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Abstract
We show that each constant rank operatorA admits an exact potential B in frequency space.
We use this fact to show that the notion ofA-quasiconvexity can be tested against compactly
supported vector fields.We also show thatA-freeYoungmeasures are generated by sequences
Bu j , modulo shifts by the barycentre.

Mathematics Subject Classification 49J45 · 35G05

1 Introduction

Achallenging question in the study of non-linear partial differential differential equations is to
find which non-linear functionals are well-behaved with respect to weak convergence, which
represents the typical topology consistent with physical measurements and has satisfactory
compactness properties. In the context of the Calculus of Variations, answering this question
amounts, roughly speaking, to describing semi-continuity properties of functionals

E [w] =
ˆ

Ω

f (w(x)) dx (1)

with respect to weak convergence in certain weakly closed, convex subsets C, say, of
Lp-spaces, 1 < p < ∞), under growth conditions

0 � f � c(| · |p + 1) (2)

on the integrands f . Such subsetsC can account for differential constraints and boundary con-
ditions. Modulo terms removed for simplicity of exposition, such functionals could model,
for instance, the energy arising from the deformation of a solid body Ω , viewed as a suffi-
ciently regular open subset of R

n , where f is a continuous energy density map characterized
by the constitutive properties of the material. In accordance with the Direct Method in the
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Calculus of Variations, imposing a suitable bound from below on f ensures existence and
weak compactness of minimizing sequences w j . The appropriate continuity property of E
in this case is that of lower semi-continuity with respect to weak convergence in Lp

w j⇀w �⇒ lim inf
j→∞ E [w j ] ≥ E [w],

which, if satisfied, implies existence of a minimizer w ∈ C.
It is well-known that if C consists of the whole of Lp , then E is weakly sequentially

lower semi-continuous if and only if f satisfying (2) is convex. Of course, convexity of f is
sufficient for lower semi-continuity (always understood as weakly sequential throughout this
note) in any reasonable class C, but it is hardly necessary in general. For instance, if C is the
space of weak gradients in L2 and f is a quadratic form, then one can easily show that f being
positive on rank-one matrices implies lower semi-continuity. This example, that we will later
come back to in more generality, is of particular relevance, as it provides the insight for a
second convexity condition, which is necessary for lower semi-continuity with the constraint
w = ∇u: if E is lower semi-continuous, then f is convex along rank-one lines. In particular,
for integrands f of class C2, this is equivalent to the so-called Legendre–Hadamard ellipticity
condition

∂2F(X)

∂Xi j∂Xαβ

aiaαb jbβ ≥ 0 for all X , a, b,

where summation over repeated indices is adopted. From this point of view, lower semi-
continuity of E acting on gradients reflects a semi-convexity condition on f . Indeed, it was
shown byMorrey in [22] that lower semi-continuity of E is equivalent with quasiconvexity
of f , i.e., the Jensen-type inequality

f (η) �
 
Q

f (η + ∇u(x)) dx

holds for all η and all smooth maps u with compact support in the open cube Q. On one
hand, the quasiconvexity assumption is a plausible constitutive relation for energy functionals
arising in solid mechanics [5]; on the other hand, it is but a minor improvement of the lower
semi-continuity concept, which makes it particularly difficult to check in applications. The
counterexample of Šverák [32] rules out the possibility of quasiconvexity being a type of
directional convexity (see also [7, Ex. 3.5] for the case of higher order gradients). A tractable
sufficient condition for quasiconvexity is polyconvexity, i.e., f is a convex functions of the
minors, also introduced by Morrey in [22] in connection with lower semi-continuity and
used by Ball to obtain existence theorems under very mild growth conditions, giving very
satisfactory existence results in non-linear elasticity [4]. The fact that quasiconvexity does
not imply polyconvexity is much easier to see, at least in higher dimensions, and follows
from an old observation of Terpstra concerning quadratic forms [37] (see also [2,6] and
the references therein).

The above considerations show that a considerable amount of work was devoted to the
treatment of lower semi-continuity in the case when C consists of gradients (see [1,19] and
the monographs [14,27]). However, for instance in continuum mechanics, it is often the case
that C consists of those Lp-fields w that satisfy a linear, typically under-determined, partial
differential constraint, sayAw = 0, assumption that we make henceforth. Examples arise in
elasticity, plasticity, elasto-plasticity, electromagnetism, and others. The A-free framework
originates in the pioneering work of Murat and Tartar in compensated compactness
[23,33,34] and can be correlated with the question of finding energy functionals that are
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continuouswith respect toweak convergence inC [24]. The latter questionwas also studied in
generality byBall,Currie, andOlver in [7], leading to the generalization of polyconvexity
to the case where energy functionals depend on higher order derivatives. In this case, the
definition of quasiconvexity extends mutatis mutandis [20]. As to the question of lower
semi-continuity, the analysis of the case when f is a quadratic form (see, e.g., [36, Ch. 17] or
[35, Thm. 2]) reveals a different necessary condition of directional convexity, namely with
respect to the so-calledwave cone ofA. It was shown byDacorogna in [12, Thm. I.2.3] that,
in order to have lower semi-continuity, it is sufficient to assume the following generalization
of quasiconvexity, namely that

f (η) �
 
Q

f (η + w(x)) dx

for all η and all bounded w such that
´
Q w = 0 and Aw = 0. However, it is not clear

whether this condition is necessary. More recently, Fonseca and Müller showed in [16]
that if one assumes in addition that the fields w are periodic, in which case f is called A-
quasiconvex, then one indeed obtains a necessary and sufficient condition1 (under suitable
growth assumptions on f ). Their result holds under the assumption that the symbol map
A(·) of A is a constant rank matrix-valued field away from 0. This condition, introduced in
[30, Def. 1.5] to prove coerciveness inequalities for non-elliptic systems, was first used in
the context of compensated compactness by Murat and ensures, as noted on [23, p.502],
the continuity of the map

0 	= ξ 
→ ProjkerA(ξ), (3)

making tools from pseudo-differential calculus available. In the absence of the constant rank
assumption, little is known about the lower semi-continuity problem.One of the few results in
this direction was proved byMüller in [25], answering a long standing question of Tartar
(see also [18] for a generalization).

In the proof of the main result of [16], considerable difficulty is encountered when proving
sufficiency ofA-quasiconvexity. One reason for this is the absence of potential functions for
A, which, if available, should allow one to test with compactly supported functions in the
definition of A-quasiconvexity and, perhaps, use more standard methods.

The main result of the present work is to show that the existence of such a potential in
Fourier space is equivalent with the constant rank condition.

Theorem 1 Let A be a linear, homogeneous differential operator with constant coefficients
on R

n. ThenA has constant rank if and only if there exists a linear, homogeneous differential
operator B with constant coefficients on R

n such that

kerA(ξ) = imB(ξ) (4)

for all ξ ∈ R
n \ {0}.

Here A(·), B(·) denote the (tensor-valued) symbol maps of, respectively, A, B. We say that
A has constant rank if the map 0 	= ξ 
→ rank A(ξ) is constant (see Sect. 2 for detailed
notation).Wewill regardB as thepotential andA as theannihilator, although this terminology
is not standard.

1 For comparison, see also Seregin’s work [31] in incompressible linearized elasticity, where the methods
used to project on solenoidal fields do not require Fourier analysis.
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It is important to mention that the algebraic relation (4) does not, in general, imply for
vector fields w that

Aw = 0 �⇒ w = Bu for some u. (5)

To see this, simply takeA = ∇k . In turn, if we impose restrictions on w that allow for usage
of the Fourier transform, (5) can be shown to hold (Lemma 2). As a consequence, standard
arguments in the Calculus of Variations lead to the fact that a map f isA-quasiconvex if and
only if

f (η) �
 
Q

f (η + Bu(x)) dx

for all η and all smooth vector fields u supported in an open cube Q (Corollary 1). It is also the
case that, under the constant rank condition, the notions of A-quasiconvexity [16, Def. 3.1]
andDacorogna’sA-B-quasconvexity [12, Eq. (A.12)] coincide. In particular, one can define
A-quasiconvexity via integration over arbitrary domains (Lemma 3). As a consequence, the
lower semi-continuity properties of functionals (1) in the (asymptoticallyA-free) topologies
considered in [3,16], which are natural from the point of view of compensated compactness
theory, rely only on the structure of the potential B.

In fact, we will show that the A-quasiconvex relaxation of a continuous integrand can be
described in terms of B only. From this point of view, it is natural to investigate the Young
measures generated by sequences satisfying differential constraints [16, Sec. 4], as they
efficiently describe theminimization of energies that are not lower semi-continuous.We recall
that the role of parametrized measures for non-convex problems in the Calculus of Variations
was first recognized byYoung in the pioneering works [39–41]. See themonographs [26,27]
for a modern, detailed exposition.

Roughly speaking, for 1 < p < ∞, we consider a sequence w j converging weakly in
Lp which is asymptotically A-free and generates a Young measure ν. Technically speaking,
it suffices to take Aw j to be strongly compact in W−k,p

loc , where k is the order of A. This
is (slightly more general than) the topology considered in [16, Rk. 4.2(i)] and is consistent
with the topology considered in compensated compactness (see, e.g., [36, Thm. 17.3], which
essentially deals with the case of linear Euler–Lagrange equations). In this setting, we will
show that the Young measure ν is generated by a sequence of smooth maps Bu j , modulo a
shift by the barycentre (Proposition 1).

To sum up, under the constant rank condition on the annihilatorA, the objects characteriz-
ing the lower semi-continuous relaxation of functionals defined on A-free vector fields (i.e.,
A-quasiconvex envelopes andA-free Young measures) can be described only in terms of the
potential B constructed in Theorem 1. From this point of view, it is the author’s opinion that
the study of functionals

E [w] =
ˆ

Ω

f (x, w(x)) dx for Aw = 0 and F [u] =
ˆ

Ω

f (x, Bu(x)) dx

is essentially dual (strictly under the constant rank condition). See also [13] and the Appendix
of [12].

Since testingwith the appropriate quantity is fundamental in the study of partial differential
equations, we hope that the observations made in this work will increase the flexibility of
analyzing functionals in either class described above. On the other hand, the functional F
seems better suited for incorporating boundary conditions, which will be pursued elsewhere.

This paper is organized as follows: In Sect. 2 we prove the main Theorem 1, in Sect. 3
we prove that A-quasiconvexity can be tested with compactly supported fields w = Bu
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(Corollary 1), and in Sect. 4 we prove that A-free Young measures are shifts of Young
measures generated by sequences Bu j .

2 Proof of Theorem 1

We take a moment to clarify notation. By a k-homogeneous, linear differential operator A
on R

n from W to X we mean

Aw:=
∑

|α|=k

∂αAαw for w : R
n → W , (6)

whereAα ∈ Lin(W , X) for all multi-indices α such that |α| = k, for finite dimensional inner
product spaces W , X . We also define the (Fourier) symbol map

A(ξ):=
∑

|α|=k

ξαAα ∈ Lin(W , X) for ξ ∈ R
n .

We also recall the condition mentioned above that A is of constant rank if there exists a
natural number r such that

rankA(ξ) = r for all ξ ∈ R
n \ {0}.

As to the resolution of Theorem 1, we recall the notion of (Moore–Penrose) generalized
inverse, introduced independently in [8,21,28], to which we refer plainly as the pseudo-
inverse, although the terminology is not standard. For amatrixM ∈ R

N×m , its pseudo-inverse
M† is the unique m × N matrix defined by the relations

MM†M = M, M†MM† = M†, (MM†)∗ = MM†, (M†M)∗ = M†M,

where M∗ denotes the adjoint (transpose) of M . Equivalently, the pseudo-inverse is deter-
mined by the geometric property that MM† and M†M are orthogonal projections onto im M
and (ker M)⊥ respectively. We refer the reader to the monograph [10] for more detail on
generalized inverses.

With these considerations in mind, it is easy to see that the projection map P ∈ C∞(Rn \
{0},Lin(W ,W )) defined in (3) can be represented as

P(ξ) = IdW −A†(ξ)A(ξ) for ξ ∈ R
n \ {0}. (7)

The smoothness of P is well-known [16, Prop. 2.7]; for a proof using pseudo-inverses see
[29, Sec. 4]. By the basic properties of pseudo-inverses, it is easy to see that, with the choice
B = P, we have that (4) holds; however, the tensor-valued map P is 0-homogeneous, hence
not polynomial in general. In particular, P cannot define a differential operator.

On the other hand, motivated by a similar construction in [38, Rk. 4.1], one can speculate
that P and, in fact, A†(·) are rational functions. This is indeed the case, as a consequence
of the main result of Decell in [15], building on the fundamental result of Penrose [28,
Thm. 2] and the Cayley–Hamilton Theorem.

Theorem 2 (Decell [15, Thm. 3]) Let M ∈ R
N×m and denote by

p(λ):=(−1)N
(
a0λ

N + a1λ
N−1 + · · · + aN

)
for λ ∈ R

the characteristic polynomial of MM∗, where a0 = 1. Define

r :=max{ j ∈ N : a j > 0}. (8)

123



105 Page 6 of 16 B. Rait,ă

Then, if r = 0, we have that M† = 0; else

M† = −a−1
r M∗ [

a0(MM∗)r−1 + a1(MM∗)r−2 + · · · + ar−1 IdN×N
]
.

Proof (Proof of Theorem 1, sufficiency) Suppose thatA has constant rank.We put M :=A(ξ)

in the above Theorem for ξ ∈ R
n \{0}, and abbreviateH(ξ):=A(ξ)A∗(ξ). The first, perhaps

most crucial, observation is that r(ξ), as defined by (8), equals the number of non-zero eigen-
values of MM∗, which equals the number of singular values of M . This is, in turn, equal to
rank M , which is independent of ξ by the constant rank assumption on A.

Therefore, if r(ξ) = r = 0, we have that A(ξ) = 0N×m , A†(ξ) = 0m×N , so we can
simply choose B(ξ) = IdW , which satisfies (4) and gives rise to a linear, 0-homogeneous
differential operator. Otherwise, if r(ξ) = r > 0, we obtain

A†(ξ) = −ar (ξ)−1A∗(ξ)
[
a0(ξ)H(ξ)r−1 + a1(ξ)H(ξ)r−2 + · · · + ar−1(ξ) IdX

]
.

It is easy to see thatH(·) is a tensor-valued polynomial in ξ . The scalar fields a j , j = 1 . . . r ,
are such that a j (ξ) is a coefficient of the characteristic polynomial of H(ξ), hence a linear
combination of minors. In particular, a j are scalar-valued polynomials in ξ .

It then follows that, with P as in (3),

B(ξ):=ar (ξ)P(ξ) = ar (ξ) IdW −ar (ξ)A†(ξ)A(ξ) for ξ ∈ R
n (9)

defines a tensor-valued polynomial that satisfies (4). In particular, (9) gives rise to a linear
differential operator. To check that it is homogeneous, it suffices to see that ar (·) is a linear
combination of minors of the same order of H(·), which is homogeneous since A(·) is. �

The necessity of the constant rank condition in Theorem 1 follows from the following Lemma
and the Rank–Nullity Theorem.

Lemma 1 Let S ⊂ R
n be a set of positive Lebesgue measure and P, Q be two matrix-valued

polynomials on R
n. Suppose that there exists s such that

rank P(ξ) + rank Q(ξ) = s for ξ ∈ S.

Then both P and Q have constant rank in S.

Proof We abbreviate RP := rank P , RQ := rank Q and assume for contradiction that RP is
not constant in S. Say RP (S) = {r1, r1 + 1 . . . , r2} for natural numbers r1 < r2. We also
write Md for the map that has input a matrix and returns (a vector of) all its minors of order
d . In particular, Md P , Md Q are vector-valued polynomials on R

n . We then have that

R−1
P ({r1, r1 + 1 . . . r2 − 1}) ⊂ {ξ ∈ R

n : Mr2 P(ξ) = 0},

so that eitherMr2 P ≡ 0 (which is not the case bydefinition of r2) or R
−1
P ({r1, r1+1 . . . r2−1})

is Lebesgue-null.2 On the other hand,

2 For an elementary, very short proof of this fact, see [11].
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R−1
P ({r2}) ∩ S = R−1

Q ({s − r2}) ∩ S

⊂ R−1
Q ({s − r2, s − r2 + 1, . . . s − r1 − 1})

⊂ {ξ ∈ R
n : Ms−r1Q(ξ) = 0},

which is Lebesgue-null by the same argument. Since

S = [R−1
P ({r1, r1 + 1, . . . r2 − 1}) ∩ S] ∪ [R−1

P ({r2}) ∩ S],
it follows that S is Lebesgue-null and we arrive at a contradiction. �

It is natural to ask the reversed question, whether a constant rank operator B admits an
exact annihilatorA. This is indeed the case, as can be shown by a simple modification of the
argument above:

Remark 1 Let B be a linear, homogeneous, differential operator of constant rank on R
n from

V to W . Then, we can choose M :=B(ξ) for ξ ∈ R
n \ {0} in Theorem 2, so that

A(ξ):=ar (ξ)
[
IdW −B(ξ)B†(ξ)

]
for ξ ∈ R

n

satisfies (4) and gives rise to a differential operator. In particular, the formula is consistent
with [38, Eq. (4.3)]. This fact can be used to extend the L1-estimates in [9,38] from elliptic
to constant rank operators.

We conclude the discussion of algebraic properties with two remarks: Firstly, it is quite
convenient that the two constructions presented are explicitly computable. On the other hand,
performing the computations on simple examples, e.g., involving only div, grad, curl, one
easily notices that the operators constructed via our formulas are often over complicated.
Perhaps more computationally efficient methods, e.g., in the spirit of [38, Sec. 4.2] can be
developed.

3 A-quasiconvexity

The relevance of Theorem 1 for analysis can be seen, for instance, from the fact that periodic
A-free fields have differential structure:

Lemma 2 Let A, B be linear, homogeneous, differential operators of constant rank with
constant coefficients on R

n from W to X, and from V to W, respectively. Assume that (4)
holds. Then for all w ∈ C∞(Tn,W ) such that Aw = 0 and

´
Tn

w(x) dx = 0, there exists
u ∈ C∞(Tn, V ) such that w = Bu. Similarly, for all w ∈ S (Rn,W ) such that Aw = 0,
there exists u ∈ S (Rn, V ) such that w = Bu.

Here Tn denotes the n-dimensional torus, identified in an obvious way with (a quotient of)
[0, 1]n . The Fourier transform is defined as

û(ξ):=
ˆ

Tn

u(x) e−2π i x ·ξ dx, (10)

for ξ ∈ Z
n and u ∈ C∞(Tn). In addition, S (Rn) denotes the Schwartz class of rapidly

decreasing functions on R
n , where the Fourier transform is defined also by (10), with the

amendment that the integral is taken over R
n .
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Proof Let w ∈ C∞(Tn,W ) have zero average and satisfy Aw = 0, so that

w(x) =
∑

ξ∈Z
n\{0}

ŵ(ξ) e2π i x ·ξ ,

for x ∈ Tn , where the coefficients ŵ(ξ) ∈ kerA(ξ) decay faster than any polynomial as
|ξ | → ∞. We define

u(x):=
∑

ξ∈Z
n\{0}

B
†(ξ)ŵ(ξ) e2π i x ·ξ ,

for x ∈ Tn , which is smooth by homogeneity of B
†(·): say B has order l, then B

†(·) is
(−l)-homogeneous. We can thus differentiate the sum term by term to obtain

Bu(x) = (2π i)l
∑

ξ∈Z
n\{0}

B(ξ)B†(ξ)ŵ(ξ) e2π i x ·ξ

= (2π i)l
∑

ξ∈Z
n\{0}

ŵ(ξ) e2π i x ·ξ

= (2π i)lw(x),

where the exactness relation (4) is used in the second equality, along with the geometric
properties of the pseudo-inverse. The proof of the first case is complete.

We give an analogous argument for the case when w ∈ S (Rn,W ) isA-free. We have the
pointwise relation A(ξ)ŵ(ξ) = 0, so that (4) implies that w ∈ imB(ξ) and we can define

û(ξ):=B
†(ξ)ŵ(ξ),

which satisfies the required properties. �
We conclude this Section by showing that one can test with compactly supported smooth
maps in the definition of A-quasiconvexity.

Corollary 1 Let A, B be as in Lemma 2 and f : W → R be Borel measurable and locally
bounded. Then

QA f (η):= inf

{ ˆ
Tn

f (η + w(x)) dx : w ∈ C∞(Tn,W ),Aw = 0,
ˆ

Tn

w(x) dx = 0

}
,

QB f (η):= inf

{ ˆ
[0,1]n

f (η + Bu(x)) dx : u ∈ C∞
c ((0, 1)n, V )

}

are equal for all η ∈ W. Moreover, if B has order l and α ∈ [0, 1), we have

QA f (η) = inf

{ ˆ
[0,1]n

f (η + Bu(x)) dx : u ∈ C∞
c ((0, 1)n, V ), ‖u‖Cl−1,α < ε

}
(11)

for any η ∈ W and ε > 0.

The proof follows standard arguments; in particular we follow [14, Prop. 5.13] and [17,
Thm. 4.2] and include the proof for completeness of the present work.

Proof It is obvious that QA f � QB f . To prove the opposite inequality, let ε > 0,η ∈ W , and
w be a periodic field as in the definition of QA f (η). We will construct v ∈ C∞

c ((0, 1)n, V )

such that ˆ
[0,1]n

f (η + Bv(x)) dx �
ˆ

[0,1]n
f (η + w(x)) + ε. (12)
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By Lemma 2, we have that w = Bu for a periodic field u ∈ C∞(Tn, V ). Say, as before, that
B has order l and define uN (x):=N−l u(Nx) for N sufficiently large. This does not change
the value of the integral over the cube. Next, let δ > 0 be sufficiently small and truncate to
obtain uδ

N :=ρδuN , where ρδ ∈ C∞
c ([0, 1]n) is such that ρδ(x) = 1 if dist(x, ∂[0, 1]n) > δ

and |∇ jρδ| � Cδ− j for j = 0 . . . l and some constant C > 0. We impose δN ≥ 1 and leave
δ to be determined. It follows, for c1 ≥ 1 depending on B only, that

|Buδ
N | � |ρδ

BuN | + c1

l∑

j=1

|∇ jρδ||∇l− j uN |

� c1C

⎛

⎝‖Bu‖L∞ +
l∑

j=1

(δN )− j‖∇l− j u‖L∞

⎞

⎠

� c1C

⎛

⎝‖Bu‖L∞ +
l−1∑

j=0

‖∇ j u‖L∞

⎞

⎠=:c1C‖u‖WB,∞ .

Say f is bounded by M > 0 on B(0, |η| + c1C‖u‖WB,∞). Hence, if we choose δ such that
L n ({x ∈ [0, 1]n : dist(x, ∂[0, 1]n) � δ}) � M−1ε, we obtain

ˆ
[0,1]n

f (η + Buδ
N (x)) dx �

ˆ
dist(x,∂[0,1]n)<δ

M dx +
ˆ

[0,1]n
f (η + BuN (x)) dx

� M × M−1ε +
ˆ

[0,1]n
f (η + w(x)) dx,

which implies (12) with v:=uδ
N . To prove the equality of the two envelopes, we distinguish

two cases: If QA f (η) > −∞, we can choose w such that

ˆ
[0,1]n

f (η + w(x)) dx � QA f (η) + ε,

and we conclude that QA f (η) = QB f (η) by (12) since ε > 0 is arbitrary. If QA f (η) =
−∞, we choose w such that

ˆ
[0,1]n

f (η + w(x)) dx � −ε−1,

so that we can conclude by (12) that QB f (η) = −∞.
To prove (11), we need only show that the infimum is smaller than the envelope. Firstly,

note as above that by replacing u with uN (x) = N−l u(Nx), where u is extended by period-
icity to R

n , the value of the integral does not change. It suffices to choose N large enough so
that uN has small Cl−1,α-norm. Note that for j = 0 . . . l − 1 we have

‖∇ j uN‖∞ = N j−l‖∇ j u‖∞,

which can clearly be made arbitrarily small.
Finally, to check the Hölder bound, say that {zi + [0, N−1]n}Nn

i=1 is a covering of [0, 1]n
by cubes of side-length N−1 that can only touch at their boundaries and let x, y ∈ [0, 1]n . If
x, y lie in the same cube zi + [0, N−1]n , we have that
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|∇l−1uN (x) − ∇l−1uN (y)| = N−1|∇l−1u(Nx − zi ) − ∇l−1u(Ny − zi )|
� ‖∇lu‖∞|x − y|
� (

√
nN−1)1−α‖∇lu‖∞|x − y|α,

which can be made small since 1 − α > 0. If x, y lie in different cubes, which we label
Qx , Qy . Let x̄ ∈ ∂Qx ∩ (x, y), ȳ ∈ ∂Qy ∩ (x, y), so that |x − y| ≥ |x − x̄ | + |y − ȳ|,
|x − x̄ |, |y − ȳ| � √

nN−1, and all derivatives of uN vanish near x̄, ȳ. Using these facts and
the previous step we get

|∇l−1uN (x) − ∇l−1uN (y)| � |∇l−1uN (x) − ∇l−1uN (x̄)|
+ |∇l−1uN (y) − ∇l−1uN (ȳ)|

� (
√
nN−1)1−α‖∇lu‖∞

(|x − x̄ |α + |y − ȳ|α)

� (
√
nN−1)1−α‖∇lu‖∞2−α|x − y|α,

where the last inequality follows by concavity and monotonicity of 0 � t 
→ tα . The proof
is complete. �

Remark 2 Using the argument in Corollary 1, one can show for constant rank operators A
thatA-quasiconvexity, as defined by Fonseca andMüller in [16, Def. 3.1], coincides with
A-B-quasiconvexity, as introduced by Dacorogna in [12,13] (to be precise, in the original
definition of A-B-quasiconvexity, the operator B is assumed to be of first order, but this is
only a minor technical restriction). In this case, it is not difficult to prove that [13, Thm. 4]
is essentially unconditional. A proof of this fact will be given elsewhere.

We also have that A-quasiconvexity can be defined by integrals over arbitrary domains,
instead of cubes.

Lemma 3 LetA, B be as in Lemma 2 and f : W → R be Borel measurable, locally bounded,
and A-quasiconvex, and Ω be a bounded open set. Then

f (η) �
 

Ω

f (η + Bv(y)) dy

for all η ∈ W and v ∈ C∞
c (Ω, V ).

The proof follows from a simple argument in the Calculus of Variations [14, Prop. 5.11].

Proof Fix η ∈ W , v ∈ C∞
c (Ω, V ), extended by zero to R

n . By the argument in the proof of
Corollary 1, we write C :=(0, 1)n and have that

f (η) �
ˆ
C

f (η + Bu(x)) dx

for all u ∈ C∞
c (C, V ). For sufficiently small ε > 0, we can find x0 ∈ R

n such that x0+εΩ ⊂
C . We define

u(x):=εlv

(
x − x0

ε

)
,
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so that

f (η) �
ˆ
C

f (η + Bu(x)) dx = |C \ (x0 + εΩ)| f (η) +
ˆ
x0+εΩ

f (η + Bu(x)) dx

= (1 − εn |Ω|) f (η) +
ˆ

Ω

f (η + Bv(y))εn dy.

Rearranging the terms we obtain the conclusion. �

4 A-free Youngmeasures

We recall the definition of oscillation Young measures, while also giving a simplified variant
of the Fundamental Theorem of Young measures.

Theorem 3 (FTYM, [26,27]) Let Ω ⊂ R
n be a bounded, open set and z j ∈ L1(Ω, R

d) be
a bounded sequence in L1. Then there exists a subsequence (not relabeled) and a weakly-*
measurable map ν : Ω → P(Rd) (or parametrized measure ν = (νx )x∈Ω ) such that for all
f ∈ C(Ω × R

d) we have that

lim inf
j→∞

ˆ
Ω

f (x, z j (x)) dx ≥
ˆ

Ω

〈 f (x, · ), νx 〉 dx

Moreover,

lim
j→∞

ˆ
Ω

f (x, z j (x)) dx =
ˆ

Ω

〈 f (x, · ), νx 〉 dx

if and only if the sequence f ( ·, z j ) is uniformly integrable.
Above,P(Rd) denotes the space of probabilitymeasures onR

d . In the notation of Theorem 3,

we say that z j generates the Young measure ν (in symbols, z j
Y→ ν). We also recall that a

sequence z j is said to be uniformly integrable if and only if for all ε > 0, there exists δ > 0
such that for all Borel sets E ⊂ Ω , we have that

L n(E) < δ �⇒ sup
j

ˆ
E

|z j | dx < ε,

or, equivalently, if

lim
α→∞ sup

j

ˆ
{|z j |>α}

|z j | dx = 0.

If |z j |p is uniformly integrable, we say that z j is p-uniformly integrable.

Lemma 4 [16, Prop. 2.4] Let z j generate a Young measure ν and z̃ j → z̃ in measure. Then
z j + z̃ j generates the Young measure μ given by μx = νx�δz̃(x) for L n a.e. x, i.e.,

〈ϕ,μx 〉 = 〈ϕ( · + z̃(x), νx 〉
for any ϕ ∈ C0.

The following is an extension of [16, Lem. 2.15]. The first two steps of the present proof are
almost a repetition of their arguments, which we include since the original proof only covers
first order annihilators A.
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Proposition 1 Let A, B be as in Lemma 2 and have orders k, l, respectively, Ω ⊂ R
n be a

bounded Lipschitz domain, and 1 < p < ∞. Let w j , w ∈ Lp(Ω,W ) be such that

w j⇀w in Lp(Ω,W ),

Aw j → Aw in W−k,p
loc (Ω, X),

w j
Y→ ν.

Then there exists a sequence u j ∈ C∞
c (Ω, V ) such that

Bu j⇀0 in Lp(Ω,W ),

Bu j + w
Y→ ν.

Moreover, u j can be chosen such that (Bu j ) j is p-uniformly integrable.

AYoung measure ν satisfying the assumptions of Proposition 1 is said to be anA-free Young
measure.

Proof By Lemma 4 and linearity we can assume that w = 0. We will identify maps defined
on Ω with their extensions by zero to full-space without mention. Uniform integrability
considerations strictly refer to sequences defined on Ω .

Step I. We construct p-uniformly integrable w̃ j ∈ C∞
c (Ω,W ) such that w̃ j⇀0 in

Lp(Ω,W ), Aw̃ j → 0 in W−k,q(Rn, X) for some 1 < q < p, and w̃ j generates ν.
Recall the truncation operators, defined for α > 0 by

ταA:=
{
A if |A| � α

αA/|A| if |A| > α,

which are clearly Carathéodory integrands. By Theorem 3, we have that

lim
α→∞ lim

j→∞

ˆ
Ω

|ταw j |p dx = lim
α→∞

ˆ
Ω

ˆ
W

|ταA|p dνx (A) dx

=
ˆ

Ω

ˆ
W

|A|p dνx (A) dx < ∞,

so that we can choose a diagonal subsequence α j ↑ ∞ such that
´
Ω

|τα j w j |p dx equals the
pth moment of ν. It also follows from Theorem 3 that (τα j w j ) j is p-uniformly integrable.

We now show that τα j w j generates ν. Since w j converges weakly in Lp(Ω,W ), it con-
verges weakly in L1, hence is uniformly integrable, so that τα j w j − w j → 0 in measure. It
also follows by elementary manipulations that τα j w j − w j⇀0 in Lp , so that, indeed, τα j w j

generates ν by Lemma 4.
Let 1 < q < p. We have that

‖τα j w j − w j‖Lq (Ω,W ) �
ˆ

{|w j |>α j }
2q |w j |q dx � 2qαq−p

j

ˆ
{|w j |>α j }

|w j |p dx → 0,

so that Aτα j w j → 0 in W−k,q
loc (Ω, X). We also record that τα j w j is precompact in

W−1,q(Ω,W ), so that Dβτα j w j → 0 in W−k,q(Ω, X) for |β| < k.
We can therefore choose a sequence of cut-off functions ρ j ∈ C∞

c (Ω, [0, 1]) such that
ρ j ↑ 1 in Ω and ‖ρ jAτα j w j‖W−k,q (Rn ,X) → 0 and

A(ρ jτα j w j ) = ρ jAτα j w j +
k∑

m=1

Bm[Dmρ j , D
k−mτα j w j ] → 0 in W−k,q(Rn, X),
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where Bm are fixed bi-linear pairings given by the Leibniz rule. To see that this is possible,
consider Ω j :={x ∈ Ω : dist(x, ∂Ω) < j}, where s j ↓ 0 will be determined. We require that
ρ j = 1 in Ω \ Ωs j , ρ j = 0 in Ω2s j and |Dmρ j | � cs−m

j , m = 1, . . . , k. It is easy to see that

the sum above is controlled in W−k,q by

k∑

m=1

‖Dmρ j‖L∞‖Dk−mτα j w j‖W−k,q � c
k∑

m=1

s−m
j ‖Dk−mτα j w j‖W−k,q ,

so that it suffices to choose any s j ≥ maxm=1,...,k ‖Dk−mτα j w j‖1/(2m)

W−k,q ↓ 0 as j → ∞. Alter-
natively, one can consider a different cut-off sequence ρi ↑ 1 and employ a diagonalization
argument.

We define

w̃ j :=(ρ jτα j w j )�ηε( j),

where ηε( j) denotes a standard sequence of (radial, positive) mollifiers and ε( j) ↓ 0 is such
that w̃ j ∈ C∞

c (Ω,W ) and, therefore, Aw̃ j → 0 in W−k,q(Rn, X). The latter inequality
follows since, for all ϕ ∈ C∞

c (Rn,W ) with ‖ϕ‖Wk,q � 1,

〈Aw̃ j , ϕ〉 = 〈A(ρ jτα j w j ), ϕ�ηε( j)〉 � ‖A(ρ jτα j w j )‖W−k,q ‖ϕ�ηε( j)‖Wk,q

� ‖A(ρ jτα j w j )‖W−k,q → 0.

It is also clear that ‖w̃ j − τα j w j‖Lp → 0, so that w̃ j is p-uniformly integrable, converges
weakly to 0 in Lp , and generates ν.

Step II. We project w̃ j on the kernel of A in R
n and show that Pw̃ j are p-uniformly

integrable in Ω , converge weakly to zero in Lp , and generate ν. Here the L2-orthogonal
projection operator P is given by the multiplier in (7),

P̂w(ξ):=P(ξ)ŵ(ξ) = [IdW −A†(ξ)A(ξ)]ŵ(ξ) for w ∈ S (Rn,W ).

Since the symbol P(·) is homogeneous of degree zero, P is a singular integral operator of
convolution type; in particular P maps Schwartz functions to Schwartz functions. Moreover,
we have that

F
(
w̃ j − Pw̃ j

)
(ξ) = B

†(ξ)B(ξ)F w̃ j (ξ) = A†
(

ξ

|ξ |
) Âw̃ j (ξ)

|ξ |k ,

so that, by boundedness of singular integrals on Lq

‖w̃ j − Pw̃ j‖Lq (Rn ,W ) � c

∥∥∥∥∥F
−1

(
Âw̃ j

| · |k
)∥∥∥∥∥

Lq (Rn ,X)

= c‖Aw̃ j‖W−k,q (Rn ,X) → 0.

It immediately follows by Lemma 4 that Pw̃ j generates ν. To see that Pw̃ j⇀0 in Lp(Ω,W ),
we note that, since P is (pointwisely) self-adjoint, we have, for any g ∈ Lp/(p−1)(Ω,W ),ˆ

Ω

〈g, Pw̃ j 〉 dx =
ˆ

Ω

〈Pg, w̃ j 〉 dx → 0,

since Pg ∈ Lp/(p−1)(Ω,W ) by boundedness of singular integrals.
To see that Pw̃ j is p-uniformly integrable, we use the idea in [16, Lem. 2.14.(iv)]. We

first note, by boundedness of P on Lp , that

sup
j

‖Pw̃ j − Pταw̃ j‖Lp(Rn ,W ) � c sup
j

‖w̃ j − ταw̃ j‖Lp(Rn ,W ) → 0 as α → ∞
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by p-uniform integrability of w̃ j . Note that for each fixed α, Pταw̃ j is bounded in Lr for any
p < r < ∞, hence is p-uniformly integrable. Let ε > 0. We choose α > 0 such that

sup
j

‖Pw̃ j − Pταw̃ j‖Lp(Rn ,W ) < ε

and also choose δ > 0 such that for each Borel set E ⊂ Ω with L n(Ω) < δ, we have that´
E |Pταw̃ j |p dx < ε for all j . It follows that for all such E ,

ˆ
E

|Pw̃ j |p dx � 2p−1

(
sup
j

ˆ
E

|Pw̃ j − Pταw̃ j |p dx + sup
j

ˆ
E

|Pταw̃ j |p dx
)

< (2ε)p,

where the right hand side is independent of j . The second step is concluded.

Step III. Using Lemma 2, we can write Pw̃ j = Bu j , where û j (ξ):=B
†(ξ)P̂w̃ j (ξ), so that

u j ∈ S (Rn, V ). It remains to cut-off u j suitably.
Since B has order l, we first note that

D̂lu(ξ) = B
†(ξ)B̂u(ξ) ⊗ ξ⊗l ,

so that Bu 
→ Dlu is a singular integral operator of convolution type. It follows that Dlu j is
bounded in Lp(Rn) (recall here that Bu j = Pw̃ j is bounded in Lp as w̃ j ∈ C∞

c (Ω,W ) is a
weakly convergent sequence), so u j is bounded in Wl,p(Ω, V ).

By compactness of the embedding Wl,p(Ω) ↪→ Wl−1,p(Ω), we have u j → u
in Wl−1,p(Ω, V ). Since Bu j⇀0, we have that Bu = 0. On the other hand, u =
F−1[B†(·)]�(Bu) = 0, so that Dl−mu j → 0 in Lp(Ω) for m = 1, . . . , l.

We now proceed similarly to Step I. Let ρ ∈ C∞
c (Rn) be such that ρ j = 1 in Ω \Ωs j and

|Dmρ j | � cs−m
j , m = 1, . . . , l, where

s j := max
m=1,...,l

‖Dl−mu j‖1/(2m)

Lp(Ω)
→ 0.

We can then estimate

‖Bu j − B(ρ j u j )‖Lp(Ω) � ‖(1 − ρ j )Bu j‖Lp(Ω) +
l∑

m=1

‖Bm[Dmρ j , D
l−mu j ]‖Lp(Ω)

� ‖Bu j‖Lp(Ωs j )
+ c

l∑

m=1

s−m
j ‖Dl−mu j‖Lp(Ω),

which tends to zero by p-uniform integrability of Bu j and the choice of s j . Here Bm is
another collection of bi-linear pairings given by the product rule. It remains to conclude that
B(ρ j u j ) converges weakly to zero in Lp(Ω,W ), is p-uniformly integrable, and generates
ν. The proof is complete. �
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