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Abstract

This thesis is split into three largely independent chapters. The first con-
cerns the representation theory of Zp[G]-lattices. Specifically, we investigate reg-
ulator constants, due to Dokchitser–Dokchitser, which are isomorphism invariants
of lattices whose extension of scalars to Qp is self-dual. We first show that when
G has cyclic Sylow p-subgroups then regulator constants are strong invariants of
permutation modules in a way that can be made precise. Our main result is then
that, subject to an additional technical hypothesis on G, this can be combined with
existing work of Yakovlev to provide an explicit list of accessible invariants which
completely determine, up to isomorphism, any Zp[G]-lattice whose extension to Qp
is self-dual.

The second chapter is an application of this result in the context of number
fields. Given a Galois extension of number fields K/F with Galois group G, the
extension of scalars to Zp of the unit group of K modulo its torsion subgroup defines
a Zp[G]-lattice. If we assume that G has cyclic Sylow p-subgroups and satisfies the
aforementioned hypothesis, then the above result gives a list of invariants which
determine the Galois module structure. The main result of this chapter is then that
if p divides G at most once, we can explicate these invariants in terms of classical
number theoretic objects. For example, in some cases this can be done in terms of
capitulation of ideal classes and ramification information.

The final (unrelated) topic concerns relative motives over Shimura varieties.
Given a Shimura datum (G,X) and neat open compact subgroupK ≤ G(Af ), denote
the corresponding Shimura variety ShK(G,X) by S. The canonical construction
described by Pink shows how to associate variations of Hodge structure on San to
representations of G. It is expected that this should be motivic in nature, i.e. that
there is a motive over S for every representation of G whose Hodge realisation is
the variation of Hodge structure given by the canonical construction. Using mixed
Shimura varieties, we show that this can be done functorially for representations with
Hodge type {(−1, 0), (0,−1)} and that this is compatible with change of S. When
(G,X) has a chosen PEL-datum, existing work of Ancona allows us to associate a
motive over S to any representation of G. We then give results to show that in some
cases this compatible with change of S and independent of the choice of PEL-datum.

v



Chapter 1

Introduction

This thesis is organised into three main chapters, each of which is designed

to be read largely independently of any other. Chapters 2 and 4 are completely

self-contained, whilst Chapter 3 is an application of a result from Chapter 2. Each

makes use of very different techniques and has equally different aims and objectives.

For these reasons, we have decided to defer anything other than a conceptual and

organisational outline to more detailed self-contained introductions in the relevant

chapters.

Chapter 2 is purely representation theoretic in nature. Specifically, it relates

to the representation theory of Zp[G]-lattices. Here Zp denotes the ring of p-adic

integers, G is a finite group and by a Zp[G]-lattice we mean a Zp[G]-module which

is free of finite rank as a Zp-module. When p divides |G|, the theory of such lattices

is complex and poorly understood. For example, it is known that when the Sylow

p-subgroups of G are anything other than cyclic of order ≤ p2, then there are

infinitely many indecomposable Zp[G]-lattices. For only a handful of cases have all

the Zp[G]-lattices been classified.

There are only a few known isomorphism invariants of Zp[G]-lattices that

could be considered easily computable. For M a Zp[G]-lattice, one example is simply

the isomorphism class of M ⊗ Qp, where Qp denotes the field of p-adic numbers.

Another source of invariants comes from the cohomology of M . When G has cyclic

Sylow p-subgroups, a result of Yakovlev shows that cohomology controls M in a

strong and precise way (see Theorem 2.6.7. Within the theory of Zp[G]-lattices it

is common to think of having cyclic Sylow p-subgroups as being the easiest case).

However, there are still properties of M which are inaccessible to all of the above
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invariants.

More recently, Dokchitser–Dokchitser have defined a family of numerical iso-

morphism invariants of Zp[G]-lattices whose extension of scalars to Qp is self-dual

called regulator constants (see e.g. [DD09]). To date, there has been little work

on the strength of these invariants or how they relate to the aforementioned ones.

This is the aim of Chapter 2. We first show that if G has cyclic Sylow p-subgroups,

then regulator constants are good invariants of permutation modules (see Theorem

2.4.1). Our main result is then that, for groups with cyclic Sylow p-subgroups sat-

isfying an additional technical hypothesis, the isomorphism class of a Zp[G]-lattice

M whose extension of scalars to Qp is self-dual is determined by the isomorphism

class of its extension of scalars to Qp, a cohomological invariant of Yakovlev and its

regulator constants (Theorem 2.6.9). The self-duality condition is fairly mild and

can be removed at minor expense (see Remark 2.6.10).

The focus of the third chapter is to apply this result in a number theoretic

context. Let K/F be a Galois extension of number fields with Galois group G which

is cyclic and satisfies the technical hypothesis mentioned above. Then, if O×K/µK
denotes the unit group of K quotiented by its subgroup of roots of unity, then

O×K/µK ⊗ Zp defines a Zp[G]-lattice whose extension of scalars to Qp is self-dual.

As a result, we immediately find that O×K/µK ⊗ Zp is determined by its

extension of scalars, cohomology and regulator constants. Really though, we wish

to reinterpret the required information in terms of elementary invariants of number

fields. For simplicity, assume that K does not contain the pth roots of unity. The

isomorphism class of OK/µK ⊗Qp is well understood as Artin’s induction theorem

shows it is a function of the signatures of the intermediate subfields of K/F (see

Lemma 3.1.3). Furthermore, the regulator constants of K/F were calculated in

terms of the class numbers of the intermediate subfields of K/F by Bartel [Bar12]

(see Theorem 3.1.5).

The main part of Chapter 3, is to calculate the Yakovlev’s cohomological

invariant in the case of O×K/µK ⊗ Zp. For this we restrict to the case of p dividing

|K : F | exactly once. We then find that the invariant can be calculated in terms

of ramification information and capitulation of class groups. This is proven via a

series of diagram chases using Arakelov class groups.

The final chapter is completely unrelated to the other two and concerns rel-

ative motives over Shimura varieties. Shimura varieties are obtained by quotienting

certain symmetric spaces by the action of some subgroup of an algebraic group.
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Shimura varieties are of importance to number theorists as they are expected to be

moduli spaces for abelian varieties (or more generally abelian motives) with special

properties. As such, studying Shimura varieties can lead to results which hold for

whole families of abelian varieties (cf. Mazur’s torsion bounds [Maz78]).

For any Shimura variety S, with corresponding algebraic group G, almost

by definition there is a canonical construction which associates a variation of Hodge

structure on San (see Definition 4.5.2) to every representation of G. In fact, S has

a canonical algebraic model over some number field, known as its reflex field and

there is also a parallel construction of a lisse `-adic sheaf on S for any choice of `. In

particular, for every representation of G, there is an associated Galois representation

for every point of S. It is natural to ask what sort of properties these `-adic sheaves

have. For example, do they arise from geometry, i.e. is their dual a subquotient of a

higher direct image of some smooth projective variety over S? Furthermore, in either

the Hodge or `-adic cases, we might ask if the canonical construction is motivic, i.e.

is there some construction of a relative Chow motive for every representation of G,

whose realisation coincides with the canonical construction.

The answer to all these questions is expected to be yes. In Chapter 4, we show

that this happens for the full subcategory of Rep(G) consisting of representations

whose Hodge type lies in {(−1, 0), (0,−1)}. Moreover, this is compatible with change

of the Shimura variety S. We show this using the formal properties of mixed Shimura

varieties. We also use this language to give criteria to show that existing work of

Ancona, which defines a motivic lift of the canonical construction in the case of

Shimura varieties of “PEL-type”, is independent of the choice of “PEL datum” and

compatible with change of S.

3



Chapter 2

Regulator constants as

invariants of lattices

2.1 Introduction

Let G be a finite group and p some prime. If R is a ring, then by an R[G]-

lattice we mean an R[G]-module which is free of finite rank as an R-module. In this

section we are concerned with the study of Zp[G]-lattices, where here Zp denotes

the p-adic integers.

Let Qp denote the field of p-adic numbers. If p does not divide the order of G,

then two Zp[G]-lattices M,N are isomorphic if and only if M ⊗Qp and N ⊗Qp are

[CR94, Thm. 30.16]. In other words, the study of Zp[G]-lattices reduces to character

theory for primes not dividing |G|.

When p does divide the order of the group, things become much more com-

plicated. For example, whenever the Sylow p-subgroups of G are not cyclic of order

at most p2, then there are infinitely many isomorphism classes of indecomposable

Zp[G]-lattices [CR94, Sec. 33.7]. In this thesis, we will be principally concerned with

the case of cyclic Sylow p-subgroups. In view of the previous paragraph, this may

be viewed as the simplest non-trivial case.

A natural question to ask is, given two Zp[G]-lattices M,N , are they isomor-

phic? One way to tackle such questions is to describe some finite list of, hopefully

computable and meaningful, isomorphism invariants of Zp[G]-lattices with the prop-

erty that if each of the isomorphism invariants coincide for two given lattices, then
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the lattices are isomorphic. One might call such invariants a complete set of in-

variants of Zp[G]-lattices. The principal aim of this chapter is to find a computable

complete set of invariants for groups with cyclic Sylow p-subgroups satisfying an

additional technical hypothesis (see Theorem 2.1.4).

As remarked in Chapter 1, there are only a small number of known isomor-

phism invariants which can be considered computable. One such invariant is given

by the isomorphism class of M ⊗ Qp. As discussed previously, this is a complete

invariant when p - |G|. As a result, we shall attempt to supplement this invariant

when p divides |G|.

Another family of invariants arise from cohomological constructions.

Example 2.1.1. If G = C2 = 〈σ〉, then there are three indecomposable Z2[C2]-

lattices: 1 and ε which are of rank one with σ acting trivially and by multiplication

by −1 respectively, and Z2[C2] acting on itself on the left. In this case, (1⊕ε)⊗Q2
∼=

Z2[C2]⊗Q2. The lattices 1⊕ ε and Z2[C2] can be distinguished cohomologically:

H1(C2,1⊕ ε) = H1(C2,1)⊕H1(C2, ε)

= 0⊕ Z/2Z

by the explicit description of cohomology of cyclic groups (see e.g. [GS06, Ex. 3.2.9]).

Whilst,

H1(C2,Z2[C2]) = H1({1},1)

= 0

by Shapiro’s lemma.

Suppose that G has a cyclic Sylow p-subgroup P and write Pi ≤ P for its

subgroup of order pi. One such cohomological invariant which is well understood

consists of the following diagram

H1(Pr,M) H1(Pr−1,M) ... H1(P0,M). (?)
res res

cores cores

res

cores

in which the horizontal rows are given by restriction and corestriction, and we

consider each group as a module over the normaliser NG(Pi). Note that in the

previous example, the diagram simplifies to consist just of H1(C2,−) as an abelian

group. Yakovlev showed that (?) determines the isomorphism class of M up to

summands which are trivial source, i.e. summands of permutation modules [Yak96,
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Thm. 2.1] (see Theorem 2.6.7 for a precise statement). Thus, M would be completely

determined if one could provide invariants which constrain the remaining trivial

source summand of M . We refer to (?) as the Yakovlev diagram of M .

We shall principally focus on a newer less well understood type of invariants,

known as regulator constants. These are numerical invariants of representations of

a finite group introduced by Dokchitser–Dokchitser (see for example [DD09]). We

shall briefly recall some properties of regulator constants (cf. Section 2.2.5).

A Brauer relation in characteristic zero (resp. characteristic p) consists of a

pair of G-sets for which the associated permutation modules over Q (resp. Fp) are

isomorphic. Characteristic zero (resp. p) relations form a free abelian group of finite

rank, which we denote by br0(G) (resp. brp(G)). All characteristic p relations are

also characteristic zero relations so that brp(G) ⊆ br0(G) (Lemma 2.2.7).

We call a Zp[G]-lattice rationally self-dual if its extension of scalars to Qp
is self-dual. Each characteristic zero Brauer relation θ defines a regulator constant

Cθ(−) which assigns to a rationally self-dual Zp[G]-lattice M an element Cθ(M) ∈
Q×p /(Z×p )2. As will be made precise later, Cθ(M) measures the relative covolumes

of certain fixed subspaces corresponding to the G-sets defining θ (see Definition

2.2.27).

In several number theoretic contexts, regulator constants have been found to

both coincide with naturally occurring objects and to be computationally accessible.

For example, if K/Q is a Galois extension of number fields with G = Gal(K/Q),

E/Q is an elliptic curve and M = E(K)/E(K)tors, the torsion-free quotient of the

Mordell-Weil group of E, then the regulator constants of M ⊗Zp are closely related

to the elliptic regulator of E [DD09]. Similarly, if M = O×K/µK is the unit group of

K modulo roots of unity, then the regulator constants of M ⊗Zp are closely related

to Dirichlet’s unit group regulator (see [Bar12] or Theorem 3.1.5 below).

The applications of regulator constants are dependent on showing that reg-

ulator constants are sufficiently good invariants of lattices. We now attempt to give

meaning to such a statement.

Let a(Zp[G]) denote the representation ring of G over Zp. We denote the sub-

ring generated by Zp[G]-lattices which are rationally self-dual by a(Zp[G], sd). Set

A(Zp[G]) = a(Zp[G])⊗ZQ, A(Zp[G], sd) = a(Zp[G], sd)⊗ZQ, BR0(G) = br0(G)⊗ZQ
and BRp(G) = brp(G)⊗Z Q. Regulator constants are multiplicative in direct sums

of lattices and also under summing Brauer relations. As such, if vp(−) denotes the
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p-adic valuation, then there is a pairing

vp(C(−)(−)) : BR0(G)×A(Zp[G], sd) −→ Q

(θ,M) 7−→ vp(Cθ(M)).

The space BR0(G) is always finite dimensional, whilst A(Zp[G], sd) will regularly be

infinite dimensional. For formal reasons, elements of BRp(G) always lie in the kernel

of vp(C(−)(−)). But, one might say that regulator constants are good invariants if

the left kernel consists only of characteristic p relations. It is one of our main results

that if G has cyclic Sylow p-subgroups, then this is always the case. But let us be

more precise.

Outside of a few families of groups we do not have classifications of the Zp[G]-

lattices for primes dividing the order of G. On the other hand, the isomorphism

classes of permutation modules, that is Zp[G]-lattices on which G acts by permuting

a choice of basis, are easy to enumerate and it is possible to give a formula for their

regulator constants in terms of group theoretic information. For this reason we shall

primarily restrict our attention from A(Zp[G], sd) to A(Zp[G],perm), the subspace

generated by permutation modules.

Again, for trivial reasons A(Zp[G], cyc), the subspace generated by the per-

mutation modules Zp[G/H] for H ≤ G cyclic, lies in the kernel of vp(C(−)(−)). We

refer to the resulting pairing

〈 , 〉perm : BR0(G)/BRp(G)×A(Zp[G], perm)/A(Zp[G], cyc)→ Q

as the permutation pairing. In fact, we shall see that both of BR0(G)/BRp(G) and

A(Zp[G],perm)/A(Zp[G], cyc) are canonically isomorphic to the free Q-vector space

on the set of conjugacy classes of p-hypo-elementary subgroups. With respect to

this identification, the pairing is symmetric. Prior to quotienting the spaces need

not have the same dimension and there is no such identification (cf. Remark 2.3.7).

Theorem 2.1.2. For a finite group G and prime p such that G has cyclic Sylow

p-subgroups, the permutation pairing is non-degenerate.

A formal consequence of Theorem 2.1.2 is that the isomorphism class of a

permutation module M over Zp is determined by its regulator constants and the

isomorphism class of M ⊗Qp.

To show the theorem, we first reduce to p-hypo-elementary subgroups. Any

p-hypo-elementary group with cyclic Sylow p-subgroups is of the form Cpk o Cn
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with (p, n) = 1. In this case, we find we are able to completely explicate the matrix

representing the pairing, and showing invertibility becomes a combinatorial problem

(Lemma 2.4.7).

For general G, the permutation pairing may be degenerate. For example,

when p = 3, the group C3 × C3 × S3 has a Brauer relation θΣ whose regulator

constant is trivial on all permutation modules (see Section 2.7.8). I do not know if

there are other lattices for which CθΣ(−) does not vanish.

We do however provide a partial result for arbitrary G. For any group G,

there is a canonical Brauer relation with leading term [G] called the Artin relation,

which we denote by θG (see Definition 2.2.14). Let 1G denote the trivial Zp[G]-

module.

Theorem 2.1.3. For any finite group G and prime p, we have CθG(1G) 6= 0 if and

only if G is non-cyclic.

The proof is group theoretic in nature and completely independent of that

of Theorem 2.1.2.

The final aspect of the chapter, and the most important for our applications

in Chapter 3, is to show that Theorem 2.1.2 can in some cases be combined with

Yakovlev’s results to give a complete set of invariants for Zp[G]-lattices.

Specifically, we must show that Theorem 2.1.2 can be used to determine

the trivial source summand of a given M . Denote by A(Z(p)[G], triv) the subring

of the representation ring A(Z(p)[G]) generated by trivial source lattices (see Def-

inition 2.6.1). Note that extension of scalars defines an inclusion A(Z(p)[G]) ↪→
A(Zp[G]) [Rei70, Thm. 5.6 iii)] and so an isomorphism of the subrings generated

by permutation modules A(Z(p)[G], perm) = A(Zp[G],perm). When additionally

A(Z(p)[G], triv) = A(Zp[G], perm) we are able to show:

Theorem 2.1.4. Let G be a finite group and p a prime such that G has cyclic Sylow

p-subgroups and such that A(Zp[G],perm) = A(Z(p)[G], triv). Given two rationally

self-dual Zp[G]-lattices M,N , then M ∼= N if and only if all the following conditions

hold:

i) M ⊗Qp ∼= N ⊗Qp,

ii) for an explicit finite list of characteristic zero Brauer relations, the correspond-

ing regulator constants of M,N are equal,

iii) M,N have isomorphic Yakovlev diagrams.
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This is stated precisely as Theorem 2.6.9. It is relatively straightforward

to obtain extensions of this result to arbitrary lattices (cf. Remark 2.6.10). If the

conditions of the theorem hold for all p-hypo-elementary subgroups of G, then they

hold for G. We also provide some explicit criteria for the condition A(Zp[G],perm) =

A(Zp[G], triv) to be satisfied. Groups that satisfy the conditions include dihedral

groups, abelian groups with cyclic Sylow p-subgroups and groups of order coprime

to (p− 1).

In most cases representation theory over Z is much more difficult than over

Zp, or even over Zp for all primes p. However, for some groups, such as dihedral

groups D2p of order 2p for primes p ≤ 67, the isomorphism class of a Z[G]-lattice M

is determined by its localisations at the primes dividing |G|. As a result, Theorem

2.1.4 may be applied at each prime to give data which determines the isomorphism

class of M as a Z[G]-lattice (cf. Remark 2.7.1).

It is possible to define regulator constants Cθ(M) of a Z[G]-lattice M . Then

Cθ(M) is the product of the p-part of Cθ(M ⊗Zp) for all p dividing |G| (see Remark

2.2.32). As a result, for the purposes of regulator constants, confining ourselves to

Zp[G]-lattices over Z[G]-lattices is innocuous.

Outline: In Section 2.2, we set out notation and recall necessary background

results on Brauer relations and regulator constants. In Section 2.3, we outline precise

questions on pairings arising from regulator constants. We also show that these

reduce to considering p-hypo-elementary groups and that whenever the permutation

pairing is non-degenerate, then permutation modules are determined by regulator

constants and extension of scalars. In Section 2.4, we prove Theorem 2.1.2 on

the permutation pairing, and in Section 2.5, we prove Theorem 2.1.3. In Section

2.6, we apply Theorem 2.1.2 to prove Theorem 2.1.4 on determining lattices up to

isomorphism. There we also provide criteria for groups to satisfy the conditions

of Theorem 2.1.4. Finally, in Section 2.7, we provide examples and non-examples

illustrating our results.

After reading Sections 2.2 and 2.3, the following Sections 2.4 and 2.5 may be

read completely separately from each other, as may Section 2.6, which only requires

the statement of Theorem 2.1.2.
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2.2 Preliminaries

2.2.1 Notation

Throughout, G shall denote a finite group, p a prime and R any ring, but

we will be most concerned with R = Fp,Z(p),Zp,Q or Qp. Here Z(p) denotes the

localisation of Z at the prime ideal (p).

Notation 2.2.1. We fix the following notation:

• Let 1G or 1 denote the trivial R[G]-module. Where the choice of ring requires

emphasis we write 1R,G.

• Given a subgroup H ≤ G and an R[G]-module M , we shall denote the restric-

tion of M to H by M↓GH or M↓H . Similarly, given an R[H]-module N , we

write N↑GH or N↑G for the induction of N to G.

• We say that an R[G]-module is an R[G]-lattice if it is free of finite rank as an

R-module. Let a(R[G]) denote the representation ring of G. As an abelian

group, a(R[G]) consists of formal Z-linear combinations of isomorphism classes

of R[G]-lattices, subject to relations of the form [M ] + [N ] = [M ⊕N ]. Here

we use [M ], or just M , to denote the element of a(R[G]) corresponding to an

R[G]-lattice M . The ring structure on a(R[G]) is given by setting [M ] · [N ] =

[M⊗RN ]. Induction defines a group homomorphism ind: a(R[H])→ a(R[G]),

whilst restriction defines a ring homomorphism res : a(R[G])→ a(R[H]).

• Let A(R[G]) denote a(R[G]) ⊗ Q. All our main results do not require the

integral structure. As a result we frequently deal only with A(R[G]) even

though some intermediate results also hold integrally.

• Recall that a permutation module is a finite direct sum of modules of the form

1↑GH as H runs over subgroups of G. We denote the subgroup of a(R[G])

spanned by such modules by a(R[G], perm). The equality 1↑GH ⊗R 1↑GK =

1H↑G↓K↑G and Mackey’s formula show that a(R[G],perm) ⊆ a(R[G]) is a

subring, which we call the permutation ring. Both res, ind restrict to maps of

permutation rings, the former due to Mackey’s formula. We setA(R[G],perm) =

a(R[G],perm)⊗Q.

• Let A(R[G], cyc) be the Q-subalgebra spanned by 1↑GH as H runs only over

cyclic subgroups.

• Given a quotient q : G → G/N and an R[G/N ]-module M , we denote by

10



infGG/N (M) the inflation of M to G. This defines a ring homomorphism

inf : a(R[G/N ]) → a(R[G]), which restricts to a map of permutation rings

since, for H ≤ G/N , infGG/N (1H↑G/N ) = 1↑Gq−1(H).

• In the same notation, given a G-module M , we define its deflation to G/N ,

deflGG/NM , to be the fixed submodule MN with G/N -action. Restricting to

permutation modules, (1↑GH)N ∼= 1↑GNH , so that defl(1↑GH) ∼= 1↑G/Nq(H). The

composite defl ◦ inf is the identity on all of a(R[G/N ]).

• By H ≤G G, we denote a conjugacy class of subgroups of G with representative

H. When used in indices, the symbol ≤G denotes indexing over conjugacy

classes of subgroups. Thus,
∑

H≤GG 1 is equal to the number of conjugacy

classes of subgroups.

Remark 2.2.2. Recall that a module is called indecomposable if it can not be

written as a direct sum of proper submodules. When R = Zp or Q, every R[G]-

lattice admits a unique decomposition into direct sums of indecomposables [Rei70,

Thm. 5.2], so that a(R[G]) is free as a Z-module with a basis given by isomorphism

classes of indecomposable modules, but it need not have finite rank if R = Zp and

p divides |G| (see [CR94, Sec. 33]). Unique decomposition also ensures that for any

two Zp[G]-lattices M,M ′, [M ] = [M ′] ⇐⇒ M ∼= M ′.

If R = Z(p), then extension of scalars defines an inclusion a(Z(p)[G]) ↪→
a(Zp[G]) [Rei70, Thm. 5.6 iii)] so we may again detect a lattice’s isomorphism

class from its class in the representation ring. However, Z(p)[G]-lattices need not

admit unique decomposition into indecomposables [Ben06] and in general there is

no obvious basis of a(Z(p)[G]). For simplicity, we shall often write a(Z(p)[G]) ⊆
a(Zp[G]).

2.2.2 Brauer relations

Definition 2.2.3. A G-set is a set with a left action of G. We define the Burnside

ring b(G) of G to be the free abelian group on isomorphism classes of finite G-sets,

quotiented by relations of the form [X
∐
Y ]− [X]− [Y ] where X,Y are any G-sets,

and [X], [Y ] are the corresponding elements of the free group. The ring structure is

then given by setting [X] · [Y ] = [X × Y ].

By decomposing G-sets into their orbits, we find that b(G) is a free Z-module

on isomorphism classes of transitive G-sets. Every transitive G-set is of the form

G/H for some subgroup H ≤ G, where H is unique up to conjugacy. We denote the
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element of b(G) corresponding to G/H by [H]. Thus, b(G) is free as a Z-module on

the set of symbols [H] for H ≤G G.

We write B(G) for b(G)⊗Q.

Construction 2.2.4. For any ring R, a G-set X canonically defines a permutation

module and we obtain a surjective map

bR : b(G)→ a(R[G], perm),

which sends [H] to 1R,H↑G.

Definition 2.2.5. A Brauer relation, of a group G over a ring R, is an element of

ker bR ⊆ b(G). We shall refer to the ideal ker bR as the space of Brauer relations

over R and shall denote it by brR(G).

When R = Q or Fp, we call a Brauer relation over R a relation in charac-

teristic zero or characteristic p, respectively, and denote brR(G) by br0(G), brp(G)

respectively. In the literature it is common to refer to a characteristic zero relation

as simply a Brauer relation, and we shall often do the same.

Example 2.2.6. If G = S3, a characteristic zero Brauer relation is given by

θ : [1] + 2[G]− [C3]− 2[C2].

We shall see that in fact, br0(S3) = θ · Z.

All characteristic p relations are relations in characteristic zero also:

Lemma 2.2.7. As subspaces of b(G), brp(G) = brZ(p)
(G) = brZp(G) ⊆ br0(G).

Proof. Via the factorisation Z(p) → Zp → Fp, the map bFp factors as

b(G)→ a(Z(p)[G], perm)
M 7→M⊗Zp→ a(Zp[G],perm)

M 7→M⊗Fp→ a(Fp[G],perm).

The middle map is an isomorphism by [Rei70, Thm 5.6 iii)], as is the last map by

[Ben98, 3.11.4 i)], so the kernels of bFp , bZ(p)
and bZp agree. As bQ factors through

bZ(p)
, there is an inclusion brZ(p)

(G) ⊆ brQ(G).

Notation 2.2.8. Let G be a finite group and H ≤ G a subgroup.

• Given an H-set X, we let X↑GH denote the induced G-set (G × X)/H; here

the H-equivalence is by acting on G on the right and X on the left, whilst G
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acts on the resulting set via its left action on G. For transitive G-sets (G/K)

we have (H/K)↑G = (G/K) and we shall regularly abuse notation by writing

[K]↑G simply as [K], where now K is thought of as a subgroup of G.

• If Y is a G-set, we let Y ↓GH denote its restriction to H. For a subgroup K

of G, making good use of the above abuse of notation, Mackey’s formula for

G-sets states that

[K]↓GH =
∑

g∈K\G/H

[Kg ∩H]. (2.1)

If now N EG is a normal subgroup with quotient q : G→ G/N , then

• given a G/N -set X, we denote by infGG/NX the inflated set X, on which ele-

ments of G act via their image in the quotient. For H ≤ G/N , infGG/N ([H]) =

[q−1(H)],

• given a G-set Y , let deflGG/NY denote its deflation, i.e. the set Y N with its

action of G/N . For a transitive G-set G/H, the fixed points under N is

isomorphic to G/NH, which as a G/N -set is (G/N)/q(H). In other words,

deflGG/N ([H]) = [q(H)], and thus defl ◦ inf is the identity map.

All of these operations induce group homomorphisms on Burnside rings, but only re-

striction and inflation will in general be ring homomorphisms. Each of ind, res, inf, defl

commute with bR. As a result, each restricts to morphisms of brR(−).

2.2.3 Relations in characteristic zero

Finding an explicit basis, for an arbitrary finite group G, of the br0(G) is a

hard problem, which was recently completed by Bartel-Dokchitser [BD15, BD14].

On the other hand, in this section we recall that, a basis of the space br0(G)⊗Q is

provided by Artin’s induction theorem.

Notation 2.2.9. Let cyc(G) := {H ≤G G | H–cyclic} denote a set of representa-

tives of each conjugacy class of cyclic subgroups.

Theorem 2.2.10 (Artin’s induction theorem [Sna94, Thm. 2.1.3]). For any finite

group G and Q[G]-module M , there exists a unique αH ∈ Q for each cyclic H ≤G G
such that

M =
∑

H∈cyc(G)

αH · 1H↑G ∈ A(Q[G]).
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Definition 2.2.11. We say that an element θ ∈ B(G) is supported at some set S

of conjugacy classes of subgroups of G if the only [H] with non-zero coefficients lie

in S.

Corollary 2.2.12. For any finite group G,

i) the rank of br0(G) is equal to the number of conjugacy classes of non-cyclic

subgroups of G,

ii) there are no non-zero characteristic zero Brauer relations supported only at

cyclic subgroups.

Proof. Immediate.

Note that a group G is cyclic if and only if it has no non-trivial Brauer

relations.

Definition 2.2.13. For any ring R and finite group G, let bR,Q denote the base

change of bR,

bR,Q : B(G)→ A(R[G],perm).

We shall also call an element of the kernel of bR,Q a Brauer relation over R and

refer to the kernel BRR(G) := brR(G)⊗Q as the space of Brauer relations over R.

Where there is ambiguity, we shall refer to elements of the kernel of bR as integral

Brauer relations and of bR,Q as rational Brauer relations.

Induction theorems of the form of Theorem 2.2.10 always give rise to a cor-

responding family of (possibly rational) Brauer relations.

Definition 2.2.14. For any group G, let

1G =
∑

H∈cyc(G)

αH · 1H↑G,

where the αH ∈ Q are given uniquely by Artin’s induction theorem. Then

θG = [G]−
∑

H∈cyc(G)

αH · [H] ∈ B(G)

is a rational Brauer relation of G. We call θG the Artin relation of G. Note that

if G is cyclic, then θG = 0 ∈ B(G), otherwise θG is non-zero and has [G]-coefficient

1. The uniqueness statement of Artin’s induction theorem shows that θG is, up to

scaling, the unique element of BR0(G) supported only at G and cyclic subgroups.
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The following example will be returned to in Section 2.4.2.

Example 2.2.15. Let G be of the form Cpr oCn, with p - n, and denote by S ≤ Cn
the kernel of the action Cn → Aut(Cpr). Writing s for |S|, we claim that

θG =
s

n
· [S]− [Cn]− s

n
· [Cpr × S] + [Cpr o Cn],

which can be checked by direct calculation. If the action of Cn is not faithful, then

S is a non-trivial subgroup of G and quotienting by S results in a group of the same

form but with faithful action. The Artin relation of G is then the inflation of the

Artin relation of G/S (using that the preimage of a cyclic subgroup of G/S is a

cyclic subgroup of G).

Following Notation 2.2.8, when it is contextually clear we are referring to

G-relations, for a subgroup H ≤ G, we shall denote the G relation θH↑G simply by

θH . Artin relations are well behaved under restriction:

Lemma 2.2.16. Let G be a finite group and H,K subgroups. Then

i) the restriction of the Artin relation of G to H is the Artin relation of H, i.e.

θG↓H = θH ,

ii) more generally

θH↑GH↓K =
∑

g∈H\G/K

θHg∩K↑K . (2.2)

Proof. We prove ii). Mackey’s formula (2.1) states that

[H]↓K =
∑

g∈H\G/K

[Hg ∩K].

Also by Mackey, for any cyclic group L ≤ H, [L]↑GH↓K is supported at cyclic sub-

groups. But then θ↑GH↓K and
∑

g∈H\G/K θHg∩K↑K are two relations whose coeffi-

cients agree at all non-cyclic subgroups and since there are no relations supported

at cyclic subgroups (Corollary 2.2.12 ii)), they must therefore be equal.

Lemma 2.2.17. A basis of the space of rational Brauer relations BR0(G)Q is given

by the set {θH} of Artin relations for non-cyclic H ≤G G.

Proof. The θH are linearly independent as each is zero on non-cyclic subgroups other

than [H] and must span by Corollary 2.2.12 i).
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2.2.4 Relations in characteristic p

Definition 2.2.18. Let p be prime. A finite group G is called p-hypo-elementary,

or simply p-hypo, if G has a normal Sylow p-subgroup P and G/P is cyclic, i.e. if

G can be written in the form P o Cn for P a p-group and (p, n) = 1.

Notation 2.2.19. We denote a set {H ≤G G | H p-hypo} of representatives of

the conjugacy classes of p-hypo-elementary subgroups by hypp(G). Similarly, let

nchypp(G) := {H ≤G G | H is p-hypo and non-cyclic}.

Recall that characteristic p relations coincide with Z(p) and Zp-relations

(Lemma 2.2.7). Analogously to Corollary 2.2.12 we have:

Theorem 2.2.20. For any finite group G,

i) a basis of A(Zp[G], perm) is given by {1↑GH}H∈hypp(G),

ii) the rank of brp(G) is equal to the number of conjugacy classes of non-p-hypo-

elementary subgroups of G,

iii) there are no non-zero characteristic p Brauer relations supported only at p-

hypo-elementary subgroups.

Proof. The first statement is a consequence of Conlon’s induction theorem as we

show later in Theorem 2.6.21. Given i), both ii) and iii) are automatic.

The first part also holds with Zp replaced by Fp or Z(p).

Note that there are no non-zero characteristic p Brauer relations for p-hypo-

elementary groups, and this is only true of such groups. As before, the theorem

gives rise to privileged relations in characteristic p:

Definition 2.2.21. For any group G and prime p, write

1Zp,G =
∑

H∈hypp(G)

αH · 1Zp,H↑GH

with αH ∈ Q uniquely by Theorem 2.2.20. Since BRZp(G) = BRp(G) (Lemma

2.2.7),

θCon,G = [G]−
∑

H∈hypp(G)

αH · [H]

is a rational Brauer relation in characteristic p, which we refer to as the Conlon rela-

tion of G. Note, θCon,G is identically zero if and only if G is p-hypo-elementary. The
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Conlon relation is the unique p-relation supported only at G and p-hypo-elementary

subgroups. However, the Conlon relation need not be unique amongst characteristic

zero relations supported at these groups.

As before, when it is clear that we are referring to G-relations, for a subgroup

H ≤ G, we denote θCon,H↑G simply by θCon,H . All characteristic p relations are

rational linear combinations of Conlon relations:

Lemma 2.2.22. Let G be a finite group and p a prime. Then

i) a basis of BRp(G) is formed by the set {θCon,H} as H runs over conjugacy

classes of non-p-hypo-elementary groups,

ii) this can be extended to a basis of BR0(G) by adding the Artin relations θH as

H runs over conjugacy classes of non-cyclic p-hypo-elementary groups.

Proof. The proof of i) is as in Lemma 2.2.17. For ii), in addition use Corollary

2.2.12, Theorem 2.2.20.

Unlike in the characteristic zero case, a full classification of integral Brauer

relations in characteristic p is unknown. However, there has been significant recent

progress, see [BS17].

Example 2.2.23. Let G = D2p = Cp o C2 be the dihedral group of order 2p for p

an odd prime. If ` is any prime, then

{H ≤G G | H is `-hypo-elementary} =

{1}, C2, Cp ` 6= p

{1}, C2, Cp, D2p ` = p
, (2.3)

and so dimQA(Z`[G], perm) is 3 unless ` = p when it is 4. A basis S ofA(Zp[G], perm)

is formed by

S =

1{1}↑G,1C2↑G,1Cp↑G ` 6= p

1{1}↑G,1C2↑G,1Cp↑G,1G ` = p
.

Since G has up to conjugacy four subgroups, of which three are cyclic, rkBR0(G) =

1. Let θ ∈ br0(G) be the relation

2[G]− [Cp]− 2[C2] + [1].

Then θ = 2θG. As θ is indivisible as an element of b(G), we find br0(G) = θ · Z.
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Since rk br`(G) is the number of conjugacy classes of non-p-hypo-elementary

subgroups, by (2.3), rk br`(G) is also one unless ` = p when it is zero. Given that

br`(G) ⊆ br0(G) (Lemma 2.2.7), we find

br`(G) =

θ · Z if ` 6= p

0 if ` = p
.

The Conlon relation θCon,G is equal to the Artin relation unless ` = p when it is

zero.

We conclude by giving a useful characterisation of Brauer relations.

Lemma 2.2.24. Let G be a finite group and
∑

i[Hi]−
∑

j [Kj ] ∈ b(G). Then,

i)
∑

i[Hi]−
∑

j [Kj ] is equal to zero in b(G) if and only if, for all subgroups T ≤ G,

the number of fixed points of
∐
i(G/Hi) and

∐
j(G/Kj) under T are equal,

ii)
∑

i[Hi]−
∑

j [Kj ] is Brauer relation in characteristic zero if and only if, for all

cyclic subgroups T ≤ G, the number of fixed points of
∐
i(G/Hi) and

∐
j(G/Kj)

under T are equal,

iii)
∑

i[Hi] −
∑

j [Kj ] is Brauer relation in characteristic p if and only if, for all

p-hypo-elementary subgroups T ≤ G, the number of fixed points of
∐
i(G/Hi)

and
∐
j(G/Kj) under T are equal.

Proof. For i), note that the fixed points of
∑

i[Hi] and
∑

j [Kj ] under G are equal

if and only if [G] occurs an equal number of times on both sides. Similarly, by

sequentially considering subgroups ordered by decreasing size, we find
∑

i[Hi] =∑
j [Kj ] if and only if the fixed points under all subgroups are equal (cf. (2.1) p13).

For iii) consider the commutative diagram

b(G) a(Zp[G], perm)

∏
H p-hypo

b(H)
∏

H p-hypo

a(Zp[H],perm)

bZp

∏
bZp

where the horizontal arrows send G-sets to their permutation representations and

the vertical maps are given by restriction. The lower arrow is injective as p-hypo-

elementary groups admit no non-zero characteristic p Brauer relations (Theorem

2.2.20 iii)).
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Claim. The map a(Zp[G],perm)→
∏
H p-hypo a(Zp[H],perm) is injective.

Proof of Claim. Write an arbitrary Zp[G]-permutation module as

M =
∑

H∈hypp(G)

αH · 1↑GH ,

uniquely by Theorem 2.2.20 i). Upon restriction to a p-hypo-elementary subgroup

K ≤ G, Mackey’s formula shows that 1↑GH↓K contains a summand isomorphic to 1

if and only if K is contained in a conjugate of H. As a result, if K is a maximal

p-hypo-elementary subgroup, then αK can be read off from M↓K . More generally,

we sequentially restrict to p-hypo-elementary subgroups of decreasing order, then

M can be recovered from its restrictions.

Brauer relations in characteristic p are precisely elements of ker(bp : b(G)→
a(Zp[G], perm)) (Lemma 2.2.7) and thus are the elements of b(G) which lie in the

kernel of restriction b(G)→
∏
H∈hypp(G) b(H). By i) these are the elements of b(G)

whose fixed points under all p-hypo-elementary subgroups cancel.

The proof of ii) is identical instead using Artin’s induction theorem 2.2.10.

The same line of reasoning yields the following corollary of Artin’s induction

theorem, which is useful in practice (e.g. in Chapter 3). Normally, this would be

shown in the course of the proof of Artin’s induction theorem.

Lemma 2.2.25. Given two Q[G]-representations M,N , we have that M ∼= N if and

only if dimQM
H = dimQN

H as H runs over cyclic subgroups of G up to conjugacy.

Proof. In the course of the above proof we verified that

a(Q[G])→
∏

H∈cyc(G)

a(Q[H])

is injective (note that Artin’s induction theorem states that A(Q[W ],perm) =

A(Q[W ]) in general). To conclude, we must show that the result holds for any

cyclic group H. A basis of A(Q[H]) consists of 1↑HC as C runs over all subgroups.

Now for any C,C ′ ≤ H, dim(1C↑H)C
′

= |H|/ lcm(|C|, |C ′|) by Mackey’s formula.

In particular, the functions (−)C
′

are linearly independent on A(Q[H]) as C ′ ranges

over all subgroups of H. Since the dimension of A(Q[H]) is equal to the number of

subgroups, any Q[H]-representation is determined by its fixed points.
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2.2.5 Regulator constants

In this section, we recall how to associate to a characteristic zero Brauer

relation, a function on (nice) R[G]-lattices called its regulator constant.

We follow the construction given in [DD09] for an arbitrary PID R of char-

acteristic zero. We are only ever concerned with R = Z,Z(p) or Zp. Let K denote

the field of fractions of R.

Definition 2.2.26. An R[G]-lattice M is called rationally self-dual if M⊗K is self-

dual, i.e. M ⊗K is isomorphic to its linear dual HomK(M ⊗K,K) as K[G]-modules.

This is equivalent to the existence of a non-degenerate G-invariant inner product on

M ⊗K. If an inner product on M ⊗K exists, there is a restricted G-invariant inner

product on M .

Rational self-duality is preserved under induction, restriction, inflation and

deflation, as well as taking tensor products of two rationally self-dual lattices. We

say that an element of A(R[G]) is rationally self-dual if it can be written as a linear

combination of self-dual lattices. We denote the subring of self-dual lattices by

a(R[G], sd) and define A(R[G], sd) accordingly.

A rationally self-dual lattice M need not be linearly self-dual, i.e. a rationally

self-dual M need not be isomorphic to Hom(M,R). If R = Z or Z(p), then, as all

Q[G]-modules are self-dual, all R[G]-lattices are rationally self-dual.

Definition 2.2.27. Let G be a finite group and θ =
∑

i[Hi] −
∑

j [H
′
j ] ∈ br0(G)

be an integral characteristic zero Brauer relation of G. Given a rationally self-dual

R[G]-lattice M , fix a choice of non-degenerate G-invariant inner product 〈 , 〉 on

M . The regulator constant of θ evaluated at M is then

Cθ(M) =

∏
i det

(
1
|Hi|〈 , 〉|MHi

)
∏
j det

(
1
|H′j |
〈 , 〉|

M
H′
j

) ∈ K×/(R×)2.

This is independent of the choice of 〈 , 〉 as an element of K×/(R×)2 (see [DD09,

Thm. 2.17]). For M a Z[G] or Z(p)[G]-lattice, we may take the pairing to be positive

definite and so for all characteristic zero Brauer relations θ and modules M we have

Cθ(M) > 0.

Example 2.2.28. Let G = S3 = 〈σ, τ | σ3, τ2, στ = τσ2〉 and consider the Brauer

relation θ = 2[G]−[C3]−2[C2]+[1] of Example 2.2.23. There are two non-isomorphic
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rank 2 Z(3)[G]-lattices given by extending the Z[G]-lattices defined by the following

diagrams:

• • • •

• • •

• • • •

• • •

120◦

σ

0 τ

Figure 2.1: The lattice A.

• • • •

• • •

• • • •

• • •

τ

120◦

σ

0

Figure 2.2: The lattice A′.

In both diagrams, σ acts by rotation by 120◦ and τ by reflection.

Note that A⊗Q ∼= A′ ⊗Q. With respect to the basis

•

• •0

v2

v1

a G-invariant inner product 〈−,−〉 on both A⊗Q and A′ ⊗Q is represented by(
2 1

1 2

)
.
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Directly applying Definition 2.2.27 we find

Cθ(A) =
det
(

1
6〈 , 〉|AG

)2 · det
(

1
1〈 , 〉|A1

)
det
(

1
3〈 , 〉|AC3

)
· det

(
1
2〈 , 〉|AC2

)2
=

12 · 3
12 · (2

2)2

= 3 ∈ Z×(3)/((Z(3))
×)2,

whilst

Cθ(A
′) =

det
(

1
6〈 , 〉|A′G

)2 · det
(

1
1〈 , 〉|A′1

)
det
(

1
3〈 , 〉|A′C3

)
· det

(
1
2〈 , 〉|A′C2

)2
=

12 · 3
12 · (6

2)2

=
1

3
∈ Z×(3)/((Z(3))

×)2.

Since 3 6≡ 1
3 ∈ ((Z(3))

×)2, this demonstrates that A � A′. On the other hand,

3 ≡ 1
3 ∈ Q

×/(Q×)2. As regulator constants are compatible with extension of scalars

(see Lemma 2.2.30 vi)), this is a consequence of the fact that A⊗Q ∼= A′ ⊗Q.

Remark 2.2.29. When evaluating regulator constants at the trivial module, the

formula simplifies. For example, if θ =
∑

i[Hi]−
∑

j [H
′
j ], then

Cθ(1G) =

∏
i

1
|Hi|∏

j
1
|H′j |

=

∏
j |H ′j |∏
i |Hi|

. (2.4)

This formula can be extended to permutation modules due to the formalism of

regulator constants provided by the next lemma. That regulator constants of per-

mutation modules can be made explicit in this way is crucial in the proof of Theorem

2.4.1.

Lemma 2.2.30 ([DD09]). Let G be any finite group and H a subgroup and let R,K
be as above. Assume throughout that all modules are rationally self-dual. Then

i) if M,N are two R[G]-lattices, then for any Brauer relation θ of G, Cθ(M⊕N) =

Cθ(M)Cθ(N),

ii) if θ, θ′ are two Brauer relations for G and M any R[G]-lattice, then

C(θ+θ′)(M) = Cθ(M)Cθ′(M),

iii) if M is a R[G]-lattice, then Cθ↑GH
(M) = Cθ(M↓GH),
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iv) if M is a R[H]-lattice, then Cθ(M↑GH) = Cθ↓GH
(M),

v) if H is normal, then given a relation of G/H and a R[G]-lattice M ,

CinfGG/Hθ
(M) = Cθ(deflGG/HM),

vi) for any inclusion R ↪→ T , with T a PID, any relation θ, and R[G]-lattice M ,

we have Cθ(M) = Cθ(M⊗T ) ∈ L×/(T ×)2 where L denotes the field of fractions

of T .

Notation 2.2.31. By definition, regulator constants of rationally self-dual Zp[G]-

modules take values in Q×p /(Z×p )2. Let vp : Q×p → Z denote the usual p-adic valua-

tion. This descends to a function vp : Q×p /(Z×p )2 → Z. For any prime ` 6= p, we also

have a “valuation at `” function Q×p /(Z×p )2 → Z/2Z, which we also denote by v`.

Remark 2.2.32. Since the regulator constant of a Z[G]-lattice is always a positive

rational number (see Definition 2.2.27), Lemma 2.2.30 vi) shows that the regulator

constant Cθ(M) of a Z[G]-lattice M is a function of the values vp(Cθ(M ⊗ Zp)) as

p runs over all primes.

The following observation will be crucial:

Lemma 2.2.33 ([Bar12, Lem. 3.6]). If G is a finite group and θ a relation in

characteristic `, then for any prime p (possibly equal to `) and M any Z[G] or

rationally self-dual Zp[G]-lattice we have

v`(Cθ(M)) = 0.

Remark 2.2.34. If G is a finite group and p is a prime not dividing the order

of G, then the p-hypo-elementary subgroups of G are the cyclic subgroups and so

all characteristic zero relations are characteristic p relations (Lemma 2.2.22). Thus

Lemma 2.2.33 shows that the only prime powers appearing in regulator constants

divide the order of the group. If G itself is `-hypo-elementary, then, for p 6= `, all its

p-hypo-elementary subgroups are cyclic and so all its characteristic 0 relations are

relations in characteristic p and its regulator constants are always `th powers.

2.3 Pairings from regulator constants

In this section, we remark that the construction of regulator constants canon-

ically defines a pairing between Brauer relations and rationally self-dual Zp[G]-

lattices. This pairing has obvious Brauer relations and lattices which must lie in
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the kernel, but it is unclear what the kernels should be in general. Sections 2.4

and 2.5 can be seen as partial results in this direction. Finally, we show that non-

degeneracy of such pairings leads to methods to determine the isomorphism classes

of permutation modules.

2.3.1 The regulator constant pairing

Construction 2.3.1. Let G be any finite group and p a prime. The map

vp(C(−)(−)) : br0(G)× a(Zp[G], sd) −→ Z

(θ,M) 7−→ vp(Cθ(M)),

is bi-additive (Lemma 2.2.30 i),ii)). Extending Q-linearly we get a pairing,

vp(C(−)(−)) : BR0(G)×A(Zp[G], sd) −→ Q,

which we also denote by vp(C(−)(−)) and which we call the regulator constant pair-

ing. By Lemma 2.2.33, this factors as

vp(C(−)(−)) : BR0(G)/BRp(G)×A(Zp[G], sd) −→ Q.

In Section 2.7.1, we calculate the full regulator constant pairing for dihedral

groups D2p with p odd, one of the few families of groups where a classification of all

indecomposable lattices exists.

Remark 2.3.2. The pairing vp(C(−)(−)) is far from non-degenerate; A(Zp[G], sd)

is often infinite dimensional whilst BR0(G) is always finite dimensional. Explicit

elements of the right kernel are given by taking a lattice M↑GH induced from a cyclic

subgroup H. This pairs to zero with all relations since

vp(Cθ(M↑GH)) = vp(Cθ↓GH
(M)) = 0,

where first equality is Lemma 2.2.30 iv) and the second is because cyclic groups have

no non-zero Brauer relations (Corollary 2.2.12). The behaviour of the left kernel is

less clear:

Question 2.3.3. Are there groups for which the left kernel of

vp(C(−)(−)) : BR0(G)/BRp(G)×A(Zp[G], sd)→ Q
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is non-trivial?

It is also interesting to replace Zp with other rings. For Z(p) and so also for

Zp, if G has cyclic Sylow p subgroups, then the left kernel is trivial (see Theorem

2.4.1). Outside of this case, things are less clear and there are some very small

groups (e.g. C3 ×C3 × S3 when p = 3) for which we have been unable to determine

the left kernel. There are groups with Brauer relations which pair trivially with all

summands of permutation modules but are not relations in characteristic p (namely

for C3 × C3 × S3, see Section 2.7.3). On the other hand, the kernel is never all of

BR0(G) (Theorem 2.5.1).

Lemma 2.3.4. Let θ be a relation of a finite group G. For any prime p the following

are equivalent,

i) vp(Cθ(−)) : A(Zp[G], sd)→ Q vanishes identically,

ii) vp(Cθ↓H (−)) : A(Zp[H], sd) → Q vanishes identically for all conjugacy classes

of p-hypo-elementary subgroups H ≤ G.

Proof. For the forward direction, use that vp(Cθ↓H (M)) = vp(Cθ(M↑G)) = 0 (Lemma

2.2.30 iv)). For the reverse, write 1 =
∑

H∈hypp(G) αH1H↑
G as in the Conlon rela-

tion. Then for any rationally self-dual Zp[G]-lattice

M = M ⊗ 1 =
∑

H∈hypp(G)

αH · (M ⊗ 1↑GH) =
∑

H∈hypp(G)

αH ·M↓H↑GH ,

where the M↓H are rationally self-dual. Then

vp(Cθ(M)) =
∑

H∈hypp(G)

αHvp(Cθ(M↓H↑GH)) =
∑

H∈hypp(G)

αHvp(Cθ↓H (M↓H)) = 0.

Lemma 2.3.5. For any finite group G, the following are equivalent:

i) the left kernel of vp(C(−)(−)) : BR0(G)/BRp(G)×A(Zp[G], sd)→ Q is trivial,

ii) the left kernel of vp(C(−)(−)) : BR0(G/N)/BRp(G/N) × A(Zp[G/N ], sd) → Q
is trivial for all normal subgroups N .

Moreover, both are implied by

iii) the left kernels of vp(C(−)(−)) : BR0(H)×A(Zp[H], sd)→ Q are trivial for all

isomorphism classes of p-hypo-elementary subgroups H ≤ G.
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Proof. To see i) =⇒ ii), suppose that the left kernel of the pairing for G is trivial

and let θ be a relation for G/N which is not a relation in characteristic p. Since

defl ◦ inf = id and both take characteristic p relations to characteristic p relations,

infθ must also not be a p-relation. So, by assumption, there exists an M for which

0 6= vp(Cinfθ(M)). By Lemma 2.2.30 v), vp(Cinfθ(M)) = vp(Cθ(deflM)) 6= 0 and

vp(Cθ(−)) doesn’t vanish identically. The reverse direction is automatic.

Now assume iii). From Lemma 2.3.4 we get that vp(Cθ(−)) vanishes if and

only if vp(Cθ↓H (−)) vanishes for all H. But if θ is not a relation in characteristic p,

there exists a p-hypo-elementary subgroup H for which θ↓H 6= 0 (use Lemma 2.2.22

i)) and so vp(Cθ↓H (−)) doesn’t vanish.

2.3.2 The permutation pairing

In this section, we study the restriction of the regulator constant pairing to

permutation modules. Here we have a chance to be much more explicit as Theorem

2.2.20 describes a basis of A(Zp[G],perm), and regulator constants of permutation

modules are easy to calculate.

Notation 2.3.6. Let P (G) denote the free Q-vector space on the set of conjugacy

classes of non-cyclic p-hypo-elementary subgroups.

Remark 2.3.7. As in Remark 2.3.2, if we restrict to A(Zp[G], perm), then we find

that vp(C(−)(−)) factors as

vp(C(−)(−)) : BR0(G)/BRp(G)×A(Zp[G], perm)/A(Zp[G], cyc)→ Q.

Lemma 2.2.22 ii) demonstrates that sending H → θH canonically identifies P (G)

with BR0(G)/BRp(G) (via H 7→ θH). On the other hand, Theorem 2.2.10 shows

that P (G) is canonically identified with A(Zp[G], perm)/A(Zp[G], cyc) by sending

H to 1↑GH .

It is not true that the spaces can be identified before factoring vp. In-

deed, BR0(G) is of dimension equal to the number of non-cyclic subgroups, whereas

A(Zp[G],perm) is of dimension equal to the number of non-p-hypo-elementary sub-

groups.

Construction 2.3.8. Via these canonical identifications, we may consider the re-

stricted pairing of Remark 2.3.7 as a pairing

〈 , 〉perm : P (G)× P (G) −→ Q,
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sending (H,K) to vp(CθH (1↑GK)). We call 〈 , 〉perm the permutation pairing.

Lemma 2.3.9. For any finite group G and prime p, 〈 , 〉perm : P (G)×P (G) −→ Q
is symmetric.

Proof. For any two subgroups H and K of G, Lemmas 2.2.16, 2.2.30 show that

CθH↑G(1K↑G) = CθH↑G↓K (1K)

=
∏

g∈H\G/K

CθHg∩K (1Hg∩K).

Whilst,

CθK↑G(1H↑G) = CθK (1H↑G↓K)

= CθK

 ∑
g∈H\G/K

1Hg∩K↑K


=
∏

g∈H\G/K

(
CθHg∩K (1Hg∩K)

)
.

Remark 2.3.10. Along the same lines, Lemma 2.2.30 and (2.2) show that, for

H,K ≤ G,

〈H,K〉perm := vp(CθH↑G(1K↑G)) = vp(CθH↑G↓K (1K))

=
∑

g∈H\G/K

CθHg↓Hg∩K↑K (1K)

=
∑

g∈H\G/K

CθHg∩K↑K (1K)

=
∑

g∈H\G/K

vp(CθHg∩K (1Hg∩K)). (2.5)

Combining this with (2.4) of p22 gives a formula for the permutation pairing.

It is tempting to ask if permutation pairing is non-degenerate for all groups

G. This proves too naive, in Section 2.7.3, we exhibit a family of groups for which

the permutation pairing is degenerate (e.g. C3×C3× S3 when p = 3). Analogously

to Lemmas 2.3.4, 2.3.5 we have:

Lemma 2.3.11. Let θ be a relation of a finite group G. For any prime p the

following are equivalent,
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i) vp(Cθ(−)) : A(Zp[G],perm)→ Q vanishes identically,

ii) vp(Cθ↓H (−)) : A(Zp[H], perm)→ Q vanishes identically for all conjugacy classes

of p-hypo-elementary subgroups H ≤ G.

Lemma 2.3.12. For any finite group G, the following are equivalent:

i) the permutation pairing is non-degenerate,

ii) the permutation pairing of G/N is non-degenerate for all N EG.

Moreover, both are implied by

iii) the permutation pairing of H is non-degenerate for all p-hypo-elementary sub-

groups H.

The proofs are identical to before. As a result, we see that infinitely many

groups exist where the permutation pairing is degenerate, for example, when p =

3, all groups with a C3 × C3 × S3 quotient. We prove two main results on the

permutation pairing. Theorem 2.4.1 states that the permutation pairing is non-

degenerate for all groups with cyclic Sylow p-subgroups. Whilst, for arbitrary G,

Theorem 2.5.1 states that the permutation pairing is not the zero pairing (unless

P (G) = 0).

This leaves many open questions. For example:

Question 2.3.13. Can one describe the groups for which the permutation pairing

is degenerate?

It would also be interesting to know of the existence of a group with degen-

erate permutation pairing but for which the regulator constant pairing has trivial

left kernel. There are also many hard problems which arise from considering these

pairings integrally.

2.3.3 Regulator constants as invariants of permutation modules

The non-degeneracy of the permutation pairing is a measure of the strength

of regulator constants as invariants of permutation modules. In this section, we show

that the isomorphism class of an arbitrary Zp[G]-permutation module is determined

by the isomorphism class of its extension of scalars to Qp and regulator constants if

and only if the permutation pairing is non-degenerate.
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Construction 2.3.14. Let P ′′(G) denote the free Q-vector space on conjugacy

classes of cyclic subgroups. Artin’s induction theorem (Thm. 2.2.10) states that

there is a canonical isomorphism P ′′(G)
∼→ A(Q[G]) sending H → 1Q,H↑G. In the

same way, A(Zp[G], cyc) is also canonically identified with P ′′(G). Define a pairing

〈 , 〉char : P ′′(G)× P ′′(G) −→ Q

(H,K) 7−→ 〈1Zp,H↑G ⊗Qp,1Zp,K↑G ⊗Qp〉char,

where the final inner product is the usual pairing given by character theory. Then

〈 , 〉char is symmetric and is non-degenerate by Artin’s induction theorem 2.2.10.

Construction 2.3.15. Let P ′(G) denote the free Q-vector space on conjugacy

classes of p-hypo-elementary subgroups of G. We define the pairing

〈 , 〉∗ : P ′(G)× P ′(G) −→ Q

(H,K) 7−→

〈1Zp,H↑G ⊗Qp,1Zp,K↑G ⊗Qp〉char if H is cyclic

vp(CθH (1Zp,K↑G)) if H is non-cyclic
.

This extends both 〈 , 〉perm and 〈 , 〉char.

Remark 2.3.16. The pairing 〈 , 〉∗ is chosen so that, via the identification P ′(G) ∼=
A(Zp[G],perm), in the second variable, the construction extends to a pairing P ′(G)×
A(Zp[G])→ Q on the full representation ring (cf. Remark 2.6.18).

Lemma 2.3.17. For any finite group G, the following are equivalent,

i) the permutation pairing of G is non-degenerate,

ii) the pairing 〈 , 〉∗ is non-degenerate,

iii) the isomorphism class of an arbitrary permutation module over Zp is determined

by

a) the isomorphism class of M ⊗Qp, and

b) the valuations of the regulator constants vp(CθH (M)) as H runs over ele-

ments of nchypp(H).

Proof. For equivalence of i) and ii), note that, for any cyclic subgroup K,

vp(CθH (1↑GK)) = 0 (Remark 2.3.2). Thus, if we order the canonical basis of P ′(G) so

that the cyclic subgroups come before the non-cyclic p-hypo-elementary subgroups,

then the matrix representing 〈 , 〉∗ is block upper triangular, with diagonal blocks
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given by the matrices representing 〈 , 〉char and the permutation pairing respec-

tively. The former is always invertible so 〈 , 〉∗ is non-degenerate if and only if the

permutation pairing is.

The equivalence of ii) and iii) is automatic.

Example 2.3.18. Let G = D2p. Up to conjugacy, the p-hypo-elementary subgroups

of G are S = {{1}, C2, Cp, D2p}. Applying (2.4) of p22 to θG as calculated in

Example 2.2.15, we find vp(CθG(1G)) = −1/2. Thus, the matrix representing 〈 , 〉∗
with respect to the basis of P ′(G) given by S is:

2p p 2 1

p (p+ 1)/2 1 1

2 1 2 1

0 0 0 −1/2





{1} C2 Cp D2p

{1}

C2

Cp

D2p

In Section 2.7.1, we extend this to allow arbitrary Zp[D2p]-lattices.

2.4 Non-degeneracy of the permutation pairing for groups

with cyclic Sylow p-subgroups

In this section we prove:

Theorem 2.4.1. Let G be a finite group and p a prime such that G has cyclic Sylow

p-subgroups. Then the permutation pairing

vp(C(−)(−)) : BR0(G)/BRp(G)×A(Zp[G], perm)/A(Zp[G], cyc)→ Q

is non-degenerate.

As a result, for such groups G, the regulator constant pairing has trivial left

kernel and we find:

Corollary 2.4.2. Let G be a finite group and p a prime for which the Sylow p-

subgroups of G are cyclic. Then the isomorphism class of an arbitrary Zp[G]-

permutation module M is determined by,
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i) the isomorphism class of M ⊗Qp,

ii) the valuations of the regulator constants vp(CθH (M)) as H runs over elements

of nchypp(H).

Proof. This follows by Lemma 2.3.17.

The proof of Theorem 2.4.1 reduces to the case of G p-hypo-elementary.

Since all p-hypo-elementary groups with cyclic Sylow p-subgroups are of the form

Cpk o Cn with (n, p) = 1, we can then preform an explicit calculation.

2.4.1 GCD matrices

We first state and prove a purely combinatorial statement. Since this may

be of limited independent interest this subsection is self contained.

Notation 2.4.3. For a natural number n and divisor s of n, denote by

• D′(n) the set of divisors of n (ordered increasingly),

• D(n, s) ⊂ D′(n) the set of divisors of n not dividing s,

• N(n) the symmetric matrix with rows and columns indexed by elements of

D′(n) and (d1, d2)th entry given by gcd(d1, d2),

• M(n, s) the symmetric matrix with rows and columns indexed by elements of

D(n, s) and (d1, d2)th entry given by (gcd(d1, d2)− gcd(d1, d2, s)).

Example 2.4.4. If n = 12 and s = 2 then D(12, 2) = {3, 4, 6, 12} and

M(12, 2) =

3 4 6 12


3 2 0 2 2

4 0 2 0 2

6 2 0 4 4

12 2 2 4 10

,

which has full rank.

Remark 2.4.5. Matrices of the form N(n) are called GCD matrices and are always

invertible (not necessarily integrally, see Lemma 2.4.6). Although matrices defined

in a similar way to M(n, s) have been studied (see [BL89, Beg10]), we have been

unable to find results in the literature that directly cover matrices of the form
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M(n, s). For this reason, we have included a full calculation of their determinants

and thus invertibility. First we recall the proof of the determinant formula for N(n).

Lemma 2.4.6. For any natural number n, the matrix N(n) has determinant equal

to
∏
d∈D′(n) φ(d), where φ denotes Euler’s totient function, and thus is always of full

rank.

Proof. For n = pe a prime power,

N(pe) =


1 1 ... 1

1 p ... p
...

...
...

1 p ... pe

 .

If e > 1, expanding the final column shows that

det(N(pe)) = (pe − pe−1) det(N(pe−1)) = φ(pe) det(N(pe−1))

as any (e−1)× (e−1) minor containing the first (e−1) terms of the last two rows is

not of full rank. Inductively this shows the determinant formula for prime powers.

Now let s = rt with (r, t) = 1. Then using the bijection D′(rt) ↔ D′(r) ×
D′(t), after simultaneous permutation of rows and columns (which preserves the

determinant) N(s) is of the form:

gcd(u1, u1)N(r) gcd(u1, u2)N(r) ... gcd(u1, uk)N(r)

gcd(u2, u1)N(r) gcd(u2, u2)N(r) ... gcd(u2, uk)N(r)

...
...

. . .
...

gcd(uk, u1)N(r) gcd(uk, u2)N(r) ... gcd(uk, uk)N(r)




= N(r)⊗N(t),

u1 u2
. . . uk

u1

u2

...

uk

writing ui for the elements of D′(t). If A,B are matrices of dimension m,n respec-

tively, then their tensor product satisfies the familiar formula

det(A⊗B) = det(A)n det(B)m.
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Applying this inductively, using the bijection D′(rt)↔ D′(r)×D′(t),

det(N(r)⊗N(t)) =

 ∏
d∈D′(r)

φ(d)

|D′(t)| ·
 ∏
l∈D′(t)

φ(l)

|D′(r)|

=
∏

d∈D′(r)

φ(d)|D
′(t)|

∏
l∈D′(t)

φ(l)


=

∏
d∈D′(r)

∏
l∈D′(t)

φ(d)φ(l)

=
∏

w∈D′(rt)

φ(w),

as required.

Lemma 2.4.7. The matrix M(n, s) has full rank for all natural numbers n and

divisors s of n. Moreover, det(M(n, s)) =
∏
d∈D(n,s) φ(d), where φ is the Euler

totient function.

Proof. We first prove the case when s = 1. Consider the matrix N(n) (whose

determinant equals
∏
d∈D′(n) φ(d) by Lemma 2.4.6). Within N(n), the first row and

column are constantly 1, and if we subtract the first column from all subsequent

columns we get

det(N(n)) = det

1 0 ... 0

1

... M(n, 1)

1



 = det(M(n, 1)).

As φ(1) = 1, this verifies the determinant formula in the case of s = 1.

We proceed by induction on the number of prime divisors of s. Assume that

M(n, s) has determinant

det(M(n, s)) =
∏

d∈D(n,s)

φ(d),

and consider M(prn, pes) with p - n, s.

Let d be a divisor of prn, so d is of the form pkd′ with p - d′ and 0 ≤ k ≤ r.

Then d ∈ D(prn, pes) ⇐⇒ either k ≤ e and d′ ∈ D(n, s), or k > e and d′ ∈ D′(n).
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In other words, D(prn, pes) can be partitioned as

D(prn, pes) =

(
e⋃
i=0

piD(n, s)

)
∪

 r⋃
i=pe+1

piD′(n)

 .

Call D1 =
⋃e
i=0 p

iD(n, s) and D2 =
⋃r
i=e+1 p

iD′(n). Simultaneously reorder the

rows and columns of M(prn, pes) so that they respect this decomposition. Define

A,B,C by

M(prn, pes) =
A C

CT B

 
.

D1 D2

D1

D2

For any two elements pl1d1, p
l2d2 ∈ D1, the corresponding entry of A is given by

gcd(pl1d1, p
l2d2)− gcd(pl1d1, p

l2d2, p
es) = pmin{l1,l2}(gcd(d1, d2)− gcd(d1, d2, s)).

So A is the tensor product

A =


1 1 ... 1

1 p ... p
...

...
...

1 p ... pe

⊗M(n, s) = N(pe)⊗M(n, s),

which has determinant

det(A) = det(N(pe))|D(n,s)| · det(M(n, s))e+1.
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By induction and Lemma 2.4.6,

det(A) = det(N(pe))|D(n,s)| · det(M(n, s))e+1

=

(
e∏

k=0

φ(pk)|D(n,s)|

)
·

 ∏
d∈D(n,s)

φ(d)e+1


=

e∏
k=0

φ(pk)|D(n,s)| ·
∏

d∈D(n,s)

φ(d)


=

e∏
k=0

∏
d∈D(n,s)

φ(pk)φ(n)

=
∏
d∈D1

φ(d).

We now row reduce to remove CT . For e < k ≤ r, let vpkd denote the row

vector with entries indexed by D(n, s) = D1 ∪D2 and whose tth entry is defined by

(vpkd)t = gcd(ped, t)− gcd(ped, t, pes).

If d | s, then gcd(ped, t) = gcd(ped, t, pes) and vpkd is identically zero. If d - s,
then ped ∈ D1 and vpkd is the (ped)th row of the matrix M(n, s). In either case,

subtracting vpkd from the (pkd)th row is an elementary row operation and preserves

the rank and determinant.

Call M ′(prn, pes) the matrix resulting from performing this reduction for all

elements of D2. The entries of the pkdth row for pkd ∈ D2 now satisfy, for pk
′
d′ ∈ D1,

M ′(prn, pes)pkd,pk′d′ = gcd(pkd, pk
′
d′)− gcd(pkd, pk

′
d′, pes)− gcd(ped, pk

′
d′)

+ gcd(ped, pk
′
d′, pes)

= pk
′
gcd(d, d′)− pk′ gcd(d, d′, s)− pk′ gcd(d, d′)

+ pk
′
gcd(d, d′, s)

= 0,

and for pk
′
d′ ∈ D2,
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M ′(prn, pes)pkd,pk′d′ = gcd(pkd, pk
′
d′)− gcd(pkd, pk

′
d′, pes)− gcd(ped, pk

′
d′)

+ gcd(ped, pk
′
d′, pes)

= pmin{k,k′} gcd(d, d′)− pe gcd(d, d′, e)− pe gcd(d, d′)

+ pe gcd(d, d′, s)

= (pmin{k,k′} − pe) gcd(d, d′).

Therefore, the row reduction results in a matrix of the form

M ′(prn, pes) =
A C

0 B′

 
.

D1 D2

D1

D2

where

B′ = N(n)⊗


pe+1 − pe pe+1 − pe ... pe+1 − pe

pe+1 − pe pe+2 − pe ... pe+2 − pe
...

...
...

pe+1 − pe pe+2 − pe ... pr − pe


= N(n)⊗M(pr, pe)

= N(n)⊗ peM(pr−e, 1).

Since

det(M(prn, pes)) = det(A) · det(B′),

to complete the proof we must show that det(B′) =
∏
d∈D2

φ(d). Indeed,

det(B′) = det(N(n))r−e · det(M(pr, pe))|D
′(n)|

=

r∏
k=e+1

φ(pk)|D
′(n)| det(N(n))

=

(
r∏

k=e+1

φ(pk)|D
′(n)|

)
·

 ∏
d∈D′(n)

φ(d)


= .

r∏
k=e+1

∏
d∈D′(n)

φ(pkd)

=
∏
d∈D2

φ(d).
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So we find

det(M(pkn, pes)) =

 ∏
d∈D1

φ(d)

 ∏
d∈D2

φ(d)

 =
∏
d∈D

φ(d).

This completes the proof of the determinant formula of M(a, b) by induction on the

number of prime factors of b.

2.4.2 Structure of Cpk o Cn

We now perform an explicit calculation for p-hypo-elementary groups before

deducing Theorem 2.4.1.

Lemma 2.4.8. Let G be of the form Cpr o Cn with p - n. Further, let S denote

the kernel of the action of Cn on Cpr . Then, for any two subgroups H ′,K ′ ≤ G of

the form H ′ = Cpe o H,K ′ = Cpf o K with H,K ≤ Cn ≤ G, as elements of the

Burnside ring B(K ′),

∐
g∈H′\G/K′

[H ′g ∩K ′] =
|Cn||H ∩K|
|H||K|

[H ′ ∩K ′]

+
pr−max{e,f}|Cn||H ∩K ∩ S|

|H||K|
[H ′ ∩K ′ ∩ (Cpr × S)].

Proof. First assume e = f = 0. Elements of H\G/K are in bijection with H-

orbits of cosets gK. For such G, a set of coset representatives of G/K is given by

elements στi, where σ ∈ Cpr and {τi} are a set of coset representatives of Cn/K.

The stabilizer of a right coset gK under the action of H is given by

StabH(gK) = H ∩ gKg−1.

Using that Cn is abelian, for k ∈ K,

(στi)k(στi)
−1 = στikτ

−1
i σ−1 = σkσ−1

= σkσ−1k−1k = σϕ(k)(σ−1)k,

where ϕ : Cn → Aut(Cpr) denotes the action of conjugation. Since the prime to

p-part of Aut(Cpr) equals that of Aut(Cpe) for any non-trivial Cpe ≤ Cpr , k acts
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trivially on σ 6= e if and only if k ∈ S. Thus,

σϕ(k)(σ−1)k ∈ H ⇐⇒ k ∈ H and k ∈

K if σ = e

K ∩ S if σ 6= e
.

In particular,

StabH(gK) =

H ∩K if g ∈ Cn
H ∩K ∩ S if g 6∈ Cn

.

By orbit–stabiliser theorem, there are |Cn||H∩K||H||K| double cosets HgK of length |H||K||H∩K|

and (pr − 1) |Cn||H∩K∩S||H||K| double cosets of length |H||K|
|H∩K∩S| . Furthermore, as H has a

unique subgroup of each order

Hg ∩K =

H ∩K if g ∈ Cn
H ∩K ∩ S else

,

and applying Mackey’s formula (2.1) p13 gives the desired formula in this case.

Now let e, f ≥ 0. We first calculate the order of H ′\G/K ′. As all p-subgroups

of G are normal, there are canonical bijections

(Cpe oH)\G/(Cpf oK)↔ H\G/(Cpmax{e,f} oK)↔ H\((Cpr/Cpmax{e,f})oCn)/K.

So, from the first part, we find there are |Cn||H∩K|
|H||K| double cosets of length

|H||K|
|H∩K|p

max{e,f} and (pmax{e,f} − 1) |Cn||H∩K∩S||H||K| double cosets of length
|H||K|
|H∩K∩S|p

max{e,f}. Taking preimages,

H ′g ∩K ′ =

H ′ ∩K ′ if g ∈ Cn
H ′ ∩K ′ ∩ (Cpr × S) else

.

Therefore, indeed

∐
g∈H′\G/K′

[H ′g ∩K ′] =
|Cn||H ∩K|
|H||K|

[H ′ ∩K ′]

+
pr−max{e,f}|Cn||H ∩K ∩ S|

|H||K|
[H ′ ∩K ′ ∩ (Cpr × S)].

Notation 2.4.9. Given a group G and subgroup H ≤ G, we denote by NG(H) the
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normaliser of H in G and by ZG(H) its centraliser.

Proof of Theorem 2.4.1. Lemma 2.3.12 states that the permutation pairing for G is

non-degenerate if the pairing is non-degenerate for all p-hypo-elementary subgroups.

So we shall assume that G is p-hypo-elementary, i.e. G ∼= Cpr o Cn with p - n.

For notational convenience, we make a fixed choice of subgroup of G iso-

morphic to Cn, which we also denote by Cn. Let S denote the kernel of the map

Cn → Aut(Cpr) defining the semi-direct product. Note that S is also the kernel of

the map Cn → Aut(Cpk) for all 1 ≤ k ≤ r. Up to conjugacy, any subgroup of G is

of the form Cpk o L, with L contained in the fixed choice of Cn. Moreover, such a

subgroup is cyclic and normal in G if and only if L ≤ S.

Let H ′,K ′ be non-cyclic subgroups of G. We may assume, by replacing

H ′,K ′ with conjugate subgroups if necessary, that H ′ = CpeoH,K ′ = CpfoK with

H,K ≤ Cn. We first calculate 〈H ′,K ′〉perm = vp(CθH′ (1K′↑
G)) = vp(CθH′↓K′ (1K′)).

The decomposition of θH′↓K′ matches that of its leading term (Lemma 2.2.16), so

applying Lemma 2.4.8 we find

θH′↑G↓K′ =

(
|Cn||H ∩K|
|H||K|

)
· θH′∩K′↑K

′

+

(
pr−max{e,f}|Cn||H ∩K ∩ S|

|H||K|

)
· θH′∩K′∩(Cpr×S)↑K

′
.

But H ′ ∩K ′ ∩ (Cpr × S) is cyclic (so that θH′∩K′∩(Cpr×S) = 0) and we find

vp(CθH′ (1K′↑
G)) =

|Cn||H ∩K|
|H||K|

vp(CθH′∩K′ (1H′∩K′)).

Let L′ be an arbitrary non-cyclic subgroup of the form Cp`oL with L ≤ Cn.

Directly applying (2.4) of Remark 2.2.29 to the formula of Example 2.2.15, or by

looking ahead to Example 2.5.17, we find that

vp(CθL′ (1L′)) = −`(1−
|ZL′(Cp`)|
|NL′(Cp`)|

)

= −`(1− |L ∩ S|
|L|

).
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Concluding our calculation of 〈H ′,K ′〉perm, we find

〈H ′,K ′〉perm =
|Cn||H ∩K|
|H||K|

vp(CθH′∩K′ (1H′∩K′))

=
|Cn||H ∩K|
|H||K|

min{e, f}
(
|H ∩K ∩ S|
|H ∩K|

− 1

)
=
|Cn|min{e, f}
|H||K|

(|H ∩K ∩ S| − |H ∩K|). (2.6)

Let T be the matrix representing the pairing 〈 , 〉perm with respect to the

basis of P (G) given by non-cyclic p-hypo-elementary subgroups ordered (totally in

our case) by size. After a non-zero scaling of the rows and columns of T , we obtain

a matrix T ′ with (H ′,K ′)th entry

T ′H′,K′ = min{e, f}(|H ∩K ∩ S| − |H ∩K|).

Note T ′ remains symmetric and has the same rank as T . Since Cn is cyclic, |H ∩
K ∩ S| = gcd(|H|, |K|, |S|) and |H ∩ K| = gcd(|H|, |K|). Thus, T ′ is the matrix

with entries

T ′H′,K′ = min{e, f} (gcd(|H|, |K|, |S|)− gcd(|H|, |K|)) . (2.7)

Let M(m, l) be as in Notation 2.4.3. If Q(d) denotes the d × d matrix with Qi,j =

min{i, j}, then, by (2.7), we may simultaneously permute the rows and columns of

T ′ to get

T ′ ∼ −Q(r)⊗M(n, s),

where |S| = s. As Q(r) is manifestly of full rank and Lemma 2.4.7 states that

M(n, s) is also, so the same is true for T and the permutation pairing for G is

non-degenerate.

Example 2.4.10. Let G = C7 o C12. A set of representatives of the non-cyclic

conjugacy classes of G is given by

S := {C7 o C3, C7 o C4, C7 o C6, C7 o C12.}

Applying (2.6), the matrix T representing the permutation pairing with respect to
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the basis given by S is given by
−8/3 0 −4/3 −2/3

0 −3/2 0 −1/2

−4/3 0 −4/3 −2/3

−2/3 −1/2 −2/3 −5/6

 .

In the notation of the proof of Theorem 2.4.1, n = 12 and s = 2. After rescaling the

rows and columns of T as in the proof, we obtain the matrix M(12, 2) of Example

2.4.4.

2.5 Non-vanishing of the Artin regulator constant

In this section, we prove:

Theorem 2.5.1. For any finite group G and prime p, vp(CθG(1G)) 6= 0 if and only

if G contains a non-cyclic p-hypo-elementary subgroup. If G does contain a non-

cyclic p-hypo-elementary subgroup then vp(CθG(1G)) ≤ −p/|G|. Here, 1G denotes

the trivial Zp[G]-module.

The method of proof is of explicit group theoretic natured and is disjoint

to that of Section 2.4. Moreover, Sections 2.6 and 2.7 have no dependency on this

section.

Remark 2.5.2. The forward direction of 2.5.1 is formal: If G contains no non-

cyclic p-hypo-elementary groups then all characteristic zero relations are relations

in characteristic p (see Lemma 2.2.22). But the regulator constant of a characteristic

p relation has trivial valuation at p when evaluated at any lattice (Lemma 2.2.33).

Remark 2.5.3. Let G be a p-hypo-elementary group. Then in terms of the permu-

tation pairing of Construction 2.3.8, the theorem asserts that every entry in the row

and column corresponding to G is strictly negative. By Lemma 2.3.5, the regulator

constant pairing is non-degenerate whenever each p-hypo-elementary subgroup of

G contains only cyclic proper subgroups, e.g. G = S4. Under the same hypothe-

sis, permutation modules over Zp are determined by extension of scalars to Qp and

regulator constants (Lemma 2.3.17).

Corollary 2.5.4. For any finite group G, as a function on Z[G]-modules, the regu-

lator constant associated to the Artin relation θH vanishes identically if and only if

H is cyclic.
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Proof. For cyclic H, θH = 0 so its regulator constant is trivial. For the converse,

we first show:

Claim. A finite group K is cyclic if and only if all its `-hypo-elementary subgroups

are cyclic for all `.

Proof of Claim. Suppose K is a group for which all its `-hypo-elementary subgroups

are cyclic for all `. Then as the Sylow subgroups must be cyclic, the normaliser

of every Sylow subgroup must be equal to its centraliser. Burnside’s normal p-

complement theorem then ensures that every Sylow p-subgroup normalises every

Sylow `-subgroup for ` 6= p. As a result, K is a direct product of its (cyclic) Sylow

subgroups for different p, and thus K is cyclic.

Now suppose T ≤ G is non-cyclic. By the claim, T has a non-cyclic `-hypo-

elementary subgroup L for some `. Then

0
2.5.1
> v`(CθL(1Z`,L))

2.2.16 i)
= v`(CθT ↓L(1Z`,L))

2.2.30 iv)
= v`(CθT (1Z`,L↑

T ))

2.2.30 vi)
= v`(CθT (1Z,L↑T )).

Remark 2.5.5. By symmetry (Lemma 2.3.9), we find that a permutation module

1↑GH is trivial under all regulator constants if and only if H is cyclic.

2.5.1 Explicit Artin induction

The proof of Theorem 2.5.1 is made possible by Brauer’s formula for explicit

Artin induction.

Notation 2.5.6. Let µ(n) denote the Möbius function of a natural number n,

µ(n) =

(−1)r if n is squarefree and has r distinct prime factors

0 if n is not squarefree
.

Note that µ(1) = 1.

Lemma 2.5.7 (Brauer, [Sna94, Thm. 2.1.3]). If G is any finite group with Artin
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relation θG = [G]−
∑

cyc(G) αH [H], then

αH =
1

|NG(H) : H|
∑
C≥H

µ(|C : H|).

Here the sum runs over all cyclic overgroups of H (not just up to conjugacy).

Lemma 2.5.8. Let G be a p-hypo-elementary group and θG = [G]−
∑

H≤GG
H cyclic

αH [H].

Then αH ∈ p
|G| · Z.

Proof. Let G = P oC be non-cyclic and H ≤ G cyclic. By explicit Artin induction,

αH ∈ 1
|NG(H):H| · Z, so there is only anything to prove when H is of order coprime

to p and H is normalised by P (and so by G). Such an H must therefore lie in the

kernel S of the action of C on P .

Let q be the quotient map q : G → G/H. Then a subgroup K ≤ G is

cyclic if and only if q(K) is. So q defines an index preserving bijection between

cyclic subgroups of G containing H and cyclic subgroups of G/H. As such, we may

assume that H = {1}.

We shall show that the contributions to
∑

Kcyclic µ(|K|) from cyclic sub-

groups of order coprime to p, and of order divisible by p exactly once, cancel (recall

that µ(|K|) vanishes for all other K). Let K be a cyclic subgroup of G of order

coprime to p. We split into two cases: First assume K is normal. Any cyclic

group containing K with index p is of the form Cp × K for some Cp ≤ P . By

(the general form of) Sylow’s theorems there are 1 (mod p) such choices. Since

µ(|Cp ×K|) = −µ(|K|) the contributions of K and its overgroups cancel modulo p.

Now assume that K is not normal. In particular, K is not normalised by

P and there are no cyclic subgroups isomorphic to Cp ×K. As P acts transitively

on the non-singleton set of conjugates of K, orbit-stabiliser shows that the number

of subgroups of G isomorphic to K is 0 (mod p). We have exhausted all cyclic

subgroups and thus p divides
∑

C≤G
Ccyclic

µ(|C|) and αH ∈ p
|G| · Z.

Corollary 2.5.9. For any non-cyclic p-hypo-elementary group G and module M ,

vp(CθG(M)) ∈ p
|G| ·Z. More generally, for any finite group G, given subgroups H,K

and a K module M , vp(CθH (M↑GK)) ∈ p
gcd{|H|,|K|} · Z.

Proof. By definition the valuations of regulator constants of integral Brauer relations

lie in Z, so the first statement follows from the lemma and 2.2.30 iii). For the second,
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the formalism of Lemma 2.2.30 and Mackey’s formula gives

vp(CθH↑GH
(M↑GK)) = vp(CθH (M↑GK↓H))

=
∑

g∈H\G/K

vp(CθH (Mg↓Kg∩H↑H))

=
∑

g∈H\G/K

vp(CθH↓Kg∩H (Mg↓Kg∩H)).

But applying the first statement, each term of the sum lies in p
gcd{|H|,|K|} · Z.

We shall use explicit Artin induction to provide a formula for vp(CθG(1G)).

Notation 2.5.10. Recall that if two subgroups H1, H2 of G are conjugate, then

[H1] and [H2] are isomorphic as G-sets. To make the Artin relation slightly more

canonical, instead of writing

θG = [G]−
∑

H≤GG
αH [H],

we can choose to write θG uniquely as

θG = [G]−
∑
H≤G

α′H [H],

subject to the stipulation that α′H1
= α′H2

for conjugate H1, H2. Then α′H =
1

|G:NG(H)| · αH , the α′H are unique and the two notational choices denote identical

elements of B(G).

Notation 2.5.11. Fix a single prime p for the remainder of this section. Let P(G, k)

denote the number of elements of a given finite group G whose order is divisible by

pk.

Lemma 2.5.12. For any group G and prime p, if θG denotes the Artin relation,

then

vp(CθG(1G)) = −vp(|G|) +
1

|G|
∑
g∈G

vp(|g|) +
P(G, 1)

|G| · (p− 1)
. (2.8)

Proof. Running over all cyclic subgroups rather than their conjugacy classes, explicit

Artin induction gives that

θG = [G]−
∑
H≤G
H-cyclic

[H] · 1

|G : H|
∑
C≥H
C-cyclic

µ(|C : H|).
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Applying the formula (2.4) for regulator constants at the trivial module we find that

vp(CθG(1G)) = −vp(|G|) +
∑
H≤G

vp(|H|)
|G : H|

∑
C≥H

µ(|C : H|),

where from now on it is assumed that sums run only over all cyclic subgroups or

overgroups. Changing the order of summation,

vp(CθG(1G)) = −vp(|G|) +
∑
C≤G

∑
H≤C

vp(|H|)
|G : H|

µ(|C : H|)

= −vp(|G|) +
∑
C≤G
p||C|

∑
H≤C

vp(|H|)
|G : H|

µ(|C : H|)

as only subgroups C for which p divides |C| make any contribution. Within the

second sum, by definition of the Möbius function, only the subgroups of squarefree

index contribute. We separate into the sums over the subgroups H of C of index

divisible by p, and subgroups H of index not divisible by p. There is a bijection

between these two sets given by sending a subgroup H of index not divisible by p

to pH. Thus,

vp(CθG(1G))

= −vp(|G|) +
∑
C≤G
p||C|

∑
H≤C
p-|C:H|

vp(|H|)
|G : H|

µ(|C : H|) +
∑
C≤G
p||C|

∑
H≤C
p-|C:H|

vp(|pH|)
|G : pH|

µ(|C : pH|)

= −vp(|G|) +
∑
C≤G
p||C|

∑
H≤C
p-|C:H|

vp(|H|)
|G : H|

µ(|C : H|)−
∑
C≤G
p||C|

∑
H≤C
p-|C:H|

vp(|H|)− 1

p|G : H|
µ(|C : H|)

= −vp(|G|) +
∑
C≤G
p||C|

∑
H≤C
p-|C:H|

(
vp(|H|) ·

p− 1

p
· µ(|C : H|)
|G : H|

+
µ(|C : H|)
p|G : H|

)

= −vp(|G|) +
∑
C≤G
p||C|

∑
H≤C
p-|C:H|

vp(|H|) ·
p− 1

p
· µ(|C : H|)
|G : H|

︸ ︷︷ ︸
(†)

+
∑
C≤G
p||C|

∑
H≤C
p-|C:H|

µ(|C : H|)
p|G : H|

︸ ︷︷ ︸
(?)

We claim that (?) is equal to P(G,1)
|G|·(p−1) and (†) is equal to 1

|G|
∑

g∈G vp(|g|). To see

this suppose that f : G→ C is any map of sets which is constant on elements g ∈ G
for which vp(|g|) is equal and for which f(g) = 0 when vp(|g|) = 0. In this case, we
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have that ∑
C≤G
p||C|

∑
H≤C
p-|C:H|

p− 1

p

µ(|C : H|)
|G : H|

f(h) =
1

|G|
∑
g∈G

f(g),

where on the left hand side h denotes any generator of H. This follows from the

fact that for a cyclic group C∑
H≤C

µ(|C : H|)|H| = |{generators of C}|.

Setting f(g) = vp(|g|) gives

∑
C≤G
p||C|

∑
H≤C
p-|C:H|

vp(|H|) ·
p− 1

p
· µ(|C : H|)
|G : H|

=
1

|G|
∑
g∈G

vp(|g|),

whilst taking f(g) =

 1
p−1 p | |g|

0 p - |g|
shows that

∑
C≤G
p||C|

∑
H≤C
p-|C:H|

µ(|C : H|)
p|G : H|

=
1

|G|
∑
g∈G

vp(|g|)≥1

1

p− 1

=
P(G, 1)

|G| · (p− 1)
.

In conclusion,

vp(CθG(1G)) = −vp(|G|) +
1

|G|
∑
g∈G

vp(|g|) +
P(G, 1)

|G| · (p− 1)
.

We shall see that the value of (2.8) is less than or equal to zero for all groups

G. Thus, Theorem 2.5.1 gives a numerical characterisation of groups for which all

p-hypo-elementary subgroups are cyclic:

Corollary 2.5.13. Let G be any finite group and p a prime. Then G contains no

non-cyclic p-hypo-elementary subgroups if and only if

1

|G|
∑
g∈G

vp(|g|) +
P(G, 1)

|G| · (p− 1)
= vp(|G|).
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The reverse direction whilst a consequence of the argument given in Remark

2.5.2 is already somewhat non-obvious.

Remark 2.5.14. Suppose that G has non-cyclic Sylow p-subgroups. Let d =

vp(|G|), as G contains no elements of order pd, for any g ∈ G vp(|g|) ≤ d − 1

and we may crudely bound

1

|G|
∑
g∈G

vp(|g|) +
P(G, 1)

|G| · (p− 1)
≤ 1

|G|
∑
g∈G

(
d− 1 +

1

p− 1

)
< d.

Applying (2.8) gives

vp(CθG(1G)) < 0.

The case of cyclic Sylow p-subgroups requires considerably more care.

2.5.2 Average p-orders of elements of groups with cyclic Sylow sub-

groups

In this section, we complete the proof of Theorem 2.5.1 by explicit calculation

of vp(CθG(1G)) for groups with cyclic Sylow p-subgroups using (2.8). This requires

an explicit calculation of P(G, k) in terms of elementary invariants:

Proposition 2.5.15. Let G be any group with cyclic Sylow p-subgroups of order pr.

Then, for any 1 ≤ k ≤ r,

P(G, k) =

(
pr−k+1 − 1

pr−k+1

)
|G||ZG(Q)|
|NG(Q)|

,

where Q denotes any choice of non-trivial p-subgroup of G. If k = 0, then P(G, k) =

|G| and if k > r, then P(G, k) = 0.

Here, ZG(−) is as defined in Notation 2.4.9. We split the proof into four

intermediate claims. Firstly, the ratio |NG(Q)|/|ZG(Q)| is independent of the choice

of Q:

Claim 1. If G is any finite group and p a prime such that G has cyclic Sylow

p-subgroups, then, as Q runs over non-trivial p-subgroups, |NG(Q)|/|ZG(Q)| is con-

stant.

Proof. For such a group all p-subgroups of the same order are conjugate. If Q,Q′ are

conjugate p-subgroups their normalisers and centralisers are related by conjugation
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and so the above ratio is constant. Thus, we need just show that if P is a subgroup

of order pe, e ≥ 2, and Q its unique subgroup of order pe−1, then

|NG(P )|
|ZG(P )|

=
|NG(Q)|
|ZG(Q)|

. (2.9)

First note that NG(P ) ∩ ZG(Q) = ZG(P ). This is because both sides contain P ,

but the coprime to p-part of Aut(P ) is canonically isomorphic to the coprime to

p-part of Aut(Q) (both are cyclic of order p− 1). In other words, within NG(P ), to

centralise Q is to centralise P . As a result, there is an inclusion

NG(P )/ZG(P ) ↪→ NG(Q)/ZG(Q),

and to prove (2.9) we must show that NG(Q) = NG(P )ZG(Q). Indeed, as all terms

are contained in NG(Q), we may assume that Q E G. Each choice of subgroup of

order pe (i.e. conjugate of P ) must centralise Q, its unique subgroup of order pe−1,

thus
⋃
g∈G/NG(P ) P

g ⊆ ZG(Q). In particular, ZG(Q) contains a representative of

each coset of G/NG(P ) and so NG(P )ZG(Q) = G. And in general, NG(P )ZG(Q) =

NG(Q).

Next, we show that to prove the formula for fixed k we may reduce to groups

with a central Cpk subgroup.

Claim 2. For any finite group G, prime p and k ≥ 1, all elements of G of order

divisible by pk are contained in
⋃
Q ZG(Q) as Q runs over subgroups of G isomorphic

to Cpk . Moreover, if G has cyclic Sylow p-subgroups, then

P(G, k) = |G : NG(Q)| · P(ZG(Q), k),

for any choice of Q ∼= Cpk .

Proof. Let g ∈ G and vp(|g|) ≥ k. Then g centralises the subgroup of 〈g〉 isomorphic

to Cpk . So g is contained in
⋃
Q ZG(Q), the union of the centralisers of all Cpk -

subgroups of G. Now let G have cyclic Sylow p-subgroups and Q ≤ G be a choice

of Cpk -subgroup. Since G has cyclic Sylow p-subgroups, Q must be the unique

Cpk -subgroup of ZG(Q). As a result, if Q′ is a distinct Cpk -subgroup, then ZG(Q)∩
ZG(Q′) does not contain any Cpk -subgroup, and so P(ZG(Q)∩ZG(Q′), k) = 0. Thus,

P(G, k) =
∑
Q

P(ZG(Q), k) = |G : NG(Q)| · P(ZG(Q), k).
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As a basis for induction we show:

Claim 3. Let G be any group and Q a subgroup of order p that is contained in the

centre. Then

P(G, 1) = P(G/Q, 1) +
p− 1

p
· |G|.

Proof. Consider the sequence

1→ Q→ G
q→ G/Q→ 1,

and let h run over elements of G/Q. First assume that h has order not divisible

by p. As Q ≤ Z(G), the preimage of 〈h〉 is isomorphic to Cp × C|h| on which q is

projection onto the second factor. Thus, q−1(h) contains precisely p− 1 elements of

order p.

Otherwise, if h has order divisible by p, then all elements of q−1(h) have

order divisible by p. As a result

P(G, 1) = p · P(G/Q, 1) + (p− 1)(|G/Q| − P(G/Q, 1)),

giving the stated formula.

The inductive step is given by:

Claim 4. Let G be any group with cyclic Sylow p-subgroups and containing a central

subgroup Q of order pk with k ≥ 2. Then

P(G, k) = p · P(G/Q̃, k − 1),

where Q̃ ≤ Q denotes the subgroup of order p

Proof. Consider the sequence

1→ Q̃→ G
q→ G/Q̃→ 1.

Running over elements h ∈ G/Q̃, we find that if pk divides |h|, then all p preimages

have order divisible by pk and conversely if pk−1 - |h|, then none do.

Now assume that pk−1 is the maximal power of p dividing |h|. Then H :=

q−1(〈h〉) is a subgroup of G with Sylow p-subgroups of order pk. Thus, H must be

of the form Cpk ×A with p not dividing the order of A. Via this description q is the
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quotient Cpk × A→ Cpk/Cp × A. So, as h has order divisible by pk−1, all elements

in the fibre of h have order divisible by pk. In conclusion,

P(G, k) = p · P(G/Q̃, k − 1).

Proof of Prop. 2.5.15. We first show the formula when k = 1. The formula trivially

holds when r = 0. If r ≥ 1, we may apply Claim 2 to assume that G contains a

central subgroup Q isomorphic to Cp. When r = 1, the formula is given by Claim

3. Now assume r ≥ 2. We wish to show that

P(G, 1) =

(
pr − 1

pr

)
|G|.

Applying Claim 3 and the inductive hypothesis,

P(G, 1) = P(G/Q, 1) +

(
p− 1

p

)
|G|

=

(
pr−1 − 1

pr−1

) |G/Q| · |ZG/Q(Q′)|
|NG/Q(Q′)|

+

(
p− 1

p

)
|G|,

where Q′ is a choice of Cp-subgroup of G/Q. Let P denote the preimage of Q′ in

G. Recall, for a chain of subgroups A ≥ B ≥ C with C E A, then NA(B)/C ∼=
NA/C(B/C). Moreover if C ⊆ Z(A), then ZA(B)/C = ZA/C(B/C). Thus, |G/Q :

NG/Q(Q′)| = |G : NG(P )| and |ZG/Q(Q′)| = 1
p |ZG(P )|. So

P(G, 1) =

(
pr−1 − 1

pr−1

)
|G| · |ZG(P )|
|NG(P )| · p

+

(
p− 1

p

)
|G|

=

(
p− 1

p
+
pr−1 − 1

pr

)
|G|

=

(
pr − 1

pr

)
|G|

as required, where we used the independence asserted in Claim 1 to show

|ZG(P )|
|NG(P )|

=
|ZG(Q)|
|NG(Q)|

= 1.

Thus, the formula holds when k = 1.

Now assume k > 1 and that the formula holds for all groups and indices

` < k. By Claim 2, we are reduced to verifying the formula for groups with a

central subgroup Q isomorphic to Cpk .
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Fix a subgroup Q̃ ≤ Q of order p. Applying Claim 4,

P(G, k) = p · P(G/Q̃, k − 1)

= p

(
p(r−1)−(k−1)+1 − 1

p(r−1)−(k−1)+1

)
|G/Q̃| · |G/Q̃|
|G/Q̃|

=

(
pr−k+1 − 1

pr−k+1

)
|G|

which is the required formula.

Proof of Theorem 2.5.1. By Remarks 2.5.2 and Corollary 2.5.9, we need only prove

that if G has a non-cyclic p-hypo-elementary subgroup vp(CθG(1G)) < 0. Whilst,

by Remark 2.5.14, we may assume G has cyclic Sylow p-subgroups.

Applying Lemma 2.5.12, we want to show for such G that

1

|G|
∑
g∈G

vp(|g|) +
P(G, 1)

|G| · (p− 1)
≤ vp(|G|),

with equality if and only if all p-hypo-elementary subgroups of G are cyclic. Propo-

sition 2.5.15 shows that if G has Sylow p-subgroups of order pr, then

∑
g∈G

vp(|g|) =

r∑
k=1

P(G, k) =

r∑
k=1

(
pr−k+1 − 1

pr−k+1

)
|G||ZG(Q)|
|NG(Q)|

and

P(G, 1)

(p− 1)
=

(
pr − 1

(p− 1)pr

)
· |G||ZG(Q)|
|NG(Q)|

,

where Q denotes any choice of subgroup of G isomorphic to Cp. Thus,

1

|G|
∑
g∈G

vp(|g|) +
P(G, 1)

|G| · (p− 1)
=

((
r∑
i=1

pr−i+1 − 1

pr−i+1

)
+

pr − 1

(p− 1)pr

)
|ZG(Q)|
|NG(Q)|

=

(
r∑
i=1

pr−i+1 − 1

pr−i+1
+

r∑
i=1

1

pr−i+1

)
|ZG(Q)|
|NG(Q)|

= r · |ZG(Q)|
|NG(Q)|

.

So that

vp(CθG(1G)) = −r ·
(

1− |ZG(Q)|
|NG(Q)|

)

51



whenever G has cyclic Sylow p-subgroups. Finally, note that a group with cyclic

Sylow p-subgroups has no non-cyclic p-hypo-elementary groups if and only if all

subgroups of order pq with q a prime distinct to p are isomorphic to Cp × Cq.

The latter holds if and only if the normaliser of each Cp-subgroup is equal to its

centraliser. So indeed vp(CθG(1G)) < 0 ⇐⇒ G contains a non-cyclic Sylow p-

subgroup, otherwise it is zero.

It is worth stating that during the proof we derived the following corollary:

Corollary 2.5.16. For any finite group G and prime p such that the Sylow p-

subgroups of G are cyclic,

vp(CθG(1G)) = −r ·
(

1− |ZG(Q)|
|NG(Q)|

)
.

Here Q denotes any choice of non-trivial p-subgroup of G unless p - |G| in which

case Q = {1} and vp(CθG(1G)) = 0.

When G doesn’t have cyclic Sylow p-subgroups, we are only able to say that

vp(CθG(1G)) ≤ − p
|G| .

Example 2.5.17. Let G be a p-hypo-elementary group with a non-trivial cyclic

Sylow p-subgroup. Then G is of the form Cpr o Cn with (p, n) = 1. Let S denote

the kernel of the map Cn → Aut(Cpr) defining the semi-direct product and s = |S|.
Then

vp(CθG(1G)) = −r(1− s

n
),

as the centraliser of Cpr is Cpr × S ≤ G (the action is trivial) and Cpr EG.

We can also verify this directly. In Example, 2.2.15 we saw that the Artin

relation of such a G is given by

θG = [Cpr o Cn]− [Cn] +
s

n
[S]− s

n
[Cpr × S].

So applying formula (2.4)

CθG(1G) =

(
1
|G|

)
·
(

1
|S|

) s
n(

1
|Cn|

)(
1

|Cpr×S|

) s
n

,
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so that indeed

vp(CθG(1G)) = −r +
s

n
· r.

2.6 Yakovlev’s theorem and the permutation pairing

If a group G has cyclic Sylow p-subgroups, then Theorem 2.4.1 shows that

the permutation pairing is non-degenerate. As an application, if G is in addition

abelian, dihedral, or more generally satisfies the conditions of Theorem 2.6.9, then

we exhibit an explicit list of invariants which determine the isomorphism class of

an arbitrary rationally self-dual Zp[G]-lattice. This requires also understanding the

theory over Z(p), which is somewhat less well behaved.

2.6.1 Trivial source modules

As we shall see, existing work reduces us to dealing with trivial source mod-

ules, which we now introduce.

Definition 2.6.1. For any finite G, we say that an R[G]-module has trivial source,

or is a trivial source module, if it is a direct summand of a permutation module.

In other sources, trivial source modules may be referred to as any of relatively

projective, permutation projective, p-permutation or invertible. For R any ring,

we denote the subalgebra of A(R[G]) generated by the trivial source modules by

A(R[G], triv).

Our definition is slightly non-standard (cf. [Ben98, Def. 3.11.1]). When R =

Zp, it coincides with the usual definition [Ben98, Lem. 3.11.2], but when R = Z(p),

due to the failure of Krull-Schmidt [Ben06], decomposition by vertices fails (see

Example 2.6.20) and what we call an indecomposable trivial source module over

Z(p) need not have source which is trivial. However, in our definition, for M over

Z(p), M is a trivial source module if and only if M ⊗ Zp is a trivial source module.

Example 2.6.2. Let R = Z(p) and G = Cp. Up to isomorphism, there are 3

indecomposable Z(p)[Cp]-lattices

1G, IG,Z(p)[Cp],

the trivial module, the augmentation ideal of Z(p)[Cp], and the regular representation

[HR62, Thm. 2.6]. The indecomposable trivial source modules are the summands
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of 1{1}↑Cp ∼= Z(p)[Cp] and 1Cp↑Cp = 1Cp . So the trivial source indecomposables

are precisely 1G and Z(p)[Cp], and A(Z(p)[G], triv) = A(Z(p)[G],perm) is two dimen-

sional. The same holds for R = Zp.

Definition 2.6.3. Let M be any Zp[G]-lattice. We define Mtriv to be the submod-

ule generated by all indecomposable trivial source summands of M . We call Mtriv

the trivial source part of M and call the submodule Mnt generated by the indecom-

posable summands which are not trivial source summands the non-trivial source

part. By the Krull-Schmidt property of Zp[G]-modules, we obtain the trivial source

decomposition M = Mtriv ⊕Mnt.

Remark 2.6.4. Over Z(p), lattices do not admit unique decomposition [Ben06] and

there is no general analogue of the trivial source decomposition. In particular, for

M over Z(p), the trivial source decomposition of M ⊗ Zp need not be defined over

Z(p). This is exhibited by the following example:

Example 2.6.5. Let G = C3 × C4 and p = 3. Over the ring of integers OK
of K = Q3(i), we have that 1↑GC3

decomposes as
⊕3

i=0 χ
i, where χ denotes the

inflation of a faithful character of C4. The trivial source modules over OK are then

summands of

1↑G =

3⊕
i=0

1↑GC4
⊗ χi,

1↑GC3
=

3⊕
i=0

χi.

Let IC3 denote the augmentation ideal of C3. All non-trivial source modules are

summands of

IC3↑G =

3⊕
i=0

IG/C4
⊗ χi

where IG/C4
is the augmentation ideal of G/C4, i.e. the kernel of the trace map

OK [G/C4] → 1OK ,G. This decomposition can be checked via the isomorphism

1↑G ∼= 1↑GC3
⊗ 1↑GC4

. Now consider

M := (IG/C4
⊗ χ)⊕ χ⊕ (1↑GC4

⊗ χ3).

I claim that M is defined over Z(3). By [Rei70, Prop. 5.7], we need only check that

M ⊗K is defined over Q. But (IG/C4
⊗ χ) ⊗K ∼= (1K,C4↑G 	 1K) ⊗ (χK) (where

	 denotes quotienting by the image of 1 under a section of the trace map, and

χK = χ⊗K). Thus M ⊗K ∼= 1K,C4↑G ⊗ (χK ⊕ χ3
K), which is defined over Q.
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It is clear that Mtriv = χ ⊕ (1↑GC4
⊗ χ3) cannot be defined over Z(3) as its

character is not rational. Note that, [M ] ∈ A(Z(p)[G]) and [Mtriv] ∈ A(Zp[G], triv)

but [Mtriv] /∈ A(Z(p)[G], triv) ⊂ A(Zp[G], triv).

2.6.2 Yakovlev’s result

Now assume that G has cyclic Sylow p-subgroups.

Notation 2.6.6. Let P be a choice of Sylow p-subgroup of G. Let r be such that

P ∼= Cpr , and for 0 ≤ i ≤ r, let Pi ≤ P denote the subgroup of order pi.

Note that for a Zp[G]-lattice M , H1(Pi,M) is a NG(Pi)-module.

Theorem 2.6.7 (Yakovlev [Yak96, Thm. 2.1]). Let G be a finite group and p a

prime such that G has cyclic Sylow p-subgroups. If M is a Zp[G]-lattice, then the

isomorphism class of Mnt is determined by the following diagram,

H1(Pr,M) H1(Pr−1,M) ... H1(P0,M).
res res

cores cores

res

cores

Figure 2.3: Yakovlev diagram

To be precise, when we say “determined by” we mean that, if M ′ is another

Zp[G]-lattice for which there are Zp[NG(Pi)]-module isomorphisms κi : H1(Pi,M)→
H1(Pi,M

′), 0 ≤ i ≤ n which commute with restriction and corestriction in the above

diagram, then Mnt
∼= M ′nt.

Construction 2.6.8. Call any diagram of the form

• • ... •,
ar ar−1

br br−1

a1

b1

with the ith term a finite NG(Pr−i+1)-module and ai, bi homomorphisms of abelian

groups, a Yakovlev diagram. For any M , Figure 2.3 is of this form and we refer to

it as the Yakovlev diagram of M .

There is an obvious notion of direct sum of such diagrams. Let C denote the

free Q-vector space on isomorphism classes of such diagrams subject to identifying

addition of diagrams with addition of elements of C. Taking Yakovlev diagrams

defines a canonical map

Yak: A(Zp[G])→ C.
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Yakovlev’s theorem is now the assertion that ker(Yak) = A(Zp[G], triv). Yakovlev

also gives a converse describing which Yakovlev diagrams arise as the cohomology

of Zp[G]-lattices, but we do not need this.

Recall that A(Z(p)[G], perm) = A(Zp[G],perm) as subspaces of A(Zp[G]).

We are now able to correctly formulate the theorem outlined in the introduction:

Theorem 2.6.9. Let G be any finite group and p a prime such that G has cyclic

Sylow p-subgroups and for which A(Zp[G],perm) = A(Z(p)[G], triv). Then the iso-

morphism class of any rationally self-dual Zp[G]-lattice M is determined by

i) the isomorphism class of M ⊗Qp as a Qp[G]-module,

ii) the valuations vp(CθH (M)) of the regulator constants of the Artin relations for

H ∈ nchypp(G),

iii) the Yakovlev diagram

H1(Pr,M) H1(Pr−1,M) ... H1(P0,M).
res res

cores cores

res

cores

Proof. By Theorem 2.6.7 the data of iii) determines the isomorphism class of Mnt.

Now fix some trivial source Zp[G]-module M ′ such that Mnt ⊕M ′ is rationally self-

dual. Such an M ′ exists as Mtriv is an example. By linearity of regulator constants

and extension of scalars, from i),ii),iii) we also obtain the regulator constants and

isomorphism class of the extension of scalars of t := [M ] − [Mnt] − [M ′] (note that

t is rationally self-dual so that its regulator constants are defined). By construction

t ∈ ker(Yak: A(Zp[G])→ C) = A(Zp[G], triv). It suffices to show that any rationally

self-dual element t ∈ A(Zp[G], triv) is determined by the data of i),ii).

Let M ′′ be any trivial source Zp[G]-module such that t −M ′′ has rational

character, again such an M ′′ certainly exists. Now, any Zp[G]-lattice N for which

N ⊗Qp is defined over Q is the extension of scalars of a Z(p)[G]-lattice [Rei70, Prop.

5.7]. As a result, any element of A(Zp[G]) with rational character is contained within

A(Z(p)[G]). In particular, t−M ′′ ∈ A(Zp[G], triv) ∩A(Z(p)[G]). We claim that this

space is precisely A(Z(p)[G], triv), so let W,V be trivial source Zp[G]-modules and

assume that [W ]−[V ] has rational character. If V is a summand of some permutation

module T with complement V ′, then [W ⊕ V ′] − [T ] = [W ] − [V ] and W ⊕ V ′ is a

trivial source module with rational character. So, by [Rei70, Prop. 5.7], [W ]− [V ′]

lies in A(Z(p)[G], triv).
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Thus, t−M ′′ ∈ A(Z(p)[G], triv) and so by assumption lies in A(Zp[G],perm).

As a result, it is determined by its regulator constants and extension of scalars

(Corollary 2.4.2). Tracing back, we find that M is determined by the data of

i),ii),iii).

Since i),ii),iii) are isomorphism invariants, two Zp[G]-lattices are isomorphic

if and only if i),ii),iii) are the same for both lattices.

Remark 2.6.10. The restriction on being rationally self-dual is a somewhat mild

one. For example, if M1,M2 are any two Zp[G]-lattices, then M1
∼= M2 if and only

if, i),iii) of Theorem 2.6.9 coincide for M1,M2 and

ii’) there exists some Zp[G]-lattice N such that M1⊕N and M2⊕N are both ratio-

nally self-dual, and the valuations vp(CθH (Mi ⊕N)) of the regulator constants

of the Artin relations of Mi ⊕N are equal for all H ∈ nchypp(G).

Note, it is easy to determine if there exists a Zp[G]-lattice N such that M1⊕N and

M2 ⊕N are rationally self-dual using i). If the vp(CθH (Mi ⊕N)) are equal for one

such N , then they are equal for all.

The condition that A(Zp[G], perm) = A(Z(p)[G], triv) is investigated in the

next subsection. For reference, we shall see that the equality can be checked on

restriction to the p-hypo-elementary subgroups and that dihedral groups, abelian

groups with cyclic Sylow p-subgroups and groups of order coprime to p− 1 all have

this property, but Cp o Cp−1 for p ≥ 5 does not. In Section 2.7.1, we provide a

worked example of Theorem 2.6.9 for dihedral groups of order 2p with p odd.

Remark 2.6.11. Theorem 2.6.9 is sharp in the following sense. If A(Zp[G], perm) (
A(Z(p)[G], triv) or the permutation pairing is degenerate, then rationally self-dual

Zp[G]-lattices are not determined by i),ii),iii). The first case can be seen by compar-

ing the dimension of A(Zp[G], triv) and the maximum number of linear conditions

on elements of A(Zp[G], triv) we could possibly obtain from i),ii) using Lemmas

2.6.25, 2.6.26 and the formulae of Section 2.2.4. In the second case, not even all

permutation lattices can be distinguished (see Lemma 2.3.17).

2.6.3 Species and trivial source modules over Z(p)

Now let G be any finite group.
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Definition 2.6.12. A species1 is a ring homomorphism A(Zp[G], triv)→ C.

Example 2.6.13. For any g ∈ G, tr(g | −) defines a ring homomorphismA(Zp[G])→
C and so also a species.

Definition 2.6.14. For H a subgroup of G, we say that an indecomposable trivial

source Zp[G]-lattice M has vertex H if M is a direct summand of 1↑GH but not

of 1↑GH′ for any H ′ � H. The vertices of M form a conjugacy class of subgroups

and only p-groups appear as vertices [Ben98, Prop. 3.10.2]. For an arbitrary Zp[G]-

lattice M , we call the summand generated by the indecomposables with vertex P

the vertex P summand of M , in this way we obtain a decomposition of M indexed

by vertices.

Construction 2.6.15. Consider pairs (P, g), where P ≤ G is a p-group and g

an element of NG(P ) of order coprime to p, up to simultaneous conjugacy. Then

H := 〈P, g〉 is p-hypo-elementary and to any such pair we may associate a species

t(P,g) as follows. Consider the composite

A(Zp[G], triv)→ A(Zp[H], triv)→ A(Zp[H/P ], triv).

Here the first map is restriction. The second map sends a lattice M to its vertex P

summand N , which, as M is trivial source, is inflated from H/P so can be considered

as an H/P -module. We define t(P,g) : A(Zp[G], triv)→ C to be the postcomposition

with tr(g | −), i.e. t(P,g)(M) is the trace of g acting on N .

Example 2.6.16. For any g ∈ G, the species defined by tr(g | −) is equal to t(P,g|g|),

where |P | is the Sylow p-subgroup of 〈g〉.

The t(P,g) need not be distinct, but all species arise in this way:

Theorem 2.6.17 (Conlon). For any finite group G and prime p, there is an inclu-

sion ∏
t(P,g) : A(Zp[G], triv)→

∏
(P,g)

C.

Proof. This is usually stated for the ring of integers OK of a sufficiently large exten-

sion K/Qp (see [Ben98, Cor. 5.5.5]). The stated version then follows as, for K/Qp
and M,M ′ any Zp[G]-lattices, M ∼= M ′ ⇐⇒ (M ⊗OK) ∼= (M ′⊗OK) and that the

action of Galois ensures vertices are preserved under base change by OK/Zp.
1It is more common to define a species as a ring homomorphism from the trivial source ring over

the ring of integers of a sufficiently large extension of Qp, but this is not necessary for our purposes.
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Remark 2.6.18. It is worth remarking that although species are good invariants

of trivial source modules they cannot be combined with Yakovlev diagrams to give

results such as Theorem 2.6.9. This is because species cannot be canonically ex-

tended beyond A(Zp[G], triv). On the other hand, regulator constants are defined

for an arbitrary rationally self-dual lattice.

Lemma 2.6.19. For a permutation module 1K↑G, we find t(P,g)(1K↑G) = #(G/K)H ,

where H = 〈P, g〉.

Proof. By definition t(P,g) is a function of 1K↑G↓H =
⊕

K\G/H 1↑HKg∩H . We claim

that only the terms withKg∩H = H have non-trivial species. Indeed, ifKg∩H � P ,

then the vertex P summand of 1↑HKg∩H is zero, whilst if Kg ∩H ≥ P , then 1↑HKg∩H

is all of vertex P and is inflated from the quotient 〈g〉. It is then clear that tr(g | −)

is zero if and only if Kg ∩H 6= H, else it is one.

Finally, the number of elements of K\G/H with Kg ∩ H = H is precisely

the number of elements of G/K fixed under H.

Example 2.6.20. It is not the case that the species of a trivial source lattice M

over Z(p) need take only rational values. This is made possible by the failure of

Krull-Schmidt over Z(p). For example, if p ≥ 5 and G = CpoCp−1 with Cp−1 acting

faithfully, then a trivial source module with non-rational species is constructed as

follows (cf. [Ben06]). Let χ denote the inflation of a faithful character of Cp−1. The

trivial source Zp[G]-modules are then the summands of

1↑G =

p−2⊕
i=0

1↑GCp−1
⊗ χi,

1↑GCp =

p−2⊕
i=0

χi.

Then

M :=

p−2⊕
i=0
i 6=1

1↑GCp−1
⊗ χi

⊕ χ
is defined over Z(p), but as the only summand of vertex Cp is χ, the vertex de-

composition is not defined over Z(p), and the species of M are non-rational, as

t(Cp,τ)(M) = χ(τ) is a primitive (p− 1)st root of unity.

In particular, A(Zp[G],perm) ( A(Z(p)[G], triv) as the species of permutation

modules are integers (Lemma 2.6.19).
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Theorem 2.6.21. A basis of A(Zp[G], perm) is given by {1↑GH}H∈hypp(G).

Proof. We first check linear independence. By Theorem 2.6.17, we need only check

linear independence after taking species. By Lemma 2.6.19, the species t(P,g)(1↑GH)

is zero whenever no conjugate of H contains 〈P, g〉, whilst t(P,g)(1↑G〈P,g〉) 6= 0. After

(non-uniquely) ordering the elements of hypp(G) by increasing size, linear indepen-

dence is now clear.

Now, let i be such that 〈P, g〉 = 〈P, gi〉 and let σ ∈ Aut(C/Q) raise the |g|th

roots of unity to the ith power. Then, for any trivial source module M over Zp,

t(P,gi)(M) = tr(gi | vertex P summand of M↓〈P,gi〉)

= tr(gi | vertex P summand of M↓〈P,g〉)

= tr(g | vertex P summand of M↓〈P,g〉)σ

= t(P,g)(M)σ.

But for permutation modules M , t(P,g)(M) is rational (Lemma 2.6.19), so t(P,g)(M)

is constant on pairs (P, g) generating the same p-hypo-elementary subgroup up to

conjugacy. Therefore,

dimQA(Zp[G], perm) ≤ #{conjugacy classes of p-hypo-elementary groups}.

We used this in Theorem 2.2.20 to find a basis of the space of Brauer relations

in characteristic p. Examining the proof of the theorem we find:

Corollary 2.6.22. For any finite group G and prime p, within A(Zp[G], triv),

A(Zp[G],perm) is precisely the subspace of elements whose species are all rational.

This also follows from work of Fan Yun [Fan91].

Lemma 2.6.23. Let G be a finite group and p a prime. If A(Zp[H],perm) =

A(Z(p)[H], triv) for all H ∈ hypp(G), then A(Zp[G],perm) = A(Z(p)[G], triv).

Proof. Suppose that a ∈ A(Z(p)[G], triv) is such that, upon restriction to every p-

hypo-elementary subgroup H, a↓H is a permutation module. Then a↓H has rational

species (Lemma 2.6.19). But then a itself must have rational species as species are

defined via restriction to the p-hypo-elementary subgroups. Applying Corollary

2.6.22 we find a ∈ A(Z(p)[G],perm).
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As a result, a group G satisfies the conditions of Theorem 2.6.9 if its p-hypo-

elementary subgroups do.

Notation 2.6.24. Let (P, g), (P ′, g′) define two species and set n = |g|. We say

(P, g) ∼p (P ′, g′) if there exists an element h ∈ G such that (P ′)h = P and (g′)h = gi

for some i ∈ (Z/nZ)× with i ≡ 1 (mod gcd(n, p− 1)).

Lemma 2.6.25. For any finite group G and prime p,

i) dim(A(Zp[G], triv)) = # ({species (P, g)}/ ∼p),

ii) dim(im(A(Zp[G], triv)→A(Qp[G])))=#({species (P, g) | 〈P, g〉 is cyclic}/ ∼p).

Proof. For any finite Galois extension K/Qp, the action of Gal(K/Qp) on lattices

respects decompositions into vertices. As a result, t(P,g)(−) = t(P,gi)(−) as func-

tions on A(Zp[G], triv) for any integer i such that (−)i is an automorphism of

〈g〉 which acts trivially on the subgroup of order m = gcd(n, p − 1), i.e. when-

ever (P, g) ∼p (P, gi). Together with Theorem 2.6.17, this demonstrates the upper

bound on dimA(Zp[G], triv). For the lower bound, use that the Green correspon-

dence provides a distinct indecomposable trivial source module of vertex P for every

projective indecomposable Z(p)[NG(P )/P ]-lattice (see e.g. [Ben98, Thm. 3.12.2]), of

which there are #({species (Q, h) | Q = P}/ ∼p).

We now show ii). The dimension of A(Qp[G]) is equal to the number

of distinct ring homomorphisms tr(g | −) : A(Qp[G]) → C. The dimension of

im(A(Zp[G], triv) → A(Qp[G])) is then the number of species up to ∼p which

are of the form tr(g | −). By Example 2.6.16, we find that this is precisely to

# ({species (P, g) | 〈P, g〉 is cyclic}/ ∼p).

Lemma 2.6.26. The following are equivalent

i) A(Zp[G],perm) = A(Z(p)[G], triv),

ii) the species of all trivial source Z(p)[G]-lattices are rational,

iii) there is an equality

dim(A(Zp[G],perm)) = dim(A(Zp[G], triv))

− dim(im(A(Zp[G], triv)→ A(Qp[G]))

+ dim(A(Q[G])),
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iv) there is an equality

#({p-hypo-elementary subgroups}/ ∼)

= # ({species (P, g)}/ ∼p)

−# ({species (P, g) | 〈P, g〉 is cyclic}/ ∼p)

+ # ({cyclic subgroups}/ ∼) ,

where ∼ denotes up to conjugacy.

Proof. The equivalence i) ⇐⇒ ii) is Corollary 2.6.22. For i) ⇐⇒ iii), use

that a trivial source Zp[G]-module is defined over Z(p) if and only if it has rational

character [Rei70, Prop. 5.7], together with the fact that A(Z(p)[G], triv)→ A(Q[G])

is surjective by Artin’s induction theorem. For iii) ⇐⇒ iv), combine Lemma 2.6.25,

Theorem 2.6.21 and Artin’s induction theorem.

We conclude this section by giving examples of groups which satisfy the

condition A(Zp[G], perm) = A(Z(p)[G], triv):

Example 2.6.27. If G is abelian with cyclic Sylow p-subgroups, then all p-hypo-

elementary subgroups are cyclic and so, by Lemma 2.6.26 iv), A(Zp[G], perm) =

A(Z(p)[G], triv) (note, there may be Z(p)[G]-lattices M for which (M ⊗ Zp)triv does

not lie in A(Zp[G],perm), cf. Example 2.6.5). When applying Theorem 2.6.9 for

such G, the fact that there are no non-cyclic p-hypo-elementary subgroups makes

the data of ii) empty.

Example 2.6.28. Let p be odd and G = D2q be the dihedral group of order 2q

for any q ≥ 1. Recall, that we need only check that the condition for all p-hypo-

elementary subgroups. The only possible p-hypo-elementary subgroups of G are

either cyclic, in which case they are covered by the previous example, or of the form

D2pr for some r ≥ 1. In that case, species up to ∼p are in bijection with subgroups

and so Lemma 2.6.26 iv) holds.

Example 2.6.29. If (|G|, p− 1) = 1, then all species of trivial source Zp[G]-lattices

are rational and so by Corollary 2.6.22, A(Zp[G],perm) = A(Zp[G], triv). In partic-

ular, when p = 2 all groups with cyclic Sylow 2-subgroups satisfy the conditions of

Theorem 2.6.9.
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2.7 Examples

2.7.1 D2p

Let G = D2p = CpoC2 be the dihedral group of order 2p for p an odd prime.

Then G satisfies the conditions of Theorem 2.6.9 for all primes `, by Example 2.6.28.

Since all C irreducible representations of D2p are defined over R, all Z`[G]-lattices

are rationally self-dual for any `.

In this section, we explicate how Theorem 2.6.9 distinguishes Z`[D2p]-lattices.

Broadly, there are three different cases, when ` = 2, p or when ` is coprime to the

order of the group. In the latter case character theory applies (see the remarks on

p4) and we shall for simplicity additionally assume that ` is a primitive element

modulo p, so that all Q`[G]-representations are defined over Q[G].

It is only possible to be explicit in this case as D2p is one of the few groups

for which the isomorphism classes of all indecomposable Z`[G]-lattices have been

classified for all ` dividing |G|.

By assumption all Q`[G]-representations are defined over Q, so by [Rei70,

Prop. 5.7] all Z`[G]-lattices are defined over Z(`)[G].

In Example 2.6.28, we checked that A(Z`[G],perm) = A(Z(`)[G], triv) for all

primes `. So, as in Example 2.2.23, a basis of A(Z`[G], perm) = A(Z(`)[G], triv) is

given by

S =

1{1}↑G,1C2↑G,1Cp↑G ` 6= p

1{1}↑G,1C2↑G,1Cp↑G,1G ` = p
.

And so, this is also a basis of A(Z`[G], triv). When ` 6= 2, p, all Z`[G]-lattices are

projective so S forms a basis of A(Z`[G]).

In the ` = 2, p cases, we can exhaust the non-trivial source modules via

Yakovlev’s Theorem 2.6.7. When ` = 2, as ND2p(C2) = C2, the Yakovlev diagram

for a module M simply consists of H1(C2,M) as an abelian group. So any Z2[D2p]-

lattice M for which H1(C2,M) ∼= Z/2Z will extend S to a basis of A(Z2[G]). The

sign representation ε, that is the non-trivial one dimensional irreducible lifted from

Z2[D2p/Cp], is one such module.

When ` = p, the Yakovlev diagram of a Zp[G]-latticeM consists ofH1(Cp,M)

as a Fp[D2p/Cp]-module. Since char(Fp) 6= 2, there are two irreducible Fp[D2p/Cp]-

modules, both one dimensional, one with trivial action and one without. So any
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two lattices whose cohomology exhibits these modules will extend S to a basis of

A(Zp[G]).

If ρ denotes the (p − 1)-dimensional irreducible Qp[G]-representation, then

there are two non-isomorphic Zp[G]-sublattices A,A′ contained in ρ which are distin-

guished by the fact that both have H1(Cp, A), H1(Cp, A
′) ∼= Z/pZ as abelian groups,

but the former having non-trivial D2p/Cp action and D2p/Cp acting trivially on the

latter. In the case of p = 3, we described A and A′ and calculated their regulator

constants in Example 2.2.28. In general, these modules are explicitly constructed in

[Lee64].

In conclusion,

dimQ(A(Z`[G])) =


3 ` 6= 2, p

4 ` = 2

6 ` = p

.

with a basis S′ given by

S′ =


1{1}↑G,1C2↑G,1Cp↑G ` 6= 2, p

1{1}↑G,1C2↑G,1Cp↑G, ε ` = 2

1{1}↑G,1C2↑G,1Cp↑G,1G, A,A′ ` = p

.

Denote the extension of scalars map A(Z`[G])→ A(Q`[G]) by a, and by b the map

A(Z`[G]) →
⊕

H∈nchyp`(G)Q which is defined by sending a lattice M to the vector

(vp(CθH (M)))H∈nchyp`(G). Then Theorem 2.6.9 states that a ⊕ b ⊕ Yak is injective

(and so an isomorphism). The matrix representing a⊕ b⊕Yak is given by:

1 1 1

1 0 1

2 1 0


.

1

ε

ρ

1↑G{1} 1↑GC2
1↑GCp

if ` 6= 2, p ,
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1 1 1 0

1 0 1 1

2 1 0 0

0 0 0 1



.

1

ε

ρ

Yak(−)

1↑G{1}1↑GC2
1↑GCp ε

if ` = 2,

1 1 1 1 0 0

1 0 1 0 0 0

2 1 0 0 1 1

0 0 0 −1/2 1/2 −1/2

0 0 0 0 1 0

0 0 0 0 0 1





1

ε

ρ

vp(CθG(−))

Yak(−)

1↑G{1}1↑GC2
1↑GCp 1G A A′

if ` = p.

Here, we take the basis 1, ε, ρ of Q`[G], where 1, ε are the trivial and non-trivial one

dimensional irreducibles and ρ the (p− 1) dimensional irreducible. When ` = 2, the

basis of C is taken to be Z/2Z, and when ` = p, the basis is given by Z/pZ with

both its non-trivial and trivial C2
∼= D2p/Cp-actions respectively. The calculations

of vp(CθG(A)), vp(Cθ(A
′)) can be found in [Bar12, Thm. 4.4].

Remark 2.7.1. For p ≤ 67, a Z[D2p]-lattice is determined by its localisation at the

primes 2, p (see [Bar12, Ex. 6.3]). So, by applying Theorem 2.6.9 at both primes

we obtain a finite list of data which specifies the isomorphism class of an arbitrary

Z[D2p]-lattice.

Remark 2.7.2. The above matrices can be seen to be block upper triangular. This

was discussed in the proof of Lemma 2.3.17 and is a general phenomenon.

2.7.2 Hybrid group rings

In certain cases, the group ring Zp[G] may split as a direct product of the

group ring of a quotient and a maximal order. This yields alternative ways to

determine Zp[G]-lattices up to isomorphism. In this section, we investigate how

Theorem 2.6.9 relates to these results.
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Definition 2.7.3. The following definition is due to Johnston–Nickel, see e.g. [JN16,

Sec. 2.2]. Fix a prime p and a finite group G, and assume that N is a normal sub-

group of G of order not divisible by p. We set eN = 1
N

∑
g∈N g. Then eN is a central

idempotent of Zp[G]. Let

Zp[G] ∼= Zp[G/N ]×M,

be the corresponding decomposition. IfM is a maximal order within (1−eN )·Qp[G],

then we say that G is N -hybrid at p and that Zp[G] is a hybrid group ring for N .

Example 2.7.4. If G = S3, then G is C3-hybrid at 2. In fact,

Z2[S3] ∼= Z2[S3/C3]×M2(Z2).

This can be used to recover the classification given in Section 2.7.1, all indecompos-

able Z2[S3]-lattices are either inflated from the S3/C3
∼= C2 quotient (of which there

are 3 isomorphism classes 1, ε,Z2[S3/C3]) or isomorphic to a single two dimensional

lattice ρ which has non-trivial C3-action.

If G = S4 and then G is (C2 × C2)-hybrid at 3. In this case,

Z3[S4] ∼= Z3[S4/(C2 × C2)]×M3(Z3)×M3(Z3).

As a result, there are two rank three lattices with non-trivial C2×C2 action together

with the six isomorphism classes of lattices inflated from S4/(C2×C2) ∼= S3 detailed

in Section 2.7.1.

Lemma 2.7.5. Suppose that G is a finite group and p is a prime such that Zp[G]

is a hybrid group ring with normal subgroup N . Then the isomorphism class of any

Zp[G]-lattice is determined by

1) the isomorphism class of M ⊗Qp as a Qp[G]-representation,

2) the isomorphism class of deflGG/N (M) as a Zp[G/N ]-lattice.

Proof. Suppose Zp[G] ∼= Zp[G/N ] ×M and let M be some Zp[G]-lattice. We may

uniquely write M = M1 ⊕M2 with M1 inflated from G/N and the action of Zp[G]

on M2 factoring through M. As N acts non-trivially on all non-zero M-modules,

the isomorphism class of M2 ⊗Qp can be recovered from that of M ⊗Qp. Since M
is a maximal order, it is hereditary and so all of its lattices are projective [CR94,

Thm. 26.12]. As a result, the isomorphism class of M2 is a function of M2 ⊗Qp.
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Finally, since N acts non-trivially on all M-lattices, deflGG/N (M2) = 0. So

the isomorphism class of M1 is a function of deflGG/N (M).

Remark 2.7.6. Suppose that G is a group with cyclic Sylow p-subgroup and more-

over that Zp[G] is a hybrid group ring for some normal subgroup N . For any

Zp[G]-lattice M , if we decompose M = M1 ⊕M2 as above, then the Yakovlev di-

agram M is isomorphic to the Yakovlev diagram of M1. This is immediate given

that M2 is projective.

Example 2.7.7. For the groups of Example 2.7.4 we examine how Theorem 2.6.9

relates to hybrid group rings. Of course, i) of Theorem 2.6.9 coincides with 1) of

Lemma 2.7.5. For S3, we saw that the matrix for ` = 2 of Section 2.7.1 representing

a⊕ b⊕Yak is invertible. This suggests there can be no redundancy amongst i)-iii).

As S3 contains no non-cyclic 2-Sylow subgroups the data of ii) is empty, whilst the

previous remark shows that the Yakovlev diagram is a function of the data of 2) in

the lemma.

Now consider S4 and p = 3. In this case, there is a section of the quotient

map, allowing us to fix a subgroup S3 ≤ S4. It is easy to repeat the proof of

Lemma 2.7.5 replacing 2) by the isomorphism class of M↓S3
. The Yakovlev dia-

gram of a Z3[S4]-lattice M consists solely of the group H1(C3,M) considered as an

NG(C3)-module. But, NG(C3) ∼= S3, so the Yakovlev diagram is a function of the re-

striction to S3. Similarly, there is only a single conjugacy class of non-cyclic p-hypo-

elementary groups, namely the S3 subgroups. As a result, the regulator constants

are also a function only of the restriction to S3 (as CθS3
↑S3 (−) = CθS3

((−)↓S3
)).

It is not the case that all hybrid groups need be semi-direct products, so a

section will not exist in general. The following example is due to David Watson.

Let G be unique non-split extension of the extraspecial group of order 27 by S3 and

N ≤ G be its unique normal C3-subgroup. Then G is N -hybrid for p = 2 as can be

seen from the results of [JN16, Sec. 2], but G is not a semi-direct product.

2.7.3 Groups with degenerate permutation pairing

Example 2.7.8. Let G = C3×C3×S3, a 3-hypo-elementary group. Up to conjugacy

G has 17 subgroups, but the permutation pairing of Construction 2.3.8 is degenerate

and has rank 16.

In this section, we define a canonical Brauer relation θΣ,G which is non-zero
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for any non-cyclic group G. When G = C3×C3×S3, then θΣ,G generates the kernel

of the permutation pairing.

Notation 2.7.9. • Let G be any finite group and Σ denote the set of all sub-

groups of G, which is partially ordered with respect to containment. Let

µΣ : Σ → Z denote the Möbius function on Σ, i.e. the unique function for

which

µΣ(G) = 1

and ∑
H′≥H

µΣ(H ′) = 0

for all H 6= G.

• Set

θΣ,G =
∑
H∈Σ

µΣ(H)

|G : H|
[H] ∈ B(G).

• For an element θ ∈ B(G) and K ≤ G, let θK denote the number of fixed

points of θ under K, i.e. if θ =
∑

H αH [H] then θK =
∑
αH#([H]K).

Lemma 2.7.10. For any K ≤ G, (θΣ,G)K =
∑

H≥K µΣ(H).

Proof. Since both #[H]K and µΣ(H) are constant under replacing H with a conju-

gate, we have

∑
H≤G

µΣ(H)

|G : H|
#([H]K) =

∑
H≤GG

|H|µΣ(H)

|NG(H)|
#([H]K)

=
∑

H≤GG

|H|µΣ(H)

|NG(H)|
|{g ∈ G/H | Kg ≤ H}|

=
∑

H≤GG

|H|µΣ(H)

|NG(H)|
|{g ∈ G/H | K ≤ Hg}|

=
∑

H≤GG

|H|µΣ(H)

|NG(H)|
· |NG(H)|
|H|

|{g ∈ G/NG(H) | K ≤ Hg}|

=
∑
H≥K

µΣ(H).

Corollary 2.7.11. For any finite group G,

i) θΣ,G is a Brauer relation in characteristic zero if and only if G is non-cyclic,
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ii) θΣ,G is a Brauer relation in characteristic p if and only if G is non-p-hypo-

elementary,

iii) θΣ,G↓H is zero for all proper subgroups H.

Proof. We first check i). An element of B(G) is a relation in characteristic zero if

and only if the number of its fixed points under all cyclic subgroups is zero (see

for example the proof of [Ben98, Thm. 5.6.1]). By the lemma, θΣ,G is a relation in

characteristic zero if and only if ∑
H≥C

µΣ(H) = 0

for all cyclic subgroups C. By the definition of µΣ, this is true if and only if G is

not itself cyclic.

The argument for ii) is identical instead using that elements of B(G) are

relations in characteristic p if and only if the number of fixed points under all p-

hypo-elementary subgroups is zero (repeat the proof of [Ben98, Thm. 5.6.1] but

using species and Lemma 2.6.19).

For iii), simply note that an element of B(H) is zero if and only if its

fixed points under all subgroups is zero (proven analogously to the previous cases).

But (θΣ,G↓H)K = (θΣ,G)K , which by the lemma vanishes for all proper subgroups

K < G.

Remark 2.7.12. By Lemma 2.2.30 iv), θΣ,G automatically vanishes on all permuta-

tion modules other than possibly the trivial representation. Returning to Example

2.7.8, C3 × C3 × S3 is a group for which in addition θΣ,G(1G) = 1.

Example 2.7.13. Let G = (Cp × Cp) o Cq with p, q odd primes and p = 2q + 1

and where Cq acts diagonally on Cp × Cp. Write αH = µΣ(H)/|G : H| so that

θΣ,G =
∑

H≤G αH [H]. Then the αH for each conjugacy class are given in the

following table, which was found with the aid of Magma [Magma] but is also easy

to verify by hand:

1 Cq Cp Cp Cp Cp Cp o Cq Cp o Cq Cp × Cp G

#conjugates 1 p2 1 1 q q p p 1 1

µΣ(H) −p2 1 p p 0 0 −1 −1 −1 1

αH −1/q 1/p2 1/q 1/q 0 0 −1/p −1/p −1/q 1
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And we find θΣ,G(1G) = 1. Thus, the relation θΣ,G is trivial on all permu-

tation representations. As G is p-hypo-elementary, θΣ,G is not a p-relation and the

permutation pairing of Construction 2.3.8 is degenerate.

Remark 2.7.14. It is not clear to the author if, for any of the above groups,

there exists a lattice M for which θΣ,G(M) 6= 1. Necessarily, such an M must

not be induced from a proper subgroup (Lemma 2.2.30). For G = C3 × C3 × S3,

A(Z3[G],perm) = A(Z(3)[G], triv) = A(Z3[G], triv) since G has the same number

of species as conjugacy classes of p-hypo-elementary subgroups (Lemma 2.6.26 iv)).

Thus, such an M would also have to not have trivial source.
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Chapter 3

Application to unit groups

3.1 Introduction

In this chapter, we provide an extended application of Theorem 2.6.9 in the

context of unit groups of number fields. Let K/F be a Galois extension of number

fields with Galois group G = Gal(K/F ). Fix a prime p and assume that G has a

cyclic Sylow p-subgroup P . We shall assume further that G satisfies the condition

A(Zp[G],perm) = A(Z(p)[G], triv) defined in Section 2.6.2. For example, K/F may

be a dihedral extension of order 2q for odd q (see Example 2.6.28).

Notation 3.1.1. Given a number field L,

• we write OL for its ring of integers and O×L for its unit group,

• we write µL for the group of roots of unity contained in L and w(L) for |µL|,

• we write Cl(L) for the class group of L and h(L) for the class number |Cl(L)|.

The units O×K have the structure of a Z[G]-module and O×K/µK ⊗ Zp is a

Zp[G]-lattice which is necessarily rationally self-dual in the sense of Definition 2.2.26.

As remarked in the first two chapters, for general G, the study of Z[G]-lattices can

be very difficult and even basic questions can be intractable. This carries over to

the study of lattices arising within number theory.

Even for fixed F and G, as K varies the module structure of O×K may vary

significantly and there are many open questions. For example, it is not known how

the Galois module structure of O×K relates to classical properties of the extension

K/F , or if all Z[G]-lattices M with M ⊗Q ∼= O×K/µK ⊗Q can appear as O×K′/µK′
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for some Galois extension K ′/F with Galois group G. Other interesting questions

appear when considering the relative distributions of different module structures

in families. For each of these questions, their analogue for O×K/µK ⊗ Zp remains

interesting but often is more approachable than for O×K/µK itself.

If we directly apply Theorem 2.6.9 to O×K/µK ⊗ Zp we get:

Corollary 3.1.2. The isomorphism class of O×K/µK ⊗ Zp as a Zp[G]-lattice is de-

termined by

i) the isomorphism class of O×K/µK ⊗Q as a Q[G]-module,

ii) the valuations vp(CθH (O×K/µK)) of the regulator constants of Artin relations for

H ∈ nchypp(G),

iii) the Yakovlev diagram

H1(Pr,O×K/µK) H1(Pr−1,O×K/µK) ... H1(P0,O×K/µK).
res res

cores cores

res

cores

where Pi ≤ P is the subgroup of order pi and each Pi-term is considered as a

module over the normaliser NG(Pi) (cf. Theorem 2.6.7).

Proof. Use that for any relation θ and Z[G]-latticeM , Cθ(M) = Cθ(M⊗Zp) (Lemma

2.2.30 vi)) and that H i(Pk,O×K/µK) ∼= H i(Pk,O×K/µK ⊗Zp). Finally, note that the

isomorphism class of O×K/µK ⊗Qp is determined by that of O×K/µK ⊗Q.

Whilst each of the terms i)–iii) are amenable to computation, when written

as above it unclear of how the isomorphism class of O×K/µK relates to classical

invariants of K/F . The aim of this chapter is to reinterpret i)–iii) classically in

some special cases.

The first two terms can be dealt with in maximal generality:

Lemma 3.1.3. For any Galois extension K/F with Galois group G, the isomor-

phism class of O×K/µK⊗Q as a Q[G]-module is determined by the signatures (r1, r2)

of KH as H ranges over cyclic subgroups of G up to conjugacy.

Proof. It is a consequence of Artin’s induction theorem (see Lemma 2.2.25) that a

Q[G]-module M is determined by the ranks MH as runs over cyclic subgroups of G

up to conjugacy. By Dirichlet’s unit theorem, (dimO×K/µK)H = r1 + r2 − 1 where

(r1, r2) is the signature of KH .
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Example 3.1.4. If p does not divide |K : F |, then, as discussed on p5, the Zp[G]-

structure of O×K/µK⊗Zp is determined by the isomorphism class of O×K/µK⊗Qp as

a Qp[G]-module, and so by the signatures of the intermediate subfields of K/F . In

other words, O×K/µK ⊗Zp is arithmetically uninteresting for p not dividing |K : F |.

Theorem 3.1.5 (Bartel). Let K/F be any Galois extension and let G = Gal(K/F ).

For any subgroup H of G, write λ(KH) for the order of coker(O×
KH/µKH → (O×K/µK)H).

Then for any Brauer relation θ =
∑

i[Hi]−
∑

j [H
′
j ],

Cθ(O×K/µK) = Cθ(1) ·

(∏
j h(KH′j )∏
i h(KHi)

∏
j λ(KH′j )∏
i λ(KHi)

∏
iw(KHi)∏
j w(KH′j )

)2

. (3.1)

Proof. Artin formalism combined with the analytic class number formula shows that

∏
i

h(KHi) Reg(KHi)

w(KHi)
=
∏
j

h(KHj ) Reg(KHj )

w(KHj )
,

where, for a number field L, Reg(L) denotes Dirichlet’s unit group regulator. The

formula now follows from the following formula of Bartel [Bar12, Prop. 2.15]:

Cθ(O×K/µK) = Cθ(1) ·

(∏
i Reg(KHi)∏
j Reg(KH′j )

∏
j λ(KH′j )∏
i λ(KHi)

)2

.

Remark 3.1.6. We are only concerned with the p-part of (3.1) for a single prime p.

If K has no pth roots of unity, then (3.1) simplifies to give

vp(Cθ(O×K/µK)) = vp(Cθ(1)) + 2vp

(∏
j h(KH′j )∏
i h(KHi)

)
.

In this section we shall repeatedly have to do extra work to compensate for “erro-

neously” considering Cθ(O×K/µK) instead of Cθ(O×K).

Remark 3.1.7. Note that Bartel’s result shows that for any integral Brauer rela-

tion θ,

vp(Cθ(O×K/µK)) ≡ vp(Cθ(1)) (mod 2),

and in particular, it is independent of K/F modulo 2. We can see this directly as

follows. For each infinite place v of F , fix a place w | v and some decomposition group

Dw of w. Then, V :=
⊕

v|∞Q[G/Dw] is the permutation module defined by the

action of G on the infinite places of K. As such there is a map O×K/µK ↪→ V defined

as in the proof of Dirichlet’s unit theorem. This is G-equivariant and its image is a
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lattice within a hyperplane I which is stable under the action of G. Moreover, V/I

is the one dimensional trivial representation 1. Therefore, (O×K/µK ⊗Q)⊕ 1 ∼= V .

Applying Lemma 2.2.30 i) and vi), we get

Cθ(O×K/µK) · Cθ(1) ≡ Cθ(V ) (mod (Q×)2).

But, the decomposition group of any infinite place is cyclic, so V is a direct sum of

representations induced from cyclic subgroups and so must necessarily have vanish-

ing regulator constant (cf. Remark 2.3.2).

We have now seen that both i) and ii) of Corollary 3.1.2 can be rewritten in

terms of “elementary invariants”. Reinterpreting iii), even in simple cases, requires

more work and is the main focus of this chapter.

As an aside, we remark that it is sometimes also possible to instead rewrite

ii) in terms of cohomology.

Example 3.1.8. If G is a dihedral group of order 2q, for q odd, then recent work

of Caputo and Nuccio [CN18] proved the following formula

h(K)h(F )2

h(KCq)h(KC2)2
=
|Ĥ0(G,O×K ⊗ Z[1

2 ])|
|Ĥ−1(G,O×K ⊗ Z[1

2 ])|
, (3.2)

for the ratio of class numbers in terms of Tate cohomology of the units (here Cq

is the subgroup of order q and C2 denotes some choice of order two subgroup).

Suppose further that K has no pth roots of unity. Denote the Brauer relation

[1]− [Cq]− 2[C2] + 2[G] = 2θG by θ, then

Cθ(1) =

1
1 ·
(

1
2q

)2

1
q ·
(

1
2

)2 =
1

q
.

So by (3.1),

Cθ(O×K/µK) =
1

q
· h(KCq)h(KC2)2

h(K)h(F )2
.

Combining this with (3.2) gives

vp(Cθ(O×K/µK)) = −vp(q) + 2vp

(
|Ĥ−1(G,O×K ⊗ Zp)|
|Ĥ0(G,O×K ⊗ Zp)|

)
.

So in the dihedral case, both ii) and iii) can be phrased in terms of the cohomology

of units.
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3.2 Calculation of the Yakovlev diagram

In this section, we shall further assume that K/F is of degree divisible by p

exactly once (which, in view of Example 3.1.4, may be thought of as the simplest

non-trivial case). On the other hand, the calculation of this section does not require

G to satsify the condition on trivial source modules of Section 2.6.2. Since the Sylow

subgroup is isomorphic to Cp, the Yakovlev diagram of Corollary 3.1.2 iii) simply

becomes the isomorphism class of

H1(P,O×K/µK)

as an NG(P )/P -module, where P is a choice of Sylow p-subgroup.

Notation 3.2.1. Let F ′ denote KP . Consider the map c : Cl(F ′)→ Cl(K)P given

by extension of ideals. Let r(K/F ′) denote set of primes of F ′ which ramify in K.

Set

W :=
⊕

p∈r(K/F ′)

Fp.

This has an action of NG(P )/P via its action on r(K/F ′), i.e. W is an Fp[NG(P )/P ]-

module.

There is an NG(P )/P -equivariant map τ : W → Cl(K)P /c(Cl(F ′)) sending

the pth basis element to the class of q where q is the unique prime lying above p in

K (note that the exponent of Cl(K)P /c(Cl(F ′)) divides p as it is a quotient of the

Tate cohomology group Ĥ0(P,Cl(K)) = Cl(K)P /NK/F ′ Cl(K)).

Notation 3.2.2. Let H be a group of order coprime to p, then all finite dimensional

Fp[H]-modules are semi-simple and, as for any p, Krull-Schmidt holds. Let M be

a Fp[H]-module with a submodule isomorphic to N , then N is a summand and we

denote by M 	 N a choice of complementary summand for N in M . The module

M 	N is well defined up to isomorphism.

Notation 3.2.3. For the remainder of this chapter, given a finite Fp[NG(P )/P ]-

module M , we denote by M(1) the module M ⊗ H2(P,Z). In this notation, as

P is cyclic, for any Z[G]-module N , cup product defines an NG(P )/P -equivariant

isomorphism Ĥ i+2(P,N) ∼= Ĥ i(P,N)(1) for all i ∈ Z (with Ĥ i denoting Tate coho-

mology).
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Proposition 3.2.4. As Fp[NG(P )/P ]-modules we have

H1(P,O×K/µK) ∼= ker(Cl(F ′)
c→ Cl(K))⊕ ker(W

τ→ Cl(K)P / im Cl(F ′))

⊕ coker(O×F ′/µF ′ → (O×K/µK)P ) (3.3)

⊕ (µF ′ ∩NK/F ′O×K)/NK/F ′µK 	H1(P, µK).

Remark 3.2.5. Note that NG(P )/P is of order coprime to p. If we allowed the

Sylow subgroups to be cyclic of order > p, then, to apply Theorem 2.6.9, we would

have to consider the action of NG(Pi)/Pi in cases where it may have order divisible

by p. In which case, the existence of non-trivial extensions means that Proposition

3.2.4 need not hold in this setting. This is the main obstruction to allowing larger

Sylow p-subgroups. One option to mitigate this would be to require that K/F is

everywhere unramified so that the map b defined below in Figure 3.5 is bijective.

The proof of the proposition is a technical diagram chase involving Arakelov

class groups and shall occupy several pages. If we assume that K has no pth roots

of unity, then this simplifies significantly.

3.2.1 Arakelov class groups

We briefly recall the definition and basic properties of Arakelov class groups

following [Sch08] (cf. [Neu13, Sec. III.1]).

Definition 3.2.6. For any number field K, an Arakelov divisor is a finite formal

sum
∑

p np ·p+
∑

η xη ·η, where p runs over prime ideals of K with coefficients np ∈ Z
and η runs over the archimedean places of K with coefficients xη ∈ R. Denote the

additive group of Arakelov divisors by Div(K).

Definition 3.2.7. To an element x ∈ K× we associate the divisor (x) =
∑

p np ·
p +

∑
η xη · η where np = vp(x), xη = − log |η(x)|. Divisors which arise in this way

are said to be principal. Suppose x ∈ K× lies in the kernel of the map (−) : K× →
Div(K). The conditions at the finite places ensure that x ∈ O×K and so, by (the

proof of) Dirichlet’s unit theorem, x must in fact be a root of unity.

Definition 3.2.8. We define a degree map deg : Div(K)→ R by setting deg(1 ·p) =

log |OK/p| and deg(1·η) to be 1 or 2 if η is real or complex respectively. The product

rule ensures that principal divisors have degree zero. Write Div0(K) for the group

of degree zero divisors and Pic0(K) for the quotient Div0(K)/ imK× of degree zero
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divisors modulo principal divisors. The group Pic0(K) is called the Arakelov class

group of K. By construction there is a short exact sequence

0→ K×/µK → Div0(K)→ Pic0(K)→ 0.

Let I(K) denote the group of fractional ideals of K. Projection onto the finite

places defines a map Div(K)→ I(K), and this remains surjective on restriction to

Div0(K). There is a short exact sequence

0→ V 0
K → Div0(K)→ I(K)→ 0,

where V 0
K is an r1 + r2 − 1 dimensional R-vector spaces and is identified with the

hyperplane contained in VK :=
(⊕

η R
)

defined in the proof of Dirichlet’s unit

theorem.

The above can be neatly packaged via the following lemma

Lemma 3.2.9. For any number field K, there is a commutative diagram of short

exact sequences:

0 0 0

0 O×K/µK K×/µK P (K) 0

0 V 0
K Div0(K) I(K) 0

0 T 0(K) Pic0(K) Cl(K) 0

0 0 0

Figure 3.1: Defining diagram of Arakelov class groups

Here, P (K) denotes the group of principal fractional ideals of K and T 0(K)

is defined to be the cokernel of the map O×K/µK → V 0
K appearing in Dirichlet’s unit

theorem.

Proof. Exactness of the bottom row follows from exactness of the columns and the

top two rows by the 9-lemma.
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Note that T 0(K) is a divisible group isomorphic to (R/Z)r1+r2−1, where r1 is

the number of real embeddings of K and r2 the number of pairs of complex conjugate

embeddings.

Remark 3.2.10. For any finite extension of number fields K/F there is a corre-

sponding map Div(F )→ Div(K) which at the finite places is induced by extension

of ideals and sends 1 · η to
∑

ξ|η eξ · ξ where

eξ =

2 if η is real and ξ is complex

1 otherwise
.

If K/F is Galois with group G, then G acts on Div(K) via its action on places and

Figure 3.1 is equivariant for this action. There is an obvious map between Figure

3.1 for F and the G-fixed points of Figure 3.1 for K (which we may extend to

long exact sequences of cohomology). We shall make repeated use segments of this

construction without further explanation.

Remark 3.2.11. The Arakelov class group relates the class group of K to T 0(K) =

O×K/µK ⊗R/Z (which is also the Pontryagin dual of Hom(O×K/µK ,Z)). This forms

the basis for our proof of Proposition 3.2.4. However, there are several other candi-

dates that should fulfil a similar role of non-trivially linking class groups and units.

For example, Caputo and Nuccio [CN18] make use of the idele class group and a cor-

responding 9-lemma diagram to prove related results, whilst it is possible to define

a Selmer structure on O×
K̄

so that the corresponding Selmer group has an inclusion

of O×K ⊗ Qp/Zp with its “Tate-Shafarevich group” given by Cl(K). In the context

of abelian varieties, this Selmer method has been exploited in work of Burns-Maćıas

Castillo-Wuthrich [BMCW15] to calculate analogous cohomology groups where the

Z[G]-module is the Mordell-Weil group of the abelian variety (or its Selmer group).

3.2.2 Proof of Proposition 3.2.4

Now assume that K/F is as at the start of Section 3.2.

Lemma 3.2.12. There is an NG(P )/P -equivariant isomorphism

H1(P,O×K/µK) ∼= T 0(K)P /T 0(F ′).

Proof. Consider the diagram:
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0 O×F /µF ′ V 0
F ′ T 0(F ′) 0

0 (O×K/µK)P (V 0
K)P T 0(K)P H1(P,O×K/µK) 0

a (3.4)

Applying snake lemma at coker a gives the desired isomorphism. That this is NG(P )-

equivariant is standard, see e.g. [NSW08, Prop. 1.5.2].

It remains to describe T 0(K)P /T 0(F ′) (which we now know to be a finite

group of exponent p). Note that T 0(K)P need not be divisible, but since T 0(F ′)

is of finite index and a divisible subgroup, T 0(F ′) must be the maximal divisible

subgroup. The basis for calculating T 0(K)P /T 0(F ′) is that T 0(K)P /T 0(F ′) appears

as a cokernel in the kernel/cokernel sequence of the diagram:

0 T 0(F ′) Pic0(F ′) Cl(F ′) 0

0 T 0(K)P Pic0(K)P Cl(K)P H1(P, T 0(K))

a b c

Here, both a : T 0(F ′) → T 0(K)P and b : Pic0(F ′) → Pic0(K)P are induced by the

map Div(F )→ Div(K) described in Remark 3.2.10.

Lemma 3.2.13. The following is an exact sequence of finite Fp[NG(P )/P ]-modules:

0→ ker a→ ker b→ ker c→ T 0(K)P /T 0(F ′)→ ker(coker b
γ→ coker c)→ 0. (3.5)

Proof. We must check that each term is a finite Fp[NG(P )/P ]-module. For ker a

and ker γ, this will follow from checking the other terms, whilst for T 0(K)P /T 0(F ′),

this follows from Lemma 3.2.12. For ker b, consider following diagram obtained from

the middle column of Figure 3.1:

0 F ′×/µF ′ Div0(F ′) Pic0(F ′) 0

0 (K×/µK)P Div0(K)P Pic0(K)P H1(P,K×/µK)

b

(3.6)

As Div0(F ′) ↪→ Div0(K), we find that

ker b→ coker(F ′×/µF ′ → (K×/µK)P )
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is injective, but the latter is, by Hilbert Theorem 90, isomorphic to H1(P, µK) and

thus finite and of exponent at most p. For ker c, finiteness is clear. By considering

the right hand column of Figure 3.1, we find ker(Cl(F ′)→ Cl(K)) ↪→ P (K)G/P (F ′),

which is a quotient of Ĥ0(P, P (K)) and so has exponent dividing p.

In particular, in the notation of Notation 3.2.2,

T 0(K)P /T 0(F ′) ∼= ker a⊕ ker c⊕ ker γ 	 ker b. (3.7)

As such, to determine the isomorphism class of T 0(K)P /T 0(F ′) it suffices to de-

scribe the isomorphism class of each summand individually. For example, ker c =

ker(Cl(F ′)→ Cl(K)) is already a classically studied invariant.

Lemma 3.2.14. ker a ∼= coker(O×F ′/µF ′ → (O×K/µK)P ) as NG(P )/P -modules.

Proof. This is immediate from the kernel/cokernel sequence of (3.4).

The calculation of ker γ requires more work.

Lemma 3.2.15. There is a commutative diagram of finite Fp[NG(P )/P ]-modules:

0 ker b H1(P, µK) Div0(K)P /Div0(F ′) coker b H1(P,K×/µK) 0

0 ker c P (K)P /P (F ′) I(K)P /I(F ′) coker c H1(P, P (K))

d

γ z

(3.8)

with the horizontal rows being exact.

Proof. By Hilbert Theorem 90, H1(P, µK) ∼= coker(F ′×/µF ′ → (K×/µK)P ). As a

result, the kernel/cokernel sequence of (3.2.2) is given by

0→ ker b→ H1(P, µK)→ Div0(K)P /Div0(F ′)→ coker b (3.9)

→ H1(P,K×/µK)→ H1(P,Div0(K)).

Claim. H1(P,Div0(K)) = 0.

Proof of Claim. By the degree map it suffices to show that H1(P,Div(K)) = 0.

As a P -module, Div(K) decomposes as a direct sum of terms indexed by places of

F ′. Each of these is a permutation module and so has trivial cohomology in degree

1. As group cohomology commutes with arbitrary direct sums, the same is true of

Div(K).
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Claim. Every term of (3.9) is a finite Fp[NG(P )/P ]-module.

Proof of Claim. That each term has exponent dividing p is clear as all terms other

than ker b are either P -cohomology groups or quotients of P -Tate cohomology groups.

As H1(P, µK) is finite, it suffices to check finiteness for Div0(K)P /Div0(F ′) and

coker b. By considering the degree map, Div0(K)P /Div0(F ′) ∼= Div(K)P /Div(F ′).

The Galois stable elements of Div(K) are those divisors whose terms at all places

w lying over each fixed place of F ′ are diagonal. Using this description we find that

Div(K)P /Div(F ′) ∼=
⊕

p∈r(K/F ′)

Fp =: W,

(in the notation of Notation 3.2.1) so that Div0(K)/Div0(F ′) is finite. Finally,

Hilbert Theorem 90 shows that H1(P,K×/µK) ↪→ H2(P, µK) so is finite.

Now consider:

0 P (F ′) I(F ′) Cl(F ′) 0

0 (K×/O×K)P I(K)P Cl(K)P H1(P, P (K))

b

Figure 3.2

This has kernel/cokernel sequence

0→ ker c→ P (K)G/P (F ′)→ I(K)P /I(F ′)→ coker c→ H1(P, P (K)). (3.10)

Claim. Every term of (3.10) is a finite Fp[NG(P )/P ]-module.

Proof of Claim. As before, that each term has exponent p is automatic, as is finite-

ness of ker c and coker c. Now finiteness of I(K)P /I(F ′), and so P (K)G/P (F ′)

follows as it is isomorphic to W =
⊕

r(K/F ′) Fp, whilst H1(P, P (K)) ↪→ H2(P,O×K)

so H1(P, P (K)) must be finite.

The maps between the middle column and right hand column of Figure 3.1

induce maps between Figure 3.9 and Figure 3.2 and so, by naturality of the snake

lemma, of their associated kernel/cokernel sequences. Putting this all together gives

(3.8).
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Lemma 3.2.16. We have that

ker γ ∼= ker(W → Cl(K)P / im Cl(F ′))⊕ ker b

⊕ ker(H1(P,K×/µK)→ H1(P, P (K))	H1(P, µK)

as NG(P )-modules.

Proof. We argue from (3.8) of Lemma 3.2.15. After truncating we obtain a diagram

of short exact sequences

0 Div0(K)P /
(
Div0(F ′) · d(H1(P, µK))

)
coker b H1(P,K×/µK) 0

0 I(K)P /I(F ′)P (K)P coker c H1(P, P (K))

t γ z

where the left hand arrow is surjective as Div0(K)P /Div0(F ′) ∼= I(K)P /I(F ′) (∼=
W ). As a result

ker γ ∼= ker t⊕ ker z.

Returning to (3.8),

d(H1(P, µK)) ⊆ ker(Div0(K)P /Div0(F ′)→ I(K)P /I(F ′)P (K)P )

so ker t can be rewritten as

ker(Div0(K)P /Div0(F ′)→ I(K)/I(F ′)P (K))	H1(P, µK)⊕ ker b.

Now simply note that I(K)/I(F ′)P (K) = Cl(K)/c(Cl(F ′)).

Proof of Proposition 3.2.4. By Lemmas 3.2.12, 3.2.13, we need only substitute our

calculations into (3.7). Lemmas 3.2.14, 3.2.16 give

T 0(K)P /T 0(F ′) ∼= ker a⊕ ker c⊕ ker γ 	 ker b

∼= coker(O×F ′/µF ′ → (O×K/µK)P )⊕ ker(Cl(F ′)→ Cl(K))

⊕ ker(W → Cl(K)P /c(Cl(F ′)))⊕ ker b

⊕ ker(H1(P,K×/µK)→ H1(P, P (K)))	H1(P, µK)	 ker b

Cancelling the ker b terms and applying Lemma 3.2.17 i), we obtain the desired

formula.
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For later use, we give some alternative descriptions of the terms appearing

in Proposition 3.2.4.

Lemma 3.2.17. i) As NG(P )/P -modules we have

ker(H1(P,K×/µK)→ H1(P, P (K))) ∼= ((µF ′ ∩NK/F ′O×K)/NK/F ′µK)(1),

(here (−)(1) is as defined in Notation 3.2.3).

ii) As NG(P )/P -modules we have

Ĥ−1(P, µK) =


µK [p](1) µK [p∞] = µF ′ [p

∞]

0 µK [p∞] 6= µF ′ [p
∞] and K 6= F ′(ζ4)

Z/2Z(1) K = F ′(ζ4)

, (3.11)

where for an abelian group A, A[n] denotes the n-torsion subgroup and A[p∞]

denotes
⋃
nA[pn].

Proof. For i), consider the following diagram, which is exact by Hilbert Theorem

90:

0 Ĥ−1(P,K×/µK) Ĥ0(P, µK) Ĥ0(P,K×)

0 Ĥ−1(P,K×/O×K) Ĥ0(P,O×K) Ĥ0(P,K×)

Applying the definition of Ĥ0, this becomes:

0 (µF ′ ∩NK/F ′K
×)/NK/F ′µK µF ′/NK/F ′µK F ′×/NK/F ′K

×

0 (O×F ′ ∩NK/F ′K
×)/NK/F ′O×F ′ O×F ′/NK/F ′O×K F ′×/NK/F ′K

×

So that ker(Ĥ−1(P,K×/µK)→ Ĥ−1(P, P (K))) ∼= (µF ′∩NK/F ′O×K)/NK/F ′µK .

Twisting now gives the desired formula.

For ii), consider

Ĥ−1(P, µK) = Ĥ−1(P, µK [p∞]) = ker(NK/F ′ : µK [p∞]→ µK [p∞])/(σ − 1)µK [p∞],
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where σ is a generator of P . We claim that

ker(NK/F ′ : µK [p∞]→ µK [p∞]) =

µK [4] if p = 2 and K = F ′(ζ4) 6= F ′

µK [p] otherwise
.

If µK [p∞] = µF ′ [p
∞], this is clear as NK/F ′ is raising to the power p. Otherwise, we

may assume that, on a generator ζpn of µK [p∞], σ acts by ζpn 7→ ζ1+pn−1

pn . So

NK/F ′(ζpn) =
∏

a∈Z/pZ

ζ1+apn−1

pn = ζ
(p+pn−1·

∑
a∈Z/pZ a)

pn .

Since ∑
a∈Z/pZ

a =

1 if p = 2

0 if p ≥ 3
,

we find the kernel of NK/F ′ is µK [p] unless p = 2 and n = 2, where ζ4 also lies in

the kernel.

It is also easy to see that

(σ − 1)µK [p∞] =

µK [p] µK [p∞] 6= µF ′ [p
∞]

0 µK [p∞] = µF ′ [p
∞]

.

Putting these together gives the final formula of the lemma.

3.3 The main theorem

It remains to put together all our calculations:

Theorem 3.3.1. Let K/F be a Galois extension of number fields with p dividing

|K : F | at exactly once and G = Gal(K/F ) satisfying the condition of Theorem 2.6.9.

Let P be a choice of Sylow p-subgroup and write F ′ = FP . Then the isomorphism

class of O×K/µK ⊗ Zp as a Zp[G]-module is determined by

1) the signatures of the intermediate subfields of K/F ,

2) the class numbers h(L) of the intermediate subfields of K/F ,

3) the number of roots of unity w(L) of the intermediate subfields of K/F ,

4) the indices λ(L) for the intermediate subfields of K/F ,
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5) ker(Cl(F ′)→ Cl(K)) as an NG(P )/P -module,

6) ker(W → Cl(K)/c(Cl(F ′))) as an NG(P )/P -module,

7) coker(O×F ′/µF ′ → (O×K/µK)P ) as an NG(P )/P -module,

8) (µF ′ ∩NK/F ′O×K)/NK/F ′µK as an NG(P )/P -module,

9) if µK [p∞] = µF ′ [p
∞], then µK [p] as an NG(P )/P -module.

Proof. We must show that 1)–9) collectively allow us to calculate i)–iii) of Corollary

3.1.2. In Section 3.1 we saw that 1) and 2)–4) determine i) and ii) respectively.

By (3.11), the isomorphism class of Ĥ−1(P, µK) is determined either by 9) or 3).

Proposition 3.2.4 and Lemma 3.2.17 show that combined with 5)–8) this determines

iii).

Recall that the case of p not dividing |K : F | is discussed in Example 3.1.4.

In the next section, we provide four sample applications of Theorem 3.3.1.

In certain cases, the required data for Theorem 3.3.1 simplifies significantly. For

example, if we assume that K contains no pth roots of unity, the theorem becomes:

Corollary 3.3.2. Let K/F be a Galois extension of number fields with p dividing

|K : F | at most once, K containing no pth roots of unity and G = Gal(K/F ) satisfy-

ing the condition of Theorem 2.6.9. Let P be a choice of Sylow p-subgroup and write

F ′ = FP . Then the isomorphism class of O×K ⊗Zp as a Zp[G]-module is determined

by

1) the signatures of the intermediate subfields of K/F ,

2) the class numbers h(L) of the intermediate subfields of K/F ,

3) ker(Cl(F ′)→ Cl(K)) as a NG(P )-module,

4) ker(W → Cl(K)/c(Cl(F ′))) as a NG(P )-module.

3.4 Examples

3.4.1 Cyclic extensions of Q of prime degree

Let K/Q be a cyclic extension of prime degree with Galois group G ∼= Cp.

In this case, after tensoring by Zp, the representation theory is uninteresting, but

we may still derive consequences of Theorem 3.3.1.
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First assume that K is imaginary quadratic. In this case rkO×K = 0 and

so O×K/µK is the zero Z[C2]-lattice. In particular, H1(P,O×K/µK) = 0 so the right

hand side of Formula 3.3 of Proposition 3.2.4 will be of dimension zero.

Consulting formula (3.11), we find that in all cases dimF2 H
1(P, µK) = 1.

Therefore, the remainder of the right hand side of (3.3) must be of dimension one

as well. Since Cl(Q) = 0, rkO×K = 0 and so (µF ′ ∩NK/F ′O×KH )/NK/F ′µK = 0, this

simplifies to give

Lemma 3.4.1. For any imaginary quadratic field K/Q, dimF2(ker(W → Cl(K)))

= 1.

If we writeK = Q(
√
−d) with d squarefree, then the kernel must be generated

by ∑
p|d

1 · p (3.12)

as it certainly contains this element. Classically, this is a consequence of genus the-

ory, which states that primes of K lying over the ramified primes generate Cl(K)[2]

and asserts that (3.12) is the only relation amongst them.

For K/Q real quadratic, rkO×K = 1 and O×K/µK is the unique non-trivial

one dimensional Z[C2]-lattice ε.

Lemma 3.4.2. For a real quadratic field K/Q,

dimF2(ker(W → Cl(K))) + dimF2 NK/QO×K = 2.

In particular, dimF2(ker(W → Cl(K))) = 2 if and only if K has a totally positive

fundamental unit.

Proof. As beforeH1(G,µK) is necessarily of dimension one, but nowH1(G,O×K/µK)
∼= H1(G, ε) ∼= F2 so that the rest of the right hand side of (3.3) is of dimension 2.

For the last statement, simply note that a unit of K has norm −1 if and only if it

is not totally positive or negative.

Finally when G ∼= Cp for p ≥ 3, O×K/µK ⊗ Zp is isomorphic to the augmen-

tation ideal of Zp[Cp] (i.e. the kernel of the degree map). This need not be the case

over Z, but in any case, we do have H1(G,O×K/µK ⊗ Zp) ∼= Fp.

Lemma 3.4.3. For K/Q a cyclic extension of degree p ≥ 3, dimFp(ker(W → Cl(K)))

= 1 .

86



Proof. In this case, H1(G,µK) and H1(G,K×/µK) ∼= H1(G,K×) are always triv-

ial. As a result the right hand side of (3.3) simplifies to ker(W → Cl(K)), so by

Proposition 3.2.4 this must be dimension one.

Classically, this can be seen from the the ambiguous class number formula

(see e.g. [Lem13, Thm. 1]).

3.4.2 Real quadratic extensions of real quadratic fields

Let p = 2 and F = Q(
√
a) be a real quadratic field. Suppose that K varies

amongst totally real quadratic extensions of F and set G = Gal(K/F ) ∼= C2. Then

rkO×F = 1 and rkO×K = 3. As K varies, there are two possibilities for O×K/µK as a

Z[C2]-module, namely,

1⊕ ε⊕ ε or Z[C2]⊕ ε,

where 1, ε denote the trivial and non-trivial rank one Z[C2]-lattices and Z[C2] is the

regular representation. These two cases can still be distinguished over Z2 and, in

particular, by the dimension of H1(G,O×K/µK ⊗ Z2), which is 2 or 1 in the above

cases respectively (see Example 2.1.1).

Lemma 3.4.4. Let K/F be a totally real quadratic extension of a real quadratic

field. Then

dimF2(ker(Cl(F )→ Cl(K)))

+ dimF2(ker(W → Cl(K)/Cl(F )))

+ dimF2(coker(O×F /µF → (O×K/µK)G))

+ dimF2({±1} ∩NK/FO×K)

=

3 if O×K/µK ∼= 1⊕ ε⊕ ε

2 if O×K/µK ∼= Z[C2]⊕ ε
.

Proof. We calculate H1(G,O×K/µK) via Proposition 3.2.4. By Lemma 3.2.17 ii),

as µK = µF , the abelian group H1(G,µK) is isomorphic to µK [2] = {±1}. Thus,

the remainder of the terms of (3.3) must have total dimension 2 or 3 over F2,

depending on whether or notH1(G,O×K/µK) has dimension 1 or 2. Finally, note that

(µF ∩NK/FO×K)/NK/FµK ∼= {±1}∩NK/FO×K as NK/F annihilates µK = {±1}.

Note this only refers to 5)–9) of Theorem 3.3.1. This makes sense given

that we have already prescribed the signatures of all subfields and that C2 has no

non-zero Brauer relations (Corollary 2.2.12 ii)).

Note also that, for fixed F , there is at most one choice of K for which

coker(O×F /µF → (O×K/µK)G) is non-zero. To see this, note that there are only two
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possible quadratic extensions of F with this property, namely F (
√
u), F (

√
−u) for

u a fundamental unit of O×F . Now, F (
√
u) will only be totally real if u is totally

positive. For many choices of F there is no totally positive fundamental unit, e.g.

F = Q(
√

2), soO×F /µF → (O×K/µK)G is always an isomorphism. In general, one may

consider 4), 7) to be “generically zero”, and can often be discounted in asymptotic

calculations.

3.4.3 Complex D2p-extensions

Assume that K/Q is a Galois extension with G = Gal(K/Q) ∼= D2p. Then

K/Q satisfies the conditions of Theorem 3.3.1 at p. Let σ, τ ∈ D2p be of order p

and 2 respectively and label the intermediate subfields as in the following diagram:

K

L Lσ
p−1

F ′

Q

2

p

p

. . .

2

In Section 2.7.1 we described the representation theory of D2p over Zp, which

we now briefly recall. The groups D2p are one of the few infinite families of groups

for which all integral lattices have been classified. Write 1, ε, ρ for the three irre-

ducible Qp[D2p]-representations, where 1, ε denote the trivial and non-trivial one

dimensional representations, and ρ the (p − 1)-dimensional irreducible. There are

six indecomposable Zp[D2p]-lattices:

1, ε, A,A′, (A, ε), (A′,1), (3.13)

where 1, ε extend to the corresponding Qp[D2p]-representations, A,A′ are two non-

isomorphic Zp[D2p]-lattices within ρ, and (A, ε), (A′,1) are non-trivial extensions of

ε,1 by A,A′ respectively (these are explicitly constructed in [Lee64]).

If K has no real embeddings, then rkO×K = 2 and O×K ⊗ Qp ∼= ρ. Thus,

O×K/µK⊗Zp could potentially lie in one of two isomorphism classes of Zp[G]-lattices,

namely,

A or A′.
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Referring to the matrix given on p65 for ` = p, we find that these two cases are

distinguished by the D2p/Cp-isomorphism class of H1(P,O×K/µK), which is a one

dimensional Fp-vector space with non-trivial or trivial C2-action for A and A′ re-

spectively. This together with Corollary 3.3.2 and Proposition 3.2.4 gives the first

part of:

Lemma 3.4.5. Let K/Q be a D2p-extension, for p odd, which has no real embed-

dings. Then

i) if K does not contain any pth roots of unity, then

dimFp ker(Cl(F ′)→ Cl(K)) + dimFp ker(W → Cl(K)/c(Cl(F ′))) = 1,

where W is as in Notation 3.2.1. Moreover, O×K/µK ⊗ Zp ∼= A′ if and only

if ker(W → Cl(K)/c(Cl(F ′))) is one dimensional and acted on trivially by

D2p/Cp.

ii) if K does contain the pth roots of unity (i.e. p = 3 and F ′ = Q(ζ3), where ζ3

denotes a primitive third root of unity), then

dimFp ker(W → Cl(K)/c(Cl(F ′))) + dimFp((NK/Q(ζ3)O×K)/±1) = 2,

with(
dimFp ker(W → Cl(K)/c(Cl(F ′)))τ=1

+ dimFp((NK/Q(ζ3)O×K)/±1)τ=−1

)
=

1 if O×K/µK ⊗ Zp ∼= A

2 if O×K/µK ⊗ Zp ∼= A′
.

Proof. For the last part if i), we know that O×K/µK ⊗Zp ∼= A′ when the one dimen-

sional space ker(Cl(F ′)→ Cl(K))⊕ker(W → Cl(K)/c(Cl(F ′))) is fixed by D2p/Cp.

But, τ acts by multiplication by −1 on Cl(F ′) (τ acts by the identity on primes of

F ′ lying over ramified or inert primes and swaps the two primes lying over a split

prime. In each case, τ takes it to its inverse in the class group) and so non-trivially

on the F3-vector space ker(Cl(F ′) → Cl(K)) whenever it is non-zero. As a result,

in the A′ case it must be ker(W → Cl(K)/c(Cl(F ′))) which is non-trivial.

In the case of ii), again the representation theory of D2p and Theorem 3.3.1

ensure that H1(P,O×K/µK) is of rank one. Therefore, the right hand side of (3.3) is

also of rank one. We may further simplify (3.3) in our case.

As F ′ = Q(ζ3) is imaginary quadratic, rkO×F ′ = 0, so the summand given by

coker(O×F ′/µF ′ → (O×K/µK)P ) is trivial.
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On the other hand, by (3.11), Ĥ−1(P, µK) ∼= µK [p] is of rank one with

non-trivial action of NG(P )/P . Therefore, after twisting, H1(P, µK) is of rank one

with trivial action. For the (µQ(ζ3) ∩ NK/Q(ζ3)O×K)/NK/Q(ζ3)µK term, note that

NK/Q(ζ3)O×K ⊆ µQ(ζ3) = O×Q(ζ3), whilst NK/Q(ζ3)µK = {±1}. Finally, as Cl(Q(ζ3)) =

0, ker(Cl(F ′)→ Cl(K)) is always trivial.

Remark 3.4.6. Our proof of Lemma 3.4.5 relies on the fact that we are able to

describe the, relatively few, isomorphism classes of potential D2p-lattices. It would

be interesting to ask for a proof of, say, the formula of i) without appealing to

classification results within integral representation theory. Another consequence of

there being relatively few possibilities is that we are also able to distinguish the A

and A′ cases instead using regulator constants (this follows from Section 2.7.1 or

directly from [Bar12]).

Example 3.4.7. Recall from Remark 2.7.1 that if p ≤ 67 (or p ≤ 157 assuming

the generalised Riemann hypothesis), then a Z[D2p]-lattice M is determined by

the isomorphism classes of M ⊗ Z` for ` = 2, p as a Z`[G]-lattice. If K/Q is a

D2p-extension and has no real embeddings, then O×K/µK ⊗ Z2 as a Z2[G]-lattice

is independent of K. So, if p ≤ 67, by considering O×K/µK ⊗ Zp, there are two

candidate isomorphism classes for O×K/µK as a Z[G]-lattice. We shall also denote

these by A,A′. Moreover, Lemma 3.4.5 in fact determines the Z[G]-lattice structure.

If K/F is an arbitrary D2p-extension, with F not necessarily Q, then we may still

calculate the isomorphism class of O×K/µK by applying Theorem 3.3.1 at both p and

2.

Example 3.4.8. In the p = 3 case, we applied Lemma 3.4.5 to create a Magma

function [Magma] which returns the isomorphism class of O×K/µK . Using a list of

complex S3-extensions obtained from the LMFDB [LMFDB], we calculated the total

number of such fields with each isomorphism class:

A A′ total

10480 8652 19132

≈ 54.8% ≈ 45.2%

The largest discriminant amongst these fields is ≈ −2.4 × 1015, but the list is not

complete for all fields up to that discriminant (but did contain all complex S3-

extensions of Q contained in the LMFDB when accessed in May 2018). If we run
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only over extensions containing Q(ζ3), we find the relative proportions are

A A′ total

334 1009 1343

≈ 24.9% ≈ 75.1%

If we exclude fields containing Q(ζ3), the relative proportions are

A A′ total

10146 7643 17789

≈ 57.0% ≈ 43.0%

Such calculations are of interest in modern approaches to the study of Cohen–

Lenstra heuristics. More specifically, it is expected that the distribution of possible

Galois module structures of O×K should link to the distribution and average sizes

of class groups. When ordered by discriminant, a zero proportion of complex S3-

extensions of Q contain Q(ζ3), so for asymptotic calculations we may discount all

such fields and only apply Lemma 3.4.5 i).

Lemma 3.4.9. Amongst complex S3 extensions K/Q ordered by discriminant, a

zero proportion have Q(ζ3) as their quadratic subfield.

Proof. The idea of the following proof was suggested by Alex Bartel. We first show

the following claim:

Claim. All S3-extensions K/Q containing Q(ζ3) are of the form Q( 3
√
a, ζ3) for some

cubefree a ∈ Q×.

Proof of Claim. By Kummer theory, C3-extensions K of F ′ := Q(ζ3) must be of

the form F ′( 3
√
b) for b ∈ F ′×/(F ′×)3. If K is Galois over Q, then 〈b〉 ⊆ F ′×/(F ′×)3

must be stable under the action of Gal(F ′/Q). Let τ generate Gal(F ′/Q). We now

split into two cases, the first where τ(b) ≡ b (mod (F ′×)3) and the second where

τ(b) ≡ b2 (mod (F ′×)3).

In the first case, the fact that Q×/(Q×)3 = (F ′×/(F ′×)3)Gal(F ′/Q) (as |F ′ :

Q| = 2) ensures that we may assume that b ∈ Q×. As a result, K/Q must be the

S3-extension of Q given by the splitting field of (x3 − b).

We claim that the second case does not result in any S3-extensions. Suppose

that K/Q as above is Galois with group G and fix an extension of τ to K, which

we shall also denote τ . Fix a choice β of cube root of b and a primitive third root
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of unity ζ3. Then G must act faithfully on the set

Σ := {β, ζ3β, ζ
2
3β, τ(β), ζ3τ(β), ζ2

3τ(β)}.

Let σ be the element of G of order 3 which sends β 7→ ζ3β. We claim that G = 〈σ, τ〉
acts on Σ in the following way:

β ζ3β ζ2
3β

τ(β) ζ3τ(β) ζ2
3τ(β)

σ

τ

σ

τ

σ

τ

σ

σ σ

The action of σ on the top row is by definition and the action of τ is also given by

assumption together with that fact that τ(ζ3) = ζ2
3 . The only non-obvious claim is

the action of σ on τ(β). Using the assumption that τ(b) ≡ b2 (mod (F ′×)3), we find

that τ(β) = β2λ for some λ ∈ Q(ζ3) (as F ′ contains the third roots of unity). As a

result:

σ(τ(β)) = σ(β2)σ(λ)

= ζ2
3β

2λ

= ζ2
3τ(β)

Finally, note that this action on Σ is given by C6 acting on itself faithfully, and so

G cannot be isomorphic to S3.

Without changing the extension, we may additionally assume that a is a

cubefree integer and, given that −1 is a cube in Q(ζ3), that a is positive.

Claim. For a cubefree integer a, the discriminant of Q( 3
√
a, ζ3) is divisible by (a′)4,

where a′ is the largest squarefree divisor of a which is coprime to 3.

Proof of Claim. The conductor-discriminant formula [Neu13, VII.11.9] gives that:

∆Q( 3√a,ζ3) = f(1)f(ε)f(ρ)2.

Here f(−) denotes the Artin conductor, 1 and ε are the trivial and non-trivial one

dimensional complex representations of S3 = Gal(Q( 3
√
a, ζ3)/Q) and ρ its two di-
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mensional representation. We claim that, for every prime p 6= 3 dividing a, we have

that p2 divides f(ρ). As the Artin conductor is a product

f(ρ) =
∏
p

pfp(ρ)

of local Artin conductors, it suffices to calculate fp(ρ) for p dividing a but coprime

to 3. By definition,

fp(ρ) =
∑
i≥0

|Gi|
|G0|

codim ρGi ,

where Gi denotes the ith ramification group of G at p. As Q(ζ3) is unramified away

from 3, we find that G0 is the C3-subgroup of S3. But, Gi is a p-group for all i ≥ 1,

and so must vanish. As a result

fp(ρ) =
|G0|
|G0|

codim ρG0 = 2.

This gives the desired result.

We now wish to bound the number of extensions NX of the form Q( 3
√
a, ζ3)

with discriminant at most X. By the above claim this is less than or equal to the

number of cubefree integers a for which a′ ≤ X1/4 =: Y . By writing each such a as

3dbc with b and c squarefree and not divisible by 3 we obtain the bound:

NX ≤ 3
∑

1≤b≤Y

∑
1≤c≤Y/b

1

≤ 3
∑

1≤b≤Y

Y

b

Here the sums run only over integers and the coefficient 3 corresponds to the number

of possible choices of exponent of 3 in the prime decomposition of a. By breaking

the summation into the first term and 2 ≤ b ≤ Y -terms we obtain the bound:

NX ≤ 3

(
Y +

∫ Y

1

Y

b
db

)
= 3Y (log Y + 1).

In other words, the number of S3-extensions of Q containing Q(ζ3) of discriminant

≤ X is O(X1/4(logX)1/4). In contrast, Bhargava and Wood have shown that the

number of S3-extensions of Q of discriminant at most X is asymptotic to c · X1/3
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for some c > 0 [BW08, Thm. 2]. This concludes the proof.

3.4.4 Real D2p-extensions

Now assume that K/Q is a Galois totally real D2p-extension for some odd

p. In this case rkO×K = 5 and O×K/µK ⊗ Qp ∼= ε ⊕ ρ⊕2 (continuing the notation of

Section 3.4.3). From (3.13), we find that O×K/µK ⊗ Zp lies in one of the following

five isomorphism classes:

A⊕A⊕ ε,

A⊕A′ ⊕ ε,

A′ ⊕A′ ⊕ ε,

(A, ε)⊕A,

(A, ε)⊕A′.

It can be checked that (A, ε)⊕ (A′,1) is isomorphic to 1↑G{1}, so H1(P, (A, ε)) = 0.

As a result, the regulator constants and cohomology modules of the above lattices

are given by:

A⊕A⊕ ε A⊕A′ ⊕ ε A′ ⊕A′ ⊕ ε (A, ε)⊕A (A, ε)⊕A′

C2·θD2p
(−) p3 p 1/p p 1/p

dimFp H
1(Cp,−) 2 2 2 1 1

dimFp H
1(Cp,−)D2p/Cp 0 1 2 0 1

Figure 3.3

Note that since 2 · θD2p is an integral Brauer relation and each of the candi-

dates for O×K/µK lies within the same Qp[G]-representation, we get that the valua-

tions of the regulator constants agree modulo 2 (cf. Remark 3.1.7).

Example 3.4.10. Applying Theorem 3.1.5, we find that(
h(K)

h(F ′)h(L)2

)2

= C2·θD2p
(O×K/µK)−1 · C2·θD2p

(1).

94



Since C2·θD2p
(1) = 1/p we therefore get:

h(K)

h(F ′)h(L)2
=


1/p2 if O×K/µK ⊗ Zp ∼= A⊕A⊕ ε

1/p if O×K/µK ⊗ Zp ∼= A⊕A′ ⊕ ε or (A, ε)⊕A

1 if O×K/µK ⊗ Zp ∼= A′ ⊕A′ ⊕ ε or (A, ε)⊕A′
.

This observation was made in [Bar12, Ex. 6.4].

Whilst any single invariant listed in Figure 3.3 gives only partial information,

the five isomorphism classes can be distinguished by calculating any 2 of the 3 listed

invariants. For example:

Lemma 3.4.11. Let K/Q be a totally real D2p-extension for p odd. Then the iso-

morphism class of O×K/µK⊗Zp as a Zp[G]-lattice is determined by H1(Cp,O×K/µK)

as a D2p/Cp-module.

Example 3.4.12. The module structure of O×K/µK ⊗ Z2 is again independent of

K, so that when p ≤ 67, the isomorphism class of O×K/µK as a Z[D2p]-module is

determined only by O×K/µK ⊗ Zp.

Example 3.4.13. When p = 3, using Magma, we also calculated the relative pro-

portions of the five possibilities amongst all the totally real S3-extensions stored in

the LMFDB. The largest discriminant appearing is ≈ 2.44 × 1011, but again the

data is not complete up to such discriminants.

A⊕A⊕ ε A⊕A′ ⊕ ε A′ ⊕A′ ⊕ ε (A, ε)⊕A (A, ε)⊕A′ Total

22 526 2407 574 1832 5361

≈ 0.41% ≈ 9.8% ≈ 44.9% ≈ 10.7% ≈ 34.2%
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Chapter 4

Relative motives over Shimura

varieties

4.1 Background on classical motives

Prior to outlining the aims of this chapter, we give brief outline of the theory

of motives as they were first conceived.

Classically, motives are associated to smooth projective varieties over a field k.

Motives are an attempt to create an intermediate objects between geometry and co-

homology, which are geometric in nature, but are linear and behave in a similar way

to cohomology. In particular, the category of motives should be constructed without

appealing to derived functors or injective resolutions, and yet capture cohomological

behaviour.

We now very briefly sketch Grothendieck’s original construction of motives

for smooth projective varieties (for more details [Sch94] is a very good source). This

case is referred to as the pure case in reference to the purity results for cohomology of

smooth projective varieties. The basis for the construction is that morphisms should

correspond to algebraic cycles. The intuition being that algebraic cycles canonically

induce morphisms in any Weil cohomology theory. For this reason we must fix an

“adequate equivalence relation” ∼ on algebraic cycles (for the definition, see e.g.

[MNP13, Sec. 1.2]). Any such choice will then yield a different category M∼/k of

motives with respect to ∼.

Let X,Y/k be smooth projective varieties which need not be connected,

96



but for simplicity we shall temporarily assume that X,Y are equidimensional of

dimensions dX , dY respectively. We define the group of degree p correspondences

with respect to ∼ to be

Corrp(X,Y ) = AdX+p
∼ (X × Y ),

where, for d an integer and Z a smooth projective variety, Ad∼(Z) denotes the Q-

vector space of d-dimensional cycles up to equivalence by ∼. The objects of M∼/k
consist of triples (X, e, n) where X is as above, e is an element of Corr0(X,X)

which is an idempotent with respect to composition of correspondences, and n is

some integer. The morphisms (X, e, n)→ (X ′, e′, n′) then consist of elements of

eCorrn
′−n(X,X ′)e′ ⊆ Corrn

′−n(X,X ′),

with composition given by composition of correspondences. It is formal to check that

M∼/k is a Q-linear additive category [Sch94, Thm. 1.6]. Given a smooth projective

variety X, we call the triple (X,∆X , 0), with ∆X the diagonal cycle of X ×X, the

motive associated to X and denote it by h(X). This extends to a functor

h : (SmProjVar/k)op →M∼/k.

Now assume that k is a number field with a fixed embedding into C. When

∼ is rational equivalence (resp. homological equivalence with respect to singular or

equivalently `-adic cohomology for any prime `) we denoteM∼/k by CHM/k (resp.

HomM/k) which we refer to as the category of Chow motives (resp. homological

motives) over k. Since rational equivalence is finer than homological equivalence,

we obtain a forgetful functor CHM/k → HomM/k.

It is expected that the category of homological motives is in some sense

universal with respect “behaving like a cohomology theory”. More precisely, if

Grothendieck’s standard conjecture D (see [MNP13, Conj. 1.2.19]) holds, then any

Weil cohomology theory factors through HomM/k and homological equivalence is

the coarsest adequate equivalence relation for which this is the case. This suggests

that motives are important for the comparison of different cohomology theories.

For example, proving results at the level of motives often leads to results for any

cohomology theory e.g. that the cohomology of an abelian variety should form an

exterior algebra (see [Sch94, Thm. 5.2]).

Unconditionally, we do know that `-adic cohomology canonically factors
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through the construction of HomM/k. We denote the corresponding “realisation”

functor HomM/k → GrÉtQ`/k to graded `-adic sheaves on k by H•` (it is equivalent

to consider `-adic sheaves on k or Q`-valued Gk-representations, specifically repre-

sentations of the form H i
ét(Xk̄,Q`)). The following is one of the most important

conjectures pertaining to the theory of motives:

Conjecture 4.1.1 (Tate). Let k be a finitely generated field. Then, for any prime

`, the `-adic realisation functor H•` : HomM/k → GrÉt/Q` is full.

Note thatH•` is faithful by construction. If the conjecture holds, any property

of the motive associated to a variety should be recoverable from its étale cohomology.

This to some extent justifies the prevalence of the study of Galois representations

within number theory.

We call a motive an abelian motive if it is isomorphic to a triple (X, e, n)

with X a union of abelian varieties.

Theorem 4.1.2 (Faltings [Fal83, Thm. 4]). When k is a number field, the Tate

conjecture holds upon restriction to the full subcategory of abelian motives.

The analogous result for finite fields is due to Tate.

Example 4.1.3. One direct consequence of the conjecture is that if a homological

motive M is such that H•` (M) =
⊕

iNi, then there should exist motives Mi with

M =
⊕

iMi for which H•` (Mi) ∼= Ni.

For example, let E be an elliptic curve over a number field k. Then⊕
iH

i
ét(Ek̄,Q`) is supported in degrees 0, 1 and 2. Moreover, H1

ét(Ek̄,Q`)∨ ∼= V`E :=

T`E ⊗ Q`, where T`E denotes the Tate module, which is absolutely irreducible if

and only if E does not have complex multiplication defined over k.

This is indeed reflected at the level of motives. It can be shown that h(E) ∈
HomM/k decomposes as a sum of three motives hi(E) for i ∈ {0, 1, 2} whose real-

isations are H i
ét(Ek̄,Q`) respectively (this moreover holds for the Chow motive of

E, see Theorem 4.4.8). It also makes sense to speak of motives with coefficients

in general fields, as opposed to the definition we gave with coefficients in Q (see

Definition 4.3.8). This allows us to say that a motive is absolutely irreducible if

and only if it is irreducible with coefficients replaced by a sufficiently large finite

extension. It is a fact that h1(E) is absolutely irreducible if and only if E does not

have complex multiplication defined over k (the same also holds for Chow motives,

cf. 4.4.6).
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However, the process of extracting information from the Galois representa-

tions need not be practical. For most properties of varieties, how to do this is highly

mysterious. We conclude this overview by giving two extended examples where it

is possible to be more explicit.

Definition 4.1.4. A Q-valued pure Hodge structure of weight n consists of a finite

dimensional Q-vector space V together with a decomposition of
⊕

p+q=n V
p,q of

VC := V ⊗ C into C-subspaces V p,q for p, q ∈ Z for which the action of complex

conjugation on VC interchanges V p,q and V q,p. A morphism of Hodge structures

V → V ′ is then a map of Q-vector spaces which respects the grading. We call

dimC V
p,q the (p, q)th Hodge number of V and denote it hp,q. We call the set of

(p, q) for which hp,q is non-zero the Hodge type of V .

Alternatively, the data of a pure Hodge structure of weight n is equivalent

to a vector space V equipped with a descending filtration F • of C-subspaces of VC

for which, whenever p+ q = n+ 1, F pVC and F qVC intersect trivially and span VC.

The correspondence is given by setting F iVC =
⊕

p+q=n
p≥i

V p,q.

There is an obvious notion of tensor products and duals of Hodge structures.

Let W = Q. Then W has a Hodge structure of weight −2 given by setting W−1,−1 =

WC. We call W the Tate Hodge structure and denote it Q(1). We further set Q(n)

for n ∈ N to be the nth tensor power of Q(1) and Q(−n) = Q(n)∨. For an arbitrary

Hodge structure V and n ∈ Z, we let V (n) denote its nth Tate twist V ⊗Q(n).

The prototypical example of a pure Hodge structure of weight n comes from

the degree n singular cohomology of a smooth projective variety defined over C.

Here, the Hodge structure arises from the canonical comparison isomorphism of sin-

gular cohomology with complex coefficients and de Rham cohomology. This results

in a complex vector space with both a Q-structure coming from that of singular

cohomology and the Hodge decomposition of de Rham cohomology. Morphisms of

varieties then induce morphisms of Hodge structures.

It is natural to ask if the Hodge numbers can be found directly from the étale

cohomology of the variety. Tate was the first to suggest a conjectural answer to this

and attempting to provide a proof became a motivational question within the field

of p-adic Hodge theory. This was subsequently shown by Faltings:

Theorem 4.1.5 (Faltings [Fal88, Thm. III.4.1]). Let k be a p-adic local field and

Gk denote its absolute Galois group. For X/k a smooth proper variety, there is a
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Gk-equivariant isomorphism

Ck ⊗Qp Hn
ét(X,Qp) ∼=

⊕
i+j=n

Ck(−j)⊗k H i(X,Ωj
X/k).

Here, Ωq
X/k denotes the qth exterior power of the sheaf of algebraic differentials on X,

whilst Ck denotes the completion of the algebraic closure of k and Ck(−q) denotes

the (−q)th Tate twist. The action on Gk on the left hand side is diagonal via its

action on Hn
ét(Xk̄,Qp) and Ck, whilst on the right hand side is via its action on

Ck(−q) (so the action on both sides is Ck-semilinear).

In particular, when k is again a number field, the (p, q)th Hodge number of

X can be recovered by the restriction of the associated Galois representations to

any choice of decomposition group.

For the second example, we consider only abelian varieties over a number

field k. In this case, it is well understood what information should be carried by

the motive. Namely, h(A) ∼= h(A′) if and only if A is isogenous to A′ (cf. Theorem

4.4.10). In particular, the rank of A is a function of its motive. Consequently,

Theorem 4.1.2 asserts that, for any prime p, the isomorphism class of VpA as a

Galois representation encodes the rank of A.

As part of the formalism of the Birch–Swinnerton-Dyer conjecture, it is ex-

pected that the rank of A should be a function of the p∞-Selmer group of A/k. This

is defined in terms of the p-power torsion on A, but also in terms of local conditions

defined by the Kummer map. As a result, it is not clear, a priori, that the p∞-

Selmer rank is a function of the Galois representation and thus can be read off from

the motive. This was resolved by work of Bloch–Kato, where they showed that the

local conditions could in fact be written purely in terms of the Galois representation

VpA [BK90]. Consequently, if the p-part of the Tate-Shafarevich group is known

to be finite (this is the Shafarevich conjecture for the prime p), then this yields a

procedure to extract the rank of an abelian variety from its Galois representation.

4.2 Introduction

Let k be a number field with a fixed embedding into C. Fix some smooth

quasi-projective variety S over a number field k.

If we consider smooth quasi-projective varieties X equipped with smooth
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projective structure maps X
π→ S (as opposed to the case of S = Spec k considered

in the previous section), then the standard cohomology theories admit analogues in

this context. For example, taking for any prime ` the higher direct imagesRiπ∗(Q`)X
of the one dimensional constant `-adic sheaf on X yields an `-adic sheaf on S whose

stalks calculate the `-adic cohomology of the fibres in the traditional sense (as we

may apply proper base change). Many results for `-adic cohomology carry over

to this relative setting and for simplicity we denote Riπ∗(Q`)X simply by H i
`(X).

The Hodge structure defined by singular cohomology and de Rham cohomology also

extends to give a “variation of Hodge structure” on S (this is made precise in Section

4.5).

It is also possible to generalise the classical construction of motives to define

categories of relative motives CHM/S and HomM/S in this context (see Section

4.4) as well as relative realisations functors (see Section 4.5). Many questions about

motives as defined in Section 4.1 carry over to the case of relative motives.

Throughout the theory of motives, we find ourselves needing to produce

algebraic cycles. For example, the Tate Conjecture 4.1.1 is a statement about the

existence of cycles lying over cohomology classes. Unfortunately, in general, it is

very hard to demonstrate all conjectural algebraic cycles actually exist. One setting

where we have additional tools is in the theory of Shimura varieties.

A Shimura variety is defined by a Shimura datum (G,X). Here G is a re-

ductive algebraic group over Q and X is a conjugacy class of maps Hom(S, GR),

where S = ResC/RGm denotes the Deligne torus, such that G and X satisfy various

compatibility properties (see e.g. [Mil17, Def. 5.5]). It follows that X is canonically

a disjoint union of Hermitian symmetric domains. We shall often denote X simply

by a choice of representative element h ∈ X.

Definition 4.2.1. Let Af denote the finite adeles of Q and fix an element g =

(gp)p ∈ GLn(Af ). We denote by Γp the subgroup of Qp× generated by the eigenvalues

of gp. Then we say g is neat if after fixing some embedding Q ↪→ Qp for all primes p,⋂
p(Q× ∩ Γp) = {1}. This is independent of the choice of embeddings. We say that

K ≤ G(Af ) is neat if for some (or equivalently for every) faithful representation

ρ : G→ GLn,Q we have that ρ(g) is neat for all g ∈ K (see for example [Pin90, Sec.

0.6]).

For every neat compact open subgroup K of G(Af ), the space

ShK(G,X) := G(Q)\(X× (G(Af )/K))
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has the structure of a smooth quasi-projective complex algebraic variety. In fact, it

has a canonical model over some number field lying within C known as its reflex field,

which we also denote by ShK(G,X). As such, ShK(G,X) satisfies the requirements

to be used as a choice of S in the above discussion.

One of the reasons to study Shimura varieties is that, in high generality, they

are expected to be moduli spaces for abelian varieties with extra structure (or more

accurately abelian motives). When this is the case, proving results about Shimura

varieties can yield results for whole families of abelian varieties. Mazur’s bounds on

the size of the torsion subgroup of an elliptic curves over Q are one example of this

in action [Maz78].

Example 4.2.2. Let G = GL2 and X be the conjugacy class of the map h : S→ GL2

which sends a + bi ∈ C× = S(R) to

(
a −b
b a

)
. Then (G,X) defines a Shimura

datum and X is isomorphic to H = H+
∐
H−, the union of the upper and lower

half planes. The induced action of G on H is given by Möbius transformations and

the S := ShK(G,X) are nothing but modular curves. As such, for a Q-algebra A,

the A-points of S parametrise elliptic curves over S with a choice of level structure.

The meaning of level structure is dependent on K, for example, in the case of

K1(p) =

{(
a b

c d

)
∈ GL2(Af )

∣∣∣∣∣ c ≡ 0 and d ≡ 1 (mod p)

}

the level structure consists of a marked A-point of order p.

This moduli interpretation automatically results in a universal elliptic curve

E → S. The endomorphisms of E also give rise to families of cycles on the products

E ×S ...×S E .

Example 4.2.3. Let F/Q be an imaginary quadratic field and write TF for the torus

ResF/QGm. Fix an isomorphism F ⊗Q R ∼= C and let X consist of the single point

defined by the corresponding isomorphism h : (TF )R
∼→ S. Then (TF , h) defines a

Shimura datum. Moreover, a choice of Q-basis of F defines an inclusion ι : TF ↪→
GL2 for which the image of h lies in the subspace H defined in Example 4.2.2. Thus

there is a morphism of Shimura data (TF , h) ↪→ (GL2,H). The reflex field of (TF , h)

is F whilst the reflex field of (GL2,H) is Q. As such, for any choice of neat open

compact subgroups K,K ′ of TF and GL2 respectively for which ι(K) ≤ K ′, there is

a closed immersion

ι∗ : ShK(TF , h) ↪→ ShK′(GL2,H)F
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of smooth algebraic varieties over F .

For any F -algebra A, the A-points of ShK(TF , h) parametrise elliptic curves

E/A with a choice of level structure and map F ↪→ End(E)⊗ZQ for which induced

action on Ω1
E is F -linear. The map ι∗ is then the map given by forgetting the

inclusion.

There is also a universal elliptic curve E ′ → ShK(TF , h). The compatibility

of the moduli intepretations then ensures that the following diagram is cartesian:

E ′ EF

ShK(TF , h) ShK′(GL2,H)F

y

ι∗

Just as in Example 4.1.3, it makes sense to consider relative motives with coefficients.

Then the base change of the relative motive h1(E)F is absolutely irreducible, whilst

its pullback to ShK(TF , h), i.e. h1(E ′), is not (see Example 4.1.3). Correspondingly

E ′ ×ShK(TF ,h) E ′ has additional cycles.

Fix a Shimura datum (G,X). The definition of Shimura varieties ensures

that, given a representation of G, there is a corresponding variation of Hodge struc-

ture on X. Indeed, the data of a pure Hodge structure on a Q-vector space V

is equivalent to a choice of representation S → GL(VR). But, given a represen-

tation ρ : G → GL(V ), for each (h : S → GR) ∈ X we obtain a representation

S h→ GR
ρ→ GL(VR). These compatibly define a variation of Hodge structure on X

(see Definition 4.5.2).

These variations of Hodge structure on X descend to give variations of Hodge

structure on S(C), the complex points of ShK(G,X), considered as a complex man-

ifold. This extends to a functor

µHG : Rep(G)→ VHS/S(C),

which we refer to as the canonical construction, here Rep(G) denotes the category

of Q-valued representations of G and VHS/S(C) the category of variations of Hodge

structures on the complex manifold S(C). There is also an analogous construction

of lisse `-adic sheaves on ShK(G,X).

In general, there are very few methods to produce interesting variations of

Hodge structure or `-adic sheaves (even in the case when S = Spec k, where `-adic
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sheaves correspond to Galois representations). The canonical construction provides

a large source of such objects, and it is natural to compare these to other exam-

ples occurring in nature. For example, do the sheaves produced by the canonical

construction “arise from geometry”, i.e. do they occur as a subquotient of a higher

direct image of some smooth projective variety X/S up to Tate twists? It is expected

that this is the case.

Example 4.2.4. We continue using the notation of Example 4.2.2. If 1 denotes the

one dimensional trivial representation of GL2, then µHG(1) will be the variation of

Hodge structure Q(0), i.e. the constant one dimensional local system with its unique

variation of Hodge structure of weight 0. This is the realisation of the trivial motive

(S,∆S , 0). If now W is the one dimensional representation on which elements of

GL2 act via the determinant map, then µHG(W ) is Q(1), which is the variation of

Hodge structure associated to (S,∆S , 1). A more interesting example is when V

is the standard representation of GL2. We shall see that µHG(V ) is the variation of

Hodge structure (R1π∗E)∨, where E π→ S is the universal elliptic curve over S.

It is actually expected that variations of Hodge structure produced by the

canonical construction should arise from geometry functorially. Specifically, there

should be an Q-linear tensor functor

µmot
G : Rep(G)→ CHM/S

which should lift the canonical construction, i.e. composing µmot
G with its Hodge

realisation coincides with µHG up to a specified natural isomorphism (cf. Lemma

4.10.1). In other words, the canonical construction should be motivic. We would

then hope that this lift µmot
G lifts not just the canonical construction of variations

of Hodge structure, but also of `-adic sheaves for all `. As such, we may think of it

as a “universal” canonical construction.

Finally, we also expect that µmot
G should be compatible with morphisms of

Shimura data (such as in Example 4.2.3).

This aim of this chapter is to attempt to answer some of these questions.

The key idea is to use “mixed Shimura varieties” to automate the construction of

motives over traditional (or pure) Shimura varieties. We are able to define such a

motivic lift µmot
G on the full subcategory Rep(G)AV of Rep(G) whose objects have

Hodge type contained in {(−1, 0), (0,−1)} (Proposition 4.7.9). In Section 4.8, we

check that this does lift the canonical construction and is compatible with arbitrary

base change of Shimura data. In summary we obtain:
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Theorem 4.2.5. Let (G,X) be a Shimura datum and K ≤ G(Af ) be a neat open

compact subgroup. Write S for the corresponding Shimura variety ShK(G,X). There

is a canonical functor µmot
G : Rep(G)→ CHM/S with the property that the following

diagram

Rep(G)AV CHM/S

VHS/S(C)

µmot
G

µHG H•B

=⇒

commutes up to a canonical natural isomorphism. Now let f : (G′,X′) → (G,X)

be a morphism of Shimura data and K ≤ G(Af ),K ′ ≤ G′(Af ) neat open compact

subgroups with f(K ′) ≤ K. We also write f : S′ := Sh′K(G,X′) → S := ShK(G,X)

for the induced map between the corresponding Shimura varieties. Then there is a

commutative prism:

Rep(G)AV CHM/S

VHS/S(C)

Rep(G′)AV CHM/S′

VHS/S′(C)

f∗
µHG

µmot
G

f∗

H•B

µH
G′

µmot
G′

H•B

f∗

where the vertical maps are base change by f and H•B denotes the Hodge realisation

(see Corollary 4.5.7).

This is stated more precisely as Theorem 4.8.4.

One type of Shimura varieties where it is possible to say more is that of PEL-

type Shimura varieties. PEL-type Shimura data are Shimura data which admit an

auxiliary choice of PEL-datum (see Definition 4.9.2). This extra structure ensures

that Shimura varieties with a choice of PEL-datum satisfy a specific moduli problem

in terms of abelian varieties. Many classical Shimura varieties admit PEL-data,

including those given in Examples 4.2.2, 4.2.3.

The property of Shimura data (G,X) with a choice of PEL-datum we shall

most use is that all representations of such a G are summands of some family
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of explicit representations depending on the PEL-datum (Proposition 4.9.6), and

recent work of Ancona has described the maps between them [Anc15, Prop. 8.5].

Moreover, Ancona shows that all of these representations and morphisms can be

canonically lifted to CHM/S (see Theorem 4.9.7).

It is worth remarking that a single Shimura datum may admit more than one

PEL-datum, each with distinct moduli interpretations. For example, consider the

Shimura datum for GL2 described in Example 4.2.2, (GL2,H), then each modular

curve S is simultaneously a moduli space for elliptic curves with certain level struc-

ture and also two-dimensional abelian varieties which are products of the same ellip-

tic curve with duplicated level structure. These correspond to two distinct choices

of PEL-datum for (GL2,H) (see Example 4.9.4). A priori, Ancona’s construction of

motivic lifts depends on the choice of PEL-datum for (G,X).

Let f : (G′,X′) → (G,X) be a morphism of Shimura data. Assume that

each Shimura datum has a fixed, but not necessarily related, choice of PEL-datum

satisfying the following condition: If the choices of PEL-data have standard repre-

sentations V, V ′ respectively, then

f∗V is isomorphic to a summand of
k⊕
i=1

V ′,

for some k.

Assuming this, via the viewpoint of mixed Shimura varieties we are able to

check that Ancona’s construction commutes with base change. More specifically,

that there is a prism analogous to that of Theorem 4.2.5 (see Theorem 4.10.8). In

the case when (G′,X′) = (G,X), this can be used to demonstrate the independence

of Ancona’s construction from the choice of PEL-datum.

The condition on f∗V is required to ensure we are able to make use of

the functoriality provided by mixed Shimura varieties. In practice, this condition

appears to be often satisfied. For example, if (G′,X′) is the Shimura datum corre-

sponding to a Siegel modular variety with its usual PEL-datum, then any morphism

f : (G′,X′)→ (G,X) will satisfy the conditions.

We also show all the above results also hold with the Hodge realisation

replaced by the `-adic realisations for any `. It is also important to have analogues

of all these results for motives with coefficients (cf. Example 4.1.3). For this reason

we state all our results with coefficients lying in some arbitrary number field.
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One application of results such as Theorem 4.2.5 is in the context of Euler

systems. An Euler system consists of a compatible family of classes within the Galois

cohomology of some Galois representation, which in the case of Shimura varieties

would be given by étale cohomology. Euler systems for Shimura varieties have

applications in proving partial cases of conjectures such as the Birch–Swinnerton-

Dyer Conjecture.

For such Euler systems, it is also important to consider comparison with

other cohomology theories, for example, in order to show that the classes do not

vanish. For this reason, it is useful to use the language of motives and construct the

classes motivically. There are relatively few sources of classes with which to build

Euler systems on Shimura varieties and it is vital to be able to pushforward such

classes at the motivic level. For an example of this in practice see [LSZ17].

4.3 Change of coefficients

Throughout this chapter we deal with many different Q-linear categories,

such as CHM/S,Rep(G),VHS/S(C). Let L/Q be a finite field extension. Some

of these categories naturally generalise to allow coefficients in L. For example, for

Rep(G) the obvious analogue is to take RepL(G), the category of L-linear represen-

tations of GL. This is not always possible though. For example, the definition of a

Hodge structure naturally extends to allow coefficients in L only when L ⊆ R.

In this section, we introduce two ways of formally adjoining extra coeffi-

cients to an arbitrary F -linear additive category. We shall use these as a substitute

when dealing with categories whose definition doesn’t directly allow for additional

coefficients.

The main work of this section is to show that the two formal constructions

coincide and that, in cases which directly allow additional coefficients, they agree

with the existing definition. The work of this section is well-known, the original

sources being [SR72], [Del79, Sec. 2], [DM82, Pf. of Thm. 3.11], and for a good

overview see [AK02, Sec. 5].

Notation 4.3.1. Let L/F be a finite extension of fields and A be a F -linear cate-

gory.

Construction 4.3.2. We construct a category A(L) as follows: Let the objects

of A(L) consist of pairs (M,σ) with M an object of A and σ : L ↪→ EndA(M)
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an F -linear inclusion. The morphisms (M,σ) → (M ′, σ) are then elements of

HomA(M,M ′) which are equivariant for the action of L. In other words, A(L)

consists of representations of L within A. We think of A(L) as extending the coeffi-

cients of A from F to L. This notation was first introduced by Saavedra Rivano in

[SR72].

Example 4.3.3. Let VecF denote the category of finite dimensional F -vector spaces.

Then, as an L-vector space is precisely an F -vector space with an F -linear L-

structure, (VecF )(L) is canonically equivalent to VecL. Let H be a finite abstract

group and RepF (H) the category of F -representations of H. Then by the previ-

ous example RepF (H)(L) is canonically equivalent to RepL(H) as the H-structure

respects the action of L.

Construction 4.3.4. We construct another category AL as follows: Let AL have

the same objects as A but set HomAL(M,N) = HomA(M,N)⊗F L.

If A is abelian then A(L) is also, but AL need not be. For example, let

F = R, L = C and let A be RepR(C3), where C3 is the cyclic group of order 3.

Then the non-trivial irreducible representation W of C3 over R is not absolutely

indecomposable and EndAL(W ) contains idempotents which do not correspond to

a summand.

Definition 4.3.5. We say that an additive category A is pseudo-abelian, if for

any object A ∈ A and idempotent e ∈ EndA(A), e has an image and the map

Im(e)⊕ Im(1−e)→ A is an isomorphism. As a result, in a pseudo-abelian category,

all idempotents admit kernels and cokernels.

Example 4.3.6. Any abelian category is pseudo-abelian. If A is pseudo-abelian,

then so is A(L). The categories of motives we have defined are pseudo-abelian. For

example, let (X, p, n) ∈ CHM/S and e ∈ EndCHM/S((X, p, n)) = pAdX−dS∼rat
(X×SX)p

an idempotent. Then Im(e) = (X, pep, n) and we canonically get

Im(e)⊕ Im(1− e) = (X, pep, n)⊕ (X, p− pep, n) ∼= (X, p, n).

Construction 4.3.7. Given an additive category B, we define its pseudo-abeliani-

sation B\ to be the category whose objects are pairs (X, e) with X an object of B
and e ∈ EndB(X) an idempotent and for which

HomB\((X, e), (X
′, e′)) = e ◦HomB(X,X ′) ◦ e′.
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Using the same argument as for motives, it is easy to see that B\ is pseudo-abelian.

There is an obvious fully faithful functor B → B\ which sends B 7→ (B, idB). If

B is pseudo-abelian, then B → B\ is an equivalence of categories. If B → C is an

additive functor from an additive category to a pseudo-abelian category, then there

is a unique, up to canonical natural isomorphism, additive functor B\ → C extending

B → C (see [CH00, Thm. 2.5]).

Since AL is poorly behaved, we shall instead consider its pseudo-abelianisa-

tion (AL)\.

Definition 4.3.8. Let F/Q be a finite field extension. Given an adequate equiv-

alence relation ∼, we define the category M∼,F /k of relative motives over k with

coefficients in F with respect to ∼ to be ((CHM/k)F )\ (cf. [Del79, Sec. 2.1]). We

define CHMF /k, HomMF /k analogously.

Remark 4.3.9. All the constructions for motives with coefficients in Q now carry

over, for example, we obtain functors h : (SmProjVar/k)op → CHMF /k by compo-

sition with the canonical functor CHM/k → CHMF /k.

Construction 4.3.10. Given a finite dimensional F -vector space V and an object

M ∈ A, we define V ⊗F M as the object of A which represents the functor which

sends

N 7−→ HomF (V,HomA(M,N)).

Explicitly, such a V ⊗F M is given by
⊕

iM where {x1, ..., xn} is an F -basis for

V . If we take V = L, then by functoriality we obtain a canonical map αM : L ↪→
EndA(L ⊗F M) acting on the left. After choosing a basis, the action of λ ∈ L is

given by writing λ =
∑

i aixi with ai ∈ F and using the F -linearity of A.

Lemma 4.3.11. Sending M ∈ A to (L⊗FM,αM ) ∈ A(L), with αM denoting acting

by L on the left, defines a functor ΦA : A → A(L). This canonically extends to a

fully faithful functor AL → A(L).

Proof. The first part is clear. For M,N ∈ A, we must compatibly define isomor-

phisms

L⊗F HomA(M,N)
∼−→ HomA(L)

(L⊗F M,L⊗F N). (4.1)

Firstly, we claim there are compatible isomorphisms

L⊗F HomA(M,N)
∼−→ HomA(M,L⊗F N). (4.2)

109



In fact, in general, V ⊗FN also represents the functor V ⊗F HomA(−, N) (see [SR72,

Prop. I.1.5.1], [DM82, Pf. of Thm. 2.11]). If we make a choice of F -basis of L, this

can be seen explicitly by writing L⊗F HomA(A,B) = (
⊕

i F )⊗F HomA(A,B) and

HomA(A,L⊗F B) = HomA(A,
⊕

iB).

We now claim that for any (B, σ) ∈ A(L) and A ∈ A, there are isomorphisms

HomA(A,B)
∼−→ HomA(L)

((L⊗F A,αA), (B, σ)).

Here L ⊗F A is given the left L-structure defined in Construction 4.3.10. In other

words, ΦA is left adjoint to the forgetful map A(L) → A. This is clear as if we fix a

basis x1, ..., xn of L over F , then an element f ∈ HomA(A,B) is sent to∑
i

σ(xi) ◦ f :
⊕
i

A→ B.

Setting B = L⊗F N with its usual left action gives

HomA(M,L⊗F N)
∼−→ HomA(L)

(L⊗F M,L⊗F N).

Composing (4.2) with this gives (4.1).

Lemma 4.3.12. Let L/F be a finite field extension and A a pseudo-abelian F -linear

category, then ΦA defines a canonical equivalence of categories

(AL)\ → A(L).

Proof. That the map is fully faithful is automatic from Lemma 4.3.11. So we need

only check essential surjectivity, i.e. that every element (M,σ) ∈ A(L) is isomorphic

to a summand of (L ⊗F N,αN ) for some N ∈ A. In fact, we may take N = M .

Indeed, start with L ⊗F M considered as an element of A by L acting on the left.

Then we have canonical isomorphisms

L⊗F M ∼= L⊗F (L⊗L,σ M)

∼= (L⊗F L)⊗L,ι2,σ M,

where ⊗L,ι2,σ denotes that the tensor is with respect to acting by L on the right of

L⊗F L and considering M as an object of A(L) via σ. Now, L⊗F L has a summand

isomorphic to L which is the characterised as being the subspace on which the left
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and right actions of L agree. If we let e be the corresponding idempotent, then

(e · (L⊗F L))⊗L,ι2,σ M

is a summand of L⊗F M . But,

(e · (L⊗F L))⊗L,ι2,σ M ∼= L⊗L,ι2,σ M
∼= L⊗L,σ M
∼= M

with L-acting via σ. Here, the middle isomorphism uses that acting on L = e ·(L⊗F
L) on the left and right agree.

We may define a canonical essential inverse to ΦA in the following way. Given

(M,σ) ∈ A(L), consider L⊗FM as an L⊗F L-module via the left action of L and the

action by σ. Then project using the idempotent corresponding to the submodule of

L⊗F L on which the left and right L-actions agree.

Remark 4.3.13. In the case of motives with coefficients, it is helpful to be able

to switch between the ((CHM/k)F )\ and (CHM/k)(F ) constructions freely. For

example, the tensor structure on ((CHM/k)F )\ is given by tensor product of the

underlying elements of CHM/k, whereas for (CHM/k)(F ), the tensor product of

((X, e, n), σ) and ((X ′, e′, n′), σ) is defined to be the largest summand of (X, e, n)⊗
(X ′, e′, n′) on which the two F -structures defined by σ, σ′ agree. On the other hand,

realisations for (CHM/k)(F ) are given simply by the realisations of the underlying

motive with the additional action of σ.

Lemma 4.3.14. Let G be an algebraic group over F . Then there is a canonical

equivalence of categories (RepF (G))\L → RepL(G).

Proof. A functor (RepF (G))L → RepL(G) is given by sending an object G →
GL(V ) of RepF (G) to GL → GL(VL) and is defined on morphisms via the L-

structure of RepL(G), mimicking the construction of ΦA. This extends to a functor

(RepF (G)L)\ → RepL(G) since the latter is abelian. It is easy to see that this is

fully faithful. We shall show that it is essentially surjective.

For T an S-scheme and X a T -scheme, let ResT/S(X) denote Weil restriction,

which exists whenever T, S,X are affine varieties. We then have unit and counit

maps

X → (ResL/FX)L, ResL/F (YL)→ Y,
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given by adjunction, as well as the counit-unit equation which says that

XL → (ResL/FXL)L → XL

is the identity map. We can be a bit more explicit about the counit map in this

case. If L/F is Galois, then (ResL/FXL)L is canonically a product of copies of XL

indexed by Gal(L/F ). In general, it is given by ResL⊗FL/LXL⊗FL, which necessarily

decomposes in a way matching that of L⊗F L. In any case, the counit map is given

by mapping onto the component for which the left and right L-structures agree (see

[BLR90, p. 197]).

Now, given a representation GL
ρ→ GL(W ), consider the representation

GL → (ResL/FGL)L
(ResL/F ρ)L→ (ResL/F GL(W ))L ↪→ GL((ResL/FW )L).

This representation is in the image of RepF (G)L, indeed it is the base change of

G→ GL(ResL/FW )

with G acting via its action on W . By the above paragraph, the subspace of

(ResL/FW )L on which the two L-actions agree is isomorphic to W . Moreover,

since this operation is functorial, this subspace is stable for the action of GL and

the GL-action is precisely given by ρ. So we have shown ρ isomorphic to a di-

rect summand of a representation in the image of RepF (G)L and so the functor

(RepF (G)L)\ → RepL(G) is essentially surjective.

This result motivates the definition of Tannakian categories in the case where

the fibre functor is not defined over the base field. The proof can be reinterpreted

as a consequence of the fact that every L-representation W lies within a canonical

choice of representation which is defined over F . The same argument also carries

over to representations of finite abstract groups, now using that any representation

V is a summand of L⊗F V , which is realisable over F .

Remark 4.3.15. We can be a bit more explicit about how to canonically define

the corresponding functor RepL(GL) → RepF (G)(L). It sends a representation

GL
ρ→ GL(W ) to the representation

G→ ResL/FGL
ρ→ ResL/F GL(W ) ↪→ GL(ResL/FW ),

together with the L-structure given by its action onW and functoriality of restriction
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of scalars. Here, the map G→ ResL/FGL is given by adjunction.

Example 4.3.16. Let F = R, L = C and G = S the Deligne torus ResC/RGm,C.

Fix an isomorphism

γ : SC
∼−→ Gm,C ×Gm,C (4.3)

such that projection onto the first component is the canonical map SC → Gm,C
corresponding to the subspace of C ⊗R C on which the left and right C-actions

agree.

Consider the one dimensional representation ρ : SC → Gm,C given by projec-

tion onto the first component. Now restrict the underlying vector space to R. If we

fix the R-basis 1, i of C, then this canonically decomposes as two copies of A1
R. The

C-structure, which for simplicity we only give on the R-points, is then given by

a+ bi 7−→

(
a −b
b a

)
.

We now wish to explicate the S-action given by

S→ ResC/RSC → ResC/R GL1 → GL2 . (4.4)

By our choice of (4.3), the map

S→ ResC/RSC
ResC/Rγ→ ResC/RGm × ResC/RGm = S× S pr1→ S

is the identity map. As a result, (4.4) is simply given by

a+ bi 7−→

(
a −b
b a

)
.

Together the C-structure and S-action define an element of RepR(S)(C).

Now, if we base change this back to C, then the underlying space A1
C×A1

C has

two actions of C, namely that given by the C-structure as an element of RepR(S)(C):

a+ bi 7→

(
a −b
b a

)
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And the structure given by extension of scalars

a+ bi 7→

(
a+ bi 0

0 a+ bi

)
.

The subspace on which these agree is spanned by

(
1

i

)
and this does indeed have

the action of SC ∼= Gm,C ×Gm,C given by projection onto the first component.

In subsequent sections we shall usually consider categories with scalars via

their A(L) type description.

4.4 Relative motives

Notation 4.4.1. Assume that k is a field of characteristic zero equipped with a

fixed embedding into C. Given a k-variety Z, we write Z(C) for its complex points

considered as a complex manifold.

In this section we shall fix S to be a smooth quasi-projective k-scheme. For

simplicity, we shall assume that all components of S have the same dimension dS .

Definition 4.4.2. Following [DM91, Sec. 1], fix an adequate equivalence relation

∼ on all k-varieties and let X,Y be smooth projective S-schemes. Assume for

simplicity that X,Y are equidimensional of dimensions dX , dY respectively. We

define the group of degree p correspondences from X to Y , up to equivalence by ∼,

to be

CorrpS(X,Y ) = AdX−dS+p
∼ (X ×S Y ),

where A∗∼(−) is as defined in Section 4.1. Proceeding as in the classical case we

obtain the category M∼/S of relative motives over S with respect to ∼, whose

objects are triples (X, e, n) consisting of a varietyX, an idempotent e ∈ Corr0
S(X,X)

and an integer n ∈ Z corresponding to Tate twists. The categoryM∼/S is a Q-linear

⊗-category, with the tensor structure being given by fibre product over S.

We are mostly concerned with the case when ∼ is taken to be rational equiv-

alence ∼rat, in which case we denoteM∼/S by CHM/S, or homological equivalence

∼hom with respect to singular cohomology (or equivalently any choice of `-adic co-

homology), in which case we denote the resulting category by HomM/S. These

categories are referred to as relative Chow motives over S and relative homological
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motives over S respectively1. Write H i
B(Z(C),Q) for the singular cohomology of

a variety Z/k. Since points are homologically equivalent and the cycle class map

commutes with pushforwards and pullbacks, homological equivalence is coarser than

rational equivalence. As a result,

Ad∼hom
(Z) = im(Ad∼rat

(Z)→ H2d
B (Z(C),Q)(d))

and we obtain a forgetful map

CHM/S → HomM/S,

which is full.

If SmProjVar/S denotes the category of (not necessarily irreducible) smooth

projective varieties over S, then there is a functor h : (SmProjVar/S)op → CHM/S

which assigns to a variety X/S its motive (X,∆X , 0) where ∆X is the diagonal cycle

of X ×S X. By composition, the same is also true of homological motives.

For any adequate equivalence relation, the construction of M∼/S is com-

patible with change of S, i.e. given f : S′ → S, we obtain pullback functors

f∗ : M∼/S →M∼/S′ by base changing triples in the obvious way.

Remark 4.4.3. This construction has been extended to the case when S → k is

not necessarily smooth but remains quasi-projective by work of Corti–Hanamura

[CH00]. These constructions test the boundaries of what might be considered to

be a “pure case”. On the other hand, it has recently been shown that Corti–

Hanamura’s construction is equivalent to the heart of a certain “weight-structure”

within Cisinski–Déglise’s category of Voevodsky style motives over S [Fan16].

Definition 4.4.4. Let F/Q be a number field. We define the category CHMF /S of

relative Chow motives over S with coefficients in F to be ((CHM/S)F )\. We define

HomMF /S analogously.

Definition 4.4.5. Let AbVar/S denote the category of abelian varieties over S. We

denote by CHMab
F /S,HomMab

F /S the smallest rigid linear symmetric tensor sub-

categories which contain motives of abelian varieties and are closed under taking

subobjects and Tate twists.

1It may be better to refer to HomM/S as “naive homological motives”. This is because, unlike
in the case of S = k, our homological motives admit non-trivial maps between objects which should
be considered to live in different cohomological degrees. As a result, they do not coincide with any
reasonable notion of “relative numerical motives”.
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Theorem 4.4.6. There is a section I of the projection N : CHMab
F /S → HomMab

F /S

which is a linear symmetric tensor functor, commutes with Tate twists and is such

that

h|AbVarop = I ◦ N ◦ h|AbVarop .

Proof. This follows from work of O’Sullivan [O’S11, pf. of Thm. 6.1.1]. More pre-

cisely, O’Sullivan checks that there is a section of the projection map from CHMab/S

onto its quotient by its maximal proper tensor ideal (a relative analogue of numerical

motives). But homological and numerical equivalence coincide for abelian varieties

[Lie68, Thm. 4], so the maximal proper tensor ideal of HomMab/S is trivial and

HomMab/S must be the quotient described above. The same reasoning applies for

motives with coefficients.

Remark 4.4.7. Morphisms in the image of I are symmetrically distinguished in the

sense of [O’S11, Def. 6.2.1]. O’Sullivan checks that the pullback of a symmetrically

distinguished cycle is symmetrically distinguished [O’S11, Thm. iii) p2]. From this,

it is easy to see check that, given a morphism f : S′ → S, there is a natural isomor-

phism f∗◦I =⇒ I◦f∗ since both compositions yield a symmetrically distinguished

Chow cycle lying over a numerical cycle, but there is only one such cycle (cf. [O’S11,

Thm. 6.2.5]).

Theorem 4.4.8 ([DM91, Thm. 3.1]). Let A/S be an abelian variety of dimension n,

then within CHMF /S there is a decomposition

h(A) =

2n⊕
i=0

hi(A),

such that, if [n] : A→ A denotes multiplication by n, then

h([n]) =
2n⊕
i=0

ni · idhi(A) .

The analogous statement for homological motives also holds but is automatic.

The second condition ensures that, the decomposition is compatible with change of

A and S, and any of the standard realisations. Another consequence is:

Theorem 4.4.9 (Künneth Formula). The decomposition h(A) =
⊕

i h
i(A) respects
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the Künneth formula, i.e.

hk(A×A′) =
⊕
i+j=k

hi(A)⊗ hj(A′).

Theorem 4.4.10 ([Kin98, Prop. 2.2.1]). Given an abelian variety A/S, the map

End(A)op ⊗ F → EndCHMF /S(h1(A))

is an isomorphism.

4.5 Realisations

We now outline how to construct realisations for relative motives (see also

[CH00] where they define realisations for more general S).

Notation 4.5.1. Let F/Q is be a finite field extension and fix a smooth quasi-

projective variety S
t→ k over a number field as before. Let ShF /S(C) denote the

category of sheaves of F -vector spaces on S(C).

Definition 4.5.2. A (pure) variation of Hodge structure of weight n on S(C) con-

sists of a pair (V,F•) with V a finite rank local system of Q-vector spaces on S(C)

and a descending filtration F• of the associated locally free sheaf V ⊗Q OS(C) by

holomorphic sub-bundles such that

i) for every s ∈ S(C), the filtration on the fibre Vs given by F• defines a Q-Hodge

structure of weight n in the sense of Definition 4.1.4,

ii) (Griffiths transversality) if ∇ : V ⊗OS(C) → (V ⊗OS(C))⊗OS(C)
Ω1
S denotes the

flat connection on V ⊗ OS(C) corresponding to the locally constant sheaf V ,

then

∇(F i(V ⊗OS(C))) ⊆ F i−1(V ⊗OS(C))⊗OS(C)
Ω1
S(C).

Since the filtration is by sub-bundles, the Hodge structures on each of the fibres all

have the same Hodge numbers. In this way it makes sense to speak of the Hodge

type of a variation of Hodge structures.

A morphism of variations of Hodge structure is then a morphism of local

systems for which the induced maps on the fibres are morphisms of Hodge structures.

We denote the category of variations of Hodge structure on S(C) by VHS/S(C) and
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define VHSF /S(C) as in Section 4.3. We adopt the same notation for Tate twists

as in Definition 4.1.4.

Notation 4.5.3. Given a variety X/k, let FX(C) denote the constant sheaf on X(C)

with coefficient group F .

Variations of Hodge structure are defined so that we have:

Theorem 4.5.4 (Griffiths, see [Voi07, Sec. 10.2]). Let X
p→ S be a smooth projective

variety over S. Then Rip∗FX(C) has a canonical pure variation of Hodge structure

of weight i.

Note that in the relative setting, singular cohomology generalises to a locally

constant sheaf whilst the analogue of de Rham cohomology is a locally free sheaf.

We wish to define a corresponding realisation functor for relative motives.

This Hodge realisation will be a functor H•BHomMF /S → VHSF /S(C) such that

the following diagram commutes:

(SmProjVar/S)op HomMF /S

VHSF /S(C)

h

H•B

Suppose we have smooth projective maps (X
p→ S), (Y

q→ S). For simplicity,

assume that S,X, Y are all connected. Let dS , dX denote the dimensions of S,X

respectively. Consider the diagram:

X ×S Y

X Y

S

k

q′ p′

p q

t

If we stipulate that H•B(h(X)(i)) =
⊕

j R
jp∗Q(i), then in view of the universal

property of Construction 4.3.7, we need only define compatible maps

CorriS(X,Y )→
⊕
j

HomVHSF /S(Rjp∗FX(C), R
j+2iq∗FY (C)(i)).
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As a starting point, recall that for homological equivalence, we have an absolute

cycle class map

CorriS(X,Y ) = AdX−dS+i
∼hom

(X ×S Y )

→ H2dX−2dS+2i
B ((X ×S Y )(C), F )(dX − dS + i)

taking values in singular cohomology.

Lemma 4.5.5. In the above situation, there is a canonical map

H2dX−2dS+2i
B ((X ×S Y )(C), F )(dX − dS + i) (4.5)

→
⊕
j

HomShF /S(C)(R
jp∗FX(C), R

j+2iq∗FY (C)).

Composing with the cycle class map, we obtain a map

CorriS(X,Y )→
⊕
j

HomVHSF /S(C)(R
jp∗FX(C), R

j+2iq∗FY (C)(2i)). (4.6)

Proof. By the projection formula we have

Rp∗FX(C) ⊗Rq∗FY (C)
∼= Rq∗(q

∗Rp∗FX(C) ⊗ FY (C))

which, by proper base change, is isomorphic to

∼= Rq∗Rp
′
∗F(X×SY )(C).

Taking cohomology we find that

R2dX−2dS+2i(q ◦ p′)∗F(X×SY )(C)(dX − dS + i)

∼= H2dX−2dS+2i(Rp∗FX(C)(dX − dS)⊗Rq∗FY (C)(i))

By the Künneth formula

H2dX−2dS+2i(Rp∗FX(C)(dX − dS)⊗Rq∗FY (C)(i))

∼=
⊕
j

R2dX−2dS−jp∗FX(C)(dX − dS)⊗Rj+2iq∗FY (C)(i).
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Verdier duality for p states that

Rp∗RHomDbc(ShF /X(C))(FX(C), p
!FS(C)) = RHomDbc(ShF /S(C))(Rp∗FX(C), FS(C)),

(4.7)

where Db
c(ShF /Z(C)) denotes the bounded derived category of constructible sheaves

on Z(C). We always have that p!DS = DX where DZ denotes the dualising com-

plex on Z(C). Since X and S are smooth, DX = FX(C)(dS)[2dX ] and DS =

FS(C)(dS)[2dS ]. As a result, p!FS(C)[2dX − 2dS ]. Since p is proper, p! coincides

with p∗. Thus (4.7) becomes

Rp∗FX(C)(dX − dS)[2dX − 2dS ] = RHomDbc(ShF /S(C))(Rp∗FX(C), FS(C)). (4.8)

Since Rp∗Q is quasi-isomorphic to a complex of locally constant sheaves with zero

transition maps (a consequence of the decomposition theorem of [Del68] together

with Theorem 4.5.4), RHomDbc(ShF /S(C))(Rp∗FX(C), FS(C)) is simply the complex

whose −jth term is given by HomShF /S(C)((Rp∗FX(C))j , FS(C)). In particular, taking

cohomology of (4.8) gives

Rjp∗FX(C)(dX − dS) ∼= (R2dX−2dS−jp∗FX(C))
∨.

As a result,⊕
j

R2dX−2dS−jp∗FX(C)(dX − dS)⊗Rj+2iq∗FY (C)(i)

∼=
⊕
j

HomShF /S(C)(R
jp∗FX(C), R

j+2iq∗FY (C)(i)).

Putting this together we have a canonical isomorphism

R2dX−2dS+2i(q ◦ p′)∗F(X×SY )(C)(dX − dS + i)
∼−→
⊕
j

HomShF /S(C)(R
jp∗FX(C), R

j+2iq∗FY (C)(i)).

We now obtain (4.5) by applying t∗ and precomposing with the degeneracy map

H2dX−2dS+2i
B ((X ×S Y )(C), F )(dX − dS + i)

:= R2dX−2dS+2i(t ◦ q ◦ p′)∗F(X×SY )(C)(dX − dS + i)

→ t∗R
2dX−2dS+2i(q ◦ p′)∗F(X×SY )(C)(dX − dS + i).
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For (4.6), we must prove that correspondences yield morphisms of Hodge structures.

This follows by considering
⊕

j HomShF /S(C)(R
jp∗FX(C), R

j+2iq∗FY (C)) as a Hodge

structure. The morphisms of sheaves which are also morphisms of Hodge structures

are precisely those lying within the Hodge type (0, 0)-subspace, but the image of

the absolute cycle class map lies in the (0, 0)-subspace and all operations (e.g. the

Künneth formula) respect the Hodge structure fibrewise.

These maps are compatible with composition and send the class of ∆X to

the identity map.

Notation 4.5.6. Given X
p→ S, for simplicity, we write H i

B(X) for Rip∗FX(C).

Note that for an abelian scheme H i
B(X(C)) = H•B(hi(X)), by Theorem 4.4.8.

Since VHSF /S(C) is pseudo-abelian, applying the universal property of Con-

struction 4.3.7 we obtain:

Corollary 4.5.7. For any S/k a smooth quasi-projective variety. There are relative

Hodge realisation functors

H•B : HomMF /S → VHSF /S(C),

which send h(X
p→ S)(i) to

⊕
j R

jp∗FX(C)(i). These are natural in S.

Remark 4.5.8. The functor H•B is not faithful in general. To see this, let S be any

quasi-projective variety with non-trivial cycles in some codimension c 6= 0 and let

X = Y = S. Then H•B maps

Ai∼hom
(S) −→

⊕
j

HomShF /S(C)(R
jp∗FX(C), R

j+2iq∗FY (C)(i)),

but the latter is zero whenever i 6= 0. In contrast, Corti–Hanamura have defined

a faithful realisation functor, HomMF /S → Db
c(ShF /S(C)), taking values in the

derived category of constructible sheaves, which maps h((X
p→ S))(i) to Rp∗Q(i)[2i]

see [CH00, Thm. 2.19].

On the other hand, if (X
p→ S) and (Y

q→ S) are abelian varieties then

H•B is injective on HomHomMF /S(hi(X), hi(Y )) for any i. To see this, we must use

that the complex in Db
c(ShF /S(C)) corresponding to hi(X) is Rip∗FX(C)[−i] (this

follows from Theorem 4.4.8) and so is concentrated in degree i and the same is true

for Y . As a result, taking cohomology is injective on morphisms Rip∗FX(C)[−i] →
Riq∗FY (C)[−i] in Db

c(ShF /S(C)). The desired injectivity now follows by observing

121



that our construction is obtained from the (faithful) realisation functor of Corti–

Hanamura by taking cohomology.

Remark 4.5.9. In Corollary 4.5.7, by naturality in S we mean that given f : S′ → S,

there is a natural isomorphism ξ : f∗ ◦H•B =⇒ H•B ◦ f∗. For (X
p→ S) this is given

by the proper base change map f∗Rip∗FX(C) → RipS′,∗f
∗FX(C).

For use in Section 4.11, we record that the above can be repeated in the étale

case (where the results of [CH00] also hold).

Notation 4.5.10. Let ` be any prime and λ a prime of F dividing `. Write Fλ for

the completion of F at λ. Let λ be a uniformiser of Fλ. Given a scheme X, we

write Étλ/S for the category of lisse λ-adic sheaves on X and Fλ,X for the constant

λ-adic sheaf on a scheme X with coefficient group Fλ.

Lemma 4.5.11. There are relative étale realisation functors

H•λ : HomMF /S → Étλ/S,

which send X
p→ S to

⊕
iR

ip∗Fλ,X . These are natural in S.

As before, these are faithful on maps hi(X)→ hi(Y ), when X,Y are abelian

varieties. Though not necessary for our purposes, these constructions admit com-

parison isomorphisms between H•λ(−) and H•B(−).

4.6 The canonical construction

Notation 4.6.1. For an algebraic group G/Q and a field F of characteristic zero,

as in Section 4.3, RepF (G) denotes the category of representations of GF over F .

Via Lemmas 4.3.12, 4.3.14, we shall usually consider an object V ∈ RepF (G) as a

representation V of G over Q together with a map F ↪→ EndG(V ). We also set

Rep(G) := RepQ(G).

Notation 4.6.2. Throughout (G,X) will denote a Shimura datum (which we some-

times equate with (G, h) for h ∈ X). We shall always assume that our Shimura

data are such that the identity connected component of the centre of G is an

almost–direct product of a Q-split torus and an R-anisotropic torus2. This en-

2Since any torus is an almost–direct product of its maximal split subtorus and maximal
anisotropic subtorus, this is equivalent to stating that the maximal Q-anisotropic subtorus of Z(G)
remains anisotropic over R. As such, it is also equivalent to “SV5” as stated in [Mil17, Sec. 5] and
implies “SV4”.
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sures that all real cocharacters of the centre are in fact defined over Q. By defi-

nition, for any h ∈ X, representation AdG ◦h of S on Lie(G) has Hodge type con-

tained in {(−1, 1), (0, 0), (1,−1)}. As a result, under the weight homomorphism

h ◦ w : Gm,R
(−)−1

→ SR → GR, Gm,R acts trivially on Lie(G) and so h ◦ w has image

in Z(G)R and as a result is independent of the choice of h. Therefore, as a real

cocharacter of the centre, h ◦ w must be rational.

Upon fixing a choice of neat open compact K ≤ G(Af ), we denote by S

the canonical model ShK(G,X) over the reflex field of the corresponding Shimura

variety. We follow a similar convention for (G′,X′) with K ′ ≤ G′(Af ) etc. If

f : (G′,X′)→ (G,X) is a morphism of Shimura data for which f(K ′) ≤ K, then we

also denote by f the induced map f : S′ → S.

Construction 4.6.3 (cf. [Mil17, Prop. 5.9]). Given an element (ρ : GF → GL(V ))

∈ RepF (G), we may define a variation of Hodge structure on S(C) as follows: con-

sider V as Q-representation of G together with an action of F . Then the underlying

local system corresponds to the cover

G(Q)\(X× (G(Af )/K)× V )→ G(Q)\(X× (G(Af )/K)),

where g ∈ G(Q) acts by (hx, t, v) 7→ (ghxg
−1, gt, ρ(g)v). This indeed forms a local

system as our conditions on the centre ZG ensure that ZG(Q) is discrete in ZG(Af ).

The stalk at a point (hx, t) is identified with corresponding fibre {(hx, t, v) | v ∈
V } ∼= V and as such may be given the Q-Hodge structure defined by the map

ρ ◦ hx : S → GR → GL(VR). This is independent of the choice of representative

(hx, t), inherits an F -structure and, as the weight homomorphism is rational, the

Hodge structures at all points have the same weight. As a result, we have canonically

defined a Hodge structure on each stalk.

It remains to show this “family” of Q-Hodge structures defines a variation of

Hodge structure. This requires checking that the Hodge structures vary analytically

[Pin90, Prop. 1.7] and Griffiths transversality [Pin90, Prop. 1.10]. For example, in

the case of V = AdG, the adjoint representation, transversality is automatic as the

definition of Shimura data ensures that the Hodge filtration on V = (AdG)S(C) ⊗
OS(C) is given by

0 = F1V ⊆ F0V ⊆ F−1V = V,

which only has a single step which is not trivial or the whole space. Transversality

for arbitrary representations is then shown by reduction to this case.
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This extends to a functor µHG : RepF (G) → VHSF /S(C) referred to as the

canonical construction (where H stands for Hodge).

Example 4.6.4. If we did not assume the condition on the centre of G, then

G(Q)\(X× (G(Af )/K)× V )→ G(Q)\(X× (G(Af )/K))

need not form a local system. To see this, let L/Q be a real quadratic extension

and G = ResL/Q GL2. There is a Shimura datum (G,X) for G constructed analo-

gously to Example 4.2.2. The centre ZG of G is ResL/QGm,L, which is splits over

R but contains a non-zero anisotropic subtorus over Q (namely the kernel of the

norm map). As a result, ZG(Q) is not discrete in ZG(Af ). To see this note that

O×L ⊆
∏
pG(Zp) is of rank one as an abelian group and so, as any open subset of

W ⊆
∏
pG(Zp) has finite index, W ∩ZG(Q) always contains infinitely many points.

Now let K ≤ G(Af ) be a neat open compact subgroup and V be the standard

representation of G, which is a two dimensional L-vector space. Consider the action

of G(Q) on

X× (G(Af )/K)× V → X× (G(Af )/K). (4.9)

The stabiliser of an element (hx, t) ∈ X×G(Af )/K is given by

StabG(Q)(hx) ∩ StabG(Q)(t) ⊇ ZG(Q) ∩ (G(Q) ∩K) := U.

By the above discussion, U must be of rank one as an abelian group. So, as U acts

faithfully on V , after quotienting (4.9) by the action of G(Q), the fibres will not be

vector spaces and we certainly do not obtain a local system.

Construction 4.6.5. Let V ∈ RepF (G) and f be as above. There is a canonical

isomorphism of local systems κV : f∗µHG(V )→ µHG′(f
∗V ) and this is also a morphism

of variations of Hodge structure as it respects the Hodge structure on each fibre.

The collection κ := (κV )V then defines a natural isomorphism:

RepF (G) VHSF /S(C)

RepF (G′) VHSF /S
′(C)

f∗

µHG

=⇒

f∗

µH
G′

It is natural to ask if there is a lift of the canonical construction to the

category of Chow motives with coefficients in F , i.e. a functor RepF (G)→ CHMF /S
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that together with H•B factorises µHG . By considering mixed Shimura varieties, we

are able to define such a lift on a certain subcategory.

4.7 Mixed Shimura varieties

Mixed Shimura data, as defined by Pink [Pin90], are an extension of the

traditional definition of Shimura data. A mixed Shimura datum consists of a pair

(P, X̃) with P/Q an algebraic group and a subspace X̃ ⊆ Hom(SC, PC) satisfying

various requirements (see [Pin90, Sec. 2.1] for the precise conditions3). In the case

that P is reductive, i.e. that P has trivial unipotent radical, we recover the classical

definition of Shimura data, which we shall refer to as the pure case.

For any neat open compact K ≤ P (Af ) there is an associated mixed Shimura

variety ShK(P, X̃), which is algebraic over its reflex field. A morphism of mixed

Shimura data f : (P ′, X̃′) → (P, X̃) is a map P ′ → P for which f(X̃′) ⊆ X̃. Pairs of

neat open compact subgroups K ≤ P (Af ) and K ′ ≤ P ′(Af ) with f(K ′) ≤ K give

rise to algebraic maps ShK′(P
′, X̃′)→ ShK(P, X̃).

Any mixed Shimura datum (P, X̃) admits a map to the pure Shimura datum

(G,X) where G is the quotient of P by its unipotent radical Ru(P ) and X is given

by postcomposing elements of X̃ with π : P → G.

We shall always assume that our mixed Shimura varieties satisfy the stronger

conditions that: the centre of G = P/Ru(P ) is an almost–direct product of a

Q-split torus and a torus which is R-anisotropic, and so the weight cocharacter

π ◦ h ◦ w : Gm,R → GR is rational for h ∈ X̃. These ensure that there is a canoni-

cal construction for mixed Shimura varieties associating variations of mixed Hodge

structure on ShK(P, X̃) to representations of Rep(P ) (see [Pin90, Sec. 1.18]).

Universal abelian varieties can be seen as instances of mixed Shimura va-

rieties (see Example 4.7.6). In this section, we shall observe that the theory of

mixed Shimura varieties automates the creation of certain abelian varieties over

pure Shimura varieties in a functorial way.

Definition 4.7.1. Let (G,X) be a (pure) Shimura datum and V ∈ RepF (G). We

consider V as a Q-representation together with an F -structure F ↪→ EndG(V ).

For any choice of hx ∈ X, V ⊗Q C decomposes as a direct sum of one dimen-

3We do not require the additional generality of allowing X to be a finite cover of a subspace of
Hom(SC, PC)
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sional C-subrepesentations upon each of which z ∈ S(R) = C× acts as multi-

plication by zpi z̄qi for some pi, qi. We say that V has Hodge type given by set

{(p1, q1), (p2, q2), ..., (pn, qn)} of (pi, qi) occurring in the above decomposition. Since

different choices of hx define isomorphic R-Hodge structures, this is independent of

the choice of hx.

Recall, it is a condition of a pure Shimura datum that the adjoint represen-

tation AdG has Hodge type contained in {(−1, 1), (0, 0), (1,−1)}. Similarly, it is a

condition of a mixed Shimura datum that the adjoint representation is admits a

filtration whose graded pieces carry pure Hodge structures of Hodge type contained

in either {{(−1, 1), (0, 0), (1,−1)}}, {(−1, 0), (0,−1)} or {(−1,−1)}.

The Hodge type of a representation V ∈ Rep(G) coincides with the Hodge

type of µHG(V ) as a variation of Hodge structure on S(C).

Notation 4.7.2. Let RepF (G)AV denote the full subcategory of RepF (G) whose

objects have Hodge type contained in {(−1, 0), (0,−1)}.

Given V ∈ RepF (G)AV, considering V as a representation over Q, we may

form the semi-direct product V oG as an algebraic group over Q. Let p : V oG→ G

denote the projection map and X̃ consist of the elements t ∈ Hom(SC, (V oG)C) for

which p ◦ t ∈ XC.

Lemma 4.7.3. Let (G,X) be a (pure) Shimura datum V ∈ RepF (G)AV, then (V o
G, X̃) is a mixed Shimura datum.

Proof. The unipotent radical of V oG is V . If, in the notation of [Pin90, Sec. 2.1],

we set U = V , then it is easy to check the conditions directly. Alternatively, use

that (V oG, X̃) is an instance of a unipotent extension in the sense of [Pin90, Prop.

2.17]. Note that we are assuming (G,X) has rational weight and the centre is an

almost–direct product of a Q-split and R-anisotropic torus. The datum (V oG, X̃)

then also satisfies the corresponding strengthened condition of a mixed Shimura

variety.

Mixed Shimura data of the form (V o G, X̃) are the only non-pure data we

shall need to consider.

Lemma 4.7.4. Let (G,X) be a Shimura datum, K ≤ G(Af ) a neat open compact

subgroup and V ∈ Rep(G). Then for any choice of K-stable full rank Ẑ-lattice

L ≤ V (Af ), LoK is a neat open compact subgroup of V oG.
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Proof. Only neatness is not completely immediate. To see this, consider the rep-

resentation U of V o G which has underlying vector space V × A1
Q and on which

(v, g) acts as (w, λ) 7→ (g · w + λv, λ). If W is any faithful representation of G,

then U ⊕ W is a faithful representation of V o G. Moreover, the eigenvalues of

(v, g) ∈ (V o G)(Af ) acting on U coincide with those of (0, g) acting on U and so

the eigenvalues of (v, g) acting on U ⊕W coincide with those of (0, g). As a result,

(v, g) is neat if and only if g is and LoK is neat if and only if K is.

Lemma 4.7.5. For any Shimura datum (G,X) and V,K,L as above, the map

ShLoK(V oG, X̃)→ ShK(G,X) has the structure of an abelian variety.

Proof. This is [Pin90, 3.22 a)] (the zero section is given by the Levi section ι : G→
V oG).

Moreover, this is functorial in the sense that given a homomorphism of rep-

resentations f : V → V ′ with L ≤ V (Af ) and L′ ≤ V ′(Af ) and f(L) ≤ L′, then

the induced map of mixed Shimura varieties ShLoK(V oG, X̃)→ ShLoK(V oG, X̃′)
respects the group structure.

Example 4.7.6. If a Shimura datum (G,X) has a PEL-datum (see Definition

4.9.2) with standard representation V , then for any neat open compact K and

K-stable Ẑ-lattice L of V (Af ) (we shall always take our lattices to be of full rank),

ShLoK(V o G, X̃)→ ShK(G,X) is isogeneous to the universal abelian variety defined

by the PEL-datum.

Lemma 4.7.7. i) Let (G, h) be a Shimura datum and K a neat open compact

subgroup. Given V,W ∈ RepF (G)AV and K-stable Ẑ-lattices LV , LW of V (Af ),

W (Af ), then as abelian varieties over S, there is a canonical isomorphism

Sh(LV ⊕LW )oK((V ⊕W )oG,X̃V⊕W )

∼= ShLV oK(V oG, X̃V )×S ShLWoK(W oG, X̃W ),

where X̃V , X̃V , X̃V⊕W are as in Notation 4.7.2.

ii) Given a morphism of pure Shimura data f : (G′, h′)→ (G, h), neat open compact

subgroups K ′ ≤ G′(Af ),K ≤ G(Af ) with f(K ′) ≤ K, and V ∈ RepF (G)AV

together with a K-stable Ẑ-lattice L, then there is a canonical isomorphism of

abelian S′-schemes

ShLoK(V oG, X̃)ShK′ (G
′,X′)
∼= Shf∗LoK(f∗V oG, X̃′),
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where f∗L is the lattice L considered as a K ′-stable Ẑ-lattice.

Proof. Both statements follow immediately from the characterisation of fibre prod-

ucts for mixed Shimura data given in [Pin90, Sec. 3.10].

Construction 4.7.8. We now define a functor µmot
G : RepF (G)AV → CHMF /S as

follows: given V ∈ RepF (G)AV, let L be a full rank Ẑ-lattice of V (Af ) which is

stable under K. We then set µmot
G (V ) = h1(ShLoK(V oK, X̃))∨ as a motive with

rational coefficients which equip this with an F -structure F ↪→ EndCHM/S(µmot
G (V ))

in the following way. Let

T := {α ∈ EndG(V ) | α(L) ⊆ L}.

For any α ∈ EndG(V ), α(L) is a Ẑ-lattice and so there exists an n ∈ N such

that n · α(L) ≤ L. In other words, T ⊗Z Q = EndG(V ). Thus, we may act on

h1(ShLoK(V oK, X̃))∨ by F = (T ∩ F ) ⊗Z Q with the first factor acting via func-

toriality of mixed Shimura varieties and the second by Q-linearity of CHM/S. This

uses that the actions of Z as subring of T ∩F (i.e. addition via the group law as an

abelian variety) and as a subring of Q coincide, which follows from Theorem 4.4.8.

In contrast, this would not be true of h(SK,V )∨ and this does not define an element

of CHMF /S.

Given a morphism f : V → V ′, let n ∈ N be large enough to ensure that

f(nL) ≤ L′. We obtain maps

(π∨n )∗ : h1(ShLoK(V oG, X̃))∨ → h1(ShnLoK(V oG, X̃))∨,

f∗ : h1(ShnLoK(V oG, X̃))∨ → h1(ShL′oK(V ′ oG, X̃′))∨,

where the first map is obtained by applying h1(−)∨ to the dual of the map of abelian

varieties πn : ShnLoK(V oG, X̃)→ ShLoK(V oG, X̃) which is given by functoriality

of mixed Shimura varieties, whilst the second is h1(−)∨ of the map of mixed Shimura

varieties induced by f . We then set µmot
G (f) to be 1/n times the composite f∗◦(π∨m)∗.

By construction the morphisms µmot
G (f) will respect the F -action.

Proposition 4.7.9. Given a choice of Ẑ-lattice for each V ∈ RepF (G)AV as above,

then the corresponding µmot
G is a well-defined functor RepF (G)AV → CHMF /S. The

functor µmot
G is independent of the choice of lattice for each V up to canonical natural

isomorphism.

Proof. We first remark that µmot
G (f) is independent of the choice of n. This follows
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as the constructions for n and for nm differ by 1/m · (π∨m)∗ ◦πm,∗ = 1/m · [m]∗, but,

for an abelian variety A/S, [m] acts on h1(A)∨ by multiplication by m (Theorem

4.4.8).

That µmot
G respects composition follows from the commutativity of the fol-

lowing diagram, for any f : V → V ′, m ∈ N and n s.t. f(nL) ≤ L′

ShnLoK(V oG, X̃) ShmnLoK(V oK, X̃)

ShL′oK(V ′ oG, X̃′) ShmL′oK(V ′ oG, X̃′)

π∨m

f f

π∨m

and thus it is clear that µmot
G defines a functor.

Given choices L1, L2 for each V and corresponding functors µmot
G,1 , µ

mot
G,2 , define

a natural transformation ψ : µmot
G,1 → µmot

G,2 by defining ψV to be 1/n times the map

h1(ShL1oK(V oG, X̃))∨
(π∨n )∗→ h1(ShnL1oK(V oG, X̃))∨

id∗→ h1(ShL2oK(V oG, X̃))∨

(4.10)

for any n such that nL1 ≤ L2. That this defines a natural transformation again

follows from the commutativity of the above square. Moreover, for every V , as an

isogeny (4.10) is invertible after applying h1(−)∨, we find that ψ defines a natural

isomorphism.

Remark 4.7.10. If f : V → W is a non-zero homomorphism of representations

of G over Q and we fix a neat open compact subgroup K of G and K-stable Ẑ-

lattices LV ≤ V , LW ≤ W such that f(LV ) ≤ LW , then ShLV oK(V o G, X̃V ) →
ShLWoK(W oG, X̃W ) is non-zero as a morphism of abelian varieties (for example,

using the explicit description of the points over C). Together with Theorem 4.4.10

this demonstrates that µmot
G is faithful.

Notation 4.7.11. Given V ∈ RepF (G)AV, we shall denote the mixed Shimura

variety ShLoK(V oG, X̃) simply by SK,V . We use p : SK,V → S and ι : S → SK,V to

denote the maps induced by the projection and Levi section as well as the induced

maps on their analytifications. We continue accordingly for (G′, h′).

Lemma 4.7.12. Given a morphism of Shimura data f : (G′,X′) → (G,X), a neat

open compact K ≤ G(Af ), K ′ ≤ G′(Af ) with f(K ′) ≤ K, and a choice of sta-

ble Ẑ-lattices for all elements of RepF (G),RepF (G′), then the following diagram

commutes:
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RepF (G)AV CHMF /S

RepF (G′)AV CHMF /S
′

f∗

µmot
G

=⇒

f∗

µmot
G′

up to a natural isomorphism ψ : f∗ ◦ µmot
G =⇒ µmot

G′ ◦ f∗.

Proof. From Lemma 4.7.7 ii) and that the canonical projectors defining hi commute

with pullback, we obtain isomorphisms

(h1(SK,V )∨)S′ ∼= h1(S′K′,f∗V )∨.

The natural isomorphism is then given by taking these maps and possibly composing

the maps defined in the proof of Proposition 4.7.9 if the lattice chosen for f∗V is

not f∗L.

4.8 Direct images for mixed Shimura varieties

In this section we check that µmot
G lifts the canonical construction and is

compatible with base change.

Lemma 4.8.1. Given a Shimura datum (G,X) and V ∈ RepF (G)AV, then there is a

canonical identification of µHG(V ) and the dual of H1
B((SK,V )(C)) = R1p∗F(SK,V )(C),

where p : (SK,V )(C)→ S(C) denotes the usual projection.

Proof. The canonical construction can be extended to mixed Shimura varieties as

we now recall. Let (P, X̃) be a mixed Shimura datum and Q ≤ P (Af ) a neat

open compact subgroup. A representation W ∈ RepF (P ), which we consider as

a Q-representation ρ : P → GL(W ) together with an F -structure, defines a local

system

µHP (W ) := P (Q)\(X̃× (P (Af )/Q)×W )

on ShQ(P, X̃)(C) = P (Q)\(X̃ × (P (Af )/Q)). Similarly to Construction 4.6.3, each

fibre {(x, k, v) | v ∈ W} ∼= W has a well defined mixed Hodge structure given

by ρ ◦ hx and µHP (W ) has the structure of a graded-polarisable variation of Hodge

structure (i.e. the graded pieces are polarised in the sense of [PS08, Def. 2.9]). This
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extends to a ⊗-functor

µHP : RepF (P )→ VHSF /ShQ(P, X̃)(C).

This is functorial in the sense that, given f : (P ′,X′)→ (P,X) and Q ≤ P (Af ), Q′ ≤
P ′(Af ) with f(Q′) ≤ Q, then there is a canonical isomorphism

f∗µHP (W ) = µHP ′(f
∗W ).

For the purposes of the lemma, the key fact is that pushforwards of sheaves arising

via the canonical construction correspond to group cohomology. More specifically,

in the notation of the lemma, the following diagram commutes:

Rep(V oG) VHS/(SK,V )(C)

Rep(G) VHS/S(C)

Hi(V,−)

µHVoG

Rip∗

µHG

where the left vertical map is group cohomology (see [Wil97, Thm. II.2.3, Prop.

I.1.6c)]). In the case of the one dimensional trivial representation, this yields iden-

tifications

µHG(H1(V, F )) = R1p∗F(SK,V )(C).

But, H1(V, F ) = V ∨ as desired.

Notation 4.8.2. Write ϕV for the isomorphism ϕV : H1
B((SK,V )(C))∨ → µHG(V )

and ϕ = (ϕV )V for the collection as V ranges over V ∈ RepF (G)AV.

Lemma 4.8.3. i) Let (G, h) be a Shimura datum and α : V1 → V2 a morphism in

RepF (G)AV. Fix a neat open compact subgroup K ≤ G(Af ) and let α also de-

note the map (SK,V1)(C)→ (SK,V2)(C). Then the following diagram commutes:

H1
B((SK,V1)(C))∨ µHG(V1)

H1
B((SK,V2)(C))∨ µHG(V2)

ϕV1

(α∗)∨ µHG (α)

ϕV2

ii) Let f : (G′, h′)→ (G, h) be a morphism of Shimura data and K ≤ G(Af ),K ′ ≤
G′(Af ) neat open compact subgroups with f(K ′) ≤ K. For any V ∈ RepF (G)AV,

the following diagram commutes:
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f∗H1
B((SK,V )(C))∨ f∗µHG(V )

H1
B((S′K′,f∗V )(C))∨ µHG′(f

∗V )

f∗(ϕV )

H1
B(ψV ) κV

ϕf∗V

Proof. We prove the first case, the other is similar. The strategy is to reduce to a

group theoretic context via a Tannakian argument. Fix a connected component S0

of S(C) and let S0
K,Vi

denote the connected component p−1
i (S0). In [Wil97, Thm.

II.2.2] it is checked that the canonical construction produces variations of Hodge

structure which are admissible in the sense of [Kas86]. Since the Vi are unipotent,

objects in the image of µHVioG (in the notation used in the proof of Lemma 4.8.1)

admit a filtration by objects pulled back from S0. Let VHS′/S0 denote the category

of admissible variations of Hodge structure on S0 and pi-UVar/S0
K,Vi

denote the full

subcategory of VHS′/S0
K,Vi

whose objects admit a filtration whose graded objects

are pulled back from elements of VHS′/S0. The functors µHG , µ
H
VioG take values in

these categories.

Fix y ∈ S0 and for i = 1, 2 set xi = ιi(y), where ιi denotes the canonical

Levi section. For i = 1, 2, let Pi,xi denote the Tannaka dual of pi-UVar/S0
K,Vi

and

Gy the Tannaka dual of VHS′/S0 all with the obvious fibre functors. The map

Pi,xi → Gy induced by p∗i is surjective (e.g. [DM82, Prop. 2.21a)]). Lastly, set

Vi,xi = ker(Pi,xi → Gy).

Consider the diagram:

p1-UVar/S0
K,V1

p2-UVar/S0
K,V2

VHS′/S0
Rjp1,∗

α∗

Rjp2,∗

This does not commute, but there is an obvious natural transformation Rjp2,∗ =⇒
Rjp1,∗α

∗. The calculation of higher direct images in pi-UVar/SK,Vi coincides with

the usual higher direct image as elements of VHSF /S
0
K,Vi

(cf. [Wil97, Sec. I.4]). The

maps Rjpi,∗ are not ⊗-functors, but we claim that when viewed in the Tannakian

setting, the above triangle becomes:
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Rep(P1,x1) Rep(P2,x2)

Rep(Gy)
Hj(V1,x1 ,−)

α∗

Hj(V2,x2 ,−)

and the natural transformation becomes the usual map

Hj(V2,x2 ,−) =⇒ Hj(V1,x1 , α
∗(−)).

To see this, note that p∗i corresponds to inflation from Gy and has right adjoint pi,∗,

whilst (−)Vi,xi is right adjoint to inflation.

Since the canonical construction is a ⊗-functor, after taking duals we obtain

a diagram of short exact sequences:

0 Vi,xi Pi,xi Gy 1

0 Vi Pi G 1

ti r (4.11)

where ti is the dual of µHVioG and r the dual of µHG . Moreover, the left vertical map

Vi,xi → Vi is an isomorphism [Wil97, p. 96] (this would not be true without re-

stricting to admissible variations of Hodge structure). This shows that the following

square commutes:

Rep(Pi) Rep(Pi,x)

Rep(G) Rep(Gy)

t∗i

H1(Vi,−) H1(Vi,xi ,−)

r∗

(4.12)

as in the proof of Lemma 4.8.1. In the case of the trivial representation Q, this

yields maps r∗H1(Vi,Q) → H1(Vi,xi ,Q) which are dual to ϕVi . Since the diagrams

of (4.11) are compatible with α∗, the squares of (4.12) form a prism:

Rep(P2) Rep(P2,x2)

Rep(P1) Rep(P1,x)

Rep(G) Rep(Gy)

α∗ α∗

A purely group theoretic argument now checks that, consequently, there is a com-

mutative square:
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H1(V1,x1 ,Q) r∗H1(V1,Q)

H1(V2,x2 ,Q) r∗H1(V2,Q)

α∗ r∗α∗

Taking Tannaka and linear duals we now obtain the square in i).

We are now able to prove Theorem 4.2.5 of the introduction.

Theorem 4.8.4. Let (G, h) be an arbitrary Shimura datum and K ≤ G(Af ) neat

open compact. Denote by S the Shimura variety ShK(G, h). Then the following

diagram commutes,

RepF (G)AV CHMF /S

VHSF /S(C)

µmot
G

µHG H•B

=⇒

up to natural isomorphism given by ϕ : H∗B ◦ µmot
G =⇒ µHG (where ϕ is as in

Notation 4.8.2). Moreover, under pullback by f : (G′,X′)→ (G,X), the triangles for

(G,X), (G′,X′) form a commutative prism:

RepF (G)AV CHMF /S

VHSF /S(C)

RepF (G′)AV CHMF /S
′

VHSF /S
′(C)

f∗
µHG

µmot
G

f∗

H•B

µH
G′

µmot
G′

H•B

f∗

for which each face has a given natural transformation, all of which are compatible.

Proof. That ϕV defines a natural isomorphism for the first triangle is Lemma 4.8.3

i). The commutativity of the other individual faces in the prism is given by the

natural isomorphisms: ψ of Lemma 4.7.12 for the rear face, κ of Construction 4.6.5

for the front left face, and ξ of Remark 4.5.9 for the front right.
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Due to O’Sullivan’s Theorem 4.4.6 (cf. Remark 4.4.7), we need only prove the

compatibility statement for homological motives. As a result we reduce to showing

that the two natural isomorphisms H•B ◦ f∗ ◦ µmot
G =⇒ H•B ◦ µmot

G′ ◦ f∗ (which are

functors from RepF (G)→ VHSF /S
′(C)) defined by

f∗H1
B((SK,V )(C))∨

H1
B(ψV )
→ H1

B((S′K′,f∗V )(C))∨,

f∗H1
B((SK,V )(C))∨

f∗ϕV→ µHG(V )S′(C)

κ−1
V→ µHG′(f

∗V )
ϕ−1
f∗V→ H1

B((S′K′,f∗V )(C))∨,

coincide, here κ is as defined in Construction 4.6.5 and ψ is as defined in Lemma

4.7.12. This follows from Lemma 4.8.3 ii).

4.9 Ancona’s construction

In the case of PEL-type Shimura data Ancona has recently described a lift

of µHG defined on all of RepF (G) [Anc15]. But, as defined, this construction depends

on the choice of PEL-datum and it is not immediately clear that it is well behaved

with respect to pullbacks.

In this section we briefly recall Ancona’s construction, but in the language

of mixed Shimura varieties.

Notation 4.9.1. Given an algebra B/Q, we write BF for B ⊗Q F . Similarly if W

is a B-module, then WF denotes W ⊗Q F .

Definition 4.9.2. A PEL-datum is a tuple (B, ∗, V, 〈 , 〉, h) consisting of: a semi-

simpleQ-algebraB with a positive (anti-)involution ∗ onB, that is an anti-commutative

involution such that TrBR/R(bb∗) > 0 for all 0 6= b ∈ BR. Together with a finite

dimensional B-module V equipped with an alternating non-degenerate Q-valued

pairing 〈 , 〉 on V such that, for b ∈ B, u, v ∈ V

〈bu, v〉 = 〈u, b∗v〉,

and finally a choice of R-algebra homomorphism h : C→ EndBR(VR) such that

〈h(z)u, v〉 = 〈u, h(z̄)v〉 ∀z ∈ C, u, v ∈ V

〈u, h(i)u〉 is positive definite,

(the first condition ensures that 〈u, h(i)v〉 is symmetric).
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Let G be the algebraic group whose R-points, for any Q-algebra R, are

defined by

G(R) =

{
g ∈ AutBR(VR)

∣∣∣∣ ∃µ(g) ∈ R× such that 〈gu, gv〉 = µ(g)〈u, v〉
for all u, v ∈ V ⊗R

}
.

For z ∈ C×, we automatically have that h(z) ∈ G(R). We also denote by h the

induced map S→ GR. Then (G, h) satifies (1.5.1), (1.5.2) and (1.5.3) of [Del71] and

so defines a Shimura datum (see [Kot92, Lem. 4.1]). A Shimura datum (G, h) which

arises in this way is said to be of PEL-type and the corresponding (B, ∗, V, 〈 , 〉, h)

is said to be a PEL-datum for (G, h).

Lemma 4.9.3. For any (G, h) of PEL-type, the centre of G is an almost–direct

product of a Q-split torus and an R-anisotropic torus.

Proof. We want to show that the largest anisotropic subtorus of Z(G) remains

anisotropic over R. The largest anisotropic subtorus of Z(G) is contained in the

kernel of the multiplier character µ : G → Gm and so must be contained in Z(G1).

We claim that (Z(G1)◦)R is always anisotropic.

Any semisimple R-algebra with positive involution is a product of simple

factors of one of the following three types: (Mn(R), A 7→ At), (Mn(C), A 7→ Āt) or

(Mn(H), A 7→ Āt) where H denotes the quaternions and where Ā denotes coefficien-

twise complex conjugation in the Mn(C)-case and the involution a+ bi+ cj+dij 7→
a− bi− cj − dij in the Mn(H)-case (for example [Kot92, p. 386]).

In particular, all symplectic BR-modules split as an orthogonal direct sum of

submodules only acted on non-trivially by a single simple factor of one of the above

types and G1 splits accordingly. As such, it suffices assume that BR is simple of

each of the three above types. Moreover, we are able to reduce to the case of BR

isomorphic to R, C or H by an easy Morita equivalence argument.

We shall make repeated use of the following result of Kottwitz. Given any

semisimple R-algebra (B, ∗) and two triples (V, 〈 , 〉, h) and (V ′, 〈 , 〉′, h′), that

together with (B, ∗) satisfy the conditions of Definition 4.9.2 with R in place of Q,

then if V and V ′ are isomorphic as B ⊗R C-modules, with C acting via h and h′

respectively, then (V, 〈 , 〉) and (V ′〈 , 〉′) are isomorphic as symplectic (B, ∗)-modules

[Kot92, Lemma 4.2].
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First assume that (BR, ∗) = (R, ∗ = id). Then(
W = R⊕2, 〈 , 〉 =

(
0 1

−1 0

)
, h(i) =

(
0 −1

1 0

))

is a triple as above with corresponding BR⊗RC-module C. As a result, as a symplec-

tic (BR, ∗)-module VR must split as an orthogonal direct sum of terms isomorphic

to W . By definition, G1(R) for W⊕n is Sp2n. In particular, it has finite centre so

that (Z(G)◦)R is anisotropic.

Now assume that (BR, ∗) = (C, ∗ = z 7→ z̄). In this case, BR ⊗R C ∼= C× C
has two irreducible modules. The two triples given by (C, trC/R(xiȳ), h(i) = i) with

z ∈ C acting by multiplication by z and z̄ respectively correspond to these two

irreducibles. Both have the same underlying symplectic (BR, ∗)-module so VR must

be isomorphic to Cn. For this symplectic module, G1(R) consists of elements of

GLn(C) which also lie in Sp2n(R). This is precisely the unitary group Un(R). Now

Z(Un(R)) = U1(R), which is indeed anisotropic.

Finally, for the quaternion case we shall assume that (BR, ∗) = (Hop, ∗) (with

Hop an expositional choice). In this case, BR⊗RC ∼= M2(C) has a unique irreducible

module which is of R-dimension 4. This is realised by the triple (H, trH/R(xjỹ), h(i) =

j) where Hop acts by right multiplication and y 7→ ỹ is the involution given by

y = a + bi + cj + dij 7→ a + bi − cj + dij. In this case, EndHop(H) ∼= H with

H acting by left multiplication. On EndHop(H), taking adjoints with respect to

tr(xjỹ) coincides with the map y 7→ ỹ. The embedding H ↪→ M2(C) which sends

i 7→

(
i 0

0 −i

)
and j 7→

(
0 1

−1 0

)
defines a splitting of H ⊗R C ∼= M2(C). The

involution of M2(C) induced by y 7→ ỹ is then matrix transposition. As a result,

G1(C) = {c ∈ AutHop(H) | cc∗ = id} = O2(C) is the orthogonal group. More

generally, for H⊕n we then have G1(C) = O2n(C), which does indeed have finite

centre.

If we fix a PEL-datum for (G, h), then we say that V ∈ Rep(G) is the

standard representation of G. Shimura data with a fixed choice of PEL-datum have

an explicit moduli interpretation (see [Mil17, Sec. 8]).

Example 4.9.4. We give an example of two distinct PEL-data for the same Shimura

datum. First consider the PEL-datum (Q, ∗,Q⊕2, 〈 , 〉, h), where ∗ = id, 〈 , 〉 is

the alternating pairing represented by J :=

(
0 1

−1 0

)
, and h sends a + bi 7→
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(
a −b
b a

)
. The corresponding Shimura datum is then the usual datum (GL2,H)

defined in Example 4.2.2.

There is also a PEL-datum (M2(Q), ∗ = (−)t,Q⊕4, 〈 , 〉), where the involu-

tion is transposition, M2(Q) acts diagonally on Q⊕4 = Q⊕2 ⊕ Q⊕2 acting on each

factor in the standard way, the pairing is represented by

(
0 I2

−I2 0

)
, and h is

given by a+ bi 7→

(
aI2 −bI2

bI2 aI2

)
. Then G is isomorphic to GL2, which is embed-

ded within GL4(Q) via

(
a b

c d

)
7→

(
aI2 bI2

cI2 dI2

)
, so that the associated Shimura

datum is again (GL2,H). This is an example of the Morita equivalence used in the

proof of Lemma 4.9.3.

Remark 4.9.5. Suppose (B, ∗, V, 〈 , 〉, h) is a PEL-datum. Then h is uniquely

determined, up to G conjugacy, by (B, ∗, V, 〈 , 〉) [Kot92, Lem. 4.3]. If we assume

that B is simple and linear or symplectic in the sense of [Mil17, Sec. 8], then any

4-tuple (B, ∗, V, 〈 , 〉) satisfying the relevant parts of Definition 4.9.2 admits an h

(which is necessarily unique up to conjugacy) [Mil17, Prop. 8.12].

Proposition 4.9.6. Given a Shimura datum (G, h) with a choice of PEL-datum

(B, ∗, V, 〈 , 〉, h), then for all fields F/Q, all objects of RepF (G) are, up to isomor-

phism, direct summands of some space of the form
⊕k

i=1 V
⊗ak
F ⊗ V ⊗bkF .

Proof. As V is a faithful G-representation, this follows from the proof of [DM82,

Prop. 2.20].

Theorem 4.9.7 ([Anc15, Thm. 6.1]). Given a Shimura datum (G, h) with a PEL-

datum (B, ∗, V, 〈 , 〉, h), let K be a neat open compact subgroup of G(Af ) and L a

Ẑ-lattice of VF (considered as a representation over Q). Then for any n ∈ N, there is

a canonical inclusion of rings a : EndRepF (G)(V
⊗n
F ) ↪→ EndHomMF /S(h1(SVF ,K)∨⊗n)

such that the diagram

EndRepF (G)(V
⊗n
F ) EndHomM/S(h1(SVF ,K)∨⊗n)

EndVHS/S(C)(µ
H
G(VF )⊗n)

µHG

a

Hi
B

commutes. Here, we have used the isomorphism ϕVF : H1
B((SVF ,K)(C))∨ → µHG(VF )

of Lemma 4.8.1 to identify End(µHG(VF )⊗n) and End(H1((SVF ,K)(C))⊗n).
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Remark 4.9.8. Ancona’s strategy is to lift endomorphisms of VF itself (in our pre-

sentation, this is via functoriality of mixed Shimura varieties) and permutations of

V ⊗nF in the obvious way and then additionally lift cycles arising from the polarisa-

tion via the Poincaré-Lefschetz isomorphisms (which have been described motivi-

cally). Ancona then shows that endomorphisms of the above kinds generate all of

EndRepF (G)(V
⊗n
F ) in the case of PEL-type Shimura varieties. This is not true for ar-

bitrary Shimura varieties, and to obtain such a result more generally would require

identifying more algebraic cycles.

Construction 4.9.9. There is a ⊗-functor AncG : RepF (G)→ HomMF /S defined

as follows: set AncG(V ⊗nF ) = h1(SVF ,K)∨⊗n and let AncG(α) for α ∈ End(V ⊗nF ) be

defined via the map of Theorem 4.9.7. By Hom-tensor adjunction, Theorem 4.9.7

also defines a motivic lift of the map 1 → V ⊗ V ∨. More generally, to define the

image of elements of Hom(V ⊗aF ⊗ V ∨⊗bF , V ⊗cF ⊗ V ∨⊗dF ) it suffices to fix the image of

Hom(V
⊗(a+d)
F , V

⊗(b+c)
F ), but for weight reasons this is zero unless a − b = c − d, in

which case it is covered by Theorem 4.9.7.

This also allows us to define, for any choice of idempotent e the image of

a direct summand e · (
⊕
V ⊗anF ⊗ V ∨⊗bnF ). Since every element of W ∈ RepF (G)

is of this form by Proposition 4.9.6, if we pick a fixed isomorphism θW : W
∼→

eW · (
⊕
V
⊗aW,n
F ⊗V ∨⊗bW,nF ) for each W , then we can compatibly extend AncG to all

of RepF (G). Finally, by composition with the section of Theorem 4.4.6, we obtain

a functor RepF (G)→ CHMF /S, which we also denote AncG.

Lemma 4.9.10. The construction of AncG is, up to natural isomorphism, indepen-

dent of all choices made.

Proof. Fix W ∈ RepF (G) and two summands isomorphic to W of a tensor space,

e ·
⊕
V ak
F ⊗ V

∨⊗bk
F , e′ ·

⊕
V
⊗a′k
F ⊗ V ∨⊗b

′
k

F . We must provide an isomorphism

e ·
⊕

h1(SVF ,K)∨ak ⊗ h1(SVF ,K)⊗bk → e′ ·
⊕

h1(SVF ,K)∨a
′
k ⊗ h1(SVF ,K)⊗b

′
k .

Given the compatibility of the Künneth formula with mixed Shimura varieties, we

may assume that W is irreducible and there is a corresponding isomorphism e ·
(V ⊗aF ⊗ V ∨⊗bF )→ e · (V ⊗a′F ⊗ V ∨⊗b′F ).

As before, it suffices to assume that b = b′ = 0. For weight reasons, we

must then have that a = a′. Finally, since Lemma 4.9.7 lifts all elements of

EndRepF (G)(V
⊗a
F ), we obtain a motivic lift of the isomorphism between the two

tensor space representatives of W . This construction is natural, and so gives the
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desired natural isomorphism.

Remark 4.9.11. Let (G,X) be a Shimura datum with a chosen PEL-datum for

which all objects of Rep(G)AV are direct summands of V ⊕n for varying n. Then

the argument given above can be adapted to show that AncG extends µmot
G up to

natural isomorphism. If the PEL-datum is of “symplectic type”, then this always

holds (see Section 4.12). This can also be checked to hold much more generally.

4.10 Compatibility with base change

In this section we give conditions to ensure Ancona’s construction is com-

patible with base change analogously to Theorem 4.8.4.

Lemma 4.10.1 ([Anc15, Thm. 8.6]). Let (G, h) be a Shimura datum of PEL-type

with a fixed PEL-datum (B, ∗, V, 〈 , 〉, h). Fix also a choice of neat open compact

subgroup K ≤ G(Af ) and denote by S the Shimura variety ShK(G, h). Then the

following diagram commutes,

RepF (G) CHMF /S

VHSF /S(C)

AncG

µHG H•B

=⇒

up to canonical natural isomorphism.

Proof. We describe the natural isomorphism. In the notation of Construction 4.9.9,

write ηG,V for

µHG(θ−1
W ) ◦ (eW ·

⊕
(ϕ
⊗aW,n
VF

⊗ ϕ∨,⊗bW,nVF
)),

where ϕVF is as defined in Notation 4.8.2. That ηG := (ηG,V )V defines a natural

isomorphism now follows from Lemma 4.8.3 i).

Unfortunately, it is not formal to show that Anc(−) commutes with mor-

phisms of Shimura varieties (i.e. there is a commutative prism analogous to that of

Theorem 4.8.4). For example, consider the identity map S → S, but where each S

has a distinct choice of PEL-datum with standard representation V1, V2 respectively.

We know that f∗V2
∼= e · (

⊕
V ⊗an1 ⊗ V ∨⊗bn2 ) for some e (Theorem 4.9.6). We desire
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an isomorphism

f∗AncG(V2) = h1(SK,V2)∨
∼→ e ·

(⊕
h1(SK,V1)∨⊗an ⊗ h1(S⊗bnK,V1

)
)
,

but this need not be obtainable using only the functoriality of mixed Shimura va-

rieties. However, in the following restricted setting we shall only ever need to con-

struct maps which do arise from functoriality of mixed Shimura varieties (and tensor

products and direct sums thereof).

Definition 4.10.2. Let f : (G′, h′) → (G, h) be a morphism of PEL-type Shimura

data each with a choice of PEL-datum whose standard representations are denoted

V ′, V . If

(?) f∗V ∼= e · V ′⊕n for some n ∈ N and idempotent e ∈ EndRep(G′)(V
′⊕n),

then we say that f is an admissible morphism of Shimura varieties with PEL-data.

Note that if f is admissible, then f∗VF ∼= eF · V ′⊕nF for any F . Admissibility

implies that there is exists a map (SK,V )S′ → S′K′,V ′ as abelian varieties over S′.

Example 4.10.3. In Example 4.9.4, we described two PEL-data for (GL2,H), one

with standard representation V = Q⊕2 and the other with standard representation

W = Q⊕2 ⊕ Q⊕2. The identity map (GL2,H) → (GL2,H) is admissible for each

of the two ways of assigning each (GL2,H) a distinct choice of the two PEL-data.

Indeed, id∗ V ∼= (i1 ◦ π1) ·W and id∗W ∼= V ⊕2.

More generally, for any PEL-datum (B, ∗, V, 〈 , 〉, h) with associated Shimura

datum (G, h), then, for n > 0 (Mn(B), ∗, V ⊕n, 〈 , 〉⊕n, h⊕n) is also a PEL-datum for

(G, h), as can be seen by Morita equivalence. Then the identity map is admissible

for any choice of one of these data for the source and target (G, h).

Example 4.10.4. Given a PEL-datum (B, ∗, V, 〈 , 〉, h) and B′ ⊆ B a Q-subalgebra,

then (B′, ∗, V, 〈 , 〉, h) is also a PEL-datum. If (G, h), (G′, h) denote the respective

Shimura data, then the induced map (G′, h) ↪→ (G, h) with the above choices is an

admissible morphism.

The admissibility of a given morphism of Shimura data with a chosen PEL-

datum is easy to verify in practice and seems to hold for many examples which arise

in applications. We do not impose any direct condition on the morphism respecting

the chosen PEL-data. In Section 4.12, we check that any morphism of a Siegel

Shimura datum to an arbitrary Shimura datum is admissible. We have been unable
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to find any examples of morphisms of Shimura data with chosen PEL-data which

are not admissible.

We now assume f : (G′, h′) → (G, h) is admissible and fix one such isomor-

phism as in (?).

Construction 4.10.5. We now have canonical isomorphisms:

f∗AncG(V ) = h1(SK,V )∨S′

= h1((SK,V )S′)
∨

as the canonical projectors hi commute with pullbacks [DM91, Thm. 3.1],

Lem. 4.7.7
= h1(S′K′,f∗V )∨

(?)
= h1(S′K′,e·V ′⊕n)∨

= e · (h1(S′K′,V ′)
⊕n)∨

= AncG′ f
∗V.

by Lemma 4.7.7 i) and the Künneth formula 4.4.9. Write λV for this composite.

For VF , the base change to RepF (G), there is an analogous λVF .

Notation 4.10.6. As functors on RepF (G), we extend this to a putative natural

isomorphism λ : f∗ ◦AncG =⇒ AncG′ ◦f∗ as follows: Let W ∈ RepF (G). Since the

construction of AncG′ is independent of the choice of the θ′W ′ (Lemma 4.9.10), we

are free to assume that, for W ∈ RepF (G) with θW : W
∼→ eW · (

⊕
V ⊗anF ⊗ V ∨⊗bnF ),

then θ′f∗W is obtained from f∗θW by taking the tensor products and direct sums of

(the base change of) the isomorphism of (?). In other words,

f∗AncG(W ) = eW · (
⊕

h1(SK,VF )∨⊗akS′ ⊗ h1(SK,VF )⊗bkS′ )

whilst

AncG′ f
∗(W ) = eW · (

⊕
(e ·
⊕

h1(S′K′,V ′F
))∨⊗ak ⊗ (e ·

⊕
h1(S′K′,V ′F

))⊗bk)).

There is now an obvious choice for λW given by taking sums and products of λVF
and its dual.

Lemma 4.10.7. Given f : (G′, h′) → (G, h) an admissible morphism of PEL-type

Shimura varieties with fixed PEL data, then the following diagram commutes:
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RepF (G) HomMF /S

RepF (G′) HomMF /S
′

f∗

AncG

=⇒

f∗

AncG′

up to natural isomorphism given by λ : f∗ ◦AncG′ =⇒ AncG′ ◦f∗.

Proof. Since the functor H•B(−) is injective on HomHomMF /S′(h
i(A1), hi(A2)) for

A1, A2 abelian varieties over S′ (see Remark 4.5.8), it is enough to check that

H•B(λ) : H•B ◦ f∗ ◦ AncG =⇒ H•B ◦ AncG′ ◦f∗ is a natural isomorphism. But

we already have a natural isomorphism H•B ◦ f∗ ◦AncG =⇒ H•B ◦AncG′ ◦f∗, given

by composing the given natural isomorphisms of the other faces of the prism. To

show that H•B(λ) is a natural isomorphism, it suffices to check that it coincides with

the one already constructed. We need only check this for VF itself, i.e. that

H•B(λVF ) = η−1
S′,f∗VF

◦ κVF ◦ f
∗(ηS,VF ) ◦ ξ−1

h1(SK,VF )
.

Here ηS,VF is as defined in the proof of Lemma 4.10.1, κ is as defined in Construction

4.6.5 and ξ is as defined in Remark 4.5.9.

Applying ξh1(SK,VF ) to both sides, this means checking the equality of:

f∗H1
B((SK,VF )(C))→H1((SK′,f∗VF )(C))

(?)→ e ·H1
B((S′K′,V ′F

)(C)),

f∗H1
B((SK,VF )(C))

f∗ϕVF→ f∗µHG(VF )
κV→ µHG′(f

∗VF )
ϕ−1
f∗VF→ H1

B((SK,fVF
)(C))

(?)→ e ·
⊕

H1
B((S′K′,V ′F

)(C)),

where, in the second line the composite of the last two maps is η−1
S′,f∗VF

, as defined

in Lemma 4.10.1. The equality now follows from the commutativity of:

f∗H1
B((SK,VF )(C)) f∗µHG(VF )

H1
B((S′K′,f∗VF )(C)) µHG′(f

∗VF )

f∗(ϕVF )

H1(λVF ) κVF

ϕf∗VF

as shown in Lemma 4.8.3 ii).

Note that the statement of Lemma 4.10.7 is independent of the choice of
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realisation.

Corollary 4.10.8. Given an admissible morphism of Shimura data f : (G′, h′) →
(G, h), then the analogous prism for AncG to that of Theorem 4.8.4 commutes in

the sense that all the faces commute up to the given natural isomorphisms and all

natural isomorphisms are compatible.

Proof. As before we need only consider the analogue for homological motives. First

consider the analogous prism for homological motives. From Lemmas 4.10.1, 4.10.7

and the results of Section 4.4, 4.6 we have commutativity of the individual faces. It

remains to check that, as natural isomorphisms H•B ◦f∗◦AncG =⇒ H•B ◦AncG′ ◦f∗,

H•B(λ),

η−1
G′ ◦ κ

−1 ◦ f∗(ηG),

agree. This can be seen from the proof of Lemma 4.10.7 and Lemma 4.8.3.

4.11 Étale canonical construction

Canonical constructions arise more generally than just the Hodge realisation,

and both µmot
G and Ancona’s construction should also be lifts of any such construc-

tion. We sketch this for the étale realisation following [Wil97, Sec. II.4]. We use the

notation for the étale realisation described in Lemma 4.5.11.

Notation 4.11.1. Let (G,X) be a Shimura datum and K be a neat open compact

subgroup of G(Af ). We consider the associated Shimura variety S := ShK(G,X)

as defined over its reflex field E/Q via the theory of canonical models (which is

independent of K). Let V ∈ RepF (G) and L be a K-stable full rank Ẑ-sublattice of

V (Af ). If ShLoK(V oG, X̃) is the mixed Shimura variety defined in Lemma 4.7.3,

then the projection and section maps force ShLoK(V oG, X̃) to also have reflex field

E [Pin90, Sec. 11.2(b)]. We denote the canonical model of ShLoK(V oG, X̃) by SK,V .

The projection and Levi section then define regular maps p : SK,V → S, ι : S → SK,V .

Construction 4.11.2. Let (G,X) be a Shimura datum and K ≤ G(Af ) neat open

compact. If K ′ ≤ K is an open normal subgroup, then there is a right action of

K/K ′ on ShK′(G,X). Since we are assuming that the centre of G is an almost–direct

product of a Q-split and R-anisotropic torus, the action of K/K ′ is free on C-points

and

ShK′(G,X) −→ ShK(G,X)
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is an étale cover of smooth algebraic varieties with Galois group K/K ′ (see [Pin92,

Prop. 3.3.3. and (3.4.1)]).

Taking the inverse limit over K ′ ≤ K we obtain a pro-Galois covering of

ShK(G,X) with Galois group K. Let ` be a prime and λ a prime of F lying over

`. Write Fλ for the completion of F at λ as before. Then any Fλ-linear continuous

representation of K will define a lisse λ-adic sheaf on ShK(G,X).

Given (GF
ρ→ GL(V )) ∈ RepF (G), we obtain such a representation via

K ↪→ G(Af )� G(Q`) ↪→ G(Fλ) = GF (Fλ)
ρ(Fλ)→ GL(V )(Fλ).

This defines a functor

µét
G : RepF (G)→ ÉtFλ/S,

which we refer to as the étale canonical construction.

Lemma 4.11.3. Given a Shimura datum (G,X) and V ∈ RepF (G)AV, then there

is a canonical identification ϕV,λ : H1
λ(SK,V )∨

∼→ µét
G(V ).

Proof. The étale canonical construction extends verbatim to mixed Shimura vari-

eties. As in the Hodge case, the diagram

RepF (V oG) ÉtFλ/SK,V

RepF (G) ÉtFλ/S

Hi(V,−)

µét
VoG

Rip∗

µét
G

commutes [Wil97, Thm. II.4.7, Thm. I.4.3]. The dual of the desired isomorphism is

given by commutativity in the case of the trivial representation F .

Lemma 4.11.4. i) Let (G,X) be a Shimura datum and α : V1 → V2 a morphism

in RepF (G)AV. Fix a neat open compact subgroup K ≤ G(Af ) and let α also

denote the map SK,V1 → SK,V2. Then the following diagram commutes:

H1
λ(SK,V1)∨ µét

G(V1)

H1
λ(SK,V2)∨ µét

G(V2)

ϕV1,λ

(α∗)∨ µHG (α)

ϕV2,λ
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ii) Let f : (G′,X′)→ (G,X) be a morphism of Shimura data and K ≤ G(Af ),K ′ ≤
G′(Af ) neat open compact subgroups for which f(K ′) ≤ K. Write E′ for the

reflex field of (G′,X′) (so E′ ⊇ E). For any V ∈ RepF (G)AV, the following

diagram commutes:

f∗(H1
λ((SK,V ))∨)E′ f∗µét

G(V )E′

H1
λ(S′K′,f∗V )∨ µét

G′(f
∗V )

f∗(ϕV,λ)

ϕf∗V,λ

Here, on the top row, f∗ denotes pullback via the map SK′,f∗V → (SK,V )E′ and

(−)E′ pullback via (SK,V )E′ → SK,V .

Proof. As for Lemma 4.8.3, but using [Wil97, Cor. I.3.2 i)].

We now obtain results analogous to Theorem 4.8.4 and Lemmas 4.10.1,

4.10.7, whose proofs are almost identical.

Lemma 4.11.5. Let (G,X) be an arbitrary Shimura datum and K ≤ G(Af ) neat

open compact. Denote by S the Shimura variety ShK(G,X). Then the following

diagram commutes,

RepF (G)AV CHMF /S

ÉtFλ/S

µmot
G

µét
G

H•λ

=⇒

up to natural isomorphism given by ϕ : H•λ◦µmot
G =⇒ µHG . Moreover, under pullback

by f : (G′,X′)→ (G,X), the triangles for (G,X), (G′,X′) form a commutative prism

for which the given natural transformations on each face are compatible.

Lemma 4.11.6. i) Let (G, h) be a Shimura datum of PEL type with a fixed PEL

datum (B, ∗, V, 〈 , 〉, h). Fix also a choice of neat open compact subgroup K ≤
G(Af ) and denote by S the Shimura variety ShK(G, h). Then the following

diagram commutes,

RepF (G) CHMF /S

ÉtFλ/S

AncG

µét
G

H•λ

=⇒
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up to canonical natural isomorphism.

ii) Given a morphism of Shimura data f : (G′, h′)→ (G, h), each of PEL-type with

a fixed datum, which is admissible in the sense of Definition 4.10.2, then the tri-

angles for (G, h) and for (G′, h′) together with base change form a commutative

prism as in Theorem 4.10.8. Each face has a prescribed natural isomorphism

which altogether are compatible.

4.12 Symplectic case

Example 4.12.1. Consider the PEL-datum (Q, ∗, V = Q⊕2, 〈 , 〉, h) of Example

4.9.4 defining the Shimura datum (GL2,H). In this case, the objects of Rep(G)AV

are all isomorphic to V ⊕n for some n (this can be read of from the classification

of [FH91, Sec. 15.5] for example). As a result, any morphism of Shimura data

f : (GL2,H) → (G, h), with (G, h) also having a fixed choice of PEL-datum, must

be admissible in the sense of Definition 4.10.2.

In fact, this holds more generally.

Definition 4.12.2. We say that a PEL-datum (B, ∗, V, 〈 , 〉, h) is of symplectic type

if (BR, ∗) decomposes as a product of algebras with positive involution isomorphic

to (Mn(R), ∗ = (−)t).

In this case G1(R) splits as a direct product of terms isomorphic to Sp2k(R)

(cf. the proof of Lemma 4.9.3).

Lemma 4.12.3. Let (G′,X′) be a Shimura datum with a choice of PEL-datum

(B′, ∗′, V ′, 〈 , 〉′, h′) of symplectic type. Then for any Shimura datum (G, h) with a

choice of PEL-datum, any map f : (G′, h′) → (G, h) is admissible, i.e. satisfies (?)

of Definition 4.10.2.

Proof. We shall show that every object of Rep(G′)AV is a direct summand of V ′⊕n

for some n. For this, it suffices to show the analogous statement after base change

to R. Let W be an R-representation of G′R of Hodge type {(−1, 0), (0,−1)}. First

consider the restriction of W to G′1,R
∼=
∏
i Sp2gi . Then W splits as a direct sum of

irreducibles on which G′1,R acts via projection to the ith factor for some i.

Let U1 ⊂ S denote the kernel of the norm map. We may assume that, under

pri ◦ h′, the image of U1 within Sp2gi is as given in the usual Siegel datum (cf.

Example 4.2.2). For any representation T of a Sp2gi , we say W has U1-weights
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within some set of integers {a1, ..., an} if upon restriction to pri ◦ h′(U1), W ⊗Q C
decomposes as a sum of one dimensional representations on which (with respect to

a fixed isomorphism) U1,C ∼= Gm acts by multiplication by ai for some i.

Examining the classification of irreducible Sp2g-modules (e.g. as given [FH91,

Sec. 17.2]) it is easy to see that the only irreducible representation of Sp2gi with U1-

weights {1,−1} is the standard representation of Sp2gi . As a result, all irreducible

representations of G′1,R are direct summands of the standard representation.

Since the action of scalar matrices on W is determined by its Gm-weight (by

which we mean weight in the traditional sense), the map Rep(G′R)AV → Rep(G′1,R)

is faithful. In particular, there is at most one representation, up to isomorphism, of

G′R restricting to any representation of G′1,R. Since all irreducible representations of

G′1,R are summands of the standard representation and the standard representation

of G′R is one representation restricting to the standard representation of G′1,R, we

must have the all irreducible objects of Rep(G′R)AV are direct summands of V ′R.

Remark 4.12.4. The proof also shows that, for any Shimura datum with a chosen

PEL-datum of symplectic type, AncG extends µmot
G up to natural isomorphism (see

Remark 4.9.11).
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