
The Library
Measuring sample quality with diffusions
Tools
Gorham, Jackson, Duncan, Andrew B., Vollmer, Sebastian and Mackey, Lester (2019) Measuring sample quality with diffusions. Annals of Applied Probability, 29 (5). pp. 2884-2928. doi:10.1214/19-AAP1467 ISSN 1050-5164.
|
PDF
WRAP-measuring-sample-quality-diffusions-Duncan-2019.pdf - Published Version - Requires a PDF viewer. Download (1549Kb) | Preview |
Official URL: https://doi.org/10.1214/19-AAP1467
Abstract
Stein’s method for measuring convergence to a continuous target distribution relies on an operator characterizing the target and Stein factor bounds on the solutions of an associated differential equation. While such operators and bounds are readily available for a diversity of univariate targets, few multivariate targets have been analyzed. We introduce a new class of characterizing operators based on Itô diffusions and develop explicit multivariate Stein factor bounds for any target with a fast-coupling Itô diffusions. As example applications, we develop computable and convergence-determining diffusion Stein discrepancies for log-concave, heavy-tailed, and multimodal targets and use these quality measures to select the hyper parameters of biased Markov chain Monte Carlo (MCMC) samplers, compare random and deterministic quadrature rules, and quantify bias-variance trade-offs in approximate MCMC. Our results establish a near-linear relation-ship between diffusion Stein discrepancies and Wasserstein distances, improving upon past work even for strongly log-concave targets. The exposed relationship between Stein factors and Markov process coupling may be of independent interest
Item Type: | Journal Article | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subjects: | Q Science > QA Mathematics | |||||||||||||||||||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Mathematics | |||||||||||||||||||||
Library of Congress Subject Headings (LCSH): | Distribution (Probability theory), Markov processes, Monte Carlo method | |||||||||||||||||||||
Journal or Publication Title: | Annals of Applied Probability | |||||||||||||||||||||
Publisher: | Institute of Mathematical Statistics | |||||||||||||||||||||
ISSN: | 1050-5164 | |||||||||||||||||||||
Official Date: | 18 October 2019 | |||||||||||||||||||||
Dates: |
|
|||||||||||||||||||||
Volume: | 29 | |||||||||||||||||||||
Number: | 5 | |||||||||||||||||||||
Page Range: | pp. 2884-2928 | |||||||||||||||||||||
DOI: | 10.1214/19-AAP1467 | |||||||||||||||||||||
Status: | Peer Reviewed | |||||||||||||||||||||
Publication Status: | Published | |||||||||||||||||||||
Access rights to Published version: | Open Access (Creative Commons) | |||||||||||||||||||||
Date of first compliant deposit: | 8 April 2019 | |||||||||||||||||||||
Date of first compliant Open Access: | 11 April 2019 | |||||||||||||||||||||
RIOXX Funder/Project Grant: |
|
|||||||||||||||||||||
Related URLs: | ||||||||||||||||||||||
Open Access Version: |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year