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Abstract
Locally decodable codes (LDCs) and locally correctable codes (LCCs) are error-correcting codes
in which individual bits of the message and codeword, respectively, can be recovered by querying
only few bits from a noisy codeword. These codes have found numerous applications both in
theory and in practice.

A natural relaxation of LDCs, introduced by Ben-Sasson et al. (SICOMP, 2006), allows the
decoder to reject (i.e., refuse to answer) in case it detects that the codeword is corrupt. They call
such a decoder a relaxed decoder and construct a constant-query relaxed LDC with almost-linear
blocklength, which is sub-exponentially better than what is known for (full-fledged) LDCs in the
constant-query regime.

We consider an analogous relaxation for local correction. Thus, a relaxed local corrector
reads only few bits from a (possibly) corrupt codeword and either recovers the desired bit of the
codeword, or rejects in case it detects a corruption.

We give two constructions of relaxed LCCs in two regimes, where the first optimizes the query
complexity and the second optimizes the rate:
1. Constant Query Complexity: A relaxed LCC with polynomial blocklength whose corrector

only reads a constant number of bits of the codeword. This is a sub-exponential improvement
over the best constant query (full-fledged) LCCs that are known.

2. Constant Rate: A relaxed LCC with constant rate (i.e., linear blocklength) with quasi-
polylogarithmic query complexity (i.e., (logn)O(log log n)). This is a nearly sub-exponential
improvement over the query complexity of a recent (full-fledged) constant-rate LCC of Kop-
party et al. (STOC, 2016).
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27:2 Relaxed Locally Correctable Codes

1 Introduction

Dating back to the seminal works of Shannon [24] and Hamming [17], error correcting codes
are used to reliably transmit data over noisy channels and store data. Roughly speaking,
error correcting codes are injective functions that take a message and output a codeword, in
which the message is encoded with extra redundancy, with the property that even if some of
the symbols in the codeword are corrupted, the message is still recoverable.

Locally decodable codes (LDCs) and locally correctable codes (LCCs) are error correcting
codes that admit highly efficient procedures for recovering small amounts of data. More
specifically, in an LDC, a single symbol of the message can be recovered by only reading a few
bits from a noisy codeword. An LCC has the same property but with respect to recovering
bits of the codeword itself (rather than the message).

Locally decodable codes and locally correctable codes have had a profound impact various
areas of theoretical computer science including cryptography, PCPs, hardness of approxima-
tion, interactive proofs, private information retrieval, program checking, and databases (see
[26] and the more recent [20] for a survey on local decodable and correctable codes). While
these codes have found numerous uses in theory and practice, one significant downside is
that current constructions require adding a large amount of redundancy. Specifically, to
decode or correct with a constant number of queries, the current state of the art LDCs have
super polynomial blocklength [25, 10] (by blocklength we refer to the length of the codeword
as a function of the message length) and the current best LCC, which has sub-exponential
blocklength.1

Motivated by this, Ben-Sasson et al. [5] defined a natural relaxation of locally decoding,
for which they could achieve a dramatically better blocklength. Roughly speaking, their
relaxation allows the decoder to abort in case of failure, while still requiring the decoder to
successfully decode non-corrupted codewords (in particular, this prevents the decoder from
always aborting). Moreover, in the constant query regime, such codes can be transformed to
codes, with similar parameters, that are guaranteed to successfully decode on the majority
of message bits.

Thus, a relaxed local decoder for a code C gets oracle access to a string w that is relatively
close to some codeword c = C(x) and an index i ∈ [|x|]. The decoder should make only few
queries to w and satisfy the following:
1. If the string w = c (i.e., w is an uncorrupted codeword), the relaxed decoder must always

output xi.
2. Otherwise, with high probability, the decoder should either output xi or a special “abort”

symbol ⊥ (indicating the decoder detected an error and is unable to decode).2

The additional freedom introduced by allowing the decoder to abort turns out to be
extremely useful. Using the notion of PCPs of proximity (PCPP), which they also introduce3
and construct, Ben-Sasson et al. obtain relaxed locally decodable codes (RLDCs) with constant
query complexity and almost-linear blocklength.

In this work we extend the relaxation of Ben-Sasson et al. to LCCs and define the
analogous notion of relaxed LCCs as follows: We say that a code C : Σk → Σn is a relaxed

1 These are Reed-Muller codes over a constant-size alphabet and with constant degree (but large
dimension).

2 The actual definition in [5] also requires that for a constant fraction of the coordinates, the decoder
decodes correctly (i.e., does not output ⊥) with high probability. However, they later show that this
additional condition follows from Conditions (1) and (2) above. See further discussion in the full version.

3 The equivalent notion of assignment tester was introduced independently by Dinur and Reingold [9].
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LCC with query complexity q, if there exists a corrector that has oracle access to a string
w ∈ Σn, which is close to some codeword c ∈ C, and also gets as explicit input an index
i ∈ [n]. The algorithm makes at most q queries to the string w, and satisfies the following:
1. If w = c (i.e., w was not corrupted), then the corrector always outputs ci.
2. Otherwise, with high probability, the corrector either outputs ci, or a special “abort”

symbol ⊥.

The remarkable savings achieved by Ben-Sasson et al. begs the question: can relaxed
locally correctable codes achieve similar savings in blocklength over current constructions of
locally correctable codes? We answer this question in the affirmative by constructing relaxed
LCCs with significantly better parameters than that of the state-of-the-art (full-fledged)
LCCs.

2 Our Results

In this work, we construct relaxed locally correctable codes in two different parameter regimes:
the first, which we view as our main technical contribution, focuses on the constant query
complexity regime, whereas the second, which is easier to prove given previous work, focuses
on constant rate.

Constant Query RLCC

Our first result is a relaxed LCC which requires only O(1) queries and has a polynomial
blocklength.

I Theorem 1 (Constant Query Relaxed LCC, Informally Stated). There exists a relaxed
LCC C : {0, 1}k → {0, 1}n with constant relative distance, constant query complexity, and
blocklength n = poly(k). Furthermore, C is a linear code.

Theorem 1 yields a sub-exponential improvement compared to the best known (full-
fledged) LCCs with constant query complexity, which have sub-exponential blocklength. This
result heavily relies on a certain type of PCPs of proximity (PCPPs) that we construct. We
elaborate on our PCPP constructions in Section 2.1 below.

We remark that the specific blocklength in Theorem 1 is roughly quartic (i.e., fourth
power) in the message length. Constructing a constant-query RLCC with a shorter blocklength
(let alone an (almost) linear one, as known for relaxed LDCs) is an interesting open problem.

Constant Rate RLCC

Our second main result is a construction of a relaxed LCC with constant rate4 and almost
polylogarithmic query complexity.

I Theorem 2 (Constant Rate Relaxed LCC, Informally Stated). There exists a relaxed LCC
C : {0, 1}k → {0, 1}n with constant relative distance, query complexity (logn)O(log log n),
and constant rate (i.e., blocklength n = O(k)). Furthermore, C is a linear code and has
distance-rate tradeoff approaching the Zyablov bound [27].

4 Recall that the rate of a code C : Σk → Σn is defined as k/n. We use the terms “constant rate” and
“linear blocklength” interchangeably.
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This is a nearly sub-exponential improvement in query complexity over the best constant
rate (full-fledged) LCCs, due to Kopparty et al. [19], which requires 2Õ(

√
log n) queries for

correction. As a matter of fact, our construction is essentially identical to one of the
constructions of [19].5 Our main insight in proving Theorem 2 is that their code allows for
relaxed local correction with much better parameters.6 As a secondary contribution, we also
provide a modular presentation for the distance amplification step, which is the main step in
[19] (and is originally due to Alon, Edmonds and Luby [1]).

I Remark. As mentioned in Footnote 2, the original definition of RLDC [5] includes a third
condition, which requires that the decoder must successfully decode a constant fraction of
the coordinates. More precisely, for every w ∈ Σn that is close to some codeword c = C(x),
there exists a set Iw ⊆ [k] of size Ω(k) such that for every i ∈ Iw with high probability the
decoder D outputs xi (rather than outputting ⊥).

Ben-Sasson et al. showed that every RLDC with constant query complexity that satisfies
the first two conditions, can be transformed into an RLDC with similar parameters that
satisfies the third condition as well. We remark that this transformation also applies to
RLCCs with constant query complexity. However, for super-constant query complexity (as in
Theorem 2) the same transformation only guarantees successful decoding of a constant fraction
of coordinates, if the codeword is corrupted on a sub-constant fraction of its coordinates (i.e.,
the fraction roughly corresponds to the reciprocal of the query complexity).

I Remark. Both our constant-query and constant-rate RLCCs are systematic7. Hence they
are automatically also relaxed locally decodable codes (i.e., RLDCs). In particular, the code
from Theorem 2 is also the first construction of a relaxed locally decodable code in the
constant-rate regime, with query complexity (logn)O(log log n).

2.1 PCP Constructions
PCPs of proximity (PCPP), first studied by Ben-Sasson et al. [5] and by Dinur and Reingold [9]
were originally introduced to facilitate PCP composition. Beyond their usefulness in PCP
constructions, of PCPPs have proved to be extremely useful in coding theory as well. Indeed,
PCPPs lie at the heart of several constructions of LTCs [14], relaxed LDCs [5, 13], universal
LTCs [11, 12], as well as in our construction of relaxed LCCs (specifically in Theorem 1).

Loosely speaking, a PCPP is a proof system that allows for probabilistic verification of
approximate decision problems by querying only a small number of locations in both the
statement and the proof. (In contrast, a standard PCP verifier reads the entire statement,
and probabilistically verifies an exact decision problem, by querying only a small number of
locations in the proof.) Similarly to the scenario in property testing, the soundness guarantee
provided by PCPPs is that the PCPP verifier is only required to reject statements that are
“far” (in Hamming distance) from being correct.

In this work, we provide new constructions of PCPPs that play a crucial role in our
constant-query relaxed LCC construction. The PCPPs that we construct are for verifying
membership in affine subspaces (rather than general languages in P or NP), since this is all
that we need for our RLCC constructions. More specifically, we shall construct PCPPs that

5 Interestingly, our construction is inspired by the [19] construction of a locally testable code, rather than
their locally correctable code.

6 We were informed that a similar observation about the [19] code has been made recently and independ-
ently in an unpublished work of Hemenway, Ron-Zewi, and Wootters [18].

7 Recall that a code is systematic if the first part of every codeword is the original message.
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are: linear, robust, self-correctable, and admit strong canonical soundness. We discuss these
properties in more detail next (see full version for precise definitions). We remark that our
PCPP construction is inspired by the construction of linear-inner proof-systems (LIPS) by
Goldreich and Sudan [14].

Linearity

We call a PCPP proof-system linear if it satisfies two conditions. First, the prescribed proof
π for any statement x must be a linear function of the statement. Second, to decide whether
to accept, the PCPP verifier only checks that the values that it reads from the input and
PCPP proof lie in an affine subspace. Put differently, the verifier’s decision predicate is
computable by a linear circuit. We remark that in the literature [6, 22], the term “linear
PCPP” sometimes refers only to the latter of the two requirements but here we also insist
that the proof be a linear function of the statement.

We use linearity both to assure that our resulting codes are linear codes, as well as
to facilitate composition with other PCPPs. We note that standard PCPs are typically
inherently non-linear (since they are designed for general languages in P or in NP). However,
in our context we are only trying to verify membership in affine spaces and so it is reasonable
to expect to have linear PCPPs.

Robustness

The notion of robust PCPPs, introduced by Ben Sasson et al. [5], refers to PCPP systems
whose verifier, roughly speaking, is not only required to reject statements that are far from
valid but also that the local view of the verifier (i.e., the answers to the queries made by
verifier) is far from any local view that would have caused the verifier to accept. Robustness
plays a key role in enabling PCP composition. While this condition holds trivially for verifiers
with constant query complexity, in our construction we will also consider verifiers with
super-constant query complexity, for which achieving robustness is non-trivial.

Self-Correctability

In a self-correctable PCPP system, the proof oracle admits a local correction procedure
that allows for local recovery of individual bits of a moderately corrupted PCPP proof.
The self-correctability of the PCPP oracles allows us to include them as part of an RLCC’s
codeword.

Strong Canonical Soundness

The notion of PCPPs with strong canonical soundness, introduced by Goldreich and Su-
dan [14], requires that correct inputs (i.e., that reside in the target language) have a canonical
proof and the PCPP verifier is required to reject “wrong” (i.e., non-canonical) proofs, even
for correct statements. In more detail, these PCPPs satisfy two additional requirements: (1)
canonicity: for every true statement there exists a unique canonical proof that the verifier
is required to always accept, and (2) strong canonical soundness: the verifier is required to
reject any pair (x, π) of statement and proof with probability that is roughly proportional to
its distance from a true statement and its corresponding canonical proof.

We are now ready to state our results on PCPs of proximity with the aforementioned
properties. The first construction has exponential length and constant query complexity,
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whereas the second construction, whose proof is significantly more involved, has polynomial
length and poly-logarithmic query complexity.

Our first result is a variant of the Hadamard PCPP, with exponential length but constant
query complexity.

I Theorem 3 (Informally stated, see full version). There exists a linear, self-correctable,
strong canonical PCPP for membership in affine subspaces, with query complexity O(1) and
exponential length (in the size of the statement).

Our second result is a variant of the [4] PCP, which has poly-logarithmic query complexity
and polynomial length.

I Theorem 4 (Informally stated, see full version). There exists a linear, self-correctable, Ω(1)-
robust, strong canonical PCPP for membership in affine subspaces, with query complexity
polylog(n) and poly(n) length, for statements of length n.

3 Technical Overview

The techniques used for our two constructions are quite different. We first outline the constant-
query result, which is more complex, in Section 3.1 and then outline the constant-rate result
in Section 3.2.

3.1 Constant-Query Relaxed LCC
The starting point for our construction is the [5] construction of relaxed locally decodable
codes (RLDC), which we review next.8 In their construction, each codeword has two parts:
the first part provides the distance, and the second enables relaxed local decodability. More
specifically, they construct an RLDC C ′ whose codewords consist of the following two equal-
length parts: (1) repetitions of a codeword C(x), where C : {0, 1}k → {0, 1}n is some
systematic code with constant distance and rate, (2) for every message bit in C(x), they add
a PCPP, which is a proof that xi is indeed the ith bit of C(x).9

We remark that the repetitions in the first part of the code are simply meant to ensure
distance (as the PCPP proof strings are not necessarily a code with good distance). To
decode, the relaxed decoder for C ′ invokes the PCPP verifier to check that the i’th bit of the
first part is indeed C(x)i and outputs it, unless the verifier rejects, in which case the relaxed
decoder may return ⊥.

Ben-Sasson et al. show that this code is indeed a relaxed LDC. However, in general, it
will not necessarily be a relaxed LCC. Specifically, it is unclear how to correct bits that are
part of the PCPP proof strings. Simply appending even more PCPPs to deal with the original
ones will not do since we will also need to correct those. Moreover, it is worth pointing out
that even if the PCPP proof strings had some internal self-correction mechanism, this would
still not suffice since each PCPP proof string by itself is very short (as compared to the entire
codeword) and could therefore be entirely corrupted.

Before proceeding to cope with this difficulty, we first suggest a different perspective on
the [5] construction, which is inspired by the highly influential and useful notion of PCP

8 We describe the simpler variant of the [5] construction, which achieves nearly quadratic blocklength.
We remark that [5] also present a more involved construction that achieves nearly linear blocklength.

9 Actually, our presentation differs slightly from that of [5]. Their construction contains an additional
part that consists of repetitions of the original message. However, when using a systematic code C, this
addition is not necessary.
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composition [3]. Specifically, we think of the [5] construction as a composition of the code
C, which is trivially locally decodable with n queries, with a constant-query PCPP. This
composition yields a relaxed LDC with query complexity O(1), at a moderate increase in
blocklength (which comes from appending all of the PCPP proof strings).

We shall adopt the composition perspective, and use it to construct a relaxed locally
correctable code, by introducing a technique for composing a (possibly relaxed) LCC C with a
special type of PCP of proximity (PCPP). The result of the composition is a relaxed LCC C ′

which basically inherits the query complexity of the PCPP (and with a moderate overhead in
blocklength).

Similarly to the relaxed LDCs of [5], the codewords of C ′ are constructed by taking
repetitions of a codeword of a (possibly relaxed) robust RLCC C and concatenating it with
many PCPP proof strings. Specifically, for each set of queries that the relaxed local corrector
for C would like to make, we write down a PCPP proof that this set of queries would be
answered correctly. We shall refer to the first part of C ′, which contains repetitions of C, as
the core of C ′, and refer to the second as the PCPP part.

Observe that the foregoing approach allows us to locally correct bits of the core of C ′.
The relaxed corrector for the composed RLCC takes the queries made by the old corrector as
input, and uses the PCPP verifier to test if the old corrector would have accepted.10 However,
we shall need a more sophisticated machinery to correct the PCPP part of C ′ (indeed this is
exactly the challenge that we faced when trying to follow the [5] approach). This will be
achieved by ensuring that the PCPPs that we use have strong properties.

In particular, we shall employ the foregoing composition strategy while using the PCPPs of
Section 2.1, which admit canonical proofs, strong canonical soundness, and self-correctability.
Recall that a PCPP is said to have strong canonical soundness if every valid input has
a canonical proof that it accepts, and any pair of statement and proof are rejected with
probability proportional to their distance from a true statement and its corresponding
canonical proof. In addition, recall that a canonical PCPP is said to be self-correctable if the
canonical proof strings form a locally correctable code (i.e., if it is possible to locally recover
individual bits of a noisy PCPP oracle).

Suppose that we want to correct a bit that lies in the PCPP part of a purported codeword
of C ′. If this bit is in a PCPP oracle that is not too corrupted, we can simply use the
PCPP’s self-corrector to recover the bit. However, as pointed out before, this naive attempt
to self-correct fails when the entire proof string is corrupted. This can easily happen when
the proof strings, each of which refers to a single possible query set of the original corrector,
are short relative to the size of the entire codeword.

Thus, our main challenge is to detect whether the given PCPP proof string was (possibly
entirely) corrupted. We observe that if on the one hand, the PCPP oracle we wish to correct
is heavily corrupted, while on the other hand, the statement to which the PCPP refers (i.e.,
the queries that the corrector for C makes) is not heavily corrupted, then the proof is far
from the prescribed canonical proof. The strong canonical soundness guarantees that in such
case the PCPP verifier will detect the corruption and reject. Thus, we are left with the case
that both the PCPP oracle and the statement that it refers to are heavily corrupted.

To detect this deviation, we choose a random point in the foregoing statement and read
it directly. Since that point is in the core of the code, and we have already described the

10Even for this to work, we need to ensure that the original RLCC is robust, in the sense that with high
probability the corrector’s view (i.e., the answers to its queries) are far from answers that would make
it output an incorrect value. Otherwise, we have no guarantee that the PCPP verifier will see the error.
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procedure for correcting in the core, we can also correct this point and compare the corrected
value with the symbol that we read directly. Since we have assumed that the statement
was heavily corrupted, the value that we read directly will likely be different than what the
corrector returns, in which case we can reject.

Equipped with this composition theorem, we can now construct our code. By applying the
composition theorem to the low-degree extension code, of suitable parameters, and the PCPP
given in Theorem 3, we can already construct a constant-query RLCC with quasi-polynomial
blocklength. We note that this is already a significant improvement over the current best (full-
fledged) LCCs. However, to obtain polynomial blocklength, we shall perform two compositions
with different PCPPs (in direct analogy to the first proof of the PCP theorem [2]).

As in the quasi-polynomial result mentioned above, our starting point is the low-degree
extension code. Under a suitable parameterization, this code is known to be a robust
(full-fledged) LCC with almost linear blocklength and polylogarithmic query complexity. We
shall first compose it with the polynomial length, polylogarithmic query, strong canonical,
self-correctable and robust PCPP of Theorem 4. Since the foregoing PCPP is robust, this
composition yields a robust RLCC with polynomial blocklength and slightly sub-logarithmic
query complexity. Finally, we compose yet again with the exponential length, constant query,
strong canonical, self-correctable PCPP from Theorem 3, which yields an RLCC with constant
query complexity.

Each of our two composition steps introduces at least a quadratic overhead to the
blocklength. This is because our composition of an RLCC with a PCPP appends a PCPP
proof-string for every pair (i, ρ) of coordinate i to be corrected from the base code and
random string ρ of the underlying corrector with respect to the point i.11 Since we apply
two such composition steps, we get a code with roughly n ≈ k4 blocklength.

3.2 Constant-Rate RLCC
For the constant rate construction, we build on the recent breakthrough construction of
locally testable12 and correctable codes of Kopparty et al. [19]. Interestingly, we will actually
focus on the [19] construction of locally testable codes (rather than correctable ones), even
though our own goal is to construct (relaxed) locally correctable codes.13

Kopparty et al. construct locally testable codes with query complexity (logn)O(log log(n))

by taking an iterative approach, similar to that of Meir [21]. They start off with a code of
dimension poly log(n) (which is trivially locally testable, by reading the entire codeword)
and gradually increase its blocklength, while (almost) preserving the local testability and
maintaining the rate of the code close to 1. This amplification step is achieved by combining
two transformations on codes:
1. Code tensoring: this transformation squares the block-length (which is good since we

want to obtain blocklength n) and rate (which is not too bad since our rate is close to 1).
The main negative affect is that this transformation also squares the distance.

11 In contrast, in standard PCP composition, one only appends an inner PCP proof-string for every random
string ρ of the outer PCP. Thus, as long as the randomness complexity of the outer PCP is minimal, it
is possible to achieve close to constant multiplicative overhead when composing.

12Recall that a locally testable code [14] is a code for which one can test, using a sub-linear number of
queries, whether a given string is a codeword or far from such.

13This may not be surprising, since the notions of relaxed correctability and testability are closely related.
In particular, as observed in [11], every RLDC (analogously, RLCC) is roughly equivalent to a code
C such that for every coordinate i and value b, the subcode obtained by fixing the i’th bit to b (i.e.,
{C(x) : C(x)i = b}) is locally testable.



T. Gur, G. Ramnarayan, and R.D. Rothblum 27:9

2. Distance amplification: remarkably, this transformation fixed the loss in distance caused
by the tensoring step, without harming the rate or local testability too much.

As noted above, in their work, Kopparty et al. also construct a locally correctable code,
albeit only with query complexity 2Õ(

√
log(n)). The reason why their LCC construction does

not match the parameters of their LTC construction is that the tensoring step, used in their
construction of locally testable codes, is not known to preserve local correctability.14

Our key observation is that tensoring does preserve relaxed local correctability. Recall
that the tensor of a code C : Fk → Fn is the code C2 : Fk2 → Fn2 that consists of all strings
c ∈ Fn2 , viewed as n× n matrices, that consist of rows and columns that are each codewords
of c.

Suppose that C is a (relaxed) LCC with query complexity q. We want to show that C2 is
also a (relaxed) LCC with query complexity roughly q. Let w ∈ Fn2 be a (possibly) corrupt
codeword of C2. Thus, w which we also view as an n× n matrix, is close to some codeword
c ∈ Fn2 . Given an index (i, j) ∈ [n]× [n] to correct, a natural approach is apply the (relaxed)
local corrector of C on the ith row of w, with respect to the index j.

If it were the case that the ith row of w were close to the ith row of c, we would be done.
However, the ith row of w only constitutes a 1/n fraction of w and so it could potentially be
entirely corrupt. Let us assume that it is indeed the case that ith rows of c and w (almost)
entirely disagree.

To detect that this is the case, our corrector chooses at random a few columns J ⊂ [n]. On
the one hand, since the ith rows of w and c disagree almost everywhere, with high probability
for some j′ ∈ J it will be the case that wi,j′ 6= ci,j′ . On the other hand, since j′ is just a
random column, with high probability the j′th columns of w and c are close.

Given this, a natural approach is to have our corrector read the (i, j′)-th entries of w for
every j′ ∈ J , by applying the (relaxed) local corrector of C. In the likely case that it chooses
a j′ such that the j′th column of w and c are close, with high probability the corrector will
either return ci,j′ or ⊥. If our corrector sees ⊥ it can immediately reject (since this would
never happen for an exact codeword). Otherwise, if our corrector sees the value ci,j′ , it can
compare this value with wi,j′ (by explicitly reading the (i, j′)’th entry of w). By the above
analysis, these values will be different (with high probability), in which case our corrector
can also reject.

To calculate the overall query complexity of the resulting code, we need to account for
the overhead introduced by both the tensoring and distance amplification steps. Assuming
that C is (relaxed) locally correctable up to distance δR, the tensoring step only increases the
query complexity by O(1/δR). Each distance amplification increases the query complexity
by roughly a polylog(n) factor. Thus, since we need roughly log log(n) iterations to reach
blocklength n, the overall query complexity is (logn)O(log log n).

4 Related Works

A similar notion to RLDCs called Locally Decode/Reject Codes (LDRCs) arose in the beautiful
work of Moshkovitz and Raz [23] on constructing two-query PCPs with sub-constant error.
These are similar to RLDCs in that they are codes with a decoder that is permitted to reject if
it sees errors. However, it is important to note that the two notions differ in a few significant
ways and are overall incomparable. First, LDRCs decode a k-tuple of coordinates jointly,

14 It can be shown that tensoring at most squares the query complexity for local correcting. However, the
[19] iterative approach cannot afford such an overhead in each iteration.
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rather than a single coordinate. Second, LDRCs have a “list-decoding” guarantee – namely,
that the decoding agrees with one message in a small list of messages – as opposed to RLDCs,
which provide unique decoding (but up to a smaller radius). Finally, LDRCs only need to
work with high probability over the choice of k-tuple, while RLDCs must decode or reject
with high probability for every coordinate. See [23, Section 2] for the formal definition of
LDRCs and a comparison to RLDCs.

Another related notion is that of decodable PCPs (dPCP), first introduced by Dinur and
Harsha [8] to the end of obtaining a modular and simpler proof of the the [23] result. A
dPCP is a PCP oracle, encoding an NP-witness, which allows for list decoding of individual
bits of the NP witness it encodes. Dinur and Harsha provided constructions of such dPCPs
as well as a composition theorem for dPCPs.

Additionally, in a recent work, Goldreich and Gur [11] introduced the notion of universal
locally testable codes (universal-LTC), which can be thought of as generalizing the notion
of relaxed LDCs. A universal-LTC C : {0, 1}k → {0, 1}n for a family of functions F ={
fi : {0, 1}k → {0, 1}

}
i∈[M ] is a code such that for every i ∈ [M ] and b ∈ {0, 1}, membership

in the subcode {C(x) : fi(x) = b} can be locally tested. As was shown in [11], universal-LTCs
with respect to the family of dictators functions (i.e., of the form f(x) = xi) are roughly
equivalent to RLDCs. We remark that their formulation can be naturally generalized to also
capture the notion of RLCC.

Finally, we remark that the relaxed LDCs have been used in the context of interactive
proofs of proximity [16] and property testing [7].
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