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Microscale Synthesis of Multi-block Copolymers Using Ultra-fast-
RAFT Polymerization  
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drew Kerr,a David M. Haddleton,a Sébastien Perrier,a,b* Paul Wilson.a,b* 

We demonstrate Ultrafast RAFT in presence of air can be scaled 

down to 2 μL using microvolume inserts typically used for SEC/HPLC 

analysis, as a polymerization vessel. By careful cooling and mixing 

of the sequential monomers, well-defined pentablock copolymers 

were successfully generated with a total volume of 10 μL.  

 

Scaling down reactions is paramount importance in order to 

explore enormous number of possible permutation of 

parameters involved in a chemical synthesis.1 Polymerization in 

standard chemistry laboratory reaction vessels becomes 

increasingly difficult at increasing smaller scales. Transfer of 

advanced polymer synthesis techniques to smaller scales will 

allow for the high-throughput screening of polymer 

composition for biomaterial discovery and previously exploited 

by step growth polymerisations.2, 3 However low scale-

screening using controlled polymerizations methods was only 

recently achieved by Boyer et al to investigate the influence of 

polymer architecture on materials properties.4, 5 
Typically polymerizations are carried out with reaction volumes 

between 50 mL and 0.5 mL,6-14 as these ranges are practical for the 

conventional reaction vessels and deoxygenation processes 

necessary for typical Reversible Deactivation Radical Polymerization 

(RDRP). Note that, the latter condition limits scales of the reactions, 

as using nitrogen sparging or freeze pump thaw cycles to 

deoxygenate the reaction media is not practical at ultralow volume, 

due to inherent loss of volatile monomer and solvents. Hence oxygen 

tolerant RDRP protocols are necessary to allow polymerizations to be 

carried out at microscale. To this end, Boyer et al have performed 

ultralow volume reactions (20 μL) in 96 well plates, using photo-

catalysed redox Reversible Addition Fragmentation Chain Transfer 

(RAFT) polymerization without deoxygenation in presence of air.15 

This enabled screening of different homopolymers, diblock 

copolymers, star architectures and nanoparticles formulations. 

Increasingly RDRP protocols without deoxgenation have become 

an emerging topic,16, 17 however many of these protocols requires 

external stimuli,18 additives15 or oxygen scavenging enzymes,4, 19, 20 

which deviates from the simplicity of RDRP protocols. To address 

this, Gody et al. demonstrated standard RAFT polymerization using 

only conventional ingredients used for RAFT polymerization, without 

degassing, in vessels open to air.21 This elegant and simple approach 

takes advantage of the fast propagation of monomers in water a 

solvent known to increase the rate of radical polymerization, which 

is further accelerated at elevated temperatures. This ultrafast RAFT 

polymerization was generally demonstrated with acrylamide-based 

monomers with 2,2'-Azobis[2-(2-imidazolin-2-yl)propane] 

dihydrochloride (VA-044) as an initiator (10 hr ½ life = 44 °C) and 

heated to 100 °C, allowing iterative chain extensions to synthesize 

multiblock copolymers (MBCPs) within 3 minutes per block such that 

monomer is fully consumed before the initiator is fully decomposed 

(approximately 80%).21 

 MBCPs are macromolecules with defined control over block 

sequence and that can be synthesized from just simple chemical 

ingredients without complex biological machineries, and are 

amenable to industrial scales.22-24 The synthesis of MBCPs has been 

progressed more recently with RDRP, including copper mediated 

polymerization25-33 and RAFT polymerization.34-40 In spite of the 

inevitable small number of radical termination events, 21 iterative 

block extensions have been reliably demonstrated with these 

methods.41 Furthermore, these routes are popular as they allow 

incorporation of monomers of various functional groups42-47  and do 

not require immaculately dry regents and environment, required for 

ionic living polymerization systems.48 Recently, work on sulfur-free 

RAFT polymerization offers the potential for MBCP synthesis 

amenable to industrial scales.41, 49, 50 However, the possible benefits 

of scaling down MBCP synthesis is often overlooked in academic 

settings. Industry often relies on the inexpensive small scale 
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combinatorial reactions or optimisation before larger scale synthesis 

of the preferred choice or optimized conditions. Microscale MBCP 

synthesis could have applicability in high throughput microarrays,1 

thus allowing the implications in permutations of monomers and 

block lengths of MBCPs to be rapidly investigated.  

We postulate the aforementioned ultrafast RAFT protocol could 

be applicable in microliter scale due to the rapid consumption of the 

monomer without deoxygenation; thus demonstrating the synthesis 

of MBCPs at a microscale suitable for potential applications such as 

microarray patterning and combinatorial chemistry with only 

conventional ingredients for RAFT polymerization.  

To counteract the inherent problem of increased air/water 

interface when scaling down the protocol proposed by Gody et al., 

we used a narrow micro-volume glass inserts (4.6 mm diameter, 200 

μL capacity) with conical bottoms (cone volume = approximately 20 

μL) that are typically fitted into a standard 2 mL vials for HPLC/GPC 

analysis for low volume analyses. A master mix of the RAFT agent, 

monomer, solvent and initiator was made as “all-in-one” stock 

solution and added into the insert using a standard 

micropipette(scheme 1). This mix was made following closely to the 

published protocol,21 using VA0-44 as an initiator (3 x 10-3 M, 

[CTA]/[I]0 = 40 ) and N-acryloyl morpholine (NAM) as suitable 

acrylamidic monomer ([M]0 = 3 M) in aqueous mixture and 2-

(((butylthio)-carbonothioyl)thio)propanoic acid (PABTC) as a RAFT 

agent. The inserts were then heated in oil bath at 100 °C for 3 

minutes. In contrast to the previous study where the temperature of 

Scheme 1. General scheme: “master mix” (with monomer, CTA, initiator and solvent) is added into  the microvolume insert using a regular air displacement micropipettes. After 3 

mins of heating at 100 °C in an oil bath polymerisation was complete, the insert was cooled with liquid nitrogen. For sequent ial chain extension, separate monomer master mix is 

directly added and mixed by stirring with a needle and centrifugation, before reheating for further 3 minutes for block extension. This cycle was repeated to yield pentablock 

copolymer. All the polymerisation were carried out without deoxygenation and in presence of open air. 

Figure 1. SEC analysis (DRI, CHCl3) of P(NAM)n (n = 25, 100 and 200) in microscale (2 µL) in microvolume inserts and normal scale (500 µL) in conventional test tubes (5.4 ml). All the 

polymerization carried out under 3 minutes without stirring, deoxygenation and open to air. 
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the reaction increase was gradual, taking 80 seconds to reach 96 °C,21 

we assume the temperature of the reaction to reach equilibrium 

almost immediately. Conveniently as the polymerizations were 

carried in SEC vial inserts, the reaction mixture was directly diluted 

with SEC eluent within the insert, and injected directly for SEC 

analysis (Figure S2). A duplicate reaction was carried out to dilute 

with NMR solvent (d6-DMSO) to measure monomer conversion by 

NMR. 

 Preliminary experiments were designed to investigate the 

absolute limit of scale for the solution-based polymerization. Initially 

this was investigated with a targeted degree of polymerization (DP) 

of 25 using 20 % dioxane to aid the solubility of the CTA.  At 10 μL 

(Mn,SEC = 2200 gmol-1; Đ = 1.23), 5 μL(Mn,SEC = 2600 gmol-1; Đ = 1.23), 

and 2 μL (Mn,SEC = 2600 gmol-1; Đ = 1.29) we were able to reproducibly 

obtain PNAM25 as observed by SEC analysis (Figure S1) with a slight 

increase in dispersity at the microliter scale, however comparable to 

polymerization carried out in 5.4 mL test tubes (termed macroscale 

in this paper) (Mn,SEC = 2700 gmol-1; Đ = 1.19). At 1 μL (Mn,SEC = 2600 

gmol-1; Đ = 1.42) scale polymers were obtained, but results were not 

reproducible. The weight loss due to evaporation was also noted 

(Table S1), which seemingly suggests the effect of evaporation was 

detrimental at 1 µL scale. Hence we presume that 2 μL is the lower 

scale limit achievable with this method.  Our next objective was to 

apply this protocol to longer polymer chain lengths of PNAMn (Figure 

1). Increasing the chain length four fold (DPn = 100), required a slight 

modification of the master mix (10 % dioxane; [I]0 = 1 x 10-3 M, 

[CTA]/[I]0 = 30). Pleasingly polymerization yielded PNAM100 at 2 μL 

scale (Mn,SEC = 9200 gmol-1; Đ= 1.36), in contrast to macroscale the 

molecular weight distributions was relatively broader by SEC analysis 

(Mn,SEC = 8900 gmol-1; Đ= 1.19). Increasing the length further (DPn = 

200), increased the dispersity at 2 µL scale (PNAM200, Mn,SEC = 26800 

gmol-1; Đ = 1.43), compared to the macroscale equivalent (Mn,SEC = 

15000 gmol-1; Đ= 1.23). SEC analysis in all cases revealed slightly 

higher dispersity due to appearance of low molecular tailing. Also the 
1H NMR spectra revealed more residual monomer was present 

(approximately 2-3 % more). As targeting DP of 25 of NAM yielded 

relatively narrow dispersity at 2 µL scale, we therefore decided to 

keep this a constant block length for our MBCPs.  In order to generate 

MBCP’s through iterative chain extension with the current protocol, 

it was important to consider the limitation of mixing sequential 

monomers in the polymerization mixture, as stirring during 

polymerization is unfeasible at the 2 µL scale. To maximise the mixing 

of each monomer aliquot the polymerization reaction mixture was 

cooled prior to addition of new monomer and stirred before heating 

again at 100 °C for successful sequential chain extension. This 

circumvented the need for continual stirring during the addition of 

sequential monomers. Thus by adopting this necessary measure of 

cooling and mixing before reheating (Scheme 1), we were able to 

successfully demonstrate successive chain extensions within the 

insert vials to synthesize a homopolymer in five successive chain 

extensions, poly((NAM)25)5, at 5 µL per block (final Mn,SEC = 10600 

gmol-1; Đ = 1.25) and 2 µL per block (final Mn,SEC = 10000 gmol-1; Đ = 

1.31) (Figure 2). Centrifugation was necessary to collect the new 

monomer solution into the bottom the insert before stirring (see 

supporting info for full details). It is important to note, that the 

monomer concentration of the chain extension stock solution was 

kept constant at 3 M, such that the same DP per chain extension 

could be targeted by sequentially adding the same volume as the 

original block. It is noteworthy that all the chain extension stock 

solutions had contained the same initiator concentration of 2.2 x 10-

3 M. This was designed to give an overall macroCTA/initiator ratio of 

40 constant per block, whilst assuming that 20% of initiator is still 

Table 1. The range of (micro)scales, monomer conversion, theoretical and experimental number average molar mass and dispersity of homopolymers and multiblock copolymers 

synthesized 

Polymer Scalea (µL) Conv. b 
Mn,th

c
 

(gmol-1) 

Mn,SEC
d 

(gmol-1) 
Đ d 

P(NAM)25 500 > 97 3600 2700 1.18 

 10 > 98 3600 2200 1.23 

 5 > 98 3600 2600 1.23 

 2 > 98 3600 2600 1.29 

 1e > 96e 3600e 2600e 1.42e 

P(NAM)100 500 > 99 14000 8900 1.19 

 2 > 97 13600 9200 1.36 

P(NAM)200 500 > 98 26800 15000 1.23 

 2 > 98 26800 13000 1.43 

P(NAM)25 -b-(NAM)25 –b-(NAM)25 -b-(NAM)25-b-(NAM)25 2500 > 99.9 17200 12600 1.23 

 25 > 99 17200 10600 1.25 

 10 > 99 17200 10000 1.31 

P(NAM)25 -b-(DMA)25 -b-(NAM)25 -b-(HEAm)25-b-(NAM)25 2500 > 96 15400 15100f 1.32f 

 10 > 98 15500 14000f 1.35f 

a All polymerizations are carried out in insert vials unless the scale is above or equal to 500 µL are carried out in test tube (5.4 ml). b Determined using equation 1 in 

supporting information. c As calculated from equation 2 in supporting information. d Determined by SEC with THF as the eluent with PMMA as a calibrant, unless 

stated otherwise. e not reproducible. f Determined by SEC with DMF as a eluent with PMMA as a calibrant. 
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remaining from the previous block. This gave a good balance of 

quantitative monomer consumption (>96%, Table 1) at each block 

whilst keeping the theoretical livingness of each block high (>98%, 

see SI for calculation and experimental conditions) to prevent dead 

chains formed (See table S6-S10 for detailed conditions).  

The monomer consumption was followed by 1H NMR 

spectroscopy and succession of the sequential chain extension was 

confirmed by GPC analysis of polymerization at each block. To 

analyze each block extensions, the same number of replicate 

reactions as the number of iterative blocks was prepared, whereby 

representative vessel at each stage was used as a whole for each 

analysis (See Supporting info for detail procedure). In all cases, a 

linear increase in Mn,SEC was observed with increasing number of 

iterative block extensions (Figure 2), suggesting excellent control in 

polymerization at microscale. In comparison the molecular weight 

distributions of P[[NAM]25]5 was only slightly broader at microscale 

compared to macroscale with our protocol (final Mn,SEC = 12600 gmol-

1; Đ = 1.23). At the macroscale, bimodal distributions were observed, 

due to back-biting induced β-scission and subsequent branching, 

with successive chain extensions.51 Although this is typically 

characteristic of more labile methine backbone hydrogens of acrylic 

monomer families, as a result of high temperature this was observed 

here with an acrylamide monomer. This was indeed the case in 

previous work which used similar polymer composition, manifest as 

high molecular tailing.21 We suspect at the microscale (25 µL and 10 

µL), this feature is still present despite molecular weight distributions 

appearing to be unimodal, due to the broadening of the molecular 

weight distribution. We attribute this result to an increased interface 

between air and solution phase when scaling down, subsequently 

leading to dead chains as result of oxygen related termination 

Figure 2. Multichain extension to generate P(NAM25)5 synthesis with Ultrafast RAFT polymerization through iterative chain extensions at different scales: Top row = 2.5 ml, 0.5 ml 

per block; middle row = 25 µL, 5 µL per block; bottom row = 10 µL, 2 µL block. Left Column: Photograph after reaction next to a British penny coin (20.3 mm in diameter) as a 

reference to the size of the scale. Middle column: SEC chromatograms for successive chain extensions. Right column: Evolution of number-average molar masses and dispersity 

values with the number of blocks during the preparation of the P(NAM25)5. The black line represents the theoretical molar mass calculated from equation 2 (see supporting 

information). The filled squares represents the experimental molar mass and empty squares represents the dispersity values, both as determined by THF SEC. 
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events. It’s noteworthy that the weight loss for each chain extension 

is considerably greater at the microscale compared to the 

conventional scale (Table S2), however at the 5th block the weight 

loss was found to be less substantial. 

To further demonstrate the robustness of this method MBCPs 

were synthesized with blocks of different monomers: 

dimethylacrylamide (DMA) and hydroxyethylacrylamide (HEAm). 

Pentablock of P(NAM)25-b-(DMA)25-b-(NAM)25-b-(HEAm)25-b-

(NAM)25 were prepared in the inserts at the microliter scale (2 µL per 

block) following our protocol, with well-defined molecular weight 

distribution (Mn,SEC = 14000 gmol-1; Đ = 1.35) which was comparable 

to macroscale synthesis (Mn,SEC = 15100 gmol-1; Đ = 1.32). Note that 

the theoretical number average molecular (Mn,th) of this pentablock 

gave a good agreement with Mn,SEC owing to the DMF used an eluent 

for the SEC analysis (Figure S4-S5), due to the better agreement of 

solvation in comparison to PMMA calibrant.  

Conclusions 

To conclude, we have demonstrated the robustness of oxygen 

tolerant ultrafast RAFT polymerization at microscale of 2 µL. By 

careful consideration of monomer mixing we generated well-

controlled MBCPs (pentablock copolymer) by iterative addition, with 

an overall scale of 10 µL without continual stirring. It is important to 

note the limitation of our methodology is exclusive to acrylamidic 

monomer families with water as a solvent and targeting short blocks 

(DP 25) is ideal for iterative chain extensions to retain high livingness. 

Currently ongoing investigation(s) are in progress to investigate the 

robustness of the protocol for complex architectures, solvent and 

applicability in biological science.  

 

Conflicts of interest  
The authors declare no competing finical interest. 

Acknowledgement 

The authors gratefully acknowledge financial support from 
Engineering and Physical Sciences Research Council (EPSRC) under 
grant EP/F500378/1 through the Molecular Organisation and 
Assembly in Cells Doctoral Training Centre(MOAC-DTC). S. H. 
acknowledges Lubrizol for financial support. The authors also wish to 
acknowledge the facilities and personnel (S.P., P.W.) enabled by the 
Monash-Warwick Alliance. S.P. acknowledges a Royal Society 
Wolfson Merit Award (WM130055). P.W. thanks the Leverhulme 
Trust for the award of an Early Career Fellowship (ECF/2015-075). 
The authors would like to thank Dr Daniel Lester and the Polymer 
Characterisation Research Technology Platform for GPC facilities.  

Notes and References 
 
1. N. J. Gesmundo, B. Sauvagnat, P. J. Curran, M. P. Richards, C. L. 

Andrews, P. J. Dandliker and T. Cernak, Nature, 2018, 557, 228-
232. 

2. D. G. Anderson, S. Levenberg and R. Langer, Nat. Biotechnol., 
2004, 22, 863. 

3. J. J. Green, R. Langer and D. G. Anderson, Acc. Chem. Res., 2008, 
41, 749-759. 

4. R. Chapman, A. J. Gormley, M. H. Stenzel and M. M. Stevens, 
Angew. Chem. Int. Ed., 2016, 55, 4500-4503. 

5. G. Ng, J. Yeow, R. Chapman, N. Isahak, E. Wolvetang, J. J. 
Cooper-White and C. Boyer, Macromolecules, 2018, 51, 7600-
7607. 

6. G. Moriceau, G. Gody, M. Hartlieb, J. Winn, H. Kim, A. 
Mastrangelo, T. Smith and S. Perrier, Polym. Chem,, 2017, 8, 4152-
4161. 

7. J. Tanaka, S. Tani, R. Peltier, E. H. Pilkington, A. Kerr, T. P. Davis 
and P. Wilson, Polym. Chem,, 2018, 9, 1551-1556. 

8. J. Tanaka, A. S. Gleinich, Q. Zhang, R. Whitfield, K. Kempe, D. M. 
Haddleton, T. P. Davis, S. b. Perrier, D. A. Mitchell and P. Wilson, 
Biomacromolecules, 2017, 18, 1624-1633. 

9. J. Zhang, J. Tanaka, P. Gurnani, P. Wilson, M. Hartlieb and S. 
Perrier, Polym. Chem,, 2017, 8, 4079-4087. 

10. B. Couturaud, P. G. Georgiou, S. Varlas, J. R. Jones, M. C. Arno, J. 
C. Foster and R. K. O’Reilly, Macromol. Rapid Commun., 2018, 0, 
1800460. 

11. A. M. Lunn and S. Perrier, Macromol. Rapid Commun., 2018, 39, 
1800122. 

12. A. B. Cook, R. Peltier, M. Hartlieb, R. Whitfield, G. Moriceau, J. 
A. Burns, D. M. Haddleton and S. Perrier, Polym. Chem,, 2018, 9, 
4025-4035. 

13. P. Gurnani, C. Sanchez-Cano, K. Abraham, H. Xandri-Monje, A. B. 
Cook, M. Hartlieb, F. Lévi, R. Dallmann and S. Perrier, Macromol. 
Biosci, 2018, 0, 1800213. 

14. P. Gurnani, A. M. Lunn and S. Perrier, Polymer, 2016, 106, 229-
237. 

15. J. Yeow, R. Chapman, J. Xu and C. Boyer, Polym. Chem,, 2017, 8, 
5012-5022. 

16. J. Yeow, R. Chapman, A. J. Gormley and C. Boyer, Chem. Soc. 
Rev., 2018, 47, 4357-4387. 

17. E. Liarou, R. Whitfield, A. Anastasaki, N. G. Engelis, G. R. Jones, 
K. Velonia and D. M. Haddleton, Angew. Chem. Int. Ed., 2018, 57, 
8998-9002. 

18. J. Tan, D. Liu, Y. Bai, C. Huang, X. Li, J. He, Q. Xu and L. Zhang, 
Macromolecules, 2017, 50, 5798-5806. 

19. R. Chapman, A. J. Gormley, K.-L. Herpoldt and M. M. Stevens, 
Macromolecules, 2014, 47, 8541-8547. 

20. L. Zhifen, L. Yue and A. Zesheng, Angew. Chem., 2017, 129, 
14040-14044. 

21. G. Gody, R. Barbey, M. Danial and S. Perrier, Polym. Chem,, 
2015, 6, 1502-1511. 

22. M. Zamfir and J.-F. Lutz, Nature Communications, 2012, 3, 1138. 
23. M. Ouchi, N. Badi, J.-F. Lutz and M. Sawamoto, Nature 

Chemistry, 2011, 3, 917. 
24. J.-F. Lutz, Polym. Chem,, 2010, 1, 55-62. 
25. A. Anastasaki, B. Oschmann, J. Willenbacher, A. Melker, M. H. C. 

V. Son, N. P. Truong, M. W. Schulze, E. H. Discekici, A. J. McGrath, 
T. P. Davis, C. M. Bates and C. J. Hawker, Angew. Chem. Int. Ed., 
2017, 56, 14483-14487. 

26. A. Anastasaki, V. Nikolaou and D. M. Haddleton, Polym. Chem,, 
2016, 7, 1002-1026. 

27. F. Alsubaie, A. Anastasaki, V. Nikolaou, A. Simula, G. 
Nurumbetov, P. Wilson, K. Kempe and D. M. Haddleton, 
Macromolecules, 2015, 48, 5517-5525. 



COMMUNICATION Journal Name 

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

28. F. Alsubaie, A. Anastasaki, V. Nikolaou, A. Simula, G. 
Nurumbetov, P. Wilson, K. Kempe and D. M. Haddleton, 
Macromolecules, 2015, 48, 6421-6432. 

29. C. Waldron, Q. Zhang, Z. Li, V. Nikolaou, G. Nurumbetov, J. 
Godfrey, R. McHale, G. Yilmaz, R. K. Randev, M. Girault, K. 
McEwan, D. M. Haddleton, M. Droesbeke, A. J. Haddleton, P. 
Wilson, A. Simula, J. Collins, D. J. Lloyd, J. A. Burns, C. Summers, C. 
Houben, A. Anastasaki, M. Li, C. R. Becer, J. K. Kiviaho and N. 
Risangud, Polym. Chem,, 2014, 5, 57. 

30. Q. Zhang, A. Anastasaki, G.-Z. Li, A. J. Haddleton, P. Wilson and 
D. M. Haddleton, Polym. Chem,, 2014, 5, 3876-3883. 

31. A. Anastasaki, V. Nikolaou, Q. Zhang, J. Burns, S. R. Samanta, C. 
Waldron, A. J. Haddleton, R. McHale, D. Fox and V. Percec, J. Am. 
Chem. Soc., 2014, 136, 1141-1149. 

32. Q. Zhang, P. Wilson, Z. Li, R. McHale, J. Godfrey, A. Anastasaki, 
C. Waldron and D. M. Haddleton, J. Am. Chem. Soc, 2013, 135, 
7355-7363. 

33. A. H. Soeriyadi, C. Boyer, F. Nyström, P. B. Zetterlund and M. R. 
Whittaker, J. Am. Chem. Soc., 2011, 133, 11128-11131. 

34. G. Gody, T. Maschmeyer, P. B. Zetterlund and S. Perrier, 
Macromolecules, 2014, 47, 3451-3460. 

35. G. Gody, T. Maschmeyer, P. B. Zetterlund and S. Perrier, Nature 
Communications, 2013, 4, 2505. 

36. A. Kerr, M. Hartlieb, J. Sanchis, T. Smith and S. Perrier, Chem. 
Commun., 2017, 53, 11901-11904. 

37. J. Zhang, R. Deubler, M. Hartlieb, L. Martin, J. Tanaka, E. 
Patyukova, P. D. Topham, F. H. Schacher and S. Perrier, 
Macromolecules, 2017, 50, 7380-7387. 

38. A. Kuroki, P. Sangwan, Y. Qu, R. Peltier, C. Sanchez-Cano, J. 
Moat, C. G. Dowson, E. G. L. Williams, K. E. S. Locock, M. Hartlieb 
and S. Perrier, ACS Applied Materials & Interfaces, 2017, 9, 40117-
40126. 

39. J. Zhang, G. Gody, M. Hartlieb, S. Catrouillet, J. Moffat and S. 
Perrier, Macromolecules, 2016, 49, 8933-8942. 

40. C. Bray, R. Peltier, H. Kim, A. Mastrangelo and S. Perrier, Polym. 
Chem,, 2017, 8, 5513-5524. 

41. N. G. Engelis, A. Anastasaki, G. Nurumbetov, N. P. Truong, V. 
Nikolaou, A. Shegiwal, M. R. Whittaker, T. P. Davis and D. M. 
Haddleton, Nature Chemistry, 2016, 9, 171. 

42. T. R. Barlow, J. C. Brendel and S. Perrier, Macromolecules, 2016, 
49, 6203-6212. 

43. C. Footman, P. A. de Jongh, J. Tanaka, R. Peltier, K. Kempe, T. P. 
Davis and P. Wilson, Chem. Commun., 2017, 53, 8447-8450. 

44. V. Nikolaou, A. Simula, M. Droesbeke, N. Risangud, A. 
Anastasaki, K. Kempe, P. Wilson and D. M. Haddleton, Polym. 
Chem,, 2016, 7, 2452-2456. 

45. J. Collins, J. Tanaka, P. Wilson, K. Kempe, T. P. Davis, M. P. 
McIntosh, M. R. Whittaker and D. M. Haddleton, Bioconjugate 
Chem., 2015, 26, 633-638. 

46. Q. Zhang, Z. Li, P. Wilson and D. M. Haddleton, Chem. Commun., 
2013, 49, 6608-6610. 

47. C. Boyer and T. P. Davis, Chem. Commun., 2009, 6029-6031. 
48. D. R. Carroll, A. P. Constantinou, N. Stingelin and T. K. Georgiou, 

Polym. Chem,, 2018, 9, 3450-3454. 
49. N. G. Engelis, A. Anastasaki, R. Whitfield, G. R. Jones, E. Liarou, 

V. Nikolaou, G. Nurumbetov and D. M. Haddleton, 
Macromolecules, 2018, 51, 336-342. 

50. A. Lotierzo, R. M. Schofield and S. A. F. Bon, ACS Macro Letters, 
2017, 6, 1438-1443. 

51. A. Postma, T. P. Davis, G. Li, G. Moad and M. S. O'Shea, 
Macromolecules, 2006, 39, 5307-5318. 

 


