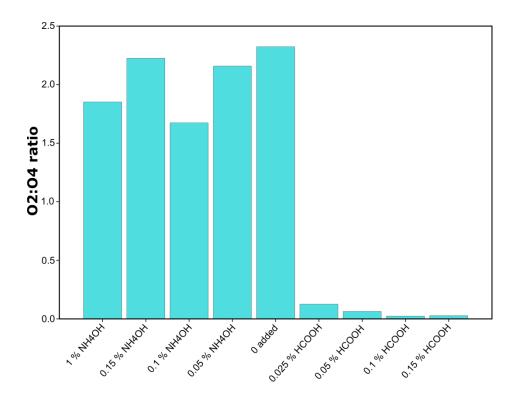
Supporting Information

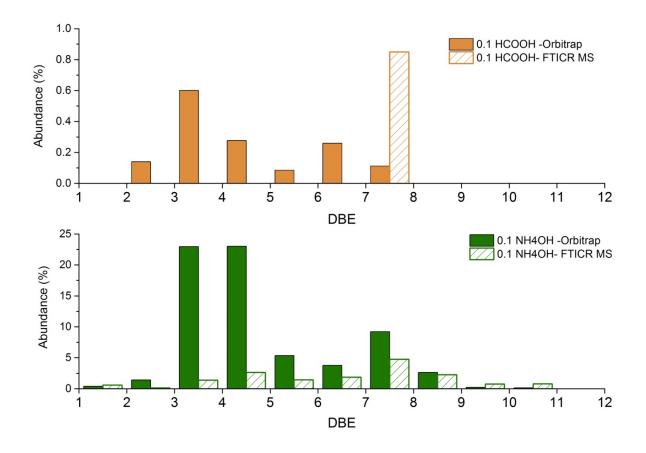
Characterization of oil sands naphthenic acids by negative-ion electrospray ionization mass spectrometry: influence of acidic versus basic transfer solvent

Kerry M. Peru^a, Mary J. Thomas^{b,c}, Diana Catalina Palacio Lozano^{c,d}, Dena W. McMartin^e, John V. Headley^a, and Mark P. Barrow^c*

^a Environment and Climate Change Canada, 11 Innovation Boulevard, Saskatoon, Saskatchewan, S7N 3H5, Canada

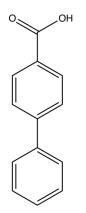

^b MAS CDT, Senate House, University of Warwick, Coventry CV4 7AL, United Kingdom

^c Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom


^d Facultad de Ciencias, Universidad Industrial de Santander, Bucaramanga, Colombia

^e Department of Civil, Geological and Environmental Engineering, 57 Campus Drive, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A9, Canada

* Corresponding author. Department of Chemistry, University of Warwick, Coventry, CV4
7AL, United Kingdom, E-Mail address: <u>M.P.Barrow@warwick.ac.uk</u>, Telephone: +44 (0)24
76151013


Figure S1: Bar chart showing O_2/O_4 ratio for FT-ICR MS data, as a function of base or acid added to OSPW

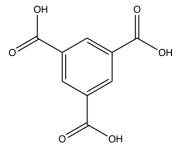
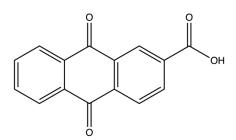


Figure S2: O₂ DBE distributions obtained from negative-ion ESI Orbitrap and FT-ICR MS data using acid pH mobile phase (top) and basic pH mobile phase (bottom) with OSPW extract

Table S1: O₂, O₄, and O₆ compounds run using FT-ICR MS to monitor signal response as a function of additives used


Compound	Additive	Intensity / a.u.	Apparent pH
Biphenyl-4-carboxylic acid	0.1 % NH4OH	5.34E+10	8.91
$(C_{13}H_{10}O_2)$	0.1 % HCOOH	4.79E+08	3.52
Anthraquinone-2-carboxylic	0.1 % NH4OH	5.46E+10	9.19
acid (C ₁₅ H ₈ O ₄)	0.1 % HCOOH	3.31E+09	3.68
Trimesic acid	0.1 % NH4OH	2.81E+10	8.75
(C9H6O6)	0.1 % HCOOH	1.86E+10	3.59

Biphenyl-4-carboxylic acid

Trimesic acid

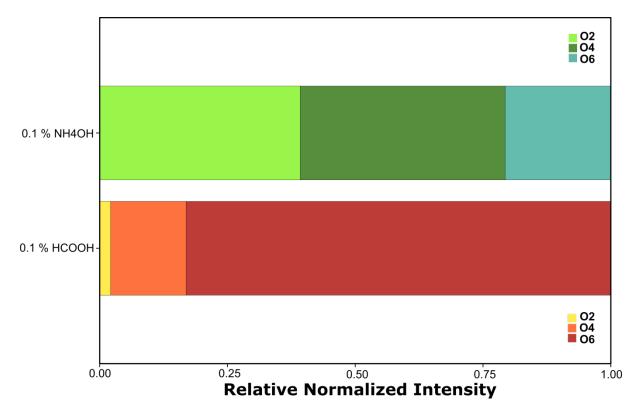

Anthraquinone-2-carboxylic acid

Figure S3: Structures of the three compounds used to study signal intensity as a function of the additives used

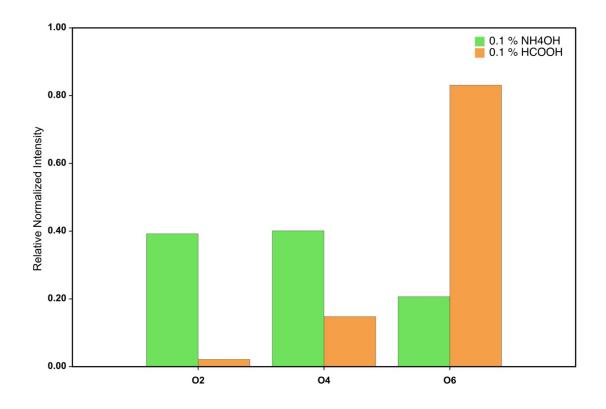


Figure S4: Normalized bar chart showing signal ratios acquired by FT-ICR MS of only the

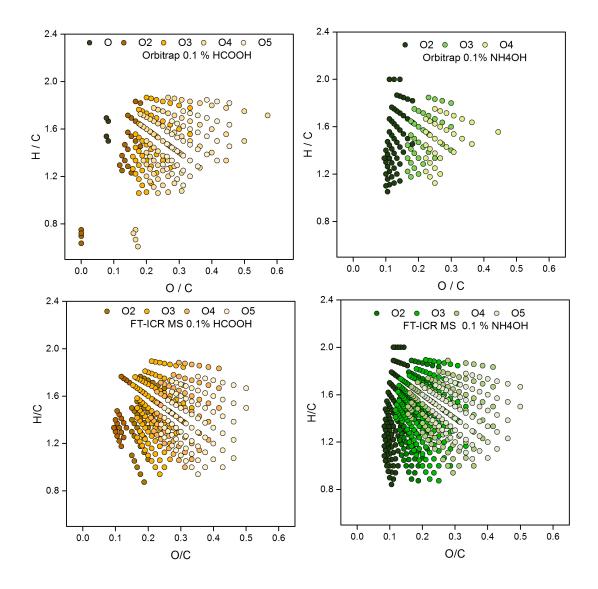

individual O2 and O4 compounds, for comparison with the results using the OSPW sample

Figure S5: Normalized bar chart showing signal ratios acquired by FT-ICR MS of individual O₂, O₄, and O₆ compounds

Figure S6: Relative normalized signals acquired by FT-ICR MS of the individual O₂, O₄, and O₆ compounds; alternative representation of data shown in Figure S5

Figure S7: H/C against O/C van Krevelen plots for the 0.1% HCOOH and 0.1% NH₄OH solutions. Note that the number of relevant molecular compositions used will be higher than the number of data points within the plots; multiple molecular compositions may have the same H/C and O/C ratios, thus resulting in overlapping data points