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MCMC sampling colourings and independent sets of
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Goethe University, Mathematics Institute, Frankfurt 60054, Germarny
efthymiou@math.uni-frankfurt.de

Abstract

Sampling from the Gibbs distribution is a well studied
problem in computer science as well as in statistical
physics. In this work we focus on the k-colouring
model and the hard-core model with fugacity λ when the
underlying graph is an instance of Erdős-Rényi random
graph G(n, p), where p = d/n and d is fixed.

We use the Markov Chain Monte Carlo method
for sampling from the aforementioned distributions. In
particular, we consider Glauber (block) dynamics. We
show a dramatic improvement on the bounds for rapid
mixing in terms of the number of colours and the
fugacity for the corresponding models. For both models
the bounds we get are only within small constant factors
from the conjectured ones by the statistical physicists.

We use Path Coupling to show rapid mixing. For
k and λ in the range of our interest the technical
challenge is to cope with the high degree vertices, i.e.
vertices of degree much larger than the expected degree
d. The usual approach to this problem is to consider
block updates rather than single vertex updates for
the Markov chain. Taking appropriately defined blocks
the effect of high degree vertices diminishes. However
devising such a block construction is a non trivial task.

We develop for a first time a weighting schema for
the paths of the underlying graph. Only, vertices which
belong to “light” paths can be placed at the boundaries
of the blocks. The tree-like local structure of G(n, d/n)
allows the construction of simple structured blocks.

1 Introduction

Sampling from the Gibbs distribution is well studied
problem in computer science as well as in statistical
physics. Examples include sampling from the uniform
(or a weighted) distribution over combinatorial struc-
tures like k-colourings, independent sets, matchings of
a graph G e.t.c. In this work we focus on colour-
ings and independent sets when the underlying graph

∗Partially supported by EPSRC grant EP/G039070/2.

is an instance of Erdős-Rényi random graph G(n, p),
where p = d/n and d is ‘large’ but remains bounded as
n → ∞. We say that an event occurs with high prob-
ability (w.h.p.) if the probability of the event to occur
tends to 1 as n→∞.

For this kind of problems, the most powerful algo-
rithms and somehow the most natural ones are based
on the Markov Chain Monte Carlo (MCMC) method.
The setup is an ergodic, time-reversible Markov chain
over the k-colourings (or independent sets) of the un-
derlying graph. The updates guarantee that the equi-
librium distribution of the chain is the desired one. Here
we use standard Glauber block updates (in the course of
this paper we refer to the chains as Glauber dynamics).
The main technical challenge is to establish that the
underlying Markov chain has rapid mixing, i.e. it con-
verges sufficiently fast to the equilibrium distribution
(see [10, 17, 16]).

Given the input graph G(n, d/n), the focus is on
two distributions. The first one is the colouring model,
i.e. the uniform distribution over the k-colourings of
the input graph. The second one is the hard-core
model with fugacity λ, i.e. each independent set σ is
assigned probability measure proportional to λ|σ|. The
parameters of interest are the number of colours k and
the fugacity λ, respectively. The aim is to show rapid
mixing for k as small as possible and λ as large as
possible for the corresponding models.

For MCMC algorithms to converge, typically, the
bounds for both k and λ are expressed in terms of the
maximum degree of the underlying graph. Examples
of such bounds are [5, 11, 12, 14, 21, 22, 27] for
colouring and [6, 7, 21, 28] for independent sets. In
that terms, what makes the case of G(n, d/n) special
is the (relatively) big fluctuation in the degree of the
vertices. To be more specific, w.h.p. the vast majority
of vertices in G(n, d/n) are of degree close to d, while
the maximum degree is as huge as Θ

(
lnn

ln lnn

)
. In such a

situation, it is natural to expect that the rapid mixing
bounds for both k, λ depend on the expected degree d,
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rather than the maximum degree.
Sophisticated but mathematically non rigorous ar-

guments from statistical physics (e.g. in [19, 30]) sup-
port this picture. Roughly speaking, they suggest that
w.h.p. over the instances of G(n, d/n) the Glauber
(block) dynamics on k-colouring has rapid mixing for
any k > d. Furthermore, for k < d the chain is ex-
pected to be non-ergodic 1. To our knowledge, there are
no predictions for the fugacity as far as the hard-core
model is concerned. However, using the result in [18]
and standard arguments we could conjecture that we

have rapid mixing as long as λ < (d−1)d−1

(d−2)d
≈ e

d . These

conjectured threshold values for k and λ are what we
call Gibbs Uniqueness thresholds.

So far, the best bounds for Monte Carlo sampling
appeared in [24] (which improved on [4]). The authors
in [24] provide for a first time rapid mixing bounds, for
both k and λ, which depend on the expected degree d.
That is, w.h.p. over G(n, d/n) there are functions f(d)
and h(d) such that Glauber dynamics has rapid mixing
for k-colourings and hard-core as long as k ≥ f(d) and
λ ≤ h(d), respectively2. However, the values for k and
λ that are allowed there are many orders of magnitude
off the conjectured bounds. Here we improve on these
bounds substantially. We show that w.h.p. over the
underlying graph G(n, d/n) we have rapid mixing for
k ≥ 11

2 d and for λ ≤ 1−ε
2

1
d . That is, we approach the

conjectured bounds for rapid mixing only within small
constants.

We use the well-known Path Coupling technique,
from [3], to show rapid mixing. Path Coupling is also
used in both of the previous papers on the problem,
i.e. [4, 24]. For k and λ in the range of our interest
the technical challenge is to cope with the high degree
vertices, i.e. vertices of degree much larger than d. The
natural approach is to consider block updates rather
than single vertex updates for the Markov chain. In
particular we use the observation that the effect of
high degree vertices somehow diminishes when they are
away from the boundary of their block. Devising such
a block construction is a highly complex task. We
introduce for a first time a weighting schema for the
paths of the underlying graph which allows a desired
block construction.

To be more specific, we use our weighting schema
to assign weight to paths in G(n, d/n). These weights

1When k < d there is a connected block which contains all
but an exponentially small fraction the k-colourings of G(n, d/n).

It is conjectured that restricting the states of the chain to the
k-colourings in this block we should have rapid mixing.

2Even though these functions are not given explicitly it is

conceivable from the analysis that it holds that f(d) ≥ dc and

h(d) ≤ d−c′ for fixed c, c′ > 2.

allow distinguishing which vertices can be used for
the boundaries of the blocks. We call such vertices
break-points. A break point should have all the paths
emanating from it of sufficiently small weight. It turns
out that w.h.p. there is a plethora of break-points in
G(n, d/n). This allows creating small, simple structured
blocks.

Compared to [24], one could remark that our
weighting schema allows a more specific characteriza-
tion of the blocks. I.e. we have more information about
the position of high degree vertices inside the blocks.
Somehow, this allows better results from the path cou-
pling analysis. Also, we should mention that our setting
for path coupling analysis is closer to [4] rather than [24].

Non Monte Carlo Approaches. In the litera-
ture, there are approximate sampling algorithms for
both colouring and hard-core model on G(n, d/n) which
do not use the MCMC approach. Usually their efficiency
requirements are weaker than those for the MCMC ones.
In practice this means that we get efficiency guarantees
for a wider range of the parameters k and λ. However,
the approximation guarantees we get are weaker.

In [8] the author of this work proposed an algorithm
for approximate sampling k-colourings of G(n, d/n)
which has a notable performance in terms of minimum
k, it requires k ≥ (2 + ε)d. The error of the output
is a vanishing function of the size of the graph n.
Recently Sinclair, Srivastava and Yin in [25] presented
a non-MCMC algorithm for sampling from the hard
core-model on G(n, d/n) for λ < e/d. Essentially,
[25] improves (non trivially) on [29] for the case where
the underlying graph has bounded connectivity3. For
typical instances of G(n, d/n), the algorithm requires
poly(n) × poly(m) steps to return a sample within
distance 1/m from the target distribution.

Given rapid mixing, the output of a MCMC algo-
rithm is within distance 1/m from the target distribu-
tion in a ln(m)× poly(n) number of steps.

Notation. We use small letters of the greek alpha-
bet to indicate colourings or independent sets, e.g. σ, τ .
Also, by σ(v) we indicate the assignment of the vertex
v under the configuration σ. For a vertex set B we call
(outer) boundary of B the vertices outside B which are
adjacent to some vertex inside B.

2 The Result

We consider the colouring model and the hard core
model. For each of these two models we consider a
graph G = (V,E) and a set of spins C. We define
a configuration space Ω ⊆ CV . Given Ω, the model

3It is not hard to see that typical instances of G(n, d/n) are
such graphs.
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specifies a distribution µ : Ω→ [0, 1]. This distribution
is also called Gibbs distribution.

Colouring Model: Given a graph G = (V,E) and a
sufficiently large integer k, the colouring model specifies
the following: The configuration space Ω consist of all
the proper k-colourings of G. The Gibbs distribution is
the uniform distribution over Ω. That is, each σ ∈ Ω is
assigned probability measure

µ(σ) =
1

|Ω|
.

Hard Core Model: Given G = (V,E) and λ > 0, the
hard core model with fugacity λ specifies the following:
The configuration space Ω is all the independent sets of
G. The Gibbs distribution specifies that each σ ∈ Ω, is
assigned probability measure µ(σ) which is proportional
to λ|σ|, where |σ| is the cardinality of σ. That is

µ(σ) =
1

Z
λ|σ|,

Z is a normalizing quantity, i.e. Z =
∑
σ∈Ω λ

|σ|, which
is usually called partition function.

In this work we propose a Markov Chain Monte Carlo
algorithm for approximate sampling from the two mod-
els above. The error in the distribution of the output
sample is expressed in terms of total variation distance.

For two distribution ν, ξ on some discrete space S
we define the total variation distance as follows:

||ν − ξ||TV = max
A⊆S
|ν(A)− ξ(A)|.

A high level description of the algorithm is as follows:

Sampling Algorithm: The input is a graph G =
(V,E), a number err > 0 which is the error in the
distribution of the output sample and the target Gibbs
distribution4 µ.

First, the algorithm partitions the set of vertices
V into an appropriate set of blocks B. Given B, it
simulates the following Markov chain and returns the
configuration of the chain after T = T (err) transitions.

• Start from an arbitrary configuration.

• At each transition, the chain chooses uniformly at
random a block B ∈ B. If Xt is the current state
of the chain, then the next one, Xt+1, is acquired
as follows:

– For every vertex u /∈ B set Xt+1(u) = Xt(u).

4colouring or hard-core model with the appropriate parameters

– Set Xt+1(B) according to Gibbs distribution
conditional that the spins outside B are set
Xt+1(V \B).

Given a set of technical conditions known as ergodicity,
the above chain converges to Gibbs distribution µ. For
the range of k and λ we consider here ergodicity is well
known to hold for our chains (see more details in full
version [9]).

The performance of our algorithm both in terms of
time efficiency and accuracy depends on the following
conditions:

1. The construction of the set of blocks B should be
done in polynomial time.

2. We need an efficient algorithm that provides the
initial configuration of the chain.

3. We need an efficient algorithm which implements
the transitions of the chain.

4. The chain should converge to stationarity suffi-
ciently fast (we have rapid mixing).

For further details on how we deal with each of the above
issues see in Section 3 and Section 4. The convergence
rate, which we consider to be the most important of
the four, is treated separately in Section 3. The rest
are treated in Section 4. We are going to show that
our algorithm indeed satisfies the above conditions with
high probability over the instances of the input graph.
In particular, the main result of this work is stated in
the following theorem.

Theorem 2.1. We let ε > 0, sufficiently small err > 0,
and sufficiently large c, d > 0. W.h.p. over the input
instances G(n, d/n) the Sampling Algorithm returns a
configuration within total variation distance err from
the target distribution µ in ln

(
1
err

)
× O(nc) number of

steps, as long as the following conditions are met:

colouring model: It holds that k ≥ 11
2 d

hard-core model: It holds that λ ≤ 1−ε
2d .

Theorem 2.1 follows as a corollary of the results in
Sections 3 and 4.

3 Rapid Mixing Results & Proof Technique

We use mixing time, τmix, as a measure of the speed
of convergence of Markov chains. The mixing time is
defined as the number of transitions needed in order
to guarantee that the chain starting from an arbitrary
configuration, is within total variation distance 1/e from
the stationary distribution (see [20]).
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Remark 1. In our context, we say that a Markov chain
is rapidly mixing if τmix is polynomial in n.

Remark 2. It is not hard to see that the number of
transitions that are required to get within error err from
the stationary distribution is T (err) = ln

(
1
err

)
× τmix.

As far as the mixing rate of the two chains is regarded
we show the following theorems.

Theorem 3.1. Let Mc be the Markov chain on the k-
colourings of G(n, d/n) we define in Section 2. With
probability 1 − o(1) over the graph instances G(n, d/n)
and for k ≥ 11

2 d, the mixing time of Mc is O(n lnn).

A large part of the proof of Theorem 3.1 appears in
Section 6. For the full proof see in the full version of
this work in [9].

Theorem 3.2. Let Mhc be the Markov chain of the
hard core model on G(n, d/n) with fugacity λ, we define
in Section 2. Let ε > 0 be fixed. With probability 1−o(1)
over the graph instances G(n, d/n) and for λ ≤ 1−ε

2d the
mixing time of Mhc is O(n lnn).

For the proof of Theorem 3.2, see in the full version of
this work in [9].

In the two theorems rapid mixing holds w.h.p.
over the instances of G(n, d/n) because (among other
restrictions) the underlying graph should admit the
appropriate partition B. In Section 3.1 we present a
high level description of the proof technique we use for
the two theorems above.

3.1 Proof technique We show rapid mixing by us-
ing the well-known Path Coupling technique in [3]. The
technique goes as follows: W.l.o.g. we consider the
colouring model. Assume that the underlying graph
G = (V,E) is of maximum degree ∆ and, for the mo-
ment, let k > ∆. Finally, assume that we have the
Markov chain M on the k-colourings of G with single
vertex updates.

Consider any two copies of M at state X0, Y0, re-
spectively. We take X0, Y0 so that they have exactly one
disagreement, i.e. their Hamming distance H(X0, Y0) is
equal to 1. The coupling carries out one transition of
each copy of M . Let X1, Y1 be the colouring after each
transition, respectively. A sufficient condition for rapid
mixing is the following one

E[H(X1, Y1)|X0, Y0] ≤ 1−Θ
(
n−1

)
.(3.1)

To study the technique further, assume now that for
w ∈ V we have X0(w) 6= Y0(w). It is natural to
use a coupling that updates the same vertex in both

copies. The cases that matter are only those where the
coupling chooses to update either the disagreeing vertex
w or one of its neighbours. If the update involves the
vertex w, then we get that X1 = Y1. This happens with
probability 1/n, where |V | = n. On the other hand, if
the update involves a neighbour of w, then X1, Y1 may
have an extra disagreement. In particular, the update
of a neighbour of w can generate an extra disagreement
with probability at most 1

k−∆ . Since the disagreeing
vertex w has at most ∆ neighbours, the probability of
having an extra disagreement is at most ∆

n
1

k−∆ . For
k ≥ 2∆ + 1, it is direct that (3.1) is satisfied.

W.h.p. G(n, d/n) is of maximum degree Θ
(

lnn
ln lnn

)
.

That is, a vanilla path coupling would require an
unbounded number of colours. Otherwise, i.e. if k is
smaller than the maximum degree, there is no control on
the expected number of disagreements generated in the
coupling. However, it is possible to gain some control on
the disagreements by using (appropriate) block updates
rather than single vertex updates. In particular, the
blocks should be constructed in such a manner that the
high degree vertices are somehow “hidden” well inside
them5.

In our setting, we consider two copies of Mc at
states X0, Y0. The states differ only on the assignment
of the vertex w. We have block updates. The coupling
chooses uniformly at random a block B from the set of
blocks B and updates the colouring of B in both chains.
It turns out that the crucial case for proving (3.1) is
when the outer boundary of B is not the same for both
chains, i.e. the disagreeing vertex w is not inside B but
it is adjacent to some vertices in B. There, we need
to upper bound the expected number of disagreements
generated in the update of B. The construction of B
should minimize the expected number of disagreements.

To this end, we build on an idea from [4] for
bounding the expected number of disagreements inside
the block. The authors there use the well-known
“disagreement percolation” coupling construction, [2],
to express the expected number of disagreements in
terms of percolation probabilities. The idea assumes
that the block B is a tree with at most one extra
vertex (which is the case here as well) and goes as
follows: Clearly, the disagreement at the boundary
prohibits identical coupling of X1(B) and Y1(B). The
disagreement percolation assembles the coupling in a
stepwise fashion, i.e. couples the colouring of each
vertex of B at a time. It gives priority to vertices which
are next to a disageeing vertex, if any. Disagreements
propagates into B along paths from w. A disagreement
at vertex u′ ∈ B at (edge) distance r from w propagates

5This is the approach that is used in the analysis in both [4, 24].
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to a neighbour u ∈ B at distance r+1 if X1(u) 6= Y1(u).
The probability of the event X1(u) 6= Y1(u) in the
coupling is upper bounded by %u, where

%u =

{
2

k−(1+α)d if ∆(u) ≤ (1 + α)d

1 otherwise,
(3.2)

with α > 0 and k ≥ (1 + α)d+ 2.

The disagreement percolation is dominated by an inde-
pendent process, i.e. the disagreement propagates over
the path L that starts from w with probability at most∏
u∈L\{w} %u. Clearly, the expected number of disagree-

ments is at most the expected number of paths of dis-
agreements that start from w and propagate inside B.

Intuitively, high degree vertices are expected to have
an increased contribution to the number of disagree-
ments. I.e. if a high degree vertex is disagreeing, it has
an increased number of neighbours to propagate the dis-
agreement. However, for typical instances of G(n, d/n)
and k ≥ 11

2 d, it turns out that the larger the distance
between a high degree vertex from w the less proba-
ble is for the disagreement to reach it. This, somehow,
can balance the increased contribution that high degree
vertices have. We exploit this observation in the block
construction so as to control the overall number of dis-
agreeing vertices in the updates.

To be more specific, we use the following weighting
schema: Each vertex u, of degree ∆(u) in G(n, d/n), is
assigned weight W (u) such that

W (u) =

{
(1 + γ)−1 if ∆(u) ≤ (1 + α)d

dc ·∆(u) otherwise,
(3.3)

for appropriate real numbers α, γ, c > 0. Given the
weights of the vertices, each block B ∈ B should satisfy
(among others) the following two properties:

(a) B is either a tree or a unicyclic graph

(b) For every path L between a vertex at the outer
boundary of B and a high degree vertex6 inside B
it should hold that

∏
u∈LW (u) ≤ 1.

In the weighting schema, observe that the low degree
vertices reduce the weight of the path L, while the high
degree vertices increase it. Restricting the weight of a
path between a high degree vertex in the block B and
a boundary vertex, somehow, guarantees that the high
degree vertices are sufficiently far from the boundary.
I.e. so as to keep the weight of the path low we
require a sufficiently large number of low degree vertices

6degree greater than (1 + α)d

between the boundary vertex and the high degree
vertex. As we describe in the following paragraphs,
choosing appropriately the parameters α, γ, c in the
weighting schema we can control the expected number
of disagreement and get (3.1), for k down to 11

2 d.
Where k ≥ 11

2 d comes from. So as to derive
the bound 11

2 d for k we need to show how do we
bound the number of disagreements in the update of
the configuration of a block. Due to its construction,
the block has only one vertex adjacent to the disagreeing
vertex w7. Let us call this vertex v. Due to (b), above,
any path that connects w and a high degree vertex in
B should be of “low weight”.

We consider T , the tree of self-avoiding walks of
B rooted at vertex v. That is, at level i of T we
have the vertices of B which are reachable from v by
a path (within B) of length i. In the independent
process, let LTi denote the expected number of paths
of disagreements in T , that connect the root and the
vertices at level i of T . The disagreement probabilities
are specified in (3.2).

For the rapid mixing condition (3.1), it will suffice
to show that

LTi ≤ β(1− θ)i for i ≥ 0,(3.4)

for appropriate θ < 1, β > 0. Since LTi depends only on
the first i levels of T , we can neglect all but the first i
levels of T .

Assume that the degree of the root of T is equal to
s, for some integer s > 0. The condition in (3.4) reduces
to the following: For each subtree T ′ rooted at a child
of the root of T it should hold that

LT
′

i−1 ≤
β(1− θ)i

s · %v
,(3.5)

where %v is the probability of disagreement for the root
of T . That is, instead of (3.4) it suffices to show (3.5)
for every T ′.

Applying the same inductive argument many times
we get an increased number of conditions each of which
considers a smaller subtree of T . After sufficiently
many applications the conditions consider only single
vertex subtrees. In particular each of these subtrees
T ′′ contains exactly one vertex which belongs to the
level i of T . Then, instead of (3.4), it suffices to have
the following, conditions: For every subtree T ′′, which
contains only the vertex u, it should hold that

LT
′′

0 ≤ β(1− θ)i∏
x∈L\{u} (∆(x) · %x)

,(3.6)

7This will become apparent to the reader once we describe in
detail how do we construct the blocks.
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where L is the path in T from the root to vertex u.
Observe that on the l.h.s. of (3.6) we have the expected
number of paths of disagreement in T ′′. It holds that
LT
′′

0 ≤ pu.
From all the above, we conclude that it suffices that

the following conditions hold: For every vertex u at level
i of T it should hold that

β(1− θ)i∏
x∈L\{u} (∆(x) · %x)

≥ %u.(3.7)

The reader should observe that to a certain extent
the denominator in (3.7) can be controlled by choosing
appropriately the parameters of the weighting schema
and k. Indeed, setting appropriately these parameters
and having k ≥ 11

2 d, (3.7) holds for every u at level i of
T .

Remark 3. We follow exactly the same approach to
show rapid mixing of Markov chains for the hard core
model. The partitioning of the vertices of the underlying
graph is exactly the same. The only difference is the
probabilities that the disagreements propagate inside the
block B.

4 Detailed description of the algorithm

4.1 Block Creation Consider the graph G(n, d/n)
and the weighting schema from (3.3). That is, each
vertex u, of degree ∆(u), is assigned weight

W (u) =
{

(1 + γ)−1 if ∆(u) ≤ (1 + α)d
dc ·∆(u) otherwise,

for appropriate α, γ, c > 0. Given the weight for each
vertex, we introduce the concept of “influence”.

Definition 1. (Influence) For a vertex v, let P(v)
denote the set of all paths of length at most lnn

d2/5 that
start from v. We call “influence” on the vertex v,
denoted as E(v), the following quantity:

E(v) = max
L∈P(v)

{∏
v∈L

W (v)

}
.

When for some vertex v it holds that E(v) ≤ 1, then
this means that “it is on light paths only”. Such vertices
are special for the block construction as the boundaries
of the blocks are specified by using exclusively this kind
of vertices.

Definition 2. (Break-Points & Influence Paths)
A vertex v such that E(v) ≤ 1 is called “break-point”.
Also, a path L that does not contain break-points is
called “influence path”.

Observe that in order to check whether some vertex
v is a break-point we only need to check paths of
length at most lnn

d2/5 around it. Clearly this leaves open
the possibility that there is a longer heavy path that
emanates from v. W.h.p. over G(n, d/n), it turns out
that this is not the case for every break point.

Given the set of break points in G(n, d/n) we can
proceed with the creation of blocks.

Block Creation: We have two different kinds of
blocks. For this, let C denote the set of all cycles of
length at most 4 lnn

ln5 d
in G(n, d/n).

1. For each cycle C ∈ C we have a block which
contains every vertex v ∈ C as well as all the
vertices that are reachable from v through an
influence path that does not use vertices of C\{v}.

2. The remaining blocks are created as follows: Pick
a vertex v whose block is not specified yet.

• if v is a break-point, then v is a block by itself

• otherwise, the block of v, contains v and all
the vertices that are reachable from v through
an influence path.

Remark 4. Observe that the outer boundary of a multi-
vertex block B contains only break points.

A typical instance of G(n, d/n) contains a plethora
of break points. Taking a path L in G(n, d/n) we
expect that the product of the weights of its vertices
is rather low. Mainly, this is due to the fact that only
a very small fraction of vertices has large weight. E.g.
Chernoff bounds imply that for each u ∈ L it holds that
Pr[∆(u) > (1 + α)d] ≤ exp

(
−α2d/3

)
.

Remark 5. For a path L in G(n, d/n) with |L| vertices,
we show that the probability that its weight is greater
than 1 is at most exp(−d0.8|L|).

The above remark implies that w.h.p. the following
scenario holds: When we construct the blocks that
contain the cycles in C, the paths we add around each
cycle are rather short. Since the distance between any
two cycles in C is large no two cycles in C are going to
end up in the same block. That is, the set of block B
consist of blocks that are trees with at most one extra
edge. In Section 5 we give a high level description of our
arguments which show that the influence paths w.h.p.
cannot be too long.

The fact that w.h.p. B contains blocks that are trees
with at most an extra edge, turns out to be important
when we consider the algorithms that implement the
updates of the chains.

The main result of this section is the following
theorem.
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Theorem 4.1. There is a small fixed s > 0 such that
with probability 1− o(1) over the instances of G(n, d/n)
the following holds: The construction of the set of blocks
B can be made in time O(ns). Each block in B is either
a tree or a unicyclic graph.

The proof of Theorem 4.1 see in full version of this work
in [9].

4.2 Acquiring the initial state For the chain over
the independent sets (hard core model) acquiring an
initial state is trivial. I.e. it suffices to consider the
empty independent set as the initial state of the chain.

For the chain over the colourings we can get an
initial state by using the algorithm suggested in [13].
The authors there provide a greedy, polynomial time
algorithm which k-colours typical instances of G(n, d/n)
for any k ≥ (1 + c)d/ ln d and any fixed c > 0. Clearly
here we consider much larger number of colours.

4.3 Update Algorithm For the update algorithm
we need to bear in mind that Theorem 4.1 implies
that, w.h.p. the set B contains only blocks that are
trees with at most one extra edge. For such simple
structured blocks one may find many different ways of
implementing the transitions of the chain efficiently. In
what follows we describe such an approach.

For bothMc andMhc, the update of the configura-
tion of a block B ∈ B is done by assigning appropriately
spins to the vertices in some predefined order. That is,
having fixed the spin of the vertices up to some vertex
u, we assign spin to the next vertex v by working as
follows: We compute the distribution of the spin on the
vertex v given the configuration on the previous ver-
tices in the ordering and the boundary conditions of B.
Once we have this distribution, we can assign spin to
the vertex v appropriately. The critical issue is how do
we compute this distribution. Depending on the model
we follow a different approach.

For the chain over the k-colouring of G(n, d/n) it
suffices to count the number of k-colouring of B which
assign v colour c, for every c ∈ [k]. So as to achieve
that we use the Dynamic Programming algorithm for
counting colourings suggested in [4] (See the algorithm
in Section 3.3 of [4]). For fixed k this algorithm is
polynomial in n.

For the chain over the, two spin, independent sets
it suffices to compute pvocc the probability of the vertex
v to be “occupied” (to be in the independent set). We
can use the algorithm by D. Weitz in [29] to compute
this probability. It is straightforward to show that this
algorithm computes exactly pvocc for the kind of blocks

we consider here in polynomial time 8.

5 Short Influence Paths

In this section we present a high level description of the
arguments we use for proving that the influence paths
we consider in the construction of B is not too long
w.h.p. This would imply that the blocks in B are trees
with at most one extra edge.

We call elementary every path L in G(n, d/n) such
that there is no cycle shorter than 10 lnn/d2/5 which
contains two vertices of L.

Consider G(n, d/n) and let the parameters of the
weighting schema be fixed numbers γ, c > 0, α ∈
(0, 3/2). Let the set U contain all the elementary paths
in G(n, d/n) of length lnn

ln5 d
that do not have any break-

point. Then, we show that it holds that

Pr[U 6= ∅] ≤ n−
1
3

γ
1+γ ln d.(5.8)

As w.h.p. the distance between any two cycles in C is
much larger than lnn

ln2 d
, the above condition is sufficient

to provide the desired kind of blocks in B.
We show (5.8) by using the first moment method.

Let L = v1, . . . , v|L| be an elementary path in G(n, d/n)

of length T = lnn
ln5 d

. Also, let %L be the probability that
L does not have a break point. It holds that

Pr[U 6= ∅] ≤ E[|U|] ≤
(

n

T + 1

)
·
(
d

n

)T
· %L ≤ n1.1 · %L.

It suffices to bound appropriately %L.
So as to figure out whether the path L has a break

point or not we should examine not only the weights of
the subpaths of L but the weights of paths that intersect
L, as well. That is, for a vertex v ∈ L we should examine
all the paths of length at most lnn/d2/5 that emanate
from it. For technical reasons we make the following
distinction of the vertices on L.

Definition 3. A vertex vi ∈ L is called left-break or
right-break for L if it has the corresponding property
below:

left-break: There is no path L′ ∈ P(vi) such that∏
vs∈L′W (vs) > 1 and L′ ∩ L contains

vj for j ≤ i,
right-break: There is no path L′ ∈ P(vi) such that∏

vs∈L′W (vs) > 1 and L′ ∩ L contains
vj for j ≥ i.

(W (·) is the weight defined in Section 3.1. For the
definition of the set P(vi) see in Definition 1.)

8Actually Weitz’s algorithm is efficient for computing

marginals even when someone considers even larger neighbour-
hoods of G(n, d/n) than what we consider here, e.g. see [23].
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Remark 6. All the paths coming from the “right side”
of a right-break should be “light”. We don’t know what
happens with its paths coming from the left-side (since
L is elementary). An analogous statement holds for the
left-breaks. It is clear that vi ∈ L is break point if and
only if it is both a left-break and a right-break for L.

Let Yl and Yr be the number of left breaks and the
number of right breaks for L, respectively. Let the event

S = “either Yl or Yr is smaller than 0.9|L|”.

It holds that %L ≤ Pr[S]. To see this, observe that if S
does not hold then the number of vertices which are at
the same time right-break points and left-break points
is at least 0.8|L|. That is, the number of break point is
at least 0.8|L|.

It is not hard to see that the random variables Yl
and Yr are symmetric, i.e. identically distributed. Using
this symmetry and a simple union bound we get that
Pr[S] ≤ 2Pr[Yl < 0.9|L|]. The focus now is only on Yl.
It suffices to show that

Pr[Yl < 0.9|L|] ≤ 4n−
1
2

γ
1+γ ln d.(5.9)

To derive the probability bound above we have to build
on the weighting schema of Section 3.1. Somehow we
need to accommodate the weight of paths that intersect
L. For this reason we introduce a new weighting schema
which is slightly different than the one we have in
Section 3.1.

For each vi ∈ L let Ni denote the set of the vertices
outside L which are adjacent to vi, i.e. |Ni| = ∆(vi)−2.
For every w ∈ Ni let Eout(w) denote the maximum
influence on vertex w, only from paths of length at most
lnn/d2/5 that do not use vertices in L. For every vi let

Q(vi) = max
w∈Ni

{Eout(w)} .

Now, we associate each vi ∈ L with the following
quantity

U(vi) =

{
max{1,Q(vi)}

1+γ if ∆(vi) ≤ (1 + α)d

max {1, Q(vi)}∆(vi)d
c otherwise,

where α, γ, c are specified in (3.3).
By definition, every vi ∈ L such that U(vi) > 1

cannot be a left break for L. Let H be the set of vertices
in L with large weight, i.e. H = {vj ∈ L|U(vj) > 1}.
Towards distinguishing the left breaks we consider the
following: for each vj ∈ H let Rj = vj , vj+1, . . . , vs be
the maximal subpath of L such that for any j′ ∈ [j, s] it

holds
∏j′

r=j U(vr) > 1. Somehow, Rjs contain vertices

which are on some heavy path9. Furthermore, we show

9“Heavy” is w.r.t. the weighting schema of Section 3.1.

that any vertex vj′ /∈ H which also does not belong to
a set Rj , for any j, is a left break. That is the vertices
that do not belong to

⋃
j Rj are left breaks.

Letting R = ∪jRj , the above implies that Yl ≥
|L| − |R|. It suffices to get an appropriate tail bound
for |R|, i.e. we need to bound Pr [|R| ≥ 0.1|L|]. For
computing this tail bound we make heavy use of moment
generating function of |R|. There we need to prove the
following, very interesting tail bound on the weight of
an elementary path P , i.e.

∏
u∈P U(u)

Let P be an elementary path in G(n, d/n) with
a number of vertices |P | ≤ lnn

ln2 d
. Let AC(P ) =∏

u∈P U(u). For any δ > 0 it holds that

Pr[AC(P ) ≥ δ] ≤ 2 exp
[
−d7/10 (|P |+ ln δ)

]
.

6 Proof of Theorem 3.1

Ergodicity. For Theorem 3.1 first we need to address
the problem of ergodicity forMc. From [4] we have that
the Glauber dynamics (and hence the block dynamics
we have here) is ergodic with probability 1 − o(1) over
the instances G(n, d/n) when k ≥ d+ 2.

Remark 7. The proof for ergodicity in [4] goes as
follows: They show that if a graph G has no t-core10,
then for any k ≥ t + 2 the Glauber dynamics over k-
colourings is ergodic. Then the authors use the result
in [26], i.e. w.h.p. G(n, d/n) has no t-core for t ≥ d.

So as to prove rapid mixing, we require that the
underlying graph G(n, d/n) has the following three
properties: (A) It can be coloured with d colours or less.
(B) Take 0 < γ ≤ α ≤ 10−2 and c = 10. Each block
B ∈ B(α, γ, c) is either a tree or a unicyclic graph. (C)
For the same α, γ, c and for each B ∈ B the following
holds: between every vertex u at the outer boundary
of B and every high degree11 vertex u′ ∈ B there is no
path L such that

∏
u′′∈LW (u′′) > 1.

Lemma 6.1. With probability 1 − o(1) the graph
G(n, d/n) satisfies all the conditions (A), (B) and (C).

For a proof of Lemma 6.1 see in the full version of this
work in [9].

Let GAd denote the family of graphs such that they
have no t-core for t ≥ d and they satisfy conditions
(A), (B) and (C). We show that the chain Mc has a
rapid mixing for any k ≥ 11

2 d, as long as the underlying
graph G(n, d/n) ∈ GAd . We show rapid mixing by using

10A graph without a t-core can have its vertices or-

dered v1, . . . vn such that vi has fewer than t neighbours in
{v1, . . . , vi−1}.

11degree greater than (1 + α)d
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path coupling. In particular, Theorem 3.1 follows as a
corollary of Lemma 6.1 and the following result.

Theorem 6.1. Let Mc be such that the underlying
graph G(n, d/n) ∈ GAd and k ≥ 11

2 d. Consider X and Y ,
two states of Mc such that H(X,Y ) = 1. Let PX , PY
be the one step transition probabilities of Mc given that
it starts from X, Y , respectively. There is a coupling
νX,Y of PX and PY such that for (X ′, Y ′) distributed
as in νX,Y it holds that

EνX,Y [H(X ′, Y ′)] ≤ 1− 0.1225/n,(6.10)

where EνX,Y [·] denotes the expectation w.r.t. the distri-
bution νX,Y .

The proof of Theorem 6.1 appears in Section 6.1.

6.1 Proof of Theorem 6.1 Consider the chain Mc

with underlying graph G(n, d/n) ∈ GAd and k ≥ 11
2 d.

Let X,Y be two states of Mc at hamming distance
1 from each other, i.e. H(X,Y ) = 1. Furthermore,
assume for the vertex w that we have X(w) 6= Y (w).
We are going to show that there is a coupling νX,Y of
PX and PY that has the property stated in (6.10). For
this, we construct a pair (X ′, Y ′) distributed as in νX,Y
by considering the two copies of Mc at states X,Y ,
respectively, and by coupling the next step of these two
chains. The coupling is such that both chains choose to
update the configuration of the same block.

There are cases where we update the colouring of
a single vertex block, i.e. a break-point. There we use
the notion of maximal coupling transition, as defined
in [22]. That is, assume that the single vertex block
is the vertex u12. The update of the colouring of u is
such that the probability of having X ′(u) 6= Y ′(u) is
minimized. To do this we work as follows: Let LX , LY
be the set of colours not appearing in the neighbourhood
of u under the colouring X and Y , respectively. Since
we assume k > (1 +α)d, both sets are not empty. Take
two mappings fX : [0, 1] → LX and fY : [0, 1] → LY
such that

• for each c ∈ LX , |f−1(c)| = 1
|LX | and similarly for

Y ,

• {x : fX(x) 6= fY (x)} is as small as possible in
measure.

Then, take a uniformly random real U ∈ [0, 1] and
choose colour fX(U) for X ′(u) and fY (U) for Y ′(u).

Consider now the coupling of the transitions of two
chains at state X,Y so as to construction of (X ′, Y ′).

12This vertex should have small degree, i.e. at most (1 + α)d.

Let B be the block whose colouring is chosen to be
updated in the coupling. Let N = |B|, i.e. B is
chosen with probability 1/N . We need to consider three
cases for the relative position of the block B and the
disagreeing vertex w.

Case 1: The disagreeing vertex w is internal in a block
B′, i.e. it is not adjacent to any vertex outside B′.
With probability 1/N in the coupling we have B = B′.
Then, we can coupe X ′ and Y ′ such that H(X ′, Y ′) = 0,
as the boundary conditions of B in both chains are
identical. Also, with the remaining probability we have
H(X ′, Y ′) = 1. It follows that

EνX,Y [H(X ′, Y ′)] = 1− 1/N.

Case 2: The disagreeing vertex w belongs to some
block B′ but it is adjacent to some vertices outside B′.
Also, assume that B′ contains more than one vertices.
It is easy to check that ∆(w) ≤ (1 + α)d (otherwise
condition (C) would be violated). Also, it holds that
all the blocks that are adjacent to w are single vertex
blocks, i.e. they are break-points.

For this case the following holds: If the coupling
does not choose B′ or some single vertex block adjacent
to B′, then we have H(X ′, Y ′) = 1. On the other hand,
with probability 1/N the coupling chooses to update the
blockB′. Then, as in Case 1, we get thatH(X ′, Y ′) = 0.
Also, with probability at most (1 + α)d/N = 1.01d/N
the block B that the coupling chooses to update is a
break-point adjacent to w. Then, the probability that
the break-point gets different colour assignment in X ′

and Y ′ is at most 1
k−(1+α)d = 1

4.49d , as k ≥ 11
2 d. It

follows that

EνX,Y [H(X ′, Y ′)] ≤ 1− 0.75/N.

The update of the colouring of u, a neighbour of w,
yields a disagreement with probability at most 1

k−(1+α)d

for the following reason: We use maximal coupling. For
both LX , LY , the two lists of available colours for u. It
holds that |LX |, |LY | ≥ k−(1+α)d. Either |LX | = |LY |
and each list contains exactly one colour that does
appear in the other, or only one of LX , LY contains
one extra colour that the other does not have. In any
case, maximal coupling implies that the probability of
picking a different random element from the lists LX
and LY cannot be bigger than 1

4.49d .

Case 3: The vertex w is itself a block, i.e. w is a
break-point. If we don’t have B = {w} or B adjacent
to w, then we have H(X ′, Y ′) = 1. Otherwise, with
probability 1/N the coupling chooses to update w, i.e.
B = {w}. Then we get H(X ′, Y ′) = 0. Also, with
probability at most (1 + α)d/N = 1.01d/N , B is one
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of the blocks that are adjacent to w. W.l.o.g. assume
that B consist of more than one vertex13. We need to
bound the expected number of disagreements RB that
are generated inside B when its colouring is updated.
To this end we use the following proposition.

Proposition 6.1. For Case 3, there is a coupling such
that E[RB ] ≤ 0.8688

d .

Using Proposition 6.1 and the fact that α = 10−2 and
N ≤ n, we get that

EνX,Y [H(X ′, Y ′)] ≤ 1− 1

N
+

(1 + α)d

N
E[RB ]

≤ 1− 0.1225

n
.

The theorem follows.

6.2 Proof of Proposition 6.1 For the proof of the
proposition we use an approach similar to one used
in [4] (the proof of Theorem 1 (a)). That is, we
use the well-known “disagreement percolation” coupling
construction in [2]. We wish to couple X ′(B) and
Y ′(B) as close as possible. However, identical coupling
is precluded due to the disagreement at the boundary
of B. The disagreement percolation assembles the
coupling in a stepwise fashion, i.e. couples the colouring
of each vertex of B at a time. It gives priority to
vertices which are next to a disageeing vertex, if any.
Disagreements propagates into B along paths from w.
A disagreement at vertex u′ ∈ B at distance r from
w propagates to a neighbour u at distance r + 1 if
X ′(u) 6= Y ′(u).

Lemma 6.2. There is a coupling such that the following
is true: In the coupling above, it holds that Pr[X ′(u) 6=
Y ′(u)] ≤ ρu, where

ρu =

{ 2
k−(1+α)d if ∆(u) ≤ (1 + α)d

1 otherwise.

A proof of Lemma 6.2 appears in [4]. However, in
Section 6.3 we provide a different proof of this lemma.

The disagreement percolation is dominated by an
independent process, i.e. the disagreement propagates
over the path L that start from w with probability at
most

∏
u∈L\{w} %u.

Consider a configuration of the vertices in B such
that each vertex u ∈ B is either “disagreeing” or
“agreeing”. Let the product measure P which specifies
that the vertex u is disagreeing with probability ρu. In

13It will be conceivable from the analysis that this is the worst
case assumption.

this context we call a “path of disagreement” every self
avoiding path 14 that has all of its vertices disagreeing.

From the construction of the blocks it is direct that
the disagreeing vertex w has only one neighbour in B.
Let v0 be the only vertex in B which is adjacent to
w. Consider a “agreeing-disagreeing” configuration of
the vertices in B acquired according to the probability
measure P. In this configuration, let Zi be the number
of paths of disagreements of length i that start from the
vertex v0. It holds that

E[RB ] ≤
∑
i≥0

EP [Zi],

where EP [·] denotes the expectation taken w.r.t. the
measure P.

Instead of bounding EP [Zi] w.r.t B, it is equivalent
to study the same quantity on the tree T , the tree of self-
avoiding walks defined as follows: T is rooted at vertex
v0. At level i, T contains all the vertices in B which are
reachable from v0 through a self-avoiding path inside B
of length exactly i. At this point we use the following
lemma.

Lemma 6.3. Consider a tree H = (V,E) containing
vertices of different degrees. Let li denote the set of
vertices at the level i in H. For a vertex v ∈ H let Lv
denote the simple path connecting it to the root r. For
Lv we define the following weight:

Cp,s(Lv) =
∏
u∈Lv

(
I{∆(u)≤s} · p+ I{∆(u)>s}

)
,

where p ∈ [0, 1] and s > 0 is an integer. Assume that for
any vertex v such that ∆(v) > s the following condition
holds:∏

u∈Lv

(
I{∆(u)≤s}

(1+ζ) + δ10∆(u)I{∆(u)>s}

)
(1 + ζ)

≤ 1,(6.11)

for some ζ > 0. Assume that δ, s are sufficiently
large, also δ, s � (1 + ζ) while both (s · p), (δ · p) ∈[

1
100(1+ζ) ,

1
1+ζ

]
. Then (6.11) implies that∑

v∈li

Cp,s(Lv) ≤ p · (1− θ)i ∀i ≥ 0,(6.12)

for any θ ≤ min{1− ps(1 + ζ), 1− (ps)9/10}.

For the proof of Lemma 6.3 see in the full version of this
work in [9]. The basic idea of the proof was presented
at the final part of Section 3.1.

14A path L is called self-avoiding if there are no two uj , uj′ ∈ L
such that uj = uj′ .
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At this point, observe the following: Let Pv be
a path in T from the root v0 to some vertex v.
The probability that Pv is a path of disagreement is
upper bounded by the quantity Cp,s(Pv) where p =

2
11
2 d−(1+α)d

= 1
2.245d , s = (1 + α)d = 1.01d. Thus, it

holds that
EP [Zi] ≤

∑
v∈li(T )

Cp,s(Pv),

where li(T ) is the set of vertices at level i in T . If we
set δ = d and ζ = γ, each Pv in T satisfies the condition
in (6.11) as the disagreeing vertex w is a break-point
and the root of T is adjacent to w. Also, it holds that
sp, δp ∈ [ 1

100(1+γ) ,
1

1+γ ]. Thus, Lemma 6.3 implies that

EP [Zi] ≤ p(1− θ)i. So as to bound EP [Zi] we take the
maximum possible value for θ, subject to the parameters
δ, s, p, ζ. It is direct that θ ≤ 0.5127, that is

EP [Zi] ≤
0.44543

d
(0.4873)

i
.

From the above we get that E[RB ] ≤ 0.44543
d · 1

0.5127 =
0.8688
d , as promised.

6.3 Proof of Lemma 6.2 For the moment assume
that the block B is a tree. The case where B is a tree
with an extra edge will follow directly. Assume, also,
that the vertex u is the first vertex that is going to be
coloured in the coupling. Let

SX =
{
σ ∈ [k]B | Pr[X ′(B) = σ|X ′(V \B)] > 0,

σu /∈ {X ′(w), Y ′(w)}} .

That is, SX contains the colourings of B which can
be assigned to B in the first chain and at the same
time they do not use for u a colour that appears in the
disagreement. We define SY in the same manner w.r.t.
the second chain. It is trivial to verify that SY and SX
are identical. This implies that we can have a coupling
such that

Pr[X ′(u) = Y ′(u)|X ′(u), Y ′(u) /∈ {X ′(w), Y ′(w)}] = 1.

That is,

Pr[X ′(u) 6= Y ′(u)] = Pr[X ′(u), Y ′(u) ∈ {X ′(w), Y ′(w)}]
≤ max {Pr[X ′(u) = Y ′(w)], P r[Y ′(u) = X ′(w)]} .

The last inequality follows from the maximal coupling
of X ′(u), Y ′(u). It is not hard to see that the maximum,
above, is upper bounded by 1

k−∆(u) . If k ≥ ∆(u), then

the maximum is upper bounded by 1.
If u is not the first vertex to be coloured in the

coupling, the situation is essentially the same. I.e. there
is a set of vertices C which is already coloured. C is a

connected subtree of B. Then vertex u is the root at
of an uncolored subtree of B, e.g. Tu. The interesting
case is when u is connected to a vertex in C which is
disagreeing. Then it is direct to see that the previous
arguments apply directly to this case and we get the
same bounds for Pr[X ′(u) 6= Y ′(u)].

For the case where the block B is a unicyclic graph
we work similarly. The only difference, now, is that
there are two paths from which the disagreement can
reach the vertex u, as opposed to one path in the case
of trees. This implies that in the worst case, X ′(u)
(or Y ′(u) ) should avoid two colours so as there is no
disagreement. I.e. for appropriate c1, c2, c3, c4 ∈ [k], it
holds that

Pr[X ′(u) 6= Y ′(u)] ≤
≤ max {Pr[X ′(u) ∈ {c1, c2}], P r[Y ′(u) ∈ c3, c4]} .

If ∆(u) < k−1, then the r.h.s. of the inequality above is
upper bounded by 2

k−∆(u) . Otherwise, i.e. ∆(u) ≥ k−1,

we get the trivial bound 1. The lemma follows.
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