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RESCALED OBJECTIVE SOLUTIONS OF FOKKER-PLANCK AND BOLTZMANN

EQUATIONS

KARSTEN MATTHIES ∗ AND FLORIAN THEIL †

Abstract. We study the long-time behavior of symmetric solutions of the nonlinear Boltzmann equation and a closely related

nonlinear Fokker-Planck equation. If the symmetry of the solutions corresponds to shear flows, the existence of stationary solutions

can be ruled out because the energy is not conserved. After anisotropic rescaling both equations conserve the energy. We show

that the rescaled Boltzmann equation does not admit stationary densities of Maxwellian type (exponentially decaying). For the

rescaled Fokker-Planck equation we demonstrate that all solutions converge to a Maxwellian in the long-time limit, however the

convergence rate is only algebraic, not exponential.
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1. Introduction. Symmetric solutions play a very important role in materials sciences. The reason is that

the fundamental laws of physics exhibit many symmetries such as translation and rotation invariance, those

symmetries lead to the existence of time-dependent solutions that are invariant under the action of a symmetry

group.

The term ‘objective solution’ has been coined by Dumitrică and James in [17] for the case where the symme-

try group is a subgroup of the Euclidean symmetry group motivated by molecular dynamics simulations and

other engineering applications. We will study objective solutions in the case where the symmetries consist of

translations. For the purpose of this paper we say that for a given matrix S ∈ Rm×n a function f : Rn → R is

S-objective if f(ξ+η) = f(ξ) for all η ∈ kerS, or equivalently requirement f(ξ) = g(S ξ) for some g : Rm → R.

We will be mostly interested in the kinetic setting where ξ = (z,w), z being the position and w the velocity. It

is important to realize that translation invariance implies that the configuration space is unbounded, therefore

extensive thermodynamic quantities such as energy are automatically infinite. Moreover as we are dealing with

open systems, it is not necessarily the case that local energy densities are conserved even if the equation of

motion are conservative.

The properties of the symmetric solutions depend strongly on the choice of S, we analyse here one interesting

S which leads to a non-conservative system, but ideas will be also relevant for other S. If n = 2d, Id ∈ Rd×d
is the identity matrix and S = (Id, 0) ∈ Rd×2d one obtains solutions that are independent of ξ and the choice

S = (Id,±Id) yields expanding and contracting flows where w = ∓z. We will study Couette flows/shear flows

where

S = (−µα⊗ β, Id),

with µ ∈ R being the shear parameter, α,β ∈ Rd being orthonormal. To see that S corresponds to shear-flows

observe that

ker(S) = span{(α, 0), (β, µα)}

so that

f(z + xα+ y β,w + µ yα) = f(z,w).

One of the key obstacles to studying the long-time behaviour is the fact that stationary solutions do not exist

as the energy density of symmetric solutions increases with time. A popular approach to overcome the problem

of energy growth is to consider rescaled objective solutions [20, 10, 11, 17] and in particular [23]. We revisit the

concept of rescaled objective solutions for the Boltzmann equation and a Fokker-Planck equation with similar

properties. In contrast to much of the earlier work, our results are based on the notion of anisotropically rescaled

solutions, the non-autonomous anisotropic coordinate change will fix the second moment tensor. We analyze

the corresponding rescaled - now non-autonomous – equations and obtain the following results for the nonlinear

Fokker-Planck equation (A) and the Boltzmann equation with hard sphere collisions (B).

A) Characterization of stationary solutions and sharp estimates of the convergence rate (Theorem 3.2).

The convergence rate is algebraic.
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B) Characterization of the collision invariants and a rigorous proof that stationary solutions are not

Maxwellian (Theorem 4.1).

The main difference between the nonlinear Fokker-Planck equation and the Boltzmann equation is that the

former has a purely local dissipation term whereas the Boltzmann equation involves a nonlocal and nonlinear

collision operator. As a result we can obtain much more detailed information about the long-term behaviour

of rescaled objective solutions of the Fokker-Planck equation than the Boltzmann equation. In the conservative

case it is well known that the Maxwellian is the unique stationary solution of the Fokker-Planck equation and the

Boltzmann equation. Moreover solutions of the linear Fokker-Planck equation and the nonlinear, homogeneous

Boltzmann equation converge to the equilibrium at an exponential rate, cf. [12] and [29]. For the inhomogeneous

Boltzmann equation the problem of establishing exponential convergence to the equilibrium is closely linked to

Cercignani’s conjecture, an overview can be found in [14].

The behaviour of the rescaled objective solutions is quite different. In the case of the Fokker-Planck equation

the equilibrium after the anisotropic scaling is still a Maxwellian, but the rate of convergence is only algebraic.

While it is not known whether the rescaled Boltzmann equation for hard spheres admits stationary solutions our

results imply that even if one exist it is not of exponential type. In particular, Maxwellians are not equilibria.

We point out that existence of renormalized stationary solutions of the Boltzmann equation with Maxwellian

interaction has been established in [23].

The main method to analyse the long-term behaviour of the Fokker-Planck equation is an adaption of hypoco-

ercivity in a non-autonomous setting. Convergence to equilibria in degenerate dissipative equations preserving

mass has attracted major interest starting with the use of logarithmic Sobolev inequalities, entropies and other

functional analytic tools [30, 27]. These methods could be applied to Fokker-Planck equations [1, 7] as well

as some Boltzmann equations [4, 13]. A general abstract approach for evolution equations consisting a (pos-

sibly) degenerate dissipative part and some conservative part was introduced by Villani with his concept of

hypocoercivity [33], see also [15]. This method has successfully been adapted in many contexts like a linear

operator in some vorticity formulations [19], a wide class of dissipative kinetic equations [16], a generalized

Langevin equation [31] and the meta-stability of bar states in Navier-Stokes equations [3]. Recent extensions of

the theory include [15] for classes of linear kinetic equations, [28] for kinetic Fokker-Planck equations, and [2]

for a modified general approach using a generalised Bakry-Émery calculus.

Our methodological contribution is an adaption to non-autonomous nonlinear equations by combining the

abstract hypocoercivity result for a limiting problem in a Duhamel formula with a priori estimates for higher

derivatives of the full equation. These a priori estimates are indeed obtained using a calculus inspired by

hypocoercivity. A crucial ingredient is the detailed asymptotic analysis of the anisotropic rescaling, which can

be obtained from closed ordinary differential equations for the second moments of the rescaled Fokker-Planck

solutions. Indeed, higher order moment equations are used to derive lower algebraic estimates in the convergence

rate for typical initial data. The lack of detailed knowledge about the second moments implies that we have a

less explicit control of the anisotropic rescaling in case of objective solutions to the Boltzmann equation, such

that the characterization of a limit distribution and their convergence rates is beyond the scope of this paper.

The rest of the paper is organised as follows. In Section 2 we collect some fundamental properties of objective

functions. The results for Fokker-Planck situation are given and proved in Section 3. The corresponding analysis

for the Boltzmann equation is in Section 4. We give a short summary and conclusion in Section 5. The proofs

of some technical results not relevant for the main argument are postponed to the Appendix.

2. Objective functions.

Definition 2.1. Let S ∈ Rl×n a matrix. A function f ∈ L1
loc(Rn) is called S-objective if f(ξ+η) = f(ξ) for

all η ∈ kerS.

A classical result for functions which are invariant under the action of a symmetry group is the Hilbert-Weyl

theorem which states that the ring of invariant polynomials has a basis, cf. e.g. [21]. We require a closely

related result for measurable functions.

Proposition 2.2. Let S ∈ Rl×n a matrix. Let f ∈ L1
loc(Rn) be a measurable function. The following are

equivalent:

1. f is S-objective.

2. ∇ · (fT ) = 0 if T ∈ Rn×l has the property that rangeT = kerS.
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3. There exists a measurable function g : range(S)→ R such that f(ξ) = g(Sξ).

The proof is standard, we include it for the convenience of the reader.

Proof. 1. implies 2.:

It suffices to show that
∫
f ∇ϕ · η dξ = 0 for each η ∈ kerS and each smooth and compactly supported

testfunction ϕ. As f is S-objective one finds that

0 = lim
h→0

1

h

∫
(f(ξ + hη)− f(ξ))ϕ(ξ) dξ = lim

h→0

1

h

∫
(ϕ(ξ − hη)− ϕ(ξ)) f(ξ) dξ = −

∫
(∇ϕ · η) f dξ,

which is the claim.

2. implies 1.:

As rangeT = kerS there exists a ∈ Rl such that η = Ta. Then

f(ξ + η)− f(ξ) =

∫ 1

0

d

ds
f(ξ + sη) ds =

∫ 1

0

∇f(ξ + sη) · η ds =

∫ 1

0

∇ · (f(ξ + sη)T )a ds = 0.

1. implies 3.:

Define the operator S̄ : range(S∗) → range(S) by S̄ = S|range(S∗). Observe that S̄ is invertible and define

g(ξ) = f(S̄−1ξ).

3. implies 1.:

If η ∈ kerS, then

f(ξ + η) = g(S(ξ + η)) = g(Sξ) = f(ξ).

We are interested in a shear flow setting where α,β ∈ Rd are orthonormal vectors, n = 2d and

S = (−µα⊗ β, Id) ∈ Rd×2d.

As kerS = span{(α, 0), (β, µα)} any S-objective function f satisfies

(2.1) f(z,w) = f(z + xα+ y β,w + µ yα) for all x, y ∈ R.

Moreover, by Proposition 2.2 part 2.

∇zf ·α = 0,

∇zf · β + µ∇wf ·α = 0,

or equivalently

(2.2) ∇zf = −µ (∇wf ·α)β.

Our results are based on the observation that the representation of objective functions as in Proposition 2.2 is

not unique because S is not fully determined by the null space. A careful choice of the representation can lead

to interesting results.

Definition 2.3. Let S ∈ Rn×d be a matrix. A function f is rescaled S-objective if it admits the representation

(2.3) f(ξ) = det η G(η S ξ)

for some density G, where η ∈ Rd×dsym .

In the shear flow setting one obtains the scaling relation

(2.4) p = η (w + µα⊗ βz),

and the corresponding differential relation

(2.5) ∇wf = η∇pG.

Rescaled solutions for the Boltzmann equation in shear flow settings have been considered in numerous publica-

tions, in particular [10] and [20]. Our main contribution to this topic is the consideration of a renormalization

operator η which is non-isotropic, i.e. η 6= λ Id for all λ ∈ R.
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3. The Fokker Planck case. The Fokker-Planck equation is typically considered as the Kolmogorov

forward equation of a Brownian particle in a fluid. It has also been proposed as an approximation of the

Boltzmann equation e.g. in [26, 9]. Furthermore [22, 18] use Fokker-Planck equations to study grazing collisions

in the Boltzmann equation and the Kac model. Carlen and Gangbo use a Fokker-Planck equation also as model

problem in [5] for the descent in a Wasserstein metric in kinetic equations, further extensions are given in [6].

Normally the kinetic energy θ is a fixed parameter in the Fokker-Planck equation. In our setting we assume

that θ depends on the density f , as a result the structural properties of the solutions are very similar to the

solutions of the Boltzmann equation. In particular mass, momentum and energy are conserved, however energy

conservation only holds for µ = 0. Let ξ = (z,w) ∈ R2d{
∂tft(ξ) = Lft(ξ) ξ ∈ R2d, t > 0,

f0(ξ) = g0(S ξ) ξ ∈ R2d, t = 0,
(3.1)

with g0 ∈ L1(Rd), g0 ≥ 0,

Lf(z,w) = −w · ∇zf(z,w) + ∆wf(z,w) +
ρ(z) d

2θ(z)
∇w · (f(z,w) (w − 1

ρ(z)
v(z)),

and thermodynamic quantities depending on the space variable z

ρ(z) =

∫
f(z,w) dw (density),

θ(z) =
1

2

∫
|w − ρ−1v(z)|2 f(z,w) dw (kinetic energy),

v(z) =

∫
w f(z,w) dw (momentum).

For the solutions of interests integration over z will not lead to finite quantities. However the motivation for

(3.1) is that it is similar to the classical Boltzmann equation as it has comparable conservation properties. To

see this we define for S-objective solutions the standard thermodynamic quantities, which can depend on time

along a solution ft, by evaluating at z = 0

mt = ρt(0)(mass), v̄t = vt(0)(momentum) and θt = θt(0) (energy).

The values for other z are then determined by objectivity.

Proposition 3.1. Let d = 2 and let f be a solution of (3.1) and (2.1) such that sup0≤t<T θ[ft] <∞. Then

there exists gt such that ft(ξ) = gt(S ξ). Furthermore, mass m and v̄ are conserved.

If µ = 0, then energy θ is also conserved. If fM is a Maxwellian, i.e. fM (w) = exp(h(w)) and

h(w) = a+ b ·w + c |w|2,

for some a ∈ R, b ∈ R2, c < 0, then f is a stationary solution. Any spatially homogenous f with f(.)(1 + |.|2) ∈
L1(R2) converges to some fM with an exponential rate as t→∞.

The existence of gt immediately follows from Proposition 2.2. The rest of the proof mainly involves direct

calculations, which we postpone to the appendix.

Equations (3.1) and (2.1) do not admit stationary solutions if µ 6= 0. We now aim to characterize the

asymptotic behavior of objective solutions for non-zero µ. The main result of this section states that there

exists a time-dependent rescaling operator ηt such that Gt converges to a Maxwellian as t→∞.

Theorem 3.2. Let d = 2. There exists ηt ∈ C1([0,∞),R2×2
sym) such that the rescaled Fokker-Planck equation

(3.2)

{
∂tGt = ∇ ·

(
Gt(p) (θt

−1Id− F t)p+ η2
t∇Gt

)
, t > 0, p ∈ R2,

F t = (η̇t − µ ηtα⊗ β) η−1
t , t > 0,

admits a global solution Gt if G0 ∈ L1 ∩ L∞ and
∫
R2 G0(p)(1 + |p|2) dp <∞. The density f , which is defined

by (2.3), satisfies (3.1) and (2.1).
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Furthermore, assume
∫
R2 G0(p) dp = 1 and

∫
R2 G0(p)p dp = 0. The density Gt converges to the Maxwellian

GM (p) = (4π)−
d
2 exp(− 1

4 |p|
2) for large t in the L1 sense with an algebraic rate, i.e. there exist λ−, λ+ > 0 such

that

lim sup
t→∞

tλ−‖Gt −GM‖L1(R2) <∞ for all G0(3.3)

and

lim inf
t→∞

tλ+‖Gt −GM‖L1(R2) > 0(3.4)

for G0 in an open dense set of admissible initial data with
∫
R2 G0(p)(1 + |p|6) dp <∞.

Furthermore, for t→∞ the rescaling operator ηt admits the asymptotics:

ηt =
1

µ t
3
2 +O(t)

(
√

3α⊗α+ 3(α⊗ β + β ⊗α) + 2µtβ ⊗ β).(3.5)

Remark 3.3. 1. The assumption that d = 2 is not necessary. The same result can be obtained if d ≥ 2

at the expense of more complicated notation.

2. If µ 6= 0 the energy is not conserved. As a result (3.1) is nonlinear, hence even long-time existence and

uniqueness of solutions is not completely trivial.

3. The fact that Maxwellians are global attractors of the dynamics is typically attributed to the observation

that the entropy is a Lyapunov functional. We show in the appendix that the functional

(3.6) S[G] =

∫
R2

(
logG(p) +

1

2
|p|2

)
G(p) dp

decreases for solutions of Fokker-Planck equation under shear S-objectivity. However, this observation

is not sufficient for the solutions to converge to the minimum of S as the dissipation operator ∇· (η2
t∇.)

degenerates for t→∞ as in (3.5).

4. The algebraic order λ− > 0 follows from Proposition 3.8 below. It is not explicit as we use an abstract

result of [33] to obtain it. Similarly, our calculation of the constant for the lower bound λ+ is relatively

crude. The lower algebraic estimates are based on a detailed understanding of fourth and sixth order

moment equations. The analysis provides lower estimates for all such data, which have -after rescaling

with ηt- different fourth moments compared to GM . However, our method does not provide explicit

estimates if the fourth moments of the initial distribution and the corresponding Maxwellian coincide.

5. We can also consider general
∫
R2 G0(p) dp = m > 0 and

∫
R2 G0(p)p dp = mv ∈ R2. A translation

of the coordinate system can remove the drift, the different mass will need to be introduced in the

normalisation condition (3.11) for ηt below. Then G will converge mGM (.+ v).

The proof will take up the rest of this section. It involves several steps.

1. In the beginning of subsection 3.1 we derive a differential equation for the representative g of the

S-objective function f and construct a solution to this equation in Proposition 3.4.

2. In subsection 3.2 we define the rescaling operator ηt and the shape G. Their asymptotic behaviour is

obtained from a closed system of moment equations as stated in Proposition 3.5.

3. The main ingredients of the convergence proof is given in subsection 3.3. We show that the Maxwellian

GM is an equilibrium and use Proposition 3.5 to identify the leading terms in (3.2). After an appropriate

rescaling of time the equation has the form of a autonomous degenerate parabolic part plus small

non-autonomous perturbations. Hypocoercivity estimates are used for the autonomous degenerate

parabolic part in H1 relative to the Maxwellian. Additional a priori estimates for the full equation in

higher Sobolev norms are provided using calculations inspired by the hypocoercivity framework. The

convergence results follows with a Duhamel formula.

4. The equations for fourth and sixth moments are used in 3.4 to obtain the lower estimates.

5. The proof is summarised in subsection 3.5.
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3.1. Reformulation and regularity. To minimize the notation we will assume that
∫
G0(p) dp = 1 and∫

G0(p)p dp = 0, i.e. m = 1 and v̄ = 0.

If ft is an objective solution, i.e. ft(z,w) = gt(w + µα⊗ βz) then by (3.1) and (2.2) gt satisfies

∂tg = µ (∇wg ·α) (β ·w) + ∆wg + θ−1∇w · (g(w)w)

= ∇w ·
(
g(w)

(
θ−1Id + µα⊗ β

)
w
)

+ ∆wg.(3.7)

A rescaled objective solution Gt(p) = det η−1
t gt(η

−1
t p) with p = ηtw satisfies

∂tGt(p) = ∂t
(
g(η−1

t p) det η−1
t

)
= (∂tg −∇wg · η−1

t η̇tη
−1
t p− tr (η−1

t η̇t) g) det η−1
t

=
(
∂tg −∇w · (g η−1

t η̇tw)
)

det η−1
t

=
(
∇w ·

(
g(η−1

t p)
(
θ−1Id + µα⊗ β

)
w
)

+ ∆wg −∇w · (g η−1
t η̇tw)

)
det η−1

t

Now observe that ∇w = ηt∇p. Continuing the above calculation we obtain

∂tGt =
(
∇p · ηt

(
Gt(p)

(
θ−1Id + µα⊗ β

)
η−1
t p

)
+∇p(gt η̇tη

−1
t p)

)
det η−1

t +∇p · η2
t∇pGt

= ∇p ·
(
Gt(p) (θ−1Id− (η̇t − µ ηtα⊗ β) η−1

t )p+ η2
t∇pGt(p)

)
which is (3.2).

Next we show that equation (3.2) admits unique solutions for arbitrary times. It suffices to consider the case

ηt = Id because for a general function ηt ∈ C1([0,∞),R2×2) the density G(p) = det η−1
t g(η−1

t p) satisfies (3.2)

if g solves (3.7).

We formulate the underlying regularity result next. The diffusion term ∆wg is the generator of the strongly

continuous semigroup on L2(R2) via convolution with the classical heat kernel Φt(·) = 1
4πt exp

(
− |·|

2

4t

)
for t > 0.

Following e.g. [25], the kernel Φt(·) also generates equispectral semigroups on weighted Lp spaces like L2
2(R2),

i.e. the space of integrable function that satisfy
∫
R2 g

2
0(w)(1 + |w|2) dw <∞.

Due to θ the equation (3.7) is nonlinear in g, furthermore the factor w makes the divergence terms unbounded.

Hence we need to take care to define a mild solution to (3.7) to be a solution in L2
2(R2) of the form

(3.8) gt = [Φt ∗ g0] +

∫ t

0

Φt−s(.) ∗ (µ∇ · (gs(.)α⊗ β.) + θ−1∇ · (gs(.) .) ds.

Proposition 3.4. Let g0 ∈ L1(R2) ∩ L∞(R2). If
∫
R2 g0(w)(1 + |w|2) dw < ∞, then (3.7) admits a unique

mild solution for all t > 0 such that
∫
R2 gt(w)(1 + |w|2) dw <∞. Furthermore gt is smooth for t > 0.

Proof. By Hölder’s inequality, we have g0 ∈ L2
2(R2), such that the first term Φt ∗ g0 in (3.8) is well-defined.

We will obtain a mild solution as in (3.8) via an approximation scheme using non-autonomous bounded pertur-

bations. Let

χn(w) =

{
w, if |w| < n

nw/|w|, otherwise.

and θ0 = 1, we define recursively for n ∈ N as a non-autonomous Miyardera perturbation, see e.g. [32], the

following mild solution

(3.9) gnt = [Φt ∗ g0] +

∫ t

0

Φt−s(.) ∗ (µ∇ · (gns (.)α⊗ βχn(.)) + θ−1
n−1∇ · (gns (.)χn(.)) ds.

By the properties of the convolution, we see that gn is smooth for t > 0 and gives a classical solution as the

second convolution in (3.9) is well-defined. For a fixed time T > 0 standard a priori estimates give uniform

bounds in L∞((0, T ), L2
2(R2)) and L2((0, T ), H1

2 (R2)). Differentiating θn with respect to t gives

dθn
dt

=
1

2

∫
R2

|w|2(µ∇ · (gnt α⊗ βw) + ∆gnt + θ−1
n−1∇ · (gnt w)) dw

=
1

2

∫
R2

|w|2∆gnt dw︸ ︷︷ ︸
=2

−µ
∫
R2

(w ·α)(β ·w) gnt dw − θ−1
n−1

∫
R2

|w|2 gnt dw︸ ︷︷ ︸
=2θn

≤ C + (|µ|+ 2

θn−1
) θn.
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Thus with a Gronwall estimate, θn and θ̇n remain bounded. Similarly

d

dt
(θn)−1 = − dθn

dt

1

θ2
n

= − 1

θ2
n

(
2− µ

∫
R2

(w ·α)(β ·w) gnt dw − θ−1
n−12θn

)
≤ −2

θ2
n

+ (|µ|+ 2

θn−1
) (θn)−1

=
−2

θn

(
1

θn
− 1

θn−1

)
+ |µ|(θn)−1,(3.10)

which also shows that θ−1
n and d

dt (θn)−1 remain bounded on (0, T ) as for fixed n the penultimate line gives that

θ−1
n cannot grow beyond |µ|/2 + θ−1

n−1. We obtain the bound θ−1
n (t) ≤ 1

θ0
exp(|µ|t) for t ∈ (0, T ) uniformly in

n by induction: For n = 0, θ−1
0 is constant and trivially θ−1

0 (t) ≤ 1
θ0

exp(|µ|t) for t ∈ (0, T ). Now suppose the

estimate holds up to n−1. If θ−1
n (t) ≥ 1

θ0
exp(|µ|t), then θ−1

n ≥ θ−1
n−1, such that the nonlinear term is negative in

the last line of (3.10), such that d
dt (θn)−1 ≤ |µ|(θn)−1. This implies the Gronwall estimate θ−1

n (t) ≤ 1
θ0

exp(|µ|t)
for t ∈ (0, T ).

All bounds combined give a subsequence, which we do not relabel, such that gn → g weakly in

L2((0, T ), H1
2 (R2)), gn → g weak star in L∞((0, T ), L2

2(R2)), θn → θ strongly in C0(0, T ) by Arzela-Ascoli, such

that 1/θ is also bounded. Then the nonlinear term will converge weakly to θ−1∇w ·(g(.) .) in L2((0, T ), L2
1(R2)).

Next we show that g satisfies (3.8). We first observe that when the integral in the variation-of-constants formula

is restricted to ∫ t−δ

0

Φt−s(.) ∗ (µ∇ · (gns (.)α⊗ β.) + θ−1
n−1∇ · (gns (.) .) ds

for any δ > 0 then weak convergence in L2((0, T ), L2(R2)) is enough to show its convergence to∫ t−δ

0

Φt−s(.) ∗ (µ∇ · (gs(.)α⊗ β.) + θ−1∇ · (gs(.) .) ds,

as Φt−.(.) ∈ L2((0, t− δ)× R2). The remainder term is O(
√
δ), which ensures convergence, such that the weak

limit of the subsequence gn satisfies (3.8), which implies differentiability for t > 0. To show uniqueness consider

two solutions g, h with θ[g]−1 and θ[h]−1 bounded for the same initial data. We obtain the inequalities

d

dt
‖g(t)− h(t)‖L2

2
≤ Cθ[g(t)]−1‖g(t)− h(t)‖L2

2
+ C

∣∣θ[g(t)]−1 − θ[h(t)]−1
∣∣

d

dt

(
θ[g(t)]−1 − θ[h(t)]−1

)
≤ C‖g(t)− h(t)‖L2

2
+ C

∣∣θ[g(t)]−1 − θ[h(t)]−1
∣∣

which show g = h using the Gronwall inequality. This also yields that there is a unique limit for the weakly

convergent subsequence.

3.2. Moment equations. The next step is to study the evolution equations of the moments of g and G.

A careful analysis of the moments of g and G will deliver

1. The rescaling operator ηt by requiring that

(3.11)
1

2

∫
G(p)p⊗ p dp = Id

holds for all t ≥ 0.

2. Tightness of p2G(p).

An easy calculation shows that (3.11) holds if

(3.12) ηt = T−
1
2 ,

where

T =
1

2

∫
gt(w)w ⊗w dw
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is the Cauchy stress tensor for g. Indeed,

1

2

∫
G(p)p⊗ p dp =

det ηt
2

∫
(ηtw)⊗ (ηtw)G(ηtw) dw = ηt T η

∗
t

as required.

Finally we characterize the long-time behaviour of Gt if ηt = T−
1
2 . The result are summarised in the next

proposition.

Proposition 3.5. Let G be a solution of (3.2) with initial data as in Theorem 3.2 and ηt = T−
1
2 , then the

following asymptotics hold for t→∞:

ηt =
1

µ t
3
2 +O(t)

(
√

3α⊗α+ 3(α⊗ β + β ⊗α) + 2µtβ ⊗ β),(3.13)

T−1 =
2

t+O(1)

(
6

(µt)2
α⊗α+

3

µt
(α⊗ β + β ⊗α) + 2β ⊗ β

)
,(3.14)

θ−1 = O(t−3),(3.15)

F = (η̇t − µηtα⊗ β) η−1
t(3.16)

= − 1

2t+O(1)

(
O(1/t2)α⊗α+

√
3(α⊗ β − β ⊗α) + 4β ⊗ β

)
.

Furthermore there exist c, λ̄, λ′ > 0 such that for all permissible G0 ∈ L1
6(R2) we have that

(3.17)

∫
R2

∣∣(Gt −GM )(p)
∣∣ |p|6 dp = O(1 + tλ

′
)

and for an open dense set of initial data G0 ∈ L1
6(R2) there exists c > 0 such that for sufficiently large t

(3.18)

∣∣∣∣∫
R2

(Gt −GM )(p) |p|4 dp

∣∣∣∣ > ct−λ̄.

Proof. We will first establish formulae (3.13), (3.14), (3.15) and (3.16) by carefully analyzing the second

moments. Formulae (3.17) and (3.18) follow from cruder estimates of higher moments.

Second moments. The stress tensor T = 1
2

∫
gt(w)w ⊗ w dw satisfies a simple ordinary differential

equation. Multiplying (3.7) with 1
2w ⊗w and integrating by parts yields

dT

dt
= Id− µ (α⊗ β T + T β ⊗α)− 2

trT
T.(3.19)

To characterize the asymptotic behavior of T as t→∞ we define the rescaled moments a, b, c by the requirement

T = t3 aα⊗α+ t2 b (β ⊗α+α⊗ β) + t cβ ⊗ β.

Then (3.19) reads

3 t2 aα⊗α+ 2 t b (β ⊗α+α⊗ β) + cβ ⊗ β + t3
da

dt
α⊗α+ t2

db

dt
(β ⊗α+α⊗ β)

+t
dc

dt
β ⊗ β

= α⊗α+ β ⊗ β − µ
(
2t2bα⊗α+ tc (α⊗ β + β ⊗α)

)
− 2

a t3 + c t

(
t3 aα⊗α+ t2 b (β ⊗α+α⊗ β) + t cβ ⊗ β

)
The equations for the individual components read

α⊗α :0 = 3t2a+ t3
da

dt
− 1 + 2t2µb+

2aet3

at3 + ct
,

α⊗ β :0 = 2tb+ t2
db

dt
+ µtc+

2t2b

at3 + ct
,

β ⊗ β :0 = c+ t
dc

dt
− 1 +

2ct

at3 + ct
.

8



After rescaling time as well so that t = exp(s) and d
dt = exp(−s) d

ds equation (3.19) takes the form

(
d

ds
−M

) a

b

c

 =

 exp(−2s)

0

1

+
2

exp(2s) a+ c

 a

b

c


with

M =

 −3 −2µ 0

0 −2 −µ
0 0 −1

 .

As the spectrum of M is given by λ1 = −1, λ2 = −2, λ3 = −3 with corresponding eigenvectors v1 =

(1, 0, 0),v2 = (−2µ, 1, 0),v3 = (µ2,−µ, 1) a simple application of the variation of constants formula delivers the

asymptotic result  a

b

c

 = M−1

 0

0

1

+O(exp(−s)) =

 1
3µ

2

− 1
2µ

1

+O(t−1).

This implies that the stress tensor admits the asymptotic result

(3.20) T = (t+O(1))T∞, t→∞

where

T∞ =
1

3
(tµ)2α⊗α− 1

2
tµ (α⊗ β + β ⊗α) + β ⊗ β.

We can bootstrap this step by plugging (3.20) into (3.19). This shows that the function t → T − t T∞ is

differentiable and satisfies

(3.21)
d

dt
(T − t T∞) = O(t−1), t→∞.

These asymptotics give results for ηt, η
−1
t , η̇t and T−1. Then as θ−1 = (trT )−1, this implies (3.14) and one

also has the asymptotic result for F .

Fourth and sixth moments. We are now assuming that the related initial data for G0 satisfy g0 ∈ L1
6(R2)

and using (3.8) we can see that higher moments up to order 6 are well-defined for finite times, these moments

satisfy similar ODEs. These will later allow us to choose suitable initial data for lower estimates on the rate of

decay.

Letting

(3.22) hij(t) =

∫
R2

(Gt(p)−GM (p))pi1p
j
2 dp,

we obtain ordinary differential equations, which only depend on modes of the same or lower order. The moment

of order 0 and 1 (mass and momentum) are preserved by Proposition 3.1 for the evolution of g, in the same

way this also follows for G, where the momentum is assumed to be 0, i.e

(3.23) h00(t) ≡ 0 = h10(t) ≡ h01(t) ≡ 0

The rescaling ηt is defined such that (3.11) holds, i.e.

(3.24) h20(t) ≡ h02(t) ≡ h11(t) ≡ 0.

For the higher moments hij with i+ j > 2 we obtain using integration by parts

d

dt
hij(t) = −

( i+ j

θ
− iF11 − jF22

)
hij + jF12 hi+1 j−1 + iF21 hi−1 j+1(3.25)

+ i(i− 1)(η2
t )11 hi−2 j + ij((η2

t )12 + (η2
t )21)hi−1 j−1 + j(j − 1)(η2

t )22 hi j−2,
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where we assumed without loss of generality that α = (1, 0) and β = (0, 1). Using the information on the

coefficients in Proposition 3.5 we write the moment equations in matrix notation:

d

dt
hij(t) = t−1

∑
k,l

(Nijkl +O(t−1))hkl(t) t� 1,(3.26)

where the operator N is defined by

Nijkl =



−2j if (i, j) = (k, l),

−
√

3
2 j if (i, j) = (k + 1, l − 1),√

3
2 i if (i, j) = (k − 1, l + 1),

2j(j + 1) if (i, j) = (k, l + 2),

0 else.

with the convention that hij = 0 if i + j ≤ 2. The moments of odd order can all be chosen to be 0, which is

preserved by (3.25). Now rescaling time t = exp(s) and d
dt = exp(−s) d

ds equation (3.26) becomes

(3.27)

(
d

ds
−N +O(e−s)

)
h = 0 s� 1,

where the operator N if a lower triangular form. Consider now the truncated operator

(Nijkl)i+j=k+l=4 =



0 2
√

3 0 0 0

−
√

3/2 −2 3
√

3/2 0 0

0 −
√

3 −4
√

3 0

0 0 −3
√

3/2 −6
√

3/2

0 0 0 −2
√

3 −8


.

It has only eigenvalues with negative real parts by the Routh-Hurwitz stability criterion. Using the variation

of constants formula we obtain

(3.28) (hij)i+j=4 = O(exp(−λ̄s))

for some λ̃ > 0. Letting u(s) = exp(−Ns)h(s) changes (3.27) into(
d

ds
+O(e−s)

)
u = 0.

As the O(e−s) term is integrable, bounded initial data u(0) will remain bounded in norm from above and below

for all times s > 0. Hence there is some λ̄ ≥ λ̃

(3.29) lim inf
s→∞

exp(λ̄s) |(hij)i+j=4| > 0

for all nonzero initial data in (3.25). All initial data G0 ∈ L1
6(R2) with a different tensor of fourth order moments

–after the coordinate change η0– compared to GM will have then have nonzero initial data in (3.25), this set is

open and dense in the set of possible initial data in L1
6(R2). Transferring this back to time t gives the algebraic

estimate (3.18) for some c > 0 which depends on the initial value and all t large enough.

A less detailed calculation for the vector h of sixth moments gives then

d

dt
h = N (6)(t)h+O(

1

1 + tα
),

where α > 1 and ‖N (6)(t)‖ = O( 1
1+t ) as t → ∞. After transforming to time s as above we obtain a constant

matrix plus some exponentially small error terms, this is enough using Gronwall’s inequality to conclude that h

grows at most exponentially in s and after transforming back to time t that h grows at most algebraically with

rate tλ
′

such that –without loss of generality– λ′ ≥ 0, this then yields (3.17).
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3.3. Asymptotics of shape equation and hypocoercivity. With the asymptotic information on the

coefficients we can study the shape equation (3.2).

Lemma 3.6. The Maxwellian GM (p) = 1
4π exp(− 1

4 |p|
2) is a stationary solution to (3.2).

Proof. Substituting GM into (3.2) and observing that∇GM (p) = − 1
2G

M (p)p one finds that GM is stationary

if and only if

tr

(
θ−1Id− F − 1

2
η2
t

)
GM (p)− 1

2
p ·
(
θ−1Id− 1

2
(F + F ∗)− 1

2
η2
t

)
pGM (p) = 0.(3.30)

Next, recall that by (3.11) the covariance matrix of G is constant, i.e. d
dt

∫
p ⊗ pG(p) dp = 0. Hence, after

multiplication of (3.2) with 1
2p⊗ p and integration by parts one obtains that

F + F ∗ + η2
t = 2 θ−1Id.(3.31)

Clearly both terms on the left-hand side (3.30) vanish thanks to (3.31).

Although Lemma 3.6 provides a candidate for the attractor of the evolution it is not obvious that limt→∞Gt =

GM holds (in any norm). The reason is that by (3.13) the coercivity constant of the dissipation operator

∇ · η2
t∇ diverges as t → ∞. To show the convergence we use a nonautonomous perturbation to the theory of

hypocoercivity [33] combined with a priori estimates for the full equations.

It is advantageous to rescale time by defining

G̃s = Gexp(s).

As t = exp s and dt
ds = t the density G̃ satisfies the rescaled equation

(3.32) t ∂tG = ∂sG̃ = t∇ ·
(
G̃(p) (θ−1Id− F )p+ η2

t∇G̃
)
.

The coefficients in (3.32) are controlled by proposition 3.5. Next we rewrite (3.32) as a density with respect to

GM , then we obtain for Gt = utG
M ,

(3.33) ∂su = ∇p · (T−1∇u) +∇u ·
(
θ−1Id− F − T−1

)
p

We split the last equation into an autonomous main part using (3.14),(3.15) and (3.16) that provide bounds on

some decaying perturbation.

∂su = 4tr (β ⊗ β∇2u) +∇u ·

(√
3

2
(α⊗ β − β ⊗α)− 2β ⊗ β

)
p(3.34)

+ exp(−s)
{
∇u · (C1α⊗ β + C2β ⊗α+ C3β ⊗ β + C4α⊗α)p

+ (C5 (α⊗ β + β ⊗α) + C6β ⊗ β + C7 exp(−s)α⊗α)∇2u)
}

for some appropriate uniformly bounded non-autonomous coefficients Ci for i = 0, . . . , 7.

For the long-term convergence of solution of the shape equations we use Villani’s concept of Hypocoercivity

[33]. Consider a separable Hilbert space H with inner product 〈·, ·〉, which will be L2(R2, dGM ) in our case.

Let A = (A1, . . . , Am) be an unbounded operator for some m ∈ N with domain D(A) and let B be an un-

bounded antisymmetric operator with domain D(B). The theory reduces the convergence to equilibrium of the

nonsymmetric operator L = A∗A+B, which is not coercive in our case, to the study of the symmetric operator

A∗A + C∗C using the commutator C = [A,B]. Under appropriate conditions this operator is coercive, which

then implies convergence in the abstract Sobolev space H1 with norm ‖h‖2H1 = 〈h, h〉 + 〈Ah,Ah〉 + 〈Ch,Ch〉,
in our case this will coincide with H1(R2, dGM ). The simplest form of the theory is enough for our example

and it is stated next.

Theorem 3.7. [33, Theorem 18] With the above notation, consider a linear operator L = A∗A + B with B

antisymmetric, and define the commutator C := [A,B]. Assume the existence of constants α, β such that
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1. A and A∗ commute with C; Ai commutes with each Aj;

2. [A,A∗] is α-bounded relatively to I and A;

3. [B,C] is β-bounded relatively to A,A2, C and AC

Then there is a scalar product 〈〈·, ·〉〉 on H1(R2, dGM )/K, which defines a norm equivalent to the H1 norm,

such that

(3.35) ∀h ∈ H1/K, 〈〈h, Lh〉〉 ≥ K(‖Ah‖2 + ‖Ch‖2)

for some constant K > 0 depending on α and β. If in addition

A∗A+ C∗C is κ -coercive

for some κ > 0, then there exists a constant λ > 0, such that

∀h ∈ H1/K, 〈〈h, Lh〉〉 ≥ λ〈〈h, h〉〉.

In particular, L is hypocoercive in H1/K, there is a c <∞

‖ exp(−tL)‖H1/K→H1/K ≤ c exp(−λt),

where both λ and c only depend on upper bounds for α and β and lower bounds on κ.

The last theorem is used to show that the leading order of (3.34), i.e. its autonomous part, is hypocoercive.

Then we use the similar splitting Ls = A∗sAs + Bs for the full equation to obtain a priori estimates. Both

ingredients will then combined via a Duhamel formula to provide the convergence result for (3.34).

Proposition 3.8. The autonomous part of (3.34) given by

(3.36) ∂su = 4tr (β ⊗ β∇2u) +∇u ·

(√
3

2
(α⊗ β − β ⊗α)− 2β ⊗ β

)
p

defines a contraction in time in H1(R2, dGM )/K, where K = span{1}, i.e. there exist c, λ > 0 such that

(3.37) ‖ exp(−sL)‖H1/K→H1/K ≤ c exp(−λs).

Proof. Consider L2(R2, dGM ) with inner product 〈u, v〉 =
∫
R2 u(p)v(p)GM (p) dp. We are now writing (3.36)

in Villani’s notation

(3.38) ∂su+ Lu = 0 with L = A∗A+B and B antisymmetric in L2(R2, dGM ).

Choosing coordinates and identifying the canonical basis vectors e1 e2 with α and β respectively, we let

(3.39) (Au)(p1, p2) = 2∂2u(p1, p2) (Bu)(p1, p2) = −
√

3

2
(p2∂1u(p1, p2)− p1∂2u(p1, p2))

Then we obtain the adjoint A∗ of A in L2(R2, dGM ) by integration by parts in the inner product.

(3.40) (A∗u)(p1, p2) = −2∂2u(p1, p2) + p2u(p1, p2),

while B is antisymmetric, such that (3.38) is a reformulation of (3.36). We now check the assumptions of theorem

3.7. We observe C := [A,B] = −
√

3∂1 and then (i) A and A∗ commute with C. Furthermore (ii) holds as

[A,A∗] = 2I. The commutator [B,C] = − 3
2∂2 is relatively bounded by A, hence (iii) holds. The general results

imply then K = KerL = KerA∩KerB consists of constants only. In addition A∗A+C ∗C = −4∂2
2 +2p2∂2−3∂2

1

is coercive on L2(R2, dGM ) using a Poincaré inequality as in [33, Thm A.1]. Then Theorem 3.7 implies there

exist positive constants λ and c such that (3.37) holds, completing the proof.

To obtain a priori estimates, equation (3.34) is rewritten in the form of the last proposition with time-

dependent operators As and Bs.

(3.41) ∂su = −Lsu = −A∗sAsu−Bsu
12



where

As = ηs∇(3.42)

A∗s. = −∇ · (ηs.) +
1

2
pηs.(3.43)

Bsu = −∇u ·
(
θ−1Id− F − 1

2
T−1

)
p.(3.44)

Then by (3.30)

B∗su = ∇u ·
(
θ−1Id− F − 1

2
T−1

)
p+

1

2
p

(
θ−1Id− F − 1

2
T−1

)
p = −Bsu,

such that Bs is anti-symmetric.

Lemma 3.9. Let us be the solution (3.34) obtained from rescaling the solution in Proposition 3.4, then there

is K∗ > 0 such the a priori estimates holds for all s ≥ 1.

(3.45) ‖us‖H1(R2,GM ) + ‖∇us‖H1(R2,GM ) + ‖∇2us‖H1(R2,GM ) ≤ K∗.

Proof. Using the form in (3.41) we estimate the time derivative of the L2 norm

∂s〈us, us〉 =− 2〈Lsus, us〉 = 2〈−A∗sAsus +Bsus, us〉
=2〈Asus, Asus〉 ≤ 0.

The derivatives of ∂1u and ∂2u with respect to p1 and p2 satisfy equations similar to (3.41).

∂s∂1us = −A∗sAs∂1us −Bs∂1us +∇us ·
(
θ−1Id− F − T−1

)
e1(3.46)

∂s∂2us = −A∗sAs∂2us −Bs∂2us +∇us ·
(
θ−1Id− F − T−1

)
e2(3.47)

This yields with the anti-symmetry of Bs

∂s〈∇us,∇us〉 = ∂s (〈∂1us, ∂1us〉+ 〈∂2us, ∂2us〉)
= 2〈As∂1us, As∂1us〉+ 2〈∇us ·

(
θ−1Id− F − T−1

)
e1, ∂1us〉

+ 2〈As∂2us, As∂2us〉+ 2〈∇us ·
(
θ−1Id− F − T−1

)
e2, ∂2us〉

≤ 2〈∇us ·
(
θ−1Id− F − T−1

)
e1, ∂1us〉+ 〈∇us ·

(
θ−1Id− F − T−1

)
e2, ∂2us〉

= 2〈∇us ·
(
θ−1Id− F − T−1

)
,∇us〉

≤ C exp(−s)〈∇us,∇us〉

where autonomous terms in (3.34) either cancel or have a sign, the form of the non-autonomous first-order

terms yields the remainder. Then the Gronwall inequality shows that

〈∇us,∇us〉 ≤ exp

(
C

∫ ∞
1

exp(−σ) dσ

)
〈∇u1,∇u1〉 = exp (C/e) 〈∇u1,∇u1〉

remains bounded for all times s > 1. A similar argument also holds for higher derivatives. We derive differential

equations for higher derivatives:

∂s∂
2
1us = −A∗sAs∂2

1us −Bs∂2
1us + 2∇∂1us ·

(
θ−1Id− F − T−1

)
e1(3.48)

∂s∂2∂1us = −A∗sAs∂2∂1us −Bs∂2∂1us +∇∂1us ·
(
θ−1Id− F − T−1

)
e2(3.49)

+∇∂2us ·
(
θ−1Id− F − T−1

)
e1

∂s∂
2
2us = −A∗sAs∂2

2us −Bs∂2
2us + 2∇∂2us ·

(
θ−1Id− F − T−1

)
e2(3.50)

These equations yield due the properties of As and Bs

1

2
∂s
(
〈∂2

1us, ∂
2
1us〉+ 2〈∂2∂1us, ∂2∂1us〉+ 〈∂2

2us, ∂
2
2us〉

)
≤ 2〈∇∂1us ·

(
θ−1Id− F − T−1

)
,∇∂1us〉+ 2〈∇∂2us ·

(
θ−1Id− F − T−1

)
,∇∂2us〉

≤ C exp(−s) (〈∇∂1us,∇∂1us〉+ 〈∇∂2us,∇∂2us〉) ,
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where the autonomous terms in (3.34) again either cancel or have a sign, the form of the non-autonomous

first-order terms yields the remainder. Using the Gronwall inequality yields a bound on the second derivatives

after an initial regularisation, e.g. for s > 1. Deriving similar equations for third derivatives and estimating

∂s
(
〈∂3

1us, ∂
3
1us〉+ 3〈∂2

2∂1us, ∂
2
2∂1us〉+ 3〈∂2∂

2
1us, ∂2∂

2
1us〉+ 〈∂3

2us, ∂
3
2us〉

)
yields the final required estimate.

It remains to establish the convergence of Gt to GM in L1. It suffices to show that us → 0 in

L2(R2, dGM )/span(1). Indeed, we show convergence of u in the stronger H1(R2, dGM ) norm. Using the

Duhamel principle for the equation

(3.51) ∂sus = −Lus − (Ls − L)us

with L as in (3.38) and Ls as in (3.41). We starting from the positive time 1 for s > 1 to guarantee uniform

bounds for higher derivatives as in Lemma 3.9.

us = exp(−Ls−1)u1 −
∫ s

1

exp(−Ls−σ)(Lσ − L)uσ dσ

Then using the error estimates of Lσ − L in (3.34), Lemma 3.9 together with the contraction property of L in

H1(R2, dGM ) as in proposition 3.8 yields for s > 1

‖us‖H1(R2, dGM )

≤ exp(−λ(s− 1)) ‖u1‖H1(R2, dGM ) +

∫ t

1

‖ exp(−Ls−σ)‖H1→H1‖(Lσ − L)uσ‖H1(R2, dGM ) dσ

≤ exp(−λ(s− 1)) ‖u1‖H1(R2, dGM ) +

∫ t

1

exp(−λ(s− σ))C exp(−σ)K∗ dσ

≤ Cs exp(−min{λ, 1} s)

for some bounded C only depending on the L1 ∩ L∞ norms of the initial data due to initial regularisation.

Undoing the change of time from t to s we also see the rate of convergence is bounded by any algebraic order

greater than min{1, λ}.

3.4. Lower estimates using higher moments. The estimates on the higher moments in the last propo-

sition yield the lower estimates (3.4) in the following way for almost all initial data.

Let BR the ball of radius R in R2, we first note that for all R > 0 using (3.17)∣∣∣∣∫
R2

(G(p)−GM (p)) |p|4 dp

∣∣∣∣
≤R4

∫
BR

|G(p)−GM (p)| dp+R−2

∫
R2\BR

|G(p)−GM (p)| |p|6 dp

≤R4

∫
R2

|G(p)−GM (p)| dp+
C

R2
tλ
′
.

Note that R may depend on t in the above estimate.

Then (3.18) implies with the choice R = R(t) = tλ̄+λ′/2 that∣∣∣∣∫
R2

(Gt(p)−GM (p))|p|4 dp

∣∣∣∣ ≥ 2
C

R2
tλ
′

(3.52)

for t large enough as the right hand side is O(t−2λ̄). Then we obtain that

lim inf
t→∞

t5λ̄+2λ′‖Gt −GM‖L1(R2) = lim inf
t→∞

tλ̄R4‖Gt −GM‖L1(R2)

≥ lim inf
t→∞

tλ̄
[∣∣∣∣∫

R2

(Gt(p)−GM (p)) |p|4 dp

∣∣∣∣− C R−2 tλ
′
]

≥ lim inf
t→∞

tλ̄
1

2

∣∣∣∣∫
R2

(Gt(p)−GM (p)) |p|4 dp

∣∣∣∣ > 0,

where the penultimate estimate is due to (3.52) for sufficiently large t.
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3.5. Summary of the proof of Theorem 3.2. This completes the proof. The statements on the

regularity of G follow from Proposition 3.4. The properties of the rescaling operator ηt are given in proposition

3.5. The convergence was shown at the end of subsection 3.3. The lower estimate (3.4) was given in subsection

3.4.

4. The Boltzmann case. Now we consider the case where f satisfies the Boltzmann equation

∂tf +∇zf ·w = Q[f ] for z,w ∈ R2,(4.1)

together with the S-objectivity condition (2.1). For simplicity the collision operator Q is assumed to be the

hard-sphere kernel

Q[f ](v) =

∫
S1

∫
R2

(f∗f
′
∗ − f f ′) (v − v′) · ν+ dv′ dν

We repeat the reduction steps in Section 3 and obtain the equivalent of equation (3.7):

(4.2)

{
∂tg = µ∇ · (gα⊗ βw) +Q[g],

g|t=0 = g0.

where gt = gt(w) and Q is unchanged (acts on w). As before we define the kinetic energy by

θ[g] =
1

2

∫
R2

|w|2 g(w) dw.

The energy θ is conserved if and only if µ = 0. A quantitative version of this observation delivers the existence

and uniqueness of solutions for all time. For some time-dependent transformation ηt ∈ Rd×d we repeat the

notation (2.4) and define {
p = ηtw,

G(p) = det ηt g(η−1
t p).

Then the collision operator Q can be written in terms of a rescaled collision operator

Qηt [G] = det ηtQ[g],

where

Qηt [G] =

∫
Sd−1

∫
R2

(G∗G
′
∗ −GG′) [ν · η−1

t (p− p′)]+ dp′ dν,

p∗ = p− ηtν ⊗ νη−1
t (p− p′),

p′∗ = p′ + ηtν ⊗ νη−1
t (p− p′).

The function G satisfies the equation

(4.3) ∂tG = Qηt [G]−∇p · (GFp),

with F = (η̇t − µηtα⊗ β)η−1
t as before.

Our results for the Boltzmann case are less detailed than for the Fokker-Planck case. Although it is not

know whether (4.3) admits a stationary solution we can demonstrate that there is no stationary solution of

exponential type.

Theorem 4.1. Equation (4.3) admits a global solutions if G0 ∈ L1, which preserve mass and the renormalized

Cauchy stress tensor

Tηt =
1

2

∫
R2

p⊗ pG dp.

The collision invariants of Qηt are 1, η−1
t p and |η−1

t p|2. The solutions Gt do not converge to a function of

exponential form K exp(h(p)) with h(αp) = αrh(p) ∀α > 0,∀p ∈ R2 and a fixed r > 0 as t→∞. There exists

a G∞ ∈ L1 with ‖G∞‖L1 = 1 and a sequence tj →∞ as j →∞ such that Gtj converges weakly in L1 to G∞.
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The proof involves several parts. The collision invariants are determined in subsection 4.1, the rescaling ηt
is determined in subsection 4.2. The shape of universal equilibria are discussed in subsection 4.3. The global

bounds leading to tightness are given in subsection 4.4, which completes the proof.

Remark 4.2. The question whether (4.3) admits a Lyapunov functional appears to be open. It is not hard to

see, if

S[G] =

∫
R2

G logG dp,

that we have

(4.4)
dS

dt
≤ −1

4

∫
R4

∫
S1

min
s∈[0,1]

(GG′ −G∗G′∗)2

sGG′ + (1− s)G∗G′∗
[ν · η−1

t (p− p′)]+ dν dp′ dp− trF

However the behaviour of F , which will be linked to the stress rates P in (4.9) below, cannot be determined.

Note that the first term in (4.4) is analogous to the standard entropy production in the case where µ = 0. In

particular, it is non-positive. However trP is not necessarily negative and in contrast to Remark 3.3 we cannot

conclude that S is Lyapunov functional.

Proof.

dS

dt
=

∫
R2

(1 + logG) ∂tG dp

=

∫
R2

(1 + logG)(Qηt −∇ · (GFp)) dp =

∫
R2

(Qηt −∇ · (GFp)) logG dp

=

∫
R2

Qηt logG dp+

∫
R2

1

G
∇pG · GFp dp

=

∫
R4

∫
Sd−1

(G∗G
′
∗ −GG′) logG [ν · η−1

t (p− p′)]+ dν dp′ dp− trF

=
1

4

∫
R4

∫
Sd−1

(G∗G
′
∗ −GG′) (logG + logG′ − logG∗ − logG′∗) [ν · η−1

t (p− p′)]+ dν dp′ dp− trF

=
1

4

∫
R4

∫
Sd−1

(G∗G
′
∗ −GG′) (logGG′ − logG∗G

′
∗) [ν · η−1

t (p− p′)]+ dν dp′ dp− trF

≤ −1

4

∫
R4

∫
Sd−1

min
s∈[0,1]

(GG′ −G∗G′∗)2

sGG′ + (1− s)G∗G′∗
[ν · η−1

t (p− p′)]+ dν dp′ dp− trF,

as required.

4.1. Collision invariants and stationary solutions. If we ignore trF in (4.4) it is well known that the

numerator vanishes if G depends only on collision invariants kηt(p) which are characterized by

k + k′ = k∗ + k′∗.

We determine the collision invariants below, but |p|2 is not a collision invariant for general ηt. Note that

every collision invariant k generates a stationary solution G = exp(k) for Qηt , but not in general for the full

equation (4.3).

Lemma 4.3. If G is a zero of Qηt , i.e. Qηt [G] = 0, then there exists a, c ∈ R, b ∈ R2 such that

G(p) = exp
(
a+ b · η−1

t p+ c |η−1
t p|2

)
.

Let kηt(p) = p ·Kηtp with Kηt = (η∗t )−1η−1
t ∈ R2×2

sym. Then k is a quadratic collision invariant.

Proof. Recall that

(4.5) Qηt [G](p) = Q[g](η−1
t p),

where G(p) = det η−1
t g(η−1

t p). It is well known (e.g. [8], Sec. 3.2) that Q[g] = 0 if and only if g = exp(k(p))

where k is a collision invariant, i.e.

k(p) = a+ b ·w + c|w|2.
Thus, Qηt [G] = 0 if and only if G = a+ b · η−1

t p+ c|η−1
t p|2, which is the claim.
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4.2. Choice of rescaling. It is not hard to see that collisions do not conserve standard kinetic energy of

p and p′. Indeed

|p∗|2 + |p′∗|2 = |p− ηtν ⊗ νη−1
t (p− p′)|2 + |p′ + ηtν ⊗ νη−1

t (p− p′)|2

= |p|2 + |p′|2 − 2(p− p′) · ηtν ⊗ νη−1
t (p− p′) + 2(p− p′) · η−1

t ν ⊗ νη2
t ν ⊗ νη−1

t (p− p′)
= |p|2 + |p′|2 + (p− p′) · Cν(p− p′),(4.6)

where

Cν = [(ν · η2
t ν)η−1

t ν ⊗ νη−1
t − ηtν ⊗ νη−1

t ]sym.

The stress rates are given by

Pηt =
1

2

∫
R2

p⊗ pQηt dp,

so that

trPηt =
1

2

∫
R4

∫
S1

|p|2 (G∗G
′
∗ −GG′) [ν · η−1

t (p− p′)]+ dν dp′ dp

=
1

4

∫
R4

∫
S1

(|p|2 + |p′|2) (G∗G
′
∗ −GG′) [ν · η−1

t (p− p′)]+ dν dp′ dp

=
1

4

∫
R4

∫
S1

(|p∗|2 + |p′∗|2)GG′ [ν · η−1
t (p− p′)]+ dν dp′∗ dp∗

−1

4

∫
R4

∫
S1

(|p|2 + |p′|2)GG′ [ν · η−1
t (p− p′)]+ dν dp′ dp

=
1

4

∫
R4

∫
S1

(p− p′) · Cν (p− p′)GG′ [ν · η−1
t (p− p′)]+ dν dp′ dp.(4.7)

The first equation holds because the order of integration can be exchanged, the last equation follows from (4.6).

In particular one finds that

(4.8) trPId = 0.

Our aim is to construct a time-dependent transformation ηt ∈ Rd×dsym such that the renormalized Cauchy stress

tensor

Tηt =
1

2

∫
R2

p⊗ pG(p) dp

is constant. We have already seen in section 3 that Tηt = Id if

η−2
t =

1

2

∫
w ⊗w gt(w) dw,

and gt is a solution of (4.2). Differentiating the Cauchy stress with respect to t and using Tηt = 1
2 Id gives

dTηt
dt

=
1

2

∫
R2

p⊗ p (Qηt −∇ · (GFp)) dp = P +
1

2
(F + F ∗) = P + Fsym.

Thus, we have obtained a non-autonomous system of ordinary differential equations

(4.9) P + Fsym = 0.

Obviously (4.9) is the analogue of equations (3.31).

4.3. Are there stationary solutions that are of exponential form?. Assume that G is of the expo-

nential form , i.e. there exist h ∈ C1(R2 \ {0}) and homogeneity exponent r > 0

G(h)(p) = K exp(h(p)), with h(λp) = λrh(p) ∀λ > 0,∀p ∈ R2.

Note that by integrability of G this implies h < 0 on R2. Now G is substituted into the differential equation

(4.3). Note first that

(4.10) ∇p · (G(h)(p) · Fp) = (trF +∇h · Fp)G(h)(p) = kt(p)G(p)
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where k is the sum of a constant and homogeneous function of order r in p.

Furthermore in the collision term we denote

p∗ = p− ηtν ⊗ νη−1
t (p− p′), p′∗ = p′ + ηtν ⊗ νη−1

t (p− p′),

then it has the form

Qηt [G](p)

= K2

∫
R2

∫
S1

{
exp (h(p∗) + h(p′∗))− exp (h(p) + h(p′))

}
[ν · η−1

t (p− p′)]+ dν dp′

= K2eh(p)

∫
R2

∫
S1

[exp (h(p∗) + h(p′∗)− h(p)− h(p′))− 1] exp (h(p′)) [ν · η−1
t (p− p′)]+ dν dp′

= K2eh(p)

∫
R2

eh(p−q)

∫
S1(

exp
(
h(p− ηtν ⊗ νη−1

t q) + h(p− q + ηtν ⊗ νη−1
t q)− h(p)− h(p− q)

)
− 1
)

[ν · η−1
t q]+︸ ︷︷ ︸

=j(q)

dν dq.

To cancel the expression in (4.10), the integrals over j are necessarily O(|p|r) as |p| → ∞. First we consider

the case when q = p. Then the exponent can be simplified to

i(ν) := h(p− ηtν ⊗ νη−1
t p) + h(ηtν ⊗ νη−1

t p)− h(p)− h(0)

If there are ν and p such that

(4.11) i(ν) > 0,

then j(q) grows exponentially for a sector of q in R2. Due to continuous dependence of this sector on ν, the

integral
∫
S1 j(q) dν still grows exponentially on some sector in R2. By choosing p in such a sector, we obtain

constants c1, c2 such that

Qηt [G](p) ≥ (c1j(p)− c2)G(p),

which cannot equal to a term kt(p)G(p) as in (4.10), where k is bounded by a polynomial.

We now establish the existence of some ν such that (4.11) holds. For t = 0 we have ηt = Id and by (4.8) and

(4.9) trF = 0, then equations (4.3) and (4.10) imply for p = 0 that

0 = Qηt [G
(h)] = Q[G(h)]

= K2

∫
R2

eh(−q)

∫
S1

(exp (h(−ν ⊗ νq) + h(−q + ν ⊗ νq)− h(−q))− 1) [ν · q]+ dν dq.

Unless r = 2, when h is a collision invariant, this implies that the exponent attains positive and negative values.

By exchanging the roles of p and p′, we hence obtain that (4.11) will hold for some p and ν, hence ruling out

any h with homogeneity exponent r > 0, r 6= 2.

Now consider the only remaining case h(p) = −d|η−1
t p|2 for some d > 0. The collision invariance of h implies

Qηt [G
(h)] ≡ 0. Furthermore ηt = Id is constant as G(h) is constant, i.e. ∂tG

(h) = 0. Hence we obtain the

equation

∇p · (G(h)(p) · Fp) = (trF + 2dp · Fp)G(h) = 0.

For ηt = Id, then F = −µα⊗ β, which is incompatible with trF − 2dp · Fp = −2dp · Fp = 0, thus ruling out

the collision invariant.

4.4. Completing the proof of Theorem 4.1. The regularity of the solution follows from the regularity

proposition below.

Proposition 4.4. If
∫
R2 g0(w)(1 + |w|2) dw <∞, then (4.2) admits a unique mild solution for all t > 0.
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Proof. The transport term µ v ∂ug is the generator of the strongly continuous semigroup Xt : L1
2(R2) →

L1
2(R2) on the space of integrable function that satisfy

∫
R2 g0(w)(1 + |w|2) dw < ∞. The semigroup is given

explicitly by (Xtg)(w) = g((Id+µ tα⊗β)w). Furthermore by Povzner’s inequality Q is a continuous nonlinear

operator on L1
2(R2). This gives the existence of the unique mild solution to (4.2) given by

(4.12) gt = Xtg0 +

∫ t

0

Xt−sQ(gs, gs) ds.

We show that we can continue this solution globally by showing that
∫
R2 gt(w)(1 + |w|2) dw <∞ for all times.

First recall that

(4.13)

∫
R2

|w|2Q[g] dw = 0,

hold for any density g with θ[g] = 1
2

∫
|w|2 dw <∞ because |w|2 is a collision invariant. Differentiating θ with

respect to t gives

dθ

dt
=

1

2

∫
R2

|w|2(µ∇ · (gα⊗ βw) +Q[g]) dw

=
1

2

∫
R2

|w|2Q[g] dw︸ ︷︷ ︸
=0 by (4.13)

−µ
∫
R2

gw ·α⊗ βw dw

≤ µ

2

∫
R2

|w|2 g dw = |µ| θ[g].

Thus, θ[g] ≤ e|µ|t θ[g0]. By a similar argument,
∫
R2 gt(w) dw =

∫
R2 g0(w) dw, so

∫
R2 gt(w)(1 + |w|2) dw

remains bounded for bounded times, such that (4.12) defines global mild solution, which is unique by a Gronwall

argument.

Then we transform the mild solution g as in the paragraph preceding (4.3) to obtain a global solution G of

(4.3).

The choice of ηt in subsection 4.2 give the preservation of mass and energy for Gt, this immediately gives the

weak convergence of subsequences to some limit points. The collision invariants are characterised in lemma 4.3.

The shape of possible equilibrium is analysed in subsection 4.3.

5. Conclusion. We studied two closely related equations in kinetic theory, the Fokker-Planck equation

and the Boltzmann equation with shear boundary conditions. The boundary conditions are not compatible

with the conservation of energy. After rescaling the velocities in an anisotropic fashion we obtain renormalized

equations which have the property that solutions conserve all second moments, and in particular the energy. The

renormalized Fokker-Planck equation admits Maxwellian equilibria and the long-time behaviour of renormalized

solutions can be characterized completely. More precisely, we show rigorously that as t tends to infinity solutions

converge at an algebraic rate to the Maxwellian with the appropriate second moments.

On the other hand the renormalized Boltzmann equation does not admit equilibria of exponential type

including Maxwellians. Indeed, due to the non-autonomous nature of the shape equation (4.3) there might be

no equilibria at all. We conjecture that for large time solutions of the renormalized Boltzmann converge to a

limiting density, but a rigorous proof is not available.

Results on the existence of self-similar profiles (i.e. equilibria for the shape equation) and long-time behaviour

in the case of soft interaction potentials have been obtained in [23] and [24]. In [23] the existence of stationary

self-similar solutions is established rigorously for Maxwellian molecules (where the repulsive force between

particles at distance r is r−5) after isotropic rescaling (where η is a multiple of the identity). Detailed information

about energy flux can then be derived. Moreover, in [24] formal calculations covering the supercritical case where

the force decays faster than r−5 are being presented. Based on these calculations the authors conjecture that

after isotropic rescaling in the supercritical case solutions converge to a Maxwellian.

It is noteworthy that the analysis in [23] and [24] also covers other objectivity conditions than the simple

shear, for example homogeneous dilations where S = (Id,−Id), and other choices. In view of these results it

will be worthwhile to extend our approach to other objectivity conditions and explore different choices for the

collision operator in the Boltzmann equation.
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6. Appendix: Proofs of Propositions 3.1 and Remark 3.3 .

Proof of Proposition 3.1. Assume that h(w) = a+ b ·w is affine. Observe that (2.1) implies for each w that

∇zf(xα,w) ·α = 0

∇zf · β = −µ∇wf ·α

Consider now the quantity

H =

∫
R2

h(w) ∂tf(xα,w) dw

=

∫
R2

h(w)
(
∆wf + ρ θ−1∇w · (f(xα,w) (w − ρ−1v̄))−∇zf(xα,w) ·w

)
dw

=

∫
R2

{(
∆wh− ρ θ−1∇h · (w − ρ−1v̄)

)
f(xα,w) + µ (∇wf ·α) (w · β)

}
dw

Clearly ∆h = 0 as h is affine. Moreover
∫
R2 b · (w − ρ−1v̄) f(w) dw = 0 by the definition of v̄ and finally∫

R2(∇wf(xα,w) ·α) (w · β) dw = 0 by partial integration. This implies that

t 7→
∫
R2

h(w) ft(xa,w) dw is constant,

for all x ∈ R and by (2.1) this is constant and thereby the first claim.

Next, assume that µ = 0 and h(w) = 1
2 |w|

2. Repeating the previous calculation we obtain

H =

∫
R2

h(w) ∂tf(xα,w) dw

=

∫
R2

(2− θ−1|w|2) f(xα,w) dw =

∫ 1

0

(
2 ρ(xα)− 2 θ−1ρ θ(xα)

)
dw = 0.

Finally we demonstrate that fM is a stationary solution. One finds that

ρ = −π
c

exp

(
a− |b|

2

4c

)
, w0 =

π

2c2
exp

(
a− |b|

2

4c

)
b, θ =

π

2c2
exp

(
a− |b|

2

4c

)
,

in particular ρ θ−1 = −2c and ρ−1w0 = − 1
2cb. Then

LfM = ∆wf
M + ρ θ−1∇w · (fM (w − ρ−1w0))−∇zf

M ·w

=

(
|∇h|2 + ∆h− 4c− 2c∇h(w) ·

(
w +

1

2c
b

))
fM

=

(
4c2 |w|2 + |b|2 + 4c b ·w + 4c− 4c− 2c (2cw + b) ·

(
w +

1

2c
b

))
fM

=
((

4c2 − 4c2
)
|w|2 + (4c b− 2c (b+ b)) ·w + |b|2 − |b|2

)
fM = 0.

To prove convergence for general spatially homogeneous initial datum f0, we rewrite the equation in a spirit

similar to subsection 3.3 and equation (3.33). Using that mass ρ, momentum w0 and energy θ remain constant

along solutions, choose fM such that its triple ρ,w0, θ coincide with the of f0. Then write f = ufM with

u ∈ L2(R2, dfM ). To show L1 convergence it is enough to show that u → 0 in L2(R2, dfM )/span(1) by

Hölder’s inequality. The relative profile u satisfies the equation

∂tu = ∆u+ (b+ 2cw) · ∇u = −A∗Au,

where A = ∇u and A∗. = −∇.− (b+ 2cw). is its adjoint operator in L2(R2, dfM )/span(1) with inner product

〈., .〉. Then

∂t〈u, u〉 = 2〈∂tu, u〉 = −2〈Au,Au〉 ≤ −2C〈u, u〉

using a Poincaré inequality as in [33, A.19], which then gives the required exponential convergence of u to 0 in

L2(R2, dfM )/span(1).
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Proof of Remark 3.3. We calculate d
dtS[G] along solutions of (3.2), noticing that G is smooth with respect

to p as g is smooth for t > 0, so we can perform integration by parts etc.

d

dt
S[Gt]

=
d

dt

∫
R2

Gt(p) ln
Gt(p)

exp(−|p|2/2)
dp =

∫
R2

(
ln

Gt(p)

exp(−|p|2/2)
+ 1

)
∂tGt(p) dp

(3.2)
=

∫
R2

(
ln

Gt(p)

exp(−|p|2/2)
+ 1

)
∇p ·

(
Gt(p)

(
θ−1Id− F

)
p+ T−1∇Gt(p)

)
dp

ibp
= −

∫
R2

∇
(

ln
Gt(p)

exp(−|p|2/2)
+ 1

)
·
(
Gt(p)

(
θ−1Id− F

)
p+ T−1∇Gt(p)

)
dp

=−
∫
R2

1

Gt(p)
(∇Gt(p) +Gt(p)p) ·

(
Gt(p)

(
θ−1Id− F

)
p+ T−1∇Gt(p)

)
dp

Next we split F into its symmetric and its anti-symmetric part, which are given by 1
2 (F + F ∗) and 1

2 (F − F ∗)
respectively. For the symmetric part we use (3.31) and find that

−
∫
R2

1

Gt(p)
(∇Gt(p) +Gt(p)p) ·

(
Gt(p)

(
θ−1Id− F

)
p+ T−1∇Gt(p)

)
dp

=−
∫
R2

1

Gt(p)
(∇Gt(p) +Gt(p)p) · T−1 (Gt(p)p+∇Gt(p)) dp

+
1

2

∫
R2

1

Gt(p)
(∇Gt(p) +Gt(p)p) ·Gt(p) (F − F ∗)p dp

=−
∫
R2

1

Gt(p)
|ηt (Gt(p)p+∇Gt(p))|2 dp+

1

2

∫
R2

∇G(p) · (F − F ∗)p dp

+
1

2

∫
R2

p · (F − F ∗)pGt(p) dp

=−
∫
R2

1

Gt(p)
|ηt (Gt(p)p+∇Gt(p))|2 dp,

the other two integrals are zero, the middle one by integration by parts and the final one due to the anti-

symmetry of F − F ∗.
Hence S[Gt] decays unless Gt(p)p +∇Gt(p) = 0, the only differentiable solution in L1(R2) are multiples of

the Maxwellian GM .
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