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Abstract This paper considers a model of interest in cloud computing ap-
plications. We consider a multi-server system consisting of N heterogeneous
servers. The servers are categorized into M(≪ N ) different types according
to their service capabilities. Jobs having specific resource requirements arrive
at the system according to a Poisson process with rate Nλ. Upon each arrival,
a small number of servers is sampled uniformly at random from each server
type. The job is then routed to the sampled server with maximum vacancy
per server-capacity. If a job cannot obtain the required amount of resources
from the server to which it is assigned, then the job is discarded. We analyze
the system in the limit as N → ∞. This gives rise to a mean field, which
we show has a unique fixed point and is globally attractive. Furthermore, as
N → ∞, the servers behave independently. The stationary tail probabilities
of server occupancies are obtained from the stationary solution of the mean
field. Numerical results suggest that the proposed scheme significantly reduces
the average blocking probability compared to static schemes that probabilisti-
cally route jobs to servers in proportion to the number of servers of each type.
Moreover the reduction in blocking holds even for systems at high load. For
the limiting system in statistical equilibrium, our simulation results indicate
that the occupancy distribution is insensitive to the holding time distribution
and only depends on its mean.
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1 Introduction

The cloud computing paradigm has found many applications ranging from
data centers and web server farms to next generation wireless communication
technologies such as cloud radio access network (C-RAN) [12]. Offloading jobs
onto clouds allows users computational flexibility without the need to maintain
resources themselves. Many infrastructure-as-service cloud computing systems
are now commercially available such as Amazon EC2 [1], Google Cloud [3],
Microsoft Azure [6], and IBM Cloud [5]. Such cloud service providers own and
operate servers, and sell computational resources to their users in terms of
virtual machines (VMs), which are blocks of resource instances such as CPU
and memory.

A cloud facility typically consists of thousands of server machines, and
hence VMs. A job may require multiple VMs on a particular server. Since a
server has only a finite amount of resources, a job arriving at a server may be
unable to obtain the required number of VMs for its processing. If the job is
delay sensitive, the time to wait for a free resource might be prohibitive. In
such a case, the job is blocked, or dropped, and cannot be processed. A prime
objective for a cloud service provider, in order to ensure a certain grade of
service, is to reduce the the probability that a job request is blocked.

In addition to this customer-centric goal, it is also in the self-interest of
the cloud service provider to maximize the efficient use of all its resources. An
important way to achieve this is to regulate and equally distribute incoming
service requests among all its resources, referred to as load balancing. In fact,
major commercial service providers of today such as Amazon EC2, Google
Cloud, and Microsoft Azure do implement load balancing [2,4,7]. These com-
mercial services implement load balancing at two different levels. First, by
means of a high level user-controlled inferface, and second, at a lower level,
user-independent internal implementation. Our study in this paper relates to
the latter.

We introduce and study a model for job assignment from the perspective
of a primary dispatcher that provides service in assigning an incoming job to
one of many commercially available server clouds for processing. Such clouds
differ, both qualitatively and quantitatively, in the services they offer [1,3,6,
5]. Each such cloud typically consists of a large number of parallel processing
homogeneous servers. Each server has a finite number of VMs that can be
simultaneously used for job processing. Different clouds, however, can differ
in the total number of VMs they contain as well as the number of VMs they
employ per unit job. For example, cloud A might contain more number of VMs
in all than another cloud B, whereas the number of VMs that cloud B uses
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for a unit job might be smaller than that in cloud A. The primary dispatcher
must therefore use this information for efficient job assignment to servers of
different types.

It is well known that the blocking probability can be reduced by assigning
arriving jobs to less congested servers [39,18,41]. Learning the states of all the
servers before joining the least congested server, however, is infeasible due to
the overhead incurred in such large systems. In such cases, randomized job
assignment schemes offer practical alternatives [38,26,16]. In these schemes, a
small, but random subset of server states is sampled and a job is assigned to
the sampled server with the least occupancy. In models comprising of identical
servers (homogeneous), randomly sampling just two servers and assigning a
job to the server having the lower occupancy has been shown to drastically
improve delay performance [38,26].

In this paper, we model the cloud system as a heterogeneous loss-system,
which is motivated by the VM context, and consider a randomized scheme,
referred to as maximum fractional vacancy (MFV) scheme, for job assignment.
In this scheme, a small random subset of server states is sampled from each
cloud. Jobs are then assigned to clouds whose sampled servers show the small-
est occupancy per server-capacity.1 We then analyse the MFV scheme and
study its system performance. The key contribution of this paper is to show
that when the number of servers of each type is large we can exploit mean field
theory to characterize the performance precisely, and show that propagation
of chaos or independence of servers holds in the heterogeneous context too.
Moreover we show that the blocking experienced by jobs using such a random-
ized algorithm is very close to the lower bound on the blocking performance
of such systems that can be achieved by any policy.

Randomized job assignment schemes have been primarily studied in the
literature for a system consisting of N identical first come first serve (FCFS)
servers, which is also referred to as the supermarket model. Most studies con-
sider the so called shortest-queue-d (SQ(d)) scheme in which each job is as-
signed to the shortest of d randomly chosen queues. For d ≥ 2, [38] showed,
using the theory of operator semigroups, that the equilibrium queue sizes de-
cay doubly exponentially in the limit as the system size increases (as N → ∞).
Mitzenmacher in [26,27] derived the same result using an extension of Kurtz’s
theorem [15]. Chaoticity on path space (or asymptotic independence among
queue length processes) was established in [16] using empirical measures on
the path space. The results of [38] were generalized to the case of open Jackson
networks in [24].

The tradeoff between sampling cost of servers and the expected sojourn
time seen by a customer in the supermarket model was studied under a game
theoretic framework in [42]. Recently, in [30,29], the SQ(d) scheme was con-
sidered for a system of parallel processor sharing servers with heterogeneous
service rates. It was shown that, in the heterogeneous setting, random sam-
pling of d servers from the entire system reduces the stability region. However,

1 In the context of loss systems, server capacity refers to the number of VMs a server has.
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it can be recovered using the SQ(d) scheme over a randomly chosen server
type.

Early works on mean field limits in routing problems in Erlang loss models
include [23,8]. A large-system Erlang loss model for homogeneous servers was
studied in [36]. It was shown here that the limiting system behaviour can
be characterized using a system of differential equations. Simulation studies
were used to show the super-exponential decay of the tail probabilities. Similar
results were derived using an asymptotic independence ansatz in [31]. In [17], it
was shown that loss models too exhibit propagation of chaos on the path space.
Multi-server model for cloud systems with infinite waiting rooms, where jobs
are queued till they obtain the required resources, was studied in the heavy
traffic regime [22]. The assignment problem has also been in studied in the
context of bin-packing problems under various constraints [34,9,25].

1.1 Main results

In this paper, we propose a new randomized scheme for job assignment in the
heterogeneous scenario. In this scheme, upon arrival of a job, a small number
of servers from each cloud is randomly sampled. The sampled servers are then
compared based on their states and the arrival is assigned to the sampled
server that has the highest vacancy per unit server-capacity.

This represents a scenario where a primary dispatcher first requests infor-
mation from each cloud and then routes the job to the server that is likely
to have the smallest blocking probability among the sampled servers. We an-
alyze the performance of the proposed scheme in the limit as the system size
N → ∞ using the mean field approach. Our analysis shows the following.

– The stationary tail distribution of server occupancies, in a system with a
large number of servers, can be characterized by means of a fixed point of
a system of differential equations (mean field limit).

– We establish the existence and uniqueness of the equilibrium point of the
mean field equations in the space of empirical tail measures. Our proof dif-
fers from the earlier works since closed form solutions cannot be obtained.

– We show that propagation of chaos holds at each finite time and also at
the equilibrium. In that, we generalize the earlier results on propagation
of chaos to systems where exchangeability holds only among servers of the
same type.

We outline a method to numerically compute the fixed point of the mean
field and hence obtain the blocking probability characterization of the lim-
iting system under stationarity. We show that in the limit as N → ∞, the
stationary tail distribution satisfies a balance condition due to Whittle [40]
and hence holds for general service times, a result that is confirmed via sim-
ulations. We compare the MFV scheme with a state independent scheme for
the heterogeneous case, and observe that the MFV scheme clearly outperforms
the state independent scheme. Finally we show that even picking a few servers
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at each cluster of similar servers gives rise to blocking probabilities that are
very close to the lower bound on blocking probabilities for such systems due
to any policy, randomized or not, thus, showing the effectiveness and almost
optimal behavior of such schemes.

1.2 Organization

The rest of the paper is organized as follows. In Section 2, we describe the
system model, the MFV scheme, and our main result. We then analyze the
MFV scheme using the mean field in Section 3. In Section 4, we generalize
the model of Section 2 by introducing heterogeneous job classes, and show
how stationary tail probabilities can be computed in this case, as well. In
Section 5, numerical results are presented to benchmark the MFV scheme and
to verify the accuracy of the theoretical results derived in the paper. Finally,
we conclude the paper in Section 6 with a summary and a discussion on future
work.

2 System model and main result

We consider a system comprising of N parallel processing servers which are
partitioned intoM(≪ N) distinct types of server clouds. Let J ={1, 2, . . . ,M}
denote the index set of the cloud types, and let γj denote the fraction of servers
of type j. A cloud of type j ∈ J contains γjN servers, each having the same
finite capacity, Sj , of the total number of virtual machines (VMs). A job in a
server of type j ∈ J engages Aj of the Sj available VMs at the server. The
tuple (Sj , Aj) captures the resource and processing capabilities of a type j
server.

Jobs arrive at the system according to a Poisson process of rateNλ. Service
times of jobs are exponentially distributed with a mean duration of 1/µ units.2

Further, service times are independent of one another, and also of the arrival
process. Upon its arrival in the system, a job is routed to one of the N servers
based on a routing scheme. If a server to which the job is routed has the
required amount of resources to serve the job, then the processing of the job
starts immediately. Otherwise, the job is discarded, or blocked. Resources used
during the processing of a job are released upon its completion. We consider
the following routing scheme in the rest of the paper, which we refer to as
maximum fractional vacancy scheme (MFV).

In this scheme, a job is routed to a server based on its occupancy, that
is, the number of current jobs at the server. A local dispatcher at cloud j
samples dj servers, uniformly at random, and conveys the smallest value, vj ,

2 In this paper, we study the case of homogeneous job requests for which the assumption
on mean service duration is valid. For our treatment of the general case of heterogenous job
requests, see [28].
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Fig. 1 System consisting of N parallel processor sharing (PS) servers, categorized into M
types. There are γjN servers of type j, each of which has a capacity Sj . Arrivals occur
according to a Poisson process with rate Nλ. For each arrival, the job dispatcher samples
dj servers of type j and routes the arrival to one of the sampled servers.

of the sampled server occupancies thus found to the primary dispatcher.3 The
primary dispatcher then routes the job to the cloud that offers the smallest
value of vj/Cj for all j ∈ J , where Cj is defined as Cj =

Sj

Aj
. Ties are broken

by preferring clouds with higher values of Cj . Without loss of generality, we
suppose that

C1 ≤ C2 ≤ . . . ≤ CM . (1)

We observe that the number Cj is a measure of the total number of jobs
that a type j server can simultaneously process. The scheme routes jobs to
a sampled server having the least fractional occupancy, or equivalently, the
highest fractional vacancy. This is illustrated in Figure 1.4 We note that data
models similar to the above have been employed in the research literature to
address issues related to cloud services in various contexts [32,14,21,37].

3 For notational convenience, we assume that servers are sampled with replacement; the
results in the paper remain unchanged even under the assumption that servers are sampled
without replacement.

4 From an implementation viewpoint, each local dispatcher j must periodically communi-
cate vj to the primary dispatcher. Thus,M positive integers must be communicated regularly
to the central dispatcher. Furthermore, a local dispatcher j must update the value Cj at the
central dispatcher, but this is required only if there is a change in Cj , which happens less
frequently if at all, since these values are stored at the central dispatcher.
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2.1 Main result

Let N denote the set of non-negative integers. For any k ∈ N and i, j ∈ J , we
define

⌊k⌋ij =

⌊

Cj

Ci

k

⌋

+ 1, (2)

⌈k⌉ij =

⌈

Cj

Ci

k

⌉

, (3)

where ⌊x⌋ denotes the greatest integer not exceeding x and ⌈x⌉ denotes the
smallest integer greater than or equal to x. Define θj = ⌊Cj⌋ for j ∈ J . We
are now ready to state the main result of the paper, which characterizes the
system when the total number of servers is asymptotically large (N → ∞).

Theorem 1 Let P
(j)
k (N) denote the stationary probability that a server of

type j has at least k unfinished jobs, in a system of N servers. Under the

MFV scheme, P
(j)
k (N) → P

(j)
k , as N → ∞, where for each j ∈ J , P

(j)
k

satisfies:

P
(j)
k+1 − P

(j)
k+2 =

λ

µγj(k + 1)

(

(

P
(j)
k

)dj

−
(

P
(j)
k+1

)dj

)

×

j−1
∏

i=1

(

P
(i)
⌈k⌉ji

)di
M
∏

i=j+1

(

P
(i)
⌊k⌋ji

)di

, for 0 ≤ k ≤ θj − 1, (4)

where P
(j)
0 = 1 and P

(j)
k = 0 for k > θj.

Further, as N → ∞, the stationary server occupancy distributions are inde-

pendent. The blocking probability of the system is then given by
∏

j∈J (P
(j)
θj

)dj .

The following sections of the paper are dedicated to deriving the above charac-
terization. As we shall see in the analysis, (4) governs the state of the system

under equilibrium, as N → ∞. Further, we show how P
(j)
k can be easily com-

puted. Thus, we can theoretically characterize and study the blocking proba-
bility of the system. Since commercial cloud systems typically contain a large
number of servers, asymptotic analysis (N → ∞) is natural and relevant for
such systems. Moreover, we note that since arrivals at a given server depend on
the states (occupancies) of other servers, obtaining the exact time evolution of
the system is difficult. Large system analysis also aids analytical tractablility.
The limiting system behaviour is known as the mean field limit [26,38,24].

3 The mean field

In this section we analyze the performance of the system with respect to the
MFV scheme by studying its mean field. Further, we show that the mean field
converges to a unique stationary point that is globally asymptotically sta-
ble. We also establish the asymptotic independence, or propogation of chaos,
property of the server occupancies. We start with some notation.
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3.1 Notation

We define the following real sequence spaces:

UN,θj={{gn}n∈N
: 1 = g0 ≥ g1 ≥ . . . ≥ gθj , gn= 0 for n>θj , γjgnN ∈ N},

(5)

Uθj = {{gn}n∈N
: 1 = g0 ≥ g1 ≥ . . . ≥ gθj , gn = 0 for n > θj}. (6)

Let UN =
∏

j∈J UN,θj and U =
∏

j∈J Uθj denote the Cartesian products of
UN,θj and Uθj , respectively, over j ∈ J . For u,v ∈ U , define the distance
between them as

‖u− v‖ = sup
j∈J

sup
n∈N

∣

∣

∣

∣

∣

u
(j)
n − v

(j)
n

n+ 1

∣

∣

∣

∣

∣

. (7)

Note that U is closed under the above metric, bounded, and finite-dimensional.
Hence, under the metric defined in (7), the space U is compact (and hence
complete and separable).

Let (H,H, µH) be a measure space and f : H → R be a µH -integrable
function. We define duality brackets as 〈f, µH〉 =

∫

fdµH . We denote the weak
convergence (convergence in distribution) of a sequence of probability measures
Pn (random variables Xn) to a probability measure P (random variable X)
by Pn ⇒ P (Xn ⇒ X).

Let x,x′,y ∈ U . We denote x ≤ x′ to mean x
(j)
k ≤ x′(j)

k for all j ∈ J

and k ∈ N. Further, y = min(x,x′) and y = max(x,x′) means that y
(j)
k =

min(x
(j)
k , x′(j)

k ) and y
(j)
k = max(x

(j)
k , x′(j)

k ), respectively, for all j ∈ J and
k ∈ N.

3.2 Analysis

We define the process

xN (t) =
{

x
(j)
N,n(t), j ∈ J , n ∈ N

}

for t ≥ 0, (8)

where x
(j)
N,n(t) denotes the fraction of type j servers having at least n unfinished

jobs at time t. Thus
{

x
(j)
N,n(t), n ∈ N

}

denotes the empirical tail distribution

of occupancy of type j servers at time t. Observe that xN (t) ∈ UN . In the
following lemma, we evaluate the generator AN associated with the process
xN (t).

Lemma 1 Let g ∈ UN be any state of the process xN (t) and e(n, j) ∈ UN be

the unit vector with e
(j)
n = 1 and e

(i)
k = 0 if i 6= j and k 6= n. The generator
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AN of the Markov process xN (t) acting on functions f : UN → R is given by

ANf(g) = Nλ
M
∑

j=1

θj
∑

n=1

[

(

g
(j)
n−1

)dj

−
(

g(j)n

)dj

] j−1
∏

i=1

(

g
(i)
⌈n−1⌉ji

)di

×

M
∏

i=j+1

(

g
(i)
⌊n−1⌋ji

)di

[

f(g+
e(n, j)

Nγj
)− f(g)

]

+ µN

M
∑

j=1

θj
∑

n=1

γjn
(

g(j)n − g
(j)
n+1

)

[

f(g−
e(n, j)

Nγj
)− f(g)

]

. (9)

Proof The proof is given in Appendix A.

We now state the main result of this section, which essentially captures
the asymptotic behaviour of xN (t), as N → ∞. In particular, we employ the
generator AN to show that the process xN (t) converges to a deterministic
process as N → ∞.

Theorem 2 If xN (0) converges in distribution to some constant g ∈ U as

N → ∞, then the process {xN (t)}t≥0 converges in distribution to a process

{u(t)}t≥0, lying in the space U as N → ∞. The process u(t) is given by the

solution of the following system of differential equations

u(0) = g, (10)

u̇(t) = l(u(t)), (11)

where the mapping l : U →
(

R
N
)M

is given by

l
(j)
k (u) = 0, for k = 0 and k > θj , j ∈ J , (12)

l
(j)
k (u) =

λ

γj

(

(

u
(j)
k−1

)dj

−
(

u
(j)
k

)dj

) j−1
∏

i=1

(

u
(i)
⌈k−1⌉ji

)di
M
∏

i=j+1

(

u
(i)
⌊k−1⌋ji

)di

− kµ
(

u
(j)
k − u

(j)
k+1

)

, for 1 ≤ k ≤ θj , j ∈ J . (13)

The process {u(t)}t≥0, defined in the theorem above, is referred to as the
mean field. We first note that Theorem 2 implicitly assumes that the ordinary
differential system (10)-(11) has a unique solution in the space U . In the fol-
lowing proposition, we show that this is indeed the case. To emphasize the
dependence of the solution u(t) on the initial point g, we will often denote
u(t) by u(t,g).

Proposition 1 If g ∈ U , then the system (10)-(11) has a unique solution

u(t,g) ∈ U , for all t ≥ 0.

Proof The proof is given in Appendix B.
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We will prove Theorem 2 using the theory of semigroup operators of
Markov processes as in [38,24]. First, we recall the following from [15].

– For the process {xN (t)}t≥0, the operator semigroup {TN (t)}t≥0 acting on
continuous functions f : UN → R is defined as

TN (t)f(x) = E [f(xN (t))|xN (0)=x] ∀t ≥ 0,x ∈ UN .

– For the deterministic process {u(t)}t≥0, the transition semigroup {T(t)}t≥0

acting on continuous functions f : U → R is defined as

T(t)f(x) = f(u(t,x)) ∀t ≥ 0,x ∈ U .

In the next proposition, we show that TN (t) converges to T(t) uniformly
on bounded intervals. This in conjunction with Theorem 2.11 of Chapter 4
of [15] proves Theorem 2.

Proposition 2 Let u(t,g) be the solution to the system (10)-(11). For any

continuous function f : U → R and t ≥ 0,

lim
N→∞

sup
g∈UN

|TN (t)f(g) − f(u(t,g))| = 0, (14)

and the convergence is uniform in t within any bounded interval.

Proof The proof is given in Appendix C.

Remark 1 We note that Theorem 2 implies that if xN (0) ⇒ g ∈ UN as N →
∞, then the following weaker convergence results also hold:

1. For each t ≥ 0, xN (t) ⇒ u(t,g) as N → ∞.

2. For each t ≥ 0, j ∈ J , and k ∈ N, x
(j)
N,k(t) ⇒ u

(j)
k (t,g) as N → ∞.

3. For each t ≥ 0, j ∈ J , and k ∈ N, E
[

x
(j)
N,k(t)

]

→ u
(j)
k (t,g) as N → ∞.

The last assertion follows from the first since x
(j)
N,k(t) is bounded for each

N, j, k, t.

3.3 Properties of the mean field

In this section, we characterize some important properties of the mean field. In
particular, we show that (10)-(11) has a unique globally asymptotically stable
equilibrium point in U .

Let P denote an equilibrium point of (10)-(11). Then, P satisfies l(P) = 0.
The following proposition guarantees that there exists an equilibrium point of
the system (10)-(11) U .

Theorem 3 There exists an equilibrium point P of the system (10)-(11) in

the space U .
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xN (t) u(t)

xN (∞) P

t→ ∞

N → ∞

Theorem 2

N → ∞

Theorem 5

t→ ∞

T
h
eo
re
m

4

Fig. 2 Commutativity of limits

Proof The proof is given in Appendix D.

The next theorem shows that P is the unique globally asymptotically stable
equilibrium point of the system (10)-(11) in the space U .

Theorem 4
lim
t→∞

u(t,g) = P ∈ U for all g ∈ U , (15)

Hence, P is a globally asymptotically stable fixed point of systems (10)-(11).
Furthermore, P is the only equilibrium point of the above systems in the space

U .

Proof The proof is given in Appendix E.

We now show that the stationary distribution of the process xN (t) con-
verges weakly to the Dirac measure concentrated at the unique equilibrium
point of the mean field. Let πN denote the stationary distribution of the pro-
cess xN (t). Since xN (t) is positive recurrent, πN exists and is unique.

Theorem 5 We have

πN ⇒ δP, as N → ∞. (16)

Proof The proof is given in Appendix F.

For each fixedN , let xN (∞) be a random variable distributed as πN . By ergod-
icity, we have xN (t) ⇒ xN (∞) as t → ∞. We have so far established that the
interchange property indicated in Figure 2 holds. Note that the convergences
indicated in the figure are in distribution.

We observe the following simple upper bounds on P
(j)
θj

.

Proposition 3 Let τj =
λ

µγj
. When dj ≥ 2 for each j ∈ J ,

P
(j)
θj

≤
τ

d
θj−⌈τj⌉+1

j
−1

dj−1

j
∏θj−⌈τj⌉

k=0 (θj − k)d
k
j

. (17)
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When dj = 1 for each j ∈ J ,

P
(j)
θj

≤
τ
θj−⌈τj⌉+1
j

∏θj−⌈τj⌉
k=0 (θj − k)

. (18)

Proof The proof is given in Appendix G.

Thus, we infer that when at least two servers are sampled from each server

type, the tail blocking probability
∏

j∈J (P
(j)
θj

)dj decays at a much faster rate
than when a single server is sampled from each cloud. This behaviour is com-
mon in power-of-two randomized schemes [38,26,27].

3.4 Propagation of chaos

In this subsection, we focus on the occupancies of a given finite set of servers
as N → ∞. We show that as the system size grows the server occupancies
become independent of each other. Such independence holds at any finite time
and also at the equilibrium, provided that the initial server occupancies satisfy
certain assumptions. This is formally known as the propagation of chaos [16,
35] or asymptotic independence property [11,10] in the literature.

To formally state the results we introduce the following notations. Let

q
(j,k)
N (t), for j ∈ J and k ∈ {1, 2, . . . , Nγj}, denote the occupancy of the

kth server of type j at time t ≥ 0. By q
(j,k)
N (∞) we denote the occupancy

of the kth server of type j in equilibrium. Further, let χ
(j)
N,n(t), for j ∈ J

and n ∈ N, denote the fraction of type j servers having occupancy n at time

t ≥ 0. Define the process χN (t) =
{

χ
(j)
N,n(t), j ∈ J , n ∈ N

}

. Clearly, χ
(j)
N (t) =

{

χ
(j)
N,n(t), n ∈ N

}

denotes the empirical distribution of occupancies of type j

servers and for each n, j, we have χ
(j)
N,n(t) = x

(j)
N,n(t)−x

(j)
N,(n+1)(t). By χ

(j)
N (∞)

we will denote the empirical distribution occupancies for type j servers in

equilibrium. Let the process Q(t) =
{

Q
(j)
n (t), j ∈ J , n ∈ N

}

be defined as

Q
(j)
n (t) = u

(j)
n (t) − u

(j)
n+1(t), for t ∈ [0,∞]. Further, we denote by Q(j)(t)

the distribution on N given by Q(j)(t) =
{

Q
(j)
n , n ∈ N

}

. We also define the

following notion of exchangeable random variables.

Definition 1 Let
{

q
(j,k)
N , 1 ≤ k ≤ Nγj, 1 ≤ j ≤ M

}

denote a collection of N

random variables among which Nγj belong to a particular class j and are
indexed by k, where 1 ≤ k ≤ Nγj. The collection is called intra-class ex-
changeable if the joint law of the collection is invariant under permutation of
indices, 1 ≤ k ≤ Nγj , of random variables belonging to the same class.

Proposition 4 If the set
{

q
(j,k)
N (0), 1 ≤ k ≤ Nγj , 1 ≤ j ≤ M

}

is intra-class

exchangeable and if xN (0) ⇒ g ∈ U as N → ∞, then the following holds
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1. For each fix k and t ∈ [0,∞], q
(j,k)
N (t) ⇒ U (j)(t) as N → ∞, where U (j)(t)

is a random variable with distribution Q(j)(t).
2. Fix positive integers r1, r2, . . . , rM . For each t ∈ [0,∞],

{

q
(j,k)
N , 1 ≤ k ≤ rj , 1 ≤ j ≤ M

}

⇒
{

U (j,k)(t), 1 ≤ k ≤ rj , 1 ≤ j ≤ M
}

,

as N → ∞, where U (j,k)(t), 1 ≤ k ≤ rj , 1 ≤ j ≤ M , are independent

random variables with U (j,k)(t) having distribution Q(j)(t) for all 1 ≤ k ≤
rj.

Proof The proof is given in Appendix H.

Thus, the above proposition shows that in the limiting system server oc-
cupancies become independent of each other. It also shows that the sta-
tionary occupancy distribution of any type j server is given by Q(j)(∞) =
{

P
(j)
n − P

(j)
n+1, n ∈ N

}

.

Remark 2 Since the server occupancies are asymptotically independent, the
arrival process of jobs at any server in the limiting system is a state dependent
Poisson process. The arrival rate of jobs at a server of type j ∈ J , when its
occupancy is k is given by (31) given in Appendix D. This equation can be
explained as follows.

Consider a tagged type j server in the system and the arrivals that have
the tagged server as one of its possible destinations. These arrivals constitute
the potential arrival process at the tagged server. The probability that the
tagged server is selected as a potential destination server for a new arrival
is

(

Nγj−1
dj−1

)

/
(

Nγj

dj

)

=
dj

Nγj
. Thus, due to Poisson thinning, the potential arrival

process to the tagged server is a Poisson process with rate dj/Nγj×Nλ =
djλ

γj
.

Consider the potential arrivals at the tagged server when its occupancy
is k. This arrival actually joins the tagged server with probability 1

x+1 when
x other servers among the dj servers of type j have occupancy k, all the di
servers of type i < j have at least occupancy ⌈k⌉ij , and all the di servers of

type i > j have at least occupancy ⌊k⌋ij . Thus, the total arrival rate λ
(j)
k can

be computed as

λ
(j)
k =

djλ

γj

dj−1
∑

x=0

1

x+ 1

(

dj − 1

x

)

(

P
(j)
k − P

(j)
k+1

)x (

P
(j)
k+1

)dj−1−x

×

j−1
∏

i=1

(

P
(i)
⌈k⌉ij

)di
M
∏

i=j+1

(

P
(i)
⌊k⌋ij

)di

, (19)

which simplifies to (31).
Hence, the equilibrium arrival rate at a given server depends on the station-

ary tail probabilities P
(j)
k , k ∈ N and j ∈ J . The stationary tail probabilities
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can in turn be expressed as functions of the arrival rate. Indeed, we note that
(33) in Appendix D expresses the local balance equations in equilibrium, which
hold under state dependent Poisson arrivals due to Theorems 3.10 and 3.14
of [20].

Remark 3 So far our results have been obtained for exponential job length
distributions. Under the hypothesis that asymptotic independence is observed
in stationarity even under general job length distributions, the blocking prob-
ability of the system seems to depend only on the mean of the job length
distribution (insensitivity). In [11] they conjecture that asymptotic indepen-
dence holds for any local service discipline (rates only depend on current jobs
in service) under general service time distributions. This would then imply
that the arrivals to individual queues are state dependent Poisson processes
that depend only on the state of that queue. This together with the result
of Zachary [43] would then imply that insensitivity holds. However lacking a
proof of asymptotic independence in the general service time case we can only
claim insensitivity as a conjecture.In Section 5, we provide numerical evidence
to support this hypothesis.

4 Heterogeneous jobs model

In this section, we relax the assumption that jobs have the same mean dura-
tion. This is a more realistic model for jobs; for example, some jobs might be
computationally more intensive than other jobs and hence might have higher
mean durations. We assume here that a job may belong to one of L types. Let
L = {1, . . . , L} denote the class of job-types. A job of type l ∈ L has a mean
duration of 1/µl units. A job of type l ∈ L, in a server of type j ∈ J engages

A
(j)
l of the Sj available VMs at the server. The tuple (Sj , A

(j)
l ) captures the

resource and processing capabilities of a type j server with respect to a job
of type l ∈ L. Further, we assume that jobs of type l ∈ L arrive indepen-
dently at the system according to a Poisson process of rate Nλl. Note that
the MFV scheme still compares the fractional total occupancies of servers for
job assignment.

We remark that a mean field analysis similar to the one presented in Sec. 3
can be carried out for this model as well, at the cost of more notation. More-
over, it can be shown that the server occupancies are asymptotically inde-
pendent. Let p(j) (k) denote the stationary probability that a server of type
j ∈ J , has at least k busy VMs. Following the approach of Kaufman-Roberts
recursion [19,33] we can show that p(j) (k) statisfy the following recursions for
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each j ∈ J :

∑

l∈L

λl

γjµl

[

(

p(j)
(

k −A
(j)
l

))dj

−
(

p(j)
(

k + 1−A
(j)
l

))dj

]

×

j−1
∏

i=1

(

p(i)
(

⌈

k −A
(j)
l

⌉

ji

))di M
∏

i=j+1

(

p(i)
(

⌊

k −A
(j)
l

⌋

ji

))di

= k(p(j) (k)− p(j) (k + 1)), 0 ≤ k ≤ Sj, (20)

where p(j) (k) = 1 for k ≤ 0, and p(j) (k) = 0 for k > Sj . From this, the

blocking probability P
(j)
b,l of a job of type l ∈ L at a server of type j ∈ J is

given by p(j)
(

Sj −A
(j)
l + 1

)

, and the system blocking probability of a type l

job is thus calculated as
∏

j∈J

(

P
(j)
b,l

)dj

.

5 Numerical results

We first present simulation results that verify the asymptotic analysis pre-
sented in the paper. In Figure 3, we plot the average blocking probability of
the system as a function of the arrival rate λ for N = 50 and N = 10. Also

shown is the blocking probability computed as
∏

j∈J (P
(j)
θj

)dj , where P
(j)
θj

is

obtained as the solution to the fixed point equation (4). Specifically, the unique
fixed point P was computed by a repeated application of the map presented in
Appendix D. For the simulation set up, we consider θ1 = 20, θ2 = 25, A1 = 2,
A2 = 3, 1/µ = 1, γ1 = γ2 = 0.5, and d1 = d2 = 2. We note the match of the
results from the fixed point analysis with the simulations for both the values
of N . This supports the approach of asymptotic analysis, via the mean field,
that we have employed in the paper, and provides a theoretical alternative to
characterize the system blocking.

Next, we compare state-dependent job assignment schemes with state-
independent job assignment schemes. In Figure 4, we plot the average blocking
probability, as a function of the normalized arrival rate, seen by the system
under the MFV scheme, which is state-dependent, and two state-independent
schemes referred to as static routing-1 and static routing-2, in which jobs are
routed to clouds with fixed probabilities. For the set up, we consider N = 50,
θ1 = 20, θ2 = 25, A1 = 2, A2 = 3, 1/µ = 1, γ1 = γ2 = 0.5, and d1 = d2 = 2.
In the static routing-1 scheme, a job is assigned to a cloud j with probability
γjθj/(

∑

i∈J γiθi). Note that this scheme is independent of the arrival rate λ.
In the static routing-2 scheme, the routing probabilities are set to the optimal
values obtained by numerical evauation. We note the routing probabilites in
this scheme are indeed a function of the arrival rate; the job dispatcher must
to know the arrival rate apriori in order to implement this scheme. We ob-
serve the MFV outperforms both the state-independent schemes. The MFV
obtains 36.8% better blocking performance than the static routing-2 scheme
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Fig. 3 Blocking probability as a function of the arrival rate.

at the normalized arrival rate of 0.5. This shows the advantages of simple, ran-
domized state-dependent job assignment schemes over the state-independent
ones.

Also shown in Figure 4 is a theoretical lower bound on the system blocking
probability Pb of any job assignment scheme, which is obtained by the following
argument. The effective arrival rate of jobs at the system equals Nλ(1 − Pb),
and by Little’s law, the average number of jobs in the system is given by

Nλ(1 − Pb)/µ =
∑

j∈J Nγj
∑θj

k=1 P
(j)
k ≤

∑

j∈J Nγjθj . Thus, we have Pb ≥

max{0, 1 − µ
∑

j∈J γjθj

λ
}. We denote λc = µ

∑

j∈J γjθj as the critical arrival
rate. It is the largest arrival rate at with the lower bound evaluates to 0. We
observe from the figure that the MFV scheme has a system blocking probability
that is very close to the theoretical lower bound, which hints that the MFV
scheme is very close to optimal. We explore this further in Figure 5 and Figure 6
for two different system settings having γ1 = γ2 = 0.5 and d1 = d2 = 2. We
observe that in both cases, the margin between the simulation values and the
corresponding lower bounds is not greater than 10%. Thus, the MFV scheme
closely follows the optimal assignment scheme.

In Figure 7, we consider a system of N = 100 servers such that θ1 = 20,
θ2 = 40, and µ = 1/3. We plot the blocking probability for two different
sampling configurations as a function of the arrival rate near the region of
critical arrival rate, which in this case is λc = 10. We observe from the plot
that more number of samples yields smaller blocking probabilities. This is
because of the greater chance of choosing a shorter queue, when more than
one server is sampled.

We now numerically investigate the behaviour of the MFV scheme under
different job length distributions. In Table 1, blocking probability under the
scheme is shown as a function of normalized λ, for the following distributions.
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Fig. 4 Blocking probability as a function of the normalized arrival rate.
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Fig. 5 Comparison with lower bound in the under-loaded regime. N = 50, θ1 = 25, θ2 = 20.

Table 1 Insensitivity of MFV scheme

λ Theoretical Power law Constant

0.4 0.00002 0.000224 0.000184
0.5 0.12130 0.122268 0.123114
0.6 0.26166 0.261557 0.261806
0.7 0.36470 0.364175 0.364757
0.8 0.44283 0.443080 0.442825
0.9 0.50398 0.504142 0.504038
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Fig. 6 Comparison with lower bound in the under-loaded regime. N = 100, θ1 = 5, θ2 = 20.
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Fig. 7 Comparison with different sampling numbers. N = 100, θ1 = 20, θ2 = 40, µ = 1/3.

1. Constant: We consider job length distribution having the cumulative dis-
tribution given by F (x) = 0 for 0 ≤ x < 1/µ, and F (x) = 1, otherwise.

2. Power law: We consider job length distribution having cumulative distri-
bution function given by F (x) = 1 − 1/4µ2x2 for x ≥ 1

2µ and F (x) = 0,
otherwise.

Note that both the above distributions have the same mean 1/µ. Same simula-
tion parameters as stated earlier were used. We observe that there is insignif-
icant change in the blocking probability of the system when the job length
distribution type is changed, while keeping the mean constant.
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6 Conclusions

In this paper, we analyzed the MFV scheme for a heterogeneous multi-server
Erlang loss system. We showed that in the large system limit the evolution of
the empirical occupancy distribution can be characterized through its mean
field limit. We established the existence and uniqueness of the stationary point
of the mean field limit. Furthermore, we showed that propagation of chaos
holds for heterogeneous case through the requirement of type-based exchange-
ability. The foregoing results were shown for the exponential job length distri-
bution. An interesting avenue to explore is if these can be replicated for generic
job length distributions, as well. Our numerical results hint that asymptotic
independence is exhibited even under generic job length distributions.

Further, we observed that the MFV scheme is very nearly optimal in per-
formance. This shows the effectiveness of such simple randomized assignment
schemes. We remark that similar state dependent assignment schemes, for in-
stance, assigning to servers with smallest vacancy, or least occupancy, must
have similar system behaviour.

A Proof of Lemma 1

We recall the generator AN of the semigroup {TN (t)}t≥0 acting on functions f : UN → R

is given by ANf(g) =
∑

h6=g qgh (f(h) − f(g)), where qgh, with g,h ∈ UN , denotes the

transition rate from state g to state h [15].
Consider an arrival at time t that joins a server of type j with exactly n− 1 unfinished

jobs, when the state of the system is g. This corresponds to the transition from state g to the

state g+ e(n,j)
Nγj

since the fraction of type j servers with at least n unfinished jobs increases

by 1/Nγj , whereas the empirical tail occupancies of the other servers remain unchanged.
This transition occurs in the MFV scheme only when the following conditions are satisfied:

– Among the dj sampled servers of type j, at least one has exactly n − 1 jobs and the

rest of them have at least n jobs. Since there are Nγjg
(j)
n−1 and Nγjg

(j)
n servers with at

least n − 1 and n jobs, respectively, uniform sampling of the type j servers result in a

probability of
(Nγjg

(j)
n−1)

dj−(Nγjg
(j)
n )

dj

(Nγj )
dj

= (g
(j)
n−1)

dj − (g
(j)
n )dj for this case.

– For each i < j, all the di sampled servers of type i have fractional occupancies satisfying
i/Ci ≥ (n− 1)/Cj ; equivalently, sampled servers of type i must have at least ⌈n− 1⌉ji

jobs. Proceeding as above, the probability of this case is
∏j−1

i=1 (g
(i)
⌈n−1⌉ji

)di .

– For each i > j, all the di servers of type i have fractional occupancies satisfying i/Ci >
(n − 1)/Cj ; equivalently, sampled servers of type i must have at least ⌊n− 1⌋ji jobs.

The probability of this case is then calculated as
∏M

i=j+1(g
(i)
⌊n−1⌋ji

)di .

Thus, the probability with which an arrival joins a type j server with exactly n − 1 jobs

is given by

(

(

g
(j)
n−1

)dj
−
(

g
(j)
n

)dj
)

∏j−1
i=1

(

g
(i)
⌈n−1⌉ji

)di
∏M

i=j+1

(

g
(i)
⌊n−1⌋ji

)di

. Since the

arrival rate of jobs is Nλ, the rate of the above transition is given by

q
g,g+

e(n,j)
Nγj

= Nλ

[

(

g
(j)
n−1

)dj
−
(

g
(j)
n

)dj
] j−1
∏

i=1

(

g
(i)
⌈n−1⌉ji

)di M
∏

i=j+1

(

g
(i)
⌊n−1⌋ji

)di

.

Finally, the rate at which jobs depart from a server of type j having exactly n jobs is

µnNγj
(

g
(j)
n − g

(j)
n+1

)

. This corresponds to the transition from state g to the state g −
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e(n,j)
Nγj

since the fraction of type j servers with at least n unfinished jobs decreases by

1/Nγj , whereas the empirical tail occupancies of the other servers remain unchanged. The
expression (9) now follows from the definition of AN .

Remark 4 We observe that the foregoing expressions are obtained under the assumption
that the dj , j ∈ J servers are sampled with replacement. If, however, they were sampled
without replacement, the probability of each of the aforementioned cases changes as follows.

– Servers of the tagged type j: The probability that at least one of them has exactly n−1

jobs and the rest of them have at least n jobs becomes

(

(Nγjg
(j)
n−1

dj

)

−
(Nγjg

(j)
n

dj

)

)

/
(Nγj

dj

)

.

– Servers of type i < j: The probability that each of them has ⌈n− 1⌉ji jobs at least is

given by
∏j−1

i=1

(Nγig
(i)
⌈n−1⌉ji
di

)

/
(Nγi

di

)

.

– Servers of type i > j: The probability that each of them has ⌊n− 1⌋ji jobs at least is

given by
∏j−1

i=1

(Nγig
(i)
⌊n−1⌋ji
di

)

/
(Nγi

di

)

.

Consequently, we obtain a different form for the generator of xN (t), say A′
N .5 We note

that in the limit as N → ∞, the probabilities in each of the above cases reduce, respectively,
to exactly those obtained when servers are sampled with replacement. This fact when used
in a parallel development leading up to (30) shows limN→∞ A′

Nf(g) = d
dt
f(u(t, g))|t=0.

Hence, even when servers are sampled without replacement, the same mean field, as in the
case of sampling with replacement, is obtained. We consider the latter case for the analysis
of MFV for ease of notation; it leads to no change in any of the asymptotic results presented
in the paper.

B Proof of Proposition 1

Define φ : R → [0, 1] as φ(x) = [min {x, 1}]+, where [z]+ = max {0, z} and consider the
following modification of the system (10)-(11):

u(0) = g, (21)

u̇(t) = l̂(u(t)), (22)

where the mapping l̂ :
(

RN
)M

→
(

RN
)M

is given by

l̂
(j)
k

(u) = 0 for k = 0 and k > θj , j ∈ J , (23)

l̂
(j)
k

(u) =
λ

γj

[

(

φ(u
(j)
k−1)

)dj
−
(

φ(u
(j)
k

)
)dj
]

+

j−1
∏

i=1

(

φ(u
(i)
⌈k−1⌉ji

)

)di M
∏

i=j+1

(

φ(u
(i)
⌊k−1⌋ji

)

)di

− kµ
[

φ(u
(j)
k

)− φ(u
(j)
k+1)

]

+
, for 1 ≤ k ≤ θj , j ∈ J . (24)

5 In fact, for f : UN → R,

A′
Nf(g) = Nλ

M
∑

j=1

θj
∑

n=1

(Nγjg
(j)
n−1

dj

)

−
(Nγjg

(j)
n

dj

)

(Nγj
dj

)

j−1
∏

i=1

(Nγig
(i)
⌈n−1⌉ji
di

)

(

Nγi
di

)

j−1
∏

i=1

(Nγig
(i)
⌊n−1⌋ji
di

)

(

Nγi
di

)

×

[

f(g +
e(n, j)

Nγj
)− f(g)

]

+ µN
M
∑

j=1

θj
∑

n=1

γjn
(

g
(j)
n − g

(j)
n+1

)

[

f(g −
e(n, j)

Nγj
)− f(g)

]

.
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Clearly, the right hand side of (11) and (24) are equal if u ∈ U . Therefore, the two
systems must have identical solutions in U . Also if g ∈ U , then any solution of the modified

system remains within U . This is because of the facts that if u
(j)
n (t) = u

(j)
n+1(t) for some

j, n, t in (24) then l̂
(j)
n (u(t)) ≥ 0 and l̂

(j)
n+1(u(t)) ≤ 0, and if u

(j)
n (t) = 0 for some j, n, t,

then l̂
(j)
n (u(t)) ≥ 0. Hence, to prove the uniqueness of solution of (10)-(11), we need to show

that the modified system (21)-(22) has a unique solution in (RZ+ )M . We now extend the
distance metric defined in (7) to the space (RN)M .

Using the metric defined in (7) and the facts that |x+ − y+| ≤ |x− y| for any x, y ∈ R,
∣

∣a1bm1 − a2bm2
∣

∣ ≤ |a1 − a2| +m |b1 − b2| for any a1, a2, b1, b2 ∈ [0, 1], and |φ(x)− φ(y)| ≤
|x− y| for any x, y ∈ R we obtain

‖̂l(u)‖ ≤ K1, (25)

‖̂l(u)− l̂(w)‖ ≤ K2‖u−w‖, (26)

where u,w ∈ (RN)M , K1 and K2 are constants defined as K1 = λ
minj∈J γj

+µθM and

K2 = 4Mλ
maxj∈J dj
minj∈J γj

+ 3µθM . The uniqueness now follows from inequalities (25) and (26)

by using Picard’s iteration technique since (RN)M is complete under the metric defined
in (7). ⊓⊔

C Proof of Proposition 2

We prove Proposition 2 by showing that the generators AN of the corresponding semigroups
converge as N → ∞ to the generator A of the deterministic process u(t, g).

First, we show that the solution u(t, g) of (10)-(11) is smooth with respect to the initial
point g and its partial derivatives are bounded.

Lemma 2 Let u(t, g) denote the solution of (10)-(11). For each j, n, j′, n′, i, k, and

t ≥ 0, the partial derivatives
∂u(t,g)

∂g
(j)
n

,
∂2u(t,g)

∂g
(j)
n

2 , and
∂2u(t,g)

∂g
(j)
n ∂g

(j′)

n′

exist for g ∈ U and satisfy

∣

∣

∣

∣

∣

∂u
(i)
k

(t, g)

∂g
(j)
n

∣

∣

∣

∣

∣

≤ exp(B1t) (27)

and
∣

∣

∣

∣

∣

∂2u
(i)
k (t, g)

∂g
(j)
n

2

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∂2u
(i)
k (t, g)

∂g
(j)
n ∂g

(j′)
n′

∣

∣

∣

∣

∣

≤
B2

B1
(exp(2B1t)− exp(B1t)), (28)

where B1 =
2λmaxj∈J dj
minj∈J γj

+ 2µθM
(

maxj∈J

)

, and B2 =
2λ(maxj∈J dj)

2

minj∈J γj
.

Proof The proof follows the same line of arguments as the proof of Lemma 3.2 of [24]. Fix

j, n, g and define u′(t) = ∂u(t, g)/∂g
(j)
n . If this partial derivative exists, then u′(t) must

satisfy u′
(i)
0 (t) = 0, u′

(i)
k

(0) = δijδkn. Further, by differentiating (13) we obtain (variable t
is supressed for simplifying notation)

du′
(i)
k

dt
=

λ

γj
di

(

(

u
(i)
k−1

)di−1
u′

(i)
k−1 −

(

u
(i)
k

)di−1
u′

(i)
k

) i−1
∏

l=1

(

u
(l)
⌈k−1⌉il

)dl

×
M
∏

l=i+1

(

u
(l)
⌊k−1⌋il

)dl
− µk

(

u′
(i)
k − u′

(i)
k+1

)

. (29)
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Conversely, if u′(t) is a solution of the system above, then it must be the required
partial derivative. Using Lemma 3.1 of [24] with a = B, b0 = 0, and c = 1 and the fact that
∣

∣

∣
u
(k)
r

∣

∣

∣
≤ 1 for all k,r it can be shown that ∂u

(k)
r (t,g)

∂g
(j)
n

exists and is bounded as given by (27).

Similarly, by differentiating (29) again with respect to g
(j)
n and g

(j′)
n′ , we get the system

of equations in
∂2u

(k)
r (t,g)

∂g
(j)
n

2 and
∂2u

(k)
r (t,g)

∂g
(j)
n ∂g

(j′)

n′

, respectively. Lemma 3.1 of [24] can be applied

again to this system to show that the second order partial derivatives also exist and are
bounded as given by (28).

Next, we show convergence of the generators AN . Note that the following arguments are
along the same lines of the proof of Theorem 2 in [24]. We repeat them here for completeness.

Let L denote the set of real continuous functions on U , and let D denote the set of f ∈ L

such that the partial derivatives
∂f(g)

∂g
(j)
n

,
∂2f(g)

∂g
(j)
n

2 , and
∂2f(g)

∂g
(j)
n ∂g

(j′)

n′

exist for all g, j, j′, n, n′, and

are uniformly bounded. Using the norm (7) on U and the sup-norm on L, we note that D
is dense in L. Further, for f ∈ D, we have

N

(

f(g +
e(n, j)

Nγj
)− f(g)

)

→
1

γj

∂f(g)

∂gj(n)
,

Nγj

(

f(g −
e(n, j)

Nγj
)− f(g)

)

→ −
∂f(g)

∂gj(n)
,

uniformly in g ∈ U , which upon substitution in (9) of Lemma 1 yields

lim
N→∞

ANf(g)

=
M
∑

j=1

θj
∑

n=1

∂f(g)

∂gj(n)

λ

γj

[

(

g
(j)
n−1

)dj
−
(

g
(j)
n

)dj
] j−1
∏

i=1

(

g
(i)
⌈n−1⌉ji

)di M
∏

i=j+1

(

g
(i)
⌊n−1⌋ji

)di

−
M
∑

j=1

θj
∑

n=1

∂f(g)

∂gj(n)
µn
(

g
(j)
n − g

(j)
n+1

)

,

=
M
∑

j=1

θj
∑

n=1

∂f(g)

∂gj(n)















λ

γj

[

(

g
(j)
n−1

)dj
−
(

g
(j)
n

)dj
] j−1
∏

i=1

(

g
(i)
⌈n−1⌉ji

)di M
∏

i=j+1

(

g
(i)
⌊n−1⌋ji

)di

− µn
(

g
(j)
n − g

(j)
n+1

)













,

=
d

dt
f(u(t, g))

∣

∣

∣

∣

t=0

, (30)

uniformly in g ∈ U .
We define a semigroup of operators T(t), t ≥ 0 in L by setting T(t)f(g) = f(u(t, g)).

Observe that the generator A of this semigroup is given by Af(g) = limt↓0
T(t)f(g)−f(g)

t
=

d
dt
f(u(t, g))|t=0, which coincides with the RHS of (30).6 Thus, we obtain ANf → Af , in

the sup norm for all f ∈ D.
Next, define D0 ⊂ D as those funcitons in D that depend on finitely many variables

gj(n). By the norm defined in (7) we note that D0 is dense in D, and hence in L. Further, by
Lemma 2, f0 ∈ D0 =⇒ T(f0) ∈ D. In addition, we note that the corresponding semigroups
TN (t) and T(t) are continuous and contracting in the space of continuous real functions on
U . These facts, along with Proposition 3.3 and Theorem 6.1 of [15] gives the desired result.

6 Recall that the generator A of the semigroup {T(t)}t≥0 acting on functions f : U → R

having bounded partial derivatives is given by Af(g) = limt↓0
T(t)f(g)−f(g)

t
[15].
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D Proof of Theorem 3

Consider a point x ∈ U . For each j ∈ J and k ∈ N, define

λ
(j)
k

=
λ

γj

(

x
(j)
k

)dj
−
(

x
(j)
k+1

)dj

x
(j)
k

− x
(j)
k+1

j−1
∏

i=1

(

x
(i)
⌈k⌉ji

)di M
∏

i=j+1

(

x
(i)
⌊k⌋ji

)di

, for 0 ≤ k ≤ θj − 1,

(31)

λ
(j)
k

= 0, for k ≥ θj . (32)

Next, for each j ∈ J and k ∈ N, define

π
(j)
k+1 =

λ
(j)
k

(k + 1)µ
π
(j)
k , (33)

where π
(j)
0 =

(

1 +
∑θj−1

k=0

λ
(j)
k

λ
(j)
k−1

...λ
(j)
0

(µ)k+1(k+1)!

)−1

. Finally, for each j ∈ J and k ∈ N, define

y
(j)
k

=
∑

n≥k

π
(j)
n . (34)

Clearly, y ∈ U . The map x 7−→ y, as defined above, is continuous in U . Further, since U is
compact under the metric defined in (7), Brower’s fixed point theorem shows that a fixed

point P exists. Substituting P for x in (31) and using the fact that π
(j)
k

= P
(j)
k

− P
(j)
k+1 in

the balance equations (33), and comparing (33) with (13), we see that P satisfies l(P) = 0.
This shows that P is a fixed point.

E Proof of Theorem 4

We note that for g,g′ ∈ UN such that g ≤ g′, we have u(t, g) ≤ u(t, g′) for all t ≥ 0. This

is because (10)-(11) show that du
(j)
k
/dt is non-decreasing in u

(i)
n for n 6= k and i 6= j [13].

Since this implies that

u(t,min(g,P)) ≤ u(t, g) ≤ u(t,max(g,P)),

it is sufficient to consider the two cases: g ≥ P and g ≤ P.

Define v(t, g) =
∑

j∈J (γj/λ)
∑θj

k=1 u
(j)
k

(t, g). We will show that for each g, the quantity

v(t, g) is bounded uniformly in t. If g ≤ P, then we have u(t, g) ≤ u(t,P) = P for all t ≥ 0.

Hence, v(t, g) ≤
∑

j∈J (γj/λ)
∑θj

k=1 P
(j)
k

for all t ≥ 0. On the other hand, if g ≥ P, then

u(t, g) ≥ u(t,P) = P. Adding the set of equations in (11) first over k and then over j, and
simplifying further yields:

dv(t, g)

dt
= 1−

∏

j∈J

(u
(j)
θj

(t, g))dj −
∑

j∈J

µγj

λ

θj
∑

k=1

u
(j)
k (t, g), (35)

≤ 1−
∏

j∈J

(P
(j)
θj

)dj −
∑

j∈J

µγj

λ

θj
∑

k=1

P
(j)
k
,

= 0,

where the last equality follows because P is a fixed point. Thus, we get v(t, g) ≤ v(0, g), for
all t ≥ 0.
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Since the derivative of u
(j)
n (t) is bounded for all j ∈ J , the convergence u(t, g) → P

will follow from

∫ ∞

0

(

u
(j)
k

(t, g)− P
(j)
k

)

dt <∞, j ∈ J , k ≥ 1 (36)

in the case g ≥ P, and from

∫ ∞

0

(

P
(j)
k

− u
(j)
k

(t, g)
)

dt <∞, j ∈ J , k ≥ 1 (37)

in the case g ≤ P. Both the bounds can be shown similarly. We discuss the proof of (36).
To prove (36) it is sufficient to show that

∫ ∞

0

∑

j∈J

µγj

λ

θj
∑

k=1

(

u
(j)
k

(t, g)− P
(j)
k

)

dt <∞. (38)

Rearranging (35) and using the fact that P is a fixed point gives

∑

j∈J

µγj

λ

θj
∑

k=1

(

u
(j)
k

(t, g)− P
(j)
k

)

= −
∏

j∈J

(u
(j)
θj

(t, g))dj +
∏

j∈J

(P
(j)
θj

)dj −
dv(t, g)

dt
,

≤ −
dv(t, g)

dt
,

where the last inequality is due to the fact that u(t, g) ≥ P. Thus,

∫ τ

0

∑

j∈J

µγj

λ

θj
∑

k=1

(

u
(j)
k

(t, g)− P
(j)
k

)

dt ≤ v(0, g)− v(τ, g).

Since v(t, g) is uniformly bounded in t, the right hand side of the above is bounded for all
τ ≥ 0. Thus, taking τ → ∞ in the above gives (38).

F Proof of Theorem 5

We recall that, for a given N , the stationary (invariant) distribution of xN (t) ∈ UN is
denoted by πN ∈ UN . Consider starting the CTMC xN (t) according the initial distribution
πN , that is, xN (t) = πN . Since UN is compact, so is the space of probability measures on
UN . Therefore, limN→∞ πN = π exists. Further, Theorem 2 shows that limN→∞ xN (t) =
limN→∞ πN = π satisfies (10) and (11). Since {πN}N are all invariant distributions, π
trivially satisfies l(π) = 0. Hence, π is a stationary point of the system of equations (10)
and (11). Using Theorem 4, which shows the unicity of the stationary point, we obtain the
desired result.

G Proof of Proposition 3

Since l(P) = 0, the following must hold for all j ∈ J :

P
(j)
k+1 − P

(j)
k+2 =

λ

µγj(k + 1)

(

(

P
(j)
k

)dj
−
(

P
(j)
k+1

)dj
)

×

j−1
∏

i=1

(

P
(i)
⌈k⌉ji

)di M
∏

i=j+1

(

P
(i)
⌊k⌋ji

)di

, for 0 ≤ k ≤ θj − 1, (39)
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where P
(j)
0 = 1 and P

(j)
k

= 0 for k > θj .

For some j ∈ J , putting k = θj − 1 in the above, we get

P
(j)
θj

=
λ

µγjθj

(

(

P
(j)
θj−1

)dj
−
(

P
(j)
θj

)dj
) j−1
∏

i=1

(

P
(i)

⌈θj−1⌉
ji

)di M
∏

i=j+1

(

P
(i)

⌊θj−1⌋
ji

)di

,

≤
λ

µγjθj

(

P
(j)
θj−1

)dj
.

Next, for k = θj − 2, we have

P
(j)
θj−1 = P

(j)
θj

+
λ

µγj(θj − 1)

(

(

P
(j)
θj−2

)dj
−
(

P
(j)
θj−1

)dj
)

×

j−1
∏

i=1

(

P
(i)

⌈θj−2⌉
ji

)di M
∏

i=j+1

(

P
(i)

⌊θj−2⌋
ji

)di

,

≤
λ

µγjθj

(

P
(j)
θj−1

)dj
+

λ

µγj(θj − 1)

(

(

P
(j)
θj−2

)dj
−
(

P
(j)
θj−1

)dj
)

,

=
λ

µγj(θj − 1)

(

P
(j)
θj−2

)dj
−

λ

µγj

(

1

θj − 1
−

1

θj

)

(

P
(j)
θj−1

)dj
,

≤
λ

µγj(θj − 1)

(

P
(j)
θj−2

)dj
.

Proceeding in the above manner, we obtain

P
(j)
k

≤







1, for 0 ≤ k <
⌈

λ
µγj

⌉

,

λ
µγjk

(P
(j)
k−1)

dj , for
⌈

λ
µγj

⌉

≤ k ≤ θj
.

Expanding the above for the case of P
(j)
θj

and simplifying further, we obtain (17). Proceeding

on similar lines with dj = 1,∀j ∈ J in the above, we obtain (18).

H Proof of Proposition 4

Note that the first part of the proposition is a special case of the second part. Hence, it is
sufficient to prove the second part. We will provide a proof for the M = 2 case. The proof
can be readily generalized to any M ≥ 2.

Due to the dynamics of the system (under MFV scheme) and the hypothesis of the

proposition {q
(j,k)
N (t), 1 ≤ k ≤ Nγj , 1 ≤ j ≤ M} is intra-class exchangeable for all t ∈ [0,∞].

The hypothesis of the proposition also implies that χN (t) ⇒ Q(t) as N → ∞ for all
t ∈ [0,∞]. Henceforth, we will omit the variable t in our calculations, which hold for all
t ∈ [0,∞].

For the case M = 2, it is sufficient to show that the following convergence holds as
N → ∞.

E

[

r1
∏

k=1

φk

(

q
(1,k)
N

)

r2
∏

k=1

ψk

(

q
(2,k)
N

)

]

→

r1
∏

k=1

〈φk, Q
(1)〉

r2
∏

k=1

〈ψk , Q
(2)〉 (40)

for all bounded mappings φk, ψk : N → R+. Now we have
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∣

∣

∣

∣

∣

E

[

r1
∏

k=1

φk

(

q
(1,k)
N

)

r2
∏

k=1

ψk

(

q
(2,k)
N

)

]

−

r1
∏

k=1

〈φk , Q
(1)〉

r2
∏

k=1

〈ψk , Q
(2)〉

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

E

[

r1
∏

k=1

φk

(

q
(1,k)
N

)

r2
∏

k=1

ψk

(

q
(2,k)
N

)

]

− E

[

r1
∏

k=1

〈φk, χ
(1)
N 〉

r2
∏

k=1

〈ψk , χ
(2)
N 〉

]∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

E

[

r1
∏

k=1

〈φk , χ
(1)
N 〉

r2
∏

k=1

〈ψk , χ
(2)
N 〉

]

−

r1
∏

k=1

〈φk , Q
(1)〉

r2
∏

k=1

〈ψk , Q
(2)〉

∣

∣

∣

∣

∣

. (41)

Note that the second term on the right hand side of the above inequality vanishes as N → ∞

since χ
(j)
N ⇒ Q(j) as N → ∞ for j = 1, 2 and Q(1) and Q(2) are constants. Since intra-class

exchangeability implies that the permutation of states of servers of the same class does not
change their joint distribution, we can average over all the possible states and thus write

E

[

r1
∏

k=1

φk

(

q
(1,k)
N

)

r2
∏

k=1

ψk

(

q
(2,k)
N

)

]

=
1

(Nγ1)r1 (Nγ2)r2

× E





∑

σ∈P (r1,Nγ1)

∑

σ′∈P (r1,Nγ1)

r1
∏

k=1

φk

(

q
(1,σ(k))
N

)

r2
∏

k=1

ψk

(

q
(2,σ′(k))
N

)



 , (42)

where (N)k = N(N − 1) . . . (N − k + 1), and P (r, n) denotes the set of all permutations of
the numbers {1, 2, . . . , n} taken r at a time. In the following we let C(r, n) denote the set of
all r-tuples formed from elements of {1, 2, . . . , n}. Thus, |P (r, n)| = (n)r and |C(r, n)| = nr .

Further, we define D(r, n) = C(r, n)\P (r, n). Proceeding, from the definition of χ
(j)
N we have

E

[

r1
∏

k=1

〈φk , χ
(1)
N 〉

r2
∏

k=1

〈ψk, χ
(2)
N 〉

]

= E









r1
∏

k=1

1

Nγ1

Nγ1
∑

l=1

φk

(

q
(1,l)
N

)









r2
∏

k=1

1

Nγ2

Nγ2
∑

l=1

ψk

(

q
(2,l)
N

)







 ,

= E





1

(Nγ1)r1

∑

σ∈C(r1,Nγ1)

r1
∏

k=1

φk

(

q
(1,σ(k))
N

) 1

(Nγ2)r2

∑

σ′∈C(r2,Nγ2)

r2
∏

k=1

ψk

(

q
(1,σ′(k))
N

)



 ,

=
1

(Nγ1)r1(Nγ2)r2
E





∑

σ∈P (r1,Nγ1)

∑

σ′∈P (r2,Nγ2)

r1
∏

k=1

φk

(

q
(1,σ(k))
N

)

r2
∏

k=1

ψk

(

q
(1,σ′(k))
N

)





+
1

(Nγ1)r1 (Nγ2)r2
E





∑

σ∈D(r1,Nγ1)

∑

σ′∈D(r2,Nγ2)

r1
∏

k=1

φk

(

q
(1,σ(k))
N

)

r2
∏

k=1

ψk

(

q
(1,σ′(k))
N

)



 .

(43)
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From (42) and (43), we have

∣

∣

∣

∣

∣

E

[

r1
∏

k=1

φk

(

q
(1,k)
N

)

r2
∏

k=1

ψk

(

q
(2,k)
N

)

]

− E

[

r1
∏

k=1

〈φk , χ
(1)
N 〉

r2
∏

k=1

〈ψk, χ
(2)
N 〉

]∣

∣

∣

∣

∣

=

∣

∣

∣

∣

(

1

(Nγ1)r1(Nγ2)r2
−

1

(Nγ1)r1 (Nγ2)r2

)

× E





∑

σ∈P (r1,Nγ1)

∑

σ′∈P (r2,Nγ2)

r1
∏

k=1

φk

(

q
(1,σ(k))
N

)

r2
∏

k=1

ψk

(

q
(1,σ′(k))
N

)





+
1

(Nγ1)r1 (Nγ2)r2
E





∑

σ∈D(r1,Nγ1)

∑

σ′∈D(r2,Nγ2)

r1
∏

k=1

φk

(

q
(1,σ(k))
N

)

r2
∏

k=1

ψk

(

q
(1,σ′(k))
N

)





∣

∣

∣

∣

∣

∣

,

≤

∣

∣

∣

∣

(

1

(Nγ1)r1(Nγ2)r2
−

1

(Nγ1)r1 (Nγ2)r2

)

|P (r1, Nγ1)||P (r2, Nγ2)|B
r1+r2

+
1

(Nγ1)r1 (Nγ2)r2
(|C(r1, Nγ1)||C(r2, Nγ2)| − |P (r1, Nγ1)||P (r2, Nγ2)|)B

r1+r2

∣

∣

∣

∣

,

≤ 2Br1+r2

(

1−
(Nγ1)r1 (Nγ2)r2
(Nγ1)r1 (Nγ2)r2

)

,

→ 0 as N → ∞,

where B = max (‖φk‖∞, ‖ψk‖∞). This completes the proof.
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