
warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick 

Permanent WRAP URL: 

http://wrap.warwick.ac.uk/114675/

Copyright and reuse:                     

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to cite it. 

Our policy information is available from the repository home page.  

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk



Essays on Endogenous Formation of
Bilateral Partnerships

Charoula Tzanetaki

Department of Economics, University of Warwick

A thesis presented for the degree of Doctor of Philosophy

September 2017



Contents

1 Endogenous network formation and the tension between pri-

vate and social welfare 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Measuring social efficiency . . . . . . . . . . . . . . . . . . . . 4

1.3 Stability in static models of endogenous network formation . 8

1.4 The tension between stability and efficiency . . . . . . . . . . 12

1.4.1 A seminal model on the tension between stability and

efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.2 Dynamic network formation models . . . . . . . . . . 16

1.4.3 Endogenous network formation and the static and dy-

namic interplay between links and actions . . . . . . . 19

1.5 Outline and contribution . . . . . . . . . . . . . . . . . . . . . 23

2 Endogenous Formation of Bilateral Partnerships with Ho-

mogeneous Types 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Efficiency and Subgame Perfect Bilateral Equilibria . . . . . . 29

2.3.1 The Strictly Convex Case . . . . . . . . . . . . . . . . 31

2.3.2 The Jackson and Wolinsky (1996) Co-author model . 34

2.3.3 The Strictly Concave Case . . . . . . . . . . . . . . . 36

3 Endogenous Formation of Bilateral Partnerships with Het-

erogeneous Types 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 The Second-stage Effort Provision Game . . . . . . . . . . . . 45

i



CONTENTS ii

3.3.1 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 Effort provision in the Complete network with concave

production and quadratic cost . . . . . . . . . . . . . 46

3.4 The Linking Game . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.1 Existence and Efficiency of Subgame Perfect Bilateral

Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . 57

Appendices

Appendix A Effort provision in the hhll Circular network 71

Appendix B Proof of Proposition 3.4 75

Appendix C Proof of Proposition 3.5 77



List of Figures

3.1 γ = 0.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 γ = 0.125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 γ = 0.03125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 b = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 b = 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 b = 160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7 hhll circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.8 List of Connected graphs . . . . . . . . . . . . . . . . . . . . 64

iii



Acknowledgement

To my father,

Νίκων

iv



Declaration

This thesis is submitted to the University of Warwick in support

of my application for the degree of Doctor of Philosophy. It has

been composed by myself and has not been submitted in any

previous application for any degree.

v



Abstract

A constant theme in the endogenous network formation liter-
ature has been the tension between what is privately optimal
for the agents who create a network, and what maximises social
welfare. When the network structure affects, and is affected, by
subsequent agent behaviour, it is also pertinent to ask whether
the overall network and behaviour outcome can agree with soci-
ety’s interests. We explore these questions by critically reviewing
seminal papers in the literature of static and dynamic network
formation, highlighting negative results, and investigating the
sources of inefficiencies. We then present two models featuring
an endogenous partnership formation stage and a subsequent en-
dogenous non-cooperative effort provision stage. In both mod-
els, effort provision actions feature strategic complementarity,
and agents face a negative externality from the links of partners.
Partnerships are non-exclusive and agents face either an indirect
or a direct cost of effort provision. In the first model, agents
are ex ante homogeneous, whereas in the second model agents
have heterogeneous productivity. For various general families of
production functions, we pinpoint the efficient linking and effort
provision strategy profile and compare it with the set of stable
networks. Even though in both models the game is one-shot
and the agents are myopic, we prove that the efficient network
structure and effort provision profile will always be sustained as
an equilibrium of the overall game. For homogeneity, we directly
contrast our positive results with the negative results of the Jack-
son and Wolinsky (1996) [31] Co-author model. We, moreover,
prove that, for some families of production functions, the effi-
cient network is the unique stable network. For heterogeneity,
we additionally perform comparative statics in order to observe
changes in relative specialisation to the high-type partnership, as
the relative productivity ratio and the degree of concavity vary.
Overall, modelling the interplay between link formation decisions
and endogenous effort provision allows us to reach positive re-
sults where stability and efficiency are reconciled.
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Chapter 1

Endogenous network

formation and the tension

between private and social

welfare

1.1 Introduction

Bilateral partnerships are ubiquitous in economic and social life. In such

partnerships, the pair of self-interested agents can represent single individu-

als, firms, countries, or any other autonomous institutions and organisations

of a given form. The overall structure of these partnerships can then be for-

mally modelled as a network of inter-connected agents, where a link exists

between two agents only if they are partners. 1 The study of the endogenous

formation of cooperation structures started with Myerson (1977) [35] and

Aumann and Myerson (1988) [1] but remained at a relatively early stage,

until it was rapidly accelerated in the last twenty years. The development of

tractable theoretical models of network formation has, as noted by Jackson

(2016) [27], recently accelerated once more, driven largely by the need for

rich yet tractable models that can be applied in the empirical analysis of

1In what follows, whenever we refer to a network, unless otherwise specified, we will
mean an undirected network where links need to be formed by mutual consent. On the
contrary, in directed networks links are formed if at least one party wishes to do so.
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real world networks.2

A constant theme, ever since the initial emergence of this literature,

has been the potential tension in the endogenous network formation process

between what is privately optimal for the agents who make the decisions

that create the network, and what would be welfare maximising from a

societal perspective.3 Models of endogenous networks have been examining

whether Adam Smith’s ’invisible hand’ could be extended to the network

formation process: Can the self-interested agents produce network outcomes

that coincide with what is beneficial for society as a whole?

Moreover, in situations where the network structure affects, and is in

turn affected by, subsequent behaviour within the network, we need to ask

whether there can be circumstances under which the overall network and

behaviour outcome agrees with society’s interests. As noted in Jackson

(2016) [27], models of endogenous network formation need to capture the

’co-evolution’ of partnerships and behaviours but this is an area that has

not been studied to a great extent, even though the scope for applications

is immense. A key example is the co-determination of financial investments

and the regime that monitors them. More generally, in social and economic

interactions relationships are formed for a reason, or, in fact, to serve po-

tentially multiple interdependent functions. In such cases, the behaviour

and outcomes in the network affect back the incentives of strategic agents to

maintain or sever their network relationships. Such co-dependencies can be

crucial for understanding networks that function, for instance, as structures

for cooperation, coordination or intermediation, and for analysing policy

interventions in such complex environments. If, on the contrary, as noted

by Vega-Redondo (2016) [38], the co-determination of links and actions is

ignored then models can lead to misleading results and offer a limited or

mistaken understanding of real-world network relationships.

Overall, whether the answers to the previous questions are positive or

negative has obvious consequences for policy making. In the case of nega-

tive results, showing a misalignment between private and social incentives

and optimal outcomes, we would need to measure the extent of the mis-

match and examine the potential for policy interventions. More importantly,

2The initial and more recent contributions on network formation and other areas of
network research are surveyed among others in Jackson (2005a) [22], Jackson (2008) [24],
Jackson (2014) [26], Bloch and Dutta (2011) [3], Goyal (2007) [13], Goyal (2016) [14].

3See for example Jackson (2005a) [22], Jackson (2005b) [23].
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the sources of the observed inefficiencies would need to be determined. As

pointed out in Dutta and Jackson (2003) [9], this is no trivial task. For

individual models the tension can be attributed to externalities of linking

ignored by private players, or to private concerns over bargaining power

when the allocation of value is also endogenously determined. However, a

general characterisation of the determinants of alignment or divergence of

social and private incentives so far does not exist.

Furthermore, in real world networks agents exhibit heterogeneous char-

acteristics that affect their behaviour. The differences in agents’ ex ante

features can lead to differences in their strategic behaviour and, overall, to

different network positions and payoffs. Even more importantly, this het-

erogeneity has the potential to become a further source of tension between

the network outcomes that arise and what society would wish to happen.

Although the danger of lack of tractability is clear, it is of interest to try

and develop models that capture ex ante agent heterogeneity, determine its

effects on network formation and network interaction incentives, and relate

it to ex post agent heterogeneity in the network.

In order to attempt to answer some of these questions set above, the first

task is to define a suitable measure of social efficiency. In the subsection that

follows, we present and compare some of the efficiency concepts that have

been used in the literature on network formation models. Secondly, various

authors have used different processes of network formation and different con-

cepts of stability or equilibrium in order to characterise the result of agents’

self-interested behaviour. We will present most of the stability concepts that

are relevant for network formation models and explain the differences in the

underlying linking processes.

Finally, we will turn to our main area of interest: presenting some char-

acteristic endogenous network formation models and their results regarding

the tension between stability and efficiency. Our motivation will be to try

and uncover the differences in the model setup that can lead to significant

differences in predictions about efficiency. We will also pay particular at-

tention to dynamic models of network formation. For these models, we will

ask whether relaxing the static character of network formation can repair

the mismatch between stable and efficient network outcomes. Lastly, we will

relate the concepts and models presented in this chapter to the models that

of subsequent chapters.
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1.2 Measuring social efficiency

Before proceeding to compare the endogenously derived networks of any

formation process with what would be optimal from the point of view of

society as a whole, we need to carefully define what social efficiency is.

Given the specific assumptions of a model, there are two obvious ways of

defining efficiency in networks. The first is the familiar notion of Pareto

efficiency, applied in a network setup.

Consider a network represented by a graph (N, g), where N = {1, . . . , n}
denotes the set of agents in the network and g the binary matrix of relation-

ships between them. In particular, gij = gji = 1 if agents i, j are linked and

gij = gji = 0 otherwise4. We denote by G the set of all possible networks

that can be formed by the agents in N . 5 A path in a network g between

nodes i and j will be a sequence of connected nodes i1i2i3 . . . iK−1iK such

that gikik+1
= 1 for each k ∈ [1, . . . ,K − 1] with i1 = i and iK = j and such

that all nodes in the sequence are distinct. The network (N, g) will then be

connected if for each i, j ∈ N there exists a path in (N, g) between i and

j. We next define a component of (N, g) as a distinct maximal connected

subgraph of the network:

Definition 1. A component of a network (N, g) is a nonempty subnetwork

(N ′, g′) such that ∅ 6= N ′ ⊂ N , g′ ⊂ g, (N ′, g′) is connected, and if i ∈ N ′

and gij = 1 then j ∈ N ′ and g′ij = 1.

Assume a value function v that specifies the total value generated by

the network. Assume further that there is a fixed exogenous allocation rule

Y that determines the payoff of each agent corresponding to the value v

created by each network in G. Then a network will be Pareto efficient given

the set of agents, the allocation rule and the value function, if there is no

alternative network that can provide equal or higher payoff for all agents

and strictly higher payoff for at least one of them:

Definition 2. A network g is Pareto efficient in G for (v, Y ) if there exists

no other network g′ ∈ G such that Yi(g
′, v) ≥ Yi(g, v) ∀i ∈ N with Yi(g

′, v) >

Yi(g, v) for some i ∈ N .

4Using the convention gii = 0.
5When N is considered fixed or given, we will often refer to the network as g.
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Pareto efficiency is a weak concept as it does not demand total welfare

maximisation. In order to see that, we next define the most frequently used

concept of strong efficiency, following Jackson and Wolinsky (1996) [31], and

then proceed to a comparison of the two concepts.

A network will be (strongly) efficient, given some value function if there is

no other network that can give a higher total value. While there always exists

a (strongly) efficient network, it does not need to be unique; it is possible

that the maximum value can be produced by more than one networks.

Definition 3. A network g is (strongly) efficient in G for v if there exists

no other network g′ ∈ G such that v(g′) > v(g).

We notice that the exogenous allocation rule Y does not affect whether

a network is efficient or not from the perspective of society. This provides a

straightforward intuition for the plausibility of a conflict between stability

and efficiency: agents, in the absence of value transfers, benefit only from

the value allocated to them by Y and not from the value v that is generated

by the whole network.

Strong efficiency is, therefore, much more demanding than Pareto ef-

ficiency: a network is (strongly) efficient only if it is Pareto efficient, for

a given value function v, irrespective of the allocation rule Y . We proceed

with a simple example, following in intuition the co-author model of Jackson

and Wolinsky (1996) [31], through which this difference in the two notions of

efficiency and the fact that Pareto efficiency is weaker will be made manifest.

Example 1. Consider a population of four identical agents defining the set

of feasible networks G. Two agents i, j are neighbours only if a direct link

exist between them by mutual consent i.e. if gij = gji = 1. Let di denote

the number of neighbours of agent i ∈ N = {1, 2, 3, 4} and Ni the set of

neighbours of agent i. Assume that agents possess an effort endowment of

one unit each, which they allocate equally among all of their partners. If

an agent has no partners then assume that her effort cannot be productively

employed, and hence she makes a payoff of zero. Assume that the value from

a partnership between two agents i, j is given by the sum of the efforts ( 1
di
, 1
dj

)

exerted by each of them plus the product of the two efforts. This formulation

allows for some synergy in the production of network value. Therefore,

vij =
1

di
+

1

dj
+

1

di

1

dj
. (1.1)
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Then the total value created by the network will be equal to the sum of the

value of all partnerships:

v(g) =
∑

i∈N,j∈Ni,j>i
[
1

di
+

1

dj
+

1

di

1

dj
]. (1.2)

Assume, finally, that the allocation rule is fixed and specifies that each agent

i receives a half of the value created by each of their partnerships. So,

Yi(g) =
1

2

∑
j∈Ni

[
1

di
+

1

dj
+

1

di

1

dj
]. (1.3)

Consider now the following two networks in G: network gp of two isolated

pairs of agents, and network g′ with a line of three agents and one isolated

agent: take for instance the 132 line with agent 3 in the centre and agent 4

isolated. Then,

v(gp) = 6

v(g′) = 4

Yi(gp) = 1.5, for each i ∈ N

Yi(g
′) = 1, for i = 1, 2

Y3(g′) = 2 (1.4)

It follows from Jackson and Wolinsky (1996) that gp is strongly efficient.

On the other hand, g′ is not strongly efficient since v(gp) > v(g′). However,

g′ is Pareto efficient.

These efficiency concepts are suitable for models where no transfers of

value between players are allowed. A transfer between two players is called

direct if the two players are connected and indirect if the two players are not

connected in the network. In the case where any transfer of value is allowed

among players, as in Bloch and Jackson (2007) [5], strong efficiency and

Pareto efficiency become equivalent. This is intuitive as an efficient network

g can become, if suitable indirect transfers are provided, preferable to all

agents and strictly preferable for at least one, than any inefficient network

g′ that is Pareto efficient without transfers.

In order to illustrate this, we can look at network g′ from the above

example; the isolated pairs network creates a higher total value of 6. All
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agents prefer moving to gp from g′ with agent 4 strictly preferring it, if

indirect transfers are made so that e.g. agents 1, 3, 2 are allocated the same

value as in g′ and agent 4 receives the remaining 6− 4 = 2 instead of zero in

g′. We, therefore, conclude that Pareto efficiency, though weak in general, is

perfectly suitable for models where any reallocation of value is permissible.

Finally, following Jackson (2005a) [22], we present the concept of con-

strained efficiency, which is suitable for models where reallocations of value

among agents are possible but such transfers need to satisfy certain con-

straints. More specifically, instead of allowing for all or no reallocations, as

in strong efficiency and Pareto efficiency respectively, reallocations of value

are allowed as long as they are anonymous and component balanced.6.

An allocation is anonymous if it does not depend on the identity of the

players occupying the various nodes; if players are relabelled, the allocation

must change with the labels:

Definition 4. Consider a permutation π : N → N and, for any g ∈ G,

let gπ = {{π(i), π(j)}|gij = 1}. Define vπ(g) = v(gπ). An allocation rule

Y is anonymous if, for any value function v ∈ V , network g ∈ G, and

permutation of the set of players π, Yπi(g
π, vπ) = Yi(g, v).

An allocation is component balanced if the total value allocated in every

component (N ′, g′) of network (N, g) is equal to the total value created by

that component. 7

Definition 5. An allocation rule Y is component balanced if
∑

i∈N ′ Yi(g, v) =

v(g′) for each v, g ∈ G, and component (N ′, g′) of (N, g).

In order to illustrate these restrictions, note, in the context of Example

1.2.1, that the transfer specified is not anonymous: agent 3’s identity matters

as she needs to be allocated a higher share than all the others to agree to

move to gp. But an anonymous and component balanced allocation rule will

give 1.5 to each agent in an isolated pair. Therefore, agent 3, who receives 2

in g′, will be strictly worse-off in gp. We hence see that gp does not dominate

g′ in terms of constrained efficiency.

Definition 6. A network g will be constrained efficient relative to value

function v if and only if it is Pareto efficient relative to v and Y , for ev-

6The following definitions are based on Jackson (2008) [24]
7We restrict attention here to component additive allocations, where the value created

by each component is independent of how other components are organised.
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ery allocation rule Y that is anonymous and component balanced. In other

words, there exists no g′ ∈ G and anonymous and component balanced Y

such that Yi(g
′, v) ≥ Yi(g, v) ∀i ∈ N with Yi(g

′, v) > Yi(g, v) for at least one

i ∈ N .

This is, therefore, an intermediate concept of efficiency that falls between

Pareto efficiency and strong efficiency. In particular, Jackson (2005a) [22]

points out that for a component balanced and anonymous allocation rule Y ,

efficient networks are a subset of constrained efficient networks, which are,

in turn, a subset of Pareto efficient networks with no transfers permitted.

Existence of an efficient network thus guarantees the existence of a con-

strained efficient and a Pareto efficient network in G, for any value function

and allocation rule. Note, finally, that models have made use of different

concepts of constrained efficiency by demanding a set of constraints other

than anonymity and component balance.

1.3 Stability in static models of endogenous net-

work formation

The natural next step in our analysis is to consider the various stability and

equilibrium definitions that have been used in the literature of endogenous

network formation in order to describe the outcome of the network formation

process.8 This section will present the concepts of Nash stability, as in

Myerson (1977) [35], Pairwise Nash stability and Pairwise stability, following

Jackson and Wolinsky (1996) [31], Bilateral Equilibrium as in Goyal and

Vega-Redondo (2007) [19], and Strong equilibrium, as discussed in Dutta

and Mutuswami (1997) [10] and Jackson and van den Nouweland (2005)

[28]. We will restrict attention to stability and equilibrium concepts without

value transfers between agents.

Starting with Nash stability, Myerson (1991) [35] models the bilateral

link formation process as a non-cooperative simultaneous-move game. A

strategy for a player i ∈ N = {1, . . . , n} is an announcement of intended

links si ∈ Si = {0, 1}n−1, where sij = 1 or sij = 0 if agent i wants to form

a link with j or not, respectively. Links need mutual consent in order to be

8For a comprehensive analysis and comparison of some of the numerous concepts see
Bloch and Jackson (2006) [4].
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formed i.e. ij will be formed only if sij = sji = 1. Therefore, a strategy

profile s for all players induces a network g(s) and individual payoffs Πi(g(s))

for the players. 9 Then a network g(s) is Nash stable if and only if there is

no unilateral deviation in the linking strategy of any player that would lead

them to a strictly higher payoff:

Definition 7. A strategy profile s of linking announcements is a Nash Equi-

librium of the linking game iff Πi(g(s)) ≥ Πi(g(s′i, s−i)) for all i ∈ N , s′i ∈ Si.
The network g(s) is then Nash stable.

There is broad consensus in the network formation literature that this is

too weak an equilibrium concept and unsuitable for the study of undirected

link formation. It allows for too many equilibria networks with undesirable

properties. The key example is the empty network which is always Nash

stable as the agents cannot coordinate their linking announcements in order

to form a new link and are merely allowed to unilaterally deviate in the form

of link cutting.

Some of these problems are remedied by the refinement of Pairwise Nash

Equilibrium. Agents are now allowed to deviate in pairs in order to form a

new link, or to unilaterally deviate by cutting as many of their existing links

as they wish.10

Definition 8. A strategy profile s is a Pairwise Nash Equilibrium of the

simultaneous-move linking game iff (a) Πi(g(s)) ≥ Πi(g(s′i, s−i)) for all i ∈
N , s′i ∈ Si, and (b) for any i such that Πi(g(s)+ ij) > Πi(g(s))⇒ Πj(g(s)+

ij) < Πj(g(s)). Network g(s) is then called Pairwise Nash stable.

A related concept is that of Pairwise stability, employed by Jackson and

Wolinsky (1996) [31]. Agents are allowed to deviate in pairs to form a new

link, or to unilaterally deviate by cutting any one link. A network will now be

Pairwise stable if neither of these types of deviations can be strictly profitable

for both link-forming agents or for the link-cutting agents, respectively. We,

therefore, directly observe that the set of Pairwise Nash stable networks is

a refinement on the set of Pairwise stable networks as, in the former case,

agents are permitted more types of deviations.

9We will denote by g+ ij the new network formed by g with the addition of a new link
ij, and by g − ij the network formed by g with the omission of existing link ij.

10For a formal study of this equilibrium concept see for example Calvó-Armengol and
Ilkilic (2009) [7].
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Definition 9. A network g is Pairwise stable with respect to a payoff func-

tion Π if: (a) for all i ∈ N and links ij ∈ g, Πi(g) ≥ Πi(g− ij), and (b) for

all ij 6∈ g, if Πi(g + ij) > Πi(g) then Πj(g + ij) < Πj(g).

We note that, contrary to Myerson’s Nash stability, Pairwise stability

and Pairwise Nash stability do not correspond to a purely non-cooperative

game. They are instead allowing for ’intuitive’ deviations by a pair of agents,

since link formation requires, by definition, mutual consent and hence some

form of bilateral cooperation. Pairwise stability is an attractive concept for

use in many applications due to its tractability and good predictive power.

However, it can also be considered too weak as it allows for a very limited

set of deviations. Therefore, networks that are Pairwise stable may not be

stable against richer deviations, one example already discussed being the

simultaneous deletion of multiple links by an agent.11

The next equilibrium concept we will discuss is the Bilateral Equilibrium

of Goyal and Vega-Redondo (2007) [19]. This can be described as a further

refinement on the Pairwise Nash Equilibrium concept. Agents are now al-

lowed to unilaterally deviate by cutting as many links as they wish, and to

bilaterally deviate by forming a link between them and/or deleting any com-

bination of their links that they wish. Intuitively, on top of any unilateral

deviations involving link cutting, agents are additionally allowed all possible

deviations in a coalition of size two, in full recognition of the cooperative

nature of undirected linking. In a Bilateral Equilibrium network, none of

these deviations can be profitable for all agents involved.

Definition 10. A strategy profile s is a Bilateral Equilibrium if the following

conditions hold: (a) For any i ∈ N and every si, s
′
i ∈ Si, Πi(s) ≥ Πi(s

′
i, s−i),

and (b) for any pair of players i, j ∈ N and every strategy pair (si, sj),

Πi(s
′
i, s
′
j , s−i−j) > Πi(s)⇒ Πj(s

′
i, s
′
j , s−i−j) < Πi(s).

This equilibrium concept is appealing in situations where links are costly

and hence agents have limitations, via a fixed endowment or a convex cost

of linking, as to how many links they will create. In such setups, Pairwise

stability notions can characterise as stable, networks that would not survive

a bilateral deviation where agents, at the same time as forming the link

11In Bloch and Jackson (2007) [5], it is in fact pointed out that the set of Pairwise Nash
equilibria is the intersection of Nash equilibria of Myerson’s game and Pairwise stable
networks.
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between them, can cut a number of other links in order to free up endowment

or balance out the cost of the additional link formed.

Finally, following Jackson and van den Nouweland (2005) [28], we look at

an even stronger stability concept, Strong stability, where coalitions of any

size are allowed to deviate by forming links between them and/or severing

any of their links. A network will then be Strongly stable if, for any possible

coalitional deviation, there is always at least one member of the coalition

who would block it because they end up with a strictly smaller share than

before.

Definition 11. A network g is Strongly stable with respect to an allocation

rule Y and a value function v if for any subset of agents C ⊆ N , g′ that

is obtainable from g via deviations by C, and i ∈ C such that Yi(g
′, v) >

Yi(g, v), there exists j ∈ C such that Yj(g
′, v) < Yj(g, v).

This definition of Strong stability is slightly stronger than that originally

introduced by Dutta and Mutuswami (1997) [10]: here a coalition of agents

is allowed to deviate if some among them are strictly better off and all others

are weakly better off. On the contrary, in Dutta and Mutuswami (1997) [10],

all members of a coalition need to be strictly better off for a deviation to

proceed. The above definition, therefore, implies Bilateral stability (and

Pairwise stability) if we look at coalitions of size two; the set of Strongly

stable networks will be a subset of the set of Bilateral equilibrium networks.

However, demanding that a network survives from any possible deviation

of any coalition of agents in C ⊆ N can prove to be so restrictive that

no Strongly stable network exists. Moreover, stability concepts allowing for

coalitions of a greater size than two to deviate, move even further away from

the setup of a non-cooperative game without any corresponding justification

in the linking process.

Finally, as pointed out in Jackson (2005) [22], all of the above stabil-

ity and equilibrium concepts are not only static but also fully myopic. In

particular, myopic individuals do not predict or take into account how the

others may react to their (unilateral or bilateral) deviations. For example,

a bilateral deviation of a pair of agents where they form the link between

them and cut several links with others, may result in further deviations by

other agents, until a stable network is reached and no further deviations are

profitable. While the bilateral deviation might have been deemed strictly
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profitable, it can well be that in the final network, after all reactions of other

players to it have taken place, the pair becomes strictly worse off than in

the original network.

1.4 The tension between stability and efficiency

In this section, we turn to the analysis of some endogenous network forma-

tion models, selected to reflect the motivation and interest of this and the

remaining two chapters. 12 Our focus in what follows will be on inefficiencies

in the endogenously determined networks.

The first models in this literature were explicitly preoccupied with the

tension between stability and efficiency and with potential mechanisms to

restore efficiency by aligning social with private incentives. The recent litera-

ture, on the other hand, has been focusing on the interplay and co-evolution

of links and actions. Overall efficiency can then be examined in a richer

setup where the network is built for an explicit function, and any inefficien-

cies can be attributed to a variety of sources. It will be of particular interest

to see to what extent observed inefficiencies can be attributed to agent my-

opia, and whether, and to what extent, dynamic evolution of the network

can restore efficiency.

1.4.1 A seminal model on the tension between stability and

efficiency

We start with the seminal contribution of Jackson and Wolinsky (1996)

[31] which was among the first to illustrate the mismatch between stability

and efficiency when agents are free to shape the network based on their

private incentives. The authors employ the concepts of strong efficiency

and pairwise stability. They present two stylized models for which they

characterise the stable and efficient networks, and show that the set of stable

networks and the set of efficient networks do not always intersect. Then,

returning to a more general model setup, they show that there are network

value functions for which no anonymous and component balanced allocation

12For more exhaustive reviews of the older and more recent literature in endogenous
network formation, look for example at Bloch and Dutta (2011) [3], Dutta and Jackson
(2003) [9], Goyal (2016) [14], Jackson (2005) [22], Jackson (2008) [24], Jackson (2014)
[26], Jackson (2005) [23], Jackson (2011) [25], Vannetelbosch and Mauleon (2016) [36] and
Vega-Redondo (2016) [38].
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rule can support the strongly efficient network as a pairwise stable network

of the game. Therefore, there is tension between stability and efficiency that

is, moreover, not easily resolved for general classes of value functions and

allocation rules.

The first stylised model that the authors present is the Connections

model: agents link with others for the purpose of social communication. So-

cial communication can be direct, between neighbours, or indirect, between

neighbours of neighbours etc., however, the value of communication decays

as the distance between the agents in the network increases. Communication

linking also entails a cost that the agent takes into account when determin-

ing her linking strategy. An agent pays only for forming direct links but

can then enjoy the benefit of indirect links with no additional cost. So, a

link between i and j also brings benefits to any neighbour of i who is not

directly connected to j. So,this is a model of positive externalities. The au-

thors show that, for a symmetric version of the model, the unique strongly

efficient network in the connections model is either the complete graph, or

a star encompassing everyone, or the empty network.13 Intuitively, which

network is the efficient one will depend on how high the cost of direct linking

is compared to the decay in the value of communication from indirect links.

Next, the authors show that in the symmetric connections model, where

each agent’s allocated value is the utility that she receives from the commu-

nication network, a pairwise stable network has at most one (non-empty)

component. In particular, for a small linking cost, the unique pairwise sta-

ble network is the complete network. For intermediate cost values, a star

encompassing all players is pairwise stable but not necessarily the unique

pairwise stable network. Finally, for high cost values, any pairwise stable

network which is non-empty is such that each player has at least two links.

Therefore, while it is possible to achieve efficiency for sufficiently low cost

values, inefficient stable networks may well arise for intermediate and high

linking cost values.

The second stylised model that is presented is the Co-author model:

agents can be thought of as researchers whose productivity is a function

of the number of their co-authors. Then each link can be interpreted as a

13A network is complete if all possible links are formed. It is empty if no links are
formed between agents. It has a star structure if a set of agents, the core or centre, is
connected with everyone else and the remaining agents, the periphery, is only connected
with the agents in the centre.
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(mutually agreed) research collaboration. There is no direct cost of link for-

mation but each agent has a fixed endowment to distribute, assume equally,

among their collaborators. Therefore, the more links the agent has, the less

she is going to offer to each of her co-authors. Moreover, the more fellow

collaborators each of an agent’s own collaborators has, the less she is go-

ing to benefit from that link. Each new link formed, therefore, reduces the

value of all existing links. So, this is a model of negative externalities. Each

collaboration product is defined as the mathematical sum plus the math-

ematical product of the two collaborators’ efforts. The productivity of a

player is then determined by the sum of research products from all their

collaborations.

The authors show that, under these assumptions, if the number of agents

N is even, then the strongly efficient network consists of N/2 separate pairs.

However, a pairwise stable network can be partitioned into fully connected

components, each of which has a different number of members. Therefore,

the stable and efficient networks do not coincide; the stable network will be

over-connected from a social perspective. This inefficiency is attributed to

the fact that the self-interested agents do not fully internalise the negative

externality of additional links to the value created by existing links.

Finally, the authors turn to a more general version of their model, which

encompasses both stylised models presented above. They prove that, for

three or more agents, there is no allocation rule Y that is anonymous and

component balanced and which can support, for each network value function

v, at least one strongly efficient graph as pairwise stable. The authors explain

that this negative result is not due to non-existence; there can always be

found an anonymous and component balanced allocation rule for which a

pairwise stable network does exist. However, such a rule will always have

the property that, for some value functions, the pairwise stable networks

that it supports are all inefficient.

In Jackson (2005) [22], it is, furthermore, shown that there does not exist

any component balanced and anonymous allocation rule such that, for every

value function, there exists a constrained efficient network that is pairwise

stable. This result further strengthens the above incompatibility result of

Jackson and Wolinksy (1996) [31] by extending it to the less strict case of

constrained efficiency.

Jackson and Wolinsky (1996) [31] prove that stability and efficiency can
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be reconciled if the requirement for component balance is dropped. If, on

the other hand, anonymity is dropped instead, Dutta and Mutuswami (1997)

[10] show that there exists a component balanced allocation rule Y such that

the intersection of efficient and pairwise stable networks is non-empty. More-

over, it is shown that Y is anonymous, in addition to component balanced,

for some networks in this set. These results are making use of the concept of

strong stability, however, they can be shown to extend to the case of pairwise

stability as well. Therefore, we conclude that if one is willing to drop compo-

nent balance, efficiency and stability are no longer incompatible. Moreover,

if one is willing to drop anonymity, then again stability and efficiency can

be reconciled. Finally, for some value functions, neither component balance

nor anonymity needs to be sacrificed.

Nevertheless, as Jackson (2011) [25] points out, it is striking that, even

when agents have full information and the ability to reallocate value up to

some, not too strict, constraints of component balance and anonymity, the

conflict between stability and efficiency still persists. In particular, this fact

contradicts the spirit of the ’Coase theorem’: One would expect that with

full information and the opportunity to make value transfers, fully efficient

outcomes would be always obtained. This has not always been true, however,

for the multi-agent endogenous network formation literature.

Bloch and Jackson (2007) [5] return to the problem of reconciling effi-

ciency with stability by examining the use of transfers. They investigate

different setups based on the types of transfers that are permissible. More

specifically, they contrast the implications of the following transfer regimes:

(i) transfers can be made only between directly connected agents or between

indirectly connected agents as well; (ii) transfers to a link can be agreed con-

tingent on only that link being formed or on the entire formed network; (iii)

players can pay other players to induce them to refrain from forming links

or no such payments are allowed.

The authors find that, in the case where only directly linked agents

are allowed to make transfers to each other, efficient networks can be, but

will not always be, supported in equilibrium. Even if indirect transfers are

allowed, in order to guarantee that efficient networks form, players need to

moreover be able to make those transfers contingent on the entire network.

The intuition is that there are multiple potential sources of inefficiencies

that need to be dealt with: indirect payments are used to deal with positive
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externalities of linking but network contingent transfers can also be needed

to deal with the combinatorial nature of network formation. Finally, in order

to deal with the inefficiency stemming from negative externalities in network

formation, like in the case of the co-author model of Jackson and Wolinsky

(1996) [31], players need to be able to pay other players to induce them not

to form additional links.

Finally, other authors have examined whether (at least part of) the con-

flict between stability and efficiency can be attributed to the fact that agents

are myopic. Grandjean, Mauleon, and Vannetelbosch (2011) [20] look at the

Jackson and Wolinsky (1996) [31] model when agents are instead assumed

to be farsighted: when contemplating a deviation they take into account the

full series of subsequent deviations that can result out of it. In this context,

a set of networks G′ is defined as Pairwise farsightedly stable (i) if all possi-

ble farsighted pairwise deviations from any network g ∈ G′ to a network not

in G′ are deterred by the threat of ending worse off or equally well off; (ii)

if there exists a farsighted improving path from any network outside the set

G′ leading to some network within G′;14 and (iii) if there is no proper subset

of G′ satisfying the first two conditions. The authors show that even far-

sightedness is not able to eliminate the conflict between stability and strong

efficiency for intermediate levels of link formation cost. However, it is shown

that farsightedness does reduce the discrepancy between pairwise stable and

efficient networks when the cost of linking takes high enough values.

1.4.2 Dynamic network formation models

Faced with the incompatibility of efficiency and stability exposed by the

Jackson and Wolinsky (1996) [31] model, a stream of literature has natu-

rally examined whether this negative result could be attributed to the static

nature of the network formation game. The first model to study this was by

Watts (2001) [39], who explicitly presents a dynamic version of the Jackson

and Wolinksy (1996) [31] Connections model.

More specifically, Watts(2001) [39] proposes a dynamic model where

agents are allowed to cut or form links. The process starts with the empty

network and then, as time goes by, random pairs of agents meet and decide

whether to form a link between them or to unilaterally sever links, in or-

14Assume we start at a network outside G′. A farsighted improving path is a series of
profitable deviations by farsighted agents that ultimately leads us to a network in G′.
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der to (myopically) maximise current period payoffs. In each period, a link

is randomly chosen to be updated with uniform probability. In particular,

in an extension of pairwise-stability, when forming a link agents are at the

same time allowed to simultaneously cut any number of their existing links

with mutual agreement. In this setup, a network will be stable if no single

player wants to sever any one direct link, and no pair of players wants to

form the link between them, with the possibility of simultaneously cutting

any number of their existing links.

Note that this stability concept is still weaker than Bilateral Equilibrium.

It cannot, however, be compared in a straightforward way with pairwise

Nash stability because, in the latter, players are not allowed to form a link

and cut links simultaneously but they are allowed to unilaterally sever any

number of links instead of just one.

Payoffs are specified as in the Connections model of Jackson and Wolin-

sky (1996) [31], which we reviewed earlier. Results are, therefore, similarly

driven by the relationship between the size of benefits from indirect links

and the size of the cost of direct link formation. In particular, the author

verifies that the Jackson and Wolinsky (1996) [31] stability and efficiency

results carry through for the static version of her model.

The author then moves on to determine to which network structures

the dynamic network formation process will converge, asking whether the

process can converge to the efficient network. She proves that the dynamic

process does not always converge to the efficient star network structure. In

such cases, it will either converge to another inefficient stable network or

move in cycles, visiting the same series of networks in a specific order. For

certain parameter values such cycles can be ruled out but the possibility of

convergence to an inefficient network still remains.

In particular, the dynamic formation process with myopic agents will be

path-dependent: if the benefit from maintaining an indirect link of length

two is greater than the net benefit from maintaining a direct link, then

the efficient network will only form if the order in which agents meet takes a

particular pattern. Finally, as the number of agents in the network increases,

meeting in the specific pattern or path necessary for convergence to the

efficient star network will be less likely. The possibility of convergence to an

inefficient network will then be even higher.

A natural extension of the above model would be to the case where agents
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are not fully myopic in their strategic decision making. Dutta et al. (2005)

[8] present a dynamic model of network formation where agents have some

degree of foresight i.e. when deciding on a current action, they evaluate its

effect on their entire discounted stream of payoffs.

Their dynamic link updating process is as follows: at any date a pair of

agents is randomly chosen and allowed to unilaterally break any link they

already have, and bilaterally form the link between them. This corresponds

to a limited form of cooperation, where a coalition of size two is allowed

to jointly deviate by forming the link among its members and/or deleting

existing links with non-coalition members. Payoffs for that date are instantly

realised and the whole process is then repeated. An equilibrium network

formation process will be, in this context, a strategy profile for the dynamic

game such that no active pair at any state can benefit either from unilateral

link cutting or from bilateral link formation. When contemplating such

deviations, active agents will be farsighted i.e. for a given value function

they will evaluate the entire stream of profits that will accrue based on their

actions and the consequences of their actions for all dates in the future.

Note that the myopic case, examined by Watts (2001) [39] above, can be

obtained as the special case when agents are perfectly impatient, with a

discount factor equal to zero.

The authors define efficient networks using the definition of strong effi-

ciency and then specify different ways in which a dynamic network formation

process can yield these efficient outcomes; what they call different concepts

of ’absorption’. Namely, the efficient network will be strongly absorbing

when the network formation process reaches it, regardless of the network

we begin with. It will instead simply be a stationary network if there is no

guarantee that it will be reached but, if reached, there will be no further

deviations.

Given the above model setup, the authors show that there are valuation

structures in which no equilibrium strategy profile can sustain an efficient

network. They then proceed to determine conditions on the valuation struc-

ture such that an efficient network will be strongly absorbing. They find

that, for valuation functions that satisfy link monotonicity15, the strongly

15A valuation function satisfies link monotonicity, if an individual’s payoff is increasing
in her number of links. A valuation function satisfies increasing returns to link creation, if
it satisfies link monotonicity in a subcollection of components, with the additional require-
ment that aggregate value also increases over this subcollection. Formal definitions can
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efficient complete network will be strongly absorbing at some strategy profile

for all discount rates larger than zero, i.e. whenever agents are not fully my-

opic. In addition, in cases where the valuation function satisfies increasing

returns to linking and the allocation rule is the component-wise egalitarian

rule, the complete network will be strongly absorbing at some pure strategy

equilibrium profile, provided that the common discount rate is sufficiently

large.

However, a direct consequence of the above results is that the efficient

network will not be strongly absorbing at all equilibria even if all the condi-

tions we pose on the valuation function, the allocation rule and the discount

factor are met. This leads to the conclusion that the tension between stabil-

ity and efficiency cannot be fully resolved by a dynamic network formation

setup, even if agents are allowed to be farsighted.

1.4.3 Endogenous network formation and the static and dy-

namic interplay between links and actions

In a recent review of the literature in network formation, Vega-Redondo

(2016) [38] stresses the importance of creating models that incorporate both

strategic linking and strategic behaviour in the formed network. In many

real life situations, agents have control of both their structure of interactions

and the behaviour that they exhibit in them. Therefore, there is a great

interest in models that can account for both of these dimensions and shed

light in the ’co-evolution’ of links and actions.

Even though endogenising both the network and agents’ behaviour in

it increases the analytical challenges of a model, Vega-Redondo argues that

such models are indispensable for the study of situations as broad as those

of coordination, cooperation, intermediation, bargaining, local public good

provision, learning, and conflict in networks.

In the remaining section, we will review a selection of such models. We

will focus on the different methods for the co-determination of equilibrium

networks and embedded behaviour, and on the assessment of the efficiency

of such outcomes. We will also investigate the sources of inefficiencies when

they are predicted by the models. More specifically, we will look at some

characteristic models, both of a static and a dynamic setup, which fall into

be found in Dutta et al.(2005) [8]. The component-wise egalitarian rule allocates equal
shares to all agents in any given component.
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the broad category of endogenous networks with endogenous actions featur-

ing by strategic complementarity.

We begin with a model of a coordination game played in an endogenous

directed network proposed by Goyal and Vega-Redondo (2005) [18]. In the

basic model, links are costly and one-sided so that a player can unilaterally

choose their partners and then play a coordination game with all of them.

There is a constraint on the action space demanding that the same action be

played in all coordination games by the same agent. The authors look at the

stable networks that can result out of the strategic cost-benefit behaviour

of agents, and at whether the efficient coordination outcome can arise, both

in a static and a dynamic setup.

Agents unilaterally choose their location in the network, which then de-

termines the set of direct partners with whom they will play a 2 × 2 sym-

metric coordination game with common action sets A = {α, β}. There are

two, Pareto ranked, Nash equilibria of the one-shot simultaneous move game

with coordination, {(α, α), (β, β)}, which result in coordination payoffs (d, d)

and (b, b), respectively. Payoffs for the outcome (α, β), where agents fail to

coordinate, are (e, f). The coordination game is described by the following

overall relationship between payoff values: d > f , b > e, d > b, d+e < b+f .

The state (α, α) is the Pareto optimal one since d > b, but choosing β is the

risk dominant action for players, since b+ f > d+ e i.e. the average payoff

from β is higher than that from playing α. Therefore, there is a conflict

between risk dominance and efficiency. Links are costly, with cost c > 0,

and, in the basic model, one-sided, so that the linking game is a fully non-

cooperative game. Since each player is obliged to choose the same action in

the games played with all of their neighbours, strategic behaviour will also

be influenced by the structure of the network.

Starting with a static analysis of the model, the authors show that net-

work structure and coordination results are driven by the cost of link for-

mation c. In particular, if the cost is low, with c < e, then players have

incentives to link with everyone, irrespective of the actions played by others,

hence the complete network is obtained. The complete network is also ob-

tained if costs are high enough, with d > c > b, because in that case everyone

linked must be choosing the efficient action α so linking has a guaranteed

high payoff. However, for intermediate cost values, a wider range of out-

comes can arise in equilibrium; the complete network or a network of two
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distinct complete components are both possible equilibria. This stems from

the fact that, intuitively, for intermediate cost values, linking is profitable

only when all others choose the same action and coordination is achieved.

In similar spirit, the equilibrium results in the coordination game are also

driven by the size of linking costs, and for intermediate cost values a wide

range of outcomes can arise in equilibrium. These include social conformity

to the efficient or to the inefficient action, as well as action heterogeneity.

As a result of the above, for intermediate cost values, it is possible for

the equilibrium to feature neither the complete network nor the efficient

coordination outcome. Therefore, in such cases, equilibrium selection is

crucial. In order to try and achieve this, the authors look at a dynamic

version of the model where agents are allowed to adjust their links. Once

more, the level of the link formation cost remains a key factor that drives

results, however, much sharper equilibrium predictions can now be obtained.

In particular, for intermediate costs, the authors show that the com-

plete network will be stable in the long run, and that, in that case, social

conformism will also arise. However, if the cost of link formation is high

enough, agents will all conform to the socially inefficient risk-dominant ac-

tion. It is only for low enough cost values that the efficient coordination

outcome can be obtained. Therefore, allowing for dynamic adjustment in

linking, although helpful for equilibrium selection and sharper predictions on

the overall network structure and behaviour, is not always enough to elim-

inate inefficiencies. It is still possible that agents coordinate in the Pareto

dominated outcome.

These results carry through when the model is extended to a setup where

linking takes place by mutual consent and the linking cost is equally divided.

For the static model, it is shown that the complete network is the unique

non-empty strict Nash network, and that social conformism always takes

place. However, both the Pareto optimal and the Pareto dominated coor-

dination outcome can still arise in equilibrium. For the dynamic version of

this model, it is again the case that a threshold level of linking cost exists:

For all cost levels above this threshold the efficient outcome is the unique

equilibrium outcome. On the contrary, for all cost levels below the threshold,

the inefficient outcome becomes the unique equilibrium.

This negative result echoes those of Jackson and Watts (2002) [30]. They

present a dynamic model where agents play a coordination game with their
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neighbours but are also able to choose who these neighbours are by being

periodically allowed to add or cut links. The authors come up with a mul-

tiplicity of stable outcomes. These crucially include networks where the

equilibria of the coordination game are neither efficient nor risk-dominant.

We, finally, briefly turn to two models of peer effects. In these models,

links and effort decisions are made in a context of local complementarities

in effort levels and positive local externalities.16 Hiller (2012) [21] in his

working paper presents a simple model of undirected link formation. An

agent’s optimal effort provision decision depends on the structure of the

network but also on the effort provision decisions of the other agents, giving

rise to strategic complementarity. A broad family of payoff functions is used

which feature individual payoffs that are convex in the effort levels of direct

neighbours. It is shown that pairwise Nash stable networks display either

a complete, an empty or a core-periphery structure. Although no direct

comparison of equilibrium results with social efficiency is made, it is clear

that depending on which of the three equilibria is selected, stability and

efficiency may not agree.

KG’Anig, Tessone, and Zenou (2012) [33], on the other hand, present a

dynamic model of peer effects with a linear-quadratic payoff specification.

They look at a dynamic process of link formation where, in each period,

agents play the following two-stage game: in stage one, each agent chooses

an effort level considering the network as fixed; in the second stage the

network structure can be updated by a randomly selected agent who is

allowed to create a costless new link. Looking at the stable networks of

this dynamic link formation process with endogenous actions, they show

that these networks will feature ’nestedness’ i.e. that the network structure

will be such that the set of neighbours of each agent is a subset of the set

of neighbours of each agent with a higher degree. This family of networks

obviously contains the core-periphery family of networks. Therefore, we

see that dynamic models are once more able to give a sharper prediction

regarding the shape of stable networks that are possible to arise.

16Local complementarities in effort levels correspond to the case where a higher effort by
a partner induces an agent to further increase their own effort. Positive local externalities
of linking refer to the case where an agent is better off the more connected their partners
are.
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1.5 Outline and contribution

In the two chapters that follow, our fundamental contribution will be suc-

ceeding in reconciling efficiency with stability in the context of two models

of endogenous link formation and endogenous actions. Both models will be

dynamic to the extent that the one-shot game played will be a game with

two sequential stages: an endogenous link formation stage where links are

two-sided and hence partial cooperation for pairs of agents is permitted; and

an endogenous non-cooperative decision-making stage where agents choose

their effort provision after observing the entire network that has formed in

stage one.

In both models, the effort provision actions of agents will feature strategic

complementarity. Each bilateral partnership will result in some production

that uses the two efforts as inputs. This production will then be fully enjoyed

by the two partners according to an egalitarian rule but will be perfectly ex-

cludable from anyone else. There is, moreover, a negative externality to an

agent from the other links of their partners. Partnerships are non-exclusive

and the agents either have a fixed effort endowment to allocate, hence in-

troducing an indirect cost of effort provision, or face a direct convex cost

of effort. In the first model of Chapter 2, agents will be ex ante homoge-

neous in all features, whereas in the second model of Chapter 3 agents have

heterogeneous productivity.

We are going to use the definition of strong efficiency presented earlier

and pinpoint, for general families of production functions, the efficient link-

ing and effort provision strategy profile, in order to compare it with the

stable networks obtained. Stability will be defined using a variant of the

Bilateral Equilibrium concept previously presented in this Chapter, in or-

der to incorporate a Nash Equilibrium effort provision profile for the second

stage of the game. Agents will use backwards induction when deciding on

their linking profiles, anticipating that linking deviations will lead to a new

network where effort provision in the second stage will be determined by

a new Nash Equilibrium. However, when agents consider unilateral or bi-

lateral deviations in the linking stage, they will take as given the linking

decisions of all non-deviating agents.

Even though in both models the two-stage game that agents play is one-

shot and agents are myopic, we are able to prove that the efficient network
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structure and effort provision profile will, in all cases, be sustained as an

equilibrium of the overall two-stage game. This will be shown both for a

model with an arbitrary number of homogeneous agents and various families

of production functions, and for a model with four heterogeneous agents and

concave net production. For the homogeneous model, we will be able to

directly contrast our positive results with the negative results of the seminal

Jackson and Wolinsky (1996) [31] Co-author model. In particular, for the

production function of their model as well as for some more general families

of productions functions, we are able to prove that the efficient network

is the unique stable network and, therefore, social efficiency and stability

always agree.

We believe that these results stem from the fact that, firstly, our equilib-

rium concept allows for all intuitive deviations in a bilateral link formation

model. Since agents form links with mutual consent, it is intuitive to allow

them to deviate in pairs in the link formation stage of the game. Secondly

and most importantly, both of our models include a distinct endogenous

effort provision stage. It is this explicit modelling of the interplay between

link formation decisions and endogenous effort provision actions that allows

us to reach these important positive results and contribute to a long stream

of literature in endogenous network formation by showing that stability and

efficiency can be reconciled.
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Chapter 2

Endogenous Formation of

Bilateral Partnerships with

Homogeneous Types

2.1 Introduction

In this section we study a game with a distinct link formation stage and

a subsequent link-specific effort provision stage, where investment incen-

tives depend on the network structure that has arisen from the first stage.

We extend the Bilateral Equilibrium stability concept used in Goyal Vega-

Redondo (2007) [19] to a two-stage game in order to incorporate a Nash

Equilibrium in effort allocations in the second stage of the game. We prove

that, even though inefficient equilibria may exist, the efficient network is

always an equilibrium, under both strict concavity and strict convexity of

synergistic production. We are hence able to revisit the seminal Co-author

model of Jackson and Wolinsky (1996)[31]. In that paper, as well as in an

important string of subsequent literature, an important tension was shown

between the endogenously determined and the socially optimal network.

More specifically, it was shown that the pairwise stable networks would be

more connected than efficiency demands, and this was attributed by the

authors to the negative externalities arising from link formation. On the

contrary, in what follows, we are able to reconcile efficiency with stability,

both for a production function corresponding to that model and for more

general families of production functions. As we will see, this will be achieved

25



by endogenising the agents’ link-specific effort provision decisions, and be-

ing able to compare the set of efficient outcomes with the set of equilibrium

outcomes of the resulting two-stage game.

2.2 The Model

We consider a finite population of homogeneous agents N = {1, 2, ..., n}.
The agents’ interaction is modelled as the following two-stage game:

The first stage is the Myerson linking game described in Chapter 1. So,

all agents simultaneously announce the set of agents with whom they want

to form bilateral partnerships. Let si ∈ {0, 1}n−1 denote the set of agents

with whom i wants to form a link, the interpretation being that sij = 1

denotes that i wants to form a link with j. A partnership between i and

j forms iff both the agents want to form the link or partnership; that is, if

sij = sji = 1. We assume that there is a “small” cost µ̄ > 0 which has to be

borne by both agents if a link is formed. In particular, for this chapter, we

assume µ̄ < 1. We use µ(g) to denote the total cost of forming the links in

any network g. So, using gij = 1 if ij ∈ g and gij = 0 otherwise, for i, j ∈ N
and i 6= j:

µ(g) = 2µ̄
∑
ij

gij (2.1)

Each action profile s = (s1, ..., sn) will, therefore, induce a network g(s).

We denote by G the set of all possible networks that can be formed by the

n players. Let di(g) denote the degree of i in the network g, while Ni(g) is

the set of her neighbours in g. A component of any graph g is a subgraph

such that all nodes in the subgraph are connected by a path, while no nodes

outside the subgraph are connected to nodes in the subgraph. Components

will be denoted by q and the set of nodes (or players) in q will be denoted

by N(q).

At the end of the first stage, players observe the network which has

formed.

In the second stage, agents simultaneously announce their effort alloca-

tion decisions after observing network g(s). Each agent i has an endowment

of one unit of effort, and has to decide how to allocate this effort endowment

across partnerships. For any player i, let Ei = {ei ∈ Rn−1
+ |

∑
j∈N−{i} eij ≤

1}, with eij = 0 whenever gij = 0. This introduces an indirect cost of effort,
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as the more effort is exerted in one partnership the less remaining effort

the agent has to exert elsewhere. It also implies a negative externality to

each agent from the other partnerships that their own partners have. Let

E = E1×E2× . . .×En. A feasible strategy for player i in the second stage

of the game is, therefore, a mapping mi : G → Ei. Whenever there is no

confusion about the network which has formed in the first stage, we will sim-

ply represent effort allocation decisions by ei, e
′
i, etc. instead of mi(g),m′i(g)

and so on.

Suppose the network g has formed in the first stage, andm(g) = (e1, . . . en)

∈ E. Each partnership ij ∈ g results in the production of some output ac-

cording to the following production function:

F (eij , eji) = eij + eji + f(eij , eji) (2.2)

where f(eij , eji) = 0 if either eij = 0 or eji = 0. f(eij , eji) is a strictly in-

creasing function whenever eij > 0, eji > 0. The term f(eij , eji) represents

the synergy between the two members of the partnership ij. The assump-

tions on f imply that the synergy is generated only when both partners put

in positive effort into the partnership. We will call a partnership ’active’

whenever eij > 0, eji > 0, i.e. whenever the synergy is positive.

This is a generalisation of the Jackson and Wolinsky (1996) [31] model

of co-authorship in two respects. First, in the Jackson and Wolinsky model,

effort choice is not endogenous. Each individual chooses an equal amount

of effort on each of her links, so that eij = 1
di(g)

for all j ∈ Ni(g). Given

this specification, their model’s linear term in the production function is the

same as ours. Second, their synergy term between i and j is simply the

product eijeji, whereas we allow for a more general specification. Our main

contribution is to show that for some general specifications of the synergy

term (which include the case presented by Jackson and Wolinsky), there will

always be an equilibrium of the overall game which supports the efficient out-

come. This comes into direct contrast with their seminal inefficiency result

and we believe that this difference is due to the endogenous specification of

effort choice.1

After the two-stage game is played, payoffs are realised for all agents. We

1Of course, since effort choice is not endogenous in the Jackson and Wolinsky co-author
model, their model is an one-stage model where individuals only choose partners knowing
that each individual will equalise effort across partnerships.
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assume, similarly to the Jackson-Wolinsky model, that there is an egalitar-

ian rule according to which each partner’s utility/payoff from a partnership

is equal to the total production of the partnership. In other words, it is

assumed that the product of each partnership is a non-rival public good for

the two partners but perfectly excludable from everyone else, amounting to

no spill-overs across partnerships. An agent’s payoff will, therefore, be the

sum of the product of all of her partnerships, net of the total cost of link

formation she incurs:

Πi(s,m) =
∑

j∈N−{i}

F (eij , eji)− diµ̄ where m(g(s)) = e (2.3)

We note here that this production function specification includes, through

the additive term, the potential for free-riding on the other partner’s effort,

since one agent receives the non-synergistic product of the other agent even

if she does not exert much effort herself in that partnership. However, it also

allows for incentives to specialise in a partnership as agents will allocate their

effort in order to maximise the total synergistic product they receive from

their partnerships.

We next introduce the definition of an equilibrium of the two-stage game:

Definition 12. The pair of strategy profiles (s∗,m∗) is a Subgame Perfect

Bilateral Equilibrium (SPBE) iff:

(i) For all i ∈ N , for all mi, and for all s,

Πi(s,m
∗) ≥ Πi(s,mi,m

∗
−i). (2.4)

(ii) For all i ∈ N , for all si,

Πi(s
∗,m∗) ≥ Πi(si, s

∗
−i,m

∗). (2.5)

(iii) For all pairs of players {i, j} ∈ N , for all (si, sj):

Πi(s
∗,m∗) ≥ Πi(si, sj , s

∗
−ij ,m

∗) (2.6)

or,

Πj(s
∗,m∗) ≥ Πj(si, sj , s

∗
−ij ,m

∗). (2.7)
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As in any subgame perfect equilibrium of a two-stage game, players an-

ticipate that an equilibrium will be played in the second stage of the game.

The equilibrium payoffs of the second stage game become the payoffs of the

first stage game. Equation 2.4 imposes the requirement that the second stage

strategy profile m∗ must be a Nash Equilibrium of the second stage game

at all possible subgames; that is no matter which graph is formed in the

first stage, players’ choice of effort allocation must be a Nash Equilibrium

in that subgame. Equation 2.5 imposes the requirement that no individual

has a strictly profitable unilateral deviation in the first stage, assuming that

players will use m∗ in the second stage. However, Nash Equilibrium has

a well-known problem in any network formation game - the empty graph

can always be supported as a Nash Equilibrium since bilateral consent is

required to form a link. Following much of the literature on network forma-

tion, we allow pairs of players to deviate together in the first stage in order

to correct for this problem. Equations 2.6 and 2.7 impose the requirement

that no pair of individuals should be able to deviate jointly with both of

them becoming strictly better off.

2.3 Efficiency and Subgame Perfect Bilateral Equi-

libria

In this section, we discuss the extent to which Subgame Perfect Bilateral

Equilibria can support the efficient outcome(s) of the overall game under

various assumptions on the synergy function f .

We first start with a lemma which will be useful subsequently and is also

of some independent interest. The lemma shows that every second stage

game is actually a potential game.2

We remind the reader that a normal form game (N,S,Π) is an exact

potential game if there is a function P : S → R such that for all s ∈ S, for

all i ∈ N , for all s′i ∈ Si,

P (s)− P (s′i, s−i) = Πi(s)−Πi(s
′
i, s−i) (2.8)

Lemma 1. For all g ∈ G, the second stage game is an exact potential game.

2See Monderer and Shapley (1996) [34].
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Proof. Fix any g. Consider the following candidate potential function:

P (g, e) =
∑
i∈N

∑
j>i,j∈Ni(g)

F (eij , eji) (2.9)

To check that this is indeed a potential, consider strategy profiles m and

(m′i,m−i). Let m(g) = e and m′i(g) = e′i. Then,

Πi(g,m(g))−Πi(g,m
′
i(g),m−i(g)) =

∑
j∈Ni(g)

[
F (eij , eji)− F (e′ij , eji)

]
= P (g, e)− P (g, e′) (2.10)

This shows that P is a potential function and establishes the lemma.

We use the following definition of efficiency:

Definition 13. A pair of strategy profiles (s,m) is efficient iff for all g′ ∈ G,

for all e′ ∈ E,

∑
i∈N

∑
j∈Ni(g(s))

F (eij , eji) ≥
∑
i∈N

∑
j∈Ni(g′)

F (e′ij , e
′
ji) if µ(g) ≤ µ(g′)

>
∑
i∈N

∑
j∈Ni(g′)

F (e′ij , e
′
ji)otherwise. (2.11)

So, (s,m) is efficient if it maximises total output produced across all

possible networks and all possible feasible allocations of effort in the second

stage. This is, of course, stronger than the notion of Pareto efficiency, but is

in line with the literature on networks starting from Jackson and Wolinsky

(1996) [31]. The definition of efficiency given here assumes that the cost

of link formation is very small. Thus, if µ(g) > µ(g′), then even a small

difference in second-stage output is sufficient to outweigh the cost difference

in network formation.

Notice that a pair (g, e) can be efficient only if the vector of effort allo-

cation decisions e maximises output given that the network g has formed.

Given the form of the potential function P , it is clear that e must then

maximise the value of the potential at g. Moreover, we know that if a strat-

egy profile is a pure strategy Nash Equilibrium of a potential game, it is a
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stationary point of the potential. 3

Since the nature of the results will depend on the specification of the

synergy function f , it will be convenient to conduct the discussion separately

for convex and concave synergy functions.

2.3.1 The Strictly Convex Case

For this section, we suppose that the synergy function f is strictly convex

in the effort inputs:

Assumption 2.1: Let the synergy function be f(eij , eji) = z(eij)z(eji)

with z(.) being increasing and strictly convex.

In this case, we prove that the efficient network is supported as a Sub-

game Perfect Bilateral Equilibrium. The following theorem provides a formal

statement.

Theorem 1. Let f satisfy Assumption 2.1. Then,

(i) If n is even, the unique efficient pair of strategy profiles (s,m) must be

such that g(s) consists of n
2 components, each component containing a

pair of individuals. Moreover, m(g(s)) = e with eij = 1 iff ij ∈ g(s).

(ii) If n is odd, the unique efficient pair of strategy profiles (s,m) must be

such that g(s) consists of n−3
2 components each containing a pair of

individuals, and another minimally connected component q = {ij, jk}.
Moreover, m(g(s)) = e is chosen so that for all i ∈ N , eij = 1 for

some j ∈ Ni(g). 4

(iii) In all cases above, the efficient pair of strategies is a Subgame Perfect

Bilateral Equilibrium.

(iv) Moreover, there cannot be a Subgame Perfect Bilateral Equilibrium

which is not efficient.

Proof. Suppose for some i ∈ N and some feasible effort allocation vector,

| J = {j | eij > 0} |> 1, J ⊆ Ni,
∑

j∈J eij ≤ 1, and assume for simplicity

3An interior Nash Equilibrium will be, for a general f , a stationary point of the poten-
tial. Also, there may be other Nash equilibria which are at the boundary of the strategy
space, with some neighbours setting eij = eji = 0.

4This is straightforward for all i if di(g) = 1. For j ∈ N(q) for whom dj(g) = 2, choose
any l ∈ Nj(g) and set ejl = 1.
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that eji = e for all j ∈ J . Consider a feasible reallocation of effort such that,

for some j∗ ∈ J , e
′
ij∗ = 1, and e

′
ij = 0 for all other j ∈ J j 6= j∗. Then, from

strict convexity of f , it follows that

f(1, e) >
∑
j∈J

f(eij , e). (2.12)

This immediately establishes that total synergy output is maximised if each

i sets eij = 1 for some j where eji = 1. This is possible for all i iff n is even.

So, (i) follows since the total cost of link formation is also minimised at the

isolated pairs network.

Now, suppose n is odd. It is again easy to check that total synergy

output is maximised when pairs of i, j put eij = eji = 1. This is possible

only for n−1
2 pairs. Suppose µ̄ < 1. Consider the component q where

dj(q) = 2. Suppose ejk = ekj = 1, eij = 1, eji = 0. Then, i and j produce no

synergistic output but i contributes output of 1 unit. If µ̄ < 1, it is efficient

for i and j to form the partnership. Hence, (ii) is true.

Suppose (s∗,m∗) is an efficient pair of strategies. If n is even,

Πi(s
∗,m∗) = 2 + f(1, 1)− µ̄ for all i ∈ N (2.13)

It is easy to check that no pair of individuals can deviate and get a strictly

higher payoff.

Suppose n is odd. Again, (n− 2) individuals attain the payoff specified

in equation 2.13. One individual has two links i.e. is the centre of a line

where both partners exert all effort to her but she exerts all effort in one of

the two partnerships. Therefore, the central agent attains the payoff:

Πi(s
∗,m∗) = 3 + f(1, 1)− 2µ̄ > 2 + f(1, 1)− µ̄ (2.14)

the second inequality following from µ̄ < 1. The remaining individual ob-

tains the payoff 1−µ̄ > 0 for µ̄ < 1. This agent would profit from a deviation

to an isolated pair but there is no other agent who would become strictly

better off from deviating with him. This establishes (iii).

To complete the proof of the theorem, suppose (s,m) is a Subgame

Perfect Bilateral Equilibrium pair of strategies but is not efficient.

Let g be the network formed in the first stage of the game. We recall

that the second stage game is a potential game. Moreover, since f is strictly
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convex, the potential is also strictly convex. If g consists of components

each containing pairs (i, j), it is straightforward that the unique second

stage payoff is maximised at the efficient effort level where eij = eji = 1.

Suppose now that g is such that for at least two agents i, j

Πk(s,m) < 2 + f(1, 1)− µ̄ for k = i, j (2.15)

Then, i and j can deviate in the first stage, form the bilateral partnership

and achieve the payoff given in equation 2.13.

So, at most one agent can fail to attain this payoff.

Suppose that n is even. Note that whatever the structure of g, the upper

bound on total synergy output is n
2 f(1, 1). Moreover, convexity of f also

implies that each i will want to put eij = 1 for some j ∈ Ni(g) such that

eji > 0. It is now straightforward to check that (iv) is true for n even.

Now suppose n is odd. The same argument as before establishes that
n−3

2 bilateral partnerships must form. This leaves some set {i, j, k} of agents.

Suppose k is isolated. Our specification of the production function implies

that k cannot produce anything unless he is in a partnership (even if his

partner does not eventually contribute any effort in the partnership). So, k

will form a partnership with either i or j.

But, even when no agent is isolated, convexity implies that the unique

Nash Equilibrium must involve specialisation of effort.

This completes the proof of the theorem.

This theorem provides a contrast to the incompatibility of efficiency and

stability in the co-author model in Jackson and Wolinsky (1996) [31]. Given

the difference in the frameworks, it is worth asking whether the difference in

results is due to the fact that here individuals can choose effort endogenously

or whether the difference can be explained by strict convexity of the synergy

function. The results in this section and the next ones suggest that, while

the form of the synergy function may play an important role, not allowing

the individuals to choose effort allocations is also crucial in precipitating the

incompatibility results.
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2.3.2 The Jackson and Wolinsky (1996) Co-author model

In this section, we consider the special case where the synergy function has

the following form:

f(eij , eji) = eijeji (2.16)

In this case, the marginal product of own effort is a linear function of the

effort of the other partner. This is of course the case studied by Jackson and

Wolinsky (1996) [31] and is particularly interesting in view of the difference

in results. We assume in this section that n is even. The following theorem

formally states that the network where all agents are connected in pair

components, with each agent hence exerting all of their effort endowment

in their unique partnership, is the unique efficient and the unique Subgame

Perfect Bilateral Equilibrium network.

Theorem 2. Suppose n is even and the synergy function is f(eij , eji) =

eijeji. Then,

(i) Any efficient pair of strategies (s,m) must be of the form where g(s)

consists of n
2 components, each component containing a pair i, j and

with eij = eji = 1.

(ii) Any efficient pair of strategies can be supported as a Subgame Perfect

Bilateral Equilibrium.

(iii) Moreover, there cannot be a Subgame Perfect Bilateral Equilibrium

which is not efficient.

Proof. The proof of (i) is available in Jackson and Wolinsky [31]. So, we

prove only (ii) and (iii).

We, first, show (ii) i.e. that the efficient network g of n
2 pair components

with eij = eji = 1 is a Subgame Perfect Bilateral Equilibrium.

Consider any efficient profile (s,m) with g = g(s). Suppose ij ∈ g.

Clearly, neither i nor j has any unilateral deviation which is profitable. So,

consider a bilateral deviation by say i and k where ik /∈ g. Let g′ = g + ik

be the new network and consider the component q consisting of i, j, k and l

where ij, kl ∈ g.

In the second stage of the game, consider any allocation in g′ with 0 <

eik < 1, 0 < eki < 1, hence 0 < eij < 1, 0 < ekl < 1. But we know that

eji = elk = 1. Therefore, agent i has the incentive to unilaterally deviate
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by decreasing effort eik and increasing eij in order to increase total synergy.

These deviation incentives exist until eij = 1, eik = 0. The same holds for

agent k. Therefore, no allocation with positive effort by i, k in all links

can be a Nash Equilibrium. Since agents will expect this when making link

decisions, the ik link will not be formed. Therefore, the efficient network of

pair components is a Subgame Perfect Bilateral Equilibrium.

We next show that the efficient network g is the unique Subgame Perfect

Bilateral Equilibrium. The proof of this is very similar to the corresponding

statement in the previous theorem.

First, note that any pair of agents i, j can deviate in the first stage of the

game, form the bilateral partnership and obtain payoff equal to the output:

Π = 1 + 1 + eijeji − µ̄ = 3− µ̄ (2.17)

So, if (s,m) is to be a Subgame Perfect Bilateral Equilibrium, at most one

agent can get a strictly lower payoff. Now take any equilibrium (s,m). Let g

be the network formed through s. If g has a component with an odd number

of nodes, then there must be at least two such components since n is even.

It is easy to check that at lest one player gets strictly less payoff than Π in

an odd component. But, then there will be two such players since there are

at least two such components.

Hence, g can have only even components. Let h be a component of g

with N(h) being even. Given f(eij , eji) = eijeji, synergy output in h is

maximised when N(h) is partitioned into pairs {i, j} with eij = eji = 1.

Note that if h is not a pair, then at least two agents have at least two

links, and so pay a linking cost of at least 2µ̄. So, the net payoff of at least

two agents must be less than Π and hence g cannot be a Subgame Perfect

Bilateral Equilibrium.

This result demonstrates the difference brought about by making the

choice of effort endogenous, since the form of the synergy function is identical

to that used by Jackson and Wolinsky (1996) [31] in their co-author model.

In the latter, i and k gain by forming the link between themselves because

they are committed to devoting half of their effort to this link when they have

only two neighbours. This commitment arises because the individuals cannot

choose their allocation of effort, since it is exogenously specified that all

individuals divide their endowment equally across all neighbours. However,
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equal division of effort is not necessarily a Nash Equilibrium. The proof of

the above theorem rests on the simple observation that if j devotes 1 unit

to the link with i, and k only 1/2, then i will want to put more effort on the

link with j.

2.3.3 The Strictly Concave Case

We next study the case when the synergy function f is strictly concave in

the effort inputs. It then follows that the production function F will also be

strictly concave.

Assumption 2.2: The synergy function f(eij , eji) = z(eij)z(eji) is in-

creasing in each argument, differentiable and strictly concave.

Under this assumption, the following theorem formally states and proves

that the unique efficient network, consisting of the complete network with

equal effort division among links, is also a Subgame Perfect Bilateral Equi-

librium network. This is not, however, unique as there are other, inefficient

Subgame Perfect Equilibrium networks.

Theorem 3. Let F be defined as above and µ be sufficiently small.

(i) The complete network with equal effort allocation (gc, e
∗) is the unique

efficient network.

(ii) The efficient network is supported as a Subgame Perfect Bilateral Equi-

librium.

(iii) If n > 2, there can be other inefficient Subgame Perfect Bilateral Equi-

libria.

Proof. Assume that the link formation cost µ is small enough that the saving

on the cost from forming less than n−1 links does never compensate for the

loss in total output or total individual output.

Also, assume n > 2 since (i) and (ii) are are obviously true when n = 2.

(i) Consider any pair (g, e) where g ⊂ gc. First, note that there is an

effort allocation vector ẽ in gc such that ẽij = eij for all ij ∈ g. This implies

that total output must be maximised in gc.

Second, we show that total output in gc is maximised at e∗.

Let e∗∗ be the efficient effort allocation vector in gc. We establish that

e∗ = e∗∗ in two steps.
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(a) If e∗∗ is interior (that is e∗∗ij > 0 for all ij), then e∗∗ = e∗.

(b) e∗∗ must be interior.

To establish (a), note that for all i,
∂f(eij ,eji
∂eij

= ∂f(eik,eki
∂eik

for all j, k 6= i

only at e∗. Since the equality of i’s marginal productivity across links must

be a necessary condition for efficiency in the interior, this establishes (a).

Part (b) follows straightaway from the assumption of strict concavity.

For suppose eij = eji = 1. If there is another pair k, l such that ekl = elk = 1,

then choose e′ such that each of {i, j, k, l} puts in effort 1/2 on two of the

links amongst themselves, such that each of the four edges has effort pairs

(1/2, 1/2). Since

2f(1/2, 1/2) > f(1, 1), (2.18)

e cannot be efficient. If only i, j put effort exclusively on one link, then from

arguments in part (a) above, all others (and there must be at least three

others), equalise effort across all of the remaining (n−3) links. Again, there

is a feasible reallocation of effort which increases total output due to the

strict concavity of f .

This establishes (i).

(ii) Since the second-period game is a strictly concave potential game, the

potential must be maximised at e∗. This must then be a Nash Equilibrium

of the second period game given that gc has formed.

In order to show that there is some (gc,m
∗) with m∗(gc) = e∗ that is

a Subgame Perfect Bilateral Equilibrium, we need to show that possible

deviations in the first period cannot be profitable.

It is easy to show that unilateral link deletion cannot be profitable for

any individual. Suppose i, j deviate and cut some links so that the network

g forms. Consider e such that

ekl =
1

n− 3
for all k, l 6∈ {i, j}

epq = 1 for pq ∈ {ij, ji} (2.19)

Then, e is a Nash Equilibrium, given that g has formed, since no unilateral

deviation can increase synergy output. Noting that, from strict concavity,

f(1, 1) < (n− 1)f(
1

n− 1
,

1

n− 1
) (2.20)

it is now obvious that (gc,m
∗) is a Subgame Perfect Bilateral Equilibrium;
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each deviating pair i, j assumes that the second period equilibrium will be

of the form e.

(iii) Inefficient equilibria can be supported as Subgame Perfect Bilateral

Equilibria. Consider a pair components network g for n even, with ij /∈ g.

This network results in a total production of n(n−1)
2 F ( 1

n−1 ,
1

n−1), which is

inefficient. Consider a bilateral deviation where the two agents i, j form a

new link. In the new network, there is a (second period) Nash Equilibrium

in which eij = eji = 0. So, the first period bilateral deviation by i, j is not

profitable and hence g is a Subgame Perfect Bilateral Equilibrium.

In conclusion, even in the existence of inefficient equilibrium networks,

the uniquely efficient network and effort provision is always supported in a

Subgame Perfect Bilateral Equilibrium of the game. Overall, in this chapter,

we have shown, not only that efficiency is always achievable as an equilibrium

outcome, but that, for a fairly large family of production functions, stability

and efficiency always agree.
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Chapter 3

Endogenous Formation of

Bilateral Partnerships with

Heterogeneous Types

3.1 Introduction

In this section, we look at the case of heterogeneous agent productivity. It

is easy to see that, as in Chapter 2, the efficient network is a Subgame Per-

fect Bilateral Equilibrium. The main purpose of this chapter is to perform

comparative statics in order to observe changes in relative specialisation to

the high-type partnership, as the relative productivity ratio and the degree

of concavity vary. Although we focus on a model with four agents, it is

still very difficult to get analytically tractable closed form solutions. That

is why we take recourse to simulations that allow us, however, to draw some

intuitive conclusions as to agents equilibrium behaviour.

3.2 The Model

We consider a population of four agents N = {1, 2, 3, 4}. Two agents have

a high productivity (ti = h) and two have a low productivity (ti = l), with

productivity levels being perfectly observable.

In the first stage of the game, the agents play a simultaneous-move

linking-game, identical to the one of Chapter 2, where they form bilat-

eral but non-exclusive partnerships, bearing a small symmetric cost per

39



link µ̄. Each action profile s = (s1, ..., s4) will, therefore, induce a net-

work g(s) = (gij)i,j∈N . Keeping the same notation as in Chapter 2 unless

otherwise specified, we denote by G(2, 2) the set of all possible networks that

can be formed by nh = 2 high and nl = 2 low productivity players.

In the second stage, after observing network g(s), agents simultaneously

announce their effort provision decisions. An action for player i in the second

stage of the game will, therefore, be an effort provision decision ei(s) among

all of i’s partnerships, with eij(s) ∈ [0,+∞). Effort allocation decisions,

once made, are perfectly observable by all.

Agents face an endogenous quadratic cost of exerting effort: ci =
(
∑N
j=1 eij)

2

2 .

This captures the fact that exerting an additional unit of effort will have an

increasing additional cost, irrespective of the partnership to which this effort

is allocated. The cost function is the same for low and high productivity

types.

Each partnership {ij} results in the production of some output according

to the following synergy production function:

f(eij , eji) = f(eijeji) = (eijeji)
γ = (tieijtjeji)

γ , (3.1)

where e gives effort in efficiency units and γ > 0.

We assume that the agents enjoy the full product of each partnership.

Therefore, payoffs for each agent in the two-stage game, ignoring the cost of

link-formation, will be equal to the sum of the product of each partnership

ij, minus the cost of effort provision among all of their partnerships:

Πi(ei,
∑

j∈N−{i}

ej) =
∑

j∈N−{i}

(eijeji)
γ −

(
∑

j∈N−{i} eij)
2

2
. (3.2)

We use the same equilibrium concept used in Chapter 2: A Subgame

Perfect Bilateral Equilibrium of the two-stage game will prescribe for each

player i ∈ N : (i) a linking strategy si, with strategy profile s defining net-

work g, and (ii) a Nash Equilibrium effort strategy mi(g) in the second stage

of the game for any feasible network g ∈ G. At a Subgame Perfect Bilat-

eral Equilibrium, no type of player will have a strictly profitable unilateral

deviation in the effort provision stage of any network that can be formed.

Moreover, no type of player will be able to strictly increase payoffs by de-

viating unilaterally in the first stage, assuming that players will play Nash
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Equilibrium efforts in the second stage. Finally, no pair of players, consisting

of any combination of types, will be able to deviate jointly and be strictly

better off.

Before proceeding, however, we will present some benchmark cases that

provide some initial intuition related to the more complex comparative stat-

ics that will follow in the subsequent sections. As a first benchmark case,

and in order to highlight the role of cost convexity in the co-determination

of effort provision, consider the complete network where all links are formed

and assume instead that the cost was linear, e.g. taking the form ci =∑
j∈N−{i} δeij . In this case, the marginal cost of effort provision in each link

is constant and equal to δ. Therefore, the effort exerted in each partnership

will not be affected by the effort that the agent exerts elsewhere in the net-

work. Agent i, for γ < 1
2 , will hence simply choose a high enough effort eij

so that the marginal product of the ij partnership γeγ−1
ij (titjeji)

γ is equated

with the fixed marginal cost δ.

But as the fixed marginal cost is the same for all agents, this means that

marginal products of a link will also be equal:

γeγ−1
ij (titjeji)

γ = δ = γeγ−1
ji (titjeij)

γ ⇒ eij = eji (3.3)

Therefore, we get that effort provision levels in a partnership will be equal

for the two agents, irrespective of their types.

Considering now that there are three types of partnerships as ti ∈ {h, l},
the above means that for linear cost we can easily derive closed form solutions

for the three effort levels {ehh, ell, ẽ = elh = ehl} exerted in the partnerships

between two high, two low, and one high and one low type, respectively. In

particular, we derive:

{ehh = (
δ

γ
h−2γ)

1
2γ−1 , ell = (

δ

γ
l−2γ)

1
2γ−1 , ẽ = (

δ

γ
(hl)−γ)

1
2γ−1 } (3.4)

In order to perform comparative statics, an easy manipulation gives:{
ẽ =

γ

δ

1
1−2γ

(hl)
γ

1−2γ , ehh =
γ

δ

1
1−2γ

(h)
2γ

1−2γ , ell =
γ

δ

1
1−2γ

(l)
2γ

1−2γ

}
(3.5)

It is then straightforward to see that an increase in the fixed marginal

cost δ will cause all Nash Equilibrium effort provision levels to drop. We
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can also observe that the effort exerted by the two agents in a partnership

will be higher, the higher the product of their types, i.e. ehh > ẽ > ell, and

that these differences become larger, the larger the ratio of productivity of

the high type over that of the low type. For example, ẽ
ehh

= ( lh)
γ

1−2γ < 1

for l < h and γ
1−2γ > 0, with the ratio becoming smaller the smaller l

h is.

Finally, the effect of an increase in the concavity of the production function,

i.e. a drop in γ, on the equilibrium effort levels can be positive or negative

depending on the exact values of the parameters.

In order to get some insight on the role of concavity, assume for simplicity

that h > l = 1 and δ = 1, while we assume still that γ < 1
2 . Then the

equilibrium effort levels are given by the simplified expressions:

{
ell = γ

1
1−2γ , ẽ = γ

1
1−2γ h

γ
1−2γ = ellh

γ
1−2γ , ehh = γ

1
1−2γ h

2γ
1−2γ = ellh

2γ
1−2γ

}
(3.6)

We notice that ehh, ẽ are functions of ell so we start with an examination1

of ∂ell
∂γ . Using the formula for the derivative of a function of γ in the power

of another function of γ, we get:

∂ell
∂γ

=
γ

1
1−2γ

1− 2γ

[
2 ln γ

1− 2γ
+

1

γ

]
(3.7)

We can confirm that this derivative has a root γ∗ ∈ (0, 1
2) such that

for all γ > γ∗, ∂ell
∂γ < 0 and for all γ < γ∗, ∂ell

∂γ > 0. This means that

for concave enough production functions (small enough γ), the derivative is

negative; hence a further increase in the degree of concavity by a drop in γ

will cause the exerted effort in the ll partnership to increase in equilibrium.

On the contrary, for low enough degrees of concavity (large enough γ), the

derivative is positive; hence an increase in the degree of concavity by a fall

in γ will cause the exerted effort in the ll partnership to fall in equilibrium.

The intuition for this result is the following: whenever the production

function becomes more concave, the l-agent has an incentive to drop their

exerted effort level. But a drop in the effort of one partner will further

incentivise the other to drop their exerted effort further in equilibrium, neg-

atively affecting payoffs. For high enough degrees of concavity, the incentives

1In this and all subsequent sections, Wolfram Alpha has been used whenever necessary
for calculations and for the production of graphs.
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to prevent one’s partners from decreasing the effort they exert are dominant,

while for low enough degrees of concavity incentives to drop own effort levels

due to the increase in concavity dominate instead.

Note, finally, that for a low enough γ, the derivatives of ẽ and ehh also

become negative, but the thresholds for this are lower than γ∗, with the

threshold for ehh to become negative being the lowest.

As a second benchmark case, assume the effort provision cost is quadratic

but the synergy function has γ = 1, so that the marginal product of effort

in any link is linear in the exerted effort of the other partner and equal for

i to bibjeji. Then the first order condition for any agents in any connected

network is:

bibjeji =
∑
j∈N−i

eij (3.8)

We can show that under this specification there does not always exist an

interior Nash Equilibrium such that agents of symmetric type and network

position have symmetric effort provision strategies. As the simplest example,

consider the isolated pairs. Taking first order conditions and imposing ex

post symmetry, we get ehh = h2ehh and ell = l2ell. This is only feasible for

h = l = 1 i.e. for homogeneous types.

Third, we investigate the case where the production function is of Cobb-

Douglas form with constant returns to scale i.e. when γ = 1
2 . In this case, we

show that there is not a unique Nash Equilibrium for the complete network.

Taking first order conditions and imposing ex post symmetry for each type,

normalising h > l = 1, we get:

ehh + 2ehl = γhγeγ−1
hl eγlh = γh2γe2γ−1

hh (3.9)

ell + 2elh = γhγeγ−1
lh eγhl = γe2γ−1

ll (3.10)

For γ = 1
2 these give:

elh = hehl (3.11)

γh = ehh + 2ehl (3.12)

γ = ell + 2elh (3.13)

This is a system of three constraints with four unknowns. It does not have

a unique solution but infinitely many: choose any ehl, elh such that elh =
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hehl ≥ 0, ehl ≤ hγ, elh ≤ γ. Then there are ehh, ell that satisfy the above,

with ehh = hγ − 2ehl > ell = γ − 2hehl.

As a fourth special case, we investigate what happens for 1
2 < γ < 1 i.e

when the production function is not strictly concave but is a Cobb-Douglas

with increasing returns to scale. For the first order conditions of the high

type, using ex-post symmetry and normalising h > l = 1, in the complete

network, we get:

∂(γh2γe2γ−1
hh )

∂ehh
= γh2γ(2γ − 1)e

2(γ−1)
hh > 0. (3.14)

This means that if the two high types could coordinate and increase efforts

together, the marginal product of the hh link would keep increasing so full

specialisation would be optimal. Therefore, a bilateral deviation to the hh

isolated pair would be strictly profitable. We can, moreover, show that

the Nash Equilibrium effort level in the hh pair would be higher than the

equilibrium effort level in an hl isolated pair:

ephh = (γh2γ)
1

2(1−γ) > eplh = ephl = (γhγ)
1

2(γ−1) (3.15)

But, starting from any other network, a pair of agents will always have in-

centives to bilaterally deviate and fully specialise in the link between them.

Therefore, we can show that the unique Subgame Perfect Bilateral Equilib-

rium will be the hh ll isolated pairs network with ephh = (γh2γ)
1

2(1−γ) , epll =

γ
1

2(1−γ) .

Finally, for γ > 1, it is straightforward to see that the marginal product

from any link keeps increasing in own effort so it will always exceed the

marginal cost:

∂(γeγ−1
ij (titjeji)

γ)

∂eij
= γ(γ − 1)eγ−2

ij (titjeji)
γ > 0. (3.16)

Therefore, in this case, no interior solution exists for any network as all

players will exert infinite effort in order to maximise profits.

We will, from now on, focus on the case of strict concavity of f where

γ < 1
2 and convex costs as described above. We will investigate whether,

and under what conditions, links between high and low productivity agents

can arise in equilibrium for the two-stage game. We will also investigate
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the determinants of effort provision levels and perform some comparative

statics. In particular, we will try to uncover how productivity heterogeneity

and concavity affect the effort specialisation incentives of agents in their

high, relatively to their, low productivity partners.

3.3 The Second-stage Effort Provision Game

We show that the second stage game admits a strictly concave potential.

Therefore, for each network formed in the first stage of the game, there

is an interior Nash Equilibrium in effort in the second stage. Moreover,

this will be unique for reasons which are exactly the same as in Chapter 2.

We proceed to show that the complete network is then the unique efficient

network. We, finally, characterise Nash Equilibrium effort provision levels

for the complete network and the pairs network, and perform comparative

statics on the productivity heterogeneity and the concavity parameters.

3.3.1 Efficiency

In order to examine efficiency of Nash Equilibrium effort provision, we will

use the same in essence definition of efficiency that was used in Chapter 2

- namely (g, e) is efficient if the total output minus the cost of effort2 and

cost of network formation is maximised.

We begin our analysis by proving that the complete information second

stage game is an exact potential game, as defined in Chapter 2.

Lemma 2. For all g ∈ G, the second stage game under perfect information

is an exact potential game.

Proof. Fix any g. Consider the following candidate potential function:

P (g, e) =
∑
i∈N

 ∑
j>i,j∈Ni

f(ēij , ēji)−
(
∑

j∈N−{i} eij)
2

2

 (3.17)

To check that this is indeed a potential, consider strategy profiles m and

2In Chapter 2, there was no cost of effort since everyone had a fixed endowment.
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(m′i,m−i). Let m(g) = e and m′i(g) = e′i. Then,

Πi(g,m(g))−Πi(g,m
′
i(g),m−i(g)) =

∑
j∈N−{i}

[
f(ēij , ēji)− f(ē′ij , ēji)

]
−

[
(
∑

j∈N−{i} eij)
2

2
−

(
∑N

j=1 e
′
ij)

2

2

]
= P (g, e)− P (g, e′) (3.18)

This shows that P is a potential for this game and establishes the lemma.

We state without proof the following theorem, which proves that there

is a unique efficient network that consists of the complete network in its

unique interior Nash equilibrium in effort.3

Theorem 4. Consider the complete information exact potential game and

let µ̄ be sufficiently small in the first stage linking game. Then,

(i) There is a unique interior Nash Equilibrium e∗ in the complete network

gc where players allocate effort to equalise marginal synergy of links

with marginal cost of effort.

(ii) The network (gc, e
∗) is the unique efficient network.

3.3.2 Effort provision in the Complete network with concave

production and quadratic cost

In this section, we analyse how the Nash Equilibrium of the complete net-

work changes as we increase the productivity ratio b := h/l = h for l nor-

malised to 1, and the degree of concavity γ < 1
2 . In the unique interior Nash

Equilibrium of the complete network with 2 high and 2 low types, each type

will play a symmetric strategy by choosing effort levels in each link such that

the marginal product of own effort in each of their links is equal, and equal

to the marginal cost. The Nash Equilibrium will, therefore, be described

by four effort levels (ehl, ehh, elh, ell)
4 which solve the following system of

equations:

3The proof is omitted because it is almost identical to that of the corresponding theorem
in Chapter 2.

4For homogeneous types, h = l = 1 and in the unique interior Nash Equilibrium

eNEi = ( γ
|N|−1

)
1

2(1−γ) ∀i ∈ N , i.e. increasing in γ and decreasing in N .
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2ehl + ehh = γbγeγlhe
γ−1
hl (3.19)

2ehl + ehh = γb2γe2γ−1
hh (3.20)

2elh + ell = γbγeγhle
γ−1
lh (3.21)

2elh + ell = γe2γ−1
ll (3.22)

Dividing (3.19) by (3.21), and manipulating (3.20) and (3.22), we get:

2ehl + ehh
2elh + ell

=
γbγeγlhe

γ−1
hl

γbγeγhle
γ−1
lh

=
elh
ehl

(3.23)

2ehl = γb2γe2γ−1
hh − ehh ⇒ ehl =

1

2
ehh[γb2γe

2(γ−1)
hh − 1] (3.24)

2elh = γe2γ−1
ll − ell ⇒ elh =

1

2
ell[γe

2(γ−1)
ll − 1] (3.25)

Using (3.24) and (3.25), equation (3.23) becomes:

γb2γe2γ−1
hh − ehh + ehh

γe2γ−1
ll − ell + ell

=
1
2ell[γe

2(γ−1)
ll − 1]

1
2ehh[γb2γe

2(γ−1)
hh − 1]

⇒

b2γe2γ
hh

e2γ
ll

=
γe

2(γ−1)
ll − 1

γb2γe
2(γ−1)
hh − 1

⇒

e2γ
hh[γb2γe

2(γ−1)
hh − 1] = (

1

b
)2γe2γ

ll [γe
2(γ−1)
ll − 1] (3.26)

Combining (3.19) and (3.20), we get:

γbγeγlhe
γ−1
hl = γb2γe2γ−1

hh ⇒ eγlhe
γ−1
hl = bγe2γ−1

hh (3.27)

which, using (3.24) and (3.25), gives:

bγe2γ−1
hh = (

1

2
ehh[γb2γe

2(γ−1)
hh − 1])γ−1(

1

2
ell[γe

2(γ−1)
ll − 1])γ ⇒

e2γ−1
hh = (

1

b
)γ(

1

2
)γ+γ−1eγ−1

hh eγll[γb
2γe

2(γ−1)
hh − 1]γ−1[γe

2(γ−1)
ll − 1]γ ⇒

eγhh

[γb2γe
2(γ−1)
hh − 1]γ−1

= (
1

b
)γ(

1

2
)2γ−1eγll[γe

2(γ−1)
ll − 1]γ ⇒
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e2γ
hh

[γb2γe
2(γ−1)
hh − 1]2(γ−1)

= (
1

b
)2γ(

1

2
)2(2γ−1)e2γ

ll [γe
2(γ−1)
ll − 1])2γ . (3.28)

Equations (3.26) and (3.28) then provide a 2×2 system in ehh, ell. Combining

them, by dividing (3.26) with (3.28), we get:

e2γ
hh[γb2γe

2(γ−1)
hh − 1][γb2γe

2(γ−1)
hh − 1]2(γ−1)

e2γ
hh

= (
1

2
)2(1−2γ)[γe

2(γ−1)
ll − 1]1−2γ ⇒

[γb2γe
2(γ−1)
hh − 1]2γ−1 = (

1

2
)2(1−2γ)[γe

2(γ−1)
ll − 1]1−2γ ⇒

γb2γe
2(γ−1)
hh − 1 =

[
(
1

2
)2(1−2γ)[γe

2(γ−1)
ll − 1]1−2γ

]1/(2γ−1)

γb2γe
2(γ−1)
hh − 1 = [22[γe

2(γ−1)
ll − 1]−1] (3.29)

Substituting (3.29) back into (3.26), we get ehh as a function of ell:

e2γ
hh[22[γe

2(γ−1)
ll − 1]−1] = (

1

b
)2γe2γ

ll [γe
2(γ−1)
ll − 1]⇒

ehh = (
1

2
)
1
γ

1

b
ell[γe

2(γ−1)
ll − 1]

1
γ (3.30)

Finally, using constraint (3.30) to substitute for ehh in constraint (3.29), we

get an expression only in ell:

γb2γ
[

1

b
(
1

2
)
1
γ ell[γe

2(γ−1)
ll − 1]

1
γ

]2(γ−1)

− 1 = [22[γe
2(γ−1)
ll − 1]−1]⇒

1 = 22[γe
2(γ−1)
ll − 1]−1[γb22

2(1−2γ)
γ e

2(γ−1)
ll [γe

2(γ−1)
ll − 1]

3γ−2
γ − 1] (3.31)

In order to simplify 5 constraint (3.31), we can set y := γe
2(γ−1)
ll − 1 to

get:
1

4
=

[
b22

2(1−2γ)
γ (y + 1)y

2(γ−1)
γ − 1

y

]
(3.32)

or

1 =

[
b22

2(1−γ)
γ

y + 1

y
2(1−γ)
γ

− 4

y

]
(3.33)

5Wolfram Mathematica has been used in this section.
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Notice that constraint (3.32) is a polynomial equation with unknown power

α := 2(1−γ)
γ , γ < 1/2. There is, therefore, no general solution that would

provide us with a closed form solution for ell. What we can do instead is

form the implicit derivative ∂y
∂b and study its sign for various values of the

concavity parameter γ.

From equations (3.24), (3.25) and (3.29) above, we can make the follow-

ing interesting observation for the equilibrium effort ratios elh
ell

and ehh
ehl

:

elh
ell

=
1

2
[γe

2(γ−1)
ll − 1] =

y

2
(3.34)

ehh
ehl

=
2

[γb2γe
2(γ−1)
hh − 1]

=
2

[22[γe
2(γ−1)
ll − 1]−1]

=
y

2
(3.35)

Therefore, we have shown the following:

Proposition 1. In the unique interior Nash Equilibrium of the complete

network, the relative effort specialisation ratios between high and low type

neighbours will be equal for the two types:

elh
ell

=
ehh
ehl

(3.36)

As b changes, notice that the ratios will be changing in equilibrium ac-

cording to:
∂( elhell )

∂b
=
∂( ehhehl )

∂b
=

1

2

∂y

∂b
. (3.37)

Although it is impossible to get a closed-form solution for y, we can use

(3.33) to evaluate the derivatives of y with respect to b and γ. Since (y, b)

are positive for γ < 1
2 , α := 2(1−γ)

γ > 2, (3.33) can be put in the following

useful alternative form:

(y + 4)yα = 2αb2y(y + 1) (3.38)

The derivatives then are:

∂y(b, α)

∂b
=

21+αby2(1 + y)

2ααb2y − 2αb2y2 + 2ααb2y2 − 4yα
(3.39)

and
∂y(b, α)

∂α
=

2αb2y2(1 + y)(ln(2)− ln(y))

2ααb2y − 2αb2y2 + 2ααb2y2 − 4yα
(3.40)
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with
∂
ehh
ehl
∂b = 1

2
∂y(b,α)
∂b and

∂
ehh
ehl
∂γ = 1

2
∂y
∂γ = 1

2
∂y
∂α

∂α
∂γ = −1

γ2
∂y
∂α .

The numerator of ∂y(b,α)
∂b is clearly positive for all values of (b, α) while

the numerator of ∂y(b,α)
∂α will be positive for y > 2, negative for y < 2 and

zero for y = 2. 6

The denominator of both implicit partial derivatives is the same and can

be simplified to 2αb2(αy − y2 + αy2)− 4yα. However, no general conclusion

can be made about its sign as it seems dependent on the values of b, α and

y i.e. equilibrium ell.

We can, nevertheless, investigate the change in the effort ratios (captured

by the change in y = 2 ehhehl = 2 elhell ), using the constraint: (y + 4)yα =

2αb2y(y+1), by fixing b and taking various values for the concavity parameter

γ < 1
2 , and by fixing γ and taking various values for the productivity ratio

parameter b.

Figure 3.1: γ = 0.25

(i) γ = 1/4, b ∈ {1.2, 2, 4, 8, 16, 160}

For γ = 1/4, α = 2(1−γ)
γ = 6 hence (y + 4)y6 = 26b2y(y + 1) and

∂y(b)
∂b = −(128by(1+y))

64b2(1+2y)−y5(24+7y)
.

6y = 2 corresponds to all effort levels being equal in the Nash Equilibrium and can
only intuitively result for b = 1.
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The unique positive real solution is: for b = 1.2 y = 2.16254; for b = 2

y ≈ 2.69143; for b = 4 y ≈ 3.61901; for b = 8 y ≈ 4.85915; for b = 16

y ≈ 6.51174; and for b = 160 y ≈ 16.9617.

Evaluating the implicit derivative for some of these values, we get that
−(128by(1+y))

64b2(1+2y)−y5(24+7y)
is approximately equal to: 0.566146 for (b = 2, y =

2.7); 0.385122 for (b = 4, y = 3.62); 0.173025 for (b = 16, y = 6.5);

0.0436069 for (b = 160, y = 16.96); and 0.000693128 for (b = 160, 000).

(ii) γ = 1/8, b ∈ {1.2, 2, 4, 8, 16, 160}

For γ = 1/8, α = 2(1−γ)
γ = 14 hence (y + 4)y14 = 214b2y(y + 1) and

∂y(b)
∂b = −(32768by(1+y))

16384b2(1+2y)−y13(56+15y)
.

The unique positive real solution is: for b = 1.2 y ≈ 2.05841; for b = 2

y ≈ 2.23131; for b = 4 y ≈ 2.48933; for b = 8 y ≈ 2.77711; for b = 16

y ≈ 3.09802; and for b = 160 y ≈ 4.45284.

Evaluating the implicit derivative for some of these values, we get that
−(32768by(1+y))

16384b2(1+2y)−y13(56+15y)
is approximately equal to: 0.177532 for b = 2;

0.0302784 for b = 16; and 0.00441718 for b = 160.

Figure 3.2: γ = 0.125

(iii) γ = 1/32, b ∈ {1.2, 2, 4, 8, 16, 160}
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For γ = 1/32, α = 2(1−γ)
γ = 62 hence (y + 4)y62 = 262b2y(y + 1).

The unique positive real solution is: for b = 1.2 y ≈ 2.01206; for b = 2

y ≈ 2.04623; for b = 4 y ≈ 2.09352; for b = 8 y ≈ 2.14191; for b = 16

y ≈ 2.19142; and for b = 160 y ≈ 2.36424.

Figure 3.3: γ = 0.03125

We can also observe that the absolute value of the effort ratios is falling,

for the same productivity heterogeneity parameter b, as the production func-

tion becomes more concave i.e. for lower γ. This should become more evi-

dent by studying the effort ratios and the derivative with respect to α, for

example, for b = 2 and γ ∈ {2
5 ,

1
8 ,

1
40}. By evaluating the implicit derivative

of y with respect to α for b = 2, we get that it is equal to −2.19431 for

α = 3, −0.0182697 for α = 14, and −0.000478098 for α = 78.

We next produce a similar series of diagrams, by taking the value of b as

fixed and varying the degree of concavity γ.

52



(iv) b = 2, γ ∈ {0.25, 0.125, 0.3125, 0.025}

Fix b = 2. Then, the unique positive real solution is: for γ = 1/4,

α = 6, y ≈ 4.5589, for γ = 1/8, α = 14, y ≈ 2.23131; for γ = 1/32,

α = 62, y ≈ 2.04623; for γ = 1/40, α = 78, y ≈ 2.03649.

Figure 3.4: b = 2
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(v) b = 2, γ ∈ {0.25, 0.125, 0.3125, 0.025}

Fix b = 8. Then, the unique positive real solution is: for γ = 1/4,

α = 6, y ≈ 4.85915, for γ = 1/8, α = 14, y ≈ 2.77711; for γ = 1/32,

α = 62, y ≈ 2.14191; for γ = 1/40, α = 78, y ≈ 2.11149.

Figure 3.5: b = 8
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(vi) b = 2, γ ∈ {0.25, 0.125, 0.3125, 0.025}

Fix b = 160. Then, the unique positive real solution is: for γ = 1/4,

α = 6, y ≈ 16.9617, for γ = 1/8, α = 14, y ≈ 4.45284; for γ = 1/32,

α = 62, y ≈ 2.36424; for γ = 1/40, α = 78, y ≈ 2.28312.

Figure 3.6: b = 160

Therefore, the numerical approximation results of this section suggest

that y(b) is an increasing, concave function. We can hence make the following

statement:
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Statement 1. (i) The equilibrium high-over-low effort ratio is increas-

ing as the productivity ratio h/l = b increases. However, the rate of

increase is falling as b increases.

(ii) For fixed productivity ratio b, the equilibrium high-over-low effort ra-

tio is falling as the production function becomes more concave i.e. as

γ falls. This rate of decrease falls as the production function becomes

more concave, and approaches zero for highly concave production func-

tions.

Finally, with regards to total effort as b changes, for the total effort of

the low type TEl we get from (3.22) that:

∂TEl
∂b

= γ(2γ − 1)e
2(γ−1)
ll

∂ell
∂b

(3.41)

so, as b changes, TEl and ell will change in opposite directions, since (2γ −
1) < 0 and all other terms are positive. Moreover, from the definition of y

we get:
∂y

∂b
= γ2(γ − 1)e2γ−3

ll

∂ell
∂b

(3.42)

which shows that y and ell change in opposite directions as b changes. There-

fore, we reach the following conclusion:

Statement 2. As the productivity ratio b increases, y increases so ell falls

but the Nash Equilibrium total effort of the low type TEl will increase overall:
∂TEl
∂b > 0. Therefore, Nash Equilibrium elh increases as b increases.

However, from (3.20) and (3.30), we can easily conclude that the deriva-

tive of total effort of the high type with respect to b is not necessarily mono-

tonic. As b increases, it is intuitive that ehh increases but ehl and TEh may

fall as the high-type needs to exert less real effort to be as efficient as before,

achieving the same results with a lower cost.

The intuition of this section is extendable to larger networks e.g. the

complete network consisting of equal and even numbers of high and low

productivity agents.7

7For linear cost, it is easy to show that the Nash Equilibrium high type effort speciali-
sation ratio is increasing in high type productivity b, tends to one as γ → 0 and tends to
infinity as γ → 1

2
.
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3.4 The Linking Game

In this section, we turn to the first stage linking game. We prove existence

and investigate uniqueness of a Subgame Perfect Bilateral Equilibrium under

our assumptions for concave production and quadratic cost of effort. In

particular, we show that the efficient network and effort allocation strategy

profile are a Subgame Perfect Bilateral Equilibrium of the game. 8

3.4.1 Existence and Efficiency of Subgame Perfect Bilateral

Equilibria

We are going to show that the complete network gc with the efficient effort

allocation profile is a Subgame Perfect Bilateral Equilibrium of the game by

showing that no unilateral or bilateral deviation is strictly profitable for any

type(s) of players.

First, we consider an auxiliary network, the circular network where the

high and low types are connected and each has one hl link. We will refer

to this as the hhll circle gcir and show that a bilateral deviation to a pair

is not profitable for either the high or the low types. In appendix A, we are

able to derive closed form solutions for the hhll circle, which we then use

for the proofs of the following propositions.

We here provide a graph of the hhll circle and the associated Nash Equi-

librium effort levels.

Figure 3.7: hhll circle

Using y = [γe
2(γ−1)
ll − 1] = b

2γ
2−3γ , the Nash Equilibrium effort levels

ehh, ehl, elh, ell are:

ell = γ
1

2(1−γ) (1 + b
2γ

2−3γ )
−1

2(1−γ) (3.43)

8For concave production and linear cost, it is trivial to show the unique Subgame
Perfect Bilateral Equilibrium network is the efficient network.
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elh = yell = γ
1

2(1−γ) b
2γ

2−3γ (1 + b
2γ

2−3γ )
−1

2(1−γ) (3.44)

ehh = γ
1

2(1−γ) b
3γ

2−3γ (1 + b
2γ

2−3γ )
−1

2(1−γ) (3.45)

ehl =
ehh
y

= γ
1

2(1−γ) b
γ

2−3γ (1 + b
2γ

2−3γ )
−1

2(1−γ) (3.46)

Proposition 2. A deviation from the hhll circle to the hh pair is not prof-

itable.

Proof. See Appendix B.

Proposition 3. A deviation from the hhll circle to the ll pair is not prof-

itable.

Proof. See Appendix C.

The following then directly follows:

Corollary 1. A deviation from the hhll circle to the hl pair is not profitable

for the high type.

We, next, use the above two propositions to show that a deviation to

the hh pair or the ll pair is not profitable when starting from the complete

network gc.

Proposition 4. A deviation from the complete network to the hh pair or

the ll pair is not profitable.

Proof. It suffices to show that the high types and the low types make even

higher payoffs in the complete network than in the hhll circle.

Consider an effort allocation ẽ in the complete network where echh = ecirhh ,

ecll = ecirll and echl =
ecirhl

2 , eclh =
ecirlh

2 so that total effort and hence total cost

is the same for both types between the two networks.

Total production, however, strictly increases due to the concavity of the

production function:

f(ehl, elh) = f
(

2
ehl
2
, 2
elh
2

)
= 22γf

(ehl
2
,
elh
2

)
< 2f

(ehl
2
,
elh
2

)
(3.47)
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for γ < 1
2 . Therefore, total network payoff is strictly higher for the complete

network under ẽ than in the Nash Equilibrium of the hhll circle.

Due to the unique global maximum of the potential, we, moreover, know

that the Nash Equilibrium allocation e∗c of the complete network will result

in an even higher total network payoff than allocation ẽ :∑
i∈N

Πc
i (e

c
NE) >

∑
i∈N

Πc
i (ẽ). (3.48)

It remains to be shown that individual payoffs, both for the high and the

low types, are strictly higher in (gc, ecNE) than in gc, ẽ i.e. that:

Πc
h(ecNE) > Πc

h(ẽ) > Πcir
h > Πpair

h (3.49)

Πc
l (e

c
NE) > Πc

l (ẽ) > Πcir
l > Πpair

l (3.50)

Using the first order conditions of the hhll circle, it is clear that alloca-

tion ẽ is not a Nash Equilibrium allocation in the complete network: The

marginal cost of the high agent, for example, will be equal for ẽ in the com-

plete network and the Nash Equilibrium allocation e∗cir of the circle. This

is, in turn, equal to the Nash Equilibrium marginal products for the high

type from the hh and hl links in the circle. Since the allocated efforts in the

hh link are the same under ẽ in gc and under the Nash Equilibrium of gcir,

these marginal products will also be equal. However, the marginal product

of the hl link in gc under ẽ will be lower, since both effort levels have been

halved. This is shown in the following:

MCch(ẽ) = MCcirh (e∗cir) = ehl + ehh = MP cirhl (e∗cir) = γbγeγlhe
γ−1
hl

= MP cirhh (e∗cir) = MP chh(ẽ) = γb2γe2γ−1
hh

< MP chl(ẽ) = γbγ(
elh
2

)
γ
(
ehl
2

)
γ−1

= γbγ21−2γeγlhe
γ−1
hl

(3.51)

since γ < 1
2 .

Therefore, to sum this up, in the complete network, the high type under

allocation ẽ has:

MCch(ẽ) = MP chh(ẽ) < MP chl(ẽ) (3.52)

with the left hand side decreasing in ehh and the right hand side decreasing
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in ehl. Similarly, for the low type:

MCcl (ẽ) = MP cll(ẽ) < MP clh(ẽ) (3.53)

Therefore, a unilateral deviation from ẽ is strictly profitable where the

high types increase ehl and drop ehh, which causes an increase in MP chh and

a fall in MP clh. Similarly, the low types have an incentive to unilaterally

deviate by increasing elh and dropping ell.

From the definition of the production function, efforts are strategic com-

plements for all partners: ∂2Πi
∂eij∂eji

> 0 for all types. Therefore, unilateral

deviations will reinforce each other and hence will all move towards the

same direction; an initial increase of ehl will be met with an increase of elh

and so on.

Unilateral deviation incentives are exhausted when the marginal prod-

ucts of all links of each type become equal and equal to the agent’s marginal

cost of effort provision. This happens at the unique interior equilibrium of

gc.

We, therefore, conclude that at the Nash Equilibrium of the complete

network, the effort allocations satisfy:

eNEhl > ẽhl, e
NE
lh > ẽlh. (3.54)

But this means that both the set of the low-types L and the set of the

high-types H receive more effort than in ẽ under the Nash Equilibrium of

gc.

Therefore, both the high and the low types are strictly better off in the

Nash Equilibrium of the complete network.

Proposition 5. Any other unilateral or bilateral deviation from the complete

network by the high types is payoff-dominated by the hhll circle or the hh

pair.

Proof. We consider all remaining bilateral deviations of the hight types,

omitting the trivial case where any agent is isolated in the post-deviation

network.

The remaining deviations for the high types, where the hh link is re-

tained, are: (i) h1 cuts one hl link, h2 cuts two hl links; (ii) h1 cuts zero

links, h2 cuts two hl links (iii) h1 cuts zero links, h2 cuts one hl link.
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(i) h1 cuts one hl link, h2 cuts two hl links:

This creates network 3D (see Figure 3.8). We will show that h2 will

be worse-off than in the hh isolated pair, which we have shown to be

worse than gc for all types.

It suffices to show that for any post-deviation network effort allocation

e′ with e′h2h1 = epairhh , e′h1h2 < epairhh .

Assume not i.e. that e′h1h2 ≥ epairhh = e′h2h1 and e′h1l1 > 0. But then,

for agent h1, MC ′h1 = e′h1h2 + e′h1l1 > MCpairh1
= MP pairhh ≥ MP ′h1h2 ,

where MP ′h1h2 is the marginal product of agent h1 from the h1h2 link.

This is clearly not a Nash Equilibrium in the post-deviation network:

h1 needs to offer lower effort e′h1h2 < epairhh to maximise payoffs, unless

eh2h1 increases.

Therefore, for agent h2 to receive effort êh1h2 = epairhh in the post-

deviation network, they have to offer higher effort êh2h1 > epairhh . Con-

sider now this allocation ê in the hh pair. It is clear that h2 is strictly

worse-off, as they exert more effort but receive the same effort com-

pared with the Nash Equilibrium of the isolated hh pair.

We conclude that agent h2 will be strictly worse off in the post-

deviation network.

(ii) h1 cuts zero links, h2 cuts two hl links:

This creates network 4F . Similarly to (i), we conclude via contradic-

tion that h2 will be worse-off in the post-deviation network than in the

hh pair: In order to keep receiving the same effort as in the hh pair,

they would have to exert more effort themselves.

(iii) h1 cuts zero links, h2 cuts one hl link:

This creates network 5A. We show that agent h2 is worse-off than in

the hhll circle 4A, which we have shown to be worse than gc for both

types.

Assume otherwise, namely that h2 is equally well off in 5A as in 4A

by receiving and exerting the same effort level in each link. But for

h1 (similarly for l2) MPh1h2 remains the same so MCh1 needs to re-

main the same. So for any allocation in 5A with eh1l2 , el2h1 > 0, h1

needs to lower eh1l1 . Assume such an allocation exists that is a Nash
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Equilibrium of 5A and call it e′. Then an allocation ê which places

the same effort levels as e′ in the links of the hhll circle 4A will be a

Nash Equilibrium in 4A. This contradicts uniqueness of the interior

Nash Equilibrium in 4A.

Therefore, in order to receive the same effort from his links as in 4A,

h2 would need to exert more effort in his links in 5A than in 4A.

A similar argument shows that h2 cannot receive higher effort in 5A

than in 4A without exerting more to such a level that his total payoff

is again lower than in 4A.

We conclude that agent h2 is strictly worse-off in 5a than in 4a so also

worse than in gc.

Consider, finally, any h-type deviation where the hh link is cut: If

only the hh link is cut we are in 5C. The network is symmetric for

each type and the l-type set retains the same number of links and

receives higher effort from the h-types in the Nash Equilibrium of 5C.

Therefore, both low types are better off which means that both high

types are strictly worse off, since via efficiency of the full network total

payoffs fall.

The remaining cases are: (i)h1, h2 cut the hh link and h1 cuts one hl

link. Then we are in 4D and h1 is worse off than in the hl isolated

pair, which is worse than the hh isolated pair; (ii) h1, h2 cut the hh

link and one hl link each forming the hllh line 3B. They are then

worse off than in the hl pair, which is worse than the hh pair; (iii)

h1, h2 cut the hh link and one hl link each forming an l-centred star

3F : they are again worse off than in the hl pair, which is worse than

the hh pair.

Proposition 6. : Any other unilateral deviation and any bilateral deviation

from the complete network by the two low types or by one high and one low

type are not strictly profitable.

Proof. The proof follows identical steps as the proof of Proposition 3.5 and

is omitted.
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Combining results from the previous propositions, we have, therefore,

shown that:

Theorem 5. For a concave production function and a quadratic cost func-

tion, the efficient network (gc, eNE) is a Subgame Perfect Bilateral Equilib-

rium.

Proof. The proof follows directly from Theorem 4 and Propositions 3.4.1-

3.4.5

Finally, we show that the efficient network is not the unique Subgame

Perfect Bilateral Equilibrium network.

Proposition 7. The efficient network gc, eNE is not the unique Subgame

Perfect Bilateral Equilibrium.

Proof. Consider any other network g̃ ∈ G. If a single agent or a pair of

agents considering a deviation expect that a border Nash Equilibrium will

be played in the post-deviation network, with e.g. zero effort exerted in

the new link formed, then (g̃, ẽNE) is another Subgame Perfect Bilateral

Equilibrium of the game.
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Figure 3.8: List of Connected graphs
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Appendix A

Effort provision in the hhll

Circular network

In this section, we repeat the analysis of the complete network for the hhll

circle. In the unique Nash Equilibrium of the hhll circle with two low and

two high types, each type will play a symmetric strategy, by choosing the

effort levels for each link such that the marginal products of own effort for

all links are equal and equal to the marginal cost. The Nash Equilibrium

will, therefore, be described, as in the complete network, by four effort levels

(ehl, ehh, elh, ell) which solve the following system:

ehl + ehh = γbγeγlhe
γ−1
hl (A.1)

ehl + ehh = γb2γe2γ−1
hh (A.2)

elh + ell = γbγeγhle
γ−1
lh (A.3)

elh + ell = γe2γ−1
ll , (A.4)

where we have again normalised l = 1 and set h = b > 1.

Dividing (A.1) with (A.3), and manipulating (A.2) and (A.4), we get:

ehl + ehh
elh + ell

=
γbγeγlhe

γ−1
hl

γbγeγhle
γ−1
lh

=
elh
ehl

(A.5)

ehl = γb2γe2γ−1
hh − ehh ⇒ ehl = ehh[γb2γe

2(γ−1)
hh − 1] (A.6)

elh = e2γ−1
ll − ell ⇒ elh = ell[γe

2(γ−1)
ll − 1] (A.7)
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Using (A.6) and (A.7), (A.5) becomes:

γb2γe2γ−1
hh − ehh + ehh

γe2γ−1
ll − ell + ell

=
ell[γe

2(γ−1)
ll − 1]

ehh[γb2γe
2(γ−1)
hh − 1]

⇒

b2γe2γ
hh

e2γ
ll

=
γe

2(γ−1)
ll − 1

γb2γe
2(γ−1)
hh − 1

⇒

e2γ
hh[γb2γe

2(γ−1)
hh − 1] = (

1

b
)2γe2γ

ll [γe
2(γ−1)
ll − 1] (A.8)

Combining (A.1) and (A.2), we get:

γbγeγlhe
γ−1
hl = γb2γe2γ−1

hh ⇒

eγlhe
γ−1
hl = bγe2γ−1

hh (A.9)

which, using (A.6) and (A.7), gives:

bγe2γ−1
hh = (ehh[γb2γe

2(γ−1)
hh − 1])γ−1(ell[γe

2(γ−1)
ll − 1])γ ⇒

e2γ−1
hh = (

1

b
)γ(eγ−1

hh eγll[γb
2γe

2(γ−1)
hh − 1]γ−1[γe

2(γ−1)
ll − 1]γ ⇒

eγhh

[γb2γe
2(γ−1)
hh − 1]γ−1

= (
1

b
)γeγll[γe

2(γ−1)
ll − 1]γ

and by squaring both sides, we get:

e2γ
hh

[γb2γe
2(γ−1)
hh − 1]2(γ−1)

= (
1

b
)2γe2γ

ll [γe
2(γ−1)
ll − 1])2γ (A.10)

Constraints (A.8) and (A.10) then provide a 2× 2 system in ehh, ell. Com-

bining them by dividing (A.8) with (A.10) we get:

e2γ
hh[γb2γe

2(γ−1)
hh − 1][γb2γe

2(γ−1)
hh − 1]2(γ−1)

e2γ
hh

= [γe
2(γ−1)
ll − 1]1−2γ ⇒

[γb2γe
2(γ−1)
hh − 1]2γ−1 = [γe

2(γ−1)
ll − 1]1−2γ ⇒

γb2γe
2(γ−1)
hh − 1 = [[γe

2(γ−1)
ll − 1]1−2γ ]1/(2γ−1)

γb2γe
2(γ−1)
hh − 1 = [γe

2(γ−1)
ll − 1]−1 (A.11)
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Substituting (A.11) back into (A.8), we get ehh as a function of ell:

e2γ
hh[[γe

2(γ−1)
ll − 1]−1] = (

1

b
)2γe2γ

ll [γe
2(γ−1)
ll − 1]⇒

ehh =
1

b
ell[γe

2(γ−1)
ll − 1]

1
γ (A.12)

Finally, using (A.12) to substitute for ehh in (A.11), we get an expression

only in ell:

γb2γ [
1

b
(ell[γe

2(γ−1)
ll − 1]

1
γ ]2(γ−1) − 1 = [[γe

2(γ−1)
ll − 1]−1]⇒

1 = [γe
2(γ−1)
ll − 1]−1[γb2e

2(γ−1)
ll [γe

2(γ−1)
ll − 1]

3γ−2
γ − 1] (A.13)

In order to simplify (A.13), we can set y := γe
2(γ−1)
ll − 1 to get:

1 =

[
b2(y + 1)y

2(γ−1)
γ − 1

y

]
(A.14)

or

y = b
2γ

2−3γ (A.15)

with ∂y
∂b = 2γ

2−3γ b
5γ−2
2−3γ > 0 and ∂y

∂b = 4b
2a

2−3a lnb
(2−3a)2

> 0 for b > 1.

From (A.15), we can then solve directly for ell:

y = γe
2(γ−1)
ll − 1 = b

2γ
2−3γ ⇒ ell = γ

1
2(1−γ) (1 + b

2γ
2−3γ )

−1
(2(1−γ)) (A.16)

and use this to find the Nash Equilibrium values of ehh, ehl, elh.

More interestingly, from constraints (A.6), (A.7) and (A.11) above, we

observe that the equilibrium effort ratios elh
ell

and ehh
ehl

will, similarly to the

complete network, be equal:

elh
ell

= [γe
2(γ−1)
ll − 1] = y =

ehh
ehl

(A.17)

hence,
∂
elh
ell
∂b = ∂y

∂b =
∂
ehh
ehl
∂b > 0 and

∂
elh
ell
∂γ = ∂y

∂γ =
∂
ehh
ehl
∂γ > 0.

We can, therefore, conclude that in the unique interior Nash Equilibrium

of the hhll circle, the relative effort specialisation in the high type neighbour

will be equal for the two types:

elh
ell

=
ehh
ehl

(A.18)
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and will be increasing as productivity heterogeneity increases, or as the

production function becomes less concave.

This confirms the intuition and approximation results of the diagrams for

the complete network, for a simpler symmetric network where closed-form

solutions can be obtained.

Using y = [γe
2(γ−1)
ll − 1] = b

2γ
2−3γ , we can derive the exact Nash Equilib-

rium effort levels ehh, ehl, elh, ell as follows:

ell = γ
1

2(1−γ) (1 + b
2γ

2−3γ )
−1

2(1−γ)

elh = yell = γ
1

2(1−γ) b
2γ

2−3γ (1 + b
2γ

2−3γ )
−1

2(1−γ)

ehh = b−1γ
1

2(1−γ) (1 + b
2γ

2−3γ )
−1

2(1−γ) b
2

2−3γ = γ
1

2(1−γ) b
3γ

2−3γ (1 + b
2γ

2−3γ )
−1

2(1−γ)

ehl = ehhy
−1 = γ

1
2(1−γ) b

γ
2−3γ (1 + b

2γ
2−3γ )

−1
2(1−γ) (A.19)

As the difference in productivity between types increases, it can easily be

shown that ell falls and ehh, elh increase, while ehl is not necessarily mono-

tonic.
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Appendix B

Proof of Proposition 3.4

In an isolated hh pair, both agents choose effort to maximise payoffs. Using

symmetry, we then get:

b2γγeγ−1
h eγh = 2

eh
2
⇒ e2γ−2

h =
1

γb2γ
⇒

eh = (
1

γb2γ
)

1
2(γ−1) ⇒ eh = (γb2γ)

1
2(1−γ) (B.1)

Therefore, the Nash Equilibrium payoff for each high type is:

Πhh
h = b2γ(γb2γ)

2γ
2(1−γ) − (γb2γ)

2
2(1−γ)

2
=

(2− γ)

2
γ

γ
1−γ b

2γ
1−γ (B.2)

Using the hhll circle’s Nash Equilibrium effort levels of section 3.4, we

can calculate the Nash Equilibrium payoff of the high type:

Πc
h = b2γe2γ

hh + bγeγhle
γ
lh −

(ehh + ehl)
2

2

= γ
γ

1−γ (1 + b
2γ

2−3γ )
−γ
1−γ [b

4γ
2−3γ + b

2γ
2−3γ ]− 1

2
γ

1
1−γ b

2γ
2−3γ (1 + b

2γ
2−3γ )

1−2γ
1−γ (B.3)

Therefore, the difference in payoffs after a bilateral deviation from the

hhll circle to the isolated hh pair is:

∆Πh =
(2− γ)

2
γ

γ
1−γ b

2γ
1−γ − [γ

γ
1−γ (1 + b

2γ
2−3γ )

−γ
1−γ [b

4γ
2−3γ + b

2γ
2−3γ ]− 1

2
γ

1
1−γ b

2γ
2−3γ
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(1 + b
2γ

2−3γ )
1−2γ
1−γ ] =

(2− γ)

2
γ

γ
1−γ b

2γ
1−γ − [γ

γ
1−γ b

2γ
2−3γ (1 + b

2γ
2−3γ )

−γ
1−γ

[b
2γ

2−3γ +1−1

2
γ(1+b

2γ
2−3γ )]] = γ

γ
1−γ (

2− γ
2

)[b
2γ
1−γ−b

2γ
2−3γ (1+b

2γ
2−3γ )

1−2γ
1−γ ] (B.4)

Since the first and the second terms of the above product are positive

for any 0 < γ < 1
2 , it suffices to show that the third term in the brackets is

negative:

b
2γ
1−γ − b

2γ
2−3γ (1 + b

2γ
2−3γ )

1−2γ
1−γ < 0⇒

b
2γ

2−3γ (1 + b
2γ

2−3γ )
1−2γ
1−γ > b

2γ
1−γ ⇒

b
( 2γ
2−3γ

− 2γ
1−γ )

(1 + b
2γ

2−3γ )
1−2γ
1−γ > 1⇒

b
2γ(2γ−1)

(2−3γ)(1−γ) (1 + b
2γ

2−3γ )
1−2γ
1−γ > 1⇒

(b
2γ

2−3γ )
−(1−2γ)

1−γ (1 + b
2γ

2−3γ )
1−2γ
1−γ > 1⇒[

1 + b
2γ

2−3γ

b
2γ

2−3γ

] 1−2γ
1−γ

> 1 (B.5)

which holds for any b > 1, γ < 1
2 , since then the fraction in the brackets

is greater than one and the power it is set to is greater than zero.

We have, therefore, shown that a bilateral deviation from the hhll circle

to the isolated hh pair is not strictly profitable for the high types.
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Appendix C

Proof of Proposition 3.5

In an isolated ll pair, both agents choose effort to maximise payoffs. Using

symmetry, we then get:

γe2γ−1
l = 2

el
2
⇒ e2γ−2

l =
1

γ

⇒ el = (
1

γ
)

1
2(γ−1) ⇒ el = γ

1
2(1−γ) (C.1)

Therefore, the Nash Equilibrium payoff for each high type is:

Πll
l = γ

2γ
2(1−γ) − γ

2
2(1−γ)

2
=

(2− γ)

2
γ

γ
1−γ (C.2)

Using the hhll circle’s Nash Equilibrium effort levels of section 3.4, we

can next calculate the Nash Equilibrium payoff of the low type:

Πc
l = e2γ

ll + bγeγhle
γ
lh −

(ell + elh)2

2

= γ
γ

1−γ (1 + b
2γ

2−3γ )
−γ
1−γ [1 + b

2γ
2−3γ ]− 1

2
γ

1
1−γ (1 + b

2γ
2−3γ )

1−2γ
1−γ (C.3)

Therefore, the difference in payoffs after a bilateral deviation from the

hhll circle to the isolated hh pair can be shown to be:

∆Πl = γ
γ

1−γ (
2− γ

2
)[1− (1 + b

2γ
2−3γ )

1−2γ
1−γ ] (C.4)

Since the first and the second terms of the above product are positive

for any 0 < γ < 1
2 , it suffices to show that the third term in the brackets is
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negative:

1− (1 + b
2γ

2−3γ )
1−2γ
1−γ < 0⇒

1
1−γ
1−2γ < 1 + b

2γ
2−3γ (C.5)

which holds for any b > 1, 0 < γ < 1
2 .

We have, therefore, shown that a bilateral deviation from the hhll circle

to the isolated ll pair is not strictly profitable for the low types.
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