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22 Abstract

23 In recent decades, intensification of animal production has been occurring rapidly in transition 

24 economies to meet the growing demands of increasingly urban populations. This comes with 

25 significant environmental, health and social impacts. To assess these impacts, detailed maps 

26 of livestock distributions have been developed by downscaling census data at the pixel level 

27 (10km or 1km), providing estimates of the density of animals in each pixel. However, these 

28 data remain at fairly coarse scale and many epidemiological or environmental science 

29 applications would make better use of data where the distribution and size of farms are 

30 predicted rather than the number of animals per pixel. Based on detailed 2010 census data, 

31 we investigated the spatial point pattern distribution of extensive and intensive chicken farms 

32 in Thailand. We parameterized point pattern simulation models for extensive and intensive 

33 chicken farms and evaluated these models in different parts of Thailand for their capacity to 

34 reproduce the correct level of spatial clustering and the most likely locations of the farm 

35 clusters. We found that both the level of clustering and location of clusters could be simulated 

36 with reasonable accuracy by our farm distribution models. Furthermore, intensive chicken 

37 farms tended to be much more clustered than extensive farms, and their locations less easily 

38 predicted using simple spatial factors such as human populations. These point-pattern 

39 simulation models could be used to downscale coarse administrative level livestock census 

40 data into farm locations. This methodology could be of particular value in countries where farm 

41 location data are unavailable.

42
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45 production systems 
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47 1. Introduction 

48 Following demographic and economic development, the per capita consumption of animal-

49 source food has increased continuously over the past few decades, with significant 

50 consequences for livestock production (Delgado, 1999; Slingenbergh et al., 2013; Steinfeld, 

51 2004). The growth in demand for animal products, mainly meat, eggs and milk, was met 

52 primarily through intensification of livestock production, which was particularly marked for 

53 monogastric species such as poultry and pigs (Gilbert et al., 2015; Smil, 2002). Interest in good 

54 spatial data on livestock distribution has grown along intensification and the growing 

55 importance of livestock as a food and income source, as well as a source of environmental 

56 and sanitary issues (Burdett et al., 2015; Martin et al., 2015; Steinfeld et al., 2006). Several 

57 challenges exist in relation to the production of such maps, among which the level of 

58 intensification and the available source data stand out. 

59

60 In most high-income countries, detailed farm registers exist, but are often distributed in 

61 aggregated form to protect privacy. In low and middle-income countries, registers rarely exist 

62 and the most accurate data sets are produced through agricultural censuses, the detail of 

63 which varies considerably across countries (Robinson et al., 2014; Wint et al., 2007). Both 

64 situations, from data-rich or -poor countries, may lead to livestock statistics being only available 

65 at coarse spatial scales insufficient for detailed analyses. To increase the spatial detail of 

66 coarse livestock data, previous studies on livestock distribution mapping developed spatial 

67 statistical algorithms linking densities to environmental variables to downscale census data 

68 from administrative boundaries to density estimates at the pixel level. This represents livestock 

69 densities varying gradually across pixels, as in databases such as the Gridded Livestock of 

70 the World (GLW) version 1 (Wint et al., 2007), version 2 (Robinson et al., 2014) and version 3 

71 (Gilbert et al., In press). Other authors have applied similar approaches to map livestock at 

72 country or continental scale (Neumann et al., 2009; Prosser et al., 2011; Van Boeckel et al., 

73 2011). 

74
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75 In addition to a lack of spatial detail, a distinction between intensive and extensive production 

76 systems, is rarely made. Intensive systems were defined as large-scale commercial, market-

77 oriented and high-input farms and extensive systems as small-scale, low-input backyard 

78 production systems (Van Boeckel et al., 2012). However, this is an important distinction in 

79 terms of their health and environmental impacts (Van Boeckel et al., 2012; Gerber et al., 2013; 

80 Jones et al., 2013a; Gilbert et al., 2015). More specifically, intensification of pig and poultry 

81 production comes with significant, among others, health impacts (Leibler et al., 2009; Mennerat 

82 et al., 2010; Pulliam et al., 2012; Jones et al., 2013b; Slingenbergh et al., 2013; Van Boeckel 

83 et al., 2014). Health impacts, notably through pathogen emergence and re-emergence, has a 

84 potential global relevance, as illustrated by the threat of pandemic influenza (Leibler et al., 

85 2009; Li et al., 2004; Monne et al., 2014). Intensified systems promote high densities of 

86 genetically similar individuals, which promotes pathogen amplification, selection of more 

87 virulent pathogens and risk of pathogen spill-over (Jones et al., 2013a). Owing to their close 

88 interactions with humans, particularly in peri-urban environments, and possible contacts with 

89 wild animals, intensive production systems can also serve as an intermediate between wildlife 

90 and human populations and as amplifier (Childs et al., 2007). Differentiating between extensive 

91 and intensive systems, or simply knowing where the largest farms are, is therefore particularly 

92 important in regions where production is currently undergoing intensification, as the 

93 distributions of extensive and intensive farms may have different spatial patterns and may 

94 change rapidly through time. Thus far, few attempts have been made to distinguish extensive 

95 from intensive production systems. Gilbert et al. (2015) developed an approach to separate 

96 extensive from intensively raised animals in global chicken and pig maps based on a simple 

97 mode using GDP per capita. At the country scale, Van Boeckel et al. (2012) observed a distinct 

98 bimodal distribution in poultry farms in Thailand that could be used to distinguish extensive 

99 from intensive farms. They modelled extensive and intensive poultry separately using a 

100 methodology similar to that of GLW, and noted a relatively poor predictive accuracy for 

101 intensively-raised chickens compared to extensive chickens using that approach. 

102
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103 Finally, a continuous surface, pixel-based model may not be the best way to represent 

104 intensive farms. Indeed, intensification of poultry production is such that a very large number 

105 of birds can be present in a single location (e.g. typically more than 100 000 birds can be found 

106 in a farm or site), with very few in an adjacent pixel. A discrete spatial representation of 

107 individual farms as single point locations, with the number of birds as an attribute, may thus 

108 represent intensive farms better than a continuous surface image. Another issue with regards 

109 to modelling farm locations instead of animal densities is that such models would better fit the 

110 needs of mathematical models of livestock diseases (Martin et al., 2015). Epidemic 

111 mathematical transmission models may be sensitive to the spatial clustering, distribution, type 

112 and overall density of farms (Reeves, 2012; Tildesley and Ryan, 2012), and mitigation 

113 measures of disease transmission are in part based on the distance between farms. Fine-scale 

114 maps of farm distribution, including farm position and level of clustering, could thus make an 

115 important contribution to models that can inform control strategies (Bruhn et al., 2012). While 

116 broad-scale clusters of farms may be captured by aggregated data, the factors influencing 

117 farm distribution are poorly known at finer scales (Burdett et al., 2015). In the presence of 

118 aggregated census data, the distribution of individual farm locations have tended to be based 

119 on random allocation of points, regardless of other geographic information (Tildesley et al., 

120 2010) or, in some cases, constrained by geographical information contained in probability 

121 surfaces (Bruhn et al., 2012; Burdett et al., 2015; Emelyanova et al., 2009; Tildesley and Ryan, 

122 2012). However, none of these methods have captured both the number of points and the 

123 pairwise interaction between points (first and second order characteristics) to predict the 

124 spatial clustering of farms as well as differences in their broader distributions.

125

126 In this paper, we investigated the use of point-pattern models as a way to predict the 

127 distribution of individual farms both in terms of spatial clustering and in terms of dependency 

128 on external variables influencing their presence. This approach may provide more realistic 

129 representations of animal distribution at fine spatial scales than continuous pixel-based 

130 distributions, especially for species such as poultry and pigs that may be raised in high 
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131 numbers in single premises. Our analyses focused on Thailand chicken farms, as an example 

132 of a middle-income country where extensive production systems (backyard poultry farms) 

133 coexist with intensive ones (large-scale chicken farms) (Van Boeckel et al., 2012).

134

135 2. Methods

136 2.1. Data

137 A detailed census of poultry holders was conducted in 2010 by the Department of Livestock 

138 Development (DLD), Bangkok, Thailand. The census included the number of chickens per 

139 owner for all farms in Thailand. The administrative levels in Thailand are province, district, sub-

140 district and village, the latter being the smallest. The three first levels have defined boundaries, 

141 while villages are recorded by coordinates, usually at the center of the main cluster of houses. 

142 During the census, the coordinates of each poultry holder were not collected. The coordinates 

143 of the village were subsequently linked to each poultry holder. The census recorded 1,936,590 

144 chicken owners in a total of 62,091 villages. Henceforth, we will use the term ‘farm’ to represent 

145 both smallholders, who may be a single family with a few chickens, and large-scale farms 

146 having several thousand birds. Farms with no chickens were removed from the dataset. A set 

147 of Voronoi polygons (Okabe et al., 2000) was built from the village coordinates. The median 

148 area of the Voronoi polygons was 4 km2, the mean area was 8 km2 (Supplementary Material 

149 (SM) – Figure S1). A mask excluding permanent water bodies and the province and city of 

150 Bangkok was applied. Individual farms were assigned a random coordinate within their polygon 

151 excluding of masked areas. Our input data set thus did not include the exact locations of farms, 

152 but an approximate location. However, given the extent (whole of Thailand) and the resolution 

153 of our predictors (1km), we considered this loss of accuracy to have a negligible effect on our 

154 results. 

155

156 The distribution of chickens per farm showed a clear bimodal pattern (Van Boeckel et al., 2012) 

157 and a threshold of 500 chickens per farm was used to separate extensive small-scale 

158 producers from intensive large-scale systems. This threshold maximized the correlation 
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159 between the quantiles of the intensive and extensive distributions of animals per farm in the 

160 two groups and the quantiles of two normal distributions of same mean and standard deviation. 

161 This resulted in two datasets of 1,930,003 extensive farms with a median number of 20 

162 chickens per farm, and 6,587 intensive farms with a median number of 8,000 chickens per 

163 farm. In the absence of other information on the farm (size, inputs, outputs, practices), we 

164 assumed flock size to be an acceptable proxy for the classification in ‘extensive’ or ‘intensive’ 

165 holdings. 

166

167 Spatial predictor variables were selected to be both generic and available in databases with a 

168 global extent (Table 1,Fig. 1) so that the models and approaches followed in this study could 

169 be transferred to data-poor countries. The predictor variables were previously identified as 

170 having strong predictive capacity by Van Boeckel (2012). The logarithm (base 10) of human 

171 population density (Worldpop database, http://www.worldpop.org.uk was included as farms 

172 are unlikely to be located either in city centres or in completely remote areas. “Remoteness”, 

173 defined as the travel time to Bangkok and to the closest provincial capital, accounted for 

174 differences in accessibility to provincial or national markets through the road and railway 

175 networks. This was computed from Nelson’s accessibility which is based on a cost-distance 

176 algorithm in unit of time. The weighted surface accounts for transport networks, environment 

177 and political factors affecting travel times (Nelson, 2008). Thus, it also helps identifying areas 

178 less suitable for chicken farms. Tree cover or percentage of land covered by forest was 

179 included as areas covered by dense and permanent forest may also exclude poultry farming 

180 (Hansen et al., 2013). Cropland or percentage of land covered by crops  accounted for areas 

181 providing access to grain for feed (Fritz et al., 2015).   

182

183 Table 1. Predictor variables tested in our models

Resolution (m) Units Reference 

Human population density 1000 People per km2 Worldpop database

Remoteness 1000 Minute Nelson et al. 2008

http://www.worldpop.org.uk
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Cropland 1000 Pixel % covered by crops Fritz et al. 2015

Tree cover 1000 Pixel % covered by forest Hansen et al. 2013

184

185 2.2. Sample areas 

186 The analysis was applied on squares samples of equal area sampling the Thai territory (Fig. 

187 2). This allowed keeping processing time reasonable by dealing with a fraction of the very 

188 numerous chicken farms in Thailand and also avoided computational difficulties at the complex 

189 edges of the country. Creating sample areas also allowed to cross-validate model results. The 

190 size and location of the sample areas were chosen to cover most of Thailand completely, to 

191 cover a sufficient number of farms, and to include a diversity of predictor values and farm 

192 densities. For intensive farms, Thailand was divided into square areas of 200 x 200 km, and 

193 we analysed only the 11 sample areas with over 250 farms (Fig. 2a). For extensive farms, 38 

194 sample areas of 112 x 112 km, each having at least half over Thailand, were used (Fig. 2b). 

195

196 2.3. Descriptive analysis

197 The distribution of extensive and intensive farm locations was investigated using point pattern 

198 analysis. We used the stationary and non-stationary Besag’s L-function, a transformation of 

199 Ripley’s K-function, to define the spatial pattern of intensive and extensive farms between three 

200 different broad types of point pattern: random, clustered and regular. The random case referred 

201 to the completely spatial randomness (CSR) or homogenous Poisson process model. The L-

202 functions were estimated by sample areas with Lest() and Linhom() functions from the spastat 

203 package in R. 

204

205 Ripley’s K-function is a summary statistic of a point process, defined as the expected number 

206 of r-neighbours of a point of X divided by the intensity  i.e.: 𝜆

207 𝐾(𝑟) =  
1
𝜆𝔼[number of neighbours of 𝑢 | 𝐗 has a point at location 𝑢]

208 for any  at any location u, where r is the radius,  is the homogeneous intensity of points, 𝑟 ≥ 0 𝜆

209 X is the point process and u is any location. This definition assumes that the process is 
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210 stationary, which imply that the intensity is constant and does not depend on the location 

211 (Baddeley et al., 2015). The empirical K-function is a summary of the pairwise distances of a 

212 point pattern, which allows point patterns with different intensities to be compared, and the 

213 analysis of a pattern at different scales, since the function is normalized by the intensity. The 

214 empirical K-function is defined as

215 𝐾(𝑟) =  ( 𝑎
𝑛(𝑛 ‒ 1)) ∑

𝑖,𝑗 = 1;𝑖 ≠ 𝑗
𝐼(𝑑[𝑖,𝑗] ≤ 𝑟) 𝑒[𝑖,𝑗]

216 where a is the study area, n is the total number of points in a, the sum is taken over all ordered 

217 pairs of distinct points i and j,  is the distance between two points and  is the 𝑑[𝑖,𝑗] 𝐼(𝑑[𝑖,𝑗] ≤ 𝑟)

218 indicator that equals 1 if the distance is less than or equal to r. The term   is the edge 𝑒[𝑖,𝑗]

219 correction weight, which was discarded as the number of points considered in both datasets 

220 was very large. By using , it assumes that the process is stationary. An observed point 
𝑎

𝑛(𝑛 ‒ 1)

221 pattern is considered as clustered, random or regular depending on whether its empirical K-

222 function is respectively higher than, close to or lower than the K-function of a CSR, i.e. the 

223 curve of equation . In the case of a non-stationary process, a generalisation of the later 𝑦 =  𝜋𝑟2

224 should be used, the inhomogeneous K-function. This generalisation assumes that X is a point 

225 process with a non-constant intensity  at each location , i.e.  𝜆(𝑢) 𝑢

226 𝐾𝑖𝑛ℎ𝑜𝑚(𝑟) =  (1
𝐴)∑

𝑖
∑

𝑗, 𝑖 ≠ 𝑗

1(𝑑[𝑖,𝑗] ≤ 𝑟)
(𝜆(𝑥𝑖)𝜆(𝑥𝑗))

227 where  is a constant denominator, and  is the distance between points  and  (Baddeley 𝐴 𝑑[𝑖,𝑗] 𝑥𝑖 𝑥𝑗

228 et al., 2000). Besag’s L-function   is a transformation of the K-function for which a 𝐿(𝑟) =  
𝐾(𝑟)

𝜋

229 CSR is a straight line  when  is plotted against . 𝐿𝑟𝑎𝑛𝑑𝑜𝑚(𝑟) = 𝑟 𝐿(𝑟) 𝑟

230

231 2.4. Point pattern simulation

232 2.4.1. Model choice 

233 To predict the spatial distribution of intensive and extensive farms as points, the Log-Gaussian 

234 Cox Processes (LGCP) model was used (Møller et al., 1998), with the Palm maximum 
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235 likelihood method of parameter optimisation (Baddeley et al., 2015; Tanaka et al., 2008). The 

236 Palm maximum likelihood method provides almost the same results as the minimum contrast 

237 method and our study may be done with both of these algorithm (Baddeley et al., 2015). 

238

239 We compared the five processes modelling clustered point patterns; the Matérn cluster 

240 process, the Thomas process, the Cauchy cluster process, the Variance gamma cluster 

241 process and the LGCP with exponential covariance function (SM-Figure S 2) (Baddeley et al., 

242 2015). These models were fitted on one sample area of 200 km length in Thailand using the 

243 intensive dataset, including covariates with the command line kppm(X, ~ Hpop + Crop + Tree 

244 + Remot + I(Hpop^2)+ I(Crop^2) + I(Tree^2) + I(Remot^2), clusters = 

245 c("Thomas","MatClust","Cauchy","VarGamma","LGCP"), method = "palm") using the kppm() 

246 function from spatstat package in R (all other arguments had default settings). The covariates 

247 were selected based on the Akaike Information Criterion (AIC) as below. We assessed how 

248 these different models were able to reproduce the clustering of the observed point pattern by 

249 using the two-sided global rank envelope test. The hypothesis tested by the rank envelope test 

250 is that the model tested can explain the process from which the observed point pattern 

251 originates. The test provides a p-value and a graphical representation of the envelope. The p-

252 value decreases when the empirical L-function goes out of the global rank envelope. It was 

253 implemented based on extreme rank lengths with the global_rank_envelope() function from 

254 GET package in R (Mrkvička et al., 2017; Myllymäki et al., 2017)  for 100,000 simulations of 

255 each model. The extreme rank lengths type was selected because it allowed to run fewer 

256 simulations (Mrkvička et al., 2016; Myllymäki et al., 2017). The conclusion of the extreme rank 

257 envelope test was that the LGCP performed best. It had by far the highest p-value, 5.40e-02, 

258 compared to the other models with a p-value of 2.80e-04, 2.40e-04, 1.08e-03, 6.48e-03, for 

259 the Matern, Thomas, Variance Gamma, Cauchy models, respectively (SM – Figure S 3). 

260 Hence, LGCP was used for all subsequent modelling of clustered point patterns.

261

262 2.4.2. Model fitting and validation  
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263 Four different types of model were built and compared: (i) “CSR”: a completely spatial 

264 randomness (CSR) or homogenous Poisson process model, which randomly distributed farms; 

265 (ii) “iCSR”:  inhomogeneous Poisson process model, a CSR in which the average density of 

266 points is spatially varying. The average density is an intensity function  of spatial location 𝜆(𝑢)

267 . In our model, the intensity was modelled as ; (iii) “LGCP”: a LGCP 𝑢 𝜆 = exp (𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠)

268 model with a homogeneous intensity (without any covariates) with an exponential covariance 

269 function (Baddeley et al., 2015); and (iiv) “iLGCP”: a LGCP model with covariates predicting 

270 an inhomogeneous intensity and identifying highly probable locations for clusters. iLGCP was 

271 defined with a covariate exponential function and a random intensity modelled as 𝜆 = exp 

272 . For the later model, the AIC was used to select the best combination of predictor (𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠)

273 variables: 

274 𝐴𝐼𝐶 = 2log (𝑃𝐿) +  𝑘(𝑒𝑑𝑓)

275 where PL is the maximised Palm likelihood of the fitted model, and edf the effective degrees 

276 of freedom of the model (Baddeley et al., 2015- section 12.6.4; Tanaka et al., 2008). The AIC 

277 values of the models with different combination of covariates were compared on the 11 areas 

278 for the intensive farms dataset using the standardized difference with null model AIC,  

279
𝐴𝐼𝐶𝑛𝑢𝑙𝑙 ‒ 𝐴𝐼𝐶𝑚𝑜𝑑𝑒𝑙𝑖

𝐴𝐼𝐶𝑛𝑢𝑙𝑙

280 where  is the AIC of a LGCP model without covariates and  is the AIC of ith 𝐴𝐼𝐶𝑛𝑢𝑙𝑙 𝐴𝐼𝐶𝑚𝑜𝑑𝑒𝑙𝑖

281 LGCP models with a set of variables. The model showing the greatest (positive) difference 

282 with the  model was selected for both non-stationary models, the iCSR and the iLGCP. 𝐴𝐼𝐶𝑛𝑢𝑙𝑙

283 This was implemented with the functions ppm() and kppm() from the R package spatstat when 

284 the model was the CSR and LGCP, respectively. The relative importance of each predictor 

285 variable was estimated as the exponential of the coefficient value of a covariate multiplied by 

286 the range of values of the covariate (Baddeley et al., 2015).  

287

288
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289 We aimed to evaluate the goodness-of-fit of our simulated patterns in their capacity to 

290 reproduce both the level of clustering and the location of clusters in comparison to the observed 

291 patterns. For each sample area and type of model, and using the best-fit parameters, we 

292 simulated 1500 and 8000 point patterns for extensive and intensive datasets, respectively. The 

293 number of simulations was chosen to balance the stability of the p-value and computing time 

294 (SM – Figure S 4). We implemented the global rank envelope test again to quantify the 

295 similarities in the level of clustering. This function allows a point pattern to be characterised 

296 independently from the density of points, which enabled the comparison of the p-values across 

297 simulations and areas. We then looked at the proportion of sample areas with significant p-

298 values. To evaluate the goodness-of-fit of the simulated patterns in terms of location of the 

299 clusters, each sample area was further divided into 64 square quadrats. The correlation 

300 coefficient between the observed and modelled number of farms per quadrat for each 

301 simulation was computed. Quadrats intersecting the Thai border were removed when less than 

302 95% of their area was in Thailand. Quadrat size was chosen to have a sufficient number of 

303 quadrats and of points per quadrat to produce a meaningful correlation coefficient (SM - Figure 

304 S 5). In addition to goodness-of-fit methods estimated for each model type (CSR, iCSR LGCP 

305 and iLGCP) on the calibration area, we also estimated goodness-of-fit methods (global rank 

306 envelope test and correlation coefficient) on a different sample area from the model calibration 

307 area, henceforth referred to as the validation area. 

308

309 3. Results 

310 Intensive farms were clustered, as assessed by the L-functions (Fig. 3). Extensive farms were 

311 randomly distributed, L-function being around the CSR case L-function. Empirical non-

312 stationary L-functions (L-inhom on Fig. 3) were closer to CSR case than the stationary L-

313 functions (L-hom on Fig. 3). All four spatial predictors and their quadratic terms were included 

314 in the non-stationary models (iCSR and iLGCP), following the comparison of AIC on the 

315 intensive farms dataset (Fig. 4). This intensity function was defined as
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316 𝜆(𝑢) =
317 exp (𝛽0 + 𝛽1𝐻𝑝𝑜𝑝(𝑢) + 𝛽2𝑅𝑒𝑚𝑜𝑡(𝑢) + 𝛽3𝐶𝑟𝑜𝑝(𝑢) + 𝛽4𝑇𝑟𝑒𝑒(𝑢) + 𝛽5𝐻𝑝𝑜𝑝2(𝑢) + 𝑅𝑒𝑚𝑜𝑡2(𝑢) + 𝛽7𝐶𝑟𝑜𝑝2(𝑢) + 𝛽8𝑇𝑟𝑒𝑒2)
318 ,

319 with  to parameters to be estimates, Hpop the human population density, Remote 𝛽0, 𝛽1…, 𝛽8

320 the remoteness, Crop the cropland and Tree the tree cover.

321  

(a) Intensive dataset (b) Extensive dataset

CALIBRATION TRAINING

Significance 
threshold 0,001 0,01 0,05 0,1 Significance threshold 0,001 0,01 0,05 0,1

CSR 100 100 100 100  CSR 100 100 100 100
iCSR 91 100 100 100  iCSR 100 100 100 100
LGCP 0 27 64 73  LGCP 0 16 34 45
iLGCP 27 36 73 82  iLGCP 24 53 68 76

 

VALIDATION VALIDATION

Significance 
threshold 0,001 0,01 0,05 0,1 Significance threshold 0,001 0,01 0,05 0,1

CSR 100 100 100 100  CSR 100 100 100 100
iCSR 82 91 91 100  iCSR 100 100 100 100
LGCP 0 27 64 73  LGCP 50 68 79 79
iLGCP 45 64 73 73  iLGCP 79 89 92 95

322 Table. 2. Proportions of sample areas with a significant p-value at different significance thresholds. 

323

324 In terms of indicators of level of clustering (Table. 2a and b), measured with the global rank 

325 envelope test, LGCP and iLGCP reproduced the observed level of clustering better than the 

326 random models (CSR and iCSR), having higher p-values in almost all sample areas from both 

327 datasets. CSR and iCSR models were almost always highly significant (p<0.05), thus neither 

328 models explained the observed point patterns. LGCP was more often the best model but did 

329 not explain the data in all sample areas since their p-values were significant in some areas. In 

330 sample areas where a model was not rejected, both LGCP and iLGCP performed well for the 

331 intensive dataset. LGCP and iLGCP were significant at 0.05 in 64% and 73% of cases for the 

332 calibration and the validation. However, LGCP performed better than iLGCP in extensive 

333 dataset. LGCP and iLGCP were significant at the p<0.05 level on extensive dataset, in 34% 

334 and 68% of cases for calibration and 79% and 92% of cases validation. However, the variance 
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335 of LGCP models was higher than iLGCP models. iLGCP models were then more easily 

336 rejected by the global rank envelope as seen with the width of the envelopes (Fig. 5). 

337

338 In terms of location of clusters (Fig. 6a and b), the models with covariates (iCSR and iLGCP) 

339 performed better than the models without (CSR and LCGP). The two sets of metrics of the 

340 iCSR and iLGCP models in the calibration and validation areas had significantly higher 

341 correlation coefficients than the other models (CSR and LGCP), for both intensive and 

342 extensive farm point patterns. This result was expected since these models are 

343 inhomogeneous, having an intensity explained by covariates.  The medians of the correlation 

344 coefficients of iCSR and iLGCP were generally higher for the extensive than for the intensive 

345 dataset. However, correlation coefficients were slightly higher for iCSR models compared to 

346 iLGCP models in both calibration and validation area. The medians of the correlation 

347 coefficients of the different models (CSR, iCSR, LGCP and iLGCP (calibration and validation)) 

348 were 0.008, 0.565, 0.004, 0.411, -0.006, 0.521, -0.002 and 0.356 for the intensive dataset and 

349 0.006, 0.752, 0.003, 0.631, 0.000, 0.711, 0.007 and 0.576 for the extensive dataset. Taking 

350 into account both indices, of the level of clustering and the location of clusters, iLGCP 

351 performed the best. We provided as an illustration a simulation produced by the four model 

352 types (CSR, iCSR, LGCP and iLGCP) applied to a sample are from intensive and extensive 

353 farms datasets and a plot of the observed farm patterns (Fig. 5), along with the plot of the 

354 global rank envelope test.

355

356 The coefficients of the different iLGCP model parameters for both intensive and extensive 

357 datasets are presented in Fig. 8. Human population density was by far the most important 

358 predictor of intensive and extensive models on average, followed by tree cover, cropland and 

359 remoteness (Fig. 7), and the relative importance of predictor variables were similar for the 

360 intensive and extensive farms. 

361

362 4. Discussion
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363 In this paper, we explored the potential of point pattern simulation models to reproduce real-

364 world distribution of intensive and extensive chicken farms. The implementation of these 

365 models allowed to produce a set of discrete and realistic point locations. Our iLGCP models 

366 were able to reproduce the level of clustering and the local density of farms better than the 

367 other models. LGCP models reproduced the level of clustering, but not the cluster location 

368 well, whereas iCSR located the clusters well, but did not capture the level of clustering. 

369 Extensive farm distribution was closer to a random distribution than intensive farms, and these 

370 simulations benefitted less from using a LGCP. Conversely, intensive farms were more 

371 clustered, so the LGCP models reproduced these patterns much better than the random 

372 model, but the quality of the prediction of local densities was lower. 

373

374 Our result indicated clearly the need to account for clustering in the distribution of intensive 

375 farms. Such clustering of farms may enable farmers to benefit from economies of scale (Van 

376 Boeckel et al., 2012), or facilitate operations for contract farming. Many farmers in Thailand 

377 operate as contractors for large consolidator companies such as Charoen Pokphand (CP). 

378 Farms directly owned by CP may also be clustered. Also, as described by (Feder et al., 1985), 

379 the adoption of agricultural innovations in developing countries is affected by group influences 

380 on individual behaviour. The presence of a well-established, successful, intensive poultry farm 

381 may stimulate similar economic activity nearby. The improved prediction of intensive farm 

382 locations by including clustering thus makes sense. 

383

384 More surprising was the dominance of human population density as a predictor of intensive 

385 farms since broiler production in Thailand was previously described as being mainly located 

386 around hatcheries, feed mills and processing plants (Costales, 2004; NaRanong, 2007), but 

387 these may themselves correlate to human population. The association with human population 

388 density could relate to market access, and the model typically placed intensive farms in areas 

389 with intermediate human population density, such as in peri-urban areas. The establishment 

390 of a chicken farm is thus constrained by a trade-off between market access and the cost of 

https://en.wikipedia.org/wiki/Charoen_Pokphand
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391 land, which may become prohibitive in more urbanized areas. Our results contrasted with the 

392 results of Van Boeckel et al. (2012), who showed cropping factor had a stronger effect than 

393 human population in their logistic regression models of presence/absence of intensively raised 

394 chickens. This variable was not included in our model since it was not available globally. 

395 Methodological differences may also explain the lower effect of some factors. Van Boeckel et 

396 al. (2012) analysed the entire extent of Thailand, whereas our models were trained within much 

397 smaller spatial units. Further predictors may be worth including, if available at the global level. 

398 Other accessibility predictors, such as travel distance to ports where feed could be imported, 

399 or where outputs could be exported may improve our predictions. Another global predictor 

400 which could provide valuable information on access to service and markets is the location of 

401 settlement.  

402

403 At the local scale, a degree of “random noise” in the location of intensive farms is inevitable, 

404 which we did not expect to capture. The initial establishment of an intensive farm may be 

405 influenced both by fine-scale spatial factors (i.e. land availability, location suitability and access 

406 to inputs and markets) and by individual farmer characteristics (i.e. where they live, the 

407 locations of their other investments, their family history and land ownership). Such factors 

408 would be difficult to account for in models at the scale considered here. At the scale of the 

409 variables used in our models, several sites may then seem equally suitable for setting up a 

410 farm, for example, by having an easy access to markets and inputs such as feed. This does 

411 not interfere with our objective to depict a realistic distribution of farms.  

412

413 The distribution of extensive farms was less clustered, and more readily predicted by human 

414 population density. This fitted our expectations because extensively raised chickens are 

415 typically owned as backyard poultry by rural populations (Van Boeckel et al., 2012). 

416

417 The resolution of the sample areas should not influence our results, since sample areas were 

418 chosen to optimise the variability of situations encountered within Thailand in terms of predictor 



17

419 values and density of farms. The reason why the variability of model performed in the different 

420 sample areas could be due to the range of predictor value which differ from one area to 

421 another. An analysis on whole Thailand would only deal with its geometry and the number of 

422 points in the extensive dataset (leading to computation problems). 

423

424 Our results indicate that a producing point-based distribution maps of intensive and extensive 

425 flocks is feasible. To use this approach in data-poor countries with a comparable farming 

426 system, an important next step will be to validate the model in a different country, but with 

427 similar environmental conditions, such as Vietnam, where detailed census data exist. 

428 Eventually, it would be interesting to investigate how the extensive and intensive models could 

429 predict the distribution of farms according to different levels of intensification. One could 

430 imagine high-income countries where 99% of the production is intensive to be best predicted 

431 by the intensive model alone, and, conversely, that the extensive model could be tested in low-

432 income countries. In intermediate situations, one could apply both models according to the 

433 proportion of extensively raised poultry predicted at the national level by Gilbert et al. (2015). 

434 To predict farm locations into these different situations, LGCP models would be applied with 

435 the same parameters in neighboring countries or in countries with similar agro-ecologies. 

436 Several datasets would thus be required to predict farm distribution into countries from different 

437 regions or environments. Further extension of this work will lead to the development of entire 

438 farm allocation models, where the total number of animals of an administrative unit could be 

439 allocated to farms at locations predicted by the LGCP simulation model in such a way to 

440 reproduce a given distribution of animals per farm. While artificial-intelligence-based image 

441 processing may soon allow to detect most intensified livestock raising infrastructure 

442 automatically, it would not detect middle-size commercial poultry farms, which still exists in 

443 large numbers in Thailand, and that can look like a normal building. We believe that statistical 

444 approaches such as these still hold value for different settings but also for hind- and forecasting 

445 of the farming distribution. 

446
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447 Other types of livestock production may benefit from similar approaches. Pig farming, for 

448 example, is also disconnected from the land and could be subject to similar spatial constraints 

449 linked to feed availability and market access. In contrast, the distribution of grazing ruminant 

450 farms may have very different spatial determinants. The dependence on large areas for 

451 grazing may result in a more homogenous spatial distribution (except for feedlot cattle). Land-

452 use predictor variables such as rangeland or pastures may thus become more important 

453 factors. 

454

455 Middle- and low-income countries are those where this approach bears the greatest value, in 

456 relation to the data scarcity some face, and the co-existence, to varying degrees, of extensive 

457 and intensive production. While in Brazil livestock data are available at fine scale, in some 

458 other large livestock producing countries, such as China and India, livestock data are only 

459 available at coarse resolution. These are precisely where the impact of livestock diseases on 

460 livelihoods, animal and human health are greatest (Childs et al., 2007) and where good quality 

461 data may help with disease prevention. In high-income countries, where intensive production 

462 dominates, results like ours offer an interesting substitute to the original data protected by 

463 privacy laws. 

464

465 5. Conclusions 

466 We developed farm distribution models using a point pattern modelling method, which allowed 

467 the simulation of chicken farm distributions both in terms of spatial clustering and location of 

468 clusters. The methods used here no longer predict livestock distribution as a continuous 

469 variable but as a discrete variable (i.e. point locations), which is better suited for situations in 

470 which animals are raised in very large numbers in single premises. Upon validation in other 

471 countries, this may facilitate several applications in epidemiology or environmental science in 

472 countries where such detailed data are lacking, or where livestock data are aggregated to 

473 protect privacy.
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629 Figure captions

630 Fig. 1. Predictors values. Human population density (logarithm of human population density 

631 in heads per km2), Remoteness (travel time to province capital cities in minute), Cropland 

632 (percent of pixel covered by crops) and Tree cover (percent of pixel covered by forest).

633 Fig. 2. Sample areas defined for the study (a) 11 sample areas of 200 km length side defined 

634 for the intensive dataset (b) 38 sample areas of 112 km length side defined for the extensive 

635 dataset.      

636 Fig. 3. Descriptive analysis of intensive and extensive farms datasets using stationary 

637 and non-stationary L-functions. Each dashed line represents the empirical L-function, L(r), 

638 estimated from the observed point pattern from each sample area, and r is the radius in meters. 

639 Comparing the empirical L-functions of a point pattern with the theoretical L-function of a 

640 completely spatial randomness (CSR) enables to determine if a pattern is clustered, random 

641 or regular, with L-functions higher than, close to or lower than the CSR case, respectively. 

642 Dashed grey line: stationary empirical L-function, Lhom(r), for each sample area; dashed blue 

643 lines: non-stationary empirical L-function, Linhom(r), for each sample area; black line: theoretical 

644 L-function, Lpoisson(r), of a CSR. 

645 Fig. 4. Comparison of models with different combination of covariates (human 

646 population density (Hpop), remoteness (Remot), cropland (Crop) and tree cover (Tree)) 

647 with AIC standardized difference. The first model is fitted with Hpop, the second model is 

648 fitted with Hpop + Remot, the third model is fitted with Hpop + Remot + Crop, the fourth is fitted 

649 with Hpop + Remot + Crop + Tree, for the four variables de square term is also added. Grey 

650 lines represent values for each sample area of the intensive dataset and the black line the 

651 average line. 
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652 Fig. 5. The observed point pattern and examples of simulations produced by the four 

653 model types along with the global rank envelope test, for a sample area for both 

654 intensive and extensive datasets. The four models were the completely spatial randomness 

655 (CSR), the CSR with covariates (iCSR), the Log-Gaussian Cox process (LGCP) and the LGCP 

656 with covariates (iLGCP). In the global rank envelope test, with extreme rank lengths: dashed 

657 lines represent the 95% global envelope with 8,000 and 1,500 simulations for intensive and 

658 extensive datasets, respectively; black line: the empirical L-function estimated from the 

659 observed point pattern; and red points: the points of the empirical L-function which are outside 

660 the envelope. 

661 Fig. 6. Correlation coefficient between the numbers of points per quadrat for all 

662 quadrats in observed and each simulated pattern for a) extensive and b) intensive 

663 farms. The distribution of correlation coefficient values for all simulations (1500 and 8000 

664 simulations for extensive and intensive datasets, respectively) on each area is plotted for the 

665 four models (completely spatial randomness (CSR), the CSR with covariates (iCSR), the Log-

666 Gaussian Cox process (LGCP) and the LGCP with covariates (iLGCP)), for calibration and 

667 validations areas.

668 Fig. 7. Relative covariates importance of iLGCP models by sample area with covariates 

669 for a) intensive and b) extensive dataset. Logarithm of the relative importance of each 

670 covariate and its quadratic term: human population density (Hpop + Hpop2), tree cover (Tree 

671 + Tree2), cropland (Crop + Crop2) and the remoteness or accessibility (Remot + Remot2).

672
673 Fig. 8. Boxplots of the coefficients from the different iLGCP model parameters fitted on 

674 each sample area ( ,  and ). In LGCP models, the covariance is defined as 𝛼 𝜎2 𝛽0, 𝛽1…𝛽8 𝐶0(𝑟)

675   where is the variance and  the scale parameter and the intensity function =  𝜎2exp (𝑟 𝛼) 𝜎2 𝛼

676 was defined as 𝝀(𝒖) =

677 𝐞𝐱𝐩 (𝜷𝟎 + 𝜷𝟏𝑯𝒑𝒐𝒑(𝒖) + 𝜷𝟐𝑪𝒓𝒐𝒑(𝒖) + 𝜷𝟑𝑇𝑟𝑒𝑒(𝒖) + 𝜷𝟒𝑹𝒆𝒎𝒐𝒕(𝒖) + 𝜷𝟓𝑯𝒑𝒐𝒑𝟐(𝒖) + 𝜷𝟔𝑪𝒓𝒐𝒑𝟐(𝒖) + 𝜷𝟕𝑻𝒓𝒆𝒆𝟐(𝒖) + 𝜷𝟖𝑹𝒆𝒎𝒐𝒕𝟐)
678 .



22
1284

0
79

0
90

0
391

HpopDn (ppl/km2) Remoteness (min) Cropland (%) Treecover (%)



(a) Intensive farms (b) Extensive farms

200 km
112 km



●

0 10000 20000 30000 40000 50000

0
10

00
0

30
00

0
50

00
0

70
00

0 (b) Extensive dataset

r (meters)

L(
r)

Lhom(r)
Linhom(r)
Lpoisson(r)

●

0 10000 20000 30000 40000 50000

0
10

00
0

30
00

0
50

00
0

70
00

0 (a) Intensive dataset

r (meters)

L(
r)

Lhom(r)
Linhom(r)
Lpoisson(r)



Hpop + Remot + Crop + Tree + 
Hpop2 +Remot2 +Crop2 +Tree2

Hpop + Remot + Crop + 
Hpop2 +Remot2 +Crop2

Hpop + Remot + 
Hpop2 + Remot2

Hpop + 
Hpop2

−0
.0
05

0.
00
0

0.
00
5

0.
01
0

0.
01
5

0.
02
0

0.
02
5

H H+A H+A+C H+A+C+T

St
an

da
rd

iz
ed

 A
IC

 d
iff

er
en

ce



0 10000 20000 30000 40000 50000

0
10
00
0

20
00
0

30
00
0

40
00
0

50
00
0

Global envelope test: p = 0.021

r

T
(r
)

●

0 10000 20000 30000 40000 50000

0
20
00
0

40
00
0

60
00
0

80
00
0

Global envelope test: p = 0.034

r

T
(r
)

●
●●

0 10000 20000 30000 40000 50000

0
10
00
0

20
00
0

30
00
0

40
00
0

Global envelope test: p = 0

r

T
(r
)

●
●
●
●●
●●
●●
●
●●
●●●
●●●●
●●●●
●●●
●●●
●●●●
●●●●●
●●●●●●
●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●
●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●●

●●●●●
●●●●●●●
●●●●
●●●●●
●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●
●●●

0 10000 20000 30000 40000 50000

0
20
00
0

40
00
0

60
00
0

Global envelope test: p = 0

r

T
(r
)

●
●
●
●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●
●●

0 2000 4000 6000 8000 10000

0
50
00

10
00
0

15
00
0

Global envelope test: p = 0.001

r

T
(r
)

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●

0 2000 4000 6000 8000 10000

0
20
00

40
00

60
00

80
00

10
00
0

12
00
0

Global envelope test: p = 0.001

r

T
(r
)

●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●

  
  

Observed pattern 
 Polygon X

  
  

Random fitting 
 Training on Polygon X

  
  

IPP fitting 
 Training on Polygon X

  
  

LGCP fitting 
 Training on Polygon X

  
  

LGCP + Covariates fitting 
 Training on Polygon X

  
  

Observed pattern 
 Polygon X

  
  

Random fitting 
 Training on Polygon X

  
  

IPP fitting 
 Training on Polygon X

  
  

LGCP fitting 
 Training on Polygon X

  
  

LGCP + Covariates fitting 
 Training on Polygon X

  
  

Observed pattern 
 Polygon X

  
  

Random fitting 
 Training on Polygon X

  
  

IPP fitting 
 Training on Polygon X

  
  

LGCP fitting 
 Training on Polygon X

  
  

LGCP + Covariates fitting 
 Training on Polygon X

  
  

Observed pattern 
 Polygon X

  
  

Random fitting 
 Training on Polygon X

  
  

IPP fitting 
 Training on Polygon X

  
  

LGCP fitting 
 Training on Polygon X

  
  

LGCP + Covariates fitting 
 Training on Polygon X

  
  

Observed pattern 
 Polygon X

  
  

Random fitting 
 Training on Polygon X

  
  

IPP fitting 
 Training on Polygon X

  
  

LGCP fitting 
 Training on Polygon X

  
  

LGCP + Covariates fitting 
 Training on Polygon X

(a) Intensive dataset
Calibration area

(b) Extensive dataset
Calibration area

0 10000 20000 30000 40000 50000
r (meters)

p = 1,25e-04 

L(
r)

0
20

00
0

40
00

0
60

00
0

p = 3,75e-04  

p = 3,40e-02 

p = 2,14e-02  

p = 6,66e-04  

p = 6,66e-04  

p = 2,11e-01 

p = 3,46e-02  
0 2000 4000 6000 8000 10000

0
20
00

40
00

60
00

80
00

10
00
0

12
00
0

Global envelope test: p = 0.035

r

T
(r
)

●●●
●●●●
●●●
●●●

0 2000 4000 6000 8000 10000

0
50
00

10
00
0

15
00
0

20
00
0

Global envelope test: p = 0.211

r

T
(r
)

L(
r)

0
20

00
0

30
00

0
40

00
0

10
00

0
L(
r)

0
20

00
0

40
00

0
60

00
0

80
00

0

L(
r)

0
20

00
0

30
00

0
40

00
0

10
00

0
50

00
0

Observed

CSR

iCSR

LGCP

iLGCP

0 2000 4000 6000 8000 10000
r (meters)

0 2000 4000 6000 8000 10000

r (meters)

0 2000 4000 6000 8000 10000
r (meters)

0 2000 4000 6000 8000 10000
r (meters)

L(
r)

0
50

00
10

00
0

15
00

0
L(
r)

0
50

00
10

00
0

15
00

0
20

00
0

L(
r)

0
60

00
80

00
10

00
01

20
00

40
00

20
00

L(
r)

0
60

00
80

00
10

00
0

12
00

0
40

00
20

00

Illustration of 
a simulation

Global rank envelope test 
(using extreme rank length)

Global rank envelope test 
(using extreme rank length)

0 10000 20000 30000 40000 50000

0
10

00
0

20
00

0
30

00
0

40
00

0

Global envelope test: p = 0.099

r

T
(r
)

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

4

1

2

3

4

empirical L−function

95% global envelope

3

point outside the envelope

empirical L−function

95% global envelope

central L

point outside the envelope

empirical L−function

95% global envelope

central L−function

point outside the envelope

0 10000 20000 30000 40000 50000

0
10

00
0

20
00

0
30

00
0

40
00

0

Global envelope test: p = 0.099

r

T
(r
)

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

4

1

2

3

4

empirical L−function

95% global envelope

3

point outside the envelope

empirical L−function

95% global envelope

central L

point outside the envelope

empirical L−function

95% global envelope

central L−function

point outside the envelope

Illustration of 
a simulation

0 10000 20000 30000 40000 50000
r (meters)

0 10000 20000 30000 40000 50000
r (meters)

0 10000 20000 30000 40000 50000
r (meters)



−1.0

−0.5

0.0

0.5

1.0

CS
R 

iC
SR

 

LG
CP

 

iL
G

CP
 

CS
R

iC
SR

LG
CP

iL
G

CP

Model type

Co
rre

la
tio

n 
co

ef
fic

ie
nt

Type

Training

Validation

(b) Intensive dataset

−1.0

−0.5

0.0

0.5

1.0

CS
R 

iC
SR

 

LG
CP

 

iL
G

CP
 

CS
R

iC
SR

LG
CP

iL
G

CP

Model type

Co
rre

la
tio

n 
co

ef
fic

ie
nt

Type

Training

Validation

(b) Intensive dataset

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●
●

●

●

●●
●●

●
●

●

●
●
●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●
●

●

●

●●
●●

●
●

●

●
●
●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●
●

●

●

●●
●●

●
●

●

●
●
●

●

●

●
●

●

●
●
●
●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●
●

●

●

●●
●●

●
●

●

●
●
●

●

●

●
●

●

●
●
●
●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●
●

●

●

●●
●●

●
●

●

●
●
●

●

●

●
●

●

●
●
●
●

●

●
●
●
●
●

●

●

●

●●
●

●

●

●●
●

●

●

●●
●

●

●

●●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●
●

●
●
●

●
●
●●

●
●
●●

●
●
●●

●●●●●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●
●●

●

●

●
●

●●

●

●●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●●

−1.0

−0.5

0.0

0.5

1.0

C
SR

 

iC
SR

 

LG
C

P 

iL
G

C
P 

C
SR

iC
SR

LG
C

P

iL
G

C
P

Model type

C
or

re
la

tio
n 

co
ef

fic
ie

nt
(a) Intensive dataset

●●●●●●●

●

●
●●

●

●●
●●

●

●●
●●

●

●●
●●●

●

●●
●

●

●

●●

●

●●
●

●

●●

●●●●

●

●●
●

●

●●

●●

●

●●

●

●●
●

●

●●

●●

●
●

●●●

●

●●
●

●

●●

●●

●
●

●●

●

●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●

●

●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●

●

●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●

●

●●

●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●

●

●●

●
●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●

●

●●

●
●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●

●

●●

●●
●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●

●

●●

●●
●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●

●

●●

●●
●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●

●

●●

●●
●●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●

●

●●

●●
●●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●

●

●●

●●
●●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●

●

●●

●●
●

●

●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●

●

●●

●●
●

●

●●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●

●

●●

●●
●

●

●

●

●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●

●

●●

●●
●

●

●

●

●

●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●

●

●●

●●
●

●

●

●

●

●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●

●

●●

●●
●

●

●

●

●

●●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●●
●

●

●●

●●

●
●

●●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●
●
●
●
●

●
●
●
●
●●
●
●●●
●●
●
●

●●
●●
●
●
●
●
●

●

●
●●●

●
●
●●●

●
●
●●●●

●

●

●

●
●
●
●

●

●

●
●
●●
●
●
●

●

●

●●●
●●●●●

●
●
●
●
●

●

●
●

●

●

●

●
●
●
●●

●
●
●●●

●

●
●
●
●●
●

●

●
●
●
●
●
●

●
●
●
●
●●
●
●●●
●●
●
●

●●
●●
●
●
●
●
●

●

●
●●●

●
●
●●●

●
●
●●●●

●

●

●

●
●
●
●

●

●

●
●
●●
●
●
●

●

●

●●●
●●●●●

●
●
●
●
●

●

●
●

●

●

●

●
●
●
●●

●
●
●●●

●

●
●
●
●●
●

●

●
●
●
●
●
●

●
●
●
●
●●
●
●●●
●●
●
●

●●
●●
●
●
●
●
●

●

●
●●●

●
●
●●●

●
●
●●●●

●

●

●

●
●
●
●

●

●

●
●
●●
●
●
●

●

●

●●●
●●●●●

●
●
●
●
●

●

●
●

●

●

●

●
●
●
●●

●
●
●●●

●

●
●
●
●●
●

●

●
●
●
●
●
●

●
●
●
●
●●
●
●●●
●●
●
●

●●
●●
●
●
●
●
●

●

●
●●●

●
●
●●●

●
●
●●●●

●

●

●

●
●
●
●

●

●

●
●
●●
●
●
●

●

●

●●●
●●●●●

●
●
●
●
●

●

●
●

●

●

●

●
●
●
●●

●
●
●●●

●

●
●
●
●●
●

●

●
●
●
●
●
●

●
●
●
●
●●
●
●●●
●●
●
●

●●
●●
●
●
●
●
●

●

●
●●●

●
●
●●●

●
●
●●●●

●

●

●

●
●
●
●

●

●

●
●
●●
●
●
●

●

●

●●●
●●●●●

●
●
●
●
●

●

●
●

●

●

●

●
●
●
●●

●
●
●●●

●

●
●
●
●●
●

●

●
●
●
●
●
●

●
●
●
●
●●
●
●●●
●●
●
●

●●
●●
●
●
●
●
●

●

●
●●●

●
●
●●●

●
●
●●●●

●

●

●

●
●
●
●

●

●

●
●
●●
●
●
●

●

●

●●●
●●●●●

●
●
●
●
●

●

●
●

●

●

●

●
●
●
●●

●
●
●●●

●

●
●
●
●●
●

●●●
●
●●●●●●
●●●●●●●●●●●●●
●●●●
●
●
●
●
●●●●
●
●●●
●●●●●●●●●
●
●
●●●●●●●●
●
●●●
●
●●
●
●
●●●●●
●
●
●
●
●●●●●●●●●
●●
●●
●●
●●
●
●
●●
●●●

●●●●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●
●

●

●

●●

●

●●●

●

●
●

●

●

●●

●

●●●

●

●
●

●

●

●●

●

●●●

●

●
●

●

●

●●

●

●●●

●

●
●

●

●

●●

●

●●●

●

●
●

●

●

●●

●

●●●

●

●
●

●

●

●●

●

●●●

●

●
●

●

●

●●

●

●
●●
●●

●

●
●

●

●

●●

●

●
●●
●
●●

●

●
●

●

●

●●

●

●
●●
●
●●

●

●
●

●

●

●●

●

●
●●
●
●●

●

●
●

●

●

●●

●

●
●●
●
●●

●

●
●

●

●

●●

●

●
●●
●
●●

●

●
●

●

●

●●

●

●
●●
●
●●

●

●
●

●

●

●●

●

●
●●
●
●●

●

●
●

●

●

●●

●

●
●●
●

●

●●

●

●
●

●

●

●●

●

●
●●
●

●

●

●

●●

●

●
●

●

●

●●

●

●
●●
●

●

●

●

●
●●

●

●
●

●

●

●●

●

●
●●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●●

●

●
●●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●
●●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●
●
●

●

●

●

●

●

●●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●
●
●

●

●

●

●

●

●●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●
●
●

●

●

●

●

●

●●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●
●
●

●

●

●

●

●

●●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●
●
●

●

●

●

●

●

●●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●●

●

●
●●●

●

●

●

●●

●
●

●

●●●●●●●●●●●●●●●●
●
●

●

●●
●
●

●

●●
●
●

●

●

●

●●
●
●

●

●

●

●●
●
●

●

●

●

●

●●
●
●

●

●

●

●●

●

●●
●
●

●

●

●

●●

●

●●
●
●

●

●

●

●●

●

●

●

●●
●
●

●

●

●

●●

●

●

●

●●●
●
●

●

●

●

●●

●

●

●

●●●
●
●

●

●

●

●●

●

●

●

●●●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●●●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●
●●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●●

●●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●●

●

●

●●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●●

●

●
●

●

●●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●●

●

●
●

●
●

●●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●●

●

●
●

●
●

●●●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●●

●

●
●

●
●

●●●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●●

●

●
●

●
●

●●●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●●

●

●
●

●
●

●●●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●●
●●●●●●
●
●●
●
●●●●●●
●
●●●●
●●●●
●●
●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●
●
●●●
●●
●
●
●
●
●●●●●●●
●
●●●
●●●●●●
●●●●●
●●●●
●

●●
●●
●●●●●●
●●●●●●
●
●●
●
●●●●●●
●
●●●●
●●●●
●●
●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●
●
●●●
●●
●
●
●
●
●●●●●●●
●
●●●
●●●●●●
●●●●●
●●●●
●

●●
●●
●●●●

●●
●
●●
●
●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●
●

●
●●●●●
●
●●●
●●●
●
●●●
●
●●●
●
●●●●
●●●●
●●●●●●●
●
●●
●
●
●●●●●●●
●
●●
●●●
●●
●●●●●●
●
●●
●
●●●●●●
●
●●●●
●●●●
●●
●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●
●
●●●
●●
●
●
●
●
●●●●●●●
●
●●●
●●●●●●
●●●●●
●●●●
●

●●
●●
●●●●

●●
●
●●
●
●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●
●

●
●●●●●
●
●●●
●●●
●
●●●
●
●●●
●
●●●●
●●●●
●●●●●●●
●
●●
●
●
●●●●●●●
●
●●
●●●
●●
●●●●●●
●
●●
●
●●●●●●
●
●●●●
●●●●
●●
●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●
●
●●●
●●
●
●
●
●
●●●●●●●
●
●●●
●●●●●●
●●●●●
●●●●
●

●●
●●
●●●●

●●
●
●●
●
●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●
●

●
●●●●●
●
●●●
●●●
●
●●●
●
●●●
●
●●●●
●●●●
●●●●●●●
●
●●
●
●
●●●●●●●
●
●●
●●●
●●
●●●●●●
●
●●
●
●●●●●●
●
●●●●
●●●●
●●
●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●
●
●●●
●●
●
●
●
●
●●●●●●●
●
●●●
●●●●●●
●●●●●
●●●●
●

●●
●●
●●●●

●●
●
●●
●
●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●
●

●
●●●●●
●
●●●
●●●
●
●●●
●
●●●
●
●●●●
●●●●
●●●●●●●
●
●●
●
●
●●●●●●●
●
●●
●●●
●●
●●●●●●
●
●●
●
●●●●●●
●
●●●●
●●●●
●●
●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●
●
●●●
●●
●
●
●
●
●●●●●●●
●
●●●
●●●●●●
●●●●●
●●●●
●

●●
●●
●●●●

●●
●
●●
●
●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●
●

●
●●●●●
●
●●●
●●●
●
●●●
●
●●●
●
●●●●
●●●●
●●●●●●●
●
●●
●
●
●●●●●●●
●
●●
●●●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●●

●●
●

●●●

●
●

●
●●
●
●●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●
●

●●●●

●
●●
●●

●

●

●
●

●●
●●●●●●
●
●●
●
●●●●●●
●
●●●●
●●●●
●●
●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●
●
●●●
●●
●
●
●
●
●●●●●●●
●
●●●
●●●●●●
●●●●●
●●●●
●

●●
●●
●●●●

●●
●
●●
●
●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●
●

●
●●●●●
●
●●●
●●●
●
●●●
●
●●●
●
●●●●
●●●●
●●●●●●●
●
●●
●
●
●●●●●●●
●
●●
●●●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●●

●●
●

●●●

●
●

●
●●
●
●●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●
●

●●●●

●
●●
●●

●

●

●
●

●●
●●●●●●
●
●●
●
●●●●●●
●
●●●●
●●●●
●●
●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●
●
●●●
●●
●
●
●
●
●●●●●●●
●
●●●
●●●●●●
●●●●●
●●●●
●

●●
●●
●●●●

●●
●
●●
●
●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●
●

●
●●●●●
●
●●●
●●●
●
●●●
●
●●●
●
●●●●
●●●●
●●●●●●●
●
●●
●
●
●●●●●●●
●
●●
●●●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●●

●●
●

●●●

●
●

●
●●
●
●●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●
●

●●●●

●
●●
●●

●

●

●
●

●●●
●
●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●
●
●●●●●
●●●●
●
●
●●●●●
●●
●●●●●
●●●●●●
●
●●
●●●●
●●
●●
●
●
●●●
●
●
●●●●●●●●
●●●●●
●●●
●●
●●●●●●
●
●●
●
●●●●●●
●
●●●●
●●●●
●●
●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●
●
●●●
●●
●
●
●
●
●●●●●●●
●
●●●
●●●●●●
●●●●●
●●●●
●

●●
●●
●●●●

●●
●
●●
●
●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●
●

●
●●●●●
●
●●●
●●●
●
●●●
●
●●●
●
●●●●
●●●●
●●●●●●●
●
●●
●
●
●●●●●●●
●
●●
●●●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●●

●●
●

●●●

●
●

●
●●
●
●●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●
●

●●●●

●
●●
●●

●

●

●
●

●●●
●
●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●
●
●●●●●
●●●●
●
●
●●●●●
●●
●●●●●
●●●●●●
●
●●
●●●●
●●
●●
●
●
●●●
●
●
●●●●●●●●
●●●●●
●●●
●●
●●●●●●
●
●●
●
●●●●●●
●
●●●●
●●●●
●●
●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●
●
●●●
●●
●
●
●
●
●●●●●●●
●
●●●
●●●●●●
●●●●●
●●●●
●

●●
●●
●●●●

●●
●
●●
●
●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●
●

●
●●●●●
●
●●●
●●●
●
●●●
●
●●●
●
●●●●
●●●●
●●●●●●●
●
●●
●
●
●●●●●●●
●
●●
●●●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●●

●●
●

●●●

●
●

●
●●
●
●●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●
●

●●●●

●
●●
●●

●

●

●
●

●●●
●
●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●
●
●●●●●
●●●●
●
●
●●●●●
●●
●●●●●
●●●●●●
●
●●
●●●●
●●
●●
●
●
●●●
●
●
●●●●●●●●
●●●●●
●●●
●●
●●●●●●
●
●●
●
●●●●●●
●
●●●●
●●●●
●●
●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●
●
●●●
●●
●
●
●
●
●●●●●●●
●
●●●
●●●●●●
●●●●●
●●●●
●

●●
●●
●●●●

●●
●
●●
●
●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●
●

●
●●●●●
●
●●●
●●●
●
●●●
●
●●●
●
●●●●
●●●●
●●●●●●●
●
●●
●
●
●●●●●●●
●
●●
●●●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●●

●●
●

●●●

●
●

●
●●
●
●●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●
●

●●●●

●
●●
●●

●

●

●
●

●●●
●
●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●
●
●●●●●
●●●●
●
●
●●●●●
●●
●●●●●
●●●●●●
●
●●
●●●●
●●
●●
●
●
●●●
●
●
●●●●●●●●
●●●●●
●●●
●●
●●●●●●
●
●●
●
●●●●●●
●
●●●●
●●●●
●●
●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●
●
●●●
●●
●
●
●
●
●●●●●●●
●
●●●
●●●●●●
●●●●●
●●●●
●

●●
●●
●●●●

●●
●
●●
●
●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●
●

●
●●●●●
●
●●●
●●●
●
●●●
●
●●●
●
●●●●
●●●●
●●●●●●●
●
●●
●
●
●●●●●●●
●
●●
●●●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●●

●●
●

●●●

●
●

●
●●
●
●●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●
●

●●●●

●
●●
●●

●

●

●
●

●●●
●
●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●
●
●●●●●
●●●●
●
●
●●●●●
●●
●●●●●
●●●●●●
●
●●
●●●●
●●
●●
●
●
●●●
●
●
●●●●●●●●
●●●●●
●●●
●●
●●●●●●
●
●●
●
●●●●●●
●
●●●●
●●●●
●●
●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●
●
●●●
●●
●
●
●
●
●●●●●●●
●
●●●
●●●●●●
●●●●●
●●●●
●

●●
●●
●●●●

●●
●
●●
●
●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●
●

●
●●●●●
●
●●●
●●●
●
●●●
●
●●●
●
●●●●
●●●●
●●●●●●●
●
●●
●
●
●●●●●●●
●
●●
●●●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●●

●●
●

●●●

●
●

●
●●
●
●●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●
●

●●●●

●
●●
●●

●

●

●
●

●●●
●
●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●
●
●●●●●
●●●●
●
●
●●●●●
●●
●●●●●
●●●●●●
●
●●
●●●●
●●
●●
●
●
●●●
●
●
●●●●●●●●
●●●●●
●●●
●●
●●●●●●
●
●●
●
●●●●●●
●
●●●●
●●●●
●●
●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●
●
●●●
●●
●
●
●
●
●●●●●●●
●
●●●
●●●●●●
●●●●●
●●●●
●

●●
●●
●●●●

●●
●
●●
●
●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●
●

●
●●●●●
●
●●●
●●●
●
●●●
●
●●●
●
●●●●
●●●●
●●●●●●●
●
●●
●
●
●●●●●●●
●
●●
●●●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●●

●●
●

●●●

●
●

●
●●
●
●●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●
●

●●●●

●
●●
●●

●

●

●
●

●●●
●
●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●
●
●●●●●
●●●●
●
●
●●●●●
●●
●●●●●
●●●●●●
●
●●
●●●●
●●
●●
●
●
●●●
●
●
●●●●●●●●
●●●●●
●●●
●●
●●●●●●
●
●●
●
●●●●●●
●
●●●●
●●●●
●●
●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●
●
●●●
●●
●
●
●
●
●●●●●●●
●
●●●
●●●●●●
●●●●●
●●●●
●

●●
●●
●●●●

●●
●
●●
●
●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●
●

●
●●●●●
●
●●●
●●●
●
●●●
●
●●●
●
●●●●
●●●●
●●●●●●●
●
●●
●
●
●●●●●●●
●
●●
●●●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●●

●●
●

●●●

●
●

●
●●
●
●●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●
●

●●●●

●
●●
●●

●

●

●
●

●●●
●
●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●
●
●●●●●
●●●●
●
●
●●●●●
●●
●●●●●
●●●●●●
●
●●
●●●●
●●
●●
●
●
●●●
●
●
●●●●●●●●
●●●●●
●●●
●●
●●●●●●
●
●●
●
●●●●●●
●
●●●●
●●●●
●●
●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●
●
●●●
●●
●
●
●
●
●●●●●●●
●
●●●
●●●●●●
●●●●●
●●●●
●

●●
●●
●●●●

●●
●
●●
●
●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●
●

●
●●●●●
●
●●●
●●●
●
●●●
●
●●●
●
●●●●
●●●●
●●●●●●●
●
●●
●
●
●●●●●●●
●
●●
●●●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●●

●●
●

●●●

●
●

●
●●
●
●●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●
●

●●●●

●
●●
●●

●

●

●
●

●●●
●
●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●
●
●●●●●
●●●●
●
●
●●●●●
●●
●●●●●
●●●●●●
●
●●
●●●●
●●
●●
●
●
●●●
●
●
●●●●●●●●
●●●●●
●●●
●●
●●●●●●
●
●●
●
●●●●●●
●
●●●●
●●●●
●●
●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●
●
●●●
●●
●
●
●
●
●●●●●●●
●
●●●
●●●●●●
●●●●●
●●●●
●

●●
●●
●●●●

●●
●
●●
●
●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●
●

●
●●●●●
●
●●●
●●●
●
●●●
●
●●●
●
●●●●
●●●●
●●●●●●●
●
●●
●
●
●●●●●●●
●
●●
●●●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●●

●●
●

●●●

●
●

●
●●
●
●●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●
●

●●●●

●
●●
●●

●

●

●
●

●●●
●
●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●
●
●●●●●
●●●●
●
●
●●●●●
●●
●●●●●
●●●●●●
●
●●
●●●●
●●
●●
●
●
●●●
●
●
●●●●●●●●
●●●●●
●●●
●●
●●●●●●
●
●●
●
●●●●●●
●
●●●●
●●●●
●●
●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●
●
●●●
●●
●
●
●
●
●●●●●●●
●
●●●
●●●●●●
●●●●●
●●●●
●

●●
●●
●●●●

●●
●
●●
●
●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●
●

●
●●●●●
●
●●●
●●●
●
●●●
●
●●●
●
●●●●
●●●●
●●●●●●●
●
●●
●
●
●●●●●●●
●
●●
●●●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●●

●●
●

●●●

●
●

●
●●
●
●●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●
●

●●●●

●
●●
●●

●

●

●
●

●●●
●
●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●
●
●●●●●
●●●●
●
●
●●●●●
●●
●●●●●
●●●●●●
●
●●
●●●●
●●
●●
●
●
●●●
●
●
●●●●●●●●
●●●●●
●●●
●●
●●●●●●
●
●●
●
●●●●●●
●
●●●●
●●●●
●●
●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●
●
●●●
●●
●
●
●
●
●●●●●●●
●
●●●
●●●●●●
●●●●●
●●●●
●

●●
●●
●●●●

●●
●
●●
●
●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●
●

●
●●●●●
●
●●●
●●●
●
●●●
●
●●●
●
●●●●
●●●●
●●●●●●●
●
●●
●
●
●●●●●●●
●
●●
●●●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●●

●●
●

●●●

●
●

●
●●
●
●●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●
●

●●●●

●
●●
●●

●

●

●
●

●●●
●
●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●
●
●●●●●
●●●●
●
●
●●●●●
●●
●●●●●
●●●●●●
●
●●
●●●●
●●
●●
●
●
●●●
●
●
●●●●●●●●
●●●●●
●●●
●●
●●●●●●
●
●●
●
●●●●●●
●
●●●●
●●●●
●●
●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●
●
●●●
●●
●
●
●
●
●●●●●●●
●
●●●
●●●●●●
●●●●●
●●●●
●

●●
●●
●●●●

●●
●
●●
●
●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●
●

●
●●●●●
●
●●●
●●●
●
●●●
●
●●●
●
●●●●
●●●●
●●●●●●●
●
●●
●
●
●●●●●●●
●
●●
●●●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●●

●●
●

●●●

●
●

●
●●
●
●●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●
●

●●●●

●
●●
●●

●

●

●
●

●●●
●
●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●
●
●●●●●
●●●●
●
●
●●●●●
●●
●●●●●
●●●●●●
●
●●
●●●●
●●
●●
●
●
●●●
●
●
●●●●●●●●
●●●●●
●●●

●●●●●●●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●
●●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●●●

●

●

●

●
●

●

●●●

●

●

●

●
●

●

●●●

●

●

●

●
●

●

●●●

●

●

●

●
●

●

●●●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●●●

●●●

●

●

●

●
●

●

●

●
●●●

●

●

●●

●

●

●

●
●

●

●

●
●●●

●

●

●●

●

●

●

●
●

●

●

●
●●●

●

●

●●

●

●

●

●
●

●

●

●
●●●

●

●

●●

●

●

●

●
●

●

●

●
●●●

●

●

●●

●

●

●

●
●

●

●

●
●●●

●

●

●●

●

●

●

●
●

●

●

●
●●●

●

●

●●

●

●

●

●
●

●

●

●
●●●

●

●

●●

●

●

●

●
●

●

●

●
●●●

●

●

●●

●

●

●

●
●

●

●

●
●●●

●

●

●●

●

●

●

●
●

●

●

●
●●●

●

●

●●

●

●

●

●
●

●

●

●
●●●

●

●

●●

●

●

●

●
●

●

●

●
●●●

●

●

●●

●

●

●

●
●

●

●

●
●●●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●●●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●●●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●
●●●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●●●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●●●

●

●
●
●

●

●●●

●

●
●
●

●

●●●

●

●
●
●

●

●●●

●

●
●
●

●

●●●

●

●
●
●

●

●●●

●

●
●
●

●

●●●

●

●
●
●

●

●●●

●

●
●
●

●

●●●

●

●
●
●

●

●●●

●

●
●
●

●

●●●

●

●
●
●

●

●●●

●

●
●
●

●

●●●

●

●
●
●

●

●●●
●
●
●●●●●●●

●

●
●
●

●

●●●
●
●
●●●●●●●

●

●

●

●
●
●

●

●●●
●
●
●●●●●●●

●

●

●

●
●
●

●

●●●
●
●
●●●●●●●

●

●

●

●
●
●

●

●●●
●
●
●●●●●●●

●

●

●

●
●
●

●

●●●
●
●
●●●●●●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●

●
●
●

●

●●●
●
●
●●●●●●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●

●
●
●

●

●●●
●
●
●●●●●●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●

●
●
●

●

●●●
●
●
●●●●●●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●

●
●
●

●

●●●
●
●
●●●●●●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●

●
●
●

●

●●●
●
●
●●●●●●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●

●
●
●

●

●●●
●
●
●●●●●●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●●
●●●

●
●

●
●
●

●

●●●
●
●
●●●●●●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●●
●●●

●
●

●
●
●

●

●●●
●
●
●●●●●●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●●
●●●

●
●

●
●
●

●

●●●
●
●
●●●●●●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●●
●●●

●

●

●

●
●
●

●

●●●
●
●
●●●●●●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●●
●●●

●

●

●

●
●
●

●

●●●
●
●
●●●●●●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●●
●●●

●

●

●

●
●
●

●

●●●
●
●
●●●●●●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●●
●●●

●

●

●

●
●
●

●

●●●
●
●
●●●●●●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●●
●●●

●

●

●

●
●
●

●

●●●
●
●
●●●●●●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●●
●●●

●

●

−1.0

−0.5

0.0

0.5

1.0

C
SR

 

iC
SR

 

LG
C

P 

iL
G

C
P 

C
SR

iC
SR

LG
C

P

iL
G

C
P

Model type

C
or

re
la

tio
n 

co
ef

fic
ie

nt

(b) Extensive dataset



Hpop Tree Crop Access

0
2

4
6

8
10

(a) Intensive systems

Hpop Tree Crop Remot Hpop Tree Crop Access

0
1

2
3

4
5

(b) Extensive systems

Hpop Tree Crop Remot

Lo
g(

re
la

tiv
e 

im
po

rta
nc

e 
of

 th
e 

co
va

ria
te

s)

Lo
g(

re
la

tiv
e 

im
po

rta
nc

e 
of

 th
e 

co
va

ria
te

s)

0
2

4
6

8
10

0
1

2
3

4
5



●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●

●●

●

●●

●●

●

●

●●

●

●●

●●

●

●

●●

●

●●

●●

●

●

●

●●

●

●●

●●

●

●

●

●●

●

●●

●●

●

●

●

●●

●

●●

●●

●

●

●

●●

●

●●

●●

●

●

●

●●

●

●●

●●

●

●

●●●

0

5000

10000

15000

20000

alpha

−8e−04

−4e−04

0e+00

4e−04

Crop^2

−0.02

0.00

0.02

0.04

Crop

●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

5

10

15

20

Hpop

●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●−22.5

−20.0

−17.5

−15.0

−12.5

Intercept

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−40

−30

−20

−10

0

Hpop^2

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
−0.005

0.000

0.005

Remot

●●●●●●●●●●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●●

−4e−05

−2e−05

0e+00

Remot^2

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

0

1

2

3

4

sigma2

●●●●●●−0.004

−0.003

−0.002

−0.001

0.000

0.001

Tree^2

●●●●●●

●●

−0.05

0.00

0.05

Tree

−0.004

−0.003

−0.002

−0.001

0.000

0.001

I.Tree.2.

dataset

Extensive

Intensive

Legend : dataset

!0

!1 !2 !3 !4

!7 !8!6!5



Supplementary materials to « Point pattern simulation modelling of extensive 
and intensive chicken farming in Thailand: accounting for clustering and 

landscape characteristics » 
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Figure S 1. Violin plot of the distribution of the average spatial resolution (root square of the area) of 

Voronoi polygons in kilometers  
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Figure S 2. Observed point pattern of a sample area from Thailand (a) compared to a simulation obtained by the 

different cox processes. (b) a Matérn process model (c) a Thomas process model (d) a Cauchy process model (d) 

a Variance Gamma process model (e) a Log-Gaussian Cox Processes model.  

	

	
Figure S 3. Global rank envelope test on the five different processes, Matérn, Thomas, Cauchy, Variance 

Gamma and Log-Gaussian Cox Processes (LGCP), based on the L-function. 
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Figure S 4. Extreme rank envelope test p-values with different number of simulations for extensive (a) and 
intensive (b) datasets, on a sample area of Thailand.  

	
	

	
Figure S 5. Coefficient of correlation on the number of points per quadrats for different quadrat sizes for 
the Complete Spatial Randomness (CSR), the log-Gaussian cox Processes (LGCP) and the LGCP with 
covariates (iLGCP).  
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INTENSIVE DATASET 

CALIBRATION  

 B D K L N O 

CSR 0,000125 *** 0,000125 *** 0,000125 *** 0,000125 *** 0,000125 *** 0,000125 *** 

iCSR 0,000375 *** 0,000125 *** 0,000125 *** 0,000125 *** 0,000250 *** 0,000125 *** 

LGCP 0,502937  0,091739 . 0,001125 ** 0,026747 * 0,004749 ** 0,030746 * 

iLGCP 0,533558  0,012373 * 0,000125 *** 0,001250 ** 0,000250 *** 0,034746 * 

             

 P S t U X   

CSR 0,000125 *** 0,000125 *** 0,000125 *** 0,000125 *** 0,000125 ***   

iCSR 0,000125 *** 0,000250 *** 0,004499 ** 0,000125 *** 0,000125 ***   

LGCP 0,002500 ** 0,238720  0,036995 * 0,147357  0,033996 *   

iLGCP 0,000750 *** 0,026997 * 0,107737  0,093113 . 0,021372 *   

             

VALIDATION 

 B D K L N O 

CSR 0,000125 *** 0,000125 *** 0,000125 *** 0,000125 *** 0,000125 *** 0,000125 *** 

iCSR 0,000125 *** 0,000125 *** 0,000125 *** 0,000125 *** 0,000125 *** 0,000250 *** 

LGCP 0,521435  0,066742 . 0,008624 ** 0,033621 * 0,004499 ** 0,043745 * 

iLGCP 0,000125 *** 0,009749 ** 0,000125 *** 0,001500 ** 0,000125 *** 0,245719  

             

 P S t U X   

CSR 0,000125 *** 0,000125 *** 0,000125 *** 0,000125 *** 0,000125 ***   

iCSR 0,066742 . 0,000125 *** 0,000125 *** 0,002000 ** 0,000125 ***   

LGCP 0,002500 ** 0,115486  0,032871 * 0,146732  0,021997 *   

iLGCP 0,237970  0,000125 *** 0,041870 * 0,316585  0,000125 ***   

 

Table S 1 Extreme rank envelope test p-values per sample area of the intensive dataset in calibration and 
validation, for the different models: completely spatial randomness (CSR); CSR with an inhomogeneous 
intensity (iCSR), log-Gaussian cox-processes (LGCP), LGCP with an inhomogeneous intensity (iLGCP). 
Significance codes: ‘***’ for 0.001, ‘**’ for 0.01, ‘*’ for 0.05 and ‘.’ for 0.1.  Grey highlighting: highest p-value; bold 

blue: highest and non-significate p-value.  

	
	 	



EXTENSIVE DATASET 

 CALIBRATION  

 A B C D E F G H  

CSR 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 ***  

iCSR 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 ***  

LGCP 2,94E-01  6,22E-01  2,11E-01  2,36E-01  2,74E-01  3,34E-01  3,11E-01  2,06E-01   

iLGCP 4,28E-01  7,44E-01  3,46E-02 * 3,66E-02 * 9,73E-02 . 9,45E-01  1,65E-01  1,83E-01   

                  

 I  J  K  L  M  N O R  

CSR 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 ***  

iCSR 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 ***  

LGCP 3,42E-01  1,04E-01  2,66E-03 ** 1,27E-02 * 3,75E-01  5,46E-02 . 1,49E-01  3,46E-02 *  

iLGCP 3,86E-02 * 8,59E-02 . 5,33E-03 ** 7,33E-03 ** 5,66E-02 . 6,00E-03 ** 2,81E-01  7,24E-04 ***  

                  

 S  t  U  V W X Y Z  

CSR 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 ***  

iCSR 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 ***  

LGCP 1,07E-01  1,27E-02 * 2,03E-01  2,13E-02 * 2,66E-03 ** 3,33E-03 ** 3,13E-02 * 2,96E-01   

iLGCP 6,66E-04 *** 3,33E-03 ** 9,65E-01  6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 4,66E-03 ** 2,00E-02 *  

                  

 AA  AB AC AD AE AG AH AI  

CSR 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 ***  

iCSR 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 ***  

LGCP 5,46E-02 . 2,66E-03 ** 1,13E-02 * 2,66E-03 ** 4,66E-03 ** 2,13E-02 * 8,39E-02 . 2,71E-01   

iLGCP 3,33E-03 ** 6,00E-03 ** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 5,33E-03 ** 3,33E-03 ** 4,66E-03 **  

                  

 AJ AK AM AN AO AQ      

CSR 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 ***      

iCSR 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 ***      

LGCP 2,93E-01  5,04E-01  6,46E-01  4,29E-01  5,26E-02 . 3,98E-01       

iLGCP 6,66E-04 *** 5,66E-01  2,60E-02 * 3,60E-02 * 2,66E-03 ** 1,41E-01       

                  

 VALIDATION  

 A  B  C  D  E  F  G  H   

CSR 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 ***  

iCSR 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 ***  

LGCP 4,46E-02 * 5,19E-01  6,66E-01  1,67E-02 * 9,07E-01  4,60E-01  7,83E-01  2,00E-03 **  

iLGCP 6,66E-04 *** 7,57E-01  6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 5,46E-02 . 4,13E-02 * 6,66E-04 ***  

                  

 I  J  K  L  M  N  O  R   

CSR 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 ***  

iCSR 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 ***  

LGCP 2,40E-02 * 1,33E-03 ** 6,66E-04 *** 6,66E-04 *** 1,83E-01  6,66E-04 *** 1,13E-01  6,66E-03 **  

iLGCP 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 2,00E-03 ** 6,66E-04 *** 6,66E-04 *** 6,66E-04 ***  

                  

 S  t  U  V  W  X  Y  Z   

CSR 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 ***  

iCSR 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 ***  

LGCP 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 1,33E-03 ** 1,33E-03 **  

iLGCP 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 ***  

                  

 AA  AB  AC  AD  AE  AG  AH  AI   

CSR 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 ***  

iCSR 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 ***  

LGCP 3,33E-03 ** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 1,13E-02 * 6,66E-04 ***  

iLGCP 5,33E-03 ** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 9,25E-04 *** 6,66E-04 *** 2,66E-03 ** 2,00E-03 **  

                  

 AJ  AK  AM  AN  AO  AQ       

CSR 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 ***      

iCSR 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 ***      

LGCP 6,66E-04 *** 1,33E-03 ** 4,53E-01  6,66E-04 *** 6,66E-04 *** 6,66E-04 ***      

iLGCP 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 6,66E-04 *** 2,04E-01       

Table S 2 Extreme rank envelope test p-values per sample area of the extensive dataset in calibration and 
validation, for the different models: completely spatial randomness (CSR); CSR with an inhomogeneous 
intensity (iCSR), log-Gaussian cox-processes (LGCP), LGCP with an inhomogeneous intensity (iLGCP). 
Significance codes: ‘***’ for 0.001, ‘**’ for 0.01, ‘*’ for 0.05 and ‘.’ for 0.1.  Grey highlighting: highest p-value; bold 

blue: highest and non-significate p-value. 
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t	 1,93E+00	 2,07E+04	 -2,26E+01	 1,23E+01	 2,54E-02	 3,16E-02	 9,53E-04	 -9,14E+00	 -2,24E-04	 -3,89E-04	 -1,52E-07	
U	 3,50E+00	 8,94E+03	 -1,92E+01	 1,15E+01	 -4,02E-03	 -7,25E-02	 3,13E-03	 -1,20E+01	 -9,72E-05	 9,78E-04	 -4,87E-05	
X	 2,83E+00	 5,61E+03	 -1,94E+01	 1,13E+01	 -1,33E-02	 1,76E-02	 -4,84E-03	 -1,01E+01	 2,41E-04	 -2,67E-04	 2,77E-06	

Extensive	dataset	

	 !2	 "	
Intercept	

(#$)	
Hpop	
(#%)	

Crop		
(#&)	

Tree		
(#')	

Remot	
(#()	

Hpop2	
(#))	

Crop2	
(#*)	

Tree2	
(#+)	

Remot2	
(#,)	

A	 8,44E-01	 3,24E+03	 -1,33E+01	 3,40E+00	 -2,06E-03	 -2,54E-02	 1,12E-03	 -2,50E+00	 1,12E-04	 2,68E-04	 -3,30E-06	
B	 7,50E-01	 7,11E+03	 -1,47E+01	 9,56E+00	 -2,03E-02	 2,04E-02	 -1,42E-04	 -8,04E+00	 3,72E-04	 -2,44E-04	 2,37E-07	
C	 6,63E-01	 3,08E+03	 -1,38E+01	 5,84E+00	 1,22E-02	 -1,04E-02	 1,34E-03	 -3,71E+00	 -9,64E-05	 3,23E-05	 -1,93E-06	
D	 9,86E-01	 3,31E+03	 -1,38E+01	 7,70E+00	 -2,32E-03	 1,39E-02	 -8,73E-05	 -5,83E+00	 7,87E-05	 -1,65E-04	 -3,17E-07	
E	 8,53E-01	 1,59E+03	 -1,27E+01	 6,89E+00	 -2,55E-05	 -7,87E-03	 -2,03E-05	 -4,51E+00	 3,74E-05	 2,39E-05	 -6,32E-07	
F	 6,48E-01	 1,04E+04	 -1,68E+01	 9,80E+00	 1,19E-02	 1,88E-02	 4,72E-03	 -6,64E+00	 -6,25E-05	 -1,42E-04	 -2,59E-06	
G	 1,02E+00	 1,82E+03	 -1,29E+01	 5,60E+00	 7,97E-03	 -2,37E-02	 -1,33E-03	 -3,23E+00	 -1,03E-04	 1,89E-04	 1,38E-07	
H	 9,66E-01	 2,32E+03	 -1,35E+01	 6,12E+00	 1,17E-02	 -5,79E-03	 7,73E-04	 -3,19E+00	 -1,77E-04	 -5,23E-06	 -9,98E-07	
I	 1,24E+00	 2,38E+03	 -1,46E+01	 1,32E+01	 1,97E-02	 1,78E-02	 7,73E-04	 -1,56E+01	 -1,92E-04	 -2,17E-04	 -7,50E-07	
J	 8,36E-01	 2,54E+03	 -1,36E+01	 6,85E+00	 -6,93E-04	 -1,66E-03	 -1,42E-03	 -5,52E+00	 6,35E-05	 8,67E-05	 8,66E-07	
K	 6,13E-01	 2,01E+03	 -1,26E+01	 2,46E+00	 -1,63E-04	 -1,19E-02	 -4,45E-04	 -1,34E+00	 2,84E-05	 1,19E-04	 -1,77E-06	
L	 7,60E-01	 3,26E+03	 -1,24E+01	 4,43E+00	 -1,03E-03	 -1,07E-02	 -4,45E-03	 -2,85E+00	 3,09E-05	 7,72E-05	 5,71E-06	
M	 1,42E+00	 2,90E+03	 -1,41E+01	 6,71E+00	 -4,96E-03	 -6,01E-03	 -1,14E-04	 -6,36E+00	 1,21E-04	 -6,34E-05	 -2,42E-07	
N	 6,92E-01	 2,33E+03	 -1,35E+01	 4,20E+00	 3,65E-03	 -1,55E-02	 -4,72E-04	 -2,90E+00	 -2,09E-05	 1,81E-04	 -9,92E-07	
O	 7,86E-01	 3,90E+03	 -1,37E+01	 7,14E+00	 -1,19E-02	 -7,09E-03	 3,57E-04	 -4,67E+00	 1,83E-04	 7,44E-06	 -7,16E-07	
R	 5,38E-01	 2,33E+03	 -1,31E+01	 6,86E+00	 1,52E-02	 -5,01E-03	 -1,82E-03	 -5,17E+00	 -1,67E-04	 4,15E-05	 3,49E-07	
S	 1,01E+00	 2,90E+03	 -1,53E+01	 1,11E+01	 -1,02E-02	 3,25E-03	 9,36E-04	 -1,05E+01	 1,46E-04	 -2,09E-04	 -9,11E-07	
t	 7,30E-01	 3,95E+03	 -1,39E+01	 4,16E+00	 9,50E-03	 -2,05E-03	 -2,61E-04	 -3,33E+00	 -5,65E-05	 -2,32E-04	 -7,23E-07	
U	 8,74E-01	 2,28E+03	 -1,35E+01	 6,44E+00	 -9,06E-03	 -1,63E-02	 -3,24E-04	 -5,25E+00	 1,17E-04	 1,05E-04	 -5,52E-07	
V	 6,20E-01	 1,94E+03	 -1,30E+01	 5,24E+00	 -2,31E-03	 -2,48E-02	 -6,63E-04	 -2,91E+00	 9,26E-05	 3,03E-04	 -8,49E-07	
W	 7,42E-05	 2,11E+02	 -1,26E+01	 5,70E+00	 8,37E-04	 -1,24E-02	 1,63E-03	 -4,86E+00	 1,69E-05	 2,27E-04	 -5,76E-06	
X	 1,02E-05	 2,47E+02	 -1,27E+01	 4,47E+00	 -2,63E-03	 -2,13E-03	 2,40E-03	 -2,84E+00	 8,64E-05	 -4,48E-05	 -5,78E-06	
Y	 4,43E-01	 4,20E+03	 -1,38E+01	 7,07E+00	 -3,82E-03	 -2,95E-02	 1,33E-03	 -5,55E+00	 1,36E-04	 4,81E-04	 -4,27E-06	
Z	 5,67E-01	 1,11E+04	 -1,71E+01	 2,05E+01	 1,85E-02	 -2,57E-03	 2,26E-03	 -4,53E+01	 -1,52E-04	 -1,03E-04	 -1,42E-06	
AA	 5,20E-01	 3,12E+03	 -1,34E+01	 4,67E+00	 -6,11E-03	 9,22E-03	 -1,15E-03	 -3,46E+00	 1,09E-04	 -1,95E-04	 -7,13E-08	
AB	 9,92E-01	 2,51E+03	 -1,34E+01	 3,31E+00	 3,08E-03	 4,36E-03	 1,11E-03	 -1,85E+00	 1,53E-05	 -1,99E-04	 -2,43E-06	
AC	 8,31E-01	 9,28E+02	 -1,26E+01	 4,25E+00	 1,14E-02	 -6,59E-03	 -1,75E-03	 -2,50E+00	 -1,13E-04	 -6,98E-05	 2,85E-06	
AD	 3,82E-06	 2,30E+02	 -1,25E+01	 4,68E+00	 1,40E-02	 8,39E-04	 -5,35E-04	 -3,05E+00	 -1,46E-04	 -1,00E-04	 1,23E-06	
AE	 1,69E-06	 2,30E+02	 -1,30E+01	 5,04E+00	 3,69E-03	 -1,33E-02	 1,88E-03	 -3,54E+00	 3,84E-05	 3,97E-05	 -3,61E-06	
AG	 5,58E-01	 7,47E+03	 -1,37E+01	 3,43E+00	 2,17E-02	 -2,16E-03	 -3,67E-03	 -2,22E+00	 -2,01E-04	 -7,06E-05	 4,17E-06	
AH	 9,21E-01	 7,44E+03	 -1,35E+01	 1,64E+00	 1,39E-02	 1,06E-02	 2,99E-03	 -1,00E+00	 -1,19E-04	 -2,26E-04	 -5,47E-06	
AI	 8,54E-01	 4,27E+03	 -1,33E+01	 4,47E+00	 -1,06E-03	 -1,41E-02	 -1,61E-03	 -2,67E+00	 1,42E-05	 4,22E-05	 3,69E-07	
AJ	 2,06E+00	 1,10E+04	 -1,80E+01	 6,92E+00	 2,40E-02	 3,41E-02	 5,03E-03	 -3,84E+00	 -1,08E-05	 -3,48E-04	 -3,89E-06	
AK	 1,25E+00	 3,17E+03	 -1,36E+01	 2,69E+00	 1,66E-02	 -1,72E-02	 -1,04E-03	 -1,43E+00	 -2,15E-04	 1,71E-04	 1,50E-06	
AM	 8,22E-01	 1,99E+03	 -1,30E+01	 4,99E+00	 1,79E-02	 8,50E-04	 -3,40E-03	 -3,28E+00	 -2,73E-04	 9,29E-06	 1,47E-06	
AN	 9,44E-01	 2,79E+03	 -1,35E+01	 4,48E+00	 6,27E-03	 8,65E-03	 -1,92E-03	 -2,19E+00	 -9,27E-05	 -1,08E-04	 1,60E-07	
AO	 5,93E-01	 3,63E+03	 -1,32E+01	 4,67E+00	 2,69E-02	 -1,13E-02	 -1,33E-03	 -3,11E+00	 -2,37E-04	 3,19E-05	 -4,95E-07	
AQ	 1,17E+00	 5,66E+03	 -1,29E+01	 3,27E+00	 1,43E-02	 -1,18E-02	 -5,58E-03	 -2,17E+00	 -1,79E-04	 2,07E-04	 2,94E-06	

Table S 3 Coefficients of the different model parameters (-, .& and #$, #% …#,). In LGCP models, the 

covariance is defined as 1$ 2 = 	.&567	(2 -)  where .&	is the variance and - the scale parameter and the 

intensity function was defined as : ; = 567 #$ + #%=>?> ; + #&12?> ; + #'@2AA ; + #(BAC?D ; +
#)=>?>&(;) + #*12?>& ; + #+@2AA&(;) + #,BAC?D& . 



 

	

 

Figure S 6.  Intensive and extensive observed distribution of farms in a sample area. 
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