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In Refs. [1,2] we have shown how a combination of modern linear-scaling DFT, together with a subsequent use
of large, effective tight-binding Hamiltonians, allows to compute multifractal wave functions yielding the critical
properties of the Anderson metal-insulator transition (MIT) in doped semiconductors. This combination allowed
us to construct large and atomistically realistic samples of sulfur-doped silicon (Si:S). The critical properties of

such systems and the existence of the MIT are well known, but experimentally determined values of the critical
exponent v close to the transition have remained different from those obtained by the standard tight-binding
Anderson model. In Ref. [1], we found that this “exponent puzzle” can be resolved when using our novel ab initio
approach based on scaling of multifractal exponents in the realistic impurity band for Si:S. Here, after a short
review of multifractality, we give details of the multifractal analysis as used in [1] and show the obtained critical
multifractal spectrum at the MIT for Si:S.

1. Introduction

The Anderson metal-insulator transition (MIT) [3] is one of the
fundamental manifestations of the quantum mechanical nature of dis-
ordered materials [4-6]. In his 1958 publication [3], Anderson studies
the localization of electrons in doped semiconductors. The existence of
the MIT in these materials was later confirmed by measuring the scaling
of the conductance when increasing the dopant concentration beyond a
critical value [7-10]. The critical properties of the MIT, such as the
exponent v of the conductivity, should be universal quantities [11,12].
For classical waves [13-23] and cold atom systems [12,24-29] results
agree well with many of the non-interacting Anderson model estimates
[30,31]. However, in experiments with semiconductors, v is found to
vary with sample-specific properties, namely the dopant concentration
around the transition point, the homogeneity of the doping, and the
purity of the sample itself [32]. The term “exponent puzzle” [8,9] was
hence coined to describe this inability to characterise the Anderson
transition in terms of a single, universal value for v.

Recently, we presented a study [1] that moves beyond the para-
digmatic, highly-simplified, tight-binding Anderson model, and em-
ploys atomistically correct ab initio simulations [33,34] of the doped
semiconductor Si:S [35]. With this approach we observe how the im-
purity band (IB) forms and eventually merges with the conduction band
upon increasing the dopant concentration. We then exploit the multi-
fractal nature of the (near-)critical electronic wave functions as a basis
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for a finite-size scaling analysis that aims to retrieve the critical prop-
erties of the transition in the thermodynamic limit. In order to reach
sufficiently large system sizes, we devised a hybrid approach: linear-
scaling DFT calculations using the ONETEP code [36], on prototype
systems of 8 x 8 X 8 diamond-cubic unit cells (4096 atoms) to con-
struct catalogs of local Hamiltonian blocks to describe the no/single/
double dopant situation. For each concentration of impurities and dis-
order realization, we then built much larger, effective tight-binding
Hamiltonians H and overlap matrices O from these catalogs for system
size L, and solved the large generalised eigenvalue problem Hy; = &0y
for eigenenergies ¢ and eigenvectors y;(r), with r = (x, y, 2) for co-
ordinates x, y, z =1, ..., L.

In this paper, we show in detail how to perform the multifractal
analysis of the y; and present the resulting critical multifractal spectrum.
Our results suggest that it is different from the spectrum in the
Anderson model [2]. In addition, we give further details in the finite-
size scaling analysis needed to ascertain the existence and the proper-
ties of the MIT when L — oo.

2. Some of the basics of multifractals

For the Anderson transition from a metal to an insulator upon in-
creasing the disorder [3], the absence of length scales at criticality
means that the wave function intensity |y(r)|? at the critical disorder is
self-similar [4,6,37]. It needs to have a “filamentary” structure [38], i.e.
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Fig. 1. Wave function of the impurity-band state closest to & for an exemplary systems of 4.07 x 10*3 Si atoms and 29 S impurities. (a) Shows the state calculated
with ONETEP, while in (b) calculated in the effective tight-binding model. We have represented the top 90% wave function values y; with spheres of volume

proportional to |y;|. Opacity and colour are proportional to —log; |y;|*

, with L = 16 here, so that lower (higher) values are in red transparent (violet solid). Orange

dots indicate the position of the impurities. We use a to denote the Si lattice parameter. (For interpretation of the references to colour in this figure legend, the reader

is referred to the Web version of this article.)

it needs to be extended throughout the volume, a property of the metal
phase, but also to occupy only an infinitesimal fraction of it, a property
of the localised phase. This structure allows the critical phase to be
continuously connected to both the extended and localised phases (see
Fig. 1). In conjunction with its self-similar property, the critical wave
function qualifies as a fractal [39], at least as long as we can disregard
the lower limit imposed by the lattice spacing a. Castellani et al. [40]
realised, based on the earlier work of Wegner [41], that the critical
wave function is not a simple fractal, but rather an “interwoven family”
of fractals, each with its own dimension and distribution. Such an ob-
ject is a multifractal [42,43].

2.1. Self-similarity

Let us consider a system occupying a finite region of space = C RP
with a local density p(r). Following Ref. [44], we define the pair cor-
relation function, g(r) = <p(r + r)p(r’)>,, which gives the probability
that two points separated by r both belong to the region X. For sim-
plicity, we now assume that the correlation function is isotropic, g
(r) = g(r). In the absence of length scales, g obeys homogeneity laws (or
scale-invariance) with respect to a resolution or coarse-graining A. More
specifically, if we rescale lengths as r — r’ = Ar we have that g(r') = A"g
(r), where « is a homogeneity exponent. The solution to this equation is
given by a power-law behaviour, g(r) < r*. If we then fix r as the reference
length scale, and g(r) = 1, we see that

g = @

translates the concept of self-similarity into a mathematical relation.
We can hence describe fractal objects as self-similar structures whose
observed spatial extent (e.g. volume) depends, with a power-law be-
haviour, on the resolution at which we look at it. For fractals origi-
nating from a mathematical relation, the dependence on the resolution
can extend over an infinite range. For fractals appearing in physical
systems, instead, the range of A is usually limited by macro- and/or
microscopic scales. A very comprehensive list of examples can be found,
e.g., in Ref. [45].

2.2. Measures, fractals and multifractals

Let y(r) be the wave function of an electron in a L X L X L volume.
The modulus square |w(r)|? defines a normalised measure on this vo-
lume, which we partition in boxes of linear size [ = AL. The number of
boxes will then be A ~% where d = 3 is the Euclidean dimension of the
support of the system. The probability of finding the electron in box B;
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is the box-probability u; = fBi 19 (r)I2dr. We can then compute the fractal
dimension D of the system by counting the number of boxes where the
box-probability does not vanish': N(L) ~ A~ . Because the electron can
access any portion of the volume, i.e. there is no region of space with
vanishing probability, we trivially conclude that the fractal dimension
isD=d=3.

Compared to the fractal dimension, more insightful is actually the
study of the powers of the box-probability 17, which is the idea behind
multifractal analysis. If the wave function is a multifractal, we expect to
see the power-law behaviour of (1):

(ut)y, ~ AP+, (2

where <...>; denotes the average over all boxes in the volume.
Equivalently, we can introduce the partition sum R,(A) (also the gen-
eralised inverse participation ratio) as (u%); = A’R,(1) and write

Ry = ) ul~2A4.
! Z ©)

The mass exponents 74 describe the scaling behaviour of the moments
and do not depend on A.

Let us stress again that multifractality holds if, in the power-law
relation of Eq. (2), we have z; = 0 for a finite range of A: the box size [
should be smaller than the system size, but also larger than the mi-
croscopic scale a, usually equal to the lattice spacing in the Anderson
case. At the same time, for critical states at the Anderson transition, the
system size is much smaller than the correlation length &, such that

4

Additionally, the wave function is truly critical (and hence multifractal)
only in the thermodynamic limit, where both L and ¢ diverge. Thus 7z, is
defined in the limit A. — 0. For finite systems, instead, we choose states
and coarse-grainings that satisfy (4). In this case, we can estimate 7, by
fitting the slope of log R4(A) versus log A. We are assuming here that
multifractality survives in finite systems [46], and postpone the dis-
cussion of this non-trivial assumption to section 5.

From (2) and the normalisation of the wave function, it is possible to
show that 7o = —D and 7; = 0. This implies that we can generalise the
definition of the fractal dimension to the anomalous dimensions D, such

axl<Lxé

't is customary to use ~ to indicate that the proportionality constant is
independent of the resolution and can thus be ignored. This constant might
appear, for instance, when the boxes, whichever their shape, do not perfectly
cover the system. Since in our analysis we are covering boxes with boxes, most
of the relations in this section are actually equalities.
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that Dy = D and mass strengths 7, = Dq (¢ — 1). In the case of a simple
fractal D, = D, while for a multifractal D, has a non-trivial dependence
on g. The deviation from the simple-fractal case is captured by the
anomalous scaling exponent Ag = (Dg — d)(q — 1) = 75 — d(q — 1).

2.3. The multifractal spectrum

The scaling of the moments R, yielding 7,4, is enough to fully
characterise the multifractal nature of the wave function. Now we
present an equivalent description of the multifractal that will be useful,
in the sections that follow, to validate our results and compare them to
the 3D Anderson model. This description is founded on a multifractal
measure [47], a distribution such that, around each box B;, ; = A%. The
set of boxes with ¢; € [a, @ + da], then, constitutes a simple fractal with
dimension f(a), such that the number of said boxes is

_ log y;

Ny(a) ~ A7@ and ;= .
log 4 (©)]

This is the formalisation of the idea of Castellani [40] that the multi-
fractal is composed of different simple fractals. We re-express the par-
tition sum of Eq. (3) as

Ry = Y ui = 3, A% = [ N(@ada ~ [ 2195/ @da.
i i (6)

For small A, we can use the saddle point approximation and find that
the biggest contribution in the integral (6) comes from the value of a
that maximises (since . < 1) the argument of the exponential, i.e. the
a4 such that f(a;) = q. We can then write, from (3), 74 = qaq — flag). If
we identify f, = f(a,) we can see that (g, 74) and (ay, f,) are related by a
Legendre transformation

d
and a, =%

=qga, — T, = .
fmasa " dg @

It can be proven, e.g. in Ref. [48], that 7, is a monotonically increasing
function in g, which implies that a;, > 0, Vq. We can combine singu-
larity strengths a4 and the singularity spectrum f; to obtain the multifractal
spectrum f(a). This function is equivalent to the generalised dimensions
D, in characterising the multifractal, and in the case of a simple fractal
analogously reduces to the point (D, D) in a (a, f(a)) plot. As shown in
the example of Fig. 2, f(a) is a convex function reaching its maximum at
ao with a value fo = 7o = D. From (7) we further notice that f; = a3,
since 7; = 0. The spectrum is therefore tangential to the functions
fola) = D and fi(a) = a.

2.4. Symmetry of the multifractal spectrum
Using the nonlinear o model, Mirlin et al. [49] have analytically

proven that at criticality the multifractal exponents (7) satisfy the exact
symmetry relation

_$p—r—-r—v—r———r——7——7—

b
S

Fig. 2. Multifractal spectrum f(a) of the highest-occupied molecular orbital
wave function of the onetep prototype, computed for q from —2 to 5 in steps of
0.1 (increasing from right to left). Dashed lines indicate the functions f, = D
and fi(a) = a.
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ag+ou_g=2d fl_q=j:]+d—aq. (8)

Assuming the universality of the critical properties at the Anderson
transition, this result is expected to generally hold for the Wigner-Dyson
symmetry classes [6]. Indeed, Eq. (8) was confirmed numerically for
different systems, including the 3D Anderson model [50,51] and in
experiments [20].

3. Multifractal analysis of the wave function

We are mainly interested in the singularity strengths ag, which,
together with 7, and A, are called multifractal exponents (MFE). In this
section we recast the exponents derived in Sec. 2 in a form that is more
convenient for numerical calculations, mostly by reducing the loss of
precision. We then extend our definitions to include a disorder en-
semble average.

Before moving to the determination of these exponents, let us
briefly discuss their expected values [51,52]. In the case of very low
disorder, the wave function intensities |y(r)|? will be nearly plane-wave
like, i.e. extended throughout the whole of the volume L3. Hence, as
shown in section 2.2, @ = D = d = 3 for all q. This implies that 7, = d
(@ —1), A; =0 and f; = d. Hence f(a) is seen to contract, and even-
tually converge, to one point f(d) = d. On the other hand, for very large
disorder, well into the insulating/localised regime, |y(r)|* can be seen
as localised on a few (single) sites only. In this case a; — « for ¢ <0,
and a; — 0 for ¢ > 0. Similarly, 7; = — o, A; = — o for ¢ < 0, and
74 =0,A; =d(1 — ) for ¢ > 0. The f(a) spectrum broadens and in the
limit of strong localization, converges to the points f(0) = 0 and f
(o) = d. At criticality, the behaviour is even richer [52], with a non-
parabolic f(a) [53] and ag = 4.048(4.045, 4.050), a; = 1.958(1.953,
1.953) the current best estimates for the non-interacting 3D Anderson
model [52]. As a rough guide for the following sections, the a, tend
towards d = 3 for extended states as weak disorder, while a; increases
without bounds in the insulating regime.

3.1. Numerical calculation

Following [54], it is convenient to define, from (3) and (7), the
auxiliary quantity
dRy(A)

dq B

S, ) = D kilog ;.

i ©)
This ratio can be interpreted as an average with respect to the measure
defined by uf. The latter is also called g-microscope, because it increases
the large (small) box-probabilities for ¢ > 0 (¢ < 0). A computation-
ally-friendly formulation of the MFE reads

log Ry (1)

7, = lim , A=t1,—qd-1), a,=lim S
17 0 log 4 = " q

-0 Ry(4)log 4 ’
(10)

To comply with (4), we choose A < 1/2, namely we consider boxes of
linear size up to [ < L/2. We coarse-grain the wave function using the
partitioning scheme proposed by Ref. [55]. Here, the box size I can take
any integer value (up to L/2), so that A~ = L/I can take non-integer
values. This is achieved by first periodically replicating the original
system, such that it can be exactly covered by an integer number of
boxes, and then by averaging over the possible equivalent box origins.
The increased number of available box sizes translates, in the linear fits,
in reduced uncertainties in the estimated slopes.

3.2. Ensemble averaging

So far we have computed the multifractal properties of a single
wave function. The multifractal analysis of the Anderson transition is
usually performed by taking an average over the disorder realisations.
The definitions of the MFE can be extended by defining the ensemble
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average of the partition sum as (R;(1)) ~ /qum, such that
7" = lim;_olog (Ry(4))/log . We then proceed to take the Legendre
transform and define

drg™ Sg(4
fens - qa;ns _ T;ns and 0{;“5 - q =i < q( )> .
a dg  i-0(Ry@))log A an

Notice that, in the ensemble average of a; the g-microscope u! is
normalised by <R,>, namely the averaged partition sum of the wave
function. If we normalised the ! terms for every wave function we
would obtain the typical average a;yp = (S4/Rq)/log A (A — 0). While in
the ensemble average all wave functions, including rare events, are
equally weighted, the typical average is dominated by the behaviour of
“typical” wave functions. The presence of rare events translates in the
appearance of negative fractal dimensions (see Sec. 4.1), a feature of
the f(a) that is best captured by ensemble averaging [6].

4. Results for eigenstates of the effective Hamiltonians

For finite systems, the multifractal exponents are computed, as ex-
plained in Sec. 2.2, by estimating the slope of a log <Rq(A)> vs. log A
plot, in the case of 7;™. Accordingly, the statistical uncertainties at fixed
A have to be multiplied by a factor log . In Fig. 3 we show the average
singularity spectrum for the ensemble of 1.06 X 10** atoms with 140
impurities, a system that is critical at energy close to —0.249¢eV [1].
The increase in the ensemble size does not change the shape of the
spectrum significantly, but has the effect of reducing the error bars on
the data points. In particular, it is the calculation of the average <R,>
and <S> in Eq. (11) that benefits from larger ensembles, since smaller
error bars in the data used for the linear fits results in smaller un-
certainties on the fit parameters, see Fig. 3(b). We quantitatively report
the quality of said fits in the lower panel of Fig. 3(a), where we show
the linear correlation coefficient * and the p value. As noted in Ref.
[50], while r* = 1 indicates a good linear behaviour, small p values
suggest that the uncertainties on the data point are too small to support
the deviation from the linear behaviour we are fitting. This is likely due
to the limited number of realisations available for the ensemble aver-
aging. For comparison, at the end of the two branches, i.e. for large |q|
values, error bars are larger and hence the quality-of-fit increases again.

4.1. Negative fractal dimensions

Error bars increase on the two ends of the spectrum, for negative g
(right) and positive (left). For ¢ < 0, the g-microscope increases the
weight of small values of the wave function, which are more sensitive to
numerical fluctuations from the diagonalization. The other end of the
spectrum (q > 0, left) describes instead the presence of rare critical
wave functions with small values of @ and hence large |y/|2 ~L™?[53].
The set of these values scales with a negative fractal dimension f(a),
which means that their occurrence frequency vanishes in the L — o
limit. This is a known effect arising from ensemble averaging [56] and
known since the pioneering work of Mandelbrot [39]. This finite-size
effect is further observed and commented in Ref. [50], where larger
systems are accessible and studied. In comparison, the single state used
to produce Fig. 2 does not show said rare boxes with large probability
amplitudes, as indicated by f; > 0.

2 The standard deviation Oaq associated to ozqe“s (at a fixed A) is related to the
standard deviations os, and og, and the covariance cov(Sg, R,) via propagation
of the variance [52].

2
s,
= q&ns q +
q q \/<Sq>z

so that afq = oz, + o . The standard error of the mean is obtained by dividing

R,
(Rg)?

O'Rq

cov(Sg Ry)
(Rg)log A’

(SqXRq)

Oy — and Oy =

(12)

every standard deviation by VN, where N is the number of available realisa-
tions.
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4.2. Width of the multifractal spectrum

Let us comment on the width of the distribution in Fig. 3, as com-
pared to the Anderson model studied in Ref. [50]. A narrow f(a)
spectrum implies that extreme values (either large or small) occur less
frequently. This means that, in our case, the average state near criti-
cality in our model looks more homogeneous or extended than in the
Anderson model. In Fig. 4, instead, we show the singularity spectrum
for a system of 1.06 X 10** atoms, which, for 230 impurities, is close
to criticality at the Fermi energy r = 0 and deeper in the impurity band
at —0.320eV (estimated from Ref. [1]). While both spectra are nar-
rower than the Anderson model, the critical wave function at e; appears
on average more extended than deeper in the impurity band.

Our results are reminiscent of those found by Ref. [57] for the
power-law random banded matrix (PRBM) model, which describes a 1D
chain with random long-range hopping decaying as r~“ over distances
larger than a band width b. For the critical value @ = 1, the model
undergoes an Anderson transition for any value of b, which para-
metrises a family of critical models that can be studied from the weak-
(b>1) to the strong-coupling (b« 1) regime. For b>1 the model
shows a “quasi-metallic” behaviour, where the critical wave functions
has statistical properties similar to the delocalised phase. The singu-
larity spectrum becomes correspondingly narrower with a parabolic
shape, a regime called weak multifractality. In this case the multifractal
spectrum follows the parabolic approximation [48]:

(o — ap)?

_ and
4(ao— d)

f(a):d_ ay=d+vy.

13)
In Fig. 3 we fit our full-ensemble data to (13) to find the estimate value
ap = 3.55. We only report an approximate value without uncertainty
because the parabolic behaviour is an approximation and does not
necessarily hold for the whole spectrum, since f(a) is defined only for
positive a. In fact, for q. = (d + v)/2y [6] we have g, =0 and f(0) is
finite (a termination point), whereas our results in Fig. 3 and those in
Ref. [50] seems to suggest that f(a) — — o in the limit @ — 0 (hence no
termination point).

4.3. Symmetry of the multifractal spectrum

In Fig. 3 we also show the symmetrised spectrum obtained by
computing and plotting a; _4 and f; _4 from Eq. (8). As expected from
the previous paragraphs, the uncertainty on the data points increase at
the extremities. Within these error bars, the spectra are in good
agreement with each other. We verify the same symmetry relation also
for the spectra in Fig. 4. While at —0.320 eV there is excellent agree-
ment between the spectra, at the Fermi energy there is a slightly higher
discrepancy, especially at extreme values of q. Since this discrepancy
would be resolved by taking two standard deviations as confidence
intervals, instead of one, we cannot attribute this discrepancy to any
specific underlying physical factor or systematic error.

5. Validity of the scaling assumption

The question that arises when dealing with finite systems is whether
the wave function is still a multifractal. Formally speaking, the wave
function is a true multifractal only at the critical point. For a finite L,
however, the effective critical point shifts away as L™/ from its
thermodynamic limit [11]. Luckily this is not a problem, since, as
shown by Ref. [46], states on the two sides of the transition still show
multifractal features characteristic of a critical wave function.

Now that we can construct a multifractal measure from the wave
functions away from the critical point, we can actually check the most
important assumption we have taken so far, namely that a localization-
delocalisation transition occurs in our model. The histogram distribu-
tion Nj(a) of the measure a depends, at the critical point, only on the
coarse-graining A = [/L, rather than separately on the system size L and



E.G. Carnio, et al.

@ 3

597 %

B3
° 1

o

porr

©
O
<><>°

Ensemble

100

7
g, O Pa

o p

- é &

O

o
||||I|QAAI~|49|I|AA|I|||OM|

A

b 10] o3eIoAy

q
q

0 1 2 3

4

5

Physica E: Low-dimensional Systems and Nanostructures 111 (2019) 141-147

bp 107 9SeI0AY

Fig. 3. (a) top panel: singularity spectrum for L = 22 and
Ns = 140, sampled for values of q from —2 to 5 in steps of
1/4 (increasing from right to left) at energy —0.249 eV. Blue
diamonds show the results for the ensemble of the first 100
disorder realisations, while red circles indicate the results
from all available realisations (597). Simple error bars,
without data point, indicate the symmetrised spectrum to the
full ensemble. Dashed lines indicate the functions f, = D and
fi(@) = a. The dotted line indicates the spectrum for the
Anderson model at criticality, reproduced from Ref. [50],
while the dot-dashed line indicates the fit to the parabolic
approximation (13). (a) bottom panel: linear correlation
coefficient r? (red) and quality of fit p (black) for the linear
fits used to extrapolate the thermodynamic limit of a, (dia-
monds) and f; (circles), shown in Fig. 3. (b) Linear fits used to
produce the data plotted in Fig. 3. The slopes of the lines

a, log 4

BRREEEE SR EES L
LA N

Energy [eV
gy&' L)
(sym) +

320
—0.320 (sym)

B 0
+ 0

|
2 3 4 5

Fig. 4. Singularity spectrum for L = 22 and Ng = 230, sampled for values of q
from —2 to 5 in steps of 1/4 (increasing from right to left). The ensemble
contains 500 realisations. Green circles indicate the average over the ensemble
of states near the Fermi energy ¢z = 0, while red squares indicate the ensemble
over states closest to —0.320 eV. The corresponding symmetrised spectra are
indicated with the same colours by the error bars only. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

the box size I. At the critical point, then, N, (a) has the same shape for
any L, provided that the wave functions are coarse-grained with the
matching [ box size. The dependence of Ny (a) on L gradually reappears
away from the critical point, where in the strong (weak) disorder re-
gime, larger systems become more localised (delocalised). This is shown
in Fig. 5, where we plot the ensemble histogram PDF (&) = N («)A%/N
at A = 1/2 for three values of n: the lowest in the localised regime, the
intermediate close to the critical point and the highest in the deloca-
lised regime. The ensemble PDF(a) is built by filling one single histo-
gram with the N available wave functions. Because of the limited
spread in system sizes and the large common coarse-graining, the dif-
ference in the PDFs outside the critical point is not very well pro-
nounced in Fig. 5. An alternative check consists in fixing the system size
and study how the PDF renormalises with the coarse graining [58]. The
“scaling” variable &/L [59] scales like L.~ !, which implies that, with
increasing A, £/L becomes smaller. Physically this means that, upon
coarse-graining, localised (delocalised) states become more localised
(delocalised), or, equivalently, that the renormalisation flow rescales
the disorder away from its critical value, if a phase transition, and
hence a critical point, exists [2]. We verify this in Fig. 6 where the PDF's
move in opposite directions upon increasing the box size  in a system of
L® = 4096 atoms.

yield a, (panel above) and f, (below). For clarity we only
show data for integer values of q from —2 (red) to 5 (grey),
with data for ¢ = 0 highlighted with a full symbol. (For in-
terpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)

0.4\
PDF(a)

2

Fig. 5. Ensemble PDF of the multifractal measure « at coarse-graining A = 1/2
and energy ¢ —ep = —0.249 eV, as a function of the concentration n (in units of
102° cm ™), for two system sizes L*> = 4096 (blue dots) and 10648 (red crosses).
For clarity we show the histogram for three concentrations: before the transi-
tion (n = 4.6 x 10%° cm ™ 3), near the critical point (6.8 X 10%° cm ~3), and after
(8.8 x 10** cm™3). The critical point (n. = 6.7 X 10?°cm™~>) is indicated by a
black dashed line [1]. On the bottom plane we show the position of the average
ap also for the intermediate concentrations, connected by lines to guide the eye.
We use again blue dots with a solid line for L> = 4096 and red crosses with a
dashed line for 10648. Reproduced from the Supplemental Materials to Ref. [1].
(For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

6. Conclusions

After reviewing the foundations of multifractal analysis in the study
of a disordered system at criticality, we have shown the multifractal
nature, captured by the f(a) spectrum, of the Kohn-Sham wave function.
This result is in line with previous experimental [60], theoretical [61],
and numerical [62-64] studies, where the critical fluctuations of the
wave function at criticality are expected to survive in the presence of
the Coulomb interaction.

We have shown that multifractality persists also in the wave func-
tions near the critical concentrations computed in the effective tight-
binding model presented in Refs. [1,2]. The multifractal spectrum fol-
lows the symmetry relations derived from field-theoretical models [49]
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Fig. 6. Ensemble PDF of the multifractal measure a at energy ¢
—&p = —0.249 eV for L* = 4096 atoms. In blue we show the PDF for Ng = 20,
in orange for Ng = 100. Filled symbols indicate a coarse-graining with box size
1 = 1, while empty symbols connected by a dotted line indicate [ = 4. The thin
vertical lines indicate the average values of a, for each case. (For interpretation
of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)

and the ensemble average over hundreds of realisations results in ne-
gative fractal dimensions ascribed to rare events. These are known
features of (finite) multifractal critical states that have been studied also
in the non-interacting 3D Anderson model [31]. A difference with this
case, however, lies in the nearly-parabolic shape of the f(a) spectrum
observed here. This behaviour, referred to as weak multifractality, is a
common trait with the Anderson transition in 2 + e deminsions, with
e < 1, and with the power-law random banded matrix model with b>> 1
[6].

Finally, we compute the f(a) spectrum near the two mobility edges,
respectively, far from and at the Fermi energy. In the latter case we
notice that the spectrum is narrower, indicating that the critical wave
function at this energy is, on average, more delocalised than deeper in
the band. In Refs. [1,2] we propose the origin of this quasi-metallic
behaviour to be the hybridization of the impurity states near the Fermi
energy with states from the conduction band. The presence of this
second extended band might alter the physics of the metal-insulator
transition close to the Fermi energy, leading to a varying critical ex-
ponent across the impurity band.

A similar phenomenon has very recently been reported in a Hartree-
Fock study of the Anderson transition in the presence of tunable
Coulomb interaction [64]. There the authors show that a second mo-
bility edge appears near the Fermi energy, where the Coulomb gap
forms. At this energy, the critical state shows a narrower multifractal
spectrum compared to the mobility edge at higher energy. While in this
model quasi-metallic behaviour appears where the Coulomb gap forms
in the centre of the band of the Anderson model, it is present in our
model when the impurity band forms and then merges with the con-
duction band.

To conclude, the numerical analysis of the Anderson transition in
the presence of interactions, and, in particular, in real materials, is still
very challenging. Progress relies on a large amount of resources needed
for the simulations, with recent first-principles or self-consistent cal-
culations reaching system sizes of the order of 10>-10* sites, and of
hundreds of realisations [1,64,65] — while studies of the non-inter-
acting Anderson model can nowadays easily achieve more then 10°
sites and 10* samples [52,58]. Still, ab initio studies of real materials
have observed new phenomena and traced these back to the electronic
interaction. Future investigations with increasing system and sample
sizes will undoubtedly clarify the universal properties of the transitions
and critical points.
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