
The Library
Concentration of the intrinsic volumes of a convex body
Tools
Lotz, Martin, McCoy, Michael B., Nourdin, Ivan, Peccati, Giovanni and Tropp, Joel A. (2020) Concentration of the intrinsic volumes of a convex body. In: Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, 2266 . Cham: Springer, pp. 139-167. ISBN 9783030467616
|
PDF
WRAP-Concentration-intrinsic-volumes-convex-body-Lotz-2019.pdf - Accepted Version - Requires a PDF viewer. Download (957Kb) | Preview |
Official URL: https://doi.org/10.1007/978-3-030-46762-3_6
Abstract
The intrinsic volumes are measures of the content of a convex body. This paper applies probabilistic and information-theoretic methods to study the sequence of intrinsic volumes. The main result states that the intrinsic volume sequence concentrates sharply around a specific index, called the central intrinsic volume. Furthermore, among all convex bodies whose central intrinsic volume is fixed, an appropriately scaled cube has the intrinsic volume sequence with maximum entropy.
Item Type: | Book Item | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subjects: | Q Science > QA Mathematics | ||||||||||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Mathematics | ||||||||||||
Library of Congress Subject Headings (LCSH): | Convex domains , Convex geometry, Functional analysis , Curvature | ||||||||||||
Series Name: | Lecture Notes in Mathematics | ||||||||||||
Publisher: | Springer | ||||||||||||
Place of Publication: | Cham | ||||||||||||
ISBN: | 9783030467616 | ||||||||||||
Book Title: | Geometric Aspects of Functional Analysis | ||||||||||||
Official Date: | 9 July 2020 | ||||||||||||
Dates: |
|
||||||||||||
Volume: | 2266 | ||||||||||||
Page Range: | pp. 139-167 | ||||||||||||
DOI: | 10.1007/978-3-030-46762-3_6 | ||||||||||||
Status: | Peer Reviewed | ||||||||||||
Publication Status: | Published | ||||||||||||
Access rights to Published version: | Restricted or Subscription Access | ||||||||||||
Copyright Holders: | © Springer Nature Switzerland AG 2020 | ||||||||||||
Date of first compliant deposit: | 30 January 2019 | ||||||||||||
Date of first compliant Open Access: | 9 July 2021 | ||||||||||||
RIOXX Funder/Project Grant: |
|
||||||||||||
Related URLs: | |||||||||||||
Open Access Version: |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year