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ABSTRACT

Understanding how plants respond to nitrogen in their environment is crucial for determining how they use

it and how the nitrogen use affects other processes related to plant growth and development. Under nitro-

gen limitation the activity and affinity of uptake systems is increased in roots, and lateral root formation is

regulated in order to adapt to lownitrogen levels and scavenge from the soil. Plants in the legume family can

form associations with rhizobial nitrogen-fixing bacteria, and this association is tightly regulated by

nitrogen levels. The effect of nitrogen on nodulation has been extensively investigated, but the effects of

nodulation on plant nitrogen responses remain largely unclear. In this study, we integrated molecular

and phenotypic data in the legume Medicago truncatula and determined that genes controlling nitrogen

influx are differently expressed depending on whether plants are mock or rhizobia inoculated. We found

that a functional autoregulation of nodulation pathway is required for roots to perceive, take up, and mobi-

lize nitrogen as well as for normal root development. Our results together revealed that autoregulation of

nodulation, root development, and the location of nitrogen are processes balanced by the whole plant sys-

tem as part of a resource-partitioning mechanism.
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INTRODUCTION

Legumes benefit from symbiotic association with soil nitrogen (N)-

fixing rhizobia for N uptake. Nodulation relies on two closely coor-

dinated processes: the infection process, including the coloniza-

tion of the bacteria inside the host plant, and the organogenic

process, in which the nodule tissue is formed to accommodate

the bacteria (Madsen et al., 2010). Signal exchange for bacterial

entry takes place between rhizobia that release nod factors (NF)
This is an open access article under the CC BY-NC-ND
and host plant roots that release flavonoids. NF perception by

receptor-like kinases such as NFP in Medicago truncatula

activates nodulation specific genes including DMI1, DMI2, and

DMI3 and NSP2 (Amor et al., 2003) and downstream calcium

signaling (Peiter et al., 2007). Nodulation signal transduction
Molecular Plant 12, 833–846, June 2019 ª The Author 2019.
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involved in initiating calcium spiking ultimately results in the

activation of calcium/calmodulin-dependent protein kinase

(CCaMK) (Tirichine et al., 2006) and subsequent physiological

and morphological changes (Kosuta et al., 2008; Capoen et al.,

2009) including root hair curling, infection thread formation, and

root nodule primordial development (Oldroyd and Downie, 2008).

These developmental processes are coordinated across different

root cell types by a number of transcription factors including NIN,

NSP1, NSP2, ERN1, and ERN2 (Kaló et al., 2005; Cerri et al.,

2012; Vernié et al., 2015). This developmental molecular

coordination also involves induction of early nodulin-like proteins

including ENOD11, ENOD12, and RIP1 in the root epidermis, and

induction of ENOD20 and ENOD40 in the root cortex and pericycle

(Catoira et al., 2000). In the M. truncatula-Sinorhizobium meliloti

symbiosis, host legume root cells undergo repeated rounds of

genome duplication and increase in volume 80-fold, internalizing

the rhizobia in a specialized compartment called ‘‘symbiosome’’.

Within this structure rhizobia differentiate to form N-fixing-special-

ized polyploid bacteroids unable to replicate (Maroti and

Kondorosi, 2014). These bacteroids exchange biologically fixed

N for an allocation of photosynthate from the host legume (Jones

et al., 2007) with exchange at the symbiosome membrane

through specific channels (Weaver et al., 1994).

Nitrogen responses in plants have been well studied, most

commonly in the model plant Arabidopsis thaliana (reviewed in,

e.g., O’Brien et al., 2016). Nitrogen responses in roots involve

coordinated regulation of metabolic and cellular pathways that

modulate N uptake and root system architecture (Walker et al.,

2017). The nitrate transporter/sensor NRT1.1 plays a key role in

modulating root responses in response to varying external N.

These include repression of lateral root branching in response

to deplete nitrate by diverting accumulating auxin from lateral

root primordia (Bouguyon et al., 2015). In Medicago, nitrate

transporters similarly play a key role in signaling as well as the

distribution of internal N (nodulation-sourced) and external N

(taken up from the environment) for growth and development

(Pellizzaro et al., 2017). In addition, major intrinsic proteins, and

more specifically those expressed specifically in nodules,

nodule intrinsic proteins, appear to play an important role in the

movement of symbiosome-sourced N in the form of ammonia

(Benedito et al., 2008). This is one example of the many

regulatory controls that exist to balance photosynthate payout

with N payback in order to optimize whole plant growth, and

the ability of the root system to develop lateral roots for other

nutrient-harvesting purposes. Peptide and amino acid trans-

porters also play important roles as part of regulation of cellular

N metabolism during different stages of plant development

(Miranda et al., 2003).

In legume species, high concentrations of N inhibit nodulation (van

Noorden et al., 2016) and there are differing inhibitory effects

depending on whether the source is nitrate or ammonium

(Barbulova et al., 2007). These inhibitory effects can occur at a

very early stage of NF signaling (Heidstra et al., 1997), and plant

N status affects symbiotic competence (Omrane et al., 2009).

Nitrogen status can also act later to modulate nodule functioning

and activity. Repressing nodulation when the N status of

the plant is sufficient involves a series of mobile signals. In

soybean, Nitrogen-Induced CLE1 (NIC1), a CLE (CLV3/EMBRYO

SURROUNDING REGION) peptide induced by nitrate, is involved
834 Molecular Plant 12, 833–846, June 2019 ª The Author 2019.
in the local inhibition of nodulation (Reid et al., 2011). Grafting

experiments show that NIC1 is perceived by a root-localized

CLAVATA1-like Leucine-Rich Repeat Receptor-Like Kinase

(LRR-RLK) called Nodulation Autoregulation Receptor Kinase

(GmNARK) (Searle et al., 2003). In Lotus japonicus this gene is

encoded by LjHAR1 (Hypernodulation Aberrant Root Formation

1) (Wopereis et al., 2000) and in M. truncatula by SUperNumary

Nodules, MtSUNN (Penmetsa et al., 2003; Schnabel et al., 2005).

These mutants display disruption in the autoregulation of

nodulation (AON) pathway, which consists of at least two

systemic regulatory circuits to control nodule numbers and

activity (Kassaw et al., 2015). AON uses a feedback-suppression

mechanism from a root-derived signal that is thought to move via

the phloem (Oka-Kira and Kawaguchi, 2006). Along with SUNN,

RDN1 (Root-Determined Nodulation) controls AON responses in

M. truncatula, and CLE peptides are thought to be involved

as both the local and systemic nodulation status signal (Mortier

et al., 2012). In L. japonicus it was shown that Nitrate

Unresponsive Symbiosis 1 (NRSYM1), a NIN-like gene, regulates

nodule numbers and nodule development in response to nitrate

levels (Nishida et al., 2018).

Hypernodulating mutants developing excess nodules escape

autoregulation even in the presence of high levels of nitrate,

indicating that nitrate exerts at least part of its effect via the

autoregulatory pathway. The set of genes controlling AON also

seem to affect nitrate perception and signaling; for example,

nodulation in Lotus LjHAR1 mutants is not downregulated by

high nitrate because the mutant is unable to recognize LjCLE-

RS2 peptides (Okamoto et al., 2009). There are a number of

genetic links between the AON and other N-responsive root

development pathways, including lateral root development

(Huault et al., 2014). In a similar regulatory mechanism another

mobile small peptide, MtCEP1 (C-terminally Encoded Peptide 1)

is recognized by an LRR-RLK, MtCRA2 (Compact Root Architec-

ture 2) to antagonistically regulate nodulation and lateral root ar-

chitecture (Mohd-Radzman et al., 2013).

Accumulating evidence suggests an N-status-dependent molec-

ular dialog between long-distance signaling of AON pathway and

nodulation. The effect of N on nodulation has been investigated in

a variety of studies (reviewed in Nishida et al., 2018) but the effect

of nodulation on N responses is much less well known. Following

a systems biology-integrated approach, here we have used a

combination of phenotypic data and transcriptomic analyses of

wild type and the hypernodulating sunn-1 mutant to examine

the interaction of rhizobial responses and N resources.
RESULTS AND DISCUSSION

Analysis of Rhizobia and Nitrogen Responses in
M. truncatula

We measured root system architecture (RSA) in M. truncatula

plants grown on deplete-N (0.1 mM NH4NO3) conditions treated

with either S. meliloti (‘‘rhizobia’’) or mock for 14 days and then

either treated with deplete N or replete N (5 mM NH4NO3) for 16

more days to study their individual and combinatorial effects on

RSA (see Methods). Deplete and replete levels were chosen

based on tests that showed inhibition of nodulation at levels

higher than 2 mM NH4NO3 (Supplemental Table 1A), and in



0
2
4
6
8

0

5

10

15

0

10
20
30

0

1

2

3

mock rhizobia

N-deplete N-replete

mock rhizobia
P

R
 le

ng
th

 
[c

m
]

LR
 n

um
be

r  
Av

er
ag

e 
LR

 le
ng

th
 

[c
m

]

N
od

ul
e 

nu
m

be
r  

mock rhizobia

N-deplete N-replete

mock rhizobia

c b
a

b

B

C

D

E

A

8 
6 
4 
2 
0

30 

20 
10 
  0

3 

2 

1 

0

15 

10 

  5 

  0

a

b

a a

N.S.D.

N.S.D.

Figure 1. A17 Root System Architecture Is
Altered Differently upon N Treatment if
Plants Are Inoculated with Rhizobia.
(A) Images of A17 seedlings that were mock or

rhizobia inoculated and then grown in N-deplete

(0.1 mM NH4NO3) or N-replete (5 mM NH4NO3)

conditions. Scale bars, 1 cm.

(B–E) Root size and features were measured. (B)

Number of nodules; (C) primary root (PR) length;

(D) number of lateral roots (LRs); (E) average LR

length. Data are presented asmean ± SD. Different

letters denote statistically different groups for

pairwise comparisons using Wilcoxon’s rank-sum

test; n R 11. P < 0.05; N.S.D., no significant dif-

ference.

See also Supplemental Table 1.
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accordance with this we only saw nodulation in the N-deplete

condition (Figure 1A and 1B; Supplemental Table 1B).

The primary root (PR) was significantly shorter when plants were

inoculated with rhizobia, independently of the N treatment

(Figure 1C), suggesting that investment in nodules is at the

expense of RSA. Additionally, the shorter PR under rhizobia-

inoculated conditions is also evident on replete N (Figure 1C),

despite the fact that nodulation does not take place. This

suggests a more complex regulatory effect at play, driven

by external N availability. When comparing mock-treated plants it
Molecular Plant 12,
was observed that PR is shorter in replete N

(Figure 1C), suggesting that PR growth might

be driven by an N-scavenging response.

Such an effect has previously been

described in legumes (Mohd-Radzman et al.,

2013) and maize (Gao et al., 2014). Moreover,

rhizobia inoculation and N treatments seem

to be additive in their effects on PR length,

as PR in the rhizobia- and replete-N

condition was shorter than in any other

condition studied (Figure 1C). Between these

conditions there was no significant difference

in lateral root (LR) number or length (Figure 1

D and 1E; Supplemental Table 1B and 1C).

Rhizobia-Inoculated Plants Show a
Different Nitrogen Response
Compared with Mock-Inoculated
Plants

To investigate the early stages of the combi-

natorial effects of rhizobia and N responses

on RSA, we performed the same experi-

ments as for phenotyping by growing plants

under N-deplete conditions and then trans-

ferring to N-replete conditions. Thus, we har-

vested roots at 0 h (at the moment of N addi-

tion), 2 h, and 6 h after the replete-N (5 mM

NH4NO3) treatment (Figure 2A), carried out

transcriptomic expression using microarrays

(see Methods), and determined differentially

expressed genes (DEGs) (Supplemental

Table 2). Principal component analysis (PCA)
was used to ask whether there were major sources of variation

over the samples (Figure 2B). Earlier (0 h) time points in both

rhizobia- and mock-inoculated samples had a greater degree of

variation than later time points, and the variation over time was

structured such that principal component 1 (PC1)/PC2 captured

around 52% of the variation, PC1/PC3 38%, and PC2/PC3 34%.

This time effect was also clear when plotting DEG heatmaps for

mock- and rhizobia-inoculated experiments separately

(Supplemental Figure 1). This analysis also showed that there

was a greater change over time in the gene expression of

samples that had been mock inoculated, suggesting that
833–846, June 2019 ª The Author 2019. 835
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Figure 2. NitrogenResponses in Rhizobia- andMock-Inoculated Roots Suggests that A17 Seedlings Treatedwith Rhizobia AreMore
Responsive to External Nitrogen Than Mock-Inoculated Roots.
(A) Experimental design for transcriptomics experiment.

(B) Principal component analysis (PCA) reveals a greater difference between rhizobia- and mock-inoculated plants at time 0, and greater changes over
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(legend continued on next page)
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external N treatment has a greater impact in mock-inoculated

plants.

Whenwe compared rhizobia andmock-inoculated roots we found

1030 DEGs at at least one time point (Figure 2C). We then queried

the lists of genes that change between these conditions (R0–M0,

R2–M2, and R6–M6) to ask whether there were any gene

ontology (GO) terms associated with genes regulated over time

in each experiment. Genes related to defense, redox processes,

and stress had a higher expression in mock-inoculated roots

treated with replete N, suggesting that roots in these conditions

have higher levels of stress than those inoculated with rhizobia.

In contrast, genes that had higher expression in rhizobia-

inoculated roots treated with replete N were associated with

many GO terms related to the enriched term of ‘‘transport’’

(Figure 2C and Supplemental Table 3), which in the context of

these experiments (rhizobia-inoculated plants with supplied

external N treatment) could reflect alteration in N transport.

Between R0 and M0, DE genes related to nodulation were found,

including members of the nodule-specific small peptide (CCP/

NCR) gene family and nodulins (Figure 2D). Genes that were

expressed more highly in mock-inoculated roots included func-

tions thatcouldbepartofN-scavenging responses including trans-

membrane amino acid transporter (Medtr5g023260) and

Medtr2g097530, an IAA-amino acid hydrolase ILR1-like protein

associated with auxin regulation and dormancy in Medicago (Du

et al., 2017). There was a decrease in the number of nodulation-

associated DE genes in rhizobia-inoculated roots over time

(compared with mock) from 28 genes at 0 h to 26 genes at 2 h,

and finally to three genes at 6 h of N treatment, suggesting that

these regulated genes could be part of theN-repression of nodula-

tion mechanism that has a greater impact over time (Figure 2D).

These changes could be part of the regulation of nodulation

system dynamics, whereby plants that have established a

symbiotic relationship with rhizobia are more sensitive to the

external N levels as one part of the mechanism to keep resource

use for nodulation in balance with N demand.

We compared changes over time between rhizobia and mock-

inoculated roots and found 251 genes to be different at all time

points; among these are key nodulation DEGs such as Nodule

Inception NIN (Medtr5g099060) (Vernié et al., 2015) (as

validated using qPCR; Supplemental Table 4), ENOD18

(Medtr7g065770) (Hohnjec et al., 2003), as well as a range of

nodulins and NCRs (Figure 2D). We then compared the effect of

N on mock-inoculated roots and found that 3126 genes change

expression over the 6 h. We used a MapMan analysis (Thimm

et al., 2004) to gain more detail into the processes that change

and found that redox responses and biotic and abiotic stresses

were more prevalent among genes that change in mock-

inoculated roots, in accordance with the GO-term analysis

described above (Figure 2C and Supplemental Figure 1A–1D).

Finally, we compared the effect of N on rhizobia-inoculated roots

and found that 857 genes change expression (Supplemental

Figure 1E–1H and Supplemental Table 2). Despite the fact that

rhizobia-inoculated roots have a much smaller sized response
(D) Venn diagram representing the distribution of DEGs between rhizobia-inoc

are differentially regulated in rhizobia-inoculated andmock-inoculated roots; if

in parentheses; n = 3 except for Rhizobia-6hNitrogen where n = 2.

See also Supplemental Tables 2 and 3.
to N, the number of genes categorized as being involved in N

transport and metabolism changing over time in the rhizobia-

inoculated roots was similar to that in mock-inoculated roots

(Supplemental Figure 1), thus the rhizobia N response seemed

to relatively enriched. These results suggest that external

N treatment affects both mock- and rhizobia-inoculated roots,

showing interplay between N- and rhizobia-plant root responses.
Genes Controlling Nitrogen Transport Are Differently
Regulated after Mock or Rhizobia Inoculation

To understand the combined effect of N and rhizobial inoculation,

and investigate the hypothesized reduction in nodulation-

associated genes (Figure 2D), we used hierarchical clustering

using silhouette plots to assess the expression patterns of all

3986 DEGs over all conditions (union of 3126 genes that are

N-responsive over time in mock-inoculated roots, 857 genes

that are N-responsive over time in rhizobia-inoculated roots,

and 1030 genes that differ between mock- and rhizobia-

inoculated roots) (Figure 3A and Supplemental Table 2). There

were 13 clusters, with four predominant patterns (clusters 1, 2,

5, and 11) (Figure 2A). Genes in the largest cluster (cluster 11

with 1317 genes) were found to be N repressed in both

rhizobia- and mock-inoculated roots, including the MYB tran-

scription factor MYB164 (Figure 3B). This cluster also includes

transport inhibitor response 1 (Medtr7g083610), an ortholog of

A. thaliana AFB3, an auxin receptor involved in primary and LR

growth inhibition in response to nitrate and a target of miR393

(Vidal et al., 2010) as well as lateral organ boundaries (LOB)

domain protein Medtr1g095850, a member of the plant organ

development key regulators (Xu et al., 2016). These genes

could be involved in regulating root architecture in both

nodulating and non-nodulating plants.

Cluster 2 genes (1070 genes) were N-induced in both rhizobia-

inoculated and mock-inoculated roots with greater N induction

in mock-inoculated roots. The cluster includes range of

N-response genes such as nitrate reductases and nitrate trans-

porters (Figure 3B). Cluster 5 genes (517 genes) were much

more highly expressed in rhizobial-inoculated roots than mock,

and were N repressed. This cluster includes a range of N trans-

porters and amino acid transporters (including Medtr8g089360,

Figure 3B), which could be related to N-mobilization and

N-metabolism rearrangement in plants undergoing nodulation.

The changes in gene expression in these clusters indicate

altered dynamics of N responses, potentially underlying the

variation in root phenotypes under rhizobial inoculation

compared with mock inoculation.

We also clustered the same genes by N response to directly

compare the scale of N responses not dependent on the basal

expression level (Figure 3C). Among the 14 N-response clusters

there was enrichment of genes annotated with terms including

nitrogen, transport, cysteine, redox, kinase, and jasmonate

(Supplemental Tables 2, 3A, and 3B). The difference in N

responses between rhizobia- and mock-inoculated roots
ulated and mock-inoculated roots over time after N treatment. Genes that

other genes in the same family are also in the DEG list, the number is given

Molecular Plant 12, 833–846, June 2019 ª The Author 2019. 837
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suggested that N transport was activated in plants that had been

inoculated with rhizobia.

Transcriptomic Analysis Shows that Altered
Autoregulation of Nodulation Affects the Pathways
Controlling Root Development, Nitrogen Perception,
Uptake, and Transport

To investigate whether plants that were taking up fixed N in the

root had altered N uptake, we used transcriptomic analysis

of M. truncatula A17 compared with the SUPERNUMERARY

NODULES (Medtr4g070970) sunn-1 mutant, since it has an

extreme, hypernodulating phenotype. sunn-1 mutants continue
838 Molecular Plant 12, 833–846, June 2019 ª The Author 2019.
to form nodules when A17 (wild-type) plant nodulation is

repressed and thus sense that the N environment is perturbed

(Jin et al., 2012). Previous work including use of split roots has

shown that the altered N regulation occurs at both local and

systemic levels (Jeudy et al., 2010).

We used an experimental space with A17 and sunn-1 where we

varied both N level and S. meliloti inoculation. We inoculated

plants with S.meliloti (or mock inoculated) and then 14 days later

carried out a 6-h replete-N (5 mM NH4NO3) treatment or left on

deplete N (0.1mM NH4NO3, control) before harvesting roots

(Figure 4A). PCA was used to identify major sources of variation
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(legend continued on next page)
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over the samples (Figure 4B). PC1/PC2 captured 59% of the

variation, reflecting that the greatest differences observed

come from the mock-rhizobia comparisons in both genotypes.

The differences between sunn-1 and A17 genotypes are greater

in rhizobia-inoculated plants. In terms of N responses, there

seemed to be a stronger impact in mock-inoculated sunn-1

plants. These results suggested a possible crosstalk between

AON pathway and N transport in mock-inoculated plants.

We carried out gene expression analysis using microarrays as

before (see Methods) (Supplemental Table 5) and identified a

set of 6910 regulated genes. Hierarchical clustering was used to

assess gene expression patterns (Figure 4B). There were 11

clusters, with three predominant patterns (clusters 4, 6, and 9)

representing 91% of DEGs (Figure 4C). Cluster 4 (1283 DEG)

contained genes that have increased expression in rhizobia-

inoculated roots compared with mock, both in sunn-1 and A17;

however, rhizobia induction is stronger in sunn-1 than in A17, in-

dependent of the N treatment. As would be expected, many

genes in this rhizobia-enhanced cluster are involved in the nodu-

lation pathway, e.g., NIN (Medtr5g099060, Figure 4E) (Vernié

et al., 2015), MtNSP2 (Medtr3g072710) (Kaló et al., 2005) (both

validated by qPCR), nodule-specific cysteine-rich peptides (159

genes), leghemoglobins (10 genes), late nodulins (25 genes),

and glycine-rich proteins (19 genes). Cluster 4 also includes a

number of genes involved in N metabolism and transport,

including the amino acid transporter Medtr8g089360, also

found to be strongly expressed in rhizobia-inoculated roots in

the previous experiment (Figure 3B). This gene, as well as other

N transporters (e.g., Medtr3g069420) are downregulated by

N specifically in sunn-1 mock-inoculated plants, and could be

part of the crosstalk between the AON pathway and N transport

in mock-inoculated plants. The fact that the induction of these

genes was stronger in sunn-1 than in wild-type A17 is likely part

of the molecular alteration underlying the hypernodulation

phenotype of sunn-1. As well as nodulation genes in cluster 4,

there were calmodulin binding proteins (four genes) required

for the recruitment of ubiquitousCa2+ for endosymbiotic N fixation

and cytochromes P450 (12 genes) that interact with calmodulin

binding proteins to act asmediators inmultiple catalytic pathways

(Yamada et al., 1998; Li et al., 2012). We also found regulatory

genes such as LRR receptor-like kinases (16 genes), MYB (11

genes), GRAS (4 genes), MADS-box transcription factors

(3 genes), zinc finger proteins (19 genes), and members of the

F-box protein family (17 genes) as well as transport genes

including peptide transporters (10 genes) and peptide/nitrate

transporters (6 genes) (Figure 4B and Supplemental Table 5).

Cluster 6 (3137 DEGs) was enriched for genes with annotation

terms including kinase (276 genes), transport (142 genes), redox

(26 genes), calcium (28 genes), nitrogen (35 genes), and UDP (37

genes) (Figure 4C and 4D; Supplemental Table 3A and 3C). In this

cluster, A17 and sunn-1 exhibited opposite gene expression

responses to replete-N treatment when rhizobia inoculated

(Figure 4C), with upregulation in A17 but not in sunn-1.
(D) Wordclouds representing the most significant terms for the three largest

were found to be: cluster 4, cysteine; cluster 6, kinase, transport, redox, calc

(E) Examples of the expression levels of representative genes (as referred to

See also Supplemental Tables 3 and 5.
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Interestingly, we found N-related genes in this cluster including

nitrate transporters (4 genes), peptide/nitrate transporters (8

genes), nitrogen fixation proteins (2 genes), and ammonium

transporters (2 genes out of 12 ammonium transporters in the

whole genome). These findings suggested that N transport may

bemore efficient in A17 than in sunn-1 in the presence of rhizobia.

Within cluster 6, differentially N-responsive between sunn-1 and

A17 there was Medtr7g092930, an ortholog of the squamosa

promoter-binding-like protein SPL9, involved in LR development

in A. thaliana (Yu et al., 2015). This cluster also contains 10 lateral

organ boundaries (LOB-domain) genes. One of these LOB-

domain genes, Medtr6g005080, is specifically downregulated in

sunn-1 compared with A17 in rhizobia-inoculated roots, but

only in N-deplete conditions, that typically have essential roles

in integrating development in response to environmental changes

(Xu et al., 2016) as well as two MYB transcription factors

(including MYB164, Figure 4E). The altered N regulation of

these genes suggests that LR growth might also be different in

A17 compared with sunn-1. Cluster 9 (1896 DEGs) was more

strongly expressed in sunn-1 with rhizobia inoculation than in

any other experiment and independent of the N treatment. This

cluster had many regulatory gene annotations, including kinase

(95 genes), transmembrane (86 genes), and transcription (91

genes) (Figure 4C and 4D). Upregulation of the 35 LRR kinases

and 11 LysMs in this cluster could be related to the altered

perception of rhizobia in the sunn-1 mutant.

Overall, using transcriptomic analysis we found evidence that the

SUNN and N-transport pathways are integrated. It has been

previously hypothesized that SUNN perceives the N/carbon (C)

ratio in the shoot and then sends a signal to the root to control

nodule number (Jin et al., 2012). From our experiments, we

hypothesized that SUNN is involved in root perception of

external N levels and is responsible for uptake and transport of

N to the shoot. To test this hypothesis, we analyzed the RSA

phenotype of sunn-1 under different levels of N after mock or

rhizobia inoculation and its putative involvement in N transport

in an N-uptake assay followed by mineral analysis.
Nodule Numbers, Root Development, and Nitrogen
Uptake Are Balanced Differently in A17 and sunn-1

Wegrew sunn-1 seedlings and inoculated themwithS.meliloti (or

carried out mock inoculation). Fourteen days later we treated

them with deplete or replete levels of N (as used in the microarray

experiments) for 16 days, then measured RSA (Figure 5 and

Supplemental Table 6). As found previously, sunn-1 has

significantly more nodules than A17, even on replete levels of N

(5 mM NH4NO3) when wild type consistently shuts down

nodulation (Figure 5A and 5B). We found that sunn-1 mutants

had a significantly longer PR than A17 on replete N, either with

or without rhizobia inoculation, although the PR was longer

when mock inoculated (Figure 5B). On deplete N all plants had

similar numbers of lateral roots but on replete N, sunn-1
clusters that together represent 91.4% of the total DEGs. Enriched terms

ium, nitrogen, and UDP.

in the text). n = 3.
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mutants had significantly more LRs and greater lateral root

density than A17 when rhizobia or mock inoculated (Figure 5D

and Supplemental Table 6).

sunn-1 mutants that were rhizobia inoculated had shorter LRs

than mock-inoculated plants only in deplete-N conditions

(Figure 5E); in fact, sunn-1 LRs in these conditions are also

significantly shorter than in A17 (Supplemental Figure 2 and
Molecular Plant
Supplemental Table 7). Shorter LRs in sunn-1

when rhizobia inoculated could be explained

by the regulation of LOB-domain genes

(including Medtr6g005080 that is specifically

downregulated in sunn-1 in these conditions)

as described earlier (Figure 4C). These genes

could be key in the regulation of LR length,

integrating the internal and external N signals

to mount an appropriate developmental

response. Autoregulation mutants have

previously been found to have nodulation-

independent phenotypes, such as the

increased LR density and a shorter root system

in the ljhar1 mutant (Wopereis et al., 2000). In

our experiments we observe that this LR

phenotype is even more significant under

rhizobia inoculation. These results suggest

that the RSA phenotypes in AON mutants are

also under the control of a long-distance

signaling system. Auxin has been implicated in

the shoot-to-root signaling regulating nodule

and LR development (Jin et al., 2012), and we

found ‘‘auxin’’ to be an enriched term in our

regulated genes; DEGs related to auxin are

mostly in clusters 6 and 9. The presence of

auxin genes in cluster 6 (upregulated in A17

but not in sunn-1) is consistent with the

phenotypic differences in A17 and sunn-1 in

rhizobia + replete-N conditions (Figure 4C):

shorter PR phenotype in A17 when compared

with sunn-1 (Supplemental Figure 2 and

Supplemental Table 7).

Based on the differing N transcriptome response

of the sunn-1 hypernodulating mutant, we then

asked whether sunn-1 mutants mobilized N to

the shoot differentially, and if this affected

whole plant size. We measured the shoot dry

weight, free nitrate, and percentage of total N
and total C shoot content of A17 and sunn-1 plants grown in

perlite pots. As with the study for transcriptomics, we inoculated

plants with S. meliloti (or mock inoculated) and then 14 days

later carried out a replete-N (15mM NH4NO3) treatment before

harvesting shoots after 6 and 24 h as well as at 0 h to assess

N uptake. After 24 h of growth with N supply, dry weight of all

shoots was increased (Figure 6A and Supplemental Table 8).

sunn-1 rhizobia-inoculated plants appeared to increase in dry
12, 833–846, June 2019 ª The Author 2019. 841
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See also Supplemental Table 8.

Molecular Plant Medicago Nitrogen-Rhizobia Response Coordination
weight more quickly than all other plants (they are significantly

different in dry weight at 6 h, but then similar at 24 h;

Figure 6A and Supplemental Table 8).

We measured shoot free NO3
� content and found that it

increased in all plants over the 24-h period (Figure 6B and

Supplemental Table 8). This shows that transport from root

to shoot occurs rapidly, within the first 6 h. However, by 24

h of N supply, free NO3
� is higher in A17 mock-inoculated

plants than sunn-1, suggesting that sunn-1 plants are less

efficient at moving N to the shoots. This difference is not

apparent for rhizobia-inoculated plants. We then measured

total percent N content and found it increases from 0–6 h to

24 h in A17 (mock inoculated) but not in other conditions

(Figure 6C and Supplemental Table 8). This again suggests

that A17 mock-inoculated plants are more efficient at taking

up NO3
� and transporting it to the shoot. We also measured

total percent C and found no significant changes between

plants (Supplemental Table 8); regulation of photosynthesis

upon higher N uptake could occur later than this 24-h time

period.
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Interactions between Nodulation and
Nitrogen Regulatory Pathways

Put together, our transcriptomic and pheno-

typic analyses suggest that not only does

external N treatment regulate the outcome

of nodulation, but also that the AON signaling

pathway regulates N uptake and metabolism

in the absence of rhizobia. A key regulator of

nodulation,NIN, was found not to respond to

N in A17 wild type, but to be N repressed in

sunn-1, only in mock conditions. A similar

response pattern was found for many NCRs

and N transporters. Most of these genes

also seem to be more highly expressed in

sunn-1 compared with A17 only in mock-

inoculated and N-deplete conditions. This

differential N responsiveness of sunn-1,

implicating SUNN in control of Nmobilization

even when plants are not nodulating, is sup-
ported by our mineral analysis results. A17 appears to be able to

transport more N to the shoot, compared with sunn-1, in mock

conditions. Our new data enable us to propose a model to help

elucidate the regulatory links between nodulation, root develop-

ment, and plant nutritional status (Figure 7). Plants with a

functional SUNN protein that are subject to rhizobia inoculation

are able to perceive external levels of N and mobilize this to the

shoot. N perception, uptake, and transport could thus be the

first step required to trigger signaling that contributes to the AON.
METHODS

Plant Material and Growth

M. truncatula var. Jemalong A17 seeds were obtained from the Aberyst-

wyth seed biobank, and the sunn-1 mutant (Schnabel et al., 2005)

seeds were kindly provided by Giles Oldroyd (John Innes Center,

Norwich, UK). Each experiment for transcriptomic analysis was carried

out in triplicate; experiments for phenotypic analysis were carried out in

triplicate with the images shown representative of the results. Seed was

abrasion-scarified, bleach-surface sterilized, stratified for 24 h at 4�C,
and sown onto plates containing 1.5%water-agar for 5 days. Six to seven



Figure 7. Model Showing the Interactions between Rhizobia and N Treatment on Medicago Root Architecture, and the Function of
SUNN in Mediating These Interactions.
Nitrogen and N transport affects distal responses in leaves and mediates root architecture, including the balance between lateral and PR growth. SUNN

was previously implicated in controlling the lateral–PR balance. With our new phenotypic and transcriptomic data, we hypothesize that the SUNN impact

on root architecture (and ultimately the ability to nodulate) is partly due to playing a role in transport of N to the shoot. Plants with a functional SUNNprotein

are able to perceive external levels of N and mobilize this to the shoot more rapidly. Nitrogen perception, uptake, and transport could be the first step

required to trigger signaling that contributes to the autoregulation of nodulation.
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germinated seedlings were grown on 0.8% agar-modified Fahr€aeus me-

dium (MFM) plates, between the two layers of a plant growth pouch

(CYG Growth Pouch, Mega International, Minneapolis, MN, USA) overlaid

on MFM (Vincent, 1970). Medium contained 0.5 mM MgSO4$7H2O,

0.7 mM KH2PO4, 20 mM ferric citrate, 0.4 mM Na2HPO4$2H2O, 0.9 mM

CaCl2 with 1 mg ml�1 each of MnSO4, CuSO4, ZnCl2, H3BO3, and

Na2MoO4, NH4NO3 at the concentration required (deplete = 0.1 mM;

replete = 5 mM), and adjusted to pH 6.5. 0.075 mM of the ethylene

inhibitor (S)-trans-2-amino-4-(2-aminoethoxy)-3-butenoic acid hydro-

chloride (AVG) was added after autoclaving. Plates were sealed with

microporous tape and roots were covered in black polythene covers

(Bagman of Cantley, Lingwood, Norfolk, UK). Plates were grown in a

Sanyo growth chamber (MLR-351H, Sanyo, E&E Europe, Loughbor-

ough, UK) vertically with a 16/8-h photoperiod at 50 mmol m�2 s�1 and

constant 25�C.

For mineral analysis, M. truncatula A17 seeds were sterilized, stratified,

and germinated as above, then transplanted into FP7 (73 7cm) pots filled

with sterile perlite with a 2-cm layer of sterile vermiculite. Plants were

growth in a glasshouse compartment with a 16/8-h photoperiod at

50 mmol m�2 s�1 and 24�C day/22�C night. Pots were watered with

nutrient solution following a recipe modified from Broughton and

Dilworth (1971) (1 mM KH2PO4, 1 mM CaCl2$2H2O, 75 mM FeNa EDTA,

1 mM MgSO4$7H2O, 0.25 mM K2SO4, 6 mM MnSO4$H2O, 1 mM

ZnSO4$7H2O, 0.5 mM CuSO4$5H2O, 0.05 mM CoSO4$7H2O, 20 mM

H3BO3, and 0.1 mM Na2MoO4$2H2O, adjusted to pH 6.2–6.4).
Plant Treatments

S. meliloti 1021 was grown in TY/Ca2+ medium plates at 28�C for 2 days.

S.meliloti 1021 cultures were grown overnight in TY/Ca2+ liquidmedium at

28�Cwith shaking at 220 rpm. Seedlings were grown vertically in theMFM
plates or perlite pots for 4 days, then the seedlings were either inoculated

with 2 ml of OD600 = 0.02 of S. meliloti 1021 in liquid MFM or mock inoc-

ulated with the same volume of modified liquid MFM. Treatments were

performed by pipetting solutions directly onto the roots of seedlings. For

N treatments in plates, 14 days post inoculation (dpi) roots were treated

with 2 ml of liquid MFM supplemented with NH4NO3 at the concentration

required, then placed on fresh solid MFM containing the same NH4NO3

concentration as the treatment. We confirmed rhizobia inoculation or N-

treatment effect using qPCR of ENOD11, NRT2.1, NPL, NSP2, and NIN

genes (Supplemental Table 4). Treated seedlings were kept in the

incubator for 2–6 h, then roots were excised from the shoot and frozen

in N2(l) for microarray experiments, or seedlings were kept for up to 16

more days for RSA analysis. For N treatments in perlite pots, at 14

dpi pots were watered with pot nutrient solution as above, containing

15 mM NH4NO3 as a replete-N treatment, after which samples were

harvested at 0 (immediately before treatment), 6, and 24 h for mineral

analysis.

RNA Analysis, qPCR, and Microarray Hybridization

RNA was extracted from roots using the Qiagen RNeasy Plant Mini Kit,

following the manufacturer’s instructions. Total RNA samples were then

treated with the TURBODNA-free kit (Life Technologies). Lack of genomic

DNA contamination was confirmed using bioanalyzer and PCR with

primers Medtr3g091400_F: 5ʹ-TCATCTTCAACGCAGACCCC-3ʹ and

Medtr3g091400_R: 5ʹ-ACTCACACTTACACGCGACA-3ʹ. cDNA was syn-

thesized from RNA using the Ovation Pico WTA System (NuGEN Technol-

ogies, San Carlos, CA, USA) and purified using Qiagen Qiaquick PCR pu-

rification kit. dscDNAwas labeledwith Cy3 using the Nimblegen one-color

DNA labeling kit. qPCR was performed on dscDNA using SYBR Green

JumpStartTaq ReadyMix (Sigma-Aldrich, St Louis, MO) according to the

manufacturer’s instructions on an Mx3005P qPCR System (Agilent Tech-

nologies). Expression of five transcripts was tested for confirmation of
Molecular Plant 12, 833–846, June 2019 ª The Author 2019. 843
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microarray quantification results (for values and primer sequences see

Supplemental Table 4). mRNA levels were normalized relative to

Ubiquitin-Conjugating Enzyme E2 9 (UBC9) (Medtr7g116940) with

primers as used in Kakar et al. (2008), UBC9F: 5ʹ-GGTTG

ATTGCTCTTCTCTCCCC-3ʹ and AAGTGATTGCTCGTCCAACCC, and

quantified using standard curves generated for each primer pair. Cy3-

labeled cDNA was quantified using NanoDrop, then hybridized using

the Roche-Nimblegen (Roche Applied Science) single-color microarray

hybridization kit to 123135k Roche-Nimblegen probe arrays. This

array is a custom design for the M. truncatula Mt3.5 genome with two to

three unique 60-mer oligonucleotide probes. We only consider

probes that map to the Mt4.0 genome version; this measures

expression of 27 671 Mt4.0 genes and only these genes were analyzed

in this work (see Gene Expression Omnibus GPL25305 array platform

and data deposit GEO: GSE116789). Fluorescence intensity signals of

the labeled cDNA excited at 532 nm wavelength were quantified using

the Nimblegen MS 200 scanner set at 2-mm resolution. The data were

collected as XYS files (raw probe level data by coordinates on the

microarray).
Statistical Analysis of Transcriptomic Data

Microarray analysis was performed in R using custom scripts. We as-

sessedmicroarray reproducibility and confirmed that housekeeping genes

Medtr6g079920.1 (pentatricopeptide repeat protein), Medtr3g090960.1

(polypyrimidine tract-binding-like protein), and Medtr3g091400 (the

ubiquitin-like phosphatidylinositol 3- and 4-kinase family protein) did not

change expression. An annotation package associated with the array

design was built by using the pdInfoBuilder package (Falcon and

Carvalho, 2013) and the .ndf design file provided by the manufacturer.

The quality of data was checked by generating box plots, smooth

histograms, and heatmaps of Pearson correlation coefficients between

all arrays of the raw data using the Oligo package (Carvalho and Irizarry,

2010). For background adjustment, quantile normalization, and

summarization (to gene level by median polish), robust multi-array aver-

aging (RMA) was performed with the Oligo package. To compare global

expression levels between replicates in the same experiment, we used

an R2 test; values were typically in the range of 0.90–0.95, with the lowest

being 0.85.

To explore the distribution of the variation, we performed PCA on the log2[-

signal intensity] data with average values for replicates. To characterize

expression patterns and identify DEGs over time in mock or rhizobia-

inoculated roots, we fitted a linear model for each gene across the series

of arrays by a least-squares regression. To assess model fit, we used a

t-statistic test and calculated P values by computing empirical Bayes

statistics for differential expression using a significance cut-off of P <

0.05 and a fold change cut-off of 1.5 on log scale.

A linear model with moderated statistics (t-statistics and F-statistic) was

fitted to the log2 normalized data with limma (Ritchie et al., 2015),

adjusting P values with the false discovery rate algorithm (Benjamini and

Hochberg, 1995). DEGs were defined as having an adjusted P value of

<0.05 and fold change >1.5. DEGs were clustered using hierarchical

clustering with an average linkage and Pearson correlation. Expression

values for DEGs were averaged for each treatment, row normalized and

clustered using hierarchical clustering with an average linkage and

Pearson correlation using the clustergram function in MATLAB.

Silhouette widths were plotted in MATLAB using the silhouette function

for each hierarchical tree and used to determine where to cut the trees

and define clusters, then the cluster patterns were visualized in

MATLAB using the clustergram function. Annotation term enrichment

was determined using Fisher’s Exact test with a P-value cut-off of

<0.05. GO term annotations were obtained from AgriGO (http://

systemsbiology.cau.edu.cn/agriGOv2/) for M. truncatula version Mt4.

GO term overrepresentation was assessed using the topGO R package

(Alexa and Rahnenfuhrer, 2018).
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Identification of Regulation of Response Pathways

MapMan software (version 3.5.1R2) was used to visualize the time-depen-

dent transcript profiles to N treatment. Experimental data files of mock

(M2–M0, M6–M0) and rhizobia-inoculated root DEGs (R2–R0, R6–R0)

were prepared containing the log2 fold change for each DEG. Mapping

files to link the experimental data onto the Image Annotator was obtained

from the MapMan store (https://mapman.gabipd.org/mapmanstore). The

mapping files organize experimental data files for assignment into

functional categories of BINs and sub-BINs that are defined in the

SCAVENGER module (Thimm et al., 2004). Pathway analysis of all the

major pathways (BINs) to visualize metabolic changes and cellular

responses was performed by applying the built-in Wilcoxon rank-sum

test with Benjamini–Hochberg correction (Thimm et al., 2004). For

analysis of putative orthologs in M. truncatula of genes discovered in

other species, we used a reciprocal best blast analysis using data from

Ensembl plants (Bolser et al., 2017).

Microscopy Analysis

For visualization of nodule numbers, roots were viewed at 103 under dif-

ferential interference contrast using an Olympus BX51 microscope.

Statistical Analysis of Phenotypic Data

Plant roots were scanned using a Scanjet G2710 flatbed scanner (Hew-

lett-Packard) at highest resolution, then phenotypic analysis of root

architecture was performed using ImageJ (http://rsbweb.nih.gov/ij),

measuring PR length, the number of LRs (LR num), and the length of every

LR. From this the following were calculated: total LR length, average LR

length (LR length ave), total LR plus PR length (PR + LR tot) and lateral

root density. Phenotype data was analyzed using R with a Shapiro–Wilk

test used to test data normality; a Bartlett test was used to test data

variance. A pairwise Wilcox test was used to assess differences for signif-

icance using the Benjamini–Hochberg method. Data box plots were

generated using the R package ggplot2.

Nitrate, Total Percent Nitrogen, and Total Percent Carbon
Determination

Anion extraction was performed on 20 mg of freeze-dried ground plant

material using 1.5 ml of milliQ water containing 20 mg of insoluble

polyvinylpolypyrrolidone. Extraction was performed at 4�C for 60 min

shaking at 200 rpm, then samples were heated up at 90�C for 15 min

and centrifuged at 13 000 g and 4�C for 15 min. Clear supernatants

were the samples used for analysis. Nitrate anion in samples was

analyzed using a Thermo Scientific Dionex ICS-1100 Ion Chromatog-

raphy System consisting of a guard column (IonPac AG14A), an analyt-

ical column (IonPac AS14A), a suppressor (Dionex ERS 500), and a

column heater (Dionex ICS-1100 Column Heater). Samples were

analyzed using a Na2CO3–NaHCO3 eluent at 1.4 ml/min, 28 mV

(suppressor voltage), and a set temperature of 30�C (column heater).

The total content of N was analyzed by total combustion using a LECO

Trumac CN/N determinator. 0.5 g of freeze-dried ground samples

were weighed into a ceramic boat, which was loaded into the furnace

of the instrument set up at 1350�C.
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