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Abstract. We propose a double obstacle phase field methodology for binary recovery

of the slowness function of an Eikonal equation found in first-arrival traveltime

tomography. We treat the inverse problem as an optimization problem with quadratic

misfit functional added to a phase field relaxation of the perimeter penalization

functional. Our approach yields solutions as we account for well posedness of the

forward problem by choosing regular priors. We obtain a convergent finite difference

and mixed finite element based discretization and a well defined descent scheme by

accounting for the non-differentiability of the forward problem. We validate the phase

field technique with a Γ – convergence result and numerically by conducting parameter

studies for the scheme, and by applying it to a variety of test problems with different

geometries, boundary conditions, and source – receiver locations.

1. Introduction

We consider recovery of subsurface structure formed by a disjoint composition of

two materials with distinct impedances to ground waves. First-arrival traveltime

tomography (FATT) (see [46]) is a subfield of seismic tomography where the

observational data for recovery is the first hitting time of a wave at known locations. We

formulate the forward problem of FATT as an Eikonal equation ([51, Appendix C] or

[3, Chapter 4]), and we use a phase field regularization [10] to model the binary nature

of the problem.

The link between the Eikonal equation and first-arrival traveltime problems, has

been widely studied [52, 43, 17, 20], where it is shown that if the wave impedance or

slowness function is continuous (or with specific forms of jump discontinuities [21])

then the description admits unique Lipschitz continuous viscosity solutions. The

discontinuities arise at boundaries of material regions of different wave impedances [58].

The inverse problem of recovering the slowness function given observed traveltimes

is illposed. We work in an optimization framework, and overcome determination issues

by restricting optimization of a quadratic data fidelity or misfit functional over a prior

or model subspace of functions, and we add a regularization functional. For piecewise
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constant slowness function we seek to find the regions in which the function is constant;

this is equivalent to determining where interfaces between constant values occur. A

natural regularization in the optimization framework is to penalize the length the

interfaces between constant values [47, 57, 38]. This perimeter regularization is difficult

for binary priors because of non-differentiabilty unless one tracks the interfaces. In

addition, the solution of the recovery problem is a binary function and unfortunately,

the forward problem is not well posed for this class of functions.

In this paper we address these two issues and present a method based on phase

field techniques [12] for binary recovery. The slowness is regularized using a phase field

function and the perimeter regularization is approximated by a phase field gradient

energy. We take an obstacle phase field approach [10, 12] with an H2 regular functional

[29], (for other choices [18, 26]). This method has several attractive features. Primarily

it is mathematically grounded, by producing continuous priors for the slowness function

so the forward problem is well posed within the theory of viscosity solutions. This leads

to an existence theory for solutions of the inverse problem. It is fit for purpose, as the

regularization serves as an approximation to the perimeter regularization functional and

so is naturally suited to binary recovery, [45, 6, 10]. We are able to construct a convergent

discretization scheme for approximating solutions to the inverse problem. This is based

on a monotone finite difference method (forward problem) and a mixed finite element

method (phase field functional). It is shown in [22] that for a particular finite difference

scheme, a derivative of the discrete forward problem exists, and is computed efficiently by

a variant of the fast marching method on the discrete adjoint equation. We implement

the scheme, using an adjoint equation for the efficient calculation of (a well defined)

discrete derivative, and showcase it with a parameter study and apply it to several

varied test configurations.

The power of our method comes from a notion of convergence of smooth minimizers

to binary functions [45, 6, 10], a well developed numerical analysis [11, 9] and suitability

for implementation. It is possible to extend the modelling framework, to one with a

constant region linked to a smoothly varying region across an interface jump as in [2].

Although for the forward problem we use the fast marching method (FMM) [49, 50, 48, 1]

due to its robustness [30], fast sweeping methods [55, 35, 44, 32] could be used. Also

we may use finite difference (rather than finite element) approximations of the phase

field functional. Related phase field techniques have been applied to piecewise constant

recovery for other inverse problems [24, 13, 23, 7].

With respect to other approaches we note that there are many other representations

of the interfaces bounding constant regions. For example, a finite parameter specification

[27, 41], or with a finite basis [22] or infinite dimensional subspace [57, 38]. Also, to

construct the inverse problem, a probabilistic framework may be used [53, 31, 15], where

the prior is a space of probability distributions. Other regularizations to enforce so-called

‘blocky’ solutions are also used [33, 34, 58]. We also note that, although the solution of

the Eikonal equation is not differentiable with respect to the slowness in general, other

studies have assumed differentiability to improve efficiency of schemes, as one may then



Binary recovery via phase field regularization 3

use an adjoint equation or write optimality conditions [37, 54].

1.0.1. Outline We set out the forward problem in Section 2.1 and inverse problem

Section 2.4. We present the phase field regularization in Section 3.2. We discretize the

problems in Section 4.1 and Section 4.3, with attention given to the discrete derivative

in Section 4.4. We present a numerical scheme and investigate choice of parameters,

and the scheme’s effectiveness through computations in Section 5.

1.1. Binary recovery

Figure 1. Schematic showing crosswell tomography for binary recovery. The

boundaries are drilled boreholes, the left populated with wave sources, the right with

receivers. A source at x0 is producing a wave that moves through a background medium

with slowness s(x) = a, and through inclusions where s(x) = b. Drawing solution ray

paths, one sees Snell’s law at inclusion boundaries. The Soner boundary condition

requires that rays leaving the domain Ω do not re-enter.

We motivate the choices we make in subsequent sections using the following model.

Let Ω = [0, Lx]× [0, Lz] ⊂ R2. The domain is covered by two media, with known distinct

slowness 0 < a < b. we then represent the slowness by a binary function, s : Ω→ {a, b}.
This representation arises in seismic tomography [5, 58]. The forward problem is the

Eikonal equation (2.2) – (2.4) with appropriate boundary conditions. We know this

yields a unique solution if jump discontinuities form Lipschitz regular interfaces.

We know location of sources and receivers, and one common configuration is

crosswell or cross hole tomography, where two boreholes are drilled at x = 0 (the

source borehole), and x = Lx (the receiver borehole). Sources are set of at regular
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intervals [0, (i/M)Lz], and recorded at regular intervals [Lx, (j/N)Lz] for i = 1, . . . ,M

and j = 1, . . . , N . This scenario is depicted in Figure 1. The goal of the inverse

problem is: given experimental data of hitting times of seismic waves at receivers, can

one reconstruct the slowness s : Ω→ {a, b}?

2. The abstract forward and inverse problems

2.1. The forward problem

Let Ω ⊂ Rd (d = 2 or 3), be an open bounded domain with Lipschitz boundary ∂Ω and

take x0 ∈ Ω fixed. We investigate the first arrival time at x ∈ Ω̄ of a ray originating

from a source at x0. Denote the space of possible ray paths by,

Ξx0(x) B { ξ ∈ W 1,∞([0, 1], Ω̄) | ξ(0) = x0, ξ(1) = x }.

We denote the impedance of the ray in the medium (representing subsurface

heterogeneity) by defining a continuous and positive slowness function s : Ω̄ → R+.

The first-arrival traveltime T (x) over this set of paths is defined as

T (x) B inf
ξ∈Ξx0 (x)

∫ 1

0

s(ξ(r)) |ξ′(r)| dr. (2.1)

This extremal value is viewed as the shortest arrival time of a ray that obeys Fermat’s

principle and travels from x0 to x, with speed c(x) = s(x)−1. It has been shown in

[42, 52], that T (x) formally satisfies a stationary Hamilton-Jacobi equation, namely the

following Eikonal equation:

|∇T (x)| = s(x), ∀x ∈ Ω \ {x0}, (2.2)

T (x0) = 0, (2.3)

∇T (y) · n(y) ≥ 0, ∀y ∈ ∂Ω, (2.4)

where n is the outward pointing unit normal. We say T is a viscosity solution of the

Eikonal equation (2.2) – (2.4). In the context of (2.1), ∇T (x) is the direction of the

optimal ray and s(x)−1 is the speed of the ray at x. The point condition (2.3) ensures

the source at x0 has zero travel time. The Soner boundary condition (2.4) ensures

information propagates out of the domain, that is, all ray paths terminate at ∂Ω [52].

2.2. Well posedness

The well posedness of (2.2) – (2.4) is of importance when considering the inverse problem

associated to it. The goal of the theory is to clarify the requirements for this Eikonal

equations to produce regular (Lipschitz) solutions. The first proof of well posedness is

from [42], where the problem (2.1) was posed with Dirichlet boundary data (replacing

(2.4)):

s = ϕ on ∂Ω, where |ϕ(x)− ϕ(y)| ≤ T̄ (x, y), (2.5)

and T̄ (x, y) is the traveltime between a point x and y in Ω̄.
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The next development is found in [52], where it is shown that if one constrains

paths to lie within Ω̄, a solution of (2.1) is a viscosity solution of (2.2) – (2.4). By

viscosity solution here, we mean that T (x) is a subsolution of (2.2) for x ∈ Ω \ {x0} and

a supersolution of (2.2) for x ∈ Ω̄\{x0}, also used in [21, 22]. In [52], it was shown that

if s ∈ C0(Ω) is continuous, positive and bounded, there is a unique optimal value T , that

is Lipschitz continuous on Ω̄ with constant bounded by ‖s‖∞. The result holds under

regularity conditions satisfied by bounded C1 domains, or piecewise smooth boundaries

containing isolated corners.

The results have been extended in [21] to deal with discontinuous slowness

function while still achieving Lipschitz continuous solutions. First note, the regularity

requirement on s in [52] can be written: ∀x, y ∈ Ω,

|s(x)− s(y)| ≤ wu(‖x− y‖), (2.6)

where wu is nondecreasing, continuous and wu(0) = 0, differences in s are bounded by

a continuous function. In [21], this is extended as follows: ∀x ∈ Ω, ∃ε > 0, n ∈ Sn−1

such that ∀y ∈ Ω, r > 0, d ∈ Sn−1, with |d− n| < ε and y + rd ∈ Ω, such that

s(y + rd)− s(y) ≤ ws(‖x− y‖+ ‖y + rd− y‖) = ws(‖x− y‖+ r) = wys (r), (2.7)

for the (n−1) – dimensional unit sphere Sn−1. The property (2.7) requires that at every

x ∈ Ω one can choose a cone in direction n such that within this cone, the slowness

function is bounded by a nondecreasing continuous function wu(r) (as in (2.6)). This

condition holds if s is continuous, and allows for jump discontinuities along an interface

where the left and right limits of the jump satisfy strict inequality along the length of

the interface. In two dimensions, this can be extended to allow junctions of curves of

discontinuity [21].

Remark 1. The extension is technical. In particular, functions in W 1,α(Ω) or

BV (Ω, {a, b}) for 0 < a < b, will not automatically satisfy these cone conditions.

2.3. Nondifferentiability of the solution operator

We note that the solution of (2.2) is not differentiable in s. Differentiability of

the forward problem is often an important feature to solve an inverse problem, as

derivative informed methods are often far more efficient for formulating and searching

for optimizers. We shall address this through the course of the derivation by making

use of a discrete construction found in [22].

2.4. The abstract inverse problem

Let y be observations of the solution of a forward problem, from input slowness s.

Assume observations are perturbed by (additive) noise η. The abstract inverse problem

is stated as: Given the observed data y of the problem G, find s satisfying

y = G(s) + η. (2.8)
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We choose the forward problem to be (2.2) – (2.4), acting on a slowness function s

and followed by an operator K : T (s) 7→ G(s) ∈ O an observation space. The data

y = Tobs ∈ O is a set of observed first hitting times at fixed known receiver locations in

Ω̄ or on densely in a region or curve in Ω̄. Altogether, η = y − G(s) = Tobs −K(T (s)).

We consider a mismatch functional I(v) to measure the data misfit y−G(s) (chosen

in Section 2.5). Our goal is to find a minimizer of I within a space A, known as the

prior or model space. We write,

Find s B min
v∈A
I(v). (2.9)

The choices of O and A, affect the complexity of the inverse problem. In particular,

(2.2) – (2.4) and I, must be well posed for any s ∈ A, as discussed in Section 2.2.

2.5. Misfit functional

For the misfit we choose a quadratic functional and take the observations O to be a

subspace of a Hilbert space:

I(s) = ‖y − G(s)‖2
O =

1

2
‖K(T (s))− Tobs‖2

O. (2.10)

Often the measurements are assumed to be densely defined on union of curves Γ ⊂ Ω̄.

In this case, take Tobs : Γ → R>0 for Tobs ∈ O = L2(Γ). The natural candidate for a

misfit functional is

I(s) =
1

2

∫
Γ

|T (s)(x)− Tobs(x)|2 dsx. (2.11)

Commonly Γ ⊂ ∂Ω, as observations are taken at surface seismic stations, or at detectors

in a drilled well (see [58, 36, 39] and Figure 1).

We may also consider observations at a finite number of distinct points x1, . . . , xM ∈
Ω̄ (see [36]). In this case the natural functional (for suitable weights {wi}) is,

I(s) =
1

2

M∑
i=1

wi|T (s)(xi)− Tobs(xi)|2. (2.12)

In either case, the positions of the observations relative to a source will affect

the recovery. We generalize to consider multiple experiments using travel times

T 1(s), . . . T S(s) produced from sources x1
0, . . . x

S
0 by summing over the functionals:

I(s) =
1

2

S∑
j=1

‖K(T j(s))− T jobs‖
2
O,

where T jobs is a traveltime data set corresponding to the source xj0. This assumes

independence of experiments j = 1, . . . S.

Hereafter, for the sake of a cleaner analysis in the subsequent sections, we assume

a single source and observation space O = L2(Γ) for a boundary segment Γ ⊂ ∂Ω.

The analysis we present can be generalized to multiple source points and applied to a

mismatch functional (2.12) by following the same procedures. In fact, with a particular

choice of weights, we see that (2.12) can be seen as a discretization of (2.11), see

Section 4.2.
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2.6. Noisy observations

We often consider the observational data y to be perturbed by a random variable,

interpreted as observation imprecision. In the case of M finite observations at discrete

points, we introduce this randomness through a normal random variable η ∼ µ =

N(0,Σ) on RM , where Σ ∈ RM×M as a positive-definite covariance.

The misfit (2.12) is naturally weighted with the confidence, for example choose

Σ = ν2I, where I is the identity on RM×M and a constant ν:

‖Σ−
1
2 (y − G(s))‖2

O =
1

2

M∑
i=1

|Σ−
1
2 (T (s)(xi)− Tobs(xi))|2 =

1

2ν2

M∑
i=1

|T (s)(xi)− Tobs(xi)|2.

3. Regularization

3.1. Introduction

We motivate the phase field method by considering a natural regularization for a binary

recovery problem. One penalizes length of the interface Γ between constant regions [47],

(also [57, 58]), as shown in the following functional for some forward map F ,

IPer(s) =
1

2
‖y −F(s)‖2

O + δ|Γ|. (3.1)

where δ > 0. If s ∈ BV (Ω, {a, b}), then Γ is the perimeter of {s = a} and we can

rewrite (3.1) as the total variation of s,

ITik(s) =
1

2
‖y −F(s)‖2

O + δ

∫
Ω

|∇s|α dx, (3.2)

where α = 1. The problem is often relaxed by taking s ∈ BV (Ω) and losing the

binary nature of the prior. Another common choice is α = 2 which acts as a smoothing

regularization and so the prior space A ⊂ H1(Ω). A fundamental problem with either

regularization is they lead to prior space A that is not a subset of the continuous

functions, and so we cannot take forward map F = G as these spaces are insufficient for

the well-posedness of the forward problem (see Remark 1).

3.2. Phase field formulation

Phase field regularization provides regular approximation (via gamma convergence

[45, 10]) to (3.2) with α = 1 and binary priors. We separate the notation for the

slowness function and the phase field variable in the regularization. Denote the phase

field variable by u : Ω → [−1, 1], and we solve (2.2) – (2.4) with the slowness function

s(u(x)), linear in u, and s : [−1, 1]→ [smin, smax]

s(u) = u(smax − smin)/2 + (smax + smin)/2 (3.3)

bounded by 0 < smin < smax. As u approaches −1 (or 1), s approaches smin (or smax).

We take u to be our new variable, and we use a functional composed of two parts. Firstly

a penalty to second order derivatives J γ
1,ε(u) to ensure s(u) ∈ A ⊂ H2(Ω) ⊂ C0(Ω).
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Secondly a Ginzburg-Landau type functional J γ
2,ε(u). Define the phase field functional:

for σ, ε, γ > 0,

Iγε (u) B
1

2
‖y − G(s(u))‖2

O + σ1

∫
Ω

γ
ε3

2
(∆u)2 dx+ σ2

∫
Ω

ε

2
|∇u|2 +

1

ε
Ψ(u) dx︸ ︷︷ ︸

Bσ1J γ1,ε(u)+σ2J γ2,ε(u)

, (3.4)

where Ψ(u) is given by the double obstacle potential with minima on {−1, 1}:

Ψ(u) B

{
1
2
(1− u2), if u ∈ [−1, 1],

∞, otherwise.
(3.5)

The behaviour of a minimizer of J γ
2,ε (defined in (3.4)) is a function which favours taking

the exact values −1 or 1 (and is bounded in [−1, 1]) due to the double obstacle potential

(3.5), see [12]. The minimizer changes between values in a controlled fashion due to the

gradient penalizations, across a thin interface characterized by the width parameter

ε > 0. For small ε, the function takes these constant values large regions of the domain.

A minimizer of J γ
2,ε undergoes a Laplacian penalization, which ensures the function is

continuous. We henceforth assume σ = σ1 = σ2 and take J γ
ε = J γ

1,ε + J γ
2,ε. The use

of similar regularization functionals are found in [24, 16]. Possible boundary conditions

that may be imposed are as follows

(i) u = 1 or − 1 on ∂Ω, ∂u
∂n

= 0 on ∂Ω,

(ii) u = 1 or − 1 or ∂DΩ, ∂u
∂n

= 0 on ∂NΩ, for ∂Ω = ∂DΩ ∪ ∂NΩ,

(iii) no conditions imposed.

We interpret a Dirichlet condition on the phase field variable, as having knowledge of the

value of the slowness there. A zero Neumann condition on the boundary imposes (in the

absence of other information) that the interface must touch the boundary orthogonally

there. We choose to take (ii) with ∂DΩ ∩ ∂NΩ = ∅. Our prior space is written:

A B
{
u ∈ H2(Ω)

∣∣∣ u = 1 or − 1 on ∂DΩ,
∂u

∂n
= 0 on ∂NΩ

}
. (3.6)

Remark 2. Another choice is a finite dimensional prior as in [22]. The problem is

reduced to minimizing over a set of coefficients of some given functions: Let {ψk} satisfy

0 ≤ ψk ∈ W 1,∞(Ω) ∀i = 1, . . . , K and
∑K

i=k ψk = 1 and their support covers Ω̄. Define

A B { s: Ω̄→ R | s(x) =
K∑
k=1

skψk(x), sk ≥ 0 bounded, and φk ≥ 0 continuous },(3.7)

The authors showed that when discretized appropriately, the discrete forward problem

(based on (2.2) – (2.4)) can attain a derivative with respect to the state variables si. We

exploit this setting later to obtain a discrete derivative.

Define Iγε by (3.4), then our problem is:

Find u Barg min
v∈A

Iγε (v), (3.8)
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Theorem 3. Let Ω ⊂ Rd be bounded with ∂Ω Lipschitz and consider Iγε defined in (3.4)

and A defined in (3.6). Then there exists a solution to the minimization problem (3.8).

Proof. We wish to use [19, Theorem 9.3.1] to prove minimizers exist. We require A to

be weakly sequentially closed in H2(Ω), and that the functional (3.4):

Iγε (u) =
1

2
‖y − G(s(u))‖2

O + σJ γ
ε (u),

is coercive and lower semicontinuous over A. Firstly, A is an unbounded, weakly closed

subset of H2. Due to (3.5), a minimizer will not satisfy u(Ω) 6⊂ [−1, 1] so we work over

Ã = A ∩H2(Ω ; [−1, 1]). Over Ã, we see

σJ γ
ε (u) = σ

∫
Ω

(
γ
ε3

2
(∆u)2 +

ε

2
|∇u|2 +

1

2ε
(1− u2) dx ≥ σγ

ε3

2
||∆u||2L2(Ω) +

ε

2
||∇u||2L2(Ω)

and ‖u‖2
L2(Ω) ≤ Cu ≤ |Ω|. From the Poincaré inequality we obtain J γ

ε is coercive on Ã.

Weak convergence in H2(Ω) implies strong convergence of u, ∇u in L2(Ω) and weak

convergence of ∆u in L2(Ω). Quadratic functionals are weak lower semicontinuous, and

so J γ
ε is too.

The data misfit is nonnegative and so immediately Iγε is coercive. For lower

semicontinuity of the misfit we consider a weakly convergent sequence (uk) in H2(Ω) to

u ∈ A. As uk 7→ G(s(uk)) is well defined and Lipschitz continuous, then the trace onto

∂Ω is (at least) in O = L2(∂Ω). Furthermore, uk converges strongly in H1(Ω), and so

by the trace theorem for Lipschitz domains [4, Theorem A8.6], uk converges strongly

on ∂Ω in L2(Ω). The continuity of G(s(uk)) preserves the limit, thus G(s(uk) converges

to G(s(u)) in O and the misfit (and so Iγε ) is weakly sequentially lower semicontinuous.

We then apply [19, Theorem 9.3.1] to complete the proof.

3.3. Gamma convergence

The strength of the phase field technique lies with the convergence of the phase field

functional to the perimeter functional in the sense of Γ – convergence. as the interfacial

parameter ε → 0. The first result [45] was for the Ginzburg-Landau functional (with

H1 minimizers) with a quartic double well potential Ψ(u) = 1
2
(1− u2)2. More recently

this has been extended to a functional with H2 minimizers [29] (similar results in

[18, 26]). The analysis of [45] was extended to the double obstacle potential (3.5)

in [10] by investigation of profile which appear across interfaces of minimizers. With

this technique, we extend the analysis of [29] to J γ
ε in (3.4) with a double obstacle (3.5).

We denote
∫

Ω
|∇u| dx for u ∈ BV (Ω) to be the total variation of u.

Theorem 4. Let Ω ⊂ Rd with Lipschitz boundary. Define the following functionals:

J γ
ε (u) B

∫
Ω

γ
ε3

2
(∆u)2 +

ε

2
|∇u|2 +

1

ε
Ψ(u) dx, (3.9)

and

jγ(z) B

∫
R

1

2
γ(z′′)2 +

1

2
(z′)2 + Ψ(z) dx, (3.10)
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where Ψ is the double obstacle potential (3.5). The Γ – limit: J γ
0 BΓ− lim

ε→0
J γ
ε , is

proportional to the perimeter functional:

J γ
0 (u) =


1

2
P γ

∫
Ω

|∇u| dx if u ∈ BV (Ω, {−1, 1}),

∞ if u ∈ L1(Ω) \BV (Ω, {−1, 1}).
for

BV (Ω, {a, b}) B { w ∈ BV (Ω) : w(Ω) ⊂ {a, b} }.

The constant P γ Binf
v∈V

jγ(v) is the double obstacle transition energy, where

V =
{
v ∈ C2(R; [−1, 1]) | ∃δ > 0,∀x ∈ R v(x) = −v(−x),

v′(x) ≥ 0, and v(x > δ) = 1, v(x < −δ) = −1
}
.

Proof. We consign the proof of this theorem to Appendix A

Remark 5. The relationship between (3.9) and (3.10) is through an ansatz on the phase

field variable u:

u(x) = zγ
(d(x)

ε

)
, z(0) = 0,

where d(x) is the signed distance function to the limiting interface at {u(x) = 0}, and

zγ : R → [−1, 1] is a smooth function found in Appendix A. Inserting the ansatz into

(3.9) results in (3.10).

Remark 6. For Iγε in (3.4), an equivalent result to Theorem 4 is unknown, due to

technicalities in assuring that misfit functional is well defined in the ε→ 0 limit.

3.4. Mixed formulation

In practice, approximating the high order derivatives as found in the problem (3.8) in the

discrete setting is complex when using conforming finite elements. We therefore create

a mixed formulation. We begin by introducing a new variable w such that w = −∆u

weakly on Ω, and setting:

Iγε (u,w) =
1

2
‖y − G(s(u))‖2

O + σ

∫
Ω

γ
ε3

2
w2 +

ε

2
|∇u|2 +

1

ε
Ψ(u) dx︸ ︷︷ ︸

σJ γε (u,w)

. (3.11)

The natural optimization problem is then

Find (u,w) Barg min
(ũ,w̃)∈A∆

Iγε (ũ, w̃). (3.12)

We find a suitable set A∆ with appropriate boundary conditions and treat the cases

∂DΩ 6= ∅ and ∂DΩ = ∅ separately. We define a bilinear form B : H1(Ω)×H1(Ω)→ R,

B(z, v) =

∫
Ω

∇z · ∇v dx,
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and denote the L2 inner product by 〈·, ·〉. Define the spaces

H1
D = {u ∈ H1(Ω) | u = g on ∂DΩ}, (3.13)

H1
0,D = {u ∈ H1(Ω) | u = 0 on ∂DΩ}. (3.14)

then we may define

A∆ B

{
A∆,D, if ∂DΩ 6= ∅,
A∆,N , if ∂DΩ = ∅,

(3.15)

where,

A∆,D B
{

(u,w) ∈ H1
D(Ω)× L2(Ω)

∣∣∣ B(u, ζ) = 〈w, ζ〉, ∀ζ ∈ H1
0,D(Ω)

}
, (3.16)

A∆,N B
{

(u,w) ∈ H1(Ω)× L2(Ω)
∣∣∣ ∫

Ω

w dx = 0,

B(u, ζ) = 〈w, ζ〉, ∀ζ ∈ H1(Ω)
}
. (3.17)

Remark 7. The compatibility condition
∫

Ω
w dx = 0 in (3.17) is necessary to make

sense of the relation between u and w in the case of the pure Neumann boundary

condition, ∂u/∂n = 0 on ∂Ω.

We now show existence of solutions for the mixed formulation.

Theorem 8. Let Ω ⊂ Rd be bounded with ∂Ω either being C2 or ∂Ω Lipschitz and Ω

convex. Consider Iγε defined in (3.11) and A∆ as in (3.15). Then there exists a solution

to the minimization problem (3.12)

Proof. The assumptions on Ω imply that if (u,w) ∈ A∆ then standard results for

−∆u = w,w ∈ L2(Ω), u ∈ H1(Ω) in elliptic regularity, (see [28, Chapter 2] for convex

Lipschitz domain), imply that u ∈ H2(Ω) and is continuous so that the forward problem

has a solution and the misfit functional is well defined. Consider ∂DΩ 6= ∅. The set

A∆,D is an unbounded, weakly closed subset of H1(Ω) × L2(Ω). We seek to apply the

theorem of [19, Theorem 9.3.1], and so must show the functional (3.11) is coercive and

lower semicontinuous over A∆,D. For coercivity, by definition of (3.5), we are done if

u(Ω) 6⊂ [−1, 1], and so work over Ã∆,D = A∆,D ∩ (H1(Ω, [−1, 1]) × L2(Ω)) with norm

‖(u,w)‖∆ = (‖u‖2
H1(Ω) + ‖w‖2

L2(Ω))
1
2 .

We see that over Ã∆,D using (3.5), we have

σJ γ
ε (u,w) = σ

∫
Ω

γ
ε3

2
w2 +

ε

2
|∇u|2 +

1

2ε
(1− u2) dx

≥ σ

∫
Ω

γ
ε3

2
w2 +

ε

2

(
|∇u|2 + u2

)
dx− (

1

2ε
+
ε

2
)

∫
Ω

u2 dx

≥ min(σ
ε3

2
,
ε

2
)‖(u,w)‖2

∆ − (
1

2ε
+
ε

2
)Cu,

where ‖u‖2
L2(Ω) ≤ Cu ≤ |Ω|. Therefore J γ

ε is coercive on Ã∆,D. Moreover, it is

sequentially lower semicontinuous onA∆,D as weak convergence inH1(Ω)×L2(Ω) implies
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∇u and w weakly, and u strongly converge, and quadratic functionals are weakly lower

semicontinuous.

The data misfit is nonnegative and so immediately Iγε is coercive. For lower

semicontinuity of the misfit we consider a weakly convergent sequence (uk, wk) in A∆,D.

Thus uk 7→ G(s(uk)) is well defined and Lipschitz continuous, then the trace onto ∂Ω is

(at least) in O = L2(∂Ω).

The relationship of (3.16) holds for any ζ ∈ H1
0,D(Ω). One can choose g ∈ H1(Ω)

s.t uk − g = vk ∈ H1
0,D(Ω) and choose ζ = vk. Then:∫

Ω

|∇uk|2 dx =

∫
Ω

∇uk · ∇vk +∇uk · ∇g dx =

∫
Ω

wkvk +∇uk · ∇g dx

→
∫

Ω

wv +∇u · ∇g dx =

∫
Ω

|∇u|2 dx, as k →∞

and so uk converges strongly in H1. By the trace theorem for Lipschitz domains [4,

Theorem A8.6] we have that uk converges strongly on ∂Ω in L2. The continuity of

G(s(uk)) preserves the limit, thus ‖G(s(uk)‖O → ‖G(s(u))‖O and the misfit (and so Iγε )

is weakly sequentially lower semicontinuous.

The proof for the case ∂DΩ = ∅ is similar.

We now assert that the mixed formulation yields solutions for the original problem:

Theorem 9. Let Ω ∈ Rd, bounded with ∂Ω either being C2 or with ∂Ω Lipschitz and

Ω convex. Let (u,w) ∈ A∆ defined by (3.15), be solutions of the minimization problem

(3.12) with Iγε (u,w) defined by (3.11) . Then, u is also a solution of the minimization

problem (2.1) with Iγε (u) defined by (3.4) and A defined by (3.6).

Proof. Let (u,w) ∈ A∆. Standard regularity theorems for elliptic problems, gives that

u is not only in H1
D(Ω) (resp. H1(Ω)), but is actually u ∈ H2

loc(Ω). Furthermore, the

boundary regularity is sufficient to extend this result to the boundary (see [28, Chapter

2] for convex Lipschitz domain). In this case w = −∆u is well defined in L2(Ω), so

we show the boundary conditions are preserved. If ∂DΩ 6= ∅, we obtain through the

relation that for any ξ ∈ H1
0,D(Ω):∫

Ω

wξ dx =

∫
Ω

∇u · ∇ξ dx = −
∫

Ω

∆uξ dx+

∫
∂ΩN

ξ∇u · n dy,

and so as w = −∆u in Ω, ξ is arbitrary on ∂ΩN we obtain that ∂u/∂n = 0 on ∂ΩN .If

∂DΩ = ∅, and
∫

Ω
w dx = 0, we know from the elliptic relation that ∀ξ ∈ H1(Ω),∫

Ω

wξ dx =

∫
Ω

∇u · ∇ξ dx = −
∫

Ω

∆uξ dx+

∫
Ω

ξ∇u · n dy,

and setting ξ = 1, and w = −∆u in Ω we obtain ∂u/∂n = 0 on ∂Ω, So u ∈ A. We have

shown that for both sets of boundary conditions, we have u ∈ A and so,

inf
(ū,w̄)∈A∆

Iγε (ū, w̄) ≤ inf
ū∈A
Iγε (ū,−∆ū) = inf

ū∈A
Iγε (ū).

Thus a solution of the mixed problem is also a solution of the original problem.
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Remark 10. In the continuous setting we are unable to calculate derivatives (which

would lead to critical points, optimality conditions of Iγε etc.), due to the lack of

differentiability of the misfit functional with respect to s(u) (briefly mentioned in Remark

2). Hence discussion of derivatives is delayed until Section 4.4.

4. Discretization

4.1. Discrete forward problem

For the discretization of (2.2) – (2.4) we follow [22]. Here we recall the framework

and some key results sufficient for our purpose. Assume that Ω is a convex polygonal

domain. We take a regular quadrilateral grid of uniform grid size h, and so Ωh = Ω∩Z2
h

where Z2
h = {(hα1, hα2) | (α1, α2) ∈ Z2}. We assume the point constraint (2.3) in the

forward problem lies on a grid point, x0 ∈ Ωh. We index with α ∈ Z2, therefore we may

say x0 = xα0 for some α0 ∈ Z2.

Define the discrete boundary ∂Ωh B {y 6∈ Ωh | y = x + (−1)iej, x ∈ Ωh, i, j ∈
{1, 2}} for standard basis vectors ej and set Ω̄h = Ωh ∪ ∂Ωh. Finally, we take the set

of neighbours Nα about a point xα to be the set of neighbours in Ω̄h. In this way the

(2.2) – (2.4) can be discretized using the monotone finite difference scheme,∑
xβ∈Nα

[( Tα − Tβ
|xα − xβ|

)+]2

= s(uh(xα))2, if xα ∈ Ω̄h \ {xα0}, (4.1)

Tα0 = 0, (4.2)

where Tδ = T (xδ), uh : Ωh → R continuous interpolation of u onto Ωh and y+ =

max(y, 0), and

s : [−1, 1]→ [smin, smax], s(uh(xα)) =
smax − smin

2
uh(xα) +

smax + smin

2
.

It is known [22], for 0 < u ∈ C0(Ω̄), equations (4.1) – (4.2) gives a unique

nonnegative (uniform) Lipschitz continuous solution T : Ω̄h → R≥0 which converges

as the mesh size decreases,

max
xα∈Ωh

|Tα − T (xα)| ≤ C
√
h. (4.3)

This equation is solved using the fast marching method [49, 50, 48, 22], an efficient and

robust technique terminating in a finite number of steps. We label the discrete FMM

solution map taking uh and obtaining the discrete solution T , as Gh(s(uh)).

4.2. The misfit functional and prior space

We now consider a discrete analogue of problem (3.8). We discretize the misfit functional

boundary integral (2.11) to give Ih. More precisely, we take Oh = L2
h(Γh), Γh ⊂ ∂Ωh, a

finite difference approximation of L2(Γh). Let T : Ω̄h → R≥0, be the solution of (4.1) –

(4.2) with slowness function s(uh). Then,

Ih(uh) B
1

2

M∑
i=1

h|T (xαi)− Tobs(xαi)|2, (4.4)
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where {xαi}Mi=1 = Γh. The observations are assumed to be at grid points, and henceforth

denoted by yh = {Tobs(xαi)}. We note that this functional is of the form (2.12), with

weights wi given by the discrete grid spacing.

4.3. Discrete inverse problem

We choose to work with a finite element formulation for approximating u and the

regularization functional, though we are not limited to this (one could choose a finite

difference method for example). To keep the distinction between the discretization of

forward and inverse problems, we use ~ as the numerical approximation parameter,

such that the scheme converges as ~→ 0. For ~ ≥ h > 0, we decompose the polygonal

domain Ω into a union of triangles, T~, whose diameters are bounded below by ~.

Working directly by discretizing (3.8), would require an H2 conforming finite element

space to approximate the function u, (such as Lagrangian P3 for C0 elements, or Bell

triangular for C1 elements), unfortunately these are computationally costly, see [14].

Therefore, we present a formulation based on H1 conforming elements and work with a

discretization based on the mixed formulation (3.12). We choose to use P 1 Lagrangian

finite elements, given by piecewise linear nodal basis functions {φl} for every xl ∈ Ω and

satisfying φl(xk) = δkl. Define this finite element space,

S~(Ω) B {v ∈ C0(Ω) | vh|T ∈ P1, T ∈ T~},

where the space of polynomials can be written as

P1 = {v | v(x) =
L∑
l=1

vlφl(x) where vl = v(xl), ∀xl ∈ Ω}.

Remark 11. We use a finer numerical mesh parameter for the forward problem than

the inverse problem i.e ~ ≤ h. This is because our problem is to approximate u and the

solution of the forward problem is required for resolution. In proofs we often identify the

nodes of both finite difference and finite element grids, so that we do not have to include

the forward and backward interpolation operators.

We define the discrete functional,

Iγε,h,~(u~, w~) B
1

2
‖yh − Gh(s(u~))‖2

Oh + σ

∫
Ω

γ
ε3

2
w2

~ +
ε

2
|∇u~|2 +

1

ε
Ψ(u~) dx, (4.5)

and the corresponding optimization problem

Find (u~, w~) B arg min
(ũ~,w̃~)∈A∆,~

Iγε,h,~(ũ~, w̃~). (4.6)

We treat ∂DΩ = ∅ or ∂DΩ 6= ∅ separately. Define a bilinear form on S~(Ω)× S~(Ω) and

discrete L2 inner product 〈·, ·〉~:

B~(z~, v~) B

∫
Ω

∇z~ · ∇v~ dx, 〈z~, v~〉~ =

∫
Ω

z~v~ dx

and denote the space

SD~ B {u~ ∈ S~(Ω) | u~ = 0 on ∂DΩ}. (4.7)
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Then we may define

A∆,~ B

{
A∆,D~, if ∂DΩ 6= ∅,
A∆,N~, if ∂DΩ = ∅,

(4.8)

given by

A∆,D~ B
{

(u~, w~) ∈ SD~(Ω)× S~(Ω)
∣∣∣ B~(u~, ζ~) = 〈w~, ζ~〉~, ∀ζ~ ∈ SD~(Ω)

}
, (4.9)

A∆,N~ B
{

(u~, w~) ∈ S~(Ω)× S~(Ω)
∣∣∣ ∫

Ω

w~ dx = 0,

B~(u~, ζ~) = 〈w~, ζ~〉~, ∀ζ~ ∈ S~(Ω)
}
. (4.10)

Theorem 12. Let Ω ⊂ Rd be a convex polygonal domain. Define A∆,~ as in (4.8), and

for any γ, ε > 0 define Iγε,h,~ as in (4.5), for a convergent discretization Gh of the forward

problem G (2.2) – (2.4) and data y ∈ O. Then there exists (u~, w~) ∈ A∆,~ such that

Iγε,h,~(u~, w~) = min(ũ~,w̃~)∈A∆,~ I
γ
ε,h,~(ũ~, w̃~). Moreover, every sequence (u~k , w~k)k with

~k ↘ 0 has a subsequence such that u~k converges strongly in H1(Ω) and w~k converges

weakly in L2(Ω) to a minimizer of Iγε (·, ·), given by (3.11).

Proof. As we work over a finite dimensional space, from the proof of Theorem 8 it is

straightforward to deduce the coercivity and lower semi continuity of Iγε,h,~. Thus there

exists a minimum of Iγε,h,~.
The cases for ∂DΩ 6= ∅ and ∂DΩ = ∅ follow identically, and so we make no reference

to the boundary conditions for u. We also assume for brevity that the nodes for the

finite difference and finite element grids are identified (one may rewrite the proof with

interpolation operators between them).

Consider a sequence of minimizers (u~k , w~k) ∈ A∆,~k of Iγε,hk,~k , for hk = ~k with

~k → 0 as k → ∞. Then by construction, (u~k , w~k) is bounded in H1(Ω) × L2(Ω).

There exists a subsequence relabeled as (u~k , w~k) and some (u∗, w∗) ∈ A∆ (as defined

in (3.16)) such that, as k →∞:

u~k → u∗ weakly in H1(Ω),

u~k → u∗ strongly in L2(Ω)

w~k → w∗ weakly in L2(Ω)

For convenience we now drop the subscript k in ‘~k’ but note that in the following we

mean (u~, w~) to denote a subsequence. The elliptic relation of B~(u~, ζ~) = 〈w~, ζ~〉~,
holds for any ζ~ ∈ S~(Ω) (resp SD~) so choose ζ~ = u~. Then as ~→ 0:∫

Ω

|∇u~|2 =

∫
Ω

w~u~ dx→
∫

Ω

w∗u∗ dx =

∫
Ω

|∇u∗|2 dx, (4.11)

and therefore u~ → u∗ strongly in H1(Ω). Furthermore elliptic regularity implies

u∗ ∈ H2(Ω). Denote by K and K~ the solution operators for the elliptic relation

−∆Kη = η and its finite element approximation with either the Dirichlet or Neuman

conditions with appropriate data so that

u∗ = Kw∗ and u~ = K~w~.
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By elliptic regularity and standard finite element theory we have

||Kη||H2(Ω) ≤ C||η||L2(Ω) and ||Kη −K~η||L∞(Ω) ≤ C~2− d
2 ||η||L2(Ω).

Decomposing

u~ − u∗ = (K~w~ −Kw~) + (Kw~ −Kw∗),

we see that the first term on the right converges to zero uniformly because of the

uniform L2(Ω) bound on w~ and the finite element L∞(Ω) error bound. Turning to

the second term on the right, we observe that Kwh converges weakly in H2(Ω) because

of elliptic regularity and the weak limit is Kw∗. Thus by compact embedding we see

that Kwh − Kw∗ converges to zero uniformly. Thus u~ converges uniformly to u∗.

Stability results for approximations of viscosity solutions imply that Gh(s(uh)) converges

uniformly to G(s(u∗)). It follows that the misfit functional converges

Ih(uh)→ I(u∗).

We may now prove the claim that that (u∗, w∗) is a minimum of Iγε , we see this

by taking (v, z) ∈ A∆ and a sequence (vk, zk) → (v, z) strongly in H1(Ω) × L2(Ω).

This may be chosen using suitable interpolations. By definition Iγε,hk,~k(u~k , w~k) ≤
Iγε,hk,~k(v~k , z~k) for all k. Convergence of the misfit functional and the weak lower semi

continuity of the functional Iγε (established in Theorem 8) implies

Iγε (u∗, w∗) ≤lim inf
k→∞

Iγε,hk,~k(u~k , w~k) ≤lim sup
k→∞

Iγε,hk,~k(u~k , w~k)

≤ lim
k→∞
Iγε,hk,~k(vk, zk) = Iγε (v, z). (4.12)

Thus Iγε (u∗, w∗) = min(v,z)∈A∆
Iγε (v, z).

4.4. The discrete derivative

The forward problem (2.2) – (2.4) is not differentiable with respect to the state variable.

However using an argument in [22] we recover differentiability for the discrete misfit

functional associated to the discretization (2.2) – (2.4). We identify finite difference

and finite element nodes (as one can rewrite with interpolation operators) then for

(u~, w~) ∈ A∆,~, we obtain u~ =
∑L

i=1 uiφi ∈ A∆,~ for {φi} basis functions of S~ and get

the form discussed in [22] .

We define an adjoint problem associated with the discrete solution T of (4.1) –

(4.2), with discrete slowness function s(u~). Find P : Ω̄h \ {xα0} so that∑
xβ∈Nα

(Tα − Tβ
hα,β

)+ Pα
hα,β

−
(Tβ − Tα

hα,β

)+ Pβ
hα,β

= 0, xα ∈ Ωh \ {xα0}, (4.13)

∑
xβ∈Nα

(Tα − Tβ
hα,β

)+ Pα
hα,β

−
(Tβ − Tα

hα,β

)+ Pβ
hα,β

=
hα
h2

(Tobs − Tα), xα ∈ Γh, (4.14)

where hα,β = |xα − xβ| and the discrete misfit functional is given by (4.4).
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Proposition 1. Let u~ =
∑L

i=1 uiφi ∈ A~, and m ∈ 1, . . . , L. Let Ih be defined by (4.4),

then,

∂Ih
∂um

(u~) = −h2 smax − smin

2

∑
xα∈Ω̄h\{xα0}

Pαs(u~)(xα)φm(xα), (4.15)

where P is the solution of (4.13) – (4.14).

Proof. From [22, Theorem 3.6] we trivially extend to linear functions: let sh =

c1

∑K
k=1 skψk + c2, for {ψk} basis functions satisfying the properties of Remark 2 and

c1, c2 constants. If we solve (4.1) – (4.2) with right hand side s2
h, define

Ĩh(sh) B
1

2

N∑
i=1

hαi |T (xαi)− Tobs(xαi)|2,

and

∂Ĩh
∂sm

(sh) = −h2
∑

xα∈Ω̄h\{xα0}

Pαsh(xα)
∂sh
∂sm

(xα) = −c1h
2

∑
xα∈Ω̄h\{xα0}

Pαsh(xα)ψk(xα).

Take {ψi} to be the the finite element basis functions {φi}, and as we have assumed the

finite difference and finite element nodes are identified, we define

sh B s(u~) =
smax − smin

2

L∑
i=1

uiφi +
smax + smin

2
,

and the result follows: ∂Ih/∂um(u~) = ∂Ĩh/∂um(sh) = (4.15).

We use the elliptic relationships of (4.9) – (4.10) to describe derivatives of w~. In

particular ∂w~/∂um satisfies∫
Ω

∂w~

∂um
ζ~ dx =

∫
Ω

∇φm · ∇ζ~ dx ∀ζ~ ∈ SD~(Ω) (resp S~(Ω)).

As w~ =
∑K

i=1wlφl, where {φl} are a basis of S~(Ω), set ζ~ = φl. The chain rule gives∫
Ω

∂(w2
~)

∂um
=

∫
Ω

∂(w2
~)

∂w~

∂w~

∂um
= 2

L∑
l=1

wl

∫
Ω

φl
∂w~

∂um
dx = 2

L∑
l=1

wl

∫
Ω

∇φm · ∇φl dx. (4.16)

Proposition 2. Let (u~ =
∑L

l=1 uiφi, w~ =
∑L

l=1wiφi) ∈ A∆,~ defined by (4.8) and

m ∈ {1, . . . , L}. Let Iε,h,~ be defined by (4.5). For P : Ωh \ {xα0} → R, the solution

for the adjoint equations (4.13) – (4.14) for the discrete Eikonal equations (4.1) – (4.2)

with slowness s(u~). Then

∂Iγε,h,~
∂um

(u~, w~) = − h2 smax − smin

2

∑
xα∈Ωh\{xα0}

Pαs(u~)(xα)φm(xα)

+ σ
L∑
l=1

∫
Ω

γε3wl∇φm · ∇φl + εul∇φm · ∇φl −
1

ε
ulφmφl dx, (4.17)
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where,

L∑
k,l=1

wl

∫
Ω

φkφl dx =
L∑

k,l=1

ul

∫
Ω

∇φk · ∇φl dx. (4.18)

Proof. Insert the ansatz for (u~, w~) into the regularization integral of (4.5) and

differentiate with respect to um. In view of Proposition 1 and (4.16) we obtain (4.17) –

(4.18).

Remark 13. Let u = (ul)l and w = (wl)l, we can write the above in a matrix

formulation

∂Iγε,h,~
∂um

(u~, w~) = − h2 smax − smin

2

∑
xα∈Ωh\{x0}

Pαs(u~)(xα)φm(xα)

+ σ
(
S(γε3w + εu)− 1

ε
Mu

)
m
, (4.19)

and,

Mw = Su.
(

for Mij =

∫
Ω

φiφj dx, Sij =

∫
Ω

∇φi · ∇φj dx
)
. (4.20)

We call M the mass matrix and S the stiffness matrix for the discretization.

4.5. An explicit descent scheme

We seek to find an critical point of the discrete functional, given by:um = Π
(
um − α

∂Iγε,h
∂um

(u~, w~)
)
, ∀m = 1, . . . , L,

Mw = Su
(4.21)

where Π : R→ [−1, 1] is the pointwise projection

Π(r) := max{−1,min{r, 1}}.

We can write down a simple iterative scheme to find this critical point, by updating the

phase field variables from the derivative (4.19) – (4.20). Denote coefficient vectors as

a = (al)l. Set a numerical tolerance Tol > 0, and set η ∈ (0, 1), and αinit ∈ R+. Define

initial coefficient vector u(0) so that u
(0)
~ ∈ S~ and set Mw(0) = Su(0), ensuring that

(u(0) · φ,w(0) · φ) ∈ A∆,~.

For each k = 0, 1, 2, . . ., do the following:

(i) Calculate the discrete functional derivative

∂Iγε,h
∂um

(u
(k)
~ , w

(k)
~ ) = − h2 smax − smin

2

∑
xα∈Ω\{x0}

Pαs(u
(k)
~ )(xα)φm(xα)

+ σ
(
S(γε3w(k) + εu(k))− 1

ε
Mu(k)

)
. (4.22)
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(ii) Find the largest step α ∈ {αinit
2j−1 | j ∈ N} so that, if we defineu(k+1)

m = Π
(
u

(k)
m − α

∂Iγε,h
∂um

(u
(k)
~ , w

(k)
~ )
)
, ∀m = 1, . . . , L,

Mw(k+1) = Su(k+1).
(4.23)

then, the following inequality is satisfied:

Iγε,h(u
(k+1)
~ , w

(k+1)
~ )− Iγε,h(u

(k)
~ , w

(k)
~ ) < − η

α2
‖u(k+1)

~ − u(k)
~ ‖

2.

(iii) If α−2‖u(k+1)
~ − u(k)

~ ‖2 < Tol we are done.

(iv) Otherwise go back to step 1. with k → k + 1

Remark 14. One can see from (4.23) that our stopping criteria for the scheme will

ensure that both the difference in final iterates u
(.)
~ are small, and that the final iterate

produces a small residual in (4.21).

5. Numerical results

We validate our model choice and scheme by presenting numerical simulations in two

dimensions. We begin by investigating the choice of important model parameters. We

then illustrate some different geometries of the true slowness function with different

source – receiver configurations designed to show the behaviour of recovery, as well as

intuition into the reliability and limitations of solutions.

The solver for the forward problem was constructed in C++, and compiled into a

MATLAB mex function. The inverse solver was then computed using MATLAB 2017b.

5.1. Parameter Study

5.1.1. Model Parameters We demonstrate binary recovery of a simple test case to give

intuition into sensible model parameter choices. For this we shall use data and source

receiver locations as described in Figure 2. We refer to the true field as ‘circular disk’,

defined on Ω = [0, 1]× [0, 1], with smin = 2, smax = 4, and is given by

s(x) =

{
smax, (x− 1

2
)2 + (y − 1

2
)2 ≤ (1

4
)2,

smin, otherwise.

The source x0 = (1/2, 1/2) and data observed on all of ∂Ω. We choose the misfit

functional to be a boundary integral of ∂Ω as in (2.11), and unless specified, in the

study we do not have noisy observations. We take our prior space A∆,~ as in (4.8),

where ∂DΩ = ∂Ω. For the regularization we have ε, γ, σ > 0. The recovery of Figure 2

(right), had parameters γ = 10−2, ε to produce an interface width of 1/20, and σ = 10−3

and with ν = 10−2 (1% noise on observations).

We discretize the inverse problem choosing ~ = 1/160, and take Γh = ∂Ωh, for the

discrete mismatch functional (4.4). We take h = ~, and avoid committing an ‘inverse

crime’ by generating data from a forward problem solve on a fine mesh with hdat = h/8.

The receivers are densely placed on ∂Ωh (spaced h apart). We solve the problem using
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the scheme of Section 4.5, with tolerance Tol= 10−12 and η = 10−5, and αinit = 104. We

take the initial value of u0
~ ≡ −1 everywhere for all studies.

Figure 2. (a) The true slowness function. (b) Position of source (magenta cross) and

observation points (black dots). (c) Example recovery from data perturbed with 1%

noise at the observations, ~ = 1
160 .

We first investigate the interfacial resolution. We do so by fixing γ = 10−4, and

construct δγ, by numerically solving (A.2). In view of the ansatz in Remark 5, we set

ε = K~/(2δγ), which produces an interface width of size K~. The simulation run is

displayed in Table 1. We observe the Iγε decreases and appears to converge as interfacial

width increases. We choose interfacial width at least 8~ for good accuracy. Results

remained largely constant at different values of γ - so the higher order contributions

need little extra resolution.

Table 1. Table listing the interface widths from different ε values, given a fixed value

of γ = 10−4. We display the size of both misfit and regularization terms, and the full

functional Iγε~,h.

interface width Misfit σJ γε (uh, wh) Iγε~,h(u~, w~)

4~ 2.4442E-08 1.6022E-04 1.6024E-04

6~ 2.3324E-08 1.5754E-04 1.5756E-04

8~ 2.2235E-08 1.5656E-04 1.5658E-04

10~ 2.2193E-08 1.5609E-04 1.5611E-04

12~ 2.1949E-08 1.5584E-04 1.5586E-04

14~ 2.1876E-08 1.5568E-04 1.5570E-04

We now assess γ. For each γ, we choose ε to ensure constant interface width of

8~. The results are listed in Table 2. We see that one obtains consistent values of the

functional below a value 10−2, and there is significant difference for greater values. This

indicates for consistency we should choose γ ≤ 10−2.

We next investigate σ. We take γ = 10−2, and interface width 8~. We validate the

choice of σ by using the approximation property of the regularization to the perimeter

length of the interface. Theorem 4, shows J γ
ε

Γ→ J γ
0 and this is proportional to the

interfacial length by a factor P γ (see (A.3)). The truth in Figure 2, has interfacial
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Table 2. Table listing varying values of γ, we choose ε appropriately in each simulation

to yield interface width 8~. We display the size of both misfit and regularization terms,

and the full functional Iγε~,h.

γ Misfit σJ γε (uh, wh) Iγε~,h(uh, wh)

1.0000E+00 2.3322E-08 1.5839E-04 1.5841E-04

1.0000E-01 2.2446E-08 1.5726E-04 1.5728E-04

1.0000E-02 2.1970E-08 1.5673E-04 1.5675E-04

1.0000E-03 2.2100E-08 1.5659E-04 1.5661E-04

1.000E-04 2.2235E-08 1.5656E-04 1.5658E-04

length π/2. Table 3 lists the results, along with a difference of the approximate and

true interface length |1/P γJ γ
ε − π/2|. We see the best choice of σ is around 10−3.

Moreover, accuracy is still good if σ is taken too small, but quickly poor if σ is taken

too large.

Table 3. Table listing varying values of σ - the regularization parameter, we fix

γ = 10−2, and choose ε to yield interface width 8~. We display the size of both misfit

and regularization terms, and the difference of predicted and true interfacial length:

π/2.

σ Misfit σJ γε (uh, wh) | 1
Pγ J γε − π

2 |

1.0000E-04 2.2112E-08 1.5748E-04 4.0037E-03

2.0000E-04 6.5955E-08 3.1489E-04 3.6537E-03

4.0000E-04 2.3649E-07 6.2956E-04 3.1037E-03

8.0000E-04 9.0711E-07 1.2582E-03 1.9537E-03

1.6000E-03 3.8804E-06 2.4975E-03 9.8588E-03

Finally we verify the scaling of σ when observations are subject to noise. This

uncertainty is incorporated into the discrete misfit functional as in Section 2.6. The

results are displayed in Table 4 for three levels of uncertainty with standard deviation

ν = 1/200, 1/100, and 1/50 corresponding to 0.5%, 1%, 2% noise. We observe that for

larger noise levels the accuracy decreases, as expected. We also observe that choosing

the scaling of σ with 1/ν2 is sensible. If one takes σ̄ too large (4× 10−3) we once again

encounter a large loss of accuracy.

We note that one must also balance the regularization and data misfit at different

data contrasts, one can do this by rescaling σ by 2/(smax − smin).

5.1.2. Discretization parameters We omit the tests of discretization parameters, but

observed convergence in the case of fixed ε, and sending ~ = Ch → 0 for 1 ≤ C ∈ N.

The test scenario identical to the problem we created for the model parameters.

5.1.3. General parameter recommendations To summarize the previous study, and

the intuition from our implementation experience we give advice for making parameter
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Table 4. Table listing results produced with detector noise defined by the standard

deviation ν of a centred normal random variable, and regularization parameter scaled

by 1
ν2 . We fix γ = 10−2, and choose ε to yield interface width 8~. We display the

size of both misfit and regularization terms, and the difference of predicted and true

interfacial length: π/2.

ν, if Σ ∼ N(0, ν2) σ̄, (σ B σ̄
ν2 ) Misfit σ

ν2J γε (uh, wh) | 1
Pγ J γε − π

2 |

5.0000E-03 1.0000E-03 4.5291E-01 6.2873E+01 1.0387E-03

1.0000E-02 1.0000E-03 3.7864E-01 1.5734E+01 2.5737E-03

2.0000E-02 1.0000E-03 3.3873E-01 3.9373E+00 4.1237E-03

5.0000E-03 2.0000E-03 5.8286E-01 1.2561E+02 6.8133E-04

1.0000E-02 2.0000E-03 3.9781E-01 3.1382E+01 1.7163E-03

2.0000E-02 2.0000E-03 3.4077E-01 7.8455E+00 1.6963E-03

5.0000E-03 4.0000E-03 1.2109E+00 2.5020E+02 7.0463E-03

1.0000E-02 4.0000E-03 5.8052E-01 6.2531E+01 7.5288E-03

2.0000E-02 4.0000E-03 4.1042E-01 1.5649E+01 5.8963E-03

choices. First we note that ε and σ are the most important parameters for the modelling

aspect. The parameter γ serves as a theoretical tool primarily, and the interfacial profile

is largely insensitive to it, we choose γ = 10−2 and have not observed experimentally

where changing this value was necessary.

The role of σ balances the relative weight between misfit and regularization. If

σ is small, it favours a high fidelity to the data, and if it is large the problem is

weighted towards high regularity interfaces (and prevents overfitting to noisy data).

The sensitivity to σ is a feature present in inverse problems involving the addition of

regularization functionals. Choice of σ is therefore problem specific and we do not

provide further intuition for choosing it.

ε characterizes the interfacial width, and from the modelling perspective one is using

this to approximate zero, with this in mind it should be taken small. In the parameter

study we found it important to resolve the interfacial profile, and we see a good rule is

to take ~ = ε/8. Therefore we recommend one takes ε as small as possible so that the

computation is feasible with the corresponding numerical grid size.

5.2. Different geometries

We have several different geometries that we wish to recover, which we shall use as

“truths” for our inverse problem. We use the discretization parameters as in the previous

section, and generate data on a mesh with hdat = h/8. The choices of model parameter

configuration are influenced by what we discovered in the parameter study. We take

ν = 10−2 for the noise, we also choose (unless otherwise stated) smin = 1, smax = 1.1

σ = 10−4, γ = 10−2, and ε so that we have the interface width 8~. We use two source –

receiver configurations as demonstrated in Figure 3 - with receivers densely spaced on

the boundary segments.



Binary recovery via phase field regularization 23

Figure 3. (a) Random: dense boundary observations on ∂Ω; 10 source locations

in Ω produced from MATLAB R2017b random number generator (seed=12131415,

generator=twister). (b) Wells: dense boundary observations on right hand wall of ∂Ω;

10 sources equidistributed on left hand wall of ∂Ω.

We define four more slowness function “truths”:

(i) Banded layers. We take this shape from [38]. The banded regions are sections of

two annuli. That is, ∀(x, y) ∈ [0, 1]

if


1

2

(
3.7−

√
2.62 − (2x− 1)2

)
≤ y ≤ 1

2

(
4.1−

√
2.62 − (2x− 1)2

)
, or

1

2

(
2.8−

√
2.62 − (2x− 1)2

)
≤ y ≤ 1

2

(
3.2−

√
2.62 − (2x− 1)2

)
,

then s(x, y) = smax, otherwise s(x, y) = smin. The results are found in Figure 5.

(ii) Right angle. This example shape is similar to [23]. ∀(x, y) ∈ [0, 1]

if


y ≥ 2

3
x+ 0.4, or

y ≥ −3

2
x+ 0.9,

then s(x, y) = smax, otherwise s(x, y) = smin. The results are found in Figure 6.

(iii) Arbitrary shape. ∀(x, y) ∈ [0, 1]

if


(x− 2

3
)2 + (y − 1

2
)2 ≤ 1

52
, or

(x− 7

15
)2 + (y − 7

10
)2 ≤ 1

62
, or

(x− 7

15
)2 + (y − 3

10
)2 ≤ 1

82
,

then s(x, y) = smax, otherwise s(x, y) = smin. The results are found in Figure 7.

(iv) Shielded disk. ∀(x, y) ∈ [0, 1]

if (x− 2

3
)2 + (y − 1

2
)2 ≤ 1

62
, or if both


(x− 2

3
)2 + (y − 1

2
)2 ≤

(3

8

)2

,

(x− 4

9
)2 + (y − 1

2
)2 ≥ 1

42
,
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then we set s(x, y) = smax, otherwise s(x, y) = smin. Here we choose values

smin = 1, smax = 1.4 to aid recovery in the wells configuration. The results are

found in Figure 8, (for smax = 1.1 in wells configuration see Figure 10(a)).

Figure 4. Circular disk recovery. (a) true slowness field, smin = 1, smax = 1.1. (b)

slowness field from random configuration. (c) slowness field from wells configuration

Figure 5. Right angle recovery. (a) true slowness field, smin = 1, smax = 1.1. (b)

slowness field from random configuration. (c) slowness field from wells configuration

Figure 6. Angular boundary recovery. (a) true slowness field smin = 1, smax = 1.1.

(b) slowness field from random configuration. (c) slowness field from wells configuration

The different geometries provide a variety of challenges for the first-arrival

traveltime binary recovery problem. The first recovery is of the circular disk, in
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Figure 7. Arbitrary shape recovery. (a) true slowness field smin = 1, smax = 1.1. (b)

slowness field from random configuration. (c) slowness field from wells configuration

Figure 8. Shielded disk recovery. (a) true slowness field smin = 1, smax = 1.4. (b)

slowness field from random configuration. (c) slowness field from wells configuration

Figure 4. We see good recovery in both configurations for this simple geometry. For

more complicated inclusions such as Figure 7 we similarly obtain reasonable recovery so

long as the interfacial layer is thin relative to the lengthscale of geometric features.

We observe two features of the underlying forward problem in Figure 5. Firstly

we see in locations where wave sources are near to interfaces we obtain geometric

asymmetry. Secondly, the scheme is efficient if ray paths travel through relatively

homogeneous structures and so we found the recovery in the wells configuration is quickly

resolved.

The right angle of Figure 6 is well recovered, and we see the effects of the

regularization on the boundary conditions. If one takes ∂DΩ~ = ∂Ω then interface

positions match the truth (see Figure 6(b)), but when the set {y = 0} ∪ {y = 1} has

Neumann conditions (see Figure 6(c)) we see interfaces meet domain boundaries at right

angles. In this simulation it is vital for ∂DΩ~ 6= ∅ to obtain a correct local minimizer.

The shielded disk of Figure 8 performs well in the random configuration. In the wells

configuration, the disk is shielded by the crescent inclusion and yet the inverse solver

still distinguishes two objects and shapes are well recovered. We note this simulation

performed better with contrast smin = 1, smax = 1.4, and σ = 5× 10−4.

Remark 15. We may work under the assumptions that we know only the contrast

between slowness phases, and we have slowness(es) S given by the boundary conditions.
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We first remark that, for features of interest contained entirely in the domain interior,

we may perform recovery with ‘background’ material with slowness S = smin (as in our

experiments here) or with S = smax. We further remark that one may quickly determine

in which setting (S = smin or S = smax) we are in, as we see numerically that the

incorrect choice quickly obtains a single phase solution. If we further assume that we

know an approximate contrast, we observe numerically, stretching and compression of

the shape due to under- or overestimation of true slowness, as expected.

Remark 16. We observe a key phenomena known in FATT: We fix a source – receiver

configuration and obtain data from a binary truth with chosen (low) slowness contrast

between phases. We then increase the contrast and find that there is a contrast value

above which, first-arrival traveltime tomography becomes ineffective. This value depends

on the geometry of the interface and the position of source – receivers.

To illustrate this, we display traveltime fields in Figure 9, from to a single source

at [0, 1/2]; a single receiver is placed at [1, 1/2]. The slowness is given by a continuous

approximation of the shielded disk Figure 8(a), with a fixed binary value smin = 1; we

now choose values of smax and define the slowness contrast as (smax−smin)/smin. For high

contrasts (Figure 9(b) and (c)) the obstacles strongly impede the wave, and we see the

maximum traveltime occurs within the obstacle. Therefore the wave’s first hitting time

at the receiver does not have a ray path through the obstacle. This loss of information

affects the recovery, see Figure 10 for a wells configuration. Impenetrable obstacles will

be investigated in a forthcoming work.

Figure 9. Traveltimes for shielded disk. Source located at [0, 1/2] in the domain. (a)

to (c): increasing contrast ((smax−smin)/smin) values 0.4, 0.8, 1.6. Contrast ≥ 0.8 has

maximal traveltime in the domain.

6. Conclusion

6.1. Closing remarks

We have presented a technique for binary recovery based on the phase field methodology

with an emphasis of the presence of an underlying mathematical theory.
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Figure 10. Different contrast ratio for shielded disk, with wells configuration and

smin = 1. (a) smax = 1.1, (b) smax = 1.4, (c) smax = 2.6. Situations of too low,

acceptable, and too high contrast respectively.

We proved that the method ensures that the solutions exist, and that the forward

problem remains well posed for them. We validated the technique with a Γ−convergence

of the phase field regularization to a perimeter penalization technique. We have created

a mixed formulation of the problem, and shown that minimizers of this solve the original

problem. We have constructed a convergent discrete formulation relying on a monotone

finite difference method for the forward problem and mixed finite element method for

the inverse problem. Due to our careful treatment of the derivative we were able to use a

descent algorithm and we demonstrated its effectiveness of recovery in many geometries

and for different configurations of source – receiver pairs, including one found in crosswell

tomography.

We would like to emphasize the flexibility of the class of phase field regularizations,

which is are not limited to use on the forward problem under investigation. This is

demonstrated by the scope of work in the following section.

6.2. Outlook

The framework we have set up suggests several developments worthy of future study.

For example, investigation of a hierarchical forward model in which smax is unknown, as

in [38]. One may investigate multiscale forward models, where constant regions contain

small perturbations, for example by setting smax(x) = s̃max + δf(x) for a continuous

function f to be determined with δ � (s̃max − smin), similar to the setting of [2].

A natural extension is to investigate a piecewise constant slowness function

formulated with a multi-obstacle potential. Modelling impenetrable obstacles (smax →
∞) - as noted in Remark 16, could also extend the applicability of the tomography.

Another direction for model extension is to consider interfacial reflectors within the

domain, where one must use reflection data to additionally recover the position of the

reflector, as treated by [39, 56]

In practice, gravity acceleration data is also collected in geophysical surveys and

one can perform a joint inversion for the slowness and subsurface density. It is a viable

extension as the slowness and density are structurally related (with limitations however
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[8]), and will share curves of discontinuity. Inversion is performed a weighted sum of

the misfit functionals for slowness and gravity acceleration [40].
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Appendix A. Proof of Γ – convergence

We prove Theorem 4 by first proving a key result about the transition energy.

Lemma 1. For γ > 0, there exists a solution z ∈ V to the variational inequality

γ(z′′, η′′ − z′′) + (z′, η′ − z′)− (z, η − z) ≥ 0, ∀η ∈ H2(R, [−1, 1]).

where

V =
{
v ∈ C2(R; [−1, 1]) | ∃δ > 0,∀x ∈ R v(x) = −v(−x),

v′(x) ≥ 0, and v(x > δ) = 1, v(x < −δ) = −1
}
.

Proof. For z ∈ V , we can relate z satisfying the critical point, to solutions Z of the

following Fisher-Kolmogorov equation. Let δγ > 0, then find Z ∈ C2(R) such that,

γZ ′′′′ − Z ′′ + ψ(Z) = 0 on (−δγ, δγ), where ψ(s) B −s, (A.1)



Binary recovery via phase field regularization 31

subject to the constraints and boundary conditions imposed by V :

Z(x < −δγ) = −1, Z(x > δγ) = 1, Z(k)(−δγ) = Z(k)(δγ) = 0, for k = 1, 2.

with |Z| ≤ 1, and Z ′(x) ≥ 0, ∀x ∈ (−δγ, δγ), Z odd. To find this, we look at the

characteristic equation: γλ4 − λ2 − 1 = 0. For γ > 0 we have two real ±λγ1and two

imaginary roots ±λγ2i.

λγ1 =

√
1

2γ
(1 +

√
1 + 4γ), λγ2 =

√
1

2γ
(
√

1 + 4γ − 1).

Thus, for all γ > 0 we have a general form of solution

Zγ(x) = Cγ
1 e

λγ1x + Cγ
2 e
−λγ1x + Cγ

3 cos(λγ2x) + Cγ
4 sin(λγ2x).

The constants Cγ
k depend on δγ. A general odd solution must therefore be of the

form Zγ
odd(x) = C̃γ

1 sinh(λγ1x) + C̃γ
2 sin(λγ2x). Using the boundary conditions, one finds

coefficients of the form:

C̃γ
1 =

(λγ2)2

((λγ1)2 + (λγ2)2) sinh(λγ1δ
γ)
, C̃γ

2 =
(λγ1)2

((λγ1)2 + (λγ2)2) sin(λγ2δ
γ)
.

We require solutions to be C2(R), so we seek δγ so that (Zγ)′(δγ) = (Zγ)′′(δγ) = 0. This

holds where

λγ2 tan(λγ2δ
γ) = −λγ1 tanh(λγ1δ

γ). (A.2)

We take δγ to be the first positive solution for (A.2), and note δγ ∈ (π/(2λγ2), π/λγ2) and it

is unique over the interval range. Zγ is in fact strictly monotonic for any γ > 0 on (0, δγ).

One may see this from the second derivative, which is negative on the interval, thus the

(Zγ)′(x) has a minimum at δγ (where it vanishes), and so Zγ is strictly increasing. To

summarize we have a found a unique strictly monotonic solution for the 1D extended

obstacle Fisher-Kolmogorov equation. It is bounded on [−1, 1] and for γ > 0, can be

extended to a function zγ ∈ C2(R; [−1, 1]) by

zγ(t) B


−1, if t < −δγ,
C̃γ

1 sinh(λγ1t) + C̃γ
2 sin(λγ2t), if −δγ ≤ t ≤ δγ,

1, if t > δγ.

and so zγ ∈ V .

Remark 1. We have found an odd critical point of the variational inequality, and we

have that it is unique for all γ > 0. The structure of the Euler – Lagrange equations for

jγ can be written as the variational inequality of Lemma 1, and so the odd minimizer of

jγ has this form. This follows the idea presented in [29].

Remark 2. As γ → 0, we have δγ ↘ π
2

and C̃γ
2 → 1 and C̃γ

1 → 0 and therefore zγ(t)

converges to sin(t) on (−π
2
, π

2
). This is as expected as the fourth order problem reduces

to the second order problem seen in [10].
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To prove Theorem 4, we must prove two inequalities. In [29], the authors have a

complete proof for the smooth double well potential, so we provide detail of where the

double obstacle theory differs.

Lemma 2. (liminf inequality) Given a sequence {uε} with uε → u as ε→ 0 strongly in

L1(Ω), then

J γ
0 ≤lim inf

ε→0
J γ
ε (uε).

Proof. This follows immediately from the proof of [29, Proposition 3.2], which does not

explicitly rely upon the double well or obstacle potential.

Lemma 3. (limsup inequality) For any u ∈ L1(Ω), there exists a sequence {uε} such

that:

(i) uε → u as ε→ 0 strongly in L1(Ω).

(ii) J γ
0 (u) ≥lim sup

ε→0
J γ
ε (uε).

Proof. We follow the proof of [29]: Let u ∈ L1(Ω), we must construct a sequence {uε}
such that limε→0 uε = u in L1(Ω) and

lim sup
ε→0

J γ
ε (uε) ≤ J γ

0 (u).

Due to constructions in [45] there exists a set D ⊂ Rd open and bounded with ∂D ∈ C∞
and Hd−1(∂D ∩ ∂Ω) = 0, such that

u = χD − χRd\D.

Now, Let U ∈ V be an odd minimizer of the functional jγ, as discussed in Lemma 1

and Remark 1. By definition P γ = jγ(U). With the specific form for u, (and |∇ · | in

the sense of total variation), we rewrite the limit J γ
0 (u)

J γ
0 (u) =

1

2
P γ

∫
Ω

|∇u| = P γ

∫
Ω

|∇χD| = jγ(U)Hd−1(∂D ∩ Ω). (A.3)

Let d be the signed distance function to ∂D,

d(x) =


inf
y∈∂D

|x− y|, if x ∈ D,

− inf
y∈∂D

|x− y|, if x 6∈ D.

There exists a neighbourhood Nh of width h to ∂D where d is C2(Nh), and we define a

function η: Ω̄→ R

η(x) = d(x), if x ∈ Nh, |η(x)| ≥ h if x 6∈ Nh.

We may extend outside of Nh to ensure η ∈ C2(Ω̄). As mentioned in Remark 5, a useful

rescaling is defined through the following sequence:

uε(x) = U

(
η(x)

ε

)
, x ∈ Ω.
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We see that uε ∈ C2(Ω̄) and limε→0 uε(x) = u(x) in L1(Ω) by construction of U ∈ V .

We must now show that this sequence provides the limsup inequality of the Lemma.

The chain rule leads to

J γ
ε (uε) =

1

ε

(∫
Ω∩Nh

+

∫
Ω\Nh

)
(
1

2
γ
∣∣∣U ′′ (η

ε

)
|∇η|2 + εU ′

(η
ε

)
∆η
∣∣∣2

+
1

2

∣∣∣U ′ (η
ε

) ∣∣∣2|∇η|2 + Ψ
(
U
(η
ε

))
) dx. (A.4)

By construction, U(z) = 1 or −1 for |z| > δγ, and so for ε small enough, the integral in

(A.4) over Ω \Nh is 0 and so this term is done. For the other integral, by construction

η = d here and so |∇η| = 1, thus |∆η| ≤ Cη.

|U ′′(z) + εCηU
′(z)|2 = |U ′′(z)|2 + 2εCη|U ′(z)U ′′(z)|+ C2

ηε
2|U ′′(z)|2,

and we apply Young’s inequality to the second term with weight ν
2γ

, where ν > 0:

|U ′′(z) + εCηU
′(z)|2 ≤ |U ′′(z)|2 +

ν

γ
|U ′(z)|2 +

(γ(2εCη)
2

ν
+ C2

ηε
2
)
|U ′′(z)|2

≤ (1 + ν)|U ′′(z)|2 +
ν

γ
|U ′(z)|2 + C(ν)ε2,

for constant C(ν). Notice that after passing to the limit ε→ 0, we could take ν > 0 as

arbitrarily small without blowup. We may now bound the integral in (A.4) by

J γ
ε ≤

(1 + ν)

ε

∫
Ω∩Nh

(1

2
γ|U ′′

(η
ε

)
|2 +

1

2
|U ′
(η
ε

)
|2 + Ψ(U(ω(x)))

)
dx+ C(ν)ε

= (1 + ν)

∫
Ω∩Nh

(1

2
γ|U ′′(ω(x))|2 +

1

2
|U ′(ω(x))|2 + Ψ(U(ω(x)))

)
|∇ω(x)| dx+ C(ν)ε,

where ω(x) = d(x)
ε

. Note we have used |∇ω(x)| = 1
ε
, then using the co-area formula [25,

Theorem 3.2.12] on t = ω(x) we obtain

J γ
ε ≤ (1 + ν)

∫
R

∫
ω−1(t)∩Ω∩Nh

(1

2
γ|U ′′(ω(x))|2 +

1

2
|U ′(ω(x))|2 + Ψ(U(ω(x)))

)
|∇ω(x)| dx

+ C(ν)ε.

Now we wish to rewrite these integrals. Firstly ω−1(t) = {x | d(x)
ε

= t}, so

ω−1(t) ∩Nh =

 {x |
d(x)

ε
= t}, if t ≤ h

ε
,

∅, if t > h
ε
.

We may now restate the limits.

J γ
ε ≤ (1 + ν)

∫ h
ε

−h
ε

∫
d(x)=εt

(1

2
γ|U ′′(t)|2 +

1

2
|U ′(t)|2 + Ψ(U(t))

)
dHd−1(x) dt

+ C(ν)ε

= (1 + ν)

∫ h
ε

−h
ε

(1

2
γ|U ′′(t)|2 +

1

2
|U ′(t)|2 + Ψ(U(t))

)
dHd−1{x | d(x) = εt} dt
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+ C(ν)ε.

As ε→ 0, this converges to

(1 + ν)jγ(U) dHd−1{x | d(x) = 0} = (1 + ν)P γHd−1(∂D ∩ Ω).

Therefore we have shown that, in view of (A.3),

lim sup
ε→0

(J γ
ε (uε)) ≤ (1 + ν)P γHd−1(∂D ∩ Ω) = (1 + ν)J γ

0 (u),

where the choice of ν may be arbitrarily small. Hence the limsup inequality is

satisfied

With both inequalities established, the proof of Theorem 4 is complete.


