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The Anderson metal-insulator transition (MIT) is central to our understanding of the quantum mechanical
nature of disordered materials. Despite extensive efforts by theory and experiment, there is still no agreement on
the value of the critical exponent ν describing the universality of the transition—the so-called “exponent puzzle.”
In this Rapid Communication, going beyond the standard Anderson model, we employ ab initio methods to
study the MIT in a realistic model of a doped semiconductor. We use linear-scaling density functional theory
to simulate prototypes of sulfur-doped silicon (Si:S). From these we build larger tight-binding models close to
the critical concentration of the MIT. When the dopant concentration is increased, an impurity band forms and
eventually delocalizes. We characterize the MIT via multifractal finite-size scaling, obtaining the phase diagram
and estimates of ν. Our results suggest an explanation of the long-standing exponent puzzle, which we link to
the hybridization of conduction and impurity bands.
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The Anderson metal-insulator transition (MIT) is the
paradigmatic quantum phase transition, resulting from spatial
localization of the electronic wave function due to increasing
disorder [1]. As for any such transition, universal critical ex-
ponents capture its underlying fundamental symmetries. This
universality allows one to disregard microscopic detail and the
Anderson MIT is expected to share a single set of exponents.
The last decade has witnessed many ground-breaking exper-
iments designed to observe Anderson localization directly:
with light [2–11], photonic crystals [9,12], ultrasound [13,14],
matter waves [15], Bose-Einstein condensates [16], and ul-
tracold matter [17,18]. The mobility edge [19], separating
extended from localized states, was only measured for the first
time in 2015 [20]. The hallmark of these experiments is the
tunability of the experimental parameters and the ability to
study systems where many-body interactions are absent or can
be neglected. Under such controlled conditions, the observed
exponential wave-function decay, the existence of mobility
edges, and the critical properties of the transition [21,22]
are in excellent agreement with the noninteracting Anderson
model [1]. Furthermore, scaling at the transition [23] leads
to high-precision estimates of the universal critical exponent
ν from transport simulations [ν = 1.57(1.55, 1.59) [24]] and
wave-function statistics [ν = 1.590(1.579, 1.602) [25]].

Anderson’s original challenge was to describe localization
in doped semiconductors. For these ubiquitous materials, the
existence of the MIT was confirmed indirectly by measuring
the scaling of the conductance σ ∼ (n − nc)ν when increas-
ing the dopant concentration n beyond its critical value nc.
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However, a puzzling discrepancy remains: A careful analysis
by Itoh et al. [26] highlights that the value of ν can change
significantly with the control of dopant concentration around
the transition point, the homogeneity of the doping, and the
purity of the sample. Following Stupp et al. [27], they suggest
that the intrinsic behavior of an uncompensated semiconduc-
tor gives ν ≈ 0.5 [28], while any degree of compensation
results in ν ≈ 1 [29]. Evidently, these values disagree with
the aforementioned theoretical and experimental studies. The
inability to characterize the Anderson transition in terms of a
single, universal value for ν is known as the “exponent puzzle”
[27,30].

Most theoretical models that have been applied to this
problem lack the ability to capture the full complexity of a
semiconductor. The Anderson model, for example, ignores the
detail of the crystal lattice and the electronic structure, and
also simplifies the physics by ignoring many-body interac-
tions and interactions between the dopant and host material.
These factors are known to change the universal behavior
[31,32] and the value of ν, as shown in studies on correlated
disorder [33–35] and hydrogenic impurities in an effective
medium, where ν ≈ 1.3 [36,37]. Here, we propose a funda-
mental shift from studying localization using highly simpli-
fied tight-binding Anderson models, to atomistically correct
ab initio simulations [38,39] of a doped semiconductor. We
illustrate the power of our approach for sulfur-doped silicon,
Si:S, where the MIT occurs for concentrations in the range
1.8–4.3 × 1020 cm−3 [40]. We model the donor distribution
in Si:S by randomly placing the impurities in the lattice [41].
While we concentrate on Si:S here, our method is straight-
forwardly applicable to other types of impurities (Si:P; Si:As;
Ge:Sb), hole doping (Si:B), and codoping (Si:P,B; Ge:Ga,As).

With this approach we observe the formation of the im-
purity band (IB), upon increasing n, and its eventual merger
with the conduction band (CB). States in the IB become
delocalized, as measured directly via multifractal statistics
of wave functions [42], and we observe and characterize the
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FIG. 1. Critical concentrations nc and exponents ν as a function
of the energy ε from the Fermi level εF, for q = 0 (red circles) and
q = 1 (blue triangles). Solid and open symbols denote, respectively,
the results for λ = 1/4 and λ = 1/2 coarse grainings. The error bars,
shown only for λ = 1/4 and if larger than the symbol size, represent
the 95% confidence level on the fit parameters. The error bars for
λ = 1/2 are of the same order of magnitude as for λ = 1/4 and are
omitted for clarity.

MIT. In Fig. 1 we plot how nc and ν vary for energies ε in the
IB below the Fermi energy εF. For ε ∼ εF, the values are ν ∼
0.5, while deeper in the IB the exponents increase to about
ν ∼ 1, reaching values around 1.5. As we will show below,
our simulations of an uncompensated semiconductor suggest
that the reduction in ν at εF is due to the hybridization of IB
and CB. Deep in the IB the physics of the Anderson transition
reemerges with ν reaching the range of its proposed universal
value [24,37,43]. Experiments can readily access these higher
values by moving εF via compensation [26]—intentional or
otherwise.

Density functional theory (DFT) calculations are now the
leading method for ab initio solid state materials character-

ization [38] and discovery [39]. With the choice of Si:S,
we can observe the transition in systems of up to 11 ×
11 × 11 unit cells, i.e., 10 648 atoms. These large system
sizes can in principle be reached by linear-scaling DFT
[44], but despite this, the necessity to average over many
hundreds of disorder realizations makes repeated DFT cal-
culations impractical for our purposes [45]. We therefore
devise a hybrid approach: linear-scaling DFT calculations
are performed, using the ONETEP code [46], on prototype
systems of 8 × 8 × 8 diamond-cubic unit cells (4096 atoms),
employing geometry optimization to allow for the lattice to
accommodate single or multiple S impurities. We include nine
optimized nonorthogonal local orbitals (with radius 10 bohrs)
for each site (in atomic Si, atomic orbitals are occupied up to
level 3p; for better convergence we additionally consider the
five 3d orbitals) and use the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional [47] and a periodic cardinal
sine (psinc) grid with an 800-eV plane-wave cutoff [48]. This
gives an accuracy equivalent to plane-wave DFT for Si and
other materials [49]. When embedded in silicon, sulfur, as
the other chalcogens, acts as a deep donor. Such defects have
highly localized potentials that are well described in a local
orbital basis [50]. The impurity distribution is generated by
randomly substituting the impurity atoms onto lattice sites.
This follows the experimental techniques used to achieve high
S concentrations, combining ion implantation with nanosec-
ond pulsed-laser melting and rapid resolidification [40].
The impurities are effectively trapped in the substitutional
sites [41].

The resulting Hamiltonians and overlap matrices, repre-
sented in terms of the nonorthogonal local orbital basis φa , are
used to construct three catalogs of local Hamiltonian blocks
(cf. Fig. 2). The first catalog describes the Si host material,
i.e., a set of on-site energies and hopping terms, starting at a
central Si atom and extending to ten shells of Si neighbors.
The second corresponds to the energies and hopping terms

FIG. 2. Schematic description of the workflow. (a) represents the catalog of prototypes. For clarity, we show a projection on the xy plane
and distances in units of a, the Si lattice parameter. The upper plot depicts one impurity (yellow with orange border) and the neighboring Si
atoms (green); the lower plot denotes two impurities at distance a and their Si neighbors (dark green). Gray sites indicate Si atoms unaffected
by the impurity potential. In (b) we indicate how we build an effective tight-binding model of 4096 atoms with 29 impurities. The color code
is the same as in (a) and indicates which catalog is used. Due to the projection on the xy plane some impurities appear closer than they are.
Their three-dimensional (3D) distribution is shown in (c) and (d), where we plot (c) a localized state deep in the IB and (d) an extended state
above εF. We represent the 90% largest wave-function values with spheres of volume proportional to |ψ |2. Opacity and color are proportional
to − logL |ψ |2, with L = 16 here, so that lower (higher) values are in red transparent (violet solid). The box size is as in (b).
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TABLE I. Summary of the range of impurities NS, the concen-
tration n, the average, minimum, maximum, and total number of
disorder realizations for each L, indicated by 〈N〉, Nmin, Nmax, and∑
N, respectively. The final column indicates the total number of

ψj ’s per system size, and the last row the total for all N = L3 and n.

N NS n/10 ×20 cm−3 〈N〉 (Nmin,Nmax)
∑
N ψj ’s

163 4–200 0.49–24 802 (200,1000) 68153 2943811
183 5–322 0.43–28 758 (106,1000) 64430 3951351
203 5–365 0.31–23 732 (162,1000) 71051 5640229
223 10–410 0.47–19 541 (293,733) 34067 5521425
Total No. of realizations and wave functions: 237311 18056816

when the central atom is S, and the third catalog to pairs of
neighboring S atoms. Here, we define a “neighbor” as being
at most four shells apart. If two S atoms are five or more shells
apart, each S atom is unaffected by the presence of the other
[51]. For each system size L, concentration of impurities n,
and disorder realization, we build the effective tight-binding
Hamiltonians H and overlap matrices O from these catalogs
(cf. Fig. 2) and solve the large generalized eigenvalue problem
[52,53]

Hψj = εjOψj , j = 1, . . . , 9L3 (1)

for eigenenergies εj and normalized eigenvectors ψj =∑
a Ma

j φa , written in a “site” basis by summing over the
nine orbital coefficients of each site k, i.e., |ψj (k)|2 =∑

a∈k,b Ma
j OabM

b
j . In Fig. 2, we show examples of localized

and extended states. For the L3 = 4096 prototype, we have
checked that our εj ’s agree within 0.1%–0.01% with the DFT
energy levels. Due to the presence of O, and two orders
of magnitude more hopping elements in H compared to
the Anderson model, we find that 10 648 atoms represent
a practical upper limit (with tight-binding matrices of size
95 832 × 95 832). We average up to 1000 different disorder
realizations for each L and n (cf. Table I).

Characterizing the IB and its density of states (DOS)
is interesting for its spin and charge transport properties
[54,55]. We compute the DOS of the IB from the εj ’s while
changing the number of impurities NS. We define εF as the
midpoint between the highest occupied IB state at energy
εIB and the lowest unoccupied CB state at εCB. To obtain
the average DOS for given NS and L, we shift the spectrum
of each realization such that εF = 0. The DOS shown in
Fig. 3 is calculated by summing over Gaussian distributions
of standard deviation σ = 0.05 mHa = 1.36 meV centered on
εj − εF. We find that the IB has a peak at ε − εF ∼ −0.1 eV
and a tail extending towards the VB with increasing n. This
agrees with known features of the IB in doped semiconductors
[56]. We emphasize that Si:S is particularly interesting for
intermediate-band photovoltaic devices, where the efficiency
increases when deep IB states can capture low-energy photons
[54]. In order to avoid electron-photon recombination, the IB
states should be delocalized such that they can contribute to
the photocurrent. The determination of nc and the pronounced
tail of the IB as presented in Fig. 3 therefore provide essential
information for future device applications.
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FIG. 3. DOS of the IB for 4096 atoms at three different concen-
trations. The shading indicates energies where states are on average
delocalized (in the L → ∞ limit), according to Fig. 1. The delocal-
ized CB states, separated by a vertical dashed line at εF, are also
shaded. Crossed shading indicates states that might be delocalized,
but are outside our concentration range.

In the last decade, multifractal analysis [42,57,58] has
become the method of choice to reliably and accurately extract
the localization properties from wave functions [14,25,59].
In its essence, it describes the scaling of various moments
of the spatial distribution of |ψj |2, which is encoded in
the singularity strengths αq . We coarse grain |ψ |2 [60] by
fixing a box size l < L and partitioning the domain in
(L/l)3 = λ−3 boxes. The amplitudes of the coarse-grained
wave function μ are given by μs = ∑

k∈Bs
|ψ (k)|2, i.e., by

summing all |ψ (k)|2 pertaining to the same box Bs . After
rescaling the amplitudes as log μs/ log λ, we compute their
arithmetic mean α0 = 〈log μs〉s / log λ and weighted mean
α1 = ∑

s μs log μs/ log λ (proportional to the von Neumann
entropy [61]). Finally, for each n and L we take the ensemble
average αq (n,L), where q = 0 or 1.

At criticality, the universality class of the transition de-
termines the scaling of αq with n and L. We capture this
behavior using the well-established framework of finite-size
scaling. Following Ref. [25], we assume that the data for each
L meet at the critical point w = 0 with a value αcrit

q , and scale

polynomially with ρL1/ν , where ρ(w) = w + ∑mρ

m=2 bmwm

includes higher-order dependencies on the dimensionless con-
centration w = (n − nc)/nc. We hence fit the data against the
function [62]

αq (n,L) = αcrit
q +

mL∑

i=1

aiρ
iLi/ν, (2)

with nc, ν, αcrit
q , the ai’s, and the bi’s as fitted parameters,

and mL and mρ as expansion orders [51]. We illustrate the
localization and scaling properties of the wave functions using
the moments α0 and α1. Figure 1 shows the results of the
fits as ε is varied, obtained from (2) (see Tables 1 and 2
in Ref. [51]). Crucially, we only accept estimates of nc and
ν after consistently and rigorously checking their robustness
against perturbations in n and stability when increasing mL

and mρ [24,25,51].
Following this recipe, we identify the Anderson MIT and

reconstruct the energy dependence of the mobility edge nc(ε)
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FIG. 4. Distribution of the moments α0 as a function of ε shifted
with εF (vertical dashed line). For NS = 40 we show the density plot
of the distribution (from blue for low to red for high density—see
color scale) and the contour lines enclosing 68% (white) and 95%
(black) of the α0’s. For NS = 100 we indicate the same contours (red,
dashed). As in Fig. 3, the shading denotes the delocalized region (in
the L → ∞ limit) according to Fig. 1.

in Si:S. It exhibits (i) a maximum close to εF and a decrease
until ε − εF ≈ −0.09 eV. (ii) For lower energies, nc increases
again and the mobility edge moves towards the tail of the
IB (cf. Fig. 3). These findings suggest a natural split into
two different regimes, as also seen in the energy dependence
of ν. Values of ν in regime (i) increase continuously from
ν ≈ 0.5 at εF to about ν ∼ 1. In regime (ii), we find a larger
spread of values 1 � ν � 1.5. This spread is consistent with
the statistical uncertainty of each estimated ν in Fig. 1, which
is dominated by the range of L and the ensemble size N
(cf. Table I). However, the trend in ν observed in regime (i)
requires a different explanation.

In Fig. 4, we present the distribution of states resolved in
both energy ε and α0. Perfectly extended states correspond to
α0 = 3, while increasing localization results in α0 → ∞. The
data for NS = 40 (n = 4.9 × 1020 cm−3) show metallic states
of the CB with α0 ≈ 3 at ε ≈ εF. The IB is characterized by
(i) a majority region of states with α0 ≈ 3.4 for (ε − εF) ∈
[−0.25 eV,−0.05 eV] and (ii) a tail region of more local-
ized α0 values (�3.4) for (ε − εF) � −0.25 eV. However,
for NS = 100 (n = 1.2 × 1021 cm−3) IB and CB have lost
their identities. In fact, the two bands overlap in ε as shown
in Fig. 3, and also change their localization properties—the
bands have hybridized, with α0 decreasing towards 3 (the
metallic limit) close to εF. This observation is intriguing when
tensioned against the simultaneous decrease in the value of ν

at ε ∼ εF (cf. Fig. 1). Apparently, the localization of the IB
states is substantially modified by the presence of the states
from the CB. In Fig. 5, we show the α0 data for N = 4096
as a function of ε and n. For small impurity concentrations,
the IB consists of localized states with some of the largest
values of α0 ∼ 3.6, while the CB contains delocalized states
with α0 � 3. Upon increasing n, the IB develops and its
states become more delocalized. Initially, this trend is most
pronounced where the DOS of the IB is large (see Fig. 3), i.e.,
around ε − εF ∼ −0.12 eV. Simultaneously, states at the top
of the IB exhibit α0 values close to those denoting extended

FIG. 5. Moments α0(ε, n) for NS = 40 indicated by colored bars
as given in the color scale. In addition, we show the estimated nc from
Fig. 1 for λ = 1/4 with q = 0 (◦) and 1 (�). The horizontal gray line
at n � 3 indicates the lack of enough low-doping S concentrations
to allow scaling fits for q = 0. Regions of α0 ∼ 3, indicating much
less-localized states, begin to extend below the Fermi level at concen-
trations above where the gap closes. Inset: For easier comparison, we
plot the estimated ν values for λ = 1/4 with q = 0 (◦) and 1 (�) as
in Fig. 1.

states in the CB, even before the band gap has fully closed.
When reliable scaling is possible, we eventually see how the
two mobility edges emerge. At the lower mobility edge, we
find values of ν ∼ 1–1.5. At the upper mobility edge, we
observe lower estimates for ν coinciding with lower α0 values
at the transition due to the strong hybridization of IB and
CB. Let us discuss how this observed hybridization and the
resulting enhanced metallic behavior can affect the value of ν.
The leading scaling behavior from (2) is αcrit

0 − α0 ∼ wL1/ν

for w > 0. A decrease in the effective α0 yields an increase
in αcrit

0 − α0, which is consistent with a reduced exponent ν

as observed in Fig. 1 for (ε − εF) � −0.1 eV. An argument
similar to the famous “gang of four” result [23] can be made
directly for the transport experiments, where an increase in
σ ∼ wν for 0 � w 
 1, i.e., close to the critical point, is also
consistent with a reduced ν.

Let us reiterate our main point: Our simulations of the
Anderson MIT in an uncompensated doped semiconductor
find an effective ν ≈ 0.5 near εF, where the IB and the CB
hybridize. Larger values of ν, around 1–1.5, can be observed
when the level of compensation is increased. These results
provide a possible explanation for the observation of Itoh et al.
[26] that in experiments a change from 0.5 to ν ∼ 1 can be
induced by compensation. Taken together, compensation and
band hybridization provide two important pieces to complete
the “exponent puzzle”: Modeling the Anderson transition
in doped semiconductors needs to include the CB (VB for
hole-doped materials) together with the IB provided by the
Anderson model—the experiments obviously include both
and hence find ν values which, depending on their state of
compensation, can be different from predictions based solely
on the Anderson model of the IB.

How exactly the hybridization changes the effective value
of ν, as well as whether the value of ν deep in the
IB is different from the noninteracting predictions, remain
challenges for future high-precision studies. This includes
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understanding how the hybridization of two bands, each with
its own characteristic length scale, fits the hypotheses of
Chayes’ theorem [63].

Still, the approach we present here exploits and trans-
fers the accuracy and versatility of modern ab initio sim-
ulations to the study of Anderson localization in doped
semiconductors—at a fraction of the computational cost. Be-
yond bulk semiconductors, other disordered systems [64],
two-dimensional (2D) [65–67] and layered materials [68]
are also well within reach, as is the investigation of
the influence of many-body physics by, e.g., studying the
interaction-enabled MIT in 2D Si:P [69,70]. We find that the
critical concentration agrees quantitatively with a previous
experiment in Si:S by Winkler et al. [40]. Our approach is

hence capable of modeling fundamental physical phenomena
while also making material-specific predictions.

The research data for this Rapid Communication are
openly available [71].

Note added. A first-principles study in Ti-doped Si using
the dynamical cluster approximation was recently reported in
Ref. [72].
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