

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/114292

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

© 2019 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/114292
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk

Efficient Threshold Password-Authenticated Secret
Sharing Protocols for Cloud Computing

Xun Yi∗

Computer Science and Software Engineering, RMIT University, Australia

Zahir Tari

Computer Science and Software Engineering, RMIT University, Australia

Feng Hao

Department of Computer Science, University of Warwick, United Kingdom

Liqun Chen

Department of Computer Science, University of Surrey, United Kingdom

Joseph K. Liu

Faculty of Information Technology, Monash University, Australia

Xuechao Yang

Computer Science and Software Engineering, RMIT University, Australia

Kwok-Yan Lam

School of Computer Science and Engineering, Nanyang Technological University, Singapore

Ibrahim Khalil

Computer Science and Software Engineering, RMIT University, Australia

Albert Y. Zomaya

School of Information Technologies, University of Sydney, Australia

∗Corresponding author at: Computer Science and Software Engineering, School of Science,
RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia

Email address: xun.yi@rmit.edu.au (Xun Yi∗)

Preprint submitted to Journal of LATEX Templates February 25, 2019

Abstract

Threshold password-authenticated secret sharing (TPASS) protocols allow a

client to distribute a secret s amongst n servers and protect it with a pass-

word pw, so that the client can later recover the secret s from any subset of t

of the servers using the password pw. In this paper, we present two efficient

TPASS protocols, one is built on two-phase commitment and has lower compu-

tation complexity, and another is based on zero-knowledge proof and has less

communication rounds. Both protocols are in particular efficient for the client,

who only needs to send a request and receive a response. In addition, we have

provided rigorous proofs of security for the proposed protocols in the standard

model. The experimental results have shown that the proposed two TPASS

protocols are more efficient than Camenisch et al.’s protocols and save up to

85% – 95% total computational time and up to 65% – 75% total communication

overhead.

Keywords: Threshold password-authenticated secret sharing protocol,

ElGamal encryption scheme, Shamir secret sharing scheme, Diffie-Hellman

problems

2

1. Introduction

Threshold password-authenticated secret sharing (TPASS) protocols con-

sider a scenario [6], inspired by the movie “Memento” in which the main char-

acter suffers from short-term memory loss, leads to an interesting cryptographic

problem, can a user securely recover his secrets from a set of servers, if all the5

user can or wants to remember is a single password and all of the servers may

be adversarial? In particular, can he protect his previous password when acci-

dentally trying to run the recovery with all-malicious servers? A solution for

this problem can act as a natural bridge from human-memorisable passwords

to strong keys for cryptographic tasks.10

A typical application of TPASS is to protect user data in cloud computing

environments, where a client encrypts his data with a random key before up-

loading it to a data server in the cloud, then secretly shares the random key

together with a password with n key servers in the cloud. When he needs the

key to decrypt his data downloaded from the data server, he recovers the key15

from any subset of t of the n key servers using his password. Therefore, to

protect his data in the cloud, the client needs to remember his password only.

This process can be illustrated in Fig. 1, where we assume that the gateway

forwards messages between the client and key servers.

Figure 1: Cloud Security with TPASS

3

The first TPASS protocol was given by Bagherzandi et al. [2] in 2011. It is20

built on the PKI model, secure under the decisional Diffie-Hellman assumption,

using non-interactive zero-knowledge proofs. The basic idea is as follows: a

client initially generates an ElGamal private and public key pairs (sk, pk = gsk)

[8] and secret-shares sk among servers using an t-out-of-n secret sharing [16]

and outputs public parameters including the public key pk and the encryptions25

E(gpw, pk) and E(s, pk) of password pw and secret s, respectively, under the

public key pk. When retrieving the secret from the servers, the client encrypts

the password pw′ he remembers and send the encryption E(gpw
′
, pk) to the

servers, each of which computes and returns Ai = [E(gpw, pk)/E(gpw
′
, pk)]ri =

E(gri(pw−pw
′), pk), where ri is randomly chosen. The client then computes A =30 ∏n

i=1Ai and sends it to the servers. In the end, t servers cooperate to decrypt

B = E(s, pk)A = E(sg
∑
ri(pw−pw′), pk) and sends partial decryptions to the

client through secure channels, respectively. When pw′ = pw, the client is able

to retrieve the secret s by combining t partial decryptions. This protocol is

secure against honest-but-curious adversaries but not malicious adversaries. A35

protocol against malicious adversaries was also given by Bagherzandi et al. [2]

using non-interactive zero-knowledge proofs. In Bagherzandi et al. protocol, it

is easy to see that the client must correctly remember the public key pk and

the exact set of servers, as he or she sends out an encryption of his or her

password attempt pw′ he or she remembers. If pk can be tampered with and40

changed so that the adversary knows the decryption key, then the adversary

can decrypt pw′. Although the protocol actually encrypts gpw
′
, the malicious

servers can perform an offline dictionary attack on gpw
′

to obtain the password

pw′. In addition, even if the client can correctly remember the public key pk, the

malicious servers can cheat the client with a different secret s′ by sending the45

partial decryptions of B′ = E(s′, pk)A instead of B = E(s, pk)A to the client.

An 1-out-of-2 TPASS was given by Camenisch et al. [5] in 2012. This protocol

also leaks the password when the client tries to retrieve his or her secret from a

set of all-malicious servers.

Authenticating to the wrong servers is a common scenario when users are50

4

tricked in phishing attacks. To overcome this shortcoming, Camenisch et al. [6]

proposed the first t-out-of-n TPASS protocol for any n > t in 2014. The protocol

requires the client to only remember a username and a password, assuming that

a PKI is available. If the client misremembers his or her list of servers and tries to

retrieve his or her secret from corrupt servers, the protocol prevents the servers55

from learning anything about the password or secret, as well as from planting a

different secret into the user’s mind than the secret that he or she stored earlier.

The construction of Camenisch et al. protocol is inspired by Bagherzandi et al.

protocol based on a homomorphic threshold encryption scheme, but the crucial

difference is that in the retrieval protocol of Camenisch et al., the client never60

sends out an encryption of his or her password attempt. Instead, the client

derives an encryption of the (randomised) quotient of the password used at

setup and the password attempt. The servers then jointly decrypt the quotient

and verify whether it yields “1”, indicating that both passwords matched. In

case the passwords were not the same, all the servers learn is a random value.65

Camenisch et al. TPASS protocol [6], proved to be secure in the UC frame-

work, requires the client to involve in many communication rounds so that it

becomes impractical for the client. The client has to do 5n+15 exponentiations

in G for the setup protocol and 14t + 24 exponentiations in the retrieval pro-

tocol. Each server has to perform n + 18 and 7t + 28 exponentiations in these70

respective protocols.

Recently, Abdalla et al. [1] proposed new robust password-protected secret

sharing protocols which are significantly more efficient than the existing ones.

Their protocols have been proven in the random-oracle model, because their

construction requires random non-malleable fingerprints, which is provided by75

an ideal hash function. In addition, Jarecki et al. [11] constructed password-

protected secret sharing protocols based on oblivious pseudorandom functions,

formulated as a universally composable (UC) functionality.

Our Contribution. To improve the efficiency of TPASS, we propose two new

t-out-of-n TPASS protocols for any n > t in this paper. One protocol is built80

5

on two-phase commitment and has lower computation complexity. Another

protocol is built on zero-knowledge proof and has less communication rounds.

Both protocols are in particular efficient for the client, who only needs to send

a request and receive a response.

The basic idea is as follows: a client initially secret-shares a password, a85

secret and the digest of the secret with n servers, such as t out of the n servers

can recover the secret. When retrieving the secret from the servers, the client

submits to the servers A = gr1g
pwC
2 , where r is randomly chosen and pwC is the

password, and then t servers cooperate to generate and return an ElGamal en-

cryption of the secret and an ElGamal encryption of the digest of the secret, both90

under the public key gr1. We use two-phase commitment and zero-knowledge

proof to prevent the collusion attack from up to t− 1 malicious servers. At the

end, the client then decrypts the two ciphertexts and accepts the secret if one

decrypted value is another’s digest.

The proposed protocols are significantly more efficient than Camenisch et95

al. protocol [6] in terms of computational and communication complexities. In

the proposed protocols, the client only needs to send a request and receive a

response. In addition, the client needs to do 3n evaluations of polynomials of

degree t − 1 in Zq for the initialization and 7 exponentiations for the retrieval

protocol. Each server only needs to do t+10 (in two-phase commitment case) or100

3t+10 (in one-phase zero-knowledge proof case) exponentiations in the retrieval

protocol. The computation and communication complexities for the client are

independent of the number of the servers n and the threshold t.

We have provided rigorous proof of security for the proposed protocols in

the standard model. Like Camenisch et al. protocol [6], the proposed protocols105

can protect the password of the client even if he or she communicates with all-

malicious servers by mistake. In addition, they prevent the servers from planting

a different secret into the user’s mind than the secret that he stored earlier.

This paper is an extended version of our conference paper [20]. In this

extension, we have added a new TPASS protocol based on zero-knowledge proof,110

which reduces the communications among servers from two phases to one phase.

6

In addition, we provide a rigorous proof of security for the new protocol in

the standard model, and performed some experiments on the proposed two

protocols.

Related Works. A close work related to TPASS is threshold password - authen-115

ticated key exchange (TPAKE), which lets the client agree on a fresh session

key with each of the servers, but does not allow the client to store and re-

cover a secret. Depending on the desired security properties, one can build a

TPASS scheme from a TPAKE scheme by using the agreed-upon session keys

to transmit the stored secret shares over secure channels [2].120

The first TPAKE protocols, due to Ford and Kaliski [9] and Jablon [10],

were not proved secure. The first provably secure TPAKE protocol, a t-out-of-n

protocol in a PKI setting, was proposed by MacKenzie et al. [14]. The 1-out-

of-2 protocol of Brainard et al. [4] is implemented in EMC’s RSA Distributed

Credential Protection. Both protocols either leak the password or allow an125

offline dictionary attack when the retrieval is performed with corrupt servers.

The t-out-of-n TPAKE protocols by Di Raimondo and Gennaro [15] and the

1-out-of-2 protocol by Katz et al. [13] are proved secure in a hybrid password-

only/PKI setting, where the user does not know any public keys, but the servers

and an intermediate gateway do have a PKI. These protocols actually remain130

secure when executed with all-corrupt servers, but are restricted to the cases

that n > 3t and (t, n) = (1, 2). Based on identity-based encryption (IBE), an

1-out-of-2 protocol where the client is required to remember the identities of the

two servers besides his or her password, was proposed by Yi et al. [19].

Organization. The rest of our paper is organised as follows. We give the security135

definition in Section 2, describe the proposed TPASS protocols in Section 3,

provide the security proof for the proposed protocols in Section 4, analyze the

performance of the proposed protocols in Section 5. Conclusions are drawn in

the last section.

7

2. Definition of Security140

In this section, we define the security for TPASS protocol on the basis of the

security models for PAKE [3, 12].

Participants, Initialization, Passwords, Secrets. A TPASS protocol in-

volves three kinds of protocol participants: (1) A group of clients (denoted as

Client), each of which requests TPASS services from t servers on the network;145

(2) A group of n servers S1,S2, · · · ,Sn (denoted as Server = {S1,S2, · · · ,Sn}),

which cooperate to provide TPASS services to clients on the network; (3) A gate-

way (GW), which coordinates TPASS. We assume that User = Client
⋃

Server

and Client
⋂
Server = ∅. When the gateway GW coordinates TPASS, it simply

forwards messages between a client and t servers.150

Prior to any execution of the protocol, we assume that an initialization

phase occurs. During initialization, the n servers cooperate to generate public

parameters for the protocol, which are available to all participants.

We assume that the client C chooses its password pwC independently and

uniformly at random from a “dictionary” D = {pw1, pw2, · · · , pwN} of size N ,155

where N is a fixed constant which is independent of any security parameter.

The client then secretly shares the password with the n servers such that any t

servers can restore the password.

In addition, we assume that the client C chooses its secret sC independently

and uniformly at random from Z∗q , where q is a public parameter. The client160

then secretly shares the secret with the n servers such that any t servers can

recover the secret.

We assume that at least n − t + 1 servers are trusted not to collude to

determine the password and the secret of the client. The client C needs to

remember pwC only to retrieve its secret sC .165

Execution of the Protocol. A protocol determines how users behave in

response to input from their environments. In the formal model, these inputs

are provided by the adversary. Each user is assumed to be able to execute the

protocol multiple times (possibly concurrently) with different partners. This

8

is modeled by allowing each user to have unlimited number of instances with170

which to execute the protocol. We denote instance i of user U as U i. A given

instance may be used only once. The adversary is given oracle access to these

different instances. Furthermore, each instance maintains (local) state which

is updated during the course of the experiment. In particular, each instance

U i is associated with the following variables, initialized as NULL or FALSE (as175

appropriate) during the initialization phase.

• sidiU is a variable containing the session identity for an instance U i. The

session identity is simply a way to keep track of the different executions of

a particular user U . Without loss of generality, we simply let this be the

(ordered) concatenation of all messages sent and received by instance U i.180

• siC is a variable containing the secret sC for a client instance Ci. Retrieval

of the secret is, of course, the ultimate goal of the protocol.

• acciU and termi
U are boolean variables denoting whether a given instance

U i has been accepted or terminated, respectively. Termination means that

the given instance has done receiving and sending messages, acceptance185

indicates successful termination. When an instance U i has been accepted,

sidiU is no longer NULL. When a client instance Ci has been accepted, siC

is no longer NULL.

• stateiU records any state necessary for execution of the protocol by U i.

• usediU is a boolean variable denoting whether an instance U i has begun190

executing the protocol. This is a formalism which will ensure each instance

is used only once.

The adversary A is assumed to have complete control over all communica-

tions in the network (between the clients and servers, and between servers and

servers) and the adversary’s interaction with the users (more specifically, with195

various instances) is modelled via access to oracles. The state of an instance

may be updated during an oracle call, and the oracle’s output may depend upon

the relevant instance. The oracle types include:

9

• Send(C, i,M) – This sends message M to a client instance Ci. Assuming

termi
C = FALSE, this instance runs according to the protocol specification,200

updating state as appropriate. The output of Ci (i.e., the message sent by

the instance) is given to the adversary, who receives the updated values

of sidiC , acc
i
C , and termi

C . This oracle call models an active attack to the

protocol. If M is empty, this query represents a prompt for C to initiate

the protocol.205

• Send(S, j, U,M) – This sends message M to a server instance Sj , suppos-

edly from a user U (either a client or a server) or even a set of servers.

Assuming termj
S = FALSE, this instance runs according to the protocol

specification, updating state as appropriate. The output of Sj (i.e., the

message sent by the instance) is given to the adversary, who receives the210

updated values of sidjS , acc
j
S , and termj

S . If S is corrupted, the adversary

also receives the entire internal state of S. This oracle call also models an

active attack to the protocol.

• Execute(C, i,S) – If the client instance Ci and t server instances, denoted

as S, have not yet been used, this oracle executes the protocol between215

these instances and outputs the transcript of this execution. This oracle

call represents passive eavesdropping of a protocol execution. In addition

to the transcript, the adversary receives the values of sid, acc, and term for

client and server instances, at each step of protocol execution. In addition,

if any server in S is corrupted, the adversary is given the entire internal220

state of the server.

• Corrupt(S) – This sends the password and secret shares of all clients stored

in the server S to the adversary. This oracle models possible compromising

of a server due to, for example, hacking into the server.

• Corrupt(C) – This query allows the adversary to learn the password of225

the client C and then the secret of the client, which models the possibility

of subverting a client by, for example, witnessing a user typing in his

10

password, or installing a “Trojan horse” on his machine.

• Test(C, i) – This oracle does not model any real-world capability of the

adversary, but is instead used to define security. If acciC = TRUE, a230

random bit b is generated. If b = 0, the adversary is given siC , and if b = 1

the adversary is given a random number. The adversary is allowed only a

single Test query, at any time during its execution.

Correctness. To be viable, a TPASS protocol must satisfy the following notion

of correctness: If a client instance Ci and t server instances S runs an honest235

execution of the protocol with no interference from the adversary, then acciC =

accjS = TRUE for any server instance Sj in S.

Freshness. To formally define the adversary’s success we need to define a

notion of freshness for a client, where freshness of the client is meant to indicate

that the adversary does not trivially know the value of the secret of the client.240

We say a client instance Ci is fresh if (1) C has not been corrupted; (2) Test(C)

has not been queried; and (3) at least n−t+1 out of n servers are not corrupted.

Advantage of the Adversary. We consider passive and active attacks, re-

spectively. In a passive attack, the adversary is allowed to call Execute, Corrupt

and Test oracles. Informally, a passive adversary succeeds if it can guess the bit

b used by the Test oracle. We say a passive adversary A succeeds if it makes a

query Test(C, i) to a fresh client instance Ci, with acciC = TRUE at the time of

this query, and outputs a bit b′ with b′ = b (recall that b is the bit chosen by

the Test oracle). We denote this event by SuccP. The advantage of a passive

adversary A in attacking protocol P is then given by

AdvPPA(k) = 2 · Pr[SuccP]− 1

where the probability is taken over the random coins used by the adversary

and the random coins used during the course of the experiment (including the

initialization phase).245

Definition 1. Protocol P is a secure TPASS protocol against the passive attack,

11

if, for all passive PPT adversaries A, there exists a negligible function ε(·) such

that for a security parameter k,

AdvPPA(k) ≤ ε(k)

In an active attack, the adversary is allowed to call Send and Corrupt oracles.

Informally, an active adversary succeeds if it can convince a client to accept a

wrong secret key. We say an active adversary A succeeds if it makes an query

Send(C, i) to a fresh client instance Ci, resulting in acciC = TRUE. We denote

this event by SuccA. The advantage of an active adversary A in attacking

protocol P is then given by

AdvPAA(k) = Pr[SuccA]

where the probability is taken over the random coins used by the adversary

and the random coins used during the course of the experiment (including the

initialization phase).

The active adversary can always succeed by trying all passwords one-by-

one in an on-line impersonation attack. A protocol is secure against the active250

attack if this is the best an adversary can do. The on-line attacks correspond to

Send queries. Formally, each instance for which the adversary has made a Send

query counts as one on-line attack. The number of on-line attacks represents a

bound on the number of passwords the adversary could have tested in an on-line

fashion.255

Definition 2. Protocol P is a secure TPASS protocol against the active attack

if, for all dictionary size N and for all active PPT adversaries A making at

most Q(k) on-line attacks, there exists a negligible function ε(·) such that for a

security parameter k,

AdvPAA(k) ≤ Q(k)/N + ε(k)

3. The Proposed TPASS Protocols

In this section, we describe two TPASS protocols based on two-phase com-

mitment protocol and zero-knowledge proof, respectively.

12

3.1. The Proposed Protocol Based on Two-Phase Commitment

Initialization. Given a security parameter k ∈ Z∗, the initialization includes:260

Parameter Generation: On input k, the n servers agree on a cyclic group G of

large prime order q with a generator g1 and a hash function H : {0, 1}∗ → Zq.

Then the n servers cooperate to generate g2, like [18], such that no one knows

the discrete logarithm of g2 based on g1 if one out of the n server is honest. The

public parameters for the protocol is params = {G, q, g1, g2, H}.265

Password Generation: On input params, each client C ∈ Client with identity

IDC uniformly draws a string pwC , the password, from the dictionary D =

{pw1, pw2, · · · , pwN}. The client then randomly chooses a polynomial f1(x) of

degree t − 1 over Zq such that pwC = f1(0), and distributes {IDC , i, f1(i)} to

the server Si via a secure channel, where i = 1, 2, · · · , n.270

Secret Sharing: On input params, each client C ∈ Client randomly chooses s

from Z∗q . The client then randomly chooses two polynomials f2(x) and f3(x)

of degree t− 1 over Zq such that s = f2(0) and H(gs2) = f3(0), and distributes

{IDC , i, f2(i), f3(i)} to the server Si via a secure channel, where i = 1, 2, · · · , n.

We define the secret sC as gs2.275

Protocol Execution. Given the public params = {G, q, g1, g2, H}, the client

C (knowing its identity IDC and password pwC) runs TPASS protocol P with

t servers (each server knowing {IDC , i, f1(i), f2(i), f3(i)}) to retrieve the secret

sC as shown in Fig. 2.

In Fig. 2, TPASS protocol is executed with three algorithms as follows.280

Retrieval Request. Given the public parameters {G, g1, g2, q,H}, the client C

with the identity IDC validates if q is a large prime and gq1 = gq2 = 1. If so,

the client, who remembers the password pwC , randomly chooses r from Z∗q and

computes

A = gr1g
−pwC
2 .

Then the client submits msgC = 〈IDC , A〉 to the gateway GW for the n servers.

13

Public: G, q, g1, g2, H

Client C

IDC , pwC

Server Si

{IDC , i, f1(i), f2(i), f3(i)}
i = 1, 2, · · · , tr

R← Z∗q
A = gr1g

−pwC
2

-
msgC = 〈IDC , A〉 Gateway

GW
-

msgC = 〈IDC , A〉
S = {S1,S2, · · · , St}

ri, ci, di
R← Z∗q , ai =

∏
1≤j≤t,j 6=i

j
j−i

Bi = g
ri
1 g

aif1(i)
2

Ci = g
ci
1 , Di = g

di
1

δi = g
H(IDC ,A,Bi,Ci,Di)
1

msgi = 〈IDC , δi, Bi, Ci, Di〉

-
〈IDC , δi〉, i = 1, 2, · · · , t

Si broadcasts commit in S Phase 1

-
〈IDC , Bi, Ci, Di〉, i = 1, 2, · · · , t

Si broadcasts opening in S Phase 2

if δj = g
H(IDc,A,Bj ,Cj ,Dj)

1 (1 ≤ j ≤ t)
C =

∏t
j=1 Cj , D =

∏t
j=1Dj

hi = H(IDC , A, C,D)

Ei = g
aif2(i)hi
2 C−ri (A

∏t
j=1Bj)

ci

Fi = g
aif3(i)hi
2 D−ri (A

∏t
j=1Bj)

di

accSi = TRUE

else return ⊥

�
msg∗i = 〈IDC , C,D,Ei, Fi〉Gateway

GW

E =
∏t
i=1 Ei

F =
∏t
i=1 Fi

�
msgS = 〈IDC , C,D,E, F 〉

h = H(IDC , A, C,D)

S = (E/Cr)h
−1

T = (F/Dr)h
−1

if T = g
H(S)
2 , accC = TRUE

else return ⊥

Figure 2: The Proposed TPASS Protocol P Based on Two-Phase Commitment

14

Remark. The purpose for the client to validate the public parameters is to

ensure that the discrete logarithm over {G, q, g1, g2} is hard in case that the

adversary can change the public parameters.

Retrieval Response. After receiving the request msgC from the client C, the285

gateway GW forwards it to t available servers to response the request. With-

out loss of generality, we assume that the first t servers, denoted as S =

{S1,S2, · · · ,St}, cooperate to generate a response. There are two phases for

the t servers to generate retrieval response.

Commitment Phase. Based on the identity IDC of the client, each server Si

(i = 1, 2, · · · , t) randomly chooses ri, ci, di from Z∗q and computes

Bi = gri1 g
aif1(i)
2 , Ci = gci1 , Di = gdi1 , δi = g

H(IDC ,A,Bi,Ci,Di)
1

where ai =
∏

1≤j≤t,j 6=i
j
j−i .290

In the commitment phase, Si broadcasts its commitment 〈IDC , δi〉.

Opening Phase. After receiving all commitments 〈IDC , δj〉 (1 ≤ j ≤ t), Si

broadcasts its opening 〈IDC , Bi, Ci, Di〉.

Each server Si verifies if δj = g
H(IDC ,A,Bj ,Cj ,Dj)
1 for all j 6= i. If so, based

on the identity IDC of the client, Si computes

C =

t∏
j=1

Cj , D =

t∏
j=1

Dj , hi = H(IDC , A,C,D)

Ei = g
aif2(i)hi

2 C−ri(A

t∏
j=1

Bj)
ci , Fi = g

aif3(i)hi

2 D−ri(A

t∏
j=1

Bj)
di

and sets accSi
= TRUE.

Then Si sends msg∗i = {IDC , C,D,Ei, Fi} to the gateway GW.295

The gateway GW computes

E =

t∏
i=1

Ei, F =

t∏
i=1

Fi

and returns to the client with msgS = {IDC , C,D,E, F}.

15

Secret Retrieval. After receiving the response msgS = {IDC , C,D,E, F} from

the gateway, the client computes

h = H(IDC , A,C,D), S = (E/Cr)h
−1

, T = (F/Dr)h
−1

and verifies if T = g
H(S)
2 . If so, the client sets accC = TRUE, the secret sC = S

and ⊥ otherwise.

Remark. In the end of the protocol, the servers can check if the password

attempt is correct or not by one more step, where the servers provide the client300

with a ciphertext for decryption, assuming that the client initially stores a pair of

plaintext and ciphertext in the servers. If the client can return a decrypted result

same as the plaintext stored in the servers previously, the password attempt

is correct. Otherwise, the servers should block the account after several failed

attempts. In this way, the proposed protocol can prevent the Distributed Denial-305

of-Service (DDoS) attack efficiently and effectively.

3.2. The Proposed Protocol Based on Zero-Knowledge Proof

Initialization. The initialization is the same as described in Section 3.1.

Protocol Execution. Given the public params = {G, q, g1, g2, H}, the client

C (knowing its identity IDC and password pwC) runs TPASS protocol P with t310

servers (each server knowing {ID, i, f1(i), f2(i), f3(i)}) to retrieve the secret sC

as shown in Fig. 3.

In Fig. 3, TPASS protocol is executed with three algorithms as follows.

Retrieval Request. Given the public parameters {G, g1, g2, q,H}, the client C

with the identity IDC validates if q is a large prime and gq1 = gq2 = 1. If so,

the client, who remembers the password pwC , randomly chooses r from Z∗q and

computes

A = gr1g
−pwC
2 .

Then the client submits msgC = 〈IDC , A〉 to the gateway GW for the n servers.

Retrieval Response. After receiving the request msgC from the client C, the315

gateway GW forwards it to t available servers to respond the request. With-

16

Public: G, q, g1, g2, H

Client C

IDC , pwC

Server Si

{IDC , i, f1(i), f2(i), f3(i)}
i = 1, 2, · · · , tr

R← Z∗q
A = gr1g

−pwC
2

-
msgC = 〈IDC , A〉 Gateway

GW
-

msgC = 〈IDC , A〉
S = {S1, S2, · · · ,St}

ri, ci, di
R← Z∗q , ai =

∏
1≤j≤t,j 6=i

j
j−i

Bi = g
ri
1 g

aif1(i)
2

Ci = g
ci
1 , Di = g

di
1

hi = H(IDC , A,Bi, Ci, Di), Hi = H(hi)

δi = hici +Hidi(mod q) (ZKP)

-
msgi = 〈IDC , Bi, Ci, Di, δi〉

Si broadcasts msgi in S

for j = 1 to t where j 6= i

{hj = H(IDC , A,Bj , Cj , Dj), Hj = H(hj)}
if g

δj
1 = C

hj
j D

Hj

j (1 ≤ j ≤ t where j 6= i)

{C =
∏t
j=1 Cj , D =

∏t
j=1Dj

h = H(IDC , A, C,D)

Ei = g
aif2(i)h
2 C−ri (A

∏t
j=1Bj)

ci

Fi = g
aif3(i)h
2 D−ri (A

∏t
j=1Bj)

di

accSi = TRUE}
else return ⊥

�
msg∗i = 〈IDC , C,D,Ei, Fi〉Gateway

GW

E =
∏t
i=1 Ei

F =
∏t
i=1 Fi

�
msgS = 〈IDC , C,D,E, F 〉

h = H(IDC , A, C,D)

S = (E/Cr)h
−1

T = (F/Dr)h
−1

if T = g
H(S)
2 , accC = TRUE

else return ⊥

Figure 3: The Proposed TPASS Protocol P Based on Zero-Knowledge Proof

17

out loss of generality, we assume that the first t servers, denoted as S =

{S1,S2, · · · ,St}, cooperate to generate a response. Unlike the proposed pro-

tocol based on two-phase commitment, the t servers can generate the response

in one phase.320

Based on the identity IDC of the client, each server Si (i = 1, 2, · · · , t)

randomly chooses ri, ci, di from Z∗q and computes

Bi = gri1 g
aif1(i)
2 , Ci = gci1 , Di = gdi1 ,

hi = H(IDC , A,Bi, Ci, Di), Hi = H(hi), δi = hici +Hidi(mod q),

where ai =
∏

1≤j≤t,j 6=i
j
j−i , (Ci, Di, δi) is a zero-knowledge proof of knowledge

of (ci, di).

Then Si broadcasts msgi = 〈IDC , Bi, Ci, Di, δi〉 in S.

Each server Si computes

hj = H(IDC , A,Bj , Cj , Dj), Hj = H(hj)

for all j 6= i and verifies the zero-knowledge proof of knowledge of (cj , dj) by

checking if

g
δj
1 = C

hj

j D
Hj

j

for all j 6= i. If so, based on the identity IDC of the client, Si computes

C =

t∏
j=1

Cj , D =

t∏
j=1

Dj , h = H(IDC , A,C,D)

Ei = g
aif2(i)h
2 C−ri(A

t∏
j=1

Bj)
ci , Fi = g

aif3(i)h
2 D−ri(A

t∏
j=1

Bj)
di

and sets accSi = TRUE.

Then Si sends msg∗i = {IDC , C,D,Ei, Fi} to the gateway GW.325

The gateway GW computes

E =

t∏
i=1

Ei, F =

t∏
i=1

Fi

and returns to the client with msgS = {IDC , C,D,E, F}.

18

Secret Retrieval. After receiving the response msgS = {IDC , C,D,E, F} from

the gateway, the client computes

h = H(IDC , A,C,D), S = (E/Cr)h
−1

, T = (F/Dr)h
−1

and verifies if T = g
H(S)
2 . If so, the client sets accC = TRUE, the secret sC = S

and ⊥ otherwise.

3.3. Correctness

Correctness of the Proposed TPASS protocol based on two-phase330

commitment. Assume that a client instance Ci and t server instances S run

an honest execution of the proposed TPASS protocol P with no interference

from the adversary. With reference to Fig. 2, it is obvious that accSj = TRUE

for 1 ≤ j ≤ t. In addition, we have

C =

t∏
j=1

Cj = g
∑t

j=1 cj
1 , D =

t∏
j=1

Dj = g
∑t

j=1 dj
1

Ei = g
aif2(i)hi

2 C−ri(A

t∏
j=1

Bj)
ci

= g
aif2(i)hi

2 g
−ri

∑t
j=1 cj

1 (gr1g
−pwC
2 g

∑t
j=1 rj

1 g
pwC
2)ci

= g
aif2(i)hi

2 g
−ri

∑t
j=1 cj

1 g
ci

∑t
j=1 rj

1 gcir1

Fi = g
aif3(i)hi

2 D−ri(A

t∏
j=1

Bj)
di

= g
aif3(i)hi

2 g
−ri

∑t
j=1 dj

1 (gr1g
−pwC
2 g

∑t
j=1 rj

1 g
pwC
2)di

= g
aif3(i)hi

2 g
−ri

∑t
j=1 dj

1 g
di

∑t
j=1 rj

1 gdir1

h = H(IDC , A,C,D)

E =

t∏
i=1

Ei =

t∏
i=1

g
aif2(i)h
2 g

−ri
∑t

j=1 cj
1 g

ci
∑t

j=1 rj
1 gcir1

= gsh2 g
−

∑t
i=1 ri

∑t
j=1 cj

1 g
∑t

i=1 ci
∑t

j=1 rj
1 g

r
∑t

i=1 ci
1 = gsh2 Cr

F =

t∏
i=1

Fi =

t∏
i=1

g
aif3(i)h
2 g

−ri
∑t

j=1 dj
1 g

di
∑t

j=1 rj
1 gdir1

= g
H(gs2)h
2 g

−
∑t

i=1 ri
∑t

j=1 dj
1 g

∑t
i=1 di

∑t
j=1 rj

1 g
r
∑t

i=1 di
1 = g

H(gs2)h
2 Dr

19

We can see that (C,E) and (D,F) are in fact the EGamal encryptions of gsh2 and335

g
H(gs)h
2 under the public key gr1, respectively. Therefore, we have accC = TRUE

because

h = H(IDC , A,C,D)

S = (E/Cr)h
−1

= (gsh2)h
−1

= gs2

T = (F/Dr)h
−1

= (g
H(gs2)h
2)h

−1

= g
H(gs2)
2

T = g
H(S)
2 .

In summary, the proposed TPASS protocol based on two-phase commitment

has correctness.

Correctness of the proposed TPASS protocol based on zero-knowledge340

proof. Comparing the proposed two protocols shown in Fig. 2 and Fig. 3, we

can see that there are two differences: (1) δi is computed differently; (2) δi is

verified differently. Therefore, we only need to show that g
δj
1 = C

hj

j D
Hj

j for

j = 1, 2, · · · , t for the second proposed protocol if each server Si follows the

protocol to compute Bi, Ci, Di and δi.345

Because Cj = g
cj
1 , Dj = g

dj
1 , δj = hjcj +Hjdj for j = 1, 2, · · · , t, we have

g
δj
1 = g

hjcj+Hjdj
1 = (g

cj
1)hj (g

dj
1)Hj = C

hj

j D
Hj

j

for j = 1, 2, · · · , t. Therefore, the proposed TPASS protocol based zero-knowledge

proof has correctness.

3.4. Efficiency

Efficiency of the proposed TPASS protocol based on two-phase com-350

mitment. In the first proposed protocol, the client needs to compute 7 expo-

nentiations in G and send or receive 5 group elements in G. Each server needs

to compute t+10 exponentiations in G and send or receive 4t+5 group elements

in G.

The client involves only two communication rounds with the gateway, i.e.,355

sending msgC to the gateway and receiving msgS from the gateway. Each server

20

Si participates in six communication rounds with other servers and the gateway,

i.e., receiving msgC from the gateway, broadcasting the commitment 〈IDC , δi〉

to other servers, receiving 〈IDC , δj〉 for all j 6= i from other servers, broadcasting

〈IDC , Bi, Ci, Di〉, receiving 〈IDC , Bj , Cj , Dj〉 for all j 6= i, and finally sending360

msg∗i to the gateway.

The performance comparison of Camenisch et al. protocol [6] (with provable

security in the UC framework) and the proposed protocol (with provable security

in the standard model) can be shown in Tab. 1.

In Table 1, exp. represent the computation complexity of a modular expo-365

nentiation, |g| is the size of a group element in G and |q| is the size of a group

element in Zq, C, S and G stand for Client, Server and Gateway, respectively.

In addition, pk =
∏
epki, tpk =

∏
tpki. In Camenisch et al. protocol [6], a hash

value is counted as half a group element.

In our initialization, the client secret-shares the password, secret and the370

digest of the secret with the n servers via n secure channels which may be

established with PKI. In the setup protocol of Camenisch et al., the client setups

the shares with the n servers based on PKI. The proposed retrieval protocol does

not rely on PKI, but the retrieval protocol of Camenisch et al. still requires PKI.

In view of this, the proposed retrieval protocol can be implemented easier than375

Camenisch et al. retrieval protocol.

From Table 1, we can see that the proposed retrieval protocol is signifi-

cantly more efficient than the retrieval protocol of Camenisch et al. not only

in communication rounds for client but also in computation and communica-

tion complexities. In particular, the performance of the client in the proposed380

retrieval protocol is independent of the number of the servers and the threshold.

Efficiency of the proposed TPASS protocol based on zero-knowledge

proof. The second proposed protocol has the same initialization, client retrieval

request and client secret retrieval as the first proposed protocol.

In the retrieval response, each server Si participates in four communication385

rounds with other servers and the gateway, i.e., receiving msgC from the gateway,

21

Table 1: Performance Comparison of the Camenisch et al. Protocol and the Proposed Proto-

cols

Camenisch et al. [6] Protocol 1 Protocol 2

Public Keys C: username C: username

S: Si: epki, spki, tpki S Si: none

Private Keys C: pwC C: pwC

S: Si: eski, sski, tski S: Si: f1(i), f2(i), f3(i) where

E(pwC , pk), E(s, pk)
∑
aif1(i) = pwC ,

∑
aif2(i) = s

E(pwC , tpk), E(s, tpk) and
∑
aif3(i) = H(gs2)

Setup Comp. C: 5n+ 15 (exp.) C: 3n polynomial evaluations

Complexity S: n+ 18 (exp.) S: none

Setup Comm. n(2.5n+ 18.5)|g| C: 3n|q|

Complexity S: 3|q|

Setup Comm. 4 C: 1

Round S: 1

Retrieve Comp. C: 14t+ 24 (exp.) C: 7 (exp.) C: 7 (exp.)

Complexity S: 7t+ 28 (exp.) S: t+ 10 (exp.) S: 3t+ 10 (exp.)

G: 0 (exp.) G: 0 (exp.)

Retrieve Comm. (t+ 1)(36.5 + 2.5n C: 5|g| C: 5|g|

Complexity +10.5(t+ 1))|g| S: (4t+ 5)|g| S: (3t+ 5)|g|+ t|q|

G: (4t+ 5)|g| G: (4t+ 5)|g|

Retrieve Comm. 10 C: 2 / S: 6 C: 2 / S: 4

Rounds G: 4 G: 4

22

broadcasting 〈IDC , Bi, Ci, Di, δi〉 to other servers, receiving 〈IDC , Bj , Cj , Dj , δj〉

for all j 6= i from other servers, and finally sending msg∗i to the gateway.

The performance of the second proposed protocol is also shown in Table 1,

comparing with the performance of Camenisch et al. protocol [6] and the first390

proposed protocol.

From Table 1, we can see that the retrieval computation complexity of the

second proposed protocol in a server is more than that in the first proposed

protocol, but is much less than that in Camenisch et al. protocol. The retrieval

communication complexity of the second proposed protocol in a server is less395

than that in the first proposed protocol because |q| is less than |g|. In addition,

the second proposed protocol has reduce the communications among serves from

two phases to one phase. The total communication overhead for each proposed

protocol is also much less than that in Camenisch et al. protocol.

4. Security Analysis400

4.1. Security Analysis of the Proposed TPASS Protocol Based on Two-Phase

Commitment

Based on the security model defined in Section 2, we have the following

theorem:

Theorem 1. Assuming that the decisional Diffie-Hellman (DDH) problem [7] is405

hard over {G, q, g1}, then the proposed TPASS protocol P based on two-phase

commitment illustrated in Fig. 2 is secure against the passive attack according

to Definition 1.

Proof. In the security analysis, we consider the worst case where t− 1 servers

have been corrupted. Without loss of generality, we assume that the first server410

S1 is honest and the rest have been corrupted.

Given a passive adversary A attacking the protocol, we imagine a simulator

S that runs the protocol for A.

First of all, the simulator S initializes the system by generating public pa-

rameters params = {G, q, g1, g2, H}. Next, Server = {S1,S2, · · · ,Sn} and Client415

23

sets are determined. For each C ∈ Client, a password pwC and a secret sC are

chosen at random and then secret-shared with the n servers. In addition, the

digest of the secret H(sC) is also secret-shared with the n servers.

The public parameters params and the shares {IDC , i, f1(i), f2(i), f3(i)} for

i = 2, 3, · · · , t are provided to the adversary. When answering to any oracle420

query, the simulator S provides the adversary A with the internal state of the

corrupted servers Si (i = 2, 3, · · · , t).

We refer to the real execution of the experiment, as described above, as P0.

We introduce a sequence of transformations to the experiment P0 and bound

the effect of each transformation on the adversary’s advantage. We then bound425

the adversary’s advantage in the final experiment. This immediately yields a

bound on the adversary’s advantage in the original experiment.

Experiment P1: In this experiment, the simulator interacts with the adversary

A as in experiment P0 except that the adversary’s queries to Execute oracles

are handled differently: in any Execute(C, i,S), where the adversary A has not430

queried corrupt(C), the password pwC in msgC = 〈IDC , A〉 where A = gr1g
pwC
2

are replaced with a random pw in Z∗q .

Because r in A = gr1g
pwC
2 is randomly chosen from Z∗q by the simulator, the

adversary cannot distinguish gr1g
pwC
2 with gr1g

pw
2 . Otherwise, we can break the

semantic security of the ElGamal encryption, i.e., given an ElGamal encryption435

(gr,myr) where m is either g
pwC
2 or gpw2 , g is a generator of G, and y = g1,

determine if it is an encryption of g
pwC
2 . The semantic security of the ElGamal

encryption is built on the DDH assumption. Therefore, we have

Claim 1. If the DDH problem is hard over {G, q, g1}, |AdvP0

PA(k)− AdvP1

PA(k)|

is negligible.440

Experiment P2: In this experiment, the simulator interacts with the adversary

A as in experiment P1 except that: for any Execute(C, i,S) oracle, where the

adversary A has not queried corrupt(C) and corrupt(S1), a1f1(1) in msg1 =

〈IDC , δ1, B1, C1, D1〉 where B1 = gr11 g
a1f1(1)
2 is replaced by a random number

in Z∗q .445

24

Because r1 in B1 = gr11 g
a1f1(1)
2 is randomly chosen from Z∗q by the simulator,

the adversary cannot distinguish gr11 g
a1f1(1)
2 with gr11 g

α
2 , where α is a random

number in Z∗q .

Claim 2. If the DDH problem is hard over {G, q, g1}, |AdvP1

PA(k)− AdvP2

PA(k)|

is negligible.450

Experiment P3: In this experiment, the simulator interacts with the adver-

sary A as in experiment P2 except that: for any Execute(C, i,S) oracle, where

the adversary A has not queried corrupt(C) and corrupt(S1), E1 in msg∗1 =

〈IDC , C,D,E1, F1〉 is replaced with a random element in the group G.

The difference between the current experiment and the previous one is455

bounded by the probability to solve the decisional Diffie-Hellman (DDH) prob-

lem over {G, q, g1}. More precisely, we have

Claim 3. If the DDH problem over {G, q, g1} is hard, |AdvP2

PA(k)− AdvP3

PA(k)|

is negligible.

If |AdvP2

PA(k)−AdvP3

PA(k)| is non-negligible, we show that the simulator can460

use A as a subroutine to solve the DDH problem with non-negligible probability

as follows.

Given a DDH problem (gx1 , g
y
1 , Z), where x, y are randomly chosen from Z∗q

and Z is either gxy1 or a random element z from G, the simulator replaces gr1 in

A = gr1g
pwC
2 with gx1 , C1 = gc11 with gy1 , and (gc11 , g

c1r
1) in

E1 = g
a1f2(1)h1

2 g
−r1

∑t
j=1 cj

1 g
c1

∑t
j=1 rj

1 gc1r1

with gy1 , Z, respectively, where rj (j = 1, 2, · · · , t) and cj (j = 2, 3, · · · , t) are

randomly chosen by the simulator. When Z = gxy, the experiment is the same

as the experiment P2. When Z is a random element z in G, the experiment is the465

same as the experiment P3. If the adversary can distinguish the experiments

P2 and P3 with non-negligible probability, the simulator can solve the DDH

problem with non-negligible probability.

Experiment P4: In this experiment, the simulator interacts with the adver-

25

sary A as in experiment P3 except that: for any Execute(C, i,S) oracle, where470

the adversary A has not queried corrupt(C) and corrupt(S1), F1 in msg∗1 =

〈IDC , C,D,E1, F1〉 is replaced with a random element in the group G.

Like the experiment P3, we have

Claim 4. If the DDH problem is hard over {G, q, g1}, |AdvP3

PA(k)− AdvP4

PA(k)|

is negligible.475

In experiment P4, msgC , msg1, msg∗1 in Execute oracles have become inde-

pendent of the password pwC used by the client C and the secret sC and g
H(sC)
2

in the view of the adversary A, if A has not require Corrupt(C) and Corrupt(S1).

In view of this, any off-line dictionary attack cannot succeed.

Experiment P5: In this experiment, the simulator interacts with the adversary480

A as in experiment P4 except that: for any Execute(C, i,S) oracle, where the

adversary A has not queried corrupt(C) and corrupt(S1), the secret sC of the

client is replaced with a random element in the group G.

Given a DDH problem (gx1 , g
y
1 , Z), where x, y are randomly chosen from Z∗q

and Z is either gxy1 or a random element z from G, the simulator replaces gr1 in

A = gr1g
pwC
2 with gx1 , C1 = gc11 with gy1 , and (gr1, g

c1r
1) in

sC = (E/Cr)h
−1

= (E/(g
r
∑t

i=2 ci
1 grc11))h

−1

with gx1 , Z, respectively, where h = H(IDC , A,C,D), cj (j = 2, 3, · · · , t) are

randomly chosen by the simulator. When Z = gxy, the experiment is the same485

as the experiment P4. When Z is a random element z in G, the experiment is the

same as the experiment P5. If the adversary can distinguish the experiments

P4 and P5 with non-negligible probability, the simulator can solve the DDH

problem with non-negligible probability. Therefore, we have

Claim 5. If the DDH problem is hard over {G, q, g1}, |AdvP4

PA(k)− AdvP5

PA(k)|490

is negligible.

In experiment P5, when the passive adversary A queries the Test(C, i) oracle,

the simulator S chooses a random bit b. When the adversary completes its

26

execution and outputs a bit b′, the simulator can tell whether the adversary

succeeds by checking if (1) Test(C, i) query was made regarding some fresh495

client C, and (2) b′ = b.

The passive adversary’s probability of correctly guessing the bit b used by the

Test oracle is exactly 1/2 when the Test query is made to a fresh client instance

Ci invoked by an Execute(C, i,S) oracle. This is so because the secret sC is

chosen at random from G, and hence there is no way to distinguish whether the500

Test oracle outputs a random secret or the “actual” secret (which is a random

element, anyway). Therefore, AdvP5

PA(k) = 2 · 1/2 − 1 = 0. Based on Claims

1-5, we know |AdvP0

PA(k) − AdvP5

PA(k)| is negligible. According to Definition 1,

the protocol is secure against the passive attack and the theorem is proved. 4

Theorem 2. Assuming that the DDH problem is hard over {G, q, g1} and505

H is a collision-resistant hash function, then the proposed TPASS protocol P

based on two-phase commitment illustrated in Fig. 2 is secure against the active

attack according to Definition 2.

Proof. Like in the proof of Theorem 1, we consider the worst case where t− 1

servers have been corrupted. The worst case can be divided into two subcases:510

(i) in the protocol, there is one honest server which has not been compromised

by the adversary; (ii) all servers in the protocol are dishonest and controlled by

the adversary.

For the first subcase, without loss of generality, we assume that the first server

S1 is honest and the rest have been corrupted. Because of the inspection of the515

honest server, the published public parameters G, g1, g2, q cannot be changed

and no one knows the discrete logarithm of g2 based on g1. Otherwise, it turns

to the second subcase. This proof concentrates on the instances invoked by Send

oracles. We view the adversary’s queries to its Send oracles as queries to four

different oracles as follows:520

• Send(C, i) represents a request for instance Ci of client C to initiate the

protocol. The output of this query is msgC = 〈IDC , A〉.

27

• Send(S1, j, C,msgC) represents sending message msgC to instance Sj1 of the

server S1, supposedly from the client C. The input of this query is msgC =

〈IDC , A〉 and the output of this query is msg1 = 〈IDC , δ1, B1, C1, D1〉.525

• Send(S1, j, S2,S3, · · · ,St,M) represents sending message M to instance Sj1

of the server S1, supposedly from the servers S2,S3, · · · ,St. The input of

this query is M = msg2‖msg3‖ · · · ‖msgt and the output of this query is

msg∗1 = 〈IDC , C,D,E1, F1〉 or ⊥.

• Send(C, i,msgS) represents sending the message msgS to instance Ci of530

the client C. The input of this query is msgS = 〈IDC , C,D,E, F 〉 and the

output of this query is either acciC = TRUE or ⊥.

We will use some terminologies throughout the proof. A given message is

called oracle-generated if it was output by the simulator in response to some

oracle query. The message is said to be adversarially-generated otherwise. An535

adversarially-generated message must not be the same as any oracle-generated

message.

We say an active adversary A succeeds if it makes an query Send(C, i,msgS)

to a fresh client instance Ci with an adversarially-generated message msgS ,

resulting in acciC = TRUE. We denote this event by SuccA.540

Experiment P6: In this experiment, the simulator interacts with the adversary

as P0 except that the adversary does not succeed, and the experiment is aborted,

if any of the following occurs:

1. At any point during the experiment, an oracle-generated message (e.g.,

msgC , msg1, or msg∗1) is repeated.545

2. At any point during the experiment, a collision occurs in the hash function

H (regardless of whether this is due to a direct action of the adversary,

or whether this occurs during the course of the simulator’s response to an

oracle query).

It is immediate that events 1 occurs with only negligible probability, event 2550

28

occurs with negligible probability assuming H as collision-resistant hash func-

tions. Put everything together, we are able to see that

Claim 6. If H is a collision-resistant hash function, |AdvP0

AA(k)− AdvP6

AA(k)| is

negligible.

Experiment P7: In this experiment, the simulator interacts with the adversary555

A as in experiment P6 except that (1) the adversary’s queries to Send(C, i) or-

acles are handled differently: in any Send(C, i), where the adversary A has not

queried corrupt(C), the password pwC in msgC = 〈IDC , A〉 where A = gr1g
pwC
2

is replaced with a random number pw in Z∗q ; (2) the adversary’s queries to

Send(S1, j, C,msgC) oracles are handled differently: in any Send(S1, j, C,msgC),560

where the adversary A has not queried corrupt(C) and corrupt(S1), a1f1(1) in

msg1 = 〈IDC , B1, C1, D1〉 where B1 = gr11 g
a1f1(1)
2 is replaced by a random num-

ber in Z∗q ; (3) the adversary’s queries to Send(S1, j, S2, · · · ,St, msg2‖ · · · ‖msgt)

oracles are handled differently: in any Send(S1, j, S2, · · · ,St, msg2‖ · · · ‖msgt),

where A has not queried corrupt(C) and corrupt(S1), E1 and F1 in msg∗1 =565

〈IDC , C,D,E1, F1〉 are replaced with random elements in the group G.

Like in experiments P1 and P2, the changes (1) and (2) will only bring a

negligible change to the advantage of the active adversary.

For the change (3), if msgC ,msg2,msg3, · · · ,msgt are all oracle-generated,

we can replace E1 with a random element in G as in the experiment P3.570

If some of msgC ,msg2,msg3, · · · ,msgt are adversarially-generated, the ad-

versary A cannot produce A, (Bj , Cj , Dj) (j = 2, 3, · · · , t), such as A
∏t
j=1Bj

excludes B1 and δj = g
H(IDC ,A,Bj ,Cj ,Dj)
1 for j = 2, 3, · · · , t still hold because A

and the commitments δj (j = 2, 3, · · · , t) must be broadcast and received by the

server S1 at first and H is a collision-resistant hash function.575

Because B1 = gr11 g
a1f1(1)
2 , we have

E1 = g
a1f2(1)h1

2 C−r1(A

t∏
j=1

Bj)
ci

= g
a1f2(1)h1

2 C−r1(A

t∏
j=2

Bj)
cigc1r11 (gc12)a1f1(1).

29

Given a DDH problem (gx1 , g
y
1 , Z), where x, y are randomly chosen from Z∗q

and Z is either gxy1 or a random element z from G, the simulator replaces g2 with

gx1 , C1 = gc11 with gy1 , and (gc11 , g
c1
2) in the above E1 with gy1 , Z, respectively,

where r1 is randomly chosen by the simulator. When Z = gxy, the experiment580

is the same as the experiment P6. When Z is a random element z in G, the

experiment is the same as the experiment P7.

In the same way, we can make the change (4).

Because no one knows the discrete logarithm x of g2 based on g1, if the

adversary can distinguish the experiments P6 and P7 with non-negligible proba-585

bility, the simulator can solve the DDH problem with non-negligible probability.

Therefore, we have

Claim 7. If the DDH problem is hard over {G, q, g1}, |AdvP6

AA(k)− AdvP7

AA(k)|

is negligible.

In experiment P7, msgC , msg1, msg∗1 in Send oracles have become indepen-590

dent of the password pwC used by the client C and the secret sC and g
H(sC)
2 in

the view of the adversary A, if A has not require Corrupt(C) and Corrupt(S1).

In view of this, any off-line dictionary attack cannot succeed.

To evaluate Pr[SuccA], we consider three cases as follows.

Case 1. The adversary A forges msg′C = 〈IDC , A
′〉 where A′ = gr

′

1 g
pw′C
2 by595

choosing his own r′ from Z∗q and pw′C from the dictionary D. In this case, if

SuccA occurs, the adversary can conclude that the password used by the client

is pw′C . Therefore, the probability Pr[SuccA] = Q1(k)/N , where Q1(k) denotes

the number of queries to Send(S1, j, C,msgC) oracle.

Case 2. Given msgC = 〈IDC , A〉, the adversaryA forges msgS = 〈IDC , C
′, D′,600

E′, F ′〉 by choosing his own s′, c′, d′ from Z∗q and pw′C from the dictionary D

and computing C ′ = gc
′

1 , D
′ = gd

′

1 , E
′ = gs

′h′

2 (Ag
pw′C
2)c

′
, F ′ = g

H(gs
′

2)h′

2 (Ag
pw′C
2)d

′

where h′ = H(IDC , A,C
′, D′). When pwC = pw′C , we have acciC = TRUE.

Therefore, in this case, the probability Pr[SuccA] = Q2(k)/N , where Q2(k)

denotes the number of queries to Send(C, i,msgS) oracle.605

Case 3. Given msgC = 〈IDC , A〉, the adversary A forwards msgC to the

30

server S1 twice to get two responses 〈IDC , C1, D1, E1, F1〉 and 〈IDC , C
′
1, D

′
1, E

′
1,

F ′1〉. Then the adversary A sends to the client a forged message msgS =

〈IDC , C
′
1/C1, D

′
1/D1, g

s∗h∗

2 E′1/E1, g
H(gs

∗
2)h∗

2 F ′1/F1〉, where E′1/E1 = g
s(h′−h)
1

(C ′1/C1)r, F ′1/F1 = g
H(gs1)(h

′−h)
1 (D′1/D1)r, h = H(IDC , A,C,D), h′ = H(IDC , A,610

C ′, D′), h∗ = H(IDC , A,C
′
1/C1, D

′
1/D1) and s∗ is chosen from Z∗q by the ad-

versary. The client accepts msgS if and only if h′ = h. Because H is a collision-

resistant hash function, the probability Pr[SuccA] is negligible in this case.

In summary, in experiment P7, Pr[SuccA] = Q(k)/N , where Q(k) denotes

the number of on-line attacks. Based on Claims 6-7, we know |AdvP0

PA(k) −615

AdvP7

PA(k)| is negligible. According to Definition 2, the protocol is secure against

the active attack in the first subcase. 4

For the second subcase, all servers in the protocol are dishonest and con-

trolled by the adversary, the active adversary can cheat the client with forged

public parameters G, q, g1, g2. However, the client can check if q is a large prime620

and gq1 = gq2 = 1 so that the discrete logarithm over G is hard although the

adversary may know the discrete of g2 based on g1.

In this case, the active adversary can only query two Send oracles: Send(C, i)

and Send(C, i,msgS).

Experiment P8: In this experiment, the simulator interacts with A as in exper-625

iment P0 except that the adversary’s queries to Send(C, i) oracles are handled

differently: in any Send(C, i), where the adversary A has not queried corrupt(C),

the password pwC in msgC = 〈IDC , A〉 where A = gr1g
pwC
2 is replaced with a

random number pw in Z∗q .

Like in experiment P1, if the adversary can distinguish gr1g
pwC
2 with gr1g

pw
2 ,630

we can break the semantic security of the ElGamal encryption. Therefore, we

have

Claim 8. If the DDH problem is hard over {G, q, g1}, |AdvP0

AA(k)− AdvP8

AA(k)|

is negligible.

In experiment P8, the adversary can only perform the active attack as de-635

31

scribed in Case 2 of experiment P7. In this case, the probability Pr[SuccA] =

Q2(k)/N , where Q2(k) denotes the number of queries to Send(C, i,msgS) oracle.

Based on Claim 8, we know |AdvP0

PA(k)−AdvP8

PA(k)| is negligible. According

to Definition 2, the protocol is secure against the active attack in the second

subcase.640

This completes the proof of the theorem. 4

4.2. Security Analysis of the Proposed TPASS Protocol Based on Zero-Knowledge

Proof

Before analyzing the security of the second proposed protocol, we introduce

an assumption about non-interactive zero-knowledge proof of knowledge as fol-645

lows.

Non-Interactive Zero-Knowledge Proof of Knowledge Assumption.

Considering a protocol where Prover, wishing to prove to Verifier that he knows

x such that y = gx, sends (R = gr, α = H(g, y,R)x + r) (where r is randomly

chosen by Prover) to Verifier, who accepts the proof if gα = yH(g,r,R)R and650

otherwise rejects the proof. We assume that in this protocol, Prover has to know

x to generate the non-interactive zero-knowledge proof of knowledge (R,α) such

that gα = yH(g,r,R)R and Verifier gains no knowledge of x after the proof.

Theorem 3. Assuming that DDH problem is hard over {G, q, g1} and the non-

interactive zero-knowledge proof of knowledge assumption holds, the proposed655

TPASS protocol P based on zero-knowledge proof illustrated in Fig. 3 is secure

against the passive attack according to Definition 1.

Proof. The proof is the same as that of Theorem 1, except from Claims 3 and

4.

Claim 3’. If the DDH problem over {G, q, g1} is hard and the non-interactive660

zero-knowledge proof of knowledge assumption holds, |AdvP2

PA(k) − AdvP3

PA(k)|

is negligible.

If E1 = g
a1f2(1)h1

2 C−r1(A
∏t
j=1Bj)

ci contains B1 = gr11 g
a1f1(1)
2 , Claim 3’

can be proved to be true in the same way as the proof of Theorem 1. If E1

32

does not contain B1, E1 must contain gr1c11 because C = g
∑
cj

1 and the zero-665

knowledge proof of knowledge assumption ensures the server Sj knowing cj

such that Cj = g
cj
1 . Given C1 = gc11 and gr11 = B1g

∑
j 6=1 ajf1(j)

2 /gpw2 (where

pw is chosen for offline dictionary attack), the t − 1 servers S2, · · · , St cannot

distinguish gr1c11 with a random group element due to the DDH assumption.

Note that the zero-knowledge proof of knowledge assumption ensures the server670

Sj (j 6= 1) having no knowledge of c1. Therefore, Claim 3’ is true.

Claim 4’. If the DDH problem over {G, q, g1} is hard and the non-interactive

zero-knowledge proof of knowledge assumption holds, |AdvP3

PA(k) − AdvP4

PA(k)|

is negligible.

The proof can be obtained from the proof of Claim 3’ by replacing E1, C, Cj , cj675

with F1, D,Dj , dj . Please note that (Cj , Dj , δj) is also a non-interactive zero-

knowledge proof of knowledge of dj . 4

Theorem 4. Assuming that the DDH problem is hard over {G, q, g1}, the

non-interactive zero-knowledge proof of knowledge assumption holds, and H is

a collision-resistant hash function, then the proposed TPASS protocol P based680

on zero-knowledge proof illustrated in Fig. 3 is secure against the active attack

according to Definition 2.

Theorem 4 can be proved by combining the proofs of Theorems 1-3.

5. Experiments

Experiments have been carried out to validate the performance of the pro-685

posed two protocols. The experiments are performed with the following hard-

ware specifications: CPU: 2.2 GHz Intel Core i7, Memory: 16 GB 1600 MHz

DDR3.

We implemented the proposed two protocols with JRE System Library

[JavaSE - 1.7] in the settings where there are 3, 5, 10, 15, 20 servers, respectively.690

In our experiments, the size of a group element (i.e, |g|) has 1024 bits and the

order of the group (i.e, |q|) has 160 bits. One modular exponentiation for 160-bit

33

Figure 4: Comparison of time spent (in seconds) for setting up

exponent takes approximately 0.0028 seconds and one modular multiplication

takes approximate 0.000005 seconds.

In the following discussion, we mainly compare the performance of our pro-695

tocols with Camenisch et al. protocol [6].

5.1. Performance of Initialization

For n = 3, 5, 10, 15, 20, the performance of the proposed two protocols per

client in the initialisation, comparing with Camenisch et al. protocol [6], is

illustrated in Fig. 4-5.700

Because the proposed two protocols have the same initialization, their per-

formance are the same.

In order to make the performance of the proposed protocols visible in the

comparison, the computational and communication complexities of the proposed

protocols for a client have been enlarged by 20 times.705

Form Fig. 4 and Fig. 5, we can see that the proposed protocols are significant

more efficient than Camenisch et al.’s protocol and the difference increases with

the increase of the number of servers (n).

34

Figure 5: Comparison of communication size (in KB) for setting up

Figure 6: Comparison of time spent for retrieving

5.2. Performance of Retrieve

For t = 3, 5, 10, 15, 20, the performance of the proposed two protocols per710

client in the retrieval, comparing with Camenisch et al. protocol [6], is illustrated

in Fig. 6-7.

From Fig. 6, we can see that the total running time of the proposed two

protocols per client is less than Camenisch et al.’s protocol. We save up to

95% in the first proposed protocol and 85% in the second proposed protocol.715

Although the difference is just a couple of seconds for a client, it will become

significantly large when the servers provide services to a large number of clients

35

Figure 7: Comparison of communication size for retrieving

concurrently. If we ignore the communication time, the verification of the second

proposed protocol is a little bit slower that the first proposed protocol. However,

if the communication time cannot be ignored, the second proposed protocol720

may be more efficient than the first proposed protocol because it reduces the

communications of the servers from two phases to one phase.

The communication overhead of Camenisch et al.’s protocol depends on the

total number n of the servers. In Fig. 7, we assume n = t+ 1. In addition, we

assume that the broadcast channel in the proposed two protocols is implemented725

by point to point communication. In this case, the total communication over-

heads of the proposed two protocols are (4t2 +5t)|g| bits and (3t2 +5t)|g|+ t2|q|

bits, respectively.

From Fig. 7, we can see that the proposed two protocols have almost the

same communication overhead, which is significant less than Camenisch et al.’s730

protocol. We save up to 65% in the first proposed protocol and 75% in the

second proposed protocol.

In addition, for t = 10, the performance of the proposed two protocols

per server in the retrieval, comparing with Camenisch et al. protocol [6], is

illustrated in Fig. 8-9, which also shows that the proposed protocols are more735

efficient than Camenisch et al.’s protocol.

36

Figure 8: Comparison of average time spent by a server for retrieving

6. Conclusion

In this paper, we have presented two efficient t-out-of-n TPASS protocols for

any n > t that protects the password of the client when he tries to retrieve his

secret from all corrupt servers as well as prevents the adversary from planting740

a different secret into the user’s mind than the secret that he stored earlier.

The proposed protocols are significantly more efficient than existing TPASS

protocols. Furthermore, we have provided a rigorous proof of security for the

proposed protocols in the standard model and performed some experiments.

Our future work will study how efficiently to detect the corrupted servers745

and implement the proposed protocol in light-weight mobile devices to support

cloud-based services.

37

Figure 9: Comparison of average communication size for a server in retrieving

References

[1] M. Abdalla, M. Cornejo, A. Nitulescu, and D. Pointcheval. Robust

password-protected secret sharing. ESORICS’16, pages 61-79, 2016.750

[2] A. Bagherzandi, S. Jarecki, N. Saxena, Y. Lu. Password-protected secret

sharing. ACM CCS’11, pages 433-444, 2011.

[3] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange

secure against dictionary attacks. Eurocrypt’00, pages 139-155, 2000.

[4] J. Brainard, A. Juels, B. Kaliski, and M. Szydlo. Nightingale: A new two-755

server approach for authentication with short secrets. 12th USENIX Secu-

rity Symp., pages 201-213, 2003.

[5] J. Camenisch, A. Lysyanskaya, and G. Neven. Practical yet univer-

sally composable two-server password-authenticated secret sharing. ACM

CCS’12, pages 525-536, 2012.760

[6] J. Camenisch, A. Lehmann, A. Lysyanskaya, and G. Neven. Memento: How

to reconstruct your secrets from a single password in a hostile environment.

Crypto’14, pages 256-275, 2014.

38

[7] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transac-

tions on Information Theory, 32(2): 644-654, 1976.765

[8] T. ElGamal. A public-key cryptosystem and a signature scheme based on

discrete logarithms. IEEE Transactions on Information Theory, 31(4): 469-

472, 1985.

[9] W. Ford and B. S. Kaliski, Server-assisted generation of a strong secret

from a password, 9th IEEE Intl. Workshops on Enabling Technologies:770

Infrastructure for Collaborative Enterprises (WET ICE 2000), Pages 176-

180.

[10] D. Jablon. Password authentication using multiple servers. CT-RSA’01,

pages 344-360, 2001.

[11] S. aw Jarecki, A. Kiayias, H. Krawczyk, J. Xu. TOPPSS: Cost-minimal775

password-protected secret sharing based on threshold OPRF. ACNS’17,

pages 39-58, 2017.

[12] J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key

exchange using human-memorable passwords. Eurocrypt’01, pages 457-494,

2001.780

[13] J. Katz, P. MacKenzie, G. Taban, and V. Gligor. Two-server password-only

authenticated key exchange. ACNS’05, pages 1-16, 2005.

[14] P. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold password-

authenticated key exchange. J. Cryptology, 19(1): 27-66, 2006.

[15] M. Di Raimondo and R. Gennaro. Provably Secure Threshold Password-785

Authenticated Key Exchange. J. Computer and System Sciences, 72(6):

978-1001, 2006.

[16] A. Shamir. How to share a secret. Communications of the ACM, 22(11):

612-613, 1979.

39

[17] M. Szydlo and B. Kaliski. Proofs for two-server password authentication.790

CT-RSA’05, pages 227-244, 2005.

[18] X. Yi, S. Ling, and H. Wang. Efficient two-server password-only authenti-

cated key exchange. IEEE Trans. Parallel Distrib. Syst., 24(9): 1773-1782,

2013.

[19] X. Yi, F. Hao, E. Bertino. ID-based two-server password-authenticated key795

exchange. ESORICS’14, pages 257-276, 2014.

[20] X. Yi, F. Hao, L. Chen, J. K. Liu. Practical threshold password-

authenticated secret sharing protocol. ESORICS’15, pages 347-365, 2015.

40

	Introduction
	Definition of Security
	The Proposed TPASS Protocols
	The Proposed Protocol Based on Two-Phase Commitment
	The Proposed Protocol Based on Zero-Knowledge Proof
	Correctness
	Efficiency

	Security Analysis
	Security Analysis of the Proposed TPASS Protocol Based on Two-Phase Commitment
	Security Analysis of the Proposed TPASS Protocol Based on Zero-Knowledge Proof

	Experiments
	Performance of Initialization
	Performance of Retrieve

	Conclusion

