_{r}\right) \xrightarrow{\cong} I(*, 0)$, where the H-space structure on $\underset{r \geq 0}{\underset{~}{\|}} B \Sigma_{r}$
comes from the juxtaposition homomorphisms $\quad \Sigma_{r} \times \Sigma_{s} \rightarrow \Sigma_{r+s}$

Proof. - One can show that $N_{\star}\left(B \Sigma_{r}\right)$ can be interpreted as follows (this is a particular case of something treated in chapter 6). $N_{n}\left(B \Sigma_{r}\right)$ is the group of bordism classes of r-coverings over closed n-manifolds, where two coverings $p: \tilde{M} \rightarrow M$ and $q: \tilde{N} \rightarrow N$ are bordant if there exists an r-covering $\bar{p}: \widetilde{V} \rightarrow V$ such that i) $\partial V \cong M \Perp N$, ii) $\bar{p} \mid M \cong p$ and $\overline{\mathrm{P}} \mid N \cong q$. We can then define homomorphisms $N_{n}\left(B \Sigma_{r}\right) \rightarrow I(n, 0)$ by sending the class of each covering to itself considered as an immersion, when $r>0$, when $r=0$ we send $[M]$ to $[\varnothing \hookrightarrow M]$; these homomorphisms define a homomorphism $F: \underset{r \geq 0}{\bigoplus} N_{n}\left(B \Sigma_{r}\right) \cong N_{n}\left(\underset{r \geq 0}{\Perp} B \Sigma_{r}\right) \rightarrow I(n, 0)$. F is surjective because if $f: M \rightarrow N$ is an immersion in codimension zero and N is connected, then f is open and closed so $f(M)=N$ and f is locally trivial [77] so f is a covering. If N is not connected then it can be expresed as a disjoint union with each element in the image of F. As the multiplicity of a covering is constant in each connected component F is clearly injective. To see that F preserves the product notice that if we have coverings $p: \tilde{M} \rightarrow M$ and $q: \tilde{N} \rightarrow N$ classified by maps $\phi_{p}: M \rightarrow B \Sigma_{r}$ and $\phi_{q}: N \rightarrow B \Sigma_{s}$ then we have a pullback:

where $\overline{r+s}=\{1,2, \ldots, r+s\}$.
§3.2) Calculation of $N_{*}(Q X)$
3.9) Definition.- In chapter 2 we defined Dyer-Lashof operations $Q_{i}: H_{n}(X) \rightarrow H_{2 n+i}(X)$ and $Q^{j}: H_{n}(X) \rightarrow H_{n+j}(X)$ such that $Q^{j}=Q_{j-n}$, for any b_{∞}-space X. Given a sequence $I=\left(i_{1}, \ldots, i_{r}\right)$ we say that it is monotone if $0<i_{7} \leq i_{2} \leq \ldots \leq i_{r}, r \geq 0$, and we consider the iterated product $Q_{I}=Q_{i_{1}} \quad Q_{i_{2}} \ldots Q_{i_{r}}$.
Given a sequence $J=\left(j_{1}, \ldots, j_{r}\right)$ we define its excess $e(J)=j_{1}-j_{2}-\cdots-j_{r}$ and we call J admissible if $j_{t} \leq 2 j_{t+1}$ for $1 \leq t<r$, and we take the iterated product $Q^{J}=Q^{j_{1}} Q^{j_{2}} \ldots Q^{j_{r}}$. We have similar definitions for the operations $\tilde{Q}_{i}: N_{n}(X) \rightarrow N_{2 n+i}(X)$ and $\tilde{Q}^{j}: N_{n}(X) \rightarrow N_{n+j}(X)$ where $\tilde{Q}^{j}=\widetilde{Q}_{j-n}$.
For any pointed space $X, Q X=\frac{l i m}{r} \Omega^{r} S^{r} X$ is an infinite loop space, with deloopings $Q(S X), Q\left(S^{2} X\right), \ldots$. . Hence it is a E_{∞}-space (2.16) and we have Dyer-Lashof operations defined on $H_{\star}(Q X)$ and on $N_{\star}(Q X)$.
3.10) Lemma.- For any spectrum $E, i_{\star}: E_{\star}(X) \rightarrow E_{\star}(Q X)$ is a split monomorphism.

Proof.- Following [$7 \in$] for any spectrum F we define a spectrum QF by (QF) $=s^{n} \Omega^{n} F_{n}$ with structure maps $S s^{n} \Omega^{n} F_{n}+s^{n+1} \Omega^{n+1} F_{n+1}$ aiven by $S^{n+1} \Omega^{n} \varepsilon_{n}$ where $\varepsilon_{n}: F_{n} \rightarrow \Omega F_{n+1}$. In particular we have $Q S^{\infty} X$ and clearly $\tilde{E}_{*}(Q X) \cong E_{*}\left(Q S^{\infty} X\right) ; \imath_{n}: X \rightarrow \Omega^{n} S^{n} X$ induces a map of spectra $\bar{i}: S^{\infty} X \rightarrow Q S^{\infty} X$ given by $\bar{i}_{n}=S^{n} z_{n}$ and we have an evaluation map $v_{n}: S^{n} \Omega^{n} S^{n} X \rightarrow S^{n} X$ which also induces a map of spectra $v: Q\left(S^{\infty} X\right) \rightarrow S^{\infty} X$, as $v_{n}^{\circ} S^{n} z_{n}=i d$ then $v^{\circ} \bar{i}=i d$.

§3.2) Calculation of $N_{*}(Q X)$

3.9) Definition, - In chapter 2 we defined Dyer-Lashof operations $Q_{i}: H_{n}(X) \rightarrow H_{2 n+i}(X)$ and $Q^{j}: H_{n}(X) \rightarrow H_{n+j}(X)$ such that $Q^{j}=Q_{j-n}$, for any \mathscr{b}_{∞}-space X. Given a sequence $I=\left(i_{1}, \ldots, i_{r}\right)$ we say that it is monotone if $0<i_{1} \leq i_{2} \leq \ldots \leq i_{r}, r \geq 0$, and we consider the iterated product $Q_{I}=Q_{i_{1}} \quad Q_{i_{2}} \ldots Q_{i_{r}}$. Given a sequence $J=\left(j_{1}, \ldots, j_{r}\right)$ we define its excess $e(J)=j_{1}-j_{2}-\cdots-j_{r}$ and we call J admissible if $j_{t} \leq 2 j_{t+1}$ for $1 \leq t<r$, and we take the iterated product $Q^{d}=Q^{j_{1}} \quad Q^{j_{2}} \ldots Q^{j_{r}}$. We have similar definitions for the oderations $\tilde{Q}_{i}: N_{n}(X) \rightarrow N_{2 n+i}(X)$ and $\tilde{Q}^{j}: N_{n}(X) \rightarrow N_{n+j}(X)$ where $\tilde{Q}^{j}=\tilde{Q}_{j-n}$. For any pointed space $X, Q X=\frac{1 i m}{r} \Omega^{r} s^{r} X$ is an infinite loop space, with deloopings $Q(S X), O\left(S^{2} X\right), \ldots$. Hence it is a \mathcal{E}_{∞}-space (2.76) and we have Dyer-Lashof operations defined on $H_{\star}(Q X)$ and on $N_{\star}(Q X)$.
3.10) Lemma.- For any spectrum $E, \imath_{\star}: E_{*}(X) \rightarrow E_{\star}(0 X)$ is a split monomorphism.

Proof.- Following [76] for any spectrum F we define a spectrum QF by $(Q F)_{n}=S^{n} \Omega^{n} F_{n}$ with structure maps $S S^{n} \Omega^{n} F_{n} \rightarrow S^{n+1} \Omega^{n+1} F_{n+1}$ oiven by $S^{n+1} \Omega^{n} \varepsilon_{n}$ where $\varepsilon_{n}: F_{n} \rightarrow \Omega F_{n+1}$. In particular we have $Q S^{\infty} X$ and clearly $\tilde{E}_{\star}(Q X) \cong E_{\star}\left(Q S^{\infty} X\right) ; 2_{n}: X \rightarrow \Omega^{n} S^{n} X$ induces a map of spectra $i: S^{\infty} X \rightarrow Q S^{\infty} X$ given by $i_{n}=S^{n} \imath_{n}$ and we have an evaluation map $v_{n}: S^{n} \Omega^{n} S^{n} X \rightarrow S^{n} X$ which also induces a map of spectra $v: Q\left(S^{\infty} X\right) \rightarrow S^{\infty} X$, as $v_{n}{ }^{0} S^{n} z_{n}=$ id then $v^{\circ} \hat{\imath}=i d$.
3.11) Theorem [11][16][13],- Let X be a connected space and let $\left\{x_{\alpha}\right\}_{\alpha \in \Lambda}$ be a \mathbb{Z}_{2}-basis for $\tilde{H}_{*}(X) \subset H_{\star}(Q X)$ then we have an isomorphism of \mathbb{Z}_{2}-algebras

$$
\begin{aligned}
H_{\star}(Q X) & \cong \mathbb{Z}_{2}\left[Q_{I}\left(x_{\alpha}\right) \mid I \text { is monotone, } \alpha \in \Lambda\right] \\
& \cong \mathbb{Z}_{2}\left[Q^{J}\left(x_{\alpha}\right): J \text { is admissible and } e(J)>\operatorname{dim} x_{\alpha}, \alpha \in \wedge\right]
\end{aligned}
$$

3.12) Theorem. - Let x be a connected space and let $\left\{y_{\alpha}\right\}_{\alpha \in \Lambda}$ be a N_{\star}-basis for $\tilde{N}_{\star}(X) \subset N_{\star}(Q X)$, then we have an isomorphism of N_{\star}-algebras

$$
\begin{aligned}
N_{\star}(Q X) & \cong N_{\star}\left[\widetilde{Q}_{I}\left(y_{\alpha}\right) \mid I \text { is monotone, } \alpha \in \Lambda\right] \\
& \left.\cong N_{\star} \tilde{Q}^{J}\left(y_{\alpha}\right) \mid J \text { is admissible and } e(J)>\operatorname{dim} y_{\alpha}, \alpha \in \Lambda\right]
\end{aligned}
$$

Proof.- Consider a monomial $\tilde{Q}_{I_{1}}\left(\frac{y}{\alpha_{1}}\right)^{r}{ }^{r} \tilde{Q}_{I_{2}}\left(y_{\alpha_{2}}\right)^{r_{2}}, \ldots, \tilde{Q}_{I_{m}}\left(\frac{y}{\alpha_{m}}\right)^{r_{m}}$, each I_{s} monotone, then $\mu\left(\widetilde{Q}_{I_{1}}\left(y_{x_{1}}\right)^{r_{1}} \tilde{Q}_{I_{2}}\left(y_{\alpha_{2}}\right)^{r_{2}} \ldots \widetilde{Q}_{I_{m}}\left(y_{\alpha_{m}}\right)^{r_{m}}\right)$
$=\mu\left(\tilde{Q}_{I_{1}}\left(y_{\alpha_{1}}\right)\right)^{r_{1}} \mu\left(\tilde{Q}_{I_{2}}\left(y_{\alpha_{2}}\right)^{r_{2}} \ldots \mu\left(\tilde{Q}_{I_{m}}\left(y_{\alpha_{m}}\right)\right)^{r_{m}}\right.$ by 1.5
$=Q_{I_{1}}\left(\mu\left(y_{\alpha_{1}}\right)\right)^{r_{1}} Q_{I_{2}}\left(\mu\left(y_{\alpha_{2}}\right)\right)^{r_{2}} \ldots Q_{I_{m}}\left(\mu\left(y_{\alpha_{m}}\right)\right)^{r_{m}}$ by 2.33
As $\left\{y_{\alpha}\right\}_{\alpha \in \Lambda}$ is an N_{*}-basis for $\widetilde{N}_{*}(X)$, then by 1.9 , the elements $\left\{\mu\left(y_{\alpha}\right)\right\}_{\alpha \in \wedge}$ are a Z_{2}-basis for $\tilde{H}_{*}(X)$ and hence by 3.11 $\mu\left(\tilde{Q}_{I_{1}}\left(y_{\alpha_{1}}\right)^{r_{1}} \tilde{Q}_{I_{2}}\left(y_{\alpha_{2}}\right)^{r_{2}} \ldots \tilde{Q}_{I_{m}}\left(y_{\alpha_{m}}\right)^{r_{m}}\right)$ is a \mathbb{Z}_{2}-basis for $H_{\star}(Q X)$, so by 1.9 , the monomials $\tilde{Q}_{I_{1}}\left(y_{\alpha_{1}}\right)^{r}{ }^{r} \tilde{Q}_{I_{2}}\left(y_{\alpha_{2}}\right)^{r_{2}} \ldots Q_{I_{m}}\left(y_{\alpha_{m}}\right)^{r_{m}}$ are an N_{\star}-basis for $N_{\star}(Q X)$.
53.3) Geometric interpretation of the operations $\tilde{Q}_{r}: N_{\star}\left(Q M O_{k}\right) \rightarrow N_{*}\left(Q M O_{k}\right)$
3.13) Definition.- We define operations $\hat{Q}_{r}: I(n, k) \rightarrow I(2 n+k+r, k), k>0$, by the commutativity of the following diagram:

The purpose of this section is to give a description of \hat{Q}_{r}. In order to do this we need to prove some results.
3.14) Proposition.- Let $f: N \rightarrow \tilde{N}$ be an immersion and $p: \tilde{N} \rightarrow N$ a covering space, consider the mans associated to f and p by the Thom-Pontrjagin construction $t_{f}: S^{\infty}\left(N^{+}\right) \rightarrow S^{\infty}\left(T \nu_{f}\right)$ and $t_{p}: S^{\infty}\left(N^{+}\right) \rightarrow S^{\infty}\left(\tilde{N}^{+}\right)$. Then the following diagram is homotopy commutative

Proof.- With r large enough we can find embeddings ϕ, Π such that

 commute.

As the normal bundle of π is trivial, we can find an embedding $\widetilde{N} \times \mathbb{R}^{r} c^{h}-N \times \mathbb{P}^{r}$ whose restriction to the zero section is π.

We have $v_{\phi} \cong v_{f} \oplus \varepsilon^{r}$, so take a tubular neighbourhood $v_{f} \oplus \varepsilon^{r} \stackrel{c}{\vec{\phi}} \tilde{N} \times \mathbb{R}^{r}$; and for pof consider the composition $\nu_{f} \oplus \varepsilon^{r} \underset{\Phi}{\tilde{N}} \times \mathbb{R}^{r} \underset{h}{\longrightarrow} \times \mathbb{R} \mathbb{R}^{r}$. Then we have $t_{p}: s^{r}\left(N^{+}\right) \rightarrow s^{r}\left(\tilde{N}^{+}\right)$ given by $t_{p}(y, v)=\left\{\begin{array}{l}h^{-1}(y, v) \text { if }(y, v) \in \text { imh } \quad \text { and } t_{f}: s^{r}\left(\tilde{N}^{+}\right) \rightarrow S^{r}\left(T_{\nu_{f}}\right) \\ \text { * otherwise }\end{array}\right.$ given by $t_{f}(\tilde{y}, w)=\left\{\begin{array}{l}\phi^{-1}(\tilde{y}, w) \text { if }(\tilde{y}, w) \in i m \bar{\phi} . \begin{array}{l}\text { On the other hand } \\ t\end{array} \quad S^{r}\left(N^{+}\right) \rightarrow s^{r}(t)\end{array}\right.$ $t_{p \circ f}: s^{r}\left(N^{+}\right)+s^{r}\left(T v_{f}\right)$ otherwise
is given by $t_{p{ }^{\circ} f}(y, v)=\left\{\begin{array}{l}\left(h^{c} \bar{\phi}\right)^{-1}(y, v) \text { if }(y, v) \in \operatorname{im}\left(h^{c} \phi\right) \\ \text { * otherwise }\end{array}\right.$
So then if $(y, v) \in$ im $\left(h^{\circ} \bar{\Phi}\right)$ we have $t_{p \vee f}(y, v)=\left(h^{\circ} \bar{\Phi}\right)^{-1}(y, v)=$
$=\dot{\Phi}^{-1} h^{-1}(y, v)=t_{f}^{e} t_{p}(y, v)$; and if $(y, v) \notin$ im ($\left.h^{\circ} \bar{\Phi}\right)$ then $\mathrm{t}_{\mathrm{p} \circ \mathrm{f}}(y, v)=*$ and if $(y, v) \in$ im h then $\mathrm{t}_{\mathrm{f}}\left(\mathrm{t}_{\mathrm{p}}(\mathrm{y}, \mathrm{v})\right)=*$ or if $(y, v) \notin \operatorname{imh}$ then $t_{f} t_{p}(y, v)=*$.
3.15) Definition.- Let S be the category of C.W.-spectra and c the category of pointed C.W.-complexes we denote by $\Omega^{\infty}: S \rightarrow C$ the functor that associates to each spectrum the zeroth space of the associated Ω-spectrum [7].
3.16) Remark.- The functors Ω^{∞} and $s^{\infty}: c \rightarrow s$, induce functors in the homotopy categories, which we denote with the same symbols. These induced functors are adjoint [7] . This means that for each pair $X \in C, E \in S$, we have bijection adj.: $\left[S^{\infty} X, E\right] \rightarrow\left[X, \Omega^{\infty} E\right]$ which is natural in X and E. The naturality in E implies that adj. ($\left.g^{\circ} \mathrm{f}\right) \simeq \Omega^{\infty} \mathrm{g}^{\circ}$ adj.f, and the naturality in X implies that adj. $\left(f^{\circ} S^{\infty} h\right)=$ adj.f ${ }^{\circ}$ h. [31].
3.17) Proposition.- Let $f: M \rightarrow N$ be an immersion and V a manifold and consider the immersion idxf: $V \times M \rightarrow V \times N$. If the Thom-Pontrjagin map of f is given by $S^{s}\left(N^{+}\right) \xrightarrow{t_{f}} S^{S}\left(T v_{f}\right) \xrightarrow{S^{S} t} S^{S}\left(M O_{k}\right)$ then the ThomPontriagin map of idxf is given by
$V^{+} \wedge S^{S}\left(N^{+}\right) \xrightarrow{\text { id^t}{ }_{f}} V^{+} \wedge S^{S}\left(\Gamma \nu_{f}\right) \xrightarrow{\Pi_{6}} S^{S}\left(T \nu_{f}\right) \xrightarrow{S^{S} t} S^{S}\left(M O_{k}\right)$ where π is the projection on the second factor.

Take the embedding $V_{\times M} \xlongequal{i d \times \bar{f}} V \times N \times \mathbb{R}^{S}$, then if $e: \nu_{\bar{f}} \rightarrow N \times \mathbb{R}^{S}$ is a tubular neighbourhood of M in $N \times \mathbb{R}^{5}, V \times \nu_{\bar{f}} \underset{j \times e}{\longrightarrow} V \times N \times \mathbb{R}^{5}$ is a tubular neighbourhood of $V \times M$ in $V \times N \times R^{s}$, therefore we get a map

$\|_{\|}$Hi
$V^{+} \wedge N^{+} \wedge S^{S} \longrightarrow V^{+} \wedge T\left(\nu_{f}\right)$
$l l_{1}^{1}$ 䚯
$V^{+} \wedge S^{S}\left(N^{+}\right) \xrightarrow[i d \wedge t_{f}]{ } V^{+} \wedge S^{S} T \nu_{f}$
and we have a pull-back

where the first square is induced by the projection on the second factor.

We now recall the definition of the Kahn-Priddy transfer for coverings [1][27].
3.18) Definition.- Let $p: X \rightarrow Y$ be an n-covering (X, Y C.W. complexes) we want to define a transfer map $S^{\infty}\left(Y^{+}\right) \rightarrow S^{\infty}\left(X^{+}\right)$for this we define the principal Σ_{n}-bundle associated to p as follows:
consider $\bar{x}=\left\{\left(x_{1}, \ldots, x_{n}\right) \quad x^{n}\left[x_{i} \neq x_{j}\right.\right.$ if $i \neq j$ and $\left.p\left(x_{1}\right)=\ldots=p\left(x_{n}\right)\right\}$, then we have a free Σ_{n}-action on \bar{x} by permuting the coordinates. As the spaces $\mathscr{b}_{\infty}(n)$ are $\Sigma_{n}-$ free and contractible they classify principal $\begin{aligned} \Sigma_{n} \text {-bundles so we have a pull-back } & \bar{x} \xrightarrow{\lambda} e_{\infty}(n) \\ & \vdots \\ & \downarrow \\ & \bar{x} / \Sigma_{n} \rightarrow e_{\infty}(n) / \Sigma_{n}\end{aligned}$

We define a map $\phi: Y \cong \bar{X} / \Sigma_{n} \rightarrow \zeta_{\infty}(n) \frac{x}{\Sigma_{n}} x^{n}$ by $\phi\left(x_{1}, \ldots, x_{n}\right)=\left[\lambda\left(x_{1}, \ldots, x_{n}\right),\left(x_{1}, \ldots, x_{n}\right)\right]$ and we call the unique map extending $\phi, T: Y^{+} \rightarrow z_{\infty}(n) \sum_{\Sigma_{n}}\left(X^{+}\right)^{n}$ the pretransfer. Consider the inclusion $X^{+} \xrightarrow{2} Q\left(X^{+}\right)$, and recall that as $Q\left(X^{+}\right)$is an infinite loop space we have structure maps $\theta_{n}: \mathscr{E}_{\infty}(n) \frac{x}{\Sigma_{n}} Q\left(X^{+}\right) \rightarrow Q\left(X^{+}\right)$, we call the following composition or its adjoint the transfer.

$$
Y^{+} \xrightarrow{T} \mathscr{E}_{\infty}(n) \underset{\Sigma_{n}}{x}\left(x^{+}\right)_{i d \frac{\times 2^{n}}{n}} G_{\infty}(n) \frac{x}{\Sigma} n\left(Q x^{+}\right)^{n} \xrightarrow{\theta_{n}} Q\left(X^{+}\right)
$$

Notice that as λ is defined up to equivariant homotopy, T is defined up to homotopy.
3.19) Proposition.- Let $p: \tilde{N} \rightarrow N$ be an n-covering, where \tilde{N}, N are closed smooth manifolds, then the Thom-Pontrjagin map associated to p, adj $t_{p}: N \rightarrow Q\left(\tilde{N}^{+}\right)$and the transfer for $F, \tau(P): N \rightarrow Q\left(\tilde{N}^{+}\right)$are homotopic.

Proof.- Let e: $\tilde{N} \hookrightarrow N \times I^{r}$ be an embedding, where i_{i}^{r} is the interior of the r-cube, r large enough, such that the following commutes

-as the normal bundle of e is trivial we can find an embedding
$\overline{\mathrm{e}}: \tilde{N} \times \mathrm{I}^{r} \hookrightarrow \mathrm{~N}_{\times 1} \mathrm{I}^{r}$ such that the following diagram commutes

Observe that we can embed $\tilde{N} \leftrightarrows \underset{\widetilde{e}}{\longrightarrow} \tilde{N} \times I^{r}$ by $\tilde{e}(x)=(x, c)$, where c is the center of $\stackrel{i}{\mathrm{I}}^{r}$, such that $\overline{\mathrm{e}}{ }^{c} \tilde{\mathrm{e}}=\mathrm{e}$ so that $\overline{\mathrm{e}}$ is a neighbourhood of \tilde{N} in $N \times{ }^{[} r$.

Now we can apply the Thom-Pontrjagin construction to get a map $S^{r}\left(N^{+}\right) \xrightarrow{t_{n}} S^{r}\left(\tilde{N}^{+}\right)$. We want to compare this map with the transfer for the cover $\tilde{N} \xrightarrow[p]{ } N$, so to define $T: N^{+} \cong\left(\bar{N} / \Sigma_{n}^{+}\right) \rightarrow b_{\infty}(n) \times \Sigma_{n}\left(N^{+}\right)^{n}$ we need a pull-back

Define λ as follows: recall that $x \in \bar{N}$ is given by $x=\left(x_{1}, \ldots, x_{n}\right)$ such that $p\left(x_{1}\right)=\ldots=p\left(x_{n}\right)$ then each x_{i} gives $\left\{x_{i}\right\} \times \mathbb{I}^{r} \underbrace{\bar{e} \|_{i}}\{y\} \times \mathbb{I}^{r}$, we define $\lambda: \bar{N} \rightarrow E_{r}^{2}(n) \hookrightarrow E_{\infty}(n)$ by $\lambda\left(x_{1}, \ldots, x_{n}\right)=\left(\left.\overline{\mathrm{e}}\right|_{1},\left.\overline{\mathrm{e}}\right|_{2}, \ldots,\left.\overline{\mathrm{e}}\right|_{n}\right)$ we are going to see that adj. $t_{p}=\tau(p)$.For this take $y \in N$, then adj. $t_{p}(y)[t]=t_{p}(t, y)= \begin{cases}\bar{e}^{-1}(y, t) \text { if }(y, t) \in \text { im } \bar{e} \\ * & \text { otherwise }\end{cases}$

For a fixed y, if $(y, t) \in$ im è then there exists x_{i} such that $p\left(x_{i}\right)=y$ and $\overline{\mathrm{e}}\left(x_{i}, s\right)=(y, t)$. On the other hand given $y \in N, \tau(p)(y)$ is given by $\left.\tau(p)(y)=\tau\left[x_{1}, x_{2}, \ldots, x_{n}\right]=\theta_{n}{ }^{0}\right] \frac{x_{2}}{\Sigma_{n}} 2^{n} T\left[x_{1}, \ldots, x_{n}\right]=$ $=\theta_{n}{ }^{0} 1_{\Sigma_{n}} \imath^{n}\left[\lambda\left(x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right]=\theta_{n}\left[\lambda\left(x_{1}, \ldots, x_{n}\right), 2\left(x_{1}\right), \ldots, \imath\left(x_{n}\right)\right]=$ $=\theta_{n}\left[\left.\bar{e}\right|_{1},\left.\bar{e}\right|_{2}, \ldots,\left.\bar{e}\right|_{n}, l\left(x_{1}\right), ., l\left(x_{n}\right)\right]$.

Now given $t \in I^{r}$ we have $\theta_{n}\left[\left.\bar{e}\right|_{1}, \ldots,\left.\bar{e}\right|_{n}, l\left(x_{1}\right), \ldots, l\left(x_{n}\right)\right](t)=\left\{2 x_{i}\left(\left.e\right|_{i} ^{-1}(t)\right.\right.$ if $t_{t} \mathrm{im} \bar{e}_{i}$

* otherwise.

But $\left.\bigcup_{i=1}^{n} i m \bar{e}\right|_{i}=i m \bar{e}$, for a fixed y, and $2 x_{i}\left(\left.\bar{e}\right|_{i} ^{-1}(t)\right)=\left(x_{i}, s\right)$
Where $\bar{e} l_{j}(s)=t$, i.e., $\bar{e}\left(x_{i}, s\right)=t$.
3.2n) Theorem. - The operations $\hat{Q}_{r}: I(n, k) \rightarrow I(2 n+k+r, k), k>0$, are given by $\hat{Q}_{r}[f: H \rightarrow N]=\left[\hat{f}: S^{r} \times N \times \| \rightarrow S^{r} \frac{\Sigma_{2}}{N} \times N\right]$ where $\hat{f}(t, y, x)=[t, y, f(x)]$.

Proof.- We can write \hat{f} as the composition:
$S^{r} \times N \times M \underset{i C_{S^{r} \times N} \times f}{ } S^{r} \times N \times N \xrightarrow[D]{\longrightarrow} S^{r} \times N \times N$
By definition of \hat{Q}_{r} we have a commutative diagram:

$$
\begin{gathered}
I(n, k) \xrightarrow{\hat{Q}_{r}} I(2 n+k+r, k) \\
N_{n+k}\left(O M O O_{k}\right) \xrightarrow[\tilde{Q}_{r}]{\cong} N_{2(n+k)+r}\left(Q \mathrm{MO}_{k}\right)
\end{gathered}
$$

By 3.7) The element of $N_{n+k}\left(Q M_{k}\right)$ associated to $f: H \rightarrow N$ is given by the adjoint of $S^{\infty}\left(\mu^{+}\right) \xrightarrow{t_{f}} S^{\infty}\left(T \nu_{f}\right) \xrightarrow{S^{\infty} \tau} S^{\infty}\left(\mathcal{M O}_{k}\right)$. Let $q=\operatorname{adj} .\left(S^{\infty} \mathrm{i}^{c} t_{f}\right)$ then $\phi: N \rightarrow O M n_{k}$ and $\widetilde{Q}_{r}[N, \phi]$ is given by the composition

By 3.14 and 3.17 we have a homotopy commutative diagram

$$
\begin{align*}
& S^{\infty}\left[\left(S^{r} \frac{x}{\Sigma_{2}} N \times N\right)^{+}\right] \xrightarrow{t \hat{f}} S^{\infty}\left(T v_{f}\right) \xrightarrow{S^{\infty} \tau} S^{\infty} M O_{k} \tag{**}\\
& t_{p}| | s^{\infty} \pi \\
& S^{\infty}\left[\left(S^{r} \times H \times N\right)^{+}\right] \\
& \left.S^{\infty}\left(S^{r} \times N\right)^{+} \wedge T \nu_{f}\right] \\
& 4 \\
& \left(S^{r} \times N\right)^{+} \wedge S^{\infty}\left(N^{+}\right) \frac{\text { id^t } f}{}\left(S^{r} \times N\right)^{+} \wedge S^{\infty} T \nu_{f} \\
& \text { - } \text { af }_{f}
\end{align*}
$$

To prove the theorem we are going to show that (*) and the adjoint of (**) are homotopic, thus representing the same element in $N_{2(n+k)+r}\left(Q M_{k}\right)$.

To do this we are going to construct a transfer for the covering $S^{r} \times N \times N \xrightarrow{口} S^{r} \frac{\times}{\Sigma_{2}} N \times N$ as follows: consider the diagram:

where the first square is induced by the projection, all three maps are equivariant so the composition is equivariant and then it is a pull-back. By 3.18 we have a pretransfer T which in this case has the form $T\left(t, y_{7}, y_{2}\right)=\left[h^{\circ} i(t),\left(-t, y_{2}, y_{1}\right),\left(t, y_{1}, y_{2}\right)\right]$. This gives a transfer for p that we denote by $\tau(p)$.
Now the map associated to the immersion $\hat{Q}_{r}[f: M \rightarrow N]$ is given by the adjoint of (**) so by 3.16 it is homotopic to $Q t^{\circ} Q \Pi^{\circ} \Omega^{\infty}\left(i d \wedge t_{f}\right){ }^{\circ}$ adj. t_{p}

By $3.19 \mathrm{ad} . t_{p}$ is homotopic to the transfer for p so in partparticular adj. $t_{p} \approx \tau(p)$ where $\tau(p)$ is the transfer constructed above, in other words, the map associated to $\hat{Q}_{r}[f: M \rightarrow N]$ is homotopic to $Q \tau^{c} Q \Pi^{c} \Omega^{\infty}\left(i d \wedge t_{f}\right)^{\circ} \tau(p)(* * *)$

Now consider the diagram on next page, the composition at the bottom is (***). The triangle commutes by definition of the transfer and the squares commute because all the maps are infinite loop maps, so the composition at the bottom and the one at the top are the same, but one can easily verify that this composition is precisely $\hat{Q}_{r}[N, f]$.

3.21) Proposition. - Let G be a compact topological group and $\Pi \subset \sum_{r}$ a subgroup. Suppose that we have continuous actions $X \times G \rightarrow X, Y \times \pi \rightarrow Y$ on spaces X, Y then $Y \times(X / G)^{r} \cong Y \times X^{r} / \pi / f G$, where " ρ " denotes the wreath product. (We work in Steenrod's category of spaces).

Proof. - The action $\left(Y \times X^{r}\right) \times \pi / G \rightarrow Y \times X^{r}$ is given by $\left(y, x_{1}, x_{2}, \ldots, x_{r}\right) \cdot\left(\sigma, g_{1}, g_{2}, \ldots, g_{r}\right)=\left(y \cdot \sigma, x_{\sigma_{(1)}}, g_{1}, x_{\sigma_{(2}} ; g_{2}, \ldots, x_{\sigma_{(r}} ; g_{r}\right)$ As G is compact, the quotients are Hausdorff and have the identification topology so they are also in our category. Define $f: Y \times X^{r} \rightarrow Y \times(X / G)^{r}$ by $f=i d \times p^{r}$ where $p: X \rightarrow X / G$, then f is an identification [47] and one can easily verify that it induces a homeomorphism $Y \times X^{r} / \pi / G \xrightarrow{\cong} Y \times(X / G)^{r}$.
3.22) Theorem.-
a) The inmersions $\hat{Q}_{i_{1}} \hat{Q}_{i_{2}} \ldots \hat{Q}_{i_{r}}\left[H\left(1, \alpha_{1}\right) \times \ldots \times H\left(1, \alpha_{k}\right) \hookrightarrow D\left(H \alpha_{1} \times \ldots \times H \alpha_{k}\right)\right]$ for each sequence $0<i_{1} \leq i_{2} \leq \ldots \leq i_{r}, r \geq 0$ and each sequence $0 \leq \alpha_{1} \leq \ldots \leq \alpha_{k}$ are polynomial generators over N_{*} for $I(*, k), k>0$.
b) The inmersions $\hat{Q}_{i_{1}} \hat{Q}_{i_{2}} \ldots \hat{Q}_{i_{r}}\left[P^{\alpha_{1}} \times \ldots x p^{\alpha_{k}} \ldots D\left(\gamma_{\alpha_{1}} \widetilde{\times \ldots x} \gamma_{\alpha_{k}}\right)\right]$ for each sequence $0<i_{1} \leq i_{2} \leq \ldots \leq i_{r}, r \geqslant 0$ and each sequence $0 \leq \alpha_{1} \leq \ldots \leq \alpha_{k}$ are polynomial generaters over N_{*} for $I(*, k), k \geq 0$.

Proof.- By 3.7 we have an isomorphism of N_{\star}-algebras $\alpha_{k}: I(*, k) \rightarrow N_{\star}\left(Q M O_{k}\right)$ and by 3.12 an isomorphism of N_{\star}-algebras $N_{\star}\left(Q M O_{k}\right) \cong N_{\star}\left[\widetilde{Q}_{I}\left(y_{\alpha}\right) \mid I\right.$ is monotone, $\left.\alpha \in \wedge\right]$ where $\left\{y_{\alpha}\right\}_{\alpha \in \wedge}$ is an N_{\star}-basis for $\widetilde{N}_{\star}\left(\mathrm{MO}_{\mathrm{K}}\right)$. The following diagram:

Hence a) follows from 1.35 a) and b) follows from 1.35 b).
3.23) Remark.- Let $f: M \rightarrow N$ be an immersion, then by 3.21, after n iterations of the operations Q_{r} on f we get an immersion between manifolds of the form $V / H_{n}+W / G_{n}$, where V is a product of spheres, copies of N and a copy of M, W is a product of spheres and copies of

(we define the inclusion $g_{n}: H_{n}^{c} \rightarrow G_{n}$ inductively by $g_{1}: 0 \rightarrow \mathbb{Z}_{2}$ and $\left.g_{n+1}(a, b)=\left(i d, g_{n}(a), b\right)\right)$.

Chapter 4: Multiple points of immersions and characteristic numbers
In this chapter we show that $I(*, k)$ splits as the direct sum of certain bordism groups of bundles. We use this to define characteristic numbers for immersions.
54.1) Multiple points of immersions
4.1) Definition.- Let X be a space, define the r-th. configuration space $F(X ; r)$ of X by $F(X ; r)=\left\{\left(x_{1}, \ldots, x_{r}\right) \mid x_{i} \in X, x_{i} \neq x_{j}\right.$ if $\left.i \neq j\right\} \subset X^{r}$ We have a free action of Σ_{r} on $F(x ; r)$ given by $\left(x_{1}, \ldots, x_{r}\right) \cdot \sigma=$ $=\left(x_{\sigma(1)}, \ldots, x_{\sigma(r)}\right)$.
4.2) Definition.- Let $f: M \rightarrow N$ be an immersion and let $f^{r}:(M)^{r} \rightarrow(N)^{r}$ be the r-fold product of f. We say that f is self-transverse if $f^{r} \mid F(M ; r)$ is transverse to the diagonal submanifold $N C_{\Delta}^{C}(N)^{r}$ for all r. This means that if $f\left(x_{1}\right)=\ldots=f\left(x_{r}\right)=y, x_{i} \neq x_{j}$, then the vector spaces $i m\left(d f_{x_{1}}\right), \ldots, i m\left(d f_{x_{r}}\right)$ are in general position in $T N_{y}$.
4.3) Note: The set of self-transverse immersions is open and dense in the space $\operatorname{Imm}(M, N)$ of smooth immersions with the C^{\prime}-topology [23]. (As M is compact the weak and strong topologies coincide). The space $\operatorname{Imm}(M, N)$ is locally contractible [37], therefore any immersion is regularly homotopic to an immersion which is self-transverse, and then, by 3.5, given any class in $I(n, k)$ we can find a representative that is self-transverse.
4.4)Definition.- Given a self-transverse immersion $f: M \rightarrow N$ we define the manifold $\mu_{r}=\left(f^{r} \mid F(M ; r)\right)^{-1}(\Delta)$. Using the fact that f is an immersion one can show that μ_{r} is compact [38]. The free action of Σ_{r} on $F(M ; r)$ restricts to μ_{r} and the quotient μ_{r} / Σ_{r} is a manifold [8] called the manifold of r-tuple points.
We can also define the manifold of based r-tuple points as μ_{r} / Σ_{r-1}, where Σ_{r-1}
acts by permuting the first $(r-1)$ coordinates.
We define maps $f_{r}: \mu_{r} / \Sigma_{r} \rightarrow N$ and $\phi_{r}: \mu_{r} / \Sigma_{r-1} \rightarrow M$ by $f_{r}\left[x_{1}, \ldots, x_{r}\right]=$ $=f\left(x_{1}\right)\left(=f\left(x_{2}\right)=\ldots=f\left(x_{r}\right)\right), \phi_{r}\left[x_{1}, \ldots, x_{r}\right]=x_{r}$

We aiso define $N_{r}(f)=\left\{y \in N \mid \mu\left(f^{-1}(y)\right)=r\right\}$ and

$$
M_{r}(f)=f^{-1}\left(N_{r}(f)\right) .
$$

We denote by ν_{f} the normal bundle of the immersion f and by $\left(\nu_{f}\right)^{r}$ the r-fold product.

With all this notation we have:
4.5) Proposition [38].- a) f_{r} and ϕ_{r} are immersions with normal bundles $\quad v_{f_{r}}=\left[\left.\left(v_{f}\right)^{r}\right|_{\mu_{r}}\right] / \Sigma_{r} \quad$ and $\quad v_{\phi_{r}}=\left[\left.\left(v_{f}\right)^{r-1}\{0\}\right|_{u_{r}}\right] / \Sigma_{r-1}$
b) $\quad f_{r}^{-1}\left(N_{r}(f)\right)$ and $\phi_{r}^{-1}\left(M_{r}(f)\right)$ are open and dense in μ_{r} / Σ_{r} and μ_{r} / Σ_{r-1} respectively; f_{r} restricted to $f_{r}^{-1}\left(N_{r}(f)\right)$ and ϕ_{r} restricted to $\phi_{r}^{-1}\left(M_{r}(f)\right)$ are diffeomorphisms onto $N_{r}(f)$ and $M_{r}(f)$ respectively.
c) $f_{r}\left(\mu_{r} / \Sigma_{r}\right)=\overline{N_{r}(f)}=\bigcup_{i \geq r} N_{i}(f)$

$$
\begin{equation*}
\phi_{r}\left(\mu_{r} / \Sigma_{r-1}\right)=\overline{M_{r}(f)}=\bigcup \cup M_{i \geq r}(f) . \tag{ㅁ}
\end{equation*}
$$

4.6) Definition.- Let $f: M \rightarrow N$ be a self-transverse immersion of codimension k, and consider an embedding ($f, e): M \rightarrow N \times \mathbb{P}^{\infty}$, and the pull-back

Then we can define a morphism of bundles as follows:

Given by $\bar{\phi}\left(y_{1}, \ldots, y_{r}\right)=\left(\operatorname{ep}\left(y_{p}\right), \ldots, e p\left(y_{r}\right), \bar{\rho}\left(y_{p}\right), \ldots, \bar{\rho}\left(y_{r}\right)\right)$, and

$$
\phi\left(x_{1}, \ldots, x_{r}\right)=\left(e\left(x_{1}\right), \ldots, e\left(x_{r}\right), \rho\left(x_{1}\right), \ldots, \rho\left(x_{r}\right)\right)
$$

We can easily verify that it is a pull-back square. The maps involved are Σ_{r}-equivariant, so we can take the quotient under the actions of Σ_{r}. By 4.5 a) $\left(v_{f}\right)^{r} \mid \mu_{r} \kappa_{r} \cong v_{f}$, therefore we have a pull-back

§ 4.2) $F\left(\mathbb{R}^{\infty} ; r\right){ }_{\Sigma_{r}}^{\times} \mathrm{BO}(\mathrm{k})^{r}$ as a classifying space
4.7) Proposition.- $F\left(\mathbb{R}^{\infty} ; r\right) \frac{x}{2_{r}} B O(k)^{r}=B\left(\Sigma_{r} \int O(k)\right)$

Proof.- He can write $F\left(\mathbb{R}^{\infty} ; r\right)=\operatorname{iim}_{n \rightarrow \infty} F\left(\mathbb{R}^{n} ; r\right)$. This space is Σ_{r}-free and contractible [34]. Each $F\left(\mathbb{R}^{n} ; r\right)$ is a manifold so it is normal and Hausdorff and it is closed in $F\left(\mathbb{R}^{n+1} ; r\right)$ therefore $F\left(\mathbb{R}^{\infty}, r\right)$ is normal and Hausdorff [53] and hence it is completly regular. Let EO(k) be the infinite Stiefel manifold of k-frames, this is also a limit of manifolds so the same argument shows that $E O(k)$ is completly regular. Hence $F\left(\mathbb{R}^{\infty} ; r\right) \times E O(k)^{r}$ is a contractible completly regular space.

We define a free $\Sigma_{r} f O(k)$-action on $F\left(\mathbb{R}^{\infty} ; r\right) \times E O(k)^{r}$ by: $\left(a, b_{1}, b_{2}, \ldots, b_{r}\right) \cdot\left(\sigma, A_{1}, A_{2}, \ldots, A_{r}\right)=\left(a \cdot \sigma, b_{\sigma(1)^{-A_{1}}, b_{\sigma(2)}} A_{2}, \ldots, b_{\sigma(r)} A_{r}\right)$.

The group $\Sigma_{r} f(k)$ is a compact Lie group so by a theorem of A. Gleason [7] the quotient map $F\left(\mathbb{R}^{\infty} ; r\right) \times E O(k)^{r} \rightarrow F\left(\mathbb{R}^{\infty} ; r\right) \times E O(k)^{r} / \Sigma_{r} f O(k)$
is a principal $\sum_{r} f 0(k)$-bundle, and by 3.21, $F\left(\mathbb{R}^{\infty} ; r\right) \times E O(k)^{r} / \Sigma_{r} f O(k) \cong F\left(\mathbb{R}^{\infty} ; r\right) \frac{x}{\Sigma_{r}} B O(k)^{r}$ —
4.8)Definition.- Let $O(k) \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ be the canonical action. Using this action we define a linear action $\quad \Sigma_{r} f O(k) \times\left(\mathbb{R}^{k}\right)^{r} \rightarrow\left(\mathbb{R}^{k}\right)^{r}$ by: $\left(\sigma, A_{1}, \ldots, A_{r}\right)\left(v_{1}, \ldots, v_{r}\right)=\left(A_{\sigma-1(1)^{\circ}} v_{\sigma-1(1)}, \ldots, A_{\sigma-1(r)} v_{\sigma-1(r)}\right)$, where $v_{i} \in \mathbb{R}^{r}$. This action defines a representation $\Sigma_{r} f(k) \hookrightarrow O(k r)$. We then have a universal (rk)-vector bundle with structural group $\Sigma_{r} J O(k): F\left(\mathbb{P}^{\infty} ; r\right) \times E O(k)^{r}{\underset{\Sigma}{x}}^{\times} J O(k)\left(\mathbb{R}^{k}\right)^{r} \rightarrow F\left(\mathbb{R}^{\infty} ; r\right) \times E O(k)^{r} / \Sigma_{r} f O(k)$
4.9) Proposition.- The universal vector bundle defined in 4.8 is isomorphic to $F\left(\mathbb{R}^{\infty} ; r\right){ }_{-}^{x} r(k)^{r}$

$$
F\left(\mathbb{R}^{\infty} ; r\right) \stackrel{\downarrow}{r}_{\frac{x}{2} B 0(k)^{r}}^{r}
$$

Proof.- By 3.21 we have homeomorphisms: $F(\operatorname{IR} ; r) \times E O(R)^{r} / \Sigma_{r} O(k) \cong$ $F\left(\mathbb{R}^{\infty} ; r\right) \frac{\times}{\Sigma_{r}} B O(k)^{r}$, and $F\left(\mathbb{R}^{\infty} ; r\right) \times\left(E O(k) \times \mathbb{R}^{k}\right)^{r} / \Sigma_{r} J O(k) \cong$ $F\left(\mathbb{R}^{\infty} ; r\right) \underset{\Sigma_{r}}{\times}\left(E 0(k) \underset{O(k)}{\times} \mathbb{R}^{k}\right)^{r}=F\left(\mathbb{R}^{\infty} ; r\right)_{\sum_{r}}^{\times} r(k)^{r}$.

We also have a homeomorphism
$\phi: F\left(\mathbb{R}^{\infty} ; r\right) \times E O\left(k \sum_{\Sigma_{r},{ }_{x}(k)}^{r}\left(\mathbb{R}^{k}\right)^{r} \rightarrow F\left(\mathbb{R}^{\infty} ; r\right) \times\left(E O(k) \times \mathbb{R}^{k}\right)^{r} / \Sigma_{r}\right.$ JO(k)
given by $\phi\left[a,\left(b_{1}, \ldots, b_{r}\right),\left(v_{1}, \ldots, v_{r}\right)\right]=\left[a,\left(b_{1}, v_{1}\right), \ldots,\left(b_{r}, v_{r}\right)\right]$.
One can easily verify that the composition of both homeomorphisms commutes with the projections and that it is an isomorphism in each fiber.
§4.3) The splitting of $I(n, k)$
In this section we assume that all spaces are compactly generated and Hausdorff and the base points are non-degenerate.
4.10) Definition.- Let C_{r} be the r-cubes operad and C_{r} the monad associated, then for any pointed space $(X, *)$ we have a space $C_{r} x=\underset{j \geqslant 0}{\operatorname{LL}} b_{r}(j){\underset{L}{x}}_{j} x^{j} / \sim$. A point of $C_{r} x$ is uniquely represented by a function $f: D \rightarrow X$ where D is a finite set of disjoint r-cubes in I^{r} (interior of I^{r}) and $f(D) \subset X-\{\star\}$. See[34] for details. Let $z: X \rightarrow \Omega^{r} S^{r} X$ be the inclusion and denote by γ_{r} the composition $C_{r} X \xrightarrow{C_{r}(1)} c_{r} \Omega^{r} S^{r} X \xrightarrow{\phi_{r}} \Omega^{r} S^{r} X$, where ϕ_{r} is obtained by glueing the structure maps $\theta_{j}: b_{r}(j) \underset{\Sigma_{j}}{\times}\left(\Omega^{r} s^{r} X\right)^{j} \rightarrow \Omega^{r} s^{r} X$, so we have that $\gamma_{r}\left[\left(c_{1}, \ldots, c_{r}\right),\left(x_{1}, \ldots, x_{r}\right)\right]:\left(I^{r}, \partial I^{r}\right) \rightarrow\left(S^{r} X, *\right)$ is given by

$$
\left\{\begin{array}{l}
\left.c_{i}^{-1}(t), x_{i}\right) \text { if } t \in i m c_{i} \\
* \text { if } t \in{\underset{i=1}{r} i m c_{i}}^{r}
\end{array}\right.
$$

The γ_{r} are compatible and we get a map $\gamma_{\infty}: C_{\infty} X \rightarrow \Omega^{\infty} S^{\infty} X=Q X$
4.11) Theorem [34].- If X is connected $\gamma_{r}: C_{r} X \rightarrow \Omega_{2} S^{r} X$, for all $r \leqslant \infty$, is a weak homotopy equivalence.

When X is a Thom space there is a geometric proof in [28] of the - fact that γ_{∞} is a weak homotopy equivalence.
4.12) Definition.- Using the spaces $F\left(\mathbb{R}^{r} ; j\right)$ instead of $\mathscr{C}_{r}(j)$ we can also construct, for each pointed $(X, *)$, a space
$C_{\mathbb{R}^{r}} X=\underset{j \geq 0}{\Perp} F\left(\mathbb{R}^{r} ; j\right){ }_{\Sigma}^{x} X_{j}^{j} / \sim$. A point of $C_{\mathbb{R}^{r}} x$ is uniquely
represented by a function $\psi: A \rightarrow X$ such that A is a finite subset of \mathbb{R}^{r} and $\psi\left(A_{1}\right) \subset X-\{\star\}$. In fact the operads and the configuration spaces are examples of coefficient systems and each coefficient system defines a functor from spaces to spaces as above [14].
4.13) Proposition [28]:There exists a homotopy equivalence d
$d: C_{r} X \cong C_{\mathbb{R}} X, r \leqslant \infty$.
4.14) Corollary. If X is connected then $C \mathbb{R}^{\infty} X$ is weak homotopy equivalent to QX .

Proof.- By 4.13 and 4.11 the composition $C_{\mathbb{R}^{\operatorname{pax}}} \xrightarrow{\bar{d}} C_{\infty} X \rightarrow Q X$, where $\overline{\mathrm{d}}$ is a homotopy inverse for d , is a weak homotopy equivalence.
4.15) Definition. - Let $p: \underset{j \geq 0}{\mu} F\left(\mathbb{R}^{\infty} ; j\right) \times X^{j} \rightarrow C \mathbb{R}^{\infty} X$ be the projection, then we define a filtration for ${ }^{C} \mathbb{R}^{\alpha \infty} X$ as follows:
$F_{r} C_{\mathbb{R}^{\infty} X}=p \underset{j=0}{\underset{j}{\Perp}} F\left(\mathbb{R}^{\infty} ; j\right) \times X^{j}$
4.16) Proposition [14] $=F_{r-1} C_{\mathbb{R}^{\alpha}} X \subset F_{r} C_{\mathbb{R}^{\alpha}} X$ is a cofibration and $F_{r} C_{\mathbb{F}^{\infty}} X / F_{r-1} C \mathbb{R}^{\infty} X \cong F\left(\mathbb{R}^{\infty} ; r\right)^{+} \hat{\Sigma}_{r}(X \wedge \ldots \wedge X) \equiv D_{r} X$.
\square
4.17) Theorem.-[43][14].- There exist maps of spectra $h_{r}: S^{\infty} C_{\mathbb{R}^{\infty}} X \rightarrow S^{\infty} D_{r} X, r \geq 1$ such that the induced map $h: S^{\infty} C \mathbb{R}^{\infty} X \rightarrow \underset{r \geqslant 1}{V} S^{\infty} D_{r} X$ is a homotopy equivalence.口
4.18) Definition.- We define the isomorphism
$B_{k}: I(n, k) \xrightarrow{\cong} N_{n+k}\left(C_{\mathbb{R}^{\infty}} M O_{k}\right), k>0$, by the commutativity of the following diagram:

The isomorphism q_{k} was defined in 3.6, γ_{∞} in 4.10 and d in 4.13. Following [28] we can describe β_{k} as follows: Let $f: M \rightarrow N$ be an immersion, for m large enough, we can find an embedding of the form (f, e): $M \hookrightarrow N \times \mathbb{R}^{m}$. Let ν_{f} be the normal bundle of f classified by a pull-back

Extend f to an immersion $\bar{f}: v_{f} \rightarrow N$ such that i) $\bar{f}^{-1}(y)$ is finite for all $y \in N$. ii) ($\bar{f}, e^{\circ} p$): $v_{f} \rightarrow N \times \mathbb{R}^{m}$ is an embedding.

Define $\quad \beta_{k}(f): N \rightarrow C \mathbb{R}^{m} M_{k} \subset C_{\mathbb{R}^{m}} M_{k} \quad$ by $\beta_{k}(f)(y)=\left\{\begin{array}{l}\left\{\left(\bar{\phi}(v), e^{\circ} p(v)\right) \mid \bar{f}(v)=y\right\} \text { if } y \in \operatorname{im} \bar{f} \\ \star \text { otherwise }\end{array}\right.$
4.19) Proposition.- The description above makes the diagram in the definition 4.18 commute .

Proof.- Consider the composition:
 inverse for the equivalence d. It was proved in [28] that its adjoint $s^{m}\left(N^{+}\right) \rightarrow S^{m} M O_{k}$ corresponds to the Thom-Pontrjagin construction for the embedding $(f, e): M \hookrightarrow N \times \mathbb{R}^{m}$ which is precisely the definition of α_{k}. To give the splitting of $I(n, k)$ we need some other results.
4.2n) Proposition.- Let $g: S^{m} X \rightarrow S^{m} Y$ be a map and $\tilde{g}: S^{\infty} X \rightarrow S^{\infty} Y$ the stable map induced. Let E de a spectrum and consider the following diagrams:

$E_{n}\left(S^{\infty} x\right)$	$E_{n}\left(S^{\infty} Y\right)$
$\cong \dagger_{0}$	$\upharpoonright_{\downarrow} \sigma$
$\tilde{E}_{n}(\mathrm{X})-$	$\check{E}_{n}(Y)$

Then the homomorphisms induced by both diagrams are the same.
Proof.- Consider the following diagram in the homotopy category of spectra:

The isomorphism σ is given by the natural equivalence $E \wedge X \simeq E \wedge S^{\infty} X$. The isomorphism ℓ is given by the natural equivalence $\Sigma E \simeq E \wedge S^{\prime}$ and the composition $\ell^{0} \Sigma^{m}$ is the definition of the suspension isomorphism s^{m}. We are going to show that the maps induced by \tilde{g}_{*} and g_{*} from $\Sigma^{m} E \wedge X$ to $\Sigma^{m} E \wedge Y$ are homotopic, this clearly implies the result. For this consider the following diagram.

The first square is homotopy commutative by naturality of the equivalence $\Sigma(E \wedge F) \simeq E \wedge \Sigma F$; we have that $\Sigma^{m} \tilde{g}=S^{\infty} g$ and $\Sigma^{m} S^{\infty} X=S^{\infty} S^{m} x$ so the second square is homotopy commutative by naturality of the equivalence $E \wedge Z \approx E \wedge S^{\infty} Z$. Finally the composition of the three equivalences is precisely the equivalence on the outer arrows.
4.21) Proposition.- Let $\left(X, x_{0}\right)$ be a pointed space then the suspension isomorphism $s: N_{n}\left(X, X_{0}\right) \rightarrow N_{n+1}(S X, *)$ is given by $s[N, g]=$ $=\left[N \times I, p^{\circ} g \times i d\right]$, where $p: X \times I \rightarrow S X$ is the identification map Proof.- He use the following description of s [49] :consider the triple $\left(C(X), X, X_{0}\right)$ where $C(X)$ is the cone of X. As $C(X)$ is contractible then the boundary homomorphism $\quad \partial: N_{n+1}(C(X), X) \rightarrow N_{n}\left(X, x_{0}\right)$ of the exact sequence of the triple is an isomorphism, let $q:(C(X), X) \rightarrow(S X, *)$ be the projection then s is given by the composition $N_{n}\left(x, x_{0}\right) \xrightarrow{\partial^{-1}} N_{n+1}(C(X), x) \xrightarrow{q_{*}} N_{n+1}(S x, *)$.

Let $[N, g] \in N_{n}\left(X, x_{0}\right)$, then we have $g:(N, \partial N) \rightarrow\left(X, x_{0}\right)$, consider $N \times I$, by straightening the corners [9] we get a manifold with boundary $\partial(N \times I)=\partial N \times I \underset{\partial N \times \partial I}{\smile} N \times \partial I$. Consider the composition $N \times I \xrightarrow{g \times i d} X \times I \xrightarrow{p} C(X)$
where ρ is the projection. Then we get a commutative diagram:

where $X \hookrightarrow C(X)$ by $x \mapsto[x, 0]$ and $\tilde{g} \mid N \times\{0\}=g$ and $\tilde{g}(\partial(N \times I)-N \times\{0\})=x_{0}$. We claim that $\partial^{-1}[N, g]=[N \times I, 0 \circ g \times i d]$. To prove this we have to show that $\partial\left[N \times I, p^{\circ} \mathrm{gxid}\right]=[\partial(N \times I)$, $\tilde{g}]$ is equal to $[N, g]$ in $N_{n}\left(X, x_{0}\right)$, so consider $\partial(N \times I) \times I \xrightarrow{F} X$ given by $F(y, t)=\tilde{g}(y)$, then we have that $\partial(\partial(N \times I) \times I)=\partial(N \times I) \times\{0\} \cup \partial(N \times I) \times\{1\}$,
so we identify $\partial(N \times I)$ with $\partial(N \times I) \times\{0\}$ and we embed
$N c \partial(N \times I) \times\{1\}$ by $y \mapsto([y, 0], 1)$. Then $F|N=\tilde{g}| N=g$, $F(\partial(N \times I) \times\{1\}-N)=x_{0}$ and $F\{\partial(N \times I) \times\{0\}=\widetilde{g}$, hence $[\partial(N \times I), \tilde{g}]=[N, g]$.

Therefore $s[N, g]=q_{\star}\left[N \times I, \rho^{\circ} g x i d\right]$, but $q^{\circ} \rho=p$.
4.22) Definition.- We define homomorphisms
$\bar{h}_{r}: N_{m}\left(C_{\mathbb{R}}{ }^{\infty 1 M O_{k}}, *\right) \rightarrow N_{m}\left(D_{r} M_{k}, *\right), r \geq 1$. by the commutativity of the following diagram: $N_{m}\left(C_{\mathbb{R}^{\infty} M O_{k}}, \star\right) \longrightarrow N_{m}\left(D_{r} M_{k}, *\right)$

$$
\begin{gathered}
\sigma \downarrow \cong \\
\mathrm{MO}_{\mathrm{m}}\left(\mathrm{~S}^{\infty} \mathrm{C} \mathbb{R}^{\infty M O_{k}}\right) \underset{\mathrm{h}_{r_{\star}}}{\mathrm{MO}} \mathrm{~m}_{\mathrm{m}}\left(\mathrm{~S}^{\infty} \mathrm{D}_{r} M O_{k}\right)
\end{gathered}
$$

where h_{r} is the map of spectra of 4.17 .
Let $f: N \rightarrow C \mathbb{R}^{\infty M O_{k}}$ be a map where N is a closed ($n+k$)-manifold, and let $i:(N, \varnothing) c\left(N^{+},+\right)$be the inclusion, we denote by $f^{+}:\left(N^{+},+\right) \rightarrow\left(C_{p_{0}}{ }^{\left(M M_{k}\right.}, *\right)$ the extension of f to N^{+}and by $s^{m}: N_{n+k}\left(N^{+},+\right) \rightarrow N_{n+k+m}\left(S^{m}\left(N^{+}\right), *\right)$ the suspension isomorphism.

With this notation we have:
4.23) Proposition.- $\bar{h}_{r}[N, f]=\left(s^{m}\right)^{-1} g_{\star} s^{m}[N, i]$, where $g: S^{m}\left(N^{+}\right) \rightarrow S^{m} D_{r} M O_{k}$, for m large enough, is a map representing the stable map $h_{r}{ }^{\circ} S^{\infty} f^{+}$.

Proof.- W'e clearly have that $[N, f]=f_{\star}^{+}[N, i]$ and as N is compact then the stable map $h_{r}^{\circ} S^{\infty} f^{+}: S^{\infty}\left(N^{+}\right) \rightarrow S^{\infty} D_{r} M_{k}$ should be given by a map $g: S^{m}\left(N^{+}\right) \rightarrow S^{m} D_{r} O_{k}$, for some m, and its suspensions. Consider now the following diagram:

The 2 squares at the bottom commute, the first one by naturality of the equivalence $E \wedge X \simeq E \wedge S^{\infty} X$, and the second by definition of \bar{h}_{r}. As the stable map $h_{r}{ }^{\circ} S^{00} f^{+}$is induced by g then by 4.20 the homomorphisms g_{*} and $\left(h_{r}{ }^{\circ} S^{\infty} f^{+}\right)_{\star}$ correspond under s^{m} and σ, i.e., the square at the top commutes, hence $\bar{h}_{r}[N, f]=$ $=\bar{h} r f_{*}^{*}[N, i]=\left(s^{m}\right)^{-1} g_{*} s^{m}[N, i]$.
4.24) Remark: Let $\xi=(E, P, B)$ be a vector bundle, with Thom space $T(\xi)$,
 is given by $F\left(\mathbb{R}^{\infty} ; r\right)^{+} \hat{\Sigma}_{r} T(\xi) \wedge \ldots \wedge T(\xi) \equiv D_{r}(T(\xi))^{r}$.
4.25) Proposition.- The homomorphism given by the composition:

$$
\begin{aligned}
& I(n, k) \xrightarrow[\cong]{C_{k}} N_{n+k}\left(C_{\mathbb{R}^{\infty}} M O_{k}\right) \xrightarrow{j_{\star}} N_{n+k}\left(C_{\mathbb{R}^{\infty} M O_{k}}, *\right) \\
& \downarrow \bar{h}_{r} \\
& N_{n+k}\left(D_{r} M_{k}, *\right) \\
& \stackrel{N_{n-(r-1) k}}{\cong}\left(F\left(\mathbb{R}^{\infty} ; r\right)_{\Sigma_{r}} B O(k)^{r}\right)
\end{aligned}
$$

where $j:\left(C \mathbb{R}^{\infty} M O_{k}, O\right) \hookrightarrow\left(C_{\mathbb{R}^{\mathbb{M} M O}}^{k}{ }_{k}, *\right)$ is the inclusion and Φ is the Thom isomorphism, sends the class of a self-transverse immersion $f: M \rightarrow N$ to the class $\left[\mu_{r} / \Sigma_{r}, v_{f}\right]$, where μ_{r} / Σ_{r} is the manifold of r-tuple points and $\nu_{\gamma_{r}}$ classifies the normal bundle of the inmersion $f_{r}: \mu_{r} / \Sigma_{r} \rightarrow N$. For $r=1$ it is $\left[M, v_{f}\right]$.

Proof.- Let us denote by $\left[\phi: N \rightarrow C_{\left.\mathbb{R}^{\infty} M O_{k}\right]}\right.$ the class of $j_{*} \beta_{k}[f: M \rightarrow N]$, to evaluate $\Phi \bar{h}_{r}[N, \phi]$ consider the following diagram:

$$
\begin{aligned}
& N_{n+k+m}\left(S^{m}\left(N^{+}\right), *\right) \xrightarrow{g_{*}} N_{n+k+m}\left(S^{m} D_{r} M_{k}, *\right) \\
& \begin{array}{cc}
\uparrow \cong \\
N_{n+k}\left(N^{+},+\right) & N_{n+k}\left(D_{r}^{M O} O_{k}, *\right)
\end{array} \\
& \cong \Phi \Phi \\
& N_{n-(r-1) k}\left(F\left(\mathbb{R}^{\infty} ; r\right) \sum_{\sum_{r}}^{\times} B O(k)^{r}\right)
\end{aligned}
$$

where $g: S^{m}\left(N^{+}\right) \rightarrow S^{m} D_{r} M O_{k}$ is a map inducing the stable map $h_{r}{ }^{\circ} S^{\infty} \phi^{+}: S^{\infty}\left(N^{+}\right) \rightarrow S^{\infty} D_{r} M_{k}$. By 4.23) $\bar{h}_{r}[N, \phi]=\left(s^{m}\right)^{-1} g_{*} s^{m}[N, i]$, now recall that $D_{r} M_{k}=$ Thom space of $F\left(\mathbb{R}^{\infty} ; r\right)_{\Sigma_{r}}^{\times} r(k)^{r}$, hence $S^{m} D_{r} M_{k}$ is the Thom space of $\left(F\left(\mathbb{R}^{\infty} ; r\right)_{\sum_{r}}^{\sum_{r}} \gamma(k)^{r}\right)^{r} \oplus \varepsilon^{m}$. From the geometric definition of the Thom isomorphism (1.33) it is clear that the composition $\Phi\left(s^{m}\right)^{-1}$ is the Thom isomorphism for the bundle
$\left(F\left(\mathbb{R}^{\infty} ; r\right){\underset{\Sigma}{r}}_{\times}^{\gamma} \gamma(k)^{r}\right) \oplus \varepsilon^{m}$, we denote this isomorphism by $\bar{\Phi}$. On the other hand by $[28]$ the composition $N \xrightarrow{\phi} C_{\mathbb{R}^{\infty} M O_{k}} \xrightarrow{\text { adj } h_{r}} Q_{Q} D_{r} M O_{k}$ represents, under the Thom-Pontrjagin construction, the immersion ${ }_{r}: \mu_{r} / \Sigma_{r} \rightarrow N$, but by $3.16 \mathrm{adj}^{-1}\left(\operatorname{adj} h_{r}^{0} \phi^{+}\right) \approx h_{r}{ }^{0} S^{\infty} \phi^{+}$, hence the map $g: S^{m} N^{+} \rightarrow S^{m} D_{r} M O_{k}$ inducing $h_{r}^{c} S^{\infty} \phi^{+}$is the Thom-Pontrjagin map for the embedding

Finally by 4.21 we have that $s^{m}[H, i]=\left[N \times I^{m}, p\right]$ where $p: N \times I^{m} \rightarrow s^{m}\left(N^{+}\right)$ is the identification, hence $\Phi \bar{h}_{r}[N, \phi]=\Phi\left(s^{m}\right)^{-1} g_{\star} s^{m}[N, i]=$ $=\bar{\Phi} g_{*}\left[N \times I^{m}, p\right]=\left[\mu_{r} / \Sigma_{r}, v_{f_{r}}\right]$. For $r=1$ we get $N \xrightarrow{\phi} C_{I R}{ }^{\infty M O_{k}} \xrightarrow{e} Q M O_{k}$, where e is the equivalence of 4.14 , so by 4.19 it is the map corresponding to $f: M \rightarrow N$ itself. 4.26) Definition.- By 4.7, $F\left(I R^{\infty} ; r\right)_{\Sigma_{r}}^{\times} B O(k)^{r}=B\left(\Sigma_{r}\right.$ fO(k)). Following [15] we can give the following interpretation for the groups $N_{m}\left(B\left(\Sigma_{r} f O(k)\right)\right)$. We consider (rk)-vector bundles ξ with structural group $\Sigma_{r} f O(k)$ over closed smooth m-manifolds. We say that a bundle $\xi \rightarrow M$ bords if there is an ($r k$)-vector bundle $\zeta \rightarrow V$ with structural group $\Sigma_{r} \rho(k)$ such that $\left.i\right) V$ is a compact smooth ($m+1$) manifold and there is a diffeomorphism $M \cong \partial V, i i)$ The pull-back of ζ under the composition $M \approx \partial V \rightarrow V$ is isomorphic to ξ. Two bundles ξ_{1}, ξ_{2} are bordant if their disjoint union $\xi_{1} \Perp \xi_{2}$ bords. We denote by $N_{m}\left[\Sigma_{r} f O(k)\right]$ the set of equivalence classes which is made into a group by considering disjoint union of bundles. Given a bundle $\xi \rightarrow M$ we denote its equivalence class by $[\xi \rightarrow M]$. We give $N_{\star}\left[\Sigma_{r} f 0(k)\right]$ an N_{\star}-module structure by defining $[N][\xi \xrightarrow{p} M]=[N \times \xi \xrightarrow{\text { id } \times p} N \times M]$.
4.27) Proposition [15]. - We have an isomorphism of N_{*}-modules $N_{\star}\left(B\left(\Sigma_{r} f O(k)\right)\right) \xrightarrow{\approx} N_{\star}\left[\Sigma_{r} f O(k)\right]$ given by $[M, f] \longmapsto\left[f^{*}(\gamma) \rightarrow M\right]$, where γ is the universal bundle over $\left.B\left(\Sigma_{r} f O(k)\right)\right)$.
4.28) Theorem. - There is an isomorphism
$I(n, k) \cong N_{n+k} \oplus N_{n}[O(k)] \oplus \underset{r \geqslant 2}{\oplus} N_{n-(r-1) k}\left[\Sigma_{r} f O(k)\right]$ given by $[f: M \rightarrow N] \mapsto\left([M],\left[\nu_{f} \rightarrow M\right], \sum_{r>2}\left[\nu_{f} \rightarrow \mu_{r} / \Sigma_{r}\right]\right)$, for $n \geq 0, k>0$, where f is a self-transverse representative.

Proof.- By 4.18 We have an isomorphism $\beta_{k}: I(n, k) \xrightarrow{\cong} N_{n+k}\left(C_{\mathbb{R}^{\alpha, M}} 0_{k}\right)$. Let j be the inclusion $\left(C_{\mathbb{R}^{\infty}}\left[10_{k}, \phi\right) \hookrightarrow\left(C_{\mathbb{R}^{\infty}} M_{k}, *\right)\right.$, then by 1.31 we have an isomerphism $N_{n+k}\left(C_{R^{\infty}} \mathrm{NOO}_{k}\right) \equiv N_{n+k} \oplus N_{n+k}\left(C_{\mathbb{R}^{\infty}} M O_{k},{ }^{*}\right)$ giveri by $[N, \phi] \mapsto\left([N], j_{*}[N, \phi]\right)$.
$N_{n+k}\left(C_{\mathbb{R}} M O_{k}, *\right) \cong M O_{n+k}\left(S^{\infty} C_{\mathbb{R}^{\infty}} M O_{k}\right) \quad$ (by 1.7 and suspension isom.)
$\cong M O_{n+k}\left(\underset{r \geq 1}{V} S^{\infty} D_{r} M_{k}\right) \quad$ (by 4.17)
$\cong \underset{r \geq 1}{\bigoplus} \mathrm{MO}_{n+k}\left(S^{\infty} \mathrm{D}_{r} \mathrm{MO}_{k}\right)$ (Because MO satisfies the wedge axiom).
$\cong \bigoplus_{r \geq 1} N_{n+k}\left(D_{r} \mathrm{MO}_{k}, *\right)$
$\cong \bigoplus_{r \geq 1} N_{n-(r-1) k}\left(F\left(\mathbb{R}^{\infty} ; r\right){ }_{\sum_{r}}^{\times} B O(k)^{r}\right)$ (By the Thom isomorphism)
$\equiv \bigoplus_{r \geq 1} N_{n-(r-1) k}\left(B\left(\Sigma_{r} f O(k)\right)\right) \quad(b y$ 4.7)

The fact that the isomorphism is as stated in the theorem follows from 4.25 and the definition of the isomorphism in 4.27 .
4.29) Definition.- Let $[\xi \rightarrow M] \in N_{m}\left[\Sigma_{r} f O(k)\right]$, then following [15] we can define characteristic numbers for ξ as follows:
for each cohomology class $a \in H^{j}\left(B\left(\Sigma_{r} f O(k) ; \mathbb{Z}_{2}\right)\right.$ and each partition ρ of $m-j$ (i.e. a sequence $0 \leq i_{1} \leq \ldots \leq i_{s}$ such that $i_{1}+\ldots+i_{s}=m-j$) there is associated a Stiefel-Whitney number of the form
$<\omega_{\rho}(M) \phi_{\xi}^{\star}(a), \sigma(M)>$, where $\omega_{\rho}(M)=\omega_{i_{1}}(M) \omega_{i_{2}}(M) \cdots \omega_{i_{s}}(M)$, and $\phi_{\xi}: M \rightarrow B\left(\Sigma_{r} \rho O(k)\right)$ is a classifying map for ξ. Notice that when $a=1$ we get the ordinary Stiefel-Whitney numbers of M. By 4.28) We can associate to each self-transverse immersion f: $M \rightarrow N$ the characteristic numbers of N and of each of the normal bundles $\nu_{f}, v_{f_{1}}, v_{f_{2}}, \ldots$ which we call the characteristic numbers of f. 4.30) Proposition.- Let $f: M \rightarrow N$ and $g: M^{\prime} \rightarrow N^{\prime}$ be self-transverse immersions then f and g are bordant if and only if their characteristic numbers are equal.

Proof.- The homology groups $H_{\star}\left(B\left(\Sigma_{r} f O(k)\right) ; Z_{2}\right)$ are of finite type so by [15] the characteristic numbers of each normal bundle determine its bordism class. Therefore the result follows from 4.28.

Note: The result stated in [15] is for finite complexes however one can easily see that it is also true for spaces of finite type.

Chapter 5: Reduction of the structural group modulo bordism In this chapter we shall use some results of A. Borel on homogeneous spaces to prove that any (rk)-vector bundle is bordant to a vector bundle with structural group $\sum_{r} f O(k)$.
5.1) Definition.- Let $p: E \rightarrow B$ be a fibration with fiber F. We assume that B and F are path connected. We denote by $\left\{E_{r}^{p, q}, d_{r}\right\}$ the spectral sequence associated to p such that $E_{2}^{p, q} \equiv H^{p}\left(B ; \underline{H}^{q}\left(F ; \mathbb{Z}_{2}\right)\right)$, where $H^{H^{q}\left(F ; Z_{2}\right)}$ denotes local coefficients. This spectral sequence converges to $H^{*}\left(E ; \mathbb{Z}_{2}\right)[52]$.
5.2)Definition.- We say that the fiber F of a fibration $P: E \rightarrow B$ is totally non-homologous to zero if the inclusion $i: F c a$ induces a surjective homomorphism in cohomology.
5.3) Theorem. - [42] Let $p: E \rightarrow B$ be a fibration with fiber F such that F and B are path connected and $H^{*}\left(F ; \mathbb{Z}_{2}\right)$ or $H^{*}\left(B ; \mathbb{Z}_{2}\right)$ is of finite type. Then the spectral sequence $\left\{E_{r}^{p, q}, d_{r}\right\}$ collapses and the the coefficients of $E_{2}^{p, q}$ are simple if and only if F is totally non-homologous to zero.
5.4) Lemma.- Let $\mathrm{P}: \mathrm{E} \rightarrow \mathrm{B}$ be a fibration with fiber F, B and F path connected. If the spectral sequence $\left\{E_{r}^{P, q}, d_{r}\right\}$ collapses then p^{*} is injective.

Proof. - We have a filtration of
$H^{*}\left(E ; \mathbb{Z}_{2}\right): 0 \subset J^{p, 0} \subset J^{p-1,1} \subset \ldots \subset J^{0, P}=H^{p}\left(E ; \mathbb{Z}_{2}\right)$.
Consider the edge homomorphism $e: E_{2}^{p, 0} \rightarrow E_{3}^{p, 0} \rightarrow \ldots \rightarrow E_{\infty}^{p, 0}$, then we have a commutative diagram [52]:

So if the spectral sequence collapses p^{*} is an isomorphism onto its image therefore p^{\star} is injective.
5.5) Definition.- Let X be a space such that $H_{\star}\left(X ; \mathbb{Z}_{2}\right)$ is of finite type, then we define the Poincare series of X by $P(X, t)=\sum_{i} \operatorname{dim} H^{i}\left(X ; \mathbb{Z}_{2}\right) t^{i}$. Given a first quadrant spectral sequence $\left\{E_{r}^{p, q}, d_{r}\right\}$ such that $E_{r}^{p, q}$ has finite dimension for all r, p, q, we can also define a Poincare series $P\left(E_{r}, t\right)$ by considering the graded vector space $\left\{{ }^{n} E_{r}\right\}_{n}$ where ${ }^{n} E_{r}=\bigoplus_{p+q=n} E_{r}^{p, q}$.
5.6) Proposition.-[5] Let $p: E \rightarrow B$ be a fibration with fiber F such that B and F are path connected and E, B and F are of finite type. Then $P(E, t)=P(B, t) P(F, t)$ if and only if the spectral sequence $\left\{E_{r}^{p, q}, d_{r}\right\}$ collapses and the coefficients of $E_{2}^{p, q}$ are simple.

Proof \Rightarrow)We first show that the coefficients are simple. Let $S^{q}(F)$ be the biggest subspace of $H^{q}\left(F ; \mathbb{Z}_{2}\right)$ where $\Pi_{1}(B)$ acts trivially, i.e.,
 $s^{q}(F)=H^{q}\left(F ; \mathbb{Z}_{2}\right)$. For $q=0$, as F is connected, we have $H^{0}\left(F ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}=S^{0}(F)$. Now assume it is true for all $q<k$, then $E_{2}^{p, q}=H^{P}\left(B ; H^{q}\left(F ; \mathbb{Z}_{2}\right)\right)=H^{P}\left(B ; \mathbb{Z}_{2}\right) \otimes H^{q}\left(F ; \mathbb{Z}_{2}\right)$ for $q<k$.

As $\operatorname{dim} H^{0}\left(B ; \mathbb{Z}_{2}\right)=1$ then $\operatorname{dim}{ }^{k} E_{2}=\operatorname{dim} \underset{p+q=k}{\bigoplus} E_{2}^{p, q}=\operatorname{dim} H^{k}\left(B \times F ; \mathbb{Z}_{2}\right)-$ - $\operatorname{dim} H^{k}\left(F ; \mathbb{Z}_{2}\right)+\operatorname{dim} S^{k}\left(F ; \mathbb{Z}_{2}\right)$. By hypothesis $P(E, t)=P(B, t) P(F, t)=$ $=P(B \times F, t)$, therefore $\operatorname{dim} H^{k}\left(B \times F ; \mathbb{Z}_{2}\right)=\operatorname{dim} H^{k}\left(E ; \mathbb{Z}_{2}\right)=\operatorname{dim}{ }^{k} E_{\infty}$, hence $\operatorname{dim} k_{E_{2}}=\operatorname{dim} k_{E_{\infty}}-\operatorname{dim} H^{k}\left(F ; \mathbb{Z}_{2}\right)+\operatorname{dim} S^{k}(F)$.
But $\operatorname{dim} k_{E_{2}} \geqslant \operatorname{dim} k_{\infty}$ so $\operatorname{dim} S^{k}(F) \geqslant \operatorname{dim} H^{k}\left(F ; \mathbb{Z}_{2}\right)$, and as $S^{k}(F) \subset H^{k}\left(F ; \mathbb{Z}_{2}\right)$ then $\operatorname{dim}^{k}(F)=\operatorname{dim} H^{k}\left(F ; \mathbb{Z}_{2}\right)$, i.e., $S^{k}(F)=H^{k}\left(F ; \mathbb{Z}_{2}\right)$

Now that we know that the coefficients are simple we can write $E_{2}^{p, q}=H^{P}\left(B ; \mathbb{Z}_{2}\right) \otimes H^{q}\left(F ; \mathbb{Z}_{2}\right)$ so $P\left(E_{2}, t\right)=P(B, t) P(F, t)=P(E, t)=P\left(E_{\infty}, t\right)$, hence $P\left(E_{2}, t\right)=P\left(E_{\infty}, t\right)$. i.e., $\operatorname{dim}{ }^{n} E_{2}=\operatorname{dim}{ }^{n} E_{\infty}$ for all $n \geq 0$, so $\sum_{i+j=n} \operatorname{dim} E_{2}^{i, j}=\sum_{i+j=n} \operatorname{dim} E_{\infty}^{i, j}$. But each $E_{r+1}^{i, j}$ is a subquotient of $E_{r}^{i, j}$ so $\operatorname{dim} E_{r+j}^{i, j} \leq \operatorname{dim} E_{r}^{i, j}$ and then $\operatorname{dim} E_{\infty}^{i, j} \leq \operatorname{dim} E_{2}^{i, j}$, therefore $\operatorname{dim} E_{\infty}^{\mathfrak{i}, \boldsymbol{j}}=\operatorname{dim} E_{2}^{\mathfrak{j}, j}$, and hence $E_{\infty}^{i, j} \cong E_{2}^{i, j}$
$\Leftrightarrow E_{\infty}^{p, q} \cong E_{2}^{p, q} \cong H^{p}\left(B ; H^{q}\left(F ; \mathbb{Z}_{2}\right)\right) \cong H^{p}\left(B ; \mathbb{Z}_{2}\right) \otimes H^{q}\left(F ; \mathbb{Z}_{2}\right)$. Therefore $H^{n}\left(E ; \mathbb{Z}_{2}\right) \cong \underset{p+q=n}{\bigoplus} E_{\infty}^{p, q} \cong \bigoplus_{p+q=n} H^{p}\left(B, \mathbb{Z}_{2}\right) \otimes H^{q}\left(F ; \mathbb{Z}_{2}\right)$. Hence $P(E, t)=$ $=P(B, t) P(F, t)$.
5.7)Definition.- Let $\mathrm{p}: \mathrm{E} \rightarrow \mathrm{B}$ be a numerable principal G-bundle, where G is a topological group, and let $\phi_{P}: B \rightarrow B G$ be a classifying map for p. We call the image of $\phi_{p}^{*}, \phi_{p}^{\star}: H^{\star}\left(B G ; \mathbb{Z}_{2}\right) \rightarrow H^{\star}\left(B ; \mathbb{Z}_{2}\right)$, the characteristic subalgebra of the bundle.
5.8) Definition.- Let G be a compact Lie group and $H \subset G$ a closed subgroup, we say that H has the same 2-rank of G if there is a common maximal abelian subgroup isomorphic to \mathbb{Z}_{2}^{n}, we denote this subgroup by $Q(n)$, and call n the 2-rank.

We say that G/H verifies Hirsch's formula if $P(G / H, t)=\frac{\left(1-t^{m_{i}}\right), \ldots,\left(1-t^{m^{n}}\right)}{\left(1-t^{q_{1}}\right), \ldots,\left(1-t^{q_{n}}\right)}$
where m_{1}, \ldots, m_{n} are the degrees of the generators of $H^{*}\left(B G ; \mathbb{Z}_{2}\right)$ and q_{1}, \ldots, q_{n} are the degrees of the generators of $H^{*}\left(B H ; \mathbb{Z}_{2}\right)$.
5.9) Proposition [5]:G be a compact Lie group and $H \subset G$ a closed subgroup of the same 2-rank. If $G / Q(n)$ and $H / Q(n)$ verify Hirsch's formula and if $H^{*}\left(H / Q(m) ; \mathbb{Z}_{2}\right)$ is equal to its characteristic subalgebra then G / H verifies formula.

Proof.- Consider the following diagram:

where i is induced by the inclusion and j is a classifying map for q (p and q are principal bundles because G is a Lie group and H is a closed subgroup[46]). Hence $j^{\circ i}$ classifies p so by Hypothesis ($\left.j^{\circ} \boldsymbol{i}\right)^{*}$ is surjective so i^{*} is surjective. But this implies that the fiber of the fibration $H / Q(n) \longleftrightarrow G / Q(n) \xrightarrow{\phi} G / H$ is totally nonhomologous to zero so by 5.3 the spectral sequence of the fibration collapses and the coefficients of $E_{2}^{p, q}$ are simple, so by 5.6) $P(G / Q(n), t)=P(H / Q(n), t) P(G / H, t)$, as $G / Q(n)$ and $H / Q(n)$ verify Hirsch's formula, then clearly G / H verifies Hirsch's formula.
5.10) Proposition [5]. $P(0(n) / Q(n), t)=\frac{(1-t)\left(1-t^{2}\right) \ldots\left(1-t^{n}\right)}{(1-t)^{n}}$ and
$H^{*}\left(O(n) / Q(n) ; \mathbb{Z}_{2}\right)$ is equal to i ts characteristic subalgebra.
5.11) Proposition [5]. $P(B O(n), t)=(1-t)^{-1}\left(1-t^{2}\right)^{-1}, \ldots,\left(1-t^{n}\right)^{-1}$.
5.12) Theorem [5]:Consider natural numbers $n_{1}, n_{2}, \ldots, n_{k}$ such that $n_{1}+n_{2}+\ldots+n_{k}=n_{\text {. Let }} i: 0\left(n_{1}\right) \times O\left(n_{2}\right) \times \ldots \times O\left(n_{k}\right) \hookrightarrow O(n)$ be the inclusion, then $B i: B\left(O\left(n_{1}\right) \times \ldots \times O\left(n_{k}\right)\right) \longrightarrow B O(n)$ induces a monomorphism in \mathbb{Z}_{2}-cohomology.

Proof.- Consider the infinite Stiefel manifold EO(n), and define an action of $0\left(n_{1}\right) \times \ldots \times O\left(n_{k}\right)$ on $E O(n)$ by $e \cdot\left(A_{1}, \ldots, A_{k}\right)=e \cdot i\left(A_{1}, \ldots, A_{k}\right)$. In 4.7 we saw that $E O(n)$ is completly regular, as $0\left(n_{1}\right) \times \ldots \times 0\left(n_{k}\right)$ is a compact Lie group then by Glason's Theorem [7] the quotient $\operatorname{EO}(n) / O\left(n_{1}\right) \times \ldots \times 0\left(n_{k}\right)=B\left(0\left(n_{1}\right) \times \ldots \times O\left(n_{k}\right)\right)$. Let $p: E O(n) / O\left(n_{1}\right) \times \ldots \times O\left(n_{k}\right) \rightarrow E O(n) / O(n)$ be the projection, as this map is induced by an i-equivariant map then $p \simeq B i \quad$ Consider the fibration $O(n) / O\left(n_{1}\right) \times \ldots \times O\left(n_{k}\right) c E O(n) / O\left(n_{1}\right) \times \ldots \times O\left(n_{k}\right) \xrightarrow[P]{C O}(n) / O(n)$

We want to apply 5.6 and for this we consider $P\left(O(n) / O\left(n_{1}\right) \times \ldots \times O\left(n_{k}\right), t\right)$. Notice that $0\left(n_{1}\right) \times \ldots \times O\left(n_{k}\right)$ and $O(n)$ have the same 2 -rank with $Q(n) \subset 0\left(n_{1}\right) \times \ldots \times 0\left(n_{k}\right) \subset 0(n)$, also notice that $0\left(n_{1}\right) \times \ldots \times 0\left(n_{k}\right) / Q(n) \cong$ $0\left(n_{1}\right) \times \ldots \times 0\left(n_{k}\right) / Q\left(n_{1}\right) \times \ldots \times Q\left(n_{k}\right) \cong 0\left(n_{1}\right) / Q\left(n_{1}\right) \times \ldots \times 0\left(n_{k}\right) / Q\left(n_{k}\right)$

By 5.10) $0\left(n_{i}\right) / Q\left(n_{i}\right)$ satisfies Hirsch's formula, for $1 \leq i \leq k$, so clearly the product satisfies Hirsch's formula. Furthermore By 5.10 $H^{\star}\left(O\left(n_{i}\right) / Q\left(n_{i}\right) ; \mathbb{Z}_{2}\right)$ is equal to $i t s$ characteristic subalgebra so clearly $H^{*}\left(0\left(n_{1}\right) / Q\left(n_{1}\right) \times \ldots \times 0\left(n_{k}\right) / Q\left(n_{k}\right)\right)$ is also equal to i ts characteristic subalgebra so by 5.9, $O(n) / O\left(n_{1}\right) \times \ldots \times O\left(n_{k}\right)$ verifies Hirsch's formula so $P\left(0(n) / 0\left(n_{1}\right) \times \ldots \times 0\left(n_{k}\right), t\right)=\frac{(1-t)\left(1-t^{2}\right) \ldots\left(1-t^{n}\right)}{k}$

By 5.11) $P(B O(n), t)=(1-t)^{-1}\left(1-t^{2}\right)^{-1} \quad\left(1-t^{n}\right)^{-1}$ and $P\left(B O\left(n_{1}\right) \times \ldots \times B O\left(n_{k}\right), t\right)=\prod_{i=1}^{k}(1-t)^{-1} \ldots\left(1-t^{n_{i}}\right)^{-1}$. Therefore we get $P\left(B O\left(n_{1}\right) \times \ldots \times B O\left(n_{k}\right), t\right)=P(B O(n), t) P\left(O(n) / O\left(n_{1}\right) \times \ldots \times O\left(n_{k}\right), t\right)$ hence by 5.6 the spectral sequence of the fibration p collapses and by 5.4 p^{*} is injective.
5.13) Theorem.- Let ξ be an rk-vector bundle over a closed smooth manifold then ξ is bordant to a vector bundle with structural group $\Sigma_{r} f O(k)$.

Proof.- We have a commutative diagram: $N_{m}\left[\sum_{r} f O(k)\right] \longrightarrow N_{m}[O(r k)]$
$\cong \uparrow$
$N_{m}\left(B\left(\Sigma_{r} \rho O(k)\right)\right)$
$\underset{B j_{*}}{\longrightarrow} N_{m}(B O(r k))$

The isomorphisms are those of 4.37, and $j: \Sigma_{r} f 0(k) \hookrightarrow O(r k)$. We are going to show that $B j_{*}$ is surjective. For this notice that we have a commutative diagram.

the inclusion of 5.12. Then $B_{j}{ }^{\circ} \mathrm{B} \ell \simeq B\left(j^{\circ} \ell\right)=B i \quad B y 5.12 \quad B i^{*}$ is injective, as all the homology groups are of finite type, then $B i_{*}$ is surjective, hence $B j_{*}$ is surjective in mod. 2 homology. The naturality of the equivalence $N_{\star}(X) \cong H_{\star}(X) \underset{\mathbb{Z}_{2}}{\mathbb{Z}_{\star}} N \quad$ [18] implies that $B j_{\star}$ is surjective in bordism.
5.14) Remark If $k=2$ in 5.13 , one can give a proof of the theorem using the transfer as follows. Consider the fibration
 [24] we have that $x(O(2 n) / N(T))=1$, where $N(T)$ is the normalizer of a maximal torus T in $O(2 n)$. But $N(T)=\Sigma_{r} \rho O(2)[25]$, so $x\left(0(2 r) / \Sigma_{r} \rho O(2)\right)=1$. We can use now Becker and Gottlieb's transfer for the fibration p [4]. This transfer was defined when the base is a finite complex, but it was generalised in [72] to include the case when the base is infinite dimensional.

If τ denotes the transfer for p then we get $p_{\star}{ }^{\circ} \tau_{\star}=$ id so P_{\star} is surjective.

- 74 -

$O(2 r) / \Sigma_{T} S O(2)^{\hookrightarrow} B\left(\Sigma_{r} \delta O(2)\right) \xrightarrow{P} B O(2 r)$. By a theorem of Hopf and Samelson [24] we have that $\chi(O(2 n) / N(T))=1$, where $N(T)$ is the normalizer of a maximal torus T in $O(2 n)$. But $N(T)=\Sigma_{r} f O(2)[25]$, so $x\left(0(2 r) / \Sigma_{r} f O(2)\right)=1$. We can use now Becker and Gottlieb's transfer for the fibration p [4].

This transfer was defined when the base is a finite complex, but it was generalised in [12] to include the case when the base is infinite dimensional.

If τ denotes the transfer for p then we get $p_{\star}{ }^{\circ} \tau_{\star}=$ id so P_{\star} is surjective.

Chapter 6: Another interpretation for the groups $N_{*}\left(F\left(\mathbb{R}^{\infty} ; r\right){\underset{\Sigma}{r}}_{\Sigma_{r}} B O(k)^{r}\right)$. In this chapter we give an interpretation of $N_{\star}\left(F\left(\mathbb{R}^{\infty} ; r\right) \times{ }_{2}{ }_{r} B O(k)^{r}\right)$ in terms of covering spaces and arbitrary vector bundles, and apply this interpretation to the bordism of immersions.
56.1) The functor [-, E $\left.\Sigma_{r}{\underset{\Sigma}{\Sigma}}_{r}^{r} Y^{r}\right]$

In this section we use the method of F.W. Roush [l] for classifying transfers to give an interpretation of the functor $\left[\ldots, E \sum_{r} \frac{x}{\Sigma_{r}} Y^{r}\right]$.
6.1) Definition. - Let X and Y be spaces and consider pairs ($\tilde{X},[\phi]$) where $\widetilde{X} \xrightarrow{P} X$ is an r-covering over X and $[\phi] \in[\tilde{X}, Y]$. We define a relation \cong, between these pairs as follows: $(\widetilde{X},[\phi]) \cong\left(\widetilde{X}^{\prime},\left[\phi^{\prime}\right]\right)$ if and only if i) There is a map of coverings $\widetilde{x} \xrightarrow{h} \widetilde{x}^{\prime}$ (i.e. a continuous $p\rangle x^{\prime} p^{\prime}$
map h making the triangle commute and such that it is a bijection on each fiber), ii) $h^{*}\left[\phi^{\prime}\right]=[\phi]$ (i.e. $\phi^{\prime} \circ h \simeq \phi$).

As a map of coverings is a homeomerphism, this is clearly an equivalence relation. We denote by $F_{r, r}(X)$ the set of equivalence classes of such pairs.
6.2) Definition.- Let T denote the category of paracompact spaces, we define a functor $F_{r, r}: T \rightarrow$ Sets as follows: to each $X \in T$, we associate $F_{r, \gamma}(X)$ and given $f: X_{1} \rightarrow X_{2}$, we define $f^{\star}: F_{r, Y}\left(X_{2}\right) \rightarrow F_{r, Y}\left(X_{1}\right)$ by $f^{*}\left[\tilde{X}_{2},[\rho]\right]=\left[f^{*}\left(\tilde{X}_{2}\right),[\rho \circ f]\right]$, where the maps are given by the following pull-back

6.3) Lemma. - The functor $F_{\left.r, Y^{(}\right)}()$is well defined

Proof.- Suppose $\left(\bar{X}_{2},[\rho]\right) \cong\left(\bar{X}_{2}^{\prime},\left[\rho^{\prime}\right]\right)$, then we have a map of coverings $\tilde{x}_{2} \xrightarrow{h} \tilde{x}_{2}^{\prime}$

such that $\rho^{\prime \circ h} \underset{G}{\sim} \rho$. If we apply f^{*} we get the following diagrams: $f^{\star}\left(\tilde{x}_{2}\right) \xrightarrow{\bar{f}^{\prime}} \tilde{x}_{2} \xrightarrow{\rho} y$

We can then define $\bar{h}: f^{*}\left(\tilde{X}_{2}\right) \rightarrow f^{*}\left(\tilde{X}_{2}^{\prime}\right)$ by $h\left(x_{1}, \bar{x}_{2}\right)=\left(x_{1}, h\left(\vec{x}_{2}\right)\right)$
this is well defined since $\left(x_{1}, \tilde{x}_{2}\right) \in f^{\star}\left(\tilde{x}_{2}\right) \Rightarrow f\left(x_{1}\right)=q\left(\bar{x}_{2}\right)=q^{\prime} h\left(\tilde{x}_{2}\right)$. As h is a map of coverings then so does \bar{h}.

Finally define a homotopy $H: f *\left(\widetilde{X}_{2}\right) \times I \rightarrow Y$ by $H\left(x_{1}, \tilde{x}_{2}, t\right)=G\left(\widetilde{x}_{2}, t\right)$.
Then $H\left(x_{1}, \tilde{x}_{2}, 0\right)=G\left(\tilde{x}_{2}, 0\right)=\rho^{\prime} h\left(\tilde{x}_{2}\right)=\rho^{\prime} \bar{f}^{\prime}\left(x_{1}, h\left(\tilde{x}_{2}\right)\right)=\rho^{\prime} \circ \bar{f}^{\prime} \circ \bar{h}\left(x_{1}, \tilde{x}_{2}\right)$
and $H\left(x_{1}, \tilde{x}_{2}, 1\right)=G\left(\tilde{x}_{2}, 1\right)=\rho\left(\tilde{x}_{2}\right)=\rho \bar{f}\left(x_{1}, \tilde{x}_{2}\right)$ therefore $\rho^{\prime} \circ \bar{f}^{\prime} \circ \bar{h} \simeq \rho \circ \dot{f}$, i.e., $h^{*}\left[\rho^{\prime} \circ \bar{f}^{\prime}\right]=\left[\rho^{\circ} \bar{f}\right]$.
\square
6.4) Definition. - We define $\Phi_{X}:\left[X, E \sum_{r} \frac{x}{\Sigma_{r}} Y^{r}\right] \rightarrow F_{r, Y}(X)$ as follows: let $\bar{r}=\{1,2, \ldots, r\}$, we have an action $\Sigma_{r} \times \bar{r} \rightarrow \bar{r}$ given by $\sigma \cdot i=\sigma(i)$ and a principal \sum_{r}-bundle $E \Sigma_{r} \times Y^{r} \rightarrow E \sum_{r} \sum_{r} Y^{r}$ so we can consider the r-covering associated $E \Sigma_{r} \times Y^{r} \Sigma_{r} \bar{r} \xrightarrow{\Pi} E \Sigma_{r} \Sigma_{r}^{\times} Y^{r}$. Let $f: Y \rightarrow E \Sigma_{r} \sum_{r}^{x} Y^{r}$ and consider the following pull-back:

where $\alpha\left[e, y_{1}, \ldots, y_{r}, i\right]=y_{i}$, then define $\Phi_{x}[f]=\left[f^{*}(\Pi),[\alpha \circ \bar{f}]\right]$ To prove that Φ_{X} is well defined we need a Lemma:
6.5) Lemma.- Let $p: E \rightarrow B$ be a covering and $f, g: X \rightarrow B$ such that $f \simeq g$ then we have a map of coverings $f^{\star}(p) \xrightarrow{h} g^{\star}(p)$ such that $\bar{g}^{\star} h \simeq \bar{f}$ $p_{f} \searrow_{x} / \mathrm{p}_{\mathrm{g}}$

Proof.- Let $H: X \times I \rightarrow B$ be a homotopy such that $H_{0}=f$ and $H_{1}=g$ and consider the composition $H^{\circ}\left(p_{f} \times i d\right): f^{*}(p) \times I \rightarrow B$ then we have a commutative diagram

lifting \bar{H} making the diagram commute. Define $h: f^{\star}(p) \rightarrow X \times E$ by $h(x, e)=\left(p_{f}(x, e)=x, \bar{H}(x, e, l)\right)$, notice that $p \bar{H}(x, e, 1)=H^{0}\left(p_{f} x i d\right)(x, e, l)=$ $=H(x, l)=g(x)$ hence $h: f *(p) \rightarrow g *(p)$. Also notice that when we change t in $\bar{H}(x, e, t)$ and we project under p we get $H(x, t)$, as for each $x, H(x, t)$ is a path from $f(x)$ to $g(x)$, then for each e over $f(x)$ we get a lifting of this path beginning in e and ending in a point over $g(x)$, i.e., h is a map of coverings. Finally $\bar{g}^{\circ} h(x, e)=$ $=\bar{g}(x, H(x, e, 1))=\bar{H}(x, e, 1) \simeq \bar{H}(x, e, 0)=\bar{f}(x, e)$, i.e., $\overline{g^{\circ} h} \simeq \bar{f}$.
6.6) Lemma.- $\Phi_{X}:\left[X, E \sum_{\Gamma_{\Sigma r}} Y^{r}\right]+F_{r, Y}(X)$ is well defined and it is natural .

Proof.- Suppose $f, g: X \rightarrow E \sum_{r}{ }^{x} Y^{r}$ are homotopic then by 6.5 we have a map of coverings $f^{\star}(\Pi) \xrightarrow{h} g^{\star}(\Pi)$ such that $\dot{g} \circ h \sim \bar{f}$ hence $\alpha \circ \bar{g} \circ h \approx \alpha \circ \bar{f}, i . e$. , $\pi_{f} \searrow_{x}<\pi_{g}$
$h^{\star}[\alpha \circ \bar{g}]=[\alpha \circ f]$ therefore $(f \star(\Pi),[\alpha \circ \bar{f}]) \cong\left(g^{\star}(\pi),\left[\alpha^{\circ} \bar{g}\right]\right)$.
The naturality follows from the fact that $f^{\star} g^{\star}(\Pi) \cong\left(g^{\circ} f\right) \star$ (Π).
6.7) Definition.- We define $\Psi_{y}: F_{r, Y}(X)+\left[X, E \sum_{r} \frac{X}{L_{r}} Y^{r}\right]$ as follows: given a pair $(\tilde{X},[\phi])$, consider the map $x \rightarrow E \Sigma_{r}{\underset{\Sigma}{r}}^{\Sigma_{r}} \tilde{x}^{r}$ defined in 3.18, by a slight abuse of notation we shall denote this map by T and call it also pretransfer, consider the composition
$X \xrightarrow{T} E \Sigma_{r} \times \widetilde{\Sigma}_{r} \widetilde{X}^{r} \xrightarrow{i d \underset{\Sigma_{r}}{ } \phi^{r}} E \Sigma_{r}{\underset{\Sigma}{r}}_{r} Y^{r}$. T is defined up to homotopy and if
 the homotopy class of $\left(i d_{\Sigma_{r}^{x}} \phi^{r}\right)^{\circ} T$ and we define $\Psi_{X}[X,[\phi]]=\left[i \mathrm{C}_{\Sigma_{r}} \phi^{r} \circ T\right]$.
6.8) Lemma.- ${ }_{Y_{X}}: F_{r, Y}(X) \rightarrow\left[X, E \sum_{r} \sum_{\Sigma_{r}} Y^{r}\right]$ is well defined and it is natural.

Proof.- Suppose $\left(\tilde{x}_{1},\left[\phi_{1}\right]\right) \approx\left(\tilde{X}_{2},\left[\phi_{2}\right]\right)$ then we have a map of coverings $\quad \tilde{x}_{1} \xrightarrow{h} \tilde{x}_{2} \xrightarrow{\phi_{2}} Y$ such that $\phi_{2}{ }^{\circ} h \simeq_{1}$

To define T we have to consider the principal Σ_{r}-bundles associated. Consider the following map $\bar{\beta}: \bar{x}_{1} \rightarrow \bar{x}_{2}$ given by $\bar{\beta}\left(\tilde{x}_{1}, \ldots, \bar{x}_{r}\right)=\left(h\left(\bar{x}_{1}\right), \ldots, h\left(\bar{x}_{r}\right)\right)$, as h is a map coverings this is well defined and it is clearly Σ_{r}-equivariant, therefore we have a pull-back diagram:

where P_{2} classifies the principal Σ_{r}-bundle $\bar{X}_{2} \rightarrow \bar{X}_{2} / \Sigma_{r}$. Hence we can define the pretransfer T_{1}, for P_{1} using this pull-back and we get a commutative diagram:

and as $\quad h^{\circ} \phi_{2} \approx \phi_{1}$ we get a homotopy commutative diagram:

Combining these 2 diagrams we get that $\Psi_{X}\left[\tilde{X}_{1},\left[\phi_{1}\right]\right]=\Psi_{X}\left[\tilde{X}_{2},\left[\phi_{2}\right]\right]$. By the same method one can also show that Ψ_{x} is natural.
6.9) Theorem.- The functors $\left[-, E \Sigma_{r} \Sigma_{r} Y^{r}\right]$ and $F_{r, Y}(-): T \rightarrow$ Sets are naturally equivalent. The equivalences are given by Ψ and Φ. Proof.- We shall prove that ${ }^{\Psi} X \quad \Phi_{X}=$ id. Let $f: X \rightarrow E \Sigma_{r}{ }_{\Sigma} \Sigma_{r} Y^{r}$, then $\Psi_{X} \circ \Phi_{X}[f]=\Psi_{X}\left[f^{*}(\pi),[\alpha \circ f]\right]$. To obtain the pretransfer for $f^{*}(\pi)$ notice that if we have an r-covering of the form $E \Sigma_{\Sigma_{r}} \bar{r} \rightarrow E / \Sigma_{r}$ then the pretransfer $T: E / \Sigma_{r} \rightarrow E_{\Sigma_{r}} \times{ }_{\Sigma}\left(E_{\Sigma_{r}} \times \bar{r}\right)^{r}$ is given by $T[e]=[\bar{\rho}(e),[e, 1], \ldots,[e, r]]$ where we have a pull-back $\underset{\substack{+E / \Sigma_{r}}}{\mathrm{E} \xrightarrow[\rho]{\bar{\rho}} \mathrm{E} \Sigma_{r}} \underset{\substack{+E \\ \Sigma_{r}}}{ } / \Sigma_{r}$

Now let us apply this observation to the covering $E \Sigma_{r} \times Y^{r} \frac{x}{\Sigma}_{r} \bar{r} \xrightarrow[\pi]{ } E \Sigma_{r} \sum_{r}^{x} Y^{r}$, the classifying square for π is given by

So $T_{\Pi}: E \Sigma_{r} \stackrel{x}{\Sigma}_{r} Y^{r} \rightarrow E \Sigma_{r} \Sigma_{r}\left(E \Sigma_{r} \times Y^{r} \stackrel{\Sigma}{\times}^{\Sigma_{r}} \bar{r}\right)^{r} \quad$ is given by
$T_{\pi}\left[e, y_{1}, \ldots, y_{r}\right]=\left[e,\left[e, y_{1}, \ldots, y_{r}, 1\right], \ldots,\left[e, y_{1}, \ldots, y_{r}, r\right]\right]$
Recall that we have a pull-back: $f *(\pi) \xrightarrow{\bar{f}} E_{\Sigma_{r}} \times Y^{r}{\frac{\Sigma}{\Sigma_{r}}}_{r} \bar{r} \xrightarrow{\alpha} Y$

Consider the following diagram:

The composition at the top represents $\Psi_{X}{ }^{\Phi} X^{[f]}$. By choosing suitable classifying maps, as we have done before, one can prove that the square is homotopy commutative. The triangle clearly commutes so
$\Psi_{X} \quad \Phi_{X}[f]=\left[i d_{\Sigma_{r}} \alpha^{r}{ }^{\circ} T_{\pi}{ }^{\circ} f\right]$, but the composition $\left(i d \sum_{\Sigma_{r}} \alpha^{r}\right)^{o} T_{\Pi}$ is the identity, in effect, $\left(\text { id }_{\Sigma_{r}} \times \alpha^{r}\right)^{0} T_{\pi}\left[e, y_{1}, \ldots, y_{r}\right]=$
$=\left(\right.$ id $\left._{\sum_{r}} \times \alpha^{r}\right)\left[e,\left[e, y_{1}, \ldots, y_{r}, 1\right], \ldots,\left[e, y_{1}, \ldots, y_{r}, r\right]\right]=$
$=\left[e, \alpha\left[e, y_{1}, \ldots, y_{r}, 1\right], \ldots, \alpha\left[e, y_{1}, \ldots, y_{r}, r\right]\right]=\left[e, y_{1}, \ldots, y_{r}\right]$. Therefore $\Psi_{X}^{0} \Phi_{X}[f]=[f]$.
To see that $\Phi_{X}{ }^{\circ}{ }_{x}=\operatorname{id}$, let $[\tilde{x}[\phi]] \in F_{r, Y}(X)$, then $\Phi_{X}^{\circ}{ }^{\circ}{ }_{x}[\tilde{x},[\phi]]$ is given by the following pull back

One can easily verify that the composition at the top is precisely ϕ
so $\Phi_{X} \circ{ }_{x}^{\mu}[\tilde{X},[\phi]]=[\tilde{X},[\phi]]$.
§6.2) The direct image of a vector bundle
6.10) Definition.- Let $p: \tilde{x} \rightarrow X$ be a r-covering and let $\xi \rightarrow \tilde{x}$ be a k-vector bundle then Atiyah [3] defined an (rk)-vector bundle $p_{\star}(\xi) \rightarrow X$, called the direct image of ξ, whose fibers are given by $P_{*}(\xi)_{x}=\bigoplus_{\tilde{x}_{\in} P^{-1}(x)} \xi_{\tilde{x}}$.

Let us denote $F_{r, B O(k)}(-) \equiv F_{r, k}(-)$ for simplicity, then the direct image construction defines a natural transformation $F_{r, k}(-) \rightarrow V e c t{ }_{k r}\left(_\right)$, where Vect $_{k r}(X)$ denotes the set of isomorphism classes of $(k r)-$ vector bundles over X.
By 6.9 we have: $\quad F_{r, k}(-) \longrightarrow\left[-, E \Sigma_{r} \times \sum_{r} B O(k)^{r}\right]$

We can choose a model for $E \sum_{r} \sum_{r}^{x} B O(k)^{r}$ that is paracompact as follows: we can take Milnor's construction [35] for $E \Sigma_{r}$ and $E O(k)$ which are numerable C.W.-complexes, hence $E_{\Sigma_{r}} \times E O(k)^{r}$ is also a C.W.-complex and therefore a paracompact space, as $\Sigma_{r} \mathcal{S O}(k)$ is compact then the projection map is closed and the quotient $E \Sigma_{r} \times E O(k)^{r} / \Sigma_{r} \delta O(k) \cong$ $\cong E \sum_{r} \sum_{r}^{\times} B O(k)^{r}$ (3.21) is Hausdorff and therefore paracompact. Recall that $E \sum_{r} \times E O(k)^{r}$ is contractible and completly regular with a free $\sum_{r} f O(k)$ - action so by Gleason's theorem [7] we have $E \Sigma_{r} \Sigma_{r}^{x} B O(k)^{r}=B\left(\Sigma_{r} \delta O(k)\right)$.

By Yoneda's lemma we have a bijection between natural transformations $\left[\ldots, E \sum_{r}{\underset{\sim}{x}}_{x} B O(k)^{r}\right] \rightarrow[\ldots, B O(k r)]$ and $\left[E \sum_{r} \sum_{r} B O(k)^{r}, B O(k r)\right]$, so the direct image construction defines a homotopy class $d: E \sum_{r} \times \sum_{r} B O(k)^{r} \rightarrow B O(k r)$. 6.11) Proposition.- Let $i: \Sigma_{r} f O(k) \hookrightarrow O(r k)$ then $B i \simeq d$.

Proof.- By 6.9 we have a bijection $\Psi_{X}: F_{r, k}(X) \rightarrow\left[X, E \sum_{r} \sum_{r}^{X} B O(k)^{r}\right]$ and by $[2 \epsilon]$ the direct image of a vector bundle $\xi \rightarrow \tilde{X} \rightarrow X$ is

$=B\left(\Sigma_{r} \int O(k)\right) \xrightarrow[B i]{ } B O(k r)$ where $[\phi]$ classifies ξ. But $\Psi_{X}(\tilde{X},[\phi])=$ $=\left[\operatorname{id}{\underset{\Sigma}{r}}_{x} \phi^{r}, T\right]$, therefore $B i_{\star} \Psi_{X}(\tilde{X},[\phi])=d_{\star} \Psi_{X}(\tilde{X},[\phi])$, as ${ }^{\Psi_{X}}$ is a bijection then $B i_{\star}=d_{\star}$ for all X particular if $X=E_{\Sigma_{r}}{ }_{\Sigma}{ }_{r} B O(k)^{r}$, so $B i_{\star}[$ id $]=d_{\star}[i d] \Rightarrow[B i]=[d], i . e ., B i \simeq d$.
\square
6.12) Corollary. - Let ξ be an (rk)-vector bundle over a paracompact space. Then the structural group of ξ has a reduction to $\sum_{r} f 0(k)$ if and only if ξ is isomorphic to the direct image of a k-vector bundle over an r-covering.

Proof.- By 6.9 and 6.11 we have a commutative diagram:

If we denote by $\operatorname{Vect}_{k r}^{\sum_{r}}{ }^{\rho(k)}(x)$ the set of isomorphism classes of (kr)-vector bundles with structural group $\Sigma_{r} f O(k)$ then we get a commutative diagram:

$$
\operatorname{Vect}_{\mathrm{kr}}(\mathrm{X}) \longleftrightarrow[\mathrm{X}, \mathrm{BO}(\mathrm{kr})]
$$

The result follows from the commutativity of the following diagram:

§ 6.3) Another interpretation for $N_{\star}\left(E \sum_{r \Sigma_{r}} r_{r}^{r}\right)$
6.13) Definition. - We consider pairs $(\tilde{M},[\phi])$ where $\tilde{M} \underset{p}{\longrightarrow} M$ is an r-covering over a closed smooth n-manifold M and $[\phi] \in[\tilde{M}, Y]$. We say that 2 pairs $(\tilde{M},[\phi])$ and $(\tilde{N},[\psi])$ are bordant, $(\tilde{M},[\phi]) \sim(\tilde{N},[\psi])$, if there exists a compact smooth $(n+1)$-manifold W, an r-covering $\widetilde{W} \rightarrow W$ and a map $\tilde{W} \xrightarrow{h} Y$ such that i) there is a diffeomorphism $\partial W \cong M \Perp N$; ii) if we denote by $i_{M}: M \hookrightarrow M \mu N \cong \partial V \hookrightarrow W$ and by $i_{N}: N \leftrightarrow \neq M \mu N \cong \partial V \leftrightarrow W$,
then $\left(i_{M}{ }^{*}(\widetilde{W}),\left[h \circ \bar{i}_{M}\right]\right) \cong(\widetilde{M},[\phi])$ and $\left(i_{N}{ }^{\star}(\widetilde{W}),\left[h \circ \bar{i}_{N}\right]\right) \cong(\tilde{N},[\psi])$, where " $\approx "$ is the equivalence relation defined in 6.1.
6.14) Lemma.- The relation " \sim " defined above is an equivalence relation.
Proof.- i) $(M,[\phi]) \sim(M,[\phi])$, in effect, take $\tilde{M} \times I \xrightarrow{\text { proj. }} M \xrightarrow{\phi} Y$
$M \times I$
ii) It is obviously symmetric
iii) Suppose $(\tilde{M},[\phi]) \sim(\tilde{N},[\psi]) \sim(\widetilde{T},[\gamma])$. Then we have compact manifolds V, W and r-coverings \tilde{V}, \tilde{W} and maps $\tilde{V} \xrightarrow{h} Y, \tilde{W} \xrightarrow{j} Y$ such that $\partial V \approx M \Perp N, \partial W \cong N \Perp T$ and commutative diagrams:

The maps satisfy: $h \circ \bar{i}_{M, V} \simeq \phi, h \circ \bar{i}_{N, V} \simeq \psi, j \circ \bar{i}_{N, W} \simeq \psi, j \circ \bar{i}_{T, W} \simeq \gamma$. To prove that $(\tilde{M},[\phi]) \sim(\widetilde{T},[\gamma])$, we glue the manifolds V and W using the embeddings $i_{N, V}$ and $i_{N, W}$, we call this manifold $V{\underset{i}{u} W \text { and }}_{W}$ $\partial\left(V V_{i} W\right) \cong M \Perp T$. Notice that if we have a finite covering over a manifold we can give the total space the structure of a manifold making the projection a local diffeomorphism. Furthermore as a manifold is locally path connected if the base is a compact manifold then the total space is also a compact manifold [33].

We can then use the embeddings $\bar{i}_{N, V}$ and $\bar{i}_{N, W}$ to form the manifold $\tilde{V}_{\underset{i}{u}} \tilde{W}$. Clearly $\tilde{V}_{\underset{i}{u}} \tilde{W}$ is an r-covering over $V_{\underset{i}{ }} W$.

In order to define a map $\widetilde{V} \cup \mathbb{W} \ldots ., Y$ we do the following: We have a closed submanifold $\bar{i}_{N, V}(\widetilde{N})$ e \widetilde{V} so it has the homotopy extension property (\tilde{V} is compact herice normal and a submanifold is a retract of a neighbourhood
[23]). Consider the following diagram:

where H is the homotopy between $h \circ \bar{i}_{N, V}$ and $j^{\circ} \bar{i}_{N, W}$ (recall that $\left.h \circ \vec{i}_{N, V} \simeq \psi \approx j \circ \bar{i}_{N, W}\right)$, therefore we can find a homotopy G making the diagram commute. Consider $G_{j}: \widetilde{V} \rightarrow Y$, then $G_{1} \simeq G_{0}=h$ and $G_{1} \circ \bar{i}_{N, V}=j \circ \bar{i}_{N, W}$. Now we can define a map $\bar{V} \underset{\bar{i}}{u} \bar{W} \xrightarrow{\rho} Y$ by glueing G_{1} and j because both coincide on \tilde{N}.
Therefore we have a covering $\tilde{V} \underset{i}{v} \widetilde{W}+V \underset{i}{u} W$ which restricts to \tilde{M} over M and to \tilde{T} over T and a map ρ such that $\tilde{M}_{\hookrightarrow} \tilde{V} \underset{i}{\nu} \tilde{W} \xrightarrow{\rho}, Y$
 $(\tilde{M},[\phi]) \sim(\tilde{T},[\gamma])$.
6.15) Definition.- We denote the set of bordism classes of pairs $(\widetilde{M},[\phi])$, where $\operatorname{dim} M=n$, by $\operatorname{Cov}_{n}(r, Y)$. We can make $\operatorname{Cov}_{n}(r, Y)$ into a group by defining $[\widetilde{M},[\phi]]+[\widetilde{N},[\psi]]=[\widetilde{M} \mu \tilde{N},[\phi \mu \psi]]$. We can make $\operatorname{Cov}_{\star}(r, Y)$ into an N_{\star}-module by defining $[M] \cdot[\tilde{N},[\phi]]=[M \times \tilde{N},[\phi \circ p r o j]]$. 6.16) Definition. - We define a function $G: \operatorname{Cov}_{n}(r, Y) \rightarrow N_{n}\left(E \Sigma_{r} \sum_{r} Y^{r}\right)$ as follows:
consider a pair $(M, \Gamma \phi])$, then by $6.9 F_{r, Y}(M) \xrightarrow{\psi}\left[M, E_{\Sigma_{r}} \frac{x}{\Sigma_{r}} Y^{r}\right]$, so we define $G[M,[\phi]]=\left[M, \psi(\tilde{M},(\phi 1)] \in N_{n}\left(E \sum_{r} \frac{x}{\sum_{r}} r^{r}\right)\right.$.
6.17) Lemma.- G is well defined and it is a homomorphism of N_{*}-modules.

Proof.- First notice that for each pair ($\widetilde{M},[\phi]$) we have a well defined element in $N_{n}\left(E_{r} \Sigma_{r} Y^{r}\right)$ because 2 homotopic maps induce the same element. Now suppose $(\tilde{M},[\phi]) \sim(\tilde{N},[\psi])$, then we have a manifold V such that $\partial V \cong M \mu N$ and an r-covering $\tilde{V} \rightarrow V$ with a map $\tilde{V} \xrightarrow{h} Y$ such that: $\left(i_{M}{ }^{\star}(\tilde{V}),\left[h \circ \bar{i}_{M}\right]\right) \cong(\tilde{M},[\phi])$ and $\left(i_{N}{ }^{\star}(\tilde{V}),\left[h \circ \bar{i}_{N}\right]\right) \cong(\tilde{N},[\psi])$. The pair $(\tilde{V},[h])$ gives a map $V \xrightarrow{\psi(\tilde{V},[h])} E_{\sum_{r}} \times Y_{r}{ }^{r}$, and this map is a bordism between $\left(M, \psi(\tilde{V},[h])^{\circ} i_{M}\right)$ and $\left(N, \psi(\tilde{V},[h])^{\circ} i_{N}\right)$ so $\left[M, \psi(\tilde{V},[h])^{\circ} i_{H 1}\right]=$ $=\left[N, \psi(\tilde{V},[h]) \circ i_{N}\right](*)$.
Now we compare $\left(M, \psi(\tilde{V},[h])^{\circ} i_{M}\right]$ with $[M, \psi(\tilde{M},[\phi])]$. By hypothesis $(\tilde{M},[\phi]) \cong\left(i_{M}{ }^{\star}(\tilde{V}),\left[h \circ i_{M}\right)\right)=i_{M}{ }^{*}(\tilde{V},[h])$ so as ψ is natural we have $\psi(\tilde{M},[\phi]) \approx \psi\left(i_{M} \star(\tilde{V},[h])=i_{M}{ }^{*} \psi(\tilde{V},[h])=\psi(\tilde{V},[h])^{\circ} i_{M}\right.$. Hence $\left[M, \psi(\tilde{V},[h])^{\circ} i_{M}\right]=$ $=[M, \psi(\tilde{M},[\phi])]$. In the same way $\left[N, \psi(\tilde{V},[h])^{\circ} i_{N}\right]=[N, \psi(\tilde{N},[\psi])]$. Combining this with (*) we get $[M, \psi(\tilde{M},[\phi])]=[N, \psi(\tilde{N},[\psi])]$ so G is well defined. The fact that it is an N_{\star}-module homomorphism follows directly from the definitions.
6.18) Definition.- We define a function $H: N_{n}\left(E \Sigma_{r} \frac{\times}{\Sigma_{r}} Y^{r}\right) \rightarrow \operatorname{Cov}_{n}(r, Y)$ as follows: consider $[M, f] \in N_{n}\left(E_{\Sigma_{r}} \Sigma_{r} Y^{r}\right)$, by 6.9 we have $\Phi:\left[M, E \Sigma_{r}{\underset{\Sigma}{\Sigma}}_{r} Y^{r}\right] \longrightarrow F_{r, Y}(M)$, so we define $H[M, f]=\Phi[f]$.
6.19) Lemma.- H is well defined.

Proof.- First notice that given $f: M \rightarrow E_{\Sigma_{r}} \frac{x}{\Sigma_{r}} Y^{r}, \Phi[f]$ is defined up to isomorphism but clearly if 2 pairs are isomorphic then they are bordant.

Now of $[M, f]=[N, g]$ then there exists a compact manifold W such that $\partial W \cong M \mu N$ and a map $h: W \rightarrow E \sum_{r} \frac{x}{\Sigma_{r}} Y^{r}$ such that $h^{\circ} i_{M}=f$ and $h^{\circ} i_{N}=g$. If we take $\Phi[h]=(\tilde{W},[\gamma])$, then we have: $h^{\circ} i_{M}=f \Leftrightarrow i_{M}{ }^{*}[h]=$ $=[f]$, as Φ is natural $\Phi[f]=\Phi i_{M}{ }^{*}[h]=i_{M}{ }^{*} \Phi[h]$. In the same way $\Phi[g]=i_{N}{ }^{*} \Phi[h]$, therefore $\Phi[f]$ and $\Phi[g]$ are bordant so H is well defined.
6.20) Theorem.- We have an isomorphism of N_{\star}-modules $N_{\star}\left(E \Sigma_{r} \frac{x}{\Sigma_{r}} Y^{r}\right) \cong$ $\cong \operatorname{Cov}_{\star}(r, Y)$.

Proof.- By 6.17 we have a homomorphism of N_{\star}-modules
$G: \operatorname{Cov}_{\star}(r, y) \rightarrow N_{\star}\left(E \Sigma_{r} \sum_{r} r^{r}\right)$ and it follows from the definition 6.18 and from 6.9 that $H: N_{\star}\left(E \Sigma_{r}{\underset{\Sigma}{x}}_{r}^{r}\right) \rightarrow \operatorname{Cov}_{\star}(r, Y)$ is the inverse.
§6.4) Application to the bordism of immersions
In 4.38 we gave a splitting of $I(n, k)$ in terms of vector bundles ${ }^{v_{r}}$ with structural group $\Sigma_{r} f O(k)$, in this section we identify the covering spaces and vector bundles whose direct image are the bundles ${ }^{v^{\prime}}{ }_{r}$.
6.21) Definition.- Let $f: M^{n} \rightarrow N^{n+k}$ be a self-transverse immersion. In 4.4 we defined compact manifolds $\mu_{r} \subset(M)^{r}$ with a free Σ_{r}-action. We define a map $\pi_{r}:(M)^{r} \times \bar{r} \rightarrow M$ by $\pi_{r}\left(x_{1}, \ldots, x_{r}, i\right)=x_{1}$, consider the composition $\mu_{r} \times \bar{r} \subset(M) r^{r} \times \bar{r} \xrightarrow{T_{r}} M$, this map is invariant under the action of Σ_{r} and defines a map $\pi_{r}: \mu_{r} \stackrel{x}{\Sigma}_{r} r \rightarrow M$. Let $v_{f}: M \rightarrow B O(k)$ be a classifying map for the normal bundle of the immersion f, then we can define a pair by : $\mu_{r}{\underset{\downarrow}{\Sigma} r}_{x}^{\bar{r}} \xrightarrow{\Pi_{r}} M \xrightarrow{\nu_{f}} B O(k)$

$$
\mu_{r} / \Sigma_{r}
$$

Now we want to compare this covering with the covering defined with the manifold of based r-tuple points, namely $\mu_{r} / \Sigma_{r-1} \rightarrow \mu_{r} / \Sigma_{r}$
6.22) Proposition.- The coverings

are isomorphic.
μ_{r} / Σ_{r}

Proof. - Define an action $\Sigma_{r} \times \Sigma_{r} / \Sigma_{r-1} \rightarrow \Sigma_{r} / \Sigma_{r-1}$ by $\sigma \cdot \bar{\tau}=\overline{\sigma \tau}$, where the bar denotes the right coset. Then we have an isomorphism
$\mu_{r} \sum_{\Sigma_{r}} \underbrace{\Sigma_{r} / \Sigma_{r-1} \xrightarrow{h} \mu_{r} / \Sigma_{r-1}}_{\mu_{r} / \Sigma_{r}}$
given by $h[z, \sigma]=[z \cdot \sigma]$, where $z \in \mu_{r}, \sigma \in \Sigma_{r}$. The inverse is given by $h^{-1}[z]=[z$,id $]$.
To show that $\mu_{r} \Sigma_{r} \Sigma_{r} / \Sigma_{r-1}$ and $\mu_{r} \frac{x}{\Sigma_{r}} \bar{r}$ are isomorphic we need the following Claim.- Let $\Sigma_{r} / \Sigma_{r-1}=\left\{\tilde{c}, \tilde{c}^{2}, \ldots, \dot{c}^{r}=\bar{i} d\right\}$, where $c=(l 2 \ldots . r)$ and define a bijection $f: \Sigma_{r} / \Sigma_{r-1} \rightarrow \bar{r}$ by $f\left(\bar{c}^{i}\right)=i$, then f is Σ_{r}-equivariant.
Proof of claim.- Lefine $\rho: \Sigma_{r} \rightarrow \Sigma_{r}$ by $\rho(\sigma)(i)=f\left(\sigma \cdot f^{-1}(i)\right)$, we will show that $\rho=i d$. For this recall that Σ_{r} is generated by $\{c,(1 r)\}$, we also have that $\rho(\sigma)(i)=f\left(\sigma \cdot \bar{c}^{i}\right)=f\left(\bar{\sigma} \bar{c}^{i}\right)$, hence f is equivariant $\Leftrightarrow \rho(\sigma)=\sigma \Leftrightarrow f\left(\sigma c^{i}\right)=\sigma(i)$, for all $i \Leftrightarrow \overline{\sigma c}^{i}=\bar{c}^{\sigma}$ (i) for all $i \in \bar{r}, \sigma \in\{c,(1 r)\}$.
Case.- $\sigma=c$. In this case we have $\overline{\sigma c}^{i}=\overline{c c}^{i}=\bar{c}^{i+1}=\bar{c}^{c}(i)$ if $i<r$ and $\overline{C C}^{r}=\bar{C}=\bar{c}^{c}(r)=1$ if $i=r$.

Case.- $\sigma=(1 r)$. Let us denote $t=(1 r)$, so we want to show that $\overline{t c}^{i}=\bar{c}^{t(i)}$ for all $i \in \bar{r}$. If $i=1$ then $t c \in \Sigma_{r-1}$ so $\overline{t c}=\bar{c}^{t(1)}=r$. If $i=r$, then as $t c \in \Sigma_{r-1}$ and $t^{-1}=t$ we get $t^{-1} c \in \Sigma_{r-1} \Leftrightarrow \bar{t}=\bar{c}$.

Finally if $1<i<r$ then $\left(t c^{i}\right)^{-1} c^{i}=\left(c^{i}\right)^{-1} t c^{i} \in \Sigma_{r-1} \Rightarrow \overline{t c}^{i}=\bar{c}^{t(i)}$. So we have proved that f is \sum_{r}-equivariant and we can then define an isomorphism
6.23) Proposition.- Let $f: M^{n} \rightarrow N^{n+k}$ be a self-transverse immersion and let $a=\left(\mu_{r} \frac{\times}{\sum_{r}} \bar{r},\left[\nu_{f} \circ \pi_{r}\right]\right)$ be the pair defined in 6.21, then the map $\psi(a): \psi_{r} / \sum_{r} \rightarrow E \sum_{r} \sum_{r}^{x} B O(k)^{r} \quad$ classifies the normal bundle of the immersion $f_{r}: \mu_{r} / \Sigma_{r} \longrightarrow N$

Proof.- We take $E \Sigma_{r}=F\left(\mathbb{R}^{\infty} ; r\right)$, then by 4.6 , the normal bundle of the immersion f_{r} is classified by a map $v_{f r}: \mu_{r} / \Sigma_{r} \rightarrow F\left(\mathbb{R}^{\infty} ; r\right){\underset{r}{ }}_{\Sigma_{r}} B O(k)^{r}$ given by $v_{f r}\left[x_{1}, \ldots, x_{r}\right]=\left[e\left(x_{1}\right), \ldots, e\left(x_{r}\right), v_{f}\left(x_{1}\right), \ldots, v_{f}\left(x_{r}\right)\right]$ where $e: M \rightarrow \mathbb{R}^{\omega}$ is such that $(f, e): M \rightarrow N \times \mathbb{R}^{\infty}$ is an embedding and $v_{f}: M \rightarrow B O(k)$ classifies the normal bundle of f.

On the other hand $\psi(a)$ is given by the following composition (6.7): $\mu_{r} / \Sigma_{r} \xrightarrow{T} F\left(\mathbb{R}^{\infty} ; r\right) \sum_{\Sigma_{r}}^{x}\left(\mu_{r} \times \frac{\times}{\Sigma_{r}} \bar{r}\right)^{r} \frac{}{i d_{\Sigma_{r}}^{\times}\left(\nu_{f}^{0} \pi_{r}\right)^{r}} F\left(\mathbb{R}^{\infty} ; r\right) \sum_{\Sigma_{r}}^{\times} B O(k)^{r}$

In the proof of 6.9 we saw that the pretransfer T could be given by $T\left[x_{1}, \ldots, x_{r}\right]=\left[g\left(x_{1}, \ldots, x_{r}\right),\left[x_{1}, \ldots, x_{r}, 1\right], \ldots,\left[x_{1}, \ldots, x_{r}, r\right]\right]$ where
g is given by a pull-back $\quad{ }_{r} \xrightarrow{g} F\left(\mathbb{R}^{\infty} ; r\right)$

We can define $g\left(x_{1}, \ldots, x_{r}\right)=\left(e\left(x_{p}\right), \ldots, e\left(x_{r}\right)\right)$ and then if

$$
\begin{aligned}
& {\left[x_{1}, \ldots, x_{r}\right] \epsilon \mu_{r} / \Sigma_{r} \text { we have } i d_{\Sigma_{r}}\left(\nu_{f}{ }^{\circ} \pi_{r}\right)^{r} \circ T\left[x_{1}, \ldots, x_{r}\right]=} \\
& =i d_{\Sigma_{r}}\left(v_{f}{ }^{\circ} \pi_{r}\right)^{r}\left[e\left(x_{1}\right), \ldots, e\left(x_{r}\right),\left[x_{1}, \ldots, x_{r}, 1\right], \ldots,\left[x_{1}, \ldots, x_{r}, r\right]\right]= \\
& =\left[e\left(x_{1}\right), \ldots, e\left(x_{r}\right), v_{f}\left(x_{1}\right), \ldots, v_{f}\left(x_{r}\right)\right]=v_{f_{r}}\left[x_{1}, \ldots, x_{r}\right] .
\end{aligned}
$$

6.24) Theorem.- There is an isomorphism

$$
I(n, k) \cong N_{n+k} \oplus N_{n}[O(k)] \oplus \underset{r \geqslant 2}{\oplus} \operatorname{Cov}_{n-(r-1) k}(r, B O(k)) \text { given by }
$$

where f is a self-transverse representative.

Proof.- The result clearly follows from $4.28,6.20$ and 6.23 .

Chapter 7: Cyclic reduction modulo bordism
In this chapter we study the problem of reducing, modulo bordism, the structural group of a bundle with group $\sum_{r} \delta O(k)$ to the subgroup $\mathbb{Z}_{r} \rho 0(k)$.
87.1) On the cohomology mod. 2 of $E G \times{ }_{G} X^{r}$

In this section we study the edge homomorphisms of a spectral sequence converging to $H^{*}\left(E G \times X^{r} ; \mathbb{Z}_{2}\right)$.
7.1)Proposition.- Let X be space such that $H_{\star}\left(X ; \mathbb{Z}_{2}\right) \equiv H_{\star}(X)$ is of finite type, then there is a natural isomorphism
$H^{*}\left(E G \underset{G}{\times} X^{r} ; \mathbb{Z}_{2}\right) \cong H^{*}\left(\operatorname{Hom}_{G}\left(B_{\star}, H^{\star}(X)^{\otimes r}\right)\right)$, where B_{*} is the normalized Bar resolution and $H^{\star}(X)^{\bar{\infty} r}$ is considered as a cochain complex with trivial boundary and G acting by perrnutation. For simplicity we denote $\mathbb{Z}_{2}[G] \equiv G$.

Proof.- By $2.10, S_{\star}\left(E G \underset{G}{x} x^{r}\right) \simeq B_{\star} \underset{G}{\otimes} H_{\star}(x)^{\otimes r}$, where $H_{\star}(x)^{\otimes r}$
has trivial boundary. Therefore $\operatorname{Hom}_{\underset{2}{ }}^{\mathbb{Z}_{2}}\left(S_{*}\left(E G \times X^{r}\right) ; \mathbb{Z}_{2}\right) \simeq$
$\simeq \operatorname{Hom}_{\mathbb{Z}_{2}}\left(B_{\star} \underset{G}{\times} H_{*}(X)^{\otimes r}, \mathbb{Z}_{2}\right)$. We can give to
${ }^{\text {Hom }} \mathbb{Z}_{2}\left(H_{\star}(X)^{\otimes r} ; \mathbb{Z}_{2}\right)$ a right $G-a c t i o n ~ a s ~ f o l l o w s: ~ g i v e n ~$
$f: H_{\star}(X)^{\otimes r} \rightarrow \mathbb{Z}_{2}$ we define $f \cdot \sigma=f \circ \bar{\sigma}$ where $\bar{\sigma}\left(a_{1} \otimes \ldots \otimes a_{r}\right)=$ $=a_{\sigma-1(1)} \otimes \ldots \otimes a_{\sigma-1(r)}$.

Now we apply adjointness $[21]$ to get $H^{H o m} \mathbb{Z}_{2}\left(B_{\star} \otimes H_{\star}(X)^{\otimes r} ; \mathbb{Z}_{2}\right) \cong$ $\cong \operatorname{Hom}_{G}\left(B_{\star} ; \operatorname{Hom}_{\mathbb{Z}_{2}}\left(H_{\star}(X)^{\otimes r} ; \mathbb{Z}_{2}\right)\right)$.

As $H_{*}(X)$ is of finite type then the homomorphism μ.
$\mu: \operatorname{Hom}_{\mathbb{Z}_{2}}\left(H_{\star}(X) ; \mathbb{Z}_{2}\right)^{8 r} \rightarrow \operatorname{Hom}_{\mathbb{Z}_{2}}\left(H_{\star}(X)^{\otimes r} ; \mathbb{Z}_{2}\right)$ given by
$\mu\left(f_{1} \otimes \ldots \otimes f_{n}\right)\left(a_{1} \otimes \ldots \otimes a_{r}\right)=f_{1}\left(a_{1}\right) \ldots \ldots f_{n}\left(a_{n}\right)$ is an isomorphism [44]. If we give $\operatorname{Hom}_{\mathbb{Z}_{2}}\left(H_{*}(X) ; \mathbb{Z}_{2}\right)^{\otimes r}$ the usual right G-action by permuting the factors then μ is G-equivariant, in effect, we have $\mu\left(\left(f_{1} \otimes \ldots \otimes f_{r}\right) \cdot \sigma\right)\left(a_{1} \otimes \ldots \otimes a_{r}\right)=f_{\sigma(1)}\left(a_{1}\right) \ldots . f_{\sigma(r)}\left(a_{r}\right)$, on the other hand $\mu\left(f_{1} \otimes \ldots \& f_{r}\right) \cdot \sigma\left(a_{1} \otimes \ldots \& a_{r}\right)=\mu\left(f_{1} \otimes \ldots \otimes f_{r}\right)^{\bullet} \bar{\sigma}\left(a_{1} \otimes \ldots \otimes a_{r}\right)=$ $=\mu\left(f_{1} \& \ldots \& f_{r}\right)\left(a_{\sigma-1}(1)^{\otimes \ldots \& a_{\sigma-1}(r)}\right)=f_{\sigma(1)}\left(a_{1}\right) \ldots f_{\sigma(r)}\left(a_{r}\right)$. Therefore we have $\operatorname{Hom}_{G}\left(B_{\star} ; \operatorname{Hom}_{\mathbb{Z}_{2}}\left(H_{\star}(X)^{\otimes r} ; \mathbb{Z}_{2}\right)\right) \cong$ $\cong \operatorname{Hom}_{G}\left(B_{\star} ; \operatorname{Hom}_{\mathbb{Z}_{2}}{ }^{\left.\left(H_{\star}(X) ; \mathbb{Z}_{2}\right)^{\otimes r}\right) .}\right.$
Finally we have $\operatorname{Hom}_{\mathbb{Z}_{2}}\left(H_{\star}(X) ; \mathbb{Z}_{2}\right) \equiv H^{*}\left(X ; \mathbb{Z}_{2}\right)$. Combining all the equivalences we get:

$\cong \operatorname{Hom}_{G}\left(B_{\star}, \operatorname{Hom}_{\mathbb{Z}_{2}}\left(H_{\star}(x) \otimes r ; \mathbb{Z}_{2}\right)\right) \cong \operatorname{Hom}_{G}\left(B_{\star} ; \operatorname{Hom}_{\mathbb{Z}_{2}}\left(H_{\star}(x) ; \mathbb{Z}_{2}\right)^{\otimes r}\right) \cong$ $\cong \operatorname{Hom}_{G}\left(B_{\star} ; H^{\star}(X)^{\otimes r}\right)$. This gives the isomorphism. To see that it is natural recall that in 2.10, we proved that if $f: X \rightarrow Y$ then we have a chain homotopy commutative diagram $S_{\star}\left(E G \times X^{r}\right) \simeq B_{\star} \underbrace{}_{G} H_{\star}(X)^{\otimes r}$

$$
\begin{aligned}
& \left|\left(i{\underset{G}{x}}^{G} f^{r}\right)_{*}\right|^{G} i d \otimes f_{*}^{\otimes r} \\
& S_{\star}\left(E G_{G} Y^{r}\right) \simeq B_{\star^{\&}}^{\& H_{\star}}(Y)^{\otimes r}
\end{aligned}
$$

The second isomorphism is given by adjointness which is natural. One can easily verify that the third isomorphism is also natural. For the last one recall that under Kronecker duality f^{\star} corresponds to $\operatorname{Hom} \mathbb{Z}_{2}\left(f_{\star}\right)$.

7.2) Defintion.- To define the spectral sequence notice that

 $\operatorname{Hom}_{G}\left(B_{\star} ; H^{\star}(X)^{\otimes r}\right)$ is the total complex of the bicomplex of cochains$L^{p, q}=\operatorname{Hom}_{G}\left(B_{p},\left(H^{*}(X)^{\otimes r}\right)^{q}\right)$, if we denote $\left(B_{\star}, \partial\right)$ then the coboundaries are $\delta_{1}: L^{p, q_{\rightarrow}} L^{p+1, q}$ given by $\delta_{1}(f)=f \circ \partial$ and $\delta_{2}: L^{p, q} \rightarrow L^{p, q+1}, \delta_{2}=0$, because $H^{*}(X) \otimes r$ has trivial boundary.
We give a filtration for $\operatorname{Tot}^{L} L^{p, q}=\operatorname{Hom}_{G}\left(B_{\star} ; H^{\star}(X) \quad r\right.$) as follows, the p.th filtration in degree n is given by $F^{p}\left(\text { Tot }^{*}\right)^{n}=\bigoplus_{i \geq p} L^{i, n-i}$. We have a spectral sequence associated to this filtration [30] which we denote by $\left\{E_{r}^{p, q}, d_{r}\right\}$.
7.3) Proposition.- The spectral sequence $\left\{E_{r}^{p, q}, d r\right\}$ converges to $H^{*}\left(\operatorname{Hom}_{G}\left(B_{\star} ; H^{*}(X)^{\otimes n}\right)\right) \cong H^{*}\left(E G \times X^{r} ; \mathbb{Z}_{2}\right)$ and $E_{2}^{p, q} \cong H^{p}\left(G ;\left(H^{*}(X)^{\otimes r}\right)^{q}\right)$.

Proof.- The filtration F of Tot $L^{p, q}$ satisfies, in each degree n, $0 \subset F^{n}\left(\right.$ Tot $\left.^{*}\right) \subset F^{n-1}\left(\right.$ Tot $\left.^{*}\right) \subset \ldots \subset F^{0}\left(\right.$ Tot $\left.^{*}\right)=\operatorname{Tot}^{n}$, i.e., it is the canonical filtration so by $[30]$ the spectral sequence converges to $H^{*}\left(\operatorname{TotL}^{p, q}\right)=$ $=H^{*}\left(\operatorname{Hom}_{G}\left(B_{\star} ; H^{*}(X)^{\otimes r}\right)\right)$ which is isomorphic by 7.1 to $H^{\star}\left(E G_{G} X{ }^{r} ; \mathbb{Z}_{2}\right)$.

The spectral sequence associated to a filtration satisfies $E_{1}^{p, q}=H^{p+q}\left(F^{p}(-) / F^{p+1}(-)\right)$, and from the definition of our filtration it is clear that $\left[F^{p}\left(\operatorname{Tot}^{*}\right) / F^{p+1}\left(\operatorname{Tot}^{*}\right)\right]^{p+q}=L^{p, q} ;$ as $\delta_{2}=0$, then $E_{1}^{p, q} \cong H^{q}\left(\operatorname{Hom}_{G}\left(B_{p}, H^{*}(X)^{\otimes r}\right)\right)=\operatorname{Hom}_{G}\left(B_{p} ;\left(H^{*}(X)^{\otimes r}\right)^{q}\right)$. One can show
[30] that under this isomorphism the differential d_{1} coincides with the coboundary δ_{1} of $L^{p, q}$, therefore $E_{2}^{p, q} \cong H^{p}\left(G ;\left(H^{*}(X)^{\otimes r}\right)^{q}\right)$.
7.4) Proposition.- The spectral sequence $\left\{E_{r}^{p, q}, d_{r}\right\}$ collapses.

Proof.- We recall the definition of the spectral sequence. Let us denote Tot ${ }^{*}=C^{*}$. Let $Z_{r}^{p, q}=\left\{a \in F^{p} c^{p+q} \mid \delta(a) \in F^{p+r} c^{p+q+1}\right\} \quad$ where $\delta=\delta_{1}+\delta_{2}$, then $E_{r}^{p, q}=z_{r}^{p, q} / z_{r-1}^{p+1, q-1}+\delta z_{r-1}^{p-r+1}, q+r-2$ and $d_{r}[x]=[\delta(x)]$ of degree ($r, 1-r$).
$L^{p, q}=\operatorname{Hom}_{G}\left(B_{p},\left(H^{*}(X)^{\otimes r}\right)^{q}\right)$, if we denote $\left(B_{\star}, \partial\right)$ then the coboundaries are $\delta_{1}: L^{p, q} \rightarrow L^{p+1}, q$ given by $\delta_{1}(f)=f \circ \partial$ and $\delta_{2}: L^{p, q} \rightarrow L^{p, q+1}, \delta_{2}=0$, because $H^{*}(X)^{\otimes r}$ has trivial boundary.
We give a filtration for $\operatorname{Tot}^{L^{p, q}}=\operatorname{Hom}_{G}\left(B_{\star} ; H^{*}(X) \quad r\right.$) as follows, the p.th filtration in degree n is given by $F^{p}\left(\text { Tot }^{*}\right)^{n}=\bigoplus_{i \geqslant p} L^{i, n-i}$.

We have a spectral sequence associated to this filtration [30] which we denote by $\left\{E_{r}^{p, q}, d_{r}\right\}$.
7.3) Proposition.- The spectral sequence $\left\{E_{r}^{p, q}, \mathrm{dr}\right\}$ converges to $H^{*}\left(\operatorname{Hom}_{G}\left(B_{\star} ; H^{*}(X)^{\otimes n}\right)\right) \cong H^{*}\left(E G \times X^{r} ; \mathbb{Z}_{2}\right)$ and $\quad E_{2}^{p, q} \cong H^{p}\left(G ;\left(H^{*}(X)^{\otimes r}\right)^{q}\right)$.

Proof.- The filtration F of Tot $L^{p, q}$ satisfies, in each degree n, $0 \subset F^{n}\left(\operatorname{Tot}^{*}\right) \subset F^{n-1}\left(\operatorname{Tot}^{*}\right) \subset \ldots \subset F^{0}\left(\operatorname{Tot}^{*}\right)=\operatorname{Tot}^{n}$, i.e., it is the canonical filtration so by [30] the spectral sequence converges to $H^{*}\left(\operatorname{TotL}^{p, q}\right)=$ $=H^{\star}\left(\operatorname{Hom}_{G}\left(B_{\star} ; H^{\star}(X)^{\otimes r}\right)\right)$ which is isomorphic by 7.1 to $H^{\star}\left(E G \times{ }_{G}^{r} ; \mathbb{Z}_{2}\right)$. The spectral sequence associated to a filtration satisfies $E_{1}^{p, q}=H^{p+q}\left(F^{p}(-) / F^{p+1}(-)\right)$, and from the definition of our filtration it is clear that $\left[F^{p}\left(\text { Tot }^{*}\right) / F^{p+1}\left(\text { Tot }^{*}\right)\right]^{p+q}=L^{p, q} ;$ as $\delta_{2}=0$, then $E_{1}^{p, q} \cong H^{q}\left(\operatorname{Hom}_{G}\left(B_{p}, H^{\star}(X)^{\& r}\right)\right)=\operatorname{Hom}_{G}\left(B_{p} ;\left(H^{\star}(X)^{\otimes r}\right)^{q}\right)$. One can show [30] that under this isomorphism the differential d_{1} coincides with the coboundary δ_{1} of $L^{p, q}$, therefore $E_{2}^{p, q} \cong H^{p}\left(G ;\left(H^{*}(X)^{\otimes r}\right)^{q}\right)$.
7.4) Proposition.- The spectral sequence $\left\{E_{r}^{p, q}, d_{r}\right\}$ collapses.

Proof.- We recall the definition of the spectral sequence. Let us denote Tot* $=C^{*}$. Let $Z_{r}^{p, q}=\left\{a \in F^{p} c^{p+q} \mid \delta(a) \in F^{p+r} c^{p+q+1}\right\} \quad$ where
 of degree $(r, 1-r)$.

We shall show that $d_{r}: E_{r}^{p, q} \rightarrow E_{r}^{p+r, q+1-r}$ is zero if $r \geq 2$. For this let $a=\left(0,0, \ldots, 0, a_{p}, a_{p+1}, a_{p+2}, \ldots, a_{n}\right) \in F^{p} c^{p+q=n}$, then
$d_{r}\left(0,0, \ldots, 0, a_{p}, a_{p+1}, a_{p+2}, \ldots, a_{n}\right)=\left(0,0, \ldots, 0, \delta_{2}\left(a_{p}\right), \delta_{1}\left(a_{p}\right)+\delta_{2}\left(a_{p+1}\right)\right.$, $\left.\delta_{1}\left(a_{p+1}\right)+\delta_{2}\left(a_{p+2}\right), \ldots, \delta_{1}\left(a_{n}\right)\right)$. We have that $d_{r}[a]=[\delta(a)]$ and $\delta(a) \in F^{p+r} c^{p+q+1}$, so as $r \geq 2$, then $\delta_{2}\left(a_{p}\right)=0, \delta_{1}\left(a_{p}\right)+\delta_{2}\left(a_{p+1}\right)=0$
and as $\delta_{2}=0$, then $\delta_{1}\left(a_{p}\right)=0$. Consider the element
$b=\left(0,0, \ldots, 0,0, a_{p+1}, a p+2, \ldots, a_{n}\right)$, then $b \in F^{p+1} c^{p+q}$ and we have $\delta(b)=\left(0,0, \ldots, 0,0, \delta_{2}\left(a_{p+1}\right), \delta_{1}\left(a_{p+1}\right)+\delta_{2}\left(a_{p+2}\right), \ldots, \delta_{1}\left(a_{n}\right)\right.$, as $\delta_{2}=0$, then $\delta(b)=d_{r}[a]$, therefore $d_{r}[a]=0$.

Now we want to show that the edge homomorphisms make the following diagrams commute:

$$
\begin{aligned}
& E_{2}^{p, 0} \longrightarrow E_{\infty}^{p, 0}=J^{p, 0}=H^{p}\left(\operatorname{Hom}_{G}\left(B_{\star} ; H^{\star}(X)^{\otimes r}\right)\right) \\
& \|\quad \geqslant\| \\
& H^{P}(G) \simeq H^{P}\left(B G ; \mathbb{Z}_{2}\right) \xrightarrow[G]{P^{\star}} H^{P}\left(E G \underset{G}{\times r} ; \mathbb{Z}_{2}\right) \\
& H^{H^{q}}\left(\operatorname{Hom}_{G}\left(B_{\star} ; H^{\star}(X)^{\otimes r}\right)\right)=J^{0, q} \ldots E_{\infty}^{0, q} \in E_{2}^{0, q} \in E_{1}^{0, q}=\left(H^{*}(X)^{\otimes r}\right)^{q}
\end{aligned}
$$

where $p: E G_{G} X^{r} \rightarrow B G$ is the projection and $i: X^{r} \hookrightarrow E G_{G} X^{r}$ the inclusion, and we have $0 \subset J^{n, 0} \in J^{n-1,1} c \ldots \subset J^{0, n}=H^{n}\left(\operatorname{Tot}^{*}\right) ; J^{n, 0}=E_{\infty}^{n, 0}$ and $j^{p, q / j^{p+1}, q-1} \cong E_{\infty}^{p, q}$.
In order to do this we need to prove some preliminary lemmas.
7.5) Lemma.- Let $h: \mathbb{Z}_{2} \mathbb{Z}_{2} S_{*}\left(X^{r}\right) \rightarrow S_{*}(E G) \otimes S_{*}\left(X^{r}\right)$ be the chain map induced by the map of bicomplexes given by $1 \frac{\mathbb{L}_{2}}{a} \rightarrow x_{0} \otimes a$, where $x_{0} \varepsilon S_{0}(E G)$. Let $\phi: S_{\star}\left(E G \times X^{r}\right) \xrightarrow{\approx} S_{\star}(E G)_{G} S_{\star}\left(X^{r}\right)$ be the equivalence given by the composition of the equivalences $2.2,2.4,2.5$. Then the following diagram is chain homotopy commutative

Proof.- Consider the following diagram: $S_{*}\left(x^{r}\right) \cong \not \mathbb{Z}_{2} \mathbb{Q}_{2} S_{\star}\left(X^{r}\right)$

where the $\psi^{\prime} \mathrm{s}$ are the equivalences given by the Eilenberg-Zilber theorem, and $I I$ is the projection.

The composition on the left-hand side of the diagram is i and the one on the right-hand side is h. The second square commutes by the naturality of the Eilenberg-Zilber theorem. The definition of ϕ clearly implies that the third one also commutes.
To prove that the first square commutes consider the functors $S_{*}(-)$ and $S_{*}\left(x_{0}\right) \mathbb{Z}_{2} S_{\star}\left(\Lambda_{-}\right)$from the category of spaces to the category of augmented chain complexes, both are clearly free and acyclic on the usual models.

Now consider the chain maps $\psi \circ \cong$ and $j \circ \cong$, both are maps of augmented chain complexes and are natural so by the acyclic models theorem [79] they are chain homotopic, i.e., the first square is homotopy commutative.
7.6) Lemma.- We have a commutative diagram

where h was defined in 7.5, f is given by the Eilenberg-Zilber theorem, F is the equivalence defined in 2.8 , and \bar{h} is given by $\bar{h}\left(1 \frac{\mathbb{Z}_{2}}{Q} y\right)=$ $=1 e \underset{G}{\otimes} y$, where $e \in B_{0}=\mathbb{Z}_{2}[G]$ is the zero of the group.

Proof.- Recall that to get the equivalence F we have to give an equivalence $t: S_{\star}(E G) \underset{\approx}{ } B_{\star}$, we can choose t as follows: given any $x_{0} \in E G$ we can form a G-basis for $S_{0}(E G)$ by considering x_{0} and one point from each of the other orbits under the action of G, we can define then $t_{0}: S_{0}(E G) \rightarrow B_{0}$ by sending this G-basis to $1 e \in B_{0}=Z_{2}^{[G]}$, and then define the other t_{i} for $i>0$ to get an equivalence t :

By $2.7(c), F\left(x_{0} \otimes \underset{G}{ } a\right)=t\left(x_{0}\right) \otimes \underset{G}{f}(a)=1 e \underset{G}{f}(a)$, for all $a \in S_{\star}\left(X^{r}\right)$
so the diagram commutes.
\qquad
7.7) Lemma.- Consider \mathbb{Z}_{2} as a chain complex concentrated in dimension zero and with trivial G-action, and let $\varepsilon: S_{*}\left(X^{r}\right) \rightarrow \mathbb{Z}_{2}$ be the augmentation, then the following diagram is chain homotopy commutative.

Proof.- Consider the following diagram:

$S_{\star}(B G) \frac{\cong}{\gamma} S_{\star}(E G)_{G} \mathbb{Z}_{2} \frac{{\underset{G}{G}}_{i d}}{\cong}\left(S_{\star}(E G)_{\mathbb{Z}_{2}^{Q}}^{\otimes \mathbb{Z}_{2}}\right) \otimes_{G}^{\mathbb{Z}_{2}}$
where $q: E G \times X^{r} \rightarrow E G$ is the projection on the first factor, and the composition at the top is ϕ.
The following diagram clearly commutes

are given by $\underset{G}{\gamma(a \otimes g l)}=\rho_{\#}(a), \gamma_{G}^{\prime}(b \in 1)=\rho_{\|}^{\prime}(b)$, therefore the first square commutes.

Using the acyclic models theorem, as we did in 7.5, one can show that
 second square is chain homotopy commutative.
Finally notice that $i d \otimes \varepsilon=(\cong) \otimes \mathrm{id}^{\circ}(\mathrm{id}{\underset{Z}{2}} \varepsilon) \otimes \mathrm{id}^{\circ} \ell^{-1}$, so the commutativity up to chain homotopy of the diagram above proves the lemma.
7.8) Lemma.- We have a commutative diagram

where F is the equivalence defined in 2.8 , and induced by t.
Proof.- By 2.7(2) $F(w \otimes a)=t(w) \underset{G}{\mathcal{G}} f(a)$ for all $w \in S_{\star}(E G), a \in S_{0}\left(X^{r}\right)$, where $f: S_{\star}\left(x^{r}\right) \xrightarrow{\approx} S_{\star}(X)^{\otimes r}$. As f is a chain map of augmented chain complexes then we have $\left(i d_{G} \varepsilon\right) F(w \in a)=i d \otimes_{\varepsilon} \varepsilon\left(t(w) \in f(a)=t(w) \otimes \in f(a)=t(w) \otimes_{G}(a)\right.$,

7.9) Corollary.- We have a chain homotopy commutative diagram

where $h\left(1 \bar{Z}_{2}^{\otimes} z\right)=1 e \otimes_{G}^{\otimes} z$.
Proof.- It follows from 7.5, 7.6 and the fact that the following diagram clearly commutes
where α is the equivalence defined in 2.9
7.10) Corollary. - We have a chain homotopy collmutative diagram

Proof.- It follows from 7.7, 7.8, and the fact that the following diagram clearly commutes

where α is the equivalence defined in 2.9 .
7.11) Proposition.- The horizontal edge homomorphism of the spectral sequence $\left\{E_{r}^{p, q}, d_{r}\right\}$ makes the following diagram commute:

$$
\begin{gathered}
H^{q}\left(\operatorname{Hom}_{G}\left(B_{\star} ; H^{\star}(X)^{\otimes r}\right)\right)=J^{0, q} \longrightarrow E_{\infty}^{0, q} q_{\hookrightarrow} E_{2}^{0, q} \in E_{1}^{0, q}=\left(H^{\star}(X)^{\otimes r}\right)^{q} \\
2\|\|
\end{gathered}
$$

Proof.- Let $h: \mathbb{Z}_{2} \otimes_{\mathbb{Z}_{2}} H_{\star}(x)^{\otimes r} \rightarrow B_{\star} \otimes_{G} H_{\star}(x)^{\otimes r}$ be the chain map of 2.9 and consider the following diagram:

$$
\begin{aligned}
& \operatorname{Hom}_{\mathbb{Z}_{2}}\left(B_{\star} \underset{G}{\otimes} H_{\star}(X)^{\otimes r} ; \mathbb{Z}_{2}\right){ }^{\operatorname{Hom} \mathbb{Z}_{2}(h, i d)} \operatorname{Hom}_{\mathbb{Z}_{2}}\left(\mathbb{Z}_{2}{\underset{\mathbb{Z}}{2}}_{\otimes}^{\mathbb{Z}_{\star}} H^{\left.(x)^{\otimes r} ; \mathbb{Z}_{2}\right)}\right.
\end{aligned}
$$

The isomorphism on the left-hand side was defined in 7.1. The same arguments used in 7.1 give the isomorphism on the right-hand side. This diagram defines a chain map \bar{h} and one can easily verify that it is given by $\bar{h}(\ell)=\ell \circ \tau$, where $\quad \imath: \mathbb{Z}_{2} \rightarrow B_{\star}$ is defined by $\left.2!1\right)=l e \epsilon B_{0}$. Now consider the following diagram:

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l|l|l}
{ }^{H o m} \mathbb{Z}_{2}\left(i_{\#}, i d\right) & \operatorname{Hom}_{\mathbb{Z}_{2}}(h, i d) & \bar{h}
\end{array}\right. \\
& { }^{\operatorname{Hom}} \mathbb{Z}_{2}\left(S_{\star}\left(x^{r}\right) ; \mathbb{Z}_{2}\right) \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{Z}_{2}}\left(\mathbb{Z}_{2}{\underset{\mathbb{Z}}{2}}^{H_{*}}(x)^{\otimes r} ; \mathbb{Z}_{2}\right) \xrightarrow{\approx} \operatorname{Hom}_{\mathbb{Z}_{2}}\left(\mathbb{Z}_{2} ; H^{*}(x)^{\otimes r}\right)
\end{aligned}
$$

By 7.9 the first square chain homotopy commutative and the second one commutes by definition of \bar{h}.
Consider ${ }^{H o m} \mathbb{Z}_{2}\left(\mathbb{Z}_{2} ; H^{*}(X)^{\otimes r}\right)$ as the total complex of a bicomplex, then using the same filtration as in 7.2, we get a spectral sequence $\left\{E_{r}^{p, q}, d_{r}^{\prime}\right\}$ such that

$$
' E_{1}^{p, q}=' E_{2}^{p, q}=\left\{\begin{array}{l}
H o m \\
\mathbb{Z}_{2}\left(\mathbb{Z}_{2} ;\left(H^{*}(x)^{\otimes r}\right)^{q}\right)=\left(H^{*}(x)^{\otimes r}\right)^{q} \text { if } p=0 \\
0 \text { if } p \neq 0
\end{array}\right.
$$

The map \bar{h} is induced by a map of bicomplexes so it induces a morphism of spectral sequences $\tilde{h}_{r}: E_{r}^{p, q} \rightarrow{ }^{\prime} E_{r}^{p, q}$. Consider the following diagram

The commutativity of the first square follows from (*). The other squares commute because \tilde{h} is a morphism of spectral sequences [30].
7.12) Proposition.- The vertical edge homomorphism of the spectral sequence $\left\{E_{r}^{p, q}, d_{r}\right\}$ makes the following diagram commute:

Proof.- Let $\underset{G}{i d \varepsilon \varepsilon \equiv g: ~} B_{\star} \underset{G}{\otimes} H_{\star}(X){ }^{\otimes r} \rightarrow B_{\star} \underset{G}{G} \mathbb{Z}_{2}$ be the chain map of 7.10. Then, as in 7.11, we have a chain map \bar{g} defined by the commutativity of the following diagram:

One can easily verify that \bar{g} is given by $g(l)=j \circ \ell$ where $j: \mathbb{Z}_{2} \rightarrow H^{*}(X)^{\otimes r}$ sends 1 to $1 \otimes 1 \otimes \ldots \& 1$ and $l=[\varepsilon]: S_{0}(X) \rightarrow \mathbb{Z}_{2}$. Consider the following diagram:

$$
\begin{align*}
& { }^{\operatorname{Hom}} \mathbb{Z}_{2}\left(S_{\star}(B G) ; \mathbb{Z}_{2}\right) \xlongequal{\simeq} \operatorname{Hom} \mathbb{Z}_{2}\left(B_{*} \mathbb{Q}_{G} \mathbb{Z}_{2} ; \mathbb{Z}_{2}\right) \stackrel{\cong}{\rightrightarrows} \operatorname{Hom}_{G}\left(B_{\star} ; \mathbb{Z}_{2}\right) \tag{*}\\
& \left|{ }^{\operatorname{Hom}_{\mathbb{Z}_{2}}\left(P_{A}, i d\right)}\right| \begin{array}{|l|l}
& \operatorname{Hom}_{\mathbb{Z}_{2}}(g, i d)
\end{array} \\
& \operatorname{Hom}_{\mathbb{Z}_{2}}\left(S_{\star}\left(E G \times X^{r}\right) ; \mathbb{Z}_{2}\right) \xrightarrow{\approx} \operatorname{Hom}_{\mathbb{Z}_{2}}\left(B_{\star} \underset{G}{\otimes} H_{\star}(X)^{\otimes r} ; \mathbb{Z}_{2}\right) \underset{\cong}{\rightarrow} \operatorname{Hom}_{G}\left(B_{\star}, H^{\star}(X)^{\otimes r}\right)
\end{align*}
$$

By 7.10 the first square is chain homotopy commutative and the second commutes by definition of $\overline{\mathrm{g}}$.

Consider $\operatorname{Hom}_{G}\left(B_{\star}, \mathbb{Z}_{2}\right)$ as the total complex of a bicomplex, then using the same filtration as in 7.2 we get a spectral sequence $\left\{" E_{r}^{P, 9}, d_{r}\right.$ " $\}$ such that $\quad{ }_{2}^{p, q}=\left\{\begin{array}{lll}H^{p}\left(G ; \mathbb{Z}_{2}\right) & \text { if } q=0 \\ 0 & \text { if } & q \neq 0\end{array}\right.$
the map $\overline{\mathrm{g}}$ induces a morphism of spectral sequences $\overline{\mathrm{g}: ~ " E ~} \mathrm{E}_{\mathrm{r}}^{\mathrm{p}, \mathrm{q}} \rightarrow \mathrm{E}_{\mathrm{r}}^{\mathrm{p}, \mathrm{q}}$. Consider the following diagram:

The commutativity of the last square follows from (*). The other commute because \tilde{g} is a morphism of spectral sequences.
§7.2) Cohomology of topological groups
In this section we give some results on the cohomology of topological groups that we shall use in the next section.
7.13) Definition.- In [41] G. Segal showed how to define cohomology groups of a topological group G with coefficients in a topological abelian group A (on which G acts continuously) by a derived functor method analogous to the one for defining cohomology of discrete groups. More specifically, let G be a compactly generated Hausdorff topological group and denote by G -Topab the category of compactly generated Hausdorff topological abelian groups on which G acts continuously and continuous G-equivariant homomorphisms.

We have the functor $\Gamma^{G}: G-$ Topab $\sim A b$, where $A b$ is the category of abelian groups, which associates to $A \in G-T o p a b$ its G-invariant subgroup $\Gamma^{G}(A)$. Then using suitable resolutions he defines right derived functors $R^{n} \Gamma^{G}(-)$.
The relation of the groups $R^{n} \Gamma^{G}(A)$, when A is discrete, to the cohomology of $B G$ is as follows. Consider $P: E G \rightarrow B G$, we define a sheaf of abelian group σA, on the space $B G$ by $\sigma A(U)=\operatorname{Map}^{G}\left(P^{-1}(U), A\right)$, where $M a p^{G}(-,-)$ means G-equivariant maps. This is the sheaf of continuous sections of $E G \times A \rightarrow B G$. With this notation we have: G
7.14) Theorem [41] - If A is discrete then there is a natural isomorphism. $\quad R^{n} \Gamma^{G}(A) \cong H^{n}(B G ; \sigma A)$.
7.15) Corollary.- If A is discrete and the action $G \times A \rightarrow A$ is trivial then $R^{n} \Gamma^{G}(A) \cong H^{n}(B G ; A)$.

Proof.- If the action is trivial we get the constant sheaf, and we can find a $B G$ such that it is a C.W.-complex [49], so $B G$ is paracompact, Hausdorff and locally contractible, therefore by [44], $H^{n}(B G ; A) \cong H^{n}(B G ; \sigma A)$, and by $7.14, H^{n}(B G ; \sigma A) \cong R^{n} \Gamma^{G}(A)$.
7.16) Definition.- Let $A \in G$-Topab, we denote by $\operatorname{Hom}(G, A)$ the abelian group of crossed homomorphisms from G to A (i.e., continuous functions $f: G \rightarrow A$ such that $\left.f\left(g_{1} g_{2}\right)=f\left(g_{1}\right)+g_{1} \cdot f\left(g_{2}\right)\right)$ modulo the subgroup of principal crossed homomorphisms (i.e., those f of the form $f(g)=g \cdot a-a$ for some $a \in A$).
7.17) Theorem [41] .- There is a natural isomorphism $R^{1} \Gamma^{G}(A) \cong \mathcal{H o m}(G, A)$.
7.18) Corollary.- If A is discrete and the action of G is trivial then there is a natural isomorphism $H^{\prime}(B G ; A) \cong H o m(G ; A)$ where $\notin(G, A)$ is the group of continuous homomorphisms.

Proof.- By 7.15, $H^{3}(B G ; A) \cong R^{1} \Gamma^{G}(A)$ and by $7.17 R^{1} \Gamma^{G}(A) \cong \nVdash o m(G, A)$; as the action of G is trivial then the crossed homomorphisms modulo the principal crossed homomorphisms is just the continuous homomorphisms.
7.19)Definition.- Let $A \in G-T o p a b, ~ a ~ t o p o l o g i c a l ~ e x t e n s i o n ~$ $0 \rightarrow A \xrightarrow{i} E \xrightarrow{p} G \rightarrow 0$ is an exact sequence of topological groups such that \mathbf{i} is an embedding of A as a closed subgroup of E, p is a principal A-bundle inducing a topological isomorphism $E / A \cong G$, and the action of G on A induced by P coincides with the given action. We say that two extensions $0 \rightarrow A \xrightarrow{i} E \xrightarrow{p} G \rightarrow 0$ and $0 \rightarrow A \xrightarrow{i} E^{\prime} \xrightarrow{p^{\prime}} G \rightarrow 0$ are isomorphic if there is a continuous homomorphism $f: E \rightarrow E '$ making the following diagram commutative

In this case f is clearly a topological isomorphism. We denote by Ext (G;A) the set of isomorphism classes of topological extensions. We can make $\operatorname{Ext}(G ; A)$ into a bifunctor as follows: given a continuous homomorphism $\phi: G \rightarrow G^{\prime}, \phi^{*} ; \operatorname{Ext}\left(G^{\prime} ; A\right) \rightarrow \operatorname{Ext}(G, A)$ associates to an extension E, the pull-back extension:

ϕ

If $\psi ; A \rightarrow A^{\prime}$ is a continuous homomorphism then ψ_{\star}; $\operatorname{Ext}(G ; A) \rightarrow \operatorname{Ext}\left(G ; A^{\prime}\right)$ associates to an extension E, the extension $\psi_{*}(E)=E \times A^{\prime}$ where the action $A \times A^{\prime} \rightarrow A^{\prime}$ is given by $a \cdot a^{\prime}=\psi(a) a^{\prime}$.

We can make Ext ($G ; A$) into an abelian group as follows: given two extensions E, E^{\prime} consider their product $E \times E^{\prime}$, let $\Delta: G \rightarrow G \times G$ be the diagonal, then the pull-back $\Delta^{*}\left(E \times E^{\prime}\right)$ is an extension over G with fiber $A \times A$, and as A is abelian, the product map $A \times A \stackrel{\mu}{\longrightarrow} A$ is a continuous homomorphism, so we define $E+E^{\prime}=\mu_{\star} \Delta^{\star}\left(E x E^{\prime}\right)$.
7.20) Theorem [41].- There is a natural isomorphism $R^{2} \Gamma^{G}(A) \cong \operatorname{Ext}(G ; A)$.
7.21) Corollary.- If A is discrete and the action of G on A is trivial then there is a natural isomorphism $H^{2}(B G ; A) \cong \operatorname{Ext}(G ; A)$, where $\operatorname{Ext}(G ; A)$ is the group of topological central extensions.

Proof.- By 7.15, $H^{2}(B G ; A) \cong R^{2} \Gamma^{G}(A)$, and by $7.20, R^{2} \Gamma^{G}(A) \cong E x t(G ; A)$, as the action of G on A is trivial then the topological extensions are central.

In the case $G=O(k)$ and $A=\mathbb{Z}_{2}$, the Stiefel-Whitney classes are identified in terms of homomorphisms and extensions in the following theorem.
7.22) Theorem [29],- a) $w_{1} \in H^{\prime}\left(B O(k) ; \mathbb{Z}_{2}\right) \cong H$ om $\left(O(k) ; \mathbb{Z}_{2}\right)$ corresponds to the determinant map $d: O(k) \rightarrow \mathbb{Z}_{2}$.
b) In $H^{2}\left(B O(k) ; \mathbb{Z}_{2}\right) \cong \operatorname{Ext}\left(O(k) ; \mathbb{Z}_{2}\right)$ the correspon-
dence is as follows:
$0 \mapsto$ trivial extension; $w_{1}^{2} \mapsto$ the pull-back under $d: O(k) \rightarrow \mathbb{Z}_{2}$ of the
extension $0 \rightarrow \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{2} \rightarrow 0 ; w_{1}^{2}+w_{2} \mapsto 0 \rightarrow \mathbb{Z}_{2} \rightarrow \operatorname{Pin}(k) \rightarrow 0(k) \rightarrow 0$ We can obtain w_{2} by considering the sum, defined in 7.19, of the extensions corresponding to w_{1}^{2} and $w_{1}^{2}+w_{2}$.
\square
We finish this section with two results that we shall need later.
7.23) Proposition.- Let G be a finite group, then $H^{n}\left(B G ; \mathbb{Z}_{2}[G]\right)=0$ for $n>0$.

Proof.- $H^{n}\left(B G ; \mathbb{Z}_{2}[G]\right)=E_{x t^{n}}^{\mathbb{Z}_{2}[G]}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}[G]\right)$. By [20] we have $\operatorname{Ext}_{\mathbb{Z}_{2}[G]}^{n}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}[G]\right) \cong \operatorname{Ext}^{n} \mathbb{Z}_{[G]}\left(\mathbb{Z}, \mathbb{Z}_{2}[G]\right)$.

Let $\ldots \rightarrow F_{n} \rightarrow \ldots \rightarrow F_{1} \rightarrow F_{0} \rightarrow \mathbb{Z} \rightarrow 0$ be a free $\mathbb{Z}[G]$-resolution of \mathbb{Z} and consider: $\ldots * \operatorname{Hom}_{\mathbb{Z}[G]}\left(F_{n}, \mathbb{Z}_{2}[G]\right)+\ldots * \operatorname{Hom}_{\mathbb{Z}[G]}\left(F_{1}, \mathbb{Z}_{2}[G]\right) *$
$+\operatorname{Hom}_{\mathbb{Z}[G]}\left(F_{0}, \mathbb{Z}_{2}[G]\right)+0$

Now, as G is finite, then $\mathbb{Z}_{2}[G] \cong \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}[G] ; \mathbb{Z}_{2}\right)$, therefore, using adjointness, we have $\left.\operatorname{Hom}_{\mathbb{Z}[G]}\left(F_{\star}, \mathbb{Z}_{2}[G]\right) \cong \operatorname{Hom}_{\mathbb{Z}[G]}\left(F_{\star}, \operatorname{Hom} \mathbb{Z}^{(\mathbb{Z}}[G], \mathbb{Z}_{2}\right)\right) \cong$ $\cong \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}[G] \underset{\mathbb{Z}[G]}{\otimes} F_{\star}, \mathbb{Z}_{2}\right)=\operatorname{Hom}_{\mathbb{Z}}\left(F_{\star}, \mathbb{Z}_{2}\right)$.

We then have $H^{n}\left(B G ; \mathbb{Z}_{2}[G]\right) \cong E x t^{n} \mathbb{Z}[G]\left(\mathbb{Z}, \mathbb{Z}_{2}[G]\right) \cong E x t \mathbb{Z}^{\left(\mathbb{Z}, \mathbb{Z}_{2}\right)=0}$ for $n>0$.
7.24)Definition.- Let G be a finite group and A a commutative ring, then $H^{*}(B G ; A)$ is a graded ring with the cup product. Using the Bar resolution one can see that in terms of homomorphisms and extensions the cup product is given as follows:

If we denote the group operation in G multiplicatively, then given $\alpha, \beta \in \operatorname{Hom}(G, A) \cong H^{\prime}(B G ; A), \alpha \cup \beta \in E x t(G, A) \cong H^{2}(B G ; A)$ is the extension $0 \rightarrow A \rightarrow A \dot{\times} G \rightarrow G \rightarrow 0$, where $A \dot{x} G$ is $A \times G$ as a set and the group operation is defined by: $\left(a_{1}, g_{1}\right) \cdot\left(a_{2}, g_{2}\right)=\left(a_{1}+a_{2}+a\left(g_{1}\right) \beta\left(g_{2}\right), g_{1} g_{2}\right)$, where $\alpha\left(g_{1}\right)_{\beta}\left(g_{2}\right)$ is the product in the ring A.
7.25) Definition.- Given a group G and a representation $r: G \rightarrow O(n)$, we define the Stiefel-Whitney classes of r by $w_{i}(r)=B r^{*}\left(w_{i}\right)$, where $B r: B G \rightarrow B O(n)$ and $w_{i}=w_{i}(r(n))$.
Using the definition of cup product given in 7.24 one can prove the following.
7.26] Proposition [29]. Let $\sigma \epsilon \Sigma_{n}$ and denote by $<\sigma>$ the subgroup generated by σ and by $1:\langle\sigma\rangle \omega \Sigma_{n}$ the inclusion. Let $\rho: \Sigma_{n} \rightarrow 0(n)$ be the permutation representation then $w_{1}(0 \circ 2)^{2}=0$ if and only if
 the decomposition of σ.
§ 7.3) Cyclic reduction modulo bordism
In order to study the cyclic reductions modulo bordism we need the following theorem.
7.27) Theorem [15].-Let $\phi: X \rightarrow Y$ be a map between spaces of finite type (i.e. their mod. 2 homology is of finite type). The necesary and sufficient condition that $\left[M, f \in N_{n}(Y)\right.$ lie in the image of $\phi_{\star}: N_{n}(X) \rightarrow N_{n}(Y)$ is that every characteristic number of [M,f] associated with an element in the kernel of $\phi^{\star}: H^{\star}\left(Y, \mathbb{Z}_{2}\right) \rightarrow H^{\star}\left(X ; \mathbb{Z}_{2}\right)$ must vanish.

Note: This theorem is stated for the case when X and Y are finite complexes but it is easy to see that all they have used is the assumption that each $H_{n}\left(X ; \mathbb{Z}_{2}\right)$ and $H_{n}\left(Y, \mathbb{Z}_{2}\right)$ is finite dimensional over \mathbb{Z}_{2}.
7.28) Corollary.- Let X be a connected space of finite type then an element $[M, f] \in N_{n}(X)$ is contained in $N_{n} \subset N_{n}(X)$ if and only if every characteristic number of $[M, f]$ associated with a positive dimensional cohomology class is zero.

Proof.- Take $x_{0} \in X$, and let $i:\left\{x_{0}\right\} \hookrightarrow X$ be the inclusion, then $i^{*}: H^{n}(X) \rightarrow H^{n}\left(\left\{x_{0}\right\}\right)$ is zero if $n>0$ and an isomorphism if $n=0$. Therefore the result follows by applying 7.27 to the map i.
7.29) Proposition.- Let r be odd, then an r-covering over a closed manifold has a cyclic reduction modulo bordism if and only if it is bordant to the trivial covering.

Proof.- By 6.20 , the bordism of m-coverings is isomorphic to $N_{\star}\left(B \Sigma_{r}\right)$. Let $i: \mathbb{Z}_{r} \rightarrow \Sigma_{r}$ be the inclusion then an r-covering has a cyclic reduction modulo bordism if and only if it is in the image of $B i_{\star}: N_{\star}\left(B \mathbb{Z}_{r}\right) \rightarrow N_{\star}\left(B \Sigma_{r}\right)$. By [21] $H^{n}\left(B \mathbb{Z}_{r} ; \mathbb{Z}_{2}\right)=0$ if $n>0$. Therefore the characteristic numbers associated to any positive dimensional cohomology class of an element in imBi_{\star} are zero so by 7.28, im $B i_{\star}=N_{\star}$.

口
7.30) Proposition.- Let r be even and consider $\mathbb{Z}_{r} \subset s^{1} \subset \mathbb{C}$ acting on s^{\prime} by complex multiplication, then the cyclic covering $s^{\boldsymbol{1}} \rightarrow s^{\prime} / \mathbb{Z}_{r}$ is not bordant to the trivial covering.

Proof.- The map classifying the covering $S^{\top} \rightarrow S^{\top} / \mathbb{Z}_{r}$ is given as follows. Let $\mathbb{Z}_{r}=\{\overline{0}, \overline{1}, \ldots, \overline{r-1}\}$ and $r=\{1,2, \ldots, r\}$, consider the bijection $f: \mathbb{Z}_{r}+r$ given by $f(\overline{1})=1, f(\overline{2})=2, \ldots, f(\overline{r-1})=r-1$ and $f(\overline{0})=r$, then the action of \mathbb{Z}_{r} on \mathbb{Z}_{r}, by translation corresponds, under f to the usual inclusion $i: \mathbb{Z}_{r} \hookrightarrow \Sigma_{r}$, therefore we have:

$$
E \mathbb{Z}_{r} \mathbb{Z}_{r}^{x} \cong E \mathbb{Z}_{r} \mathbb{Z}_{r}^{x} \mathbb{Z}_{r} \cong E \mathbb{Z}_{r}
$$

$B \mathbb{Z}_{r}$
If we take as $E \mathbb{Z}_{r}=S^{\infty}$, then we have a puli-back:

Therefore we have to consider $\left[S^{1} / \mathbb{Z}_{r}, B i{ }^{\circ} \phi\right] \in N_{p}\left(B \Sigma_{r}\right)$ and by 7.28 it is enough to find a non-zero characteristic number associated to a positive dimensional class in $H^{*}\left({ }_{B \Sigma_{r}} ; \mathbb{Z}_{2}\right)$.
Consider the permutation representation $\Sigma_{r} \xrightarrow{P} O(r)$, and take $w_{1}(\rho) \in H^{\prime}\left(B \Sigma_{r} ; \mathbb{Z}_{2}\right)$, by 7.18 and 7.22. a), $w_{1}(\rho)$ corresponds to the composition $\Sigma_{r} \xrightarrow{\rho} 0(r) \xrightarrow{d} \mathbb{Z}_{2}$, therefore $\mathrm{Bi}^{*}\left(w_{1}(\rho)\right)$ corresponds to $\mathbb{Z}_{r} \xrightarrow{\mathbf{i}} \Sigma_{r} \xrightarrow{\rho} O(r) \xrightarrow{d} \mathbb{Z}_{2}$, as r is even, then the permutation (12 $3 \ldots r$) is odd so $B i^{*}\left(w_{p}(\rho)\right) \neq 0$.
To evaluate ϕ^{*} we have the following [52]: $H^{1}\left(B \mathbb{Z}_{r} ; \mathbb{Z}_{2}\right) \cong$
$\cong \lim _{n \geq 0} H^{1}\left(S^{2 n+1} / \mathbb{Z}_{r} ; \mathbb{Z}_{2}\right) ; H_{1}\left(S^{1} / \mathbb{Z}_{r} ; \mathbb{Z}\right) \cong \mathbb{Z} ; H_{1}\left(S^{2 n+1} / \mathbb{Z}_{r} ; \mathbb{Z}\right) \cong \mathbb{Z}_{r}(n \geq 1)$ and the homomorphism $H_{q}\left(s^{2 k+1} / \mathbb{Z}_{r} ; \mathbb{Z}\right) \rightarrow H_{q}\left(s^{2 \ell+1} / \mathbb{Z}_{r} ; \mathbb{Z}\right)$ (for $\left.k<\ell\right)$ is an isomorphism for $q<2 k+1$ and an epimorphism for $q=2 k+1$. By the universal coefficient theorem we have the following commutative diagram (for $k<\ell$):

$$
\begin{gathered}
0 \rightarrow H_{1}\left(s^{2 k+1} / \mathbb{Z}_{r} ; \mathbb{Z}\right) \otimes \mathbb{Z}_{2} \rightarrow H_{1}\left(s^{2 k+1} / \mathbb{Z}_{r} ; \mathbb{Z}_{2}\right) \rightarrow \operatorname{Tor}\left(H_{0}\left(s^{2 k+1} \mathbb{Z}_{r} ; \mathbb{Z}\right) ; \mathbb{Z}_{2}\right) \rightarrow 0 \\
\downarrow \\
\downarrow H_{1}\left(s^{2 \ell+1} / \mathbb{Z}_{r} ; \mathbb{Z}\right) \otimes \mathbb{Z}_{2} \rightarrow H_{1}\left(s^{2 \ell+1} / \mathbb{Z}_{r} ; \mathbb{Z}_{2}\right) \rightarrow \operatorname{Tor}\left(H_{0}\left(\mathrm{~s}^{2 \ell+1} / \mathbb{Z}_{r} ; \mathbb{Z}\right) ; \mathbb{Z}_{2}\right) \rightarrow 0
\end{gathered}
$$

The Tor groups are zero so applying duality we get:

Hence $\phi^{\star}: H^{\prime}\left(B \mathbb{Z}_{r} ; \mathbb{Z}_{2}\right) \rightarrow H^{1}\left(S^{1} / \mathbb{Z}_{r} ; \mathbb{Z}_{2}\right)$ is an isomorphism, and then $\phi^{\star}\left(B i^{*}\left(w_{p}(\rho)\right) \neq 0\right.$, as the Kronecker product is non-degenerate, then $\left.<\left(B_{i} \circ \phi\right)^{\star}\left(w_{p}(\rho)\right), o\left(S^{\prime} / \mathbb{L}_{r}\right)\right\rangle \neq 0$.
7.31) Proposition.- Let r be odd, then a vector bundle with structural group $\Sigma_{r} f O(k)$, over a closed manifold, is bordant to a bundle with structural group $\mathbb{Z}_{r} \delta O(k)$ if and only if it is bordant to a bundle decomposed as the sum of r, k-vector bundles.

Proof.- We have an exact sequence $0 \rightarrow 0(k)^{r} \rightarrow \mathbb{Z}_{r} \delta O(k) \rightarrow \mathbb{Z}_{r} \rightarrow 0$, therefore we have a covering $\mathbb{Z}_{r} c B\left(0(k)^{r}\right) \xrightarrow{p} B\left(\mathbb{Z}_{r} \delta O(k)\right)$, let τ be the transfer for this covering, then the composition
$\left.H_{\star}\left(B \mathbb{Z}_{r} \delta O(k)\right) ; \mathbb{Z}_{2}\right) \xrightarrow{\tau *} H_{\star}\left(B\left(O(k)^{r}\right) ; \mathbb{Z}_{2}\right) \xrightarrow{P_{\star}} H_{\star}\left(B\left(\mathbb{Z}_{r} \delta O(k)\right) ; \mathbb{Z}_{2}\right)$
is the identity hence P_{*} is surjective. By naturality of the isomorphism $N_{\star}(X) \cong H_{\star}\left(X ; \mathbb{Z}_{2}\right){\underset{\mathbb{Z}}{2}}_{\otimes}^{N_{\star}}$, we have that $P_{\star}: N_{\star}\left(B\left(O(k)^{r}\right)\right) \rightarrow N_{\star}\left(B \mathbb{Z}_{r} \delta O(k)\right)$
is surjective. The following diagram clearly commutes:

[
7.32) Proposition.- Let r be even then the vector bundle $\xi=s^{\top} \underset{\mathbb{Z}_{r}}{\times}\left(\mathbb{R}^{k}\right)^{r} \rightarrow s^{\prime} / \mathbb{Z}_{r}$, where the action of \mathbb{Z}_{r} on $\left(\mathbb{R}^{k}\right)^{r}$ is given by cyclic permutation of the coordinates $\left(v_{1}, \ldots, v_{r}\right), v_{i} \in \mathbf{R}^{k}$ (1 $\leq \mathrm{i} \leq r$), satisfies:
a) ξ is not bordant, as $\Sigma_{r} f O(k)$ bundle, to the trivial bundle.
b) ξ is not bordant to a bundle decomposed as the sum of $r k-$ vector bundles.

Proof.- The bundle ξ is classified by the map:

$$
s^{1} / \mathbb{Z}_{r} c_{\phi} S^{\infty} / \mathbb{Z}_{r}=B \mathbb{Z}_{r} \longrightarrow B\left(\mathbb{Z}_{r} \delta O(k)\right) \xrightarrow[B \mathfrak{l}]{ } B\left(\Sigma_{r} \rho O(k)\right)
$$

To prove a) we need, by 7.28 , a non-zero characteristic number associated to a positive dimensional class in $H^{*}\left(B\left(\Sigma_{r} f O(k)\right) ; \mathbb{Z}_{2}\right)$. Consider the representation given by $\Sigma_{r} \rho O(k) \xrightarrow{\pi} \Sigma_{r} \xrightarrow{\rho} O(r)$, where $\pi\left(\sigma, A_{1}, \ldots, A_{r}\right)=\sigma$, and take $w_{1}(\rho \cdot \pi) \in H^{1}\left(B\left(\Sigma_{r} \rho O(k)\right) ; \mathbb{Z}_{2}\right)$, by 7.18 and 7.22 this class corresponds to the composition: $\Sigma_{r} \rho O(k) \xrightarrow{\pi} \Sigma_{r} \xrightarrow{\rho} O(r) \xrightarrow{d} \mathbb{Z}_{2}$, therefore $\left(B_{2}{ }^{*} \circ B j^{*}\right)\left(w_{1}(\rho \pi)\right)$ corresponds to the composition $\mathbb{Z}_{r}{ }^{i} \mathbb{Z}_{r} \delta O(k) \stackrel{j}{\longrightarrow} \Sigma_{r} \delta O(k) \xrightarrow{\pi} \Sigma_{r} \xrightarrow{\rho} O(r) \xrightarrow{d} \mathbb{Z}_{2}$ which is not zero because the permutation (1 $2 \ldots r$) is odd, so $B l^{*} B j *\left(w_{1}\left(\rho^{\circ} \pi\right)\right) \neq 0$. In the proof of 7.30 we saw that $\phi^{*}: H^{\mathbf{1}}\left(B \mathbb{Z}_{r} ; \mathbb{Z}_{2}\right) \stackrel{\widetilde{\sim}}{\rightarrow} H^{\mathbf{1}}\left(S^{1} / \mathbb{Z}_{r} ; \mathbb{Z}_{2}\right)$ was an isomorphism, when r is even
so, as the product $<,>$ is non-degenerate,
$\left.<(B j B i \circ \phi) *\left(H_{\gamma}(\rho \circ \pi)\right), \sigma\left(S^{\prime} / \mathbb{Z}_{r}\right)\right\rangle \neq 0$.
To prove b) we need, by 7.27 , a non-zero characteristic number associated to a class in the kernel of $B \chi^{\star}: H^{\star}\left(B\left(\Sigma_{r} \int O(k)\right) ; \mathbb{Z}_{2}\right) \rightarrow H^{*}\left(B\left(O(k)^{r}\right) ; \mathbb{Z}_{2}\right)$. Consider the class that we used in a), $w_{1}(\rho \circ \pi) \in H^{\prime}\left(B\left(\varepsilon_{r} \rho O(k)\right) ; \mathbb{Z}_{2}\right)$, then $B \ell^{*} W_{1}(\rho \circ \pi)$ corresponds to the composition $O(k)^{r} \stackrel{\ell}{\hookrightarrow} \Sigma_{r} S O(k) \xrightarrow{\pi} \Sigma_{r} \xrightarrow{\rho} O(r) \xrightarrow{d} \mathbb{Z}_{2}$, but im $\ell=$ ker π so $B \ell^{*} W_{1}(\rho \circ \pi)=0$ and in a) we saw that $\left\langle\left(B j^{\circ} B L^{\circ} \phi\right)^{*}\left(w_{1}(\rho \circ \pi)\right), \sigma\left(S^{\prime} / \mathbb{Z}_{r}\right)\right\rangle=0$.

!

We now give examples where there is no cyclic reduction.
7.33) Proposition.- Let $\Sigma_{2} \xrightarrow{\alpha} \Sigma_{r}$ be given by $\alpha(T)=\left(\begin{array}{lll}1 & 2 & 3, \ldots, r \\ 2 & 1 & 3, \ldots, r\end{array}\right)$
and consider the r-covering $S^{n} \frac{x}{\frac{1}{2}_{2}^{r}} \bar{r} P^{n}$. If $r \neq 4 m+2$ and n is even $(n \geq 2)$ then this covering has no cyclic reduction (modulo bordism).

Proof.- We have a pull-back diagram: $S^{\prime \prime}$

By 7.27 it is enough to find a non-zero characteristic number associated to a class in the kernel of $B j^{*}: H^{*}\left(B \Sigma_{r} ; \mathbb{Z}_{2}\right) \rightarrow H^{*}\left(B \mathbb{Z}_{r} ; \mathbb{Z}_{2}\right)$. Consider the permutation representation $\rho: \sum_{r} \rightarrow O(r)$ and take $w_{1}(\rho)^{2} \in H^{2}\left(B \Sigma_{r} ; \mathbb{Z}_{2}\right)$.

The inclusion $j: \mathbb{Z}_{r} c_{\rightarrow} \Sigma_{r}$ sends the generator to the permutation (1) $23 \ldots, r$) and as $r \neq 4 m+2$, then by 7.26, $B j *\left(w_{1}(\rho)^{2}\right)=0$.

On the other hand $H^{\star}\left(B \Sigma_{2} ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}[e]$, where $e \in H^{\prime}\left(B \Sigma_{2} ; \mathbb{Z}_{2}\right)$, and $B \alpha^{\star}\left(w_{p}(\rho)\right)$ corresponds to the composition $\Sigma_{2} \xrightarrow{\alpha} \Sigma_{r} \xrightarrow{\rho} 0(r) \xrightarrow{d} \mathbb{Z}_{2}$
which is non-zero, therefore $B \alpha^{\star}\left(w_{1}(\rho)\right)=e$ so $B \alpha^{\star}\left(w_{1}(\rho)^{2}\right)=e^{2} \neq 0$. We also have that $[49] \phi: P^{n} \hookrightarrow P^{00}=B \Sigma_{2}$ induces a homomorphism $\phi^{\star}: H^{i}\left(B \Sigma_{2} ; \mathbb{Z}_{2}\right) \rightarrow H^{i}\left(P^{n} ; \mathbb{Z}_{2}\right)$ such that it is an isomorphism if $i \leqslant n$, so if we denote $\phi^{\star}(e)=e_{n}$, then $\phi^{\star} B \alpha^{\star}\left(w_{p}(p)^{2}\right)=e_{n}^{2}$ and as n is even then $w_{1}\left(P^{n}\right)=e_{n}[36]$. Hence $\left\langle w_{1}\left(P^{n}\right)^{n-2}(B \alpha \phi)^{\star}\left(w_{1}(\rho)^{2}\right), \sigma\left(P^{n}\right)\right\rangle=$ $=\left\langle e_{n}^{n-2} e_{n}^{2}, \sigma\left(P^{n}\right)\right\rangle=\left\langle e_{n}^{n}, \sigma\left(P^{n}\right)\right\rangle \neq 0$.

In order to give the examples in codimension greater than zero we need the following.
7.34) Proposition.- Corsider the exact sequence
$0 \rightarrow O(k) \xrightarrow{r} \mathbb{Z}_{r} \rho O(k) \xrightarrow{\mathbb{Z}} \mathbb{Z}_{r} \rightarrow 0$ and define a section $s: \mathbb{Z}_{r} \rightarrow \mathbb{Z}_{r} \rho 0(k)$ by $s(a)=(a, I, \ldots, I)$, where I is the identity ($k \times k$)-matrix, then a class $z \in H^{2}\left(B\left(\mathbb{Z}_{r} f O(k)\right) ; \mathbb{Z}_{2}\right)$ is zero if and only if $B i^{*}(z)$ and $B s^{*}(z)$ are zero.

Proof.- We take $B\left(\mathbb{Z}_{r} f O(k)\right)=E \mathbb{Z}_{r} \times \mathbb{Z}_{r} B O(k)^{r}$. The homology mod. 2 of $B O(k)$ is of finite type so by 7.3 we have a spectral sequence $\left\{E_{r}^{p, q}, d_{r}\right\} \quad$ such that $E_{2}^{p, q} \cong H^{p}\left(B \mathbb{Z}_{r} ;\left(H^{*}(B O(k))^{\otimes r}\right)^{q}\right)$ and converging to $H^{*}\left(E \mathbb{Z}_{r} \mathbb{Z}_{r}^{x} B O(k)^{r} ; \mathbb{Z}_{2}\right)$; furthermore, by 7.4 , this spectral sequence collapses, so $E_{2}^{p, q}=E_{\infty}^{p, q}$ and, as we are working over a field, there is no extension problem therefore we have that
$H^{n}\left(B\left(\mathbb{Z}_{r}, O(k)\right) ; \mathbb{Z}_{2}\right) \cong \bigoplus_{p+q=n} E_{2}^{p, q}$.
We have a filtration: $E_{2}^{n, 0}=E_{0}^{n, 0}=J^{n, 0} \subset J^{n-1} \subset \ldots \subset J^{0, n}=H^{n}\left(B \mathbb{Z}_{r} ; H^{\star}(B O(k))^{r}\right)$, and if $p: E \mathbb{Z}_{r} \frac{x}{\mathbb{Z}}_{r} B O(k)^{r} \longrightarrow B \mathbb{Z}_{r}$ denotes the projection and

1: $B O(k)^{r} \leftrightarrow E \mathbb{Z}_{r} \frac{X}{\mathbb{Z}}_{r} B O(k)^{r}$ the inclusion then by 7.11 and 7.12 we have commutative diagrams:
a) $H^{H^{q}\left(\operatorname{Hiom}_{\mathbb{Z}_{r}}\left(B_{\star} ; H^{\star}(B O(k))^{\otimes r}\right)\right) \xrightarrow{\beta} E_{\infty}^{0}, q=E_{2}^{0}, q \subset E_{1}^{0, q}=\left(H^{\star}(B O(k))^{\otimes r}\right)^{q}, \|}$

$$
H^{q}\left(E \mathbb{Z}_{r} \mathbb{Z}_{r}^{x} B O(k)^{r} ; \mathbb{Z}_{2}\right) \longrightarrow H^{\star}\left(B O(k)^{r} ; \mathbb{Z}_{2}\right)
$$

b) $\quad H^{P}\left(\mathbb{Z}_{r}\right)=E_{2}^{p, 0}=E_{\infty}^{p, 0}=J^{p, 0} \subset J^{p-1,1} C_{\longrightarrow}^{\alpha} H^{P}\left(\operatorname{Hom}_{\mathbb{Z}_{r}}\left(B_{\star} ; H^{*}(B O(k))^{\otimes r}\right)\right.$! $H^{\mathrm{P}}\left(B \mathbb{Z}_{r} ; \mathbb{Z}_{2}\right) \longrightarrow \mathrm{p}^{\star} \longrightarrow H^{\mathrm{p}}\left(E \mathbb{Z}_{r} \times \mathbb{Z}_{r} B O(k)^{r} ; \mathbb{Z}_{2}\right)$

We have exact sequences $0 \rightarrow J^{p+1, q-1} \rightarrow J^{p, q} \rightarrow E_{\infty}^{p, q} \rightarrow 0$
In the case $n=2$ we have (1) $0 \rightarrow J^{2,0} \rightarrow J^{1,1} \rightarrow E_{\infty}^{1,1} \rightarrow 0$
(2) $0 \rightarrow J^{1,1} \xrightarrow{\alpha} H^{2}\left(B Z_{r} ; H^{\star}(B O(k))^{\otimes r}\right)^{\beta} \rightarrow E_{\infty}^{0,2} \rightarrow 0$

These groups are: $E_{\infty}^{2,0}=E_{2}^{2,0}=J^{2,0}=H^{2}\left(B \mathbb{Z}_{T} ; \mathbb{Z}_{2}\right)$

$$
\begin{aligned}
& E_{\infty}^{1,1}=E_{2}^{1,1}=H^{1}\left(B \mathbb{Z}_{r} ;\left(H^{*}(B O(k))^{\otimes r}\right)^{\prime}\right) \\
& E_{\infty}^{0,2}=E_{2}^{0,2}=\left[\left(H^{*}(B O(k))^{\left.\otimes r)^{2}\right]^{r} \subset E^{0,2}=\left(H^{\star}(B O(k))^{\otimes r}\right)^{2}}\right.\right.
\end{aligned}
$$

The coefficients of $E_{2}^{1,1}$ are $\left(H^{*}(B O(k))^{\otimes r}\right)=\bigoplus_{i_{1}+i_{2}+\ldots+i_{r}=1} H^{i^{i}}(B O(k)) \otimes \ldots \otimes H^{i} r(B O(k))$. This is a permutation module, i.e., we have a basis which is invariant under the action of \mathbb{Z}_{r}, in effect, let $a_{0} \in H^{0}(B O(k)) \cong \mathbb{Z}_{2}$ and $a_{1} \in H^{l}(B O(k)) \approx \mathbb{Z}_{2}$ be the generators, then we have a \mathbb{Z}_{2}-basis of the form $\left\{\left(a_{1} \otimes a_{0} \otimes \ldots \otimes a_{0}, 0, \ldots, 0\right),\left(0, a_{0} \otimes a_{1} \otimes \ldots \otimes a_{0}\right), \ldots\right.$, $\left.\left(0,0, \ldots, 0, a_{0} \otimes a_{0} \otimes \ldots \otimes a_{1}\right)\right\}=S$; there is only one orbit under the
action of \mathbb{Z}_{r} on S and the action is free, therefore $\left(H^{*}\left(B O(k)^{\otimes r}\right)^{1} \cong \mathbb{Z}_{2}\left[\mathbb{Z}_{r}\right]\right.$. Hence $E_{2}^{l, 1}=H^{1}\left(B \mathbb{Z}_{r} ;\left(H^{*}(B O(k))^{\otimes r}\right)^{1}\right) \cong$ $\approx H^{?}\left(B \mathbb{Z}_{r} ; \mathbb{Z}_{2}\left[\mathbb{Z}_{r}\right]\right)$ and this is zero by 7.23 . Then the exact sequence (1) becomes $\quad E_{\infty}^{2,0}=E_{2}^{2,0}=J^{2,0}=J^{1,1}$, putting this in (2) we get an exact sequence $0 \rightarrow E_{2}^{2,0} \xrightarrow{\alpha} H^{2}\left(B \mathbb{Z}_{r} ; H^{*}(B O(k))^{\otimes r}\right) \xrightarrow{\beta} E_{2}^{0,2} \rightarrow 0$.

Combining this sequence with a) and b) we get a commutative diagram:
$0 \rightarrow E_{2}^{2,0} \xrightarrow{\alpha} H^{2}\left(B \mathbb{Z}_{r} ; H^{*}(B O(K))^{\otimes r}\right) \xrightarrow{\beta} E_{2}^{0,2} \rightarrow 0$

Now notice that the bundle $E \mathbb{Z}_{r} \mathbb{Z}_{r} B O(k)^{r} \xrightarrow[p]{ } B \mathbb{Z}_{r}$ has a section s defined as follows: we take a point $x \in B O(k)$ then $(x, x, \ldots x) \in B O(k)^{r}$ is a fixed point under the action of \mathbb{Z}_{r} so $i t$ defines a section $S[a]=[a,(x, x, \ldots, x)]$.
We can then define an isomorphism $\phi: H^{2}\left(E \mathbb{Z}_{r} \mathbb{Z}_{r} B O(k)^{r} ; \mathbb{Z}_{2}\right) \xrightarrow{\cong}$ $\cong H^{2}\left(B \mathbb{Z}_{r} ; \mathbb{Z}_{2}\right) \oplus$ image $i^{*} \quad$ by $\phi(z)=\left(S^{*}(z), i^{*}(z)\right)$ so a class
 zero.
Finally we identify S and \mathfrak{z} with the maps of classifying spaces as follows. We are taking $E\left(\mathbb{Z}_{r} f O(k)\right)=E \mathbb{Z}_{r} \times E O(k)^{r} \rightarrow E \mathbb{Z}_{r} \times E O(k)^{r} / \mathbb{Z}_{r} \delta O(k) \cong$ $\cong E \mathbb{Z}_{r} \mathbb{Z}_{r}^{X} B O(k)^{r}$. The map $S: B \mathbb{Z}_{r} \rightarrow E \mathbb{Z}_{r} \mathbb{Z}_{r}{ }^{B O(k)^{r}}$ is induced by the inclusion $E \mathbb{Z}_{r} \hookrightarrow E \mathbb{Z}_{r} \times E O(k)^{r}$ which is clearly s-equivariant so $B S \simeq S$. The map 2: $B O(k)^{r} \rightarrow E \mathbb{Z}_{r} \mathbb{Z}_{r}^{X} B O(k)^{r}$ is induced by the inclusion $E O(k)^{r} \hookrightarrow \mathbb{Z}_{r} \times E O(k)^{r}$ which is clearly i-equivariant so $B i=1$.
7.35) Proposition, - Consider the vector bundle $S^{n \times \Sigma_{2}}\left(\mathbb{R}^{k}\right)^{r} \rightarrow P^{n}$, where Σ_{2} acts on $\left(\mathbb{R}^{k}\right)^{r}$ by permuting the first two coordinates in $\left(v_{1}, v_{2}, \ldots, v_{r}\right), v_{i} \in \mathbb{R}^{k}, 1 \leq i \leq r$. If n is even and $r \neq 4 m+2$ then this bundle has no cyclic reduction (modulo bordism).

Proof.- The classifying map for the bundle $S_{\Sigma_{2}}^{n_{2}}\left(\mathbb{R}^{k}\right)^{r} \rightarrow P^{n}$ is given by the composition $P^{n} \underset{\phi}{\longrightarrow} P^{\infty}=B \Sigma_{2} \underset{B_{\alpha}}{\longrightarrow} B \Sigma_{r} \xrightarrow[B_{\gamma}]{\longrightarrow} B\left(\Sigma_{r} \rho O(k)\right)$ where $\alpha: \Sigma_{2} \rightarrow \Sigma_{r}$ is given by

$$
\alpha(T)=\left(\begin{array}{llll}
1 & 2 & 3, \ldots, & r \\
2 & 1 & 3, \ldots, & r
\end{array}\right) \text { and } \gamma: \Sigma_{r}+\Sigma_{r} f O(k) \text { is given by }
$$

$$
r(\sigma)=(\sigma, I, \ldots, I)
$$

where I is the identity ($k \times k$)-matrix.
By 7.27 it is enough to find a non-zero characteristic number associated with a class in the kerne\} of $B j^{*}: H^{*}\left(B\left(\Sigma_{r} f O(k)\right) ; \mathbb{Z}_{2}\right) \rightarrow H^{\star}\left(B\left(\mathbb{Z}_{r} \rho O(k) ; \mathbb{Z}_{2}\right)\right.$ Consider the representation $\Sigma_{r} \rho O(k) \xrightarrow{\pi} \Sigma_{r} \xrightarrow{\rho} O(r)$ and take $W_{1}(\rho \circ \pi)^{2} \in H^{2}\left(B\left(\Sigma_{r} \rho O(k)\right) ; \mathbb{Z}_{2}\right) ;$ then by 7.18 and $7.22, B j *\left(w_{1}\left(\rho^{\circ} \pi\right)\right)$ corresponds to the composition:
$\mathbb{Z}_{r} \delta O(k) \xrightarrow{j} \Sigma_{r} \delta O(k) \xrightarrow{\pi} \Sigma_{r} \xrightarrow{\rho} O(r) \xrightarrow{d} \mathbb{Z}_{2}$. Now if we take $B s^{*}\left(B j *\left(w_{1}(\rho \circ \pi)\right)\right)$ where $s: \mathbb{Z}_{r} \rightarrow \mathbb{Z}_{r} \rho O(k)$, we get $\mathbb{Z}_{r} c \Sigma_{r} \xrightarrow{\rho} 0(r) \rightarrow \mathbb{Z}_{2}$, so as $r \neq 4 m+2$ then by $7.2, B s^{*}\left(B j *\left(w_{1}(\rho \circ \pi)\right)^{2}\right)=0$.

On the other hand if we take $B i^{*}\left(B j^{*}\left(w_{1}\left(\rho^{\circ} \pi\right)\right)\right)$ where $i: 0(k)^{r} \rightarrow \mathbb{Z}_{r} \delta O(k)$ we get the trivial homomorphism so $B i *\left(B j *\left(W_{1}(\rho \circ \pi)\right)^{2}\right)=0$. Therefore, by 7.34, $B j^{\star}\left(W_{1}(\rho \circ \pi)^{2}\right)=0$.
Now we want to evaluate $\left(B Y^{\circ} B \alpha^{\circ} \phi\right)^{*}\left(w_{1}(\rho \circ \pi)^{2}\right)$. The element $B \alpha^{*} B Y *\left(w_{1}(\rho \circ \pi)\right)$ corresponds to the composition
$\Sigma_{2} \xrightarrow{\alpha} \Sigma_{r} \xrightarrow{\gamma} \Sigma_{r} \rho(\mathrm{k}) \xrightarrow{\pi} \Sigma_{r} \xrightarrow{\rho} 0(r) \xrightarrow{d} \mathbb{Z}_{2}$, which is just $\Sigma_{2} \xrightarrow{\alpha} \Sigma_{r} \xrightarrow{\rho} 0(r) \xrightarrow{d} \mathbb{Z}_{2}$, this composition is not zero so $B a^{\star} B \gamma^{\star}\left(W_{1}(\rho \circ \pi)\right)=e$ where $H^{\star}\left(B \Sigma_{2} ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}[e]$ and, as in the proof of 7.33 we have that $\left(B \gamma^{\prime \prime} B \alpha^{\circ} \phi\right)^{*}\left(w_{1}(\rho \circ \pi)^{2}\right)=e_{n}^{2}$ where e_{n} is the restriction of e to P^{n}. Finally, as n is even $w_{1}\left(P^{n}\right)=e_{n}$ so $\left\langle w_{1}\left(P^{n}\right)^{n-2}\left(B \gamma^{\circ} B \alpha^{\circ} \phi\right)^{*}\left(w_{1}(\rho \circ \pi)^{2}\right), \sigma\left(P^{n}\right)\right\rangle=\left\langle e_{n}^{n-2} e_{n}^{2}, \sigma\left(P^{n}\right)\right\rangle=$ $=\left\langle e_{n}^{n}, \sigma\left(P^{n}\right)\right\rangle \neq 0$.
7.36) Remark.- In the proof of 7.35 we have to work with the second cohomology groups because of the following. From the calculations above one can easily obtain that $H^{\top}\left(B\left(\Sigma_{r} \rho O(k)\right) ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \quad$ and $H^{\prime}\left(B\left(\mathbb{Z}_{r} f O(k)\right) ; \mathbb{Z}_{2}\right)= \begin{cases}\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} & \text { if } r \text { is even } \\ \mathbb{Z}_{2} & \text { if } r \text { is odd. }\end{cases}$

Let $f: \Sigma_{r} \mathrm{fO}(\mathrm{k}) \rightarrow \mathbf{Z}_{2}$ be given by the composition $\Sigma_{r} \rho O(k) \xrightarrow{\pi} \Sigma_{r} \xrightarrow{\rho} O(r) \xrightarrow{d} \mathbb{Z}_{2}$ and g by the composition $\Sigma_{r} \rho 0(k) \xrightarrow{\text { id } \rho \mathrm{d}} \Sigma_{r} \rho \mathbb{Z}_{2} \xrightarrow{\psi} \mathbb{Z}_{2}$, where $\psi\left(\sigma, t_{1}, \ldots, t_{r}\right)=t_{1} \ldots t_{r}$, then $\{f, g\}$ is a \mathbb{Z}_{2}-basis for $H^{1}\left(B\left(\varepsilon_{r} f O(k)\right) ; \mathbb{Z}_{2}\right)$. Let $j: \mathbb{Z}_{r} f O(k) \leftrightarrow \Sigma_{r} f O(k)$ be the inclusion then

$$
B_{j}{ }^{*}(f)= \begin{cases}\text { not zero if } r \text { is even, } \\ \text { zero } & \text { if } r \text { is odd }\end{cases}
$$

and $B j^{*}(g) \neq 0$. If r is even $B j^{*}(f) \neq B j^{*}(g)$ and hence $B j^{*}$ is an isomorphism.

Chapter 8.- Dyer-Lashof operations on Eilenberg-MacLane spaces
In this chapter we show that the Dyer-Lashof operations in the homology mod. 2 of an Eilenberg-Míac Lane space $K(A, n)$ are zero, without using the cohomology of the spaces $K(A, n)$ and hence this is valid for any abelian group A. An algebraic proof for the case $A=\mathbb{Z}_{2}$ can be found in [32].
8.1) Definition.- Let x be an abelian topological monoid, then we can make x a e_{∞}-space by defining $G_{\infty}(k)_{\sum_{k}} \times x^{k} \theta_{k} x$ by
$\theta_{k}\left[c, x_{1}, x_{2}, \ldots, x_{k}\right]=x_{1} x_{2} \ldots x_{k}$. Then, as we saw in chapter 2, we have Dyer-Lashof operations in bordism $\tilde{Q}_{r}: N_{n}(X) \rightarrow N_{2 n+r}(X)$ and in homology $Q_{r}: H_{n}\left(X ; \mathbb{Z}_{2}\right) \rightarrow H_{2 n+r}\left(X, Z_{2}\right)$. Recall that the operations \tilde{Q}_{i} are given by the composition (2.24):
$N_{n}(x) \xrightarrow{\tilde{q}_{r}^{\infty}} N_{2 n+r}\left(S_{\Sigma_{z}^{\infty}} \times x \times X\right) \xrightarrow{\cong} N_{2 n+r}\left(b_{\infty}(2) \Sigma_{z}^{x} x \times x\right) \xrightarrow{\theta_{2 \star}} N_{2 n+r}(x)$, where $\tilde{q}_{1}^{\infty}[M, f]=\left[S^{r} \frac{x}{\Sigma_{2}} M \not M, r_{\Sigma_{2}} f \times f\right]$ and $t: S^{r} \rightarrow S^{\infty}$. If we denote by $m: X \times X \rightarrow X$ the product in X and by $\bar{m}: X \frac{x}{\Sigma_{2}} X \rightarrow X$ the map induced by m, then it is clear from the definition of θ_{2} that the operations $\tilde{\mathrm{Q}}_{r}$ are given by the composition $N_{n}(x) \xrightarrow{\tilde{q}_{r}^{\infty}} N_{2 n+r}\left(S^{\omega} \underset{\Sigma_{2}}{x} x x x\right) \xrightarrow{\Pi_{\star}} N_{2 n+r}\left(x{\underset{\Sigma}{2}}_{x} x\right) \xrightarrow{m_{\star}} N_{2 n+r}(x)$, where $\pi: S^{\infty}{ }_{\Sigma_{2}}^{x} x \times x \rightarrow x \sum_{\Sigma_{2}}^{x} x$ is the projection.
8.2) Definition.- Let M be a closed manifold, we denote by $P\left(T M \oplus \varepsilon^{r+1}\right)$ the projective bundle associated to the bundle $T M \oplus \varepsilon^{r+1}$, the sum of the tangent bundle of M and a trivial $(r+1)$-bundle.

Given a map $f: M \rightarrow X$ consider the composition $P\left(T M \oplus \varepsilon^{r+7}\right) \xrightarrow{P} M \xrightarrow{g} X \underset{\Sigma_{2}}{X} X$, where p is the projection of the projective bundle and $g(a)=[f(a), f(a)]$.
8.3) Proposition.- The pairs $\left(S^{r} \sum_{2}^{x} M \times M, \pi^{\circ}\left(t \sum_{2}^{x f x f}\right)\right)$ and $\left(P\left(T M \oplus \varepsilon^{r+1}\right), g \circ p\right)$ are bordant in $X_{\Sigma_{2}} x$.

Proof.- Consider the manifold $D^{r+1} \times M \times M$ and define a Σ_{2}-action by $\left(b, x_{1}, x_{2}\right) \cdot T=\left(-b, x_{2}, x_{1}\right)$, where $b \in D^{r+1}, x_{i} \in M$. Consider an iriclusion $D^{r+1} \xrightarrow{\mathbf{j}} S^{\infty}$ such that the following diagram commutes

Then we have a Σ_{2}-equivariant map: $D^{r+1} \times M \times M \underset{j \times f \times f}{\longrightarrow} S^{\infty} \times X \times X \underset{\text { proj }}{\longrightarrow} X \times X$ The action of ε_{2} on $D^{r+1} \times M \times M$ is not free, the fixed points are the image of the embedding $e: M \hookrightarrow D^{r+1} \times M \times M$ given by $e(a)=(0, a, a)$. Notice that this embedding is the composition of $M \hookrightarrow M \times M \hookrightarrow D^{r+1} \searrow 4 \times M$, hence the normal bundle of e, v_{e} satisfies $v_{e} \cong T_{M}^{\Delta} \oplus \varepsilon^{r+1}$. We can find a tubular neighbourhood $D \cong D\left(\nu{ }_{e}\right)$ such that the action on D coincides with multiplication by (-1) on $D\left(\nu_{e}\right)[7]$. Let D denote the interior of D, then the manifold $D^{r+1} \times M \times M-D$ has a free Σ_{2}-action and $\partial\left(D^{r+1} \times M \times M-D\right)=S^{r} \times M \times M \Perp S\left(T M \notin \varepsilon^{r+1}\right)$, the restriction of proj. ${ }^{\circ} \mathrm{j} \times \mathrm{f} \times \mathrm{f}$ gives an equivariant map to $\mathrm{X} \times \mathrm{X}$, which we denote by F .
By [48] we can find an equivariant homotopy H, leaving fixed $s^{r} \times M \times M$ such that $H_{0}=F ; H_{1}$ and F coincide on the fixed points and the value of H_{1} on D is given by the composition: $D \cong D\left(\nu_{e}\right) \xrightarrow{q} e(M) \xrightarrow{F \mid e(M)} X \times X$, where q is the projection of the disc bundle. As everything we have done is Σ_{2}-equivariant we can pass to the quotients and then $H_{1} / \Sigma_{2}: D^{r+1} \times M \times M-D / \Sigma_{2} \rightarrow X_{\Sigma_{2}^{x}}^{x}$ is a
cobordism between ($S^{r} \frac{x}{\Sigma_{2}} M \times M, \Pi^{\circ}\left(l \frac{x}{\Sigma_{2}} f \times f\right)$) and $\left(S\left(T M \oplus \varepsilon^{r+1}\right) / \Sigma_{2}=P\left(T M \oplus \varepsilon^{r+1}\right), g \circ p\right)$.
8.4) Proposition.- If X is an abelian topological monoid then the operations Q_{r} are zero, $r \geq 0$.

Proof.- By 2. 33 we have the following commutative diagram:

The homomorphisms μ are surjective so given $x \in H_{n}\left(X ; Z_{2}\right)$ take $[M, f] \in N_{n}(X)$ such that $\mu[M, f]=x$; by $8.1 \tilde{Q}_{r}[M, f]=\bar{m}_{*} \Pi_{*} \tilde{q}_{r}^{\infty}[M, f]$, but by $8.3 \quad \pi_{*} \tilde{q}_{r}^{\infty}[M, f]=\left[P\left(T M \oplus \varepsilon^{r+1}\right)\right.$, gop]. The image of the fundamental class $\sigma\left(P\left(T M \oplus \varepsilon^{r+1}\right)\right)$ under $p_{\star}: H_{2 n+r}\left(P\left(T M \oplus \varepsilon^{r+1}\right) ; \mathbb{Z}_{2}\right) \rightarrow H_{2 n+r}\left(M ; \mathbb{Z}_{2}\right)=0 \quad$ is zero, therefore $Q_{r}(x)=Q_{r} \mu[M, f]=\tilde{Q}_{r}[M, f]=0$.
8.5) Proposition.- Let A be an abelian group and let $K(A, n)$ be an Eilenberg-Mac Lane space then the Dyer-Lashof operations on the homology rod. 2 of $K(A, n)$ are zero.

Proof.- The space $K(A, n)$ is an infinite loop space so it is a ℓ_{∞}-space. By [27] there exists an abelian topological monoid K and a homotopy equivalence $\ell: K(A, n) \xrightarrow{\rightrightarrows} K$ such that ℓ is a map of \mathscr{E}_{∞}-spaces where the \mathscr{C}_{∞}-space structure for K is the one defined in 8.1 Therefore we have a commutative diagram:

By 8.4 the operations on K are zero and hence the operations on $K(A, n)$ are also zero.
8.6) Remark.- The result above is not true for the operations \tilde{Q}_{r} in bordism. For example, if we take $P^{\infty}=K\left(\mathbb{Z}_{2}, 1\right)$, and $\left[P^{n}, i\right] \in N_{n}\left(P^{\infty}\right)$, where $i: P^{n} \hookrightarrow P^{\infty}$, then if n is even, $\tilde{Q}_{0}\left[P^{n}, i\right] \neq 0$ because $P^{n} \times P^{n}$ is not a boundary.

P.EFERENCES

1.- Adams, J.F.	"Infinite loop spaces", Annals of llathematical Studies 90, Princeton U.P. (1978).
2.- Alliston, R.M.	

REFEPENCES

1.- Adams, J.F.	"Infinite loop spaces", Annals of Mathematical Studies 90, Princeton U.P. (1978).
2.- Alliston, R.M.	

14.- Cohen, F.R., May, J.P. \& Taylor, L.
15.- Conner, P.E. \& Floyd, E.E.
16.- Dyer, E. \& Lashof, R.K.
17.- Guillerin, V. \& Pollack, A.
18.-Gray, B.
19.- Greenberg, M.J.
20.- Gruenberg, K.W.
21.- Hilton, P.J. \& Stammbach, U.
22.- Hirsch, M.W.
23.- Hirsch, M.W.
24.- Hopf, H. \& Samelson, H.
25.- Husemoller, D.
26.- Kahn, D.S. \& Priddy, S.B.
27.- Kahn, D.S. \& Priddy, S.B.
$\begin{aligned} \text { 28. - } & \text { Koschorke, U. \& } \\ & \text { Sanderson, B.J. } \end{aligned}$

"The splitting of certain spaces cx" Math. Proc. Cambridge Phil. Soc. 84 (1978), 465-496.
"Differentiable periodic maps" Ergebnisse der Mathematik vol. 33 Springer-Verlag (1964).
"Homology of iterated loop spaces" Amer. J. Math. 84 (1962), 35-88.
"Differential topology" Prentice-Hall (1974).
"Homotopy theory" Academic Press (1975).
"Lectures on Algebraic Topology" W.A. Benjamin (1977)
"Cohomological topics in group theory" Lecture Notes in Mathematics 143 Springer-Verlag (1970).
"A Course in Homological Algebra" Graduate Texts in Mathematics vol. 4 Springer-Verlag (1971).
"Immersions of manifolds"
Trans. Amer. Math. Soc. 93(1959), 242-276.
"Differential topology" Graduate Texts in Mathematics vol. 33 Springer-Verlag (1976).
"Ein satz uber die winkungsraumegeschlossenes Lieschen Gruppen" Comm. Math. Helv. 13, (1940), 240-251.
"Fibre bundles"
Graduate Texts in Mathematics vol. 20 Springer-Verlag (1975).
"Applications of the transfer to stable homotopy theory"
Bul1. Amer. Math. Soc. 78(1972), 981-987.
"The transfer and stable homotopy theory" Math. Proc. Cambridge Phil. Soc. 83 (1978), 103-111.
"Self-intersections and higher Hopf invariants" Topology 17(1978), 283-290.

29.- Knutson, D.	"Characteristic classes of permutation representations" Studies in Algebraic Topology Advances in Mathematics Supplementary Studies vol. 5 (1979), 69-82.
30.- liac Lane, S.	"Homology" Die Grundleheren der math. Wiss. vol. 114 Springer-Verlag (1975).
31.- Mac Lane, S.	"Categories for the working mathematician" Graduate Texts in Mathematics vol. 5 Springer-Verlag (1971).
32.- Madsen, I. \& Milgram, R.J.	"The classifying spaces for surgery and cobordism of manifolds" Annals of Mathematics Studies vol. 92 Princeton U.P. (1979).
33.- Massey, W.S.	"Algebraic Topology" Graduate Texts in Mathematics vol. 56 Springer-Verlag (1977).
34.- May, J.P.	"The geometry of iterated loop spaces" Lecture Notes in Mathematics vol. 271 Springer-Verlag (1972).
35.- Milnor, J.	"Construction of Universal bundles: II" Ann. Math. 63 (1956), 430-436.
36.- 11ilnor, J. \& Stasheff, J.D.	"Characteristic classes" Annals of Mathematics studies vol. 76 Princeton, U.P. (1974).
37.- Munkres, J.R.	"Elementary Differential Topology" Annals of Mathematics Studies vol. 54 Princeton U.P. 1966.
38.- Ronga, F.	"On multiple points of smooth immersions" Comm. Math. Helv. 55(1980), 521-527.
39.- Schulte-Croonenberg, H.	```"Dyer-Lashof-Operationen in Bordismustheorien" Ph.D. Thesis University of Wuppertal 1981).```
40.- Schweitzer, P.A.	"Joint cobordism of immersions" Lecture Notes in Mathematics vol. 168, 267-282. Springer-Verlag (1970).
41.- Segal, G.	"Cohomology of Topological groups" Inst. Naz. Alta Mat. Bologna Symp. Math. Vol. IV (1970), 377-387.

42.- Serre, J.P.	"Homologie singulière des espaces fibrés" Ann. Math. 54(1951), 425-505.
43.- Snaith, V.	"A stable decomposition of $\Omega^{n} S^{n} X^{\prime \prime}$ J. London Math. Soc. 7(1974), 577-583.
44.- Spanier, E.	"Algebraic Topology" Mc Graw-Hill (1966).
45.- Steenrod, N.	"Cohomology operations derived from the symmetric group" Comm. Math. Helv. $31(1956-57), 195-218$.
46.- Steenrod, N.	"Topology of fibre bundles" Princeton Mathematical series vol. 14 Princeton U.P. 1951.
47.- Steenrod, N.	" A convenient category of topological spaces" Mich. Math. J. 14(1967), 133-152.
48.- Stong, R.	"Bordism and involutions" Ann. Math. 90(1969), 47-74.
49.- Switzer, R.M.	"Algebraic Topology-Homotopy and Homology" Die Grundlehren der Math. Wiss. vol. 212 Springer-Verlag (1975).
50.- Thom, R.	"Quelques proprietés globales des varietés differentiables" Comm. Math. Helv. 28(1954), 17-86.
51.- Tom Dieck, T.	"Steenrod-Operationen in KobordismenTheorien" Math. Z. 107 (1968), 380-401.
52.- Whitehead, G.W.	"Elements of Homotopy theory" Graduate Texts in Mathematics vol.- 61. Springer-Verlag (1978).
53.- Whitehead, J.H.C.	"Combinatorial homotopy I" Bull. Amer. Math. Soc. 55(1949), 213-245.
54.- Wall, C.T.C.	"Cobordism of pairs" Comm. Math. Helv. 35(1961), 136-145.

