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Abstract
This experimental study describes the adaptive processes of the right ventricular (RV)
myocardium after pulmonary artery banding (PAB) evaluated by cine cardiac magnetic

resonance (CMR), phase-contrast CMR (PC-CMR), and conductance catheter. Seven sheep
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SV = stroke volume

RV-Pmax = RV maximal systolic pressure

RV-EDP = right ventricular end-diastolic pressure

RV-ESP = right ventricular end-systolic pressure
RV-dP/dtmax = right ventricular maximum rate of pressure rise
RV-dP/dtmin = right ventricular minimum rate of pressure rise
RV-CO = right ventricular cardiac output

RV-EDPVR = RV end-diastolic pressure volume relationship
RV-ESPVR =RV end-systolic pressure volume relationship
RV-PRSW = RYV preload recruitable stroke work

SSFP = steady-state free precession

ECG = electrocardiogram

TVA = tricuspid valve annulus

TVA-MD = tricuspid valve annulus maximal longitudinal displacement

TV A-Vmax = tricuspid valve annulus maximal velocity

TVA-VED = tricuspid valve annulus maximal velocity at end diastole

TTP = time-to-peak
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Introduction

Primary repair is the curative aim in infants with complex congenital heart diseases. However,
first-stage palliative treatment with pulmonary artery banding (PAB) followed by complete
repair at a later time point may represent an alternative surgical option for some patients who
are not suitable for primary repair [1, 2]. For example, in selected patients in whom the great
arteries are transposed, a period of preconditioning by PAB is required prior to anatomic
correction [3]. The timely detection of right ventricular (RV) dysfunction is crucial for overall
prognosis of these patients. The mechanisms underlying the progression from compensated
RV hypertrophy to RV failure are not fully understood. Several adaptive processes are
induced by PAB: humoral responses, myocyte hypertrophy, myocyte hyperplasia, changes in
the extracellular matrix, and shift to lengthened sarcomeres [4,5]. Fibrosis and an insufficient
increase in capillary density are thought to be responsible for ventricular dysfunction and
eventually ventricular failure [6,7].

RV pressure-volume analysis remains the gold standard to assess the contractility state of the
RV and its response to pressure overload, but it is invasive and mostly used in experimental
studies [8-10]. The key parameters obtained by conductance catheter are end-diastolic
pressure relationship (EDPVR) and end-systolic pressure relationship (ESPVR), the former
being a sensitive parameter of early diastolic ventricular dysfunction and the latter the optimal
quantifying parameter of contractility [11, 12]. Noninvasive methods to determine the
contractility state of the LV, such as strain, strain rate, and wall stress, have been developed
for both echocardiography and cardiac magnetic resonance (CMR) [13-16]. However, it is a
challenge to measure these parameters in the RV because of its complex anatomy and

contraction pattern.
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The objectives of the present experimental study were to assess the RV responses to chronic
pressure overload induced by PAB using CMR and conductance catheter and to find CMR

parameters that are suitable to detect RV failure noninvasively at an early stage after PAB.

Materials and Methods

Animal model

PAB via left anterior thoracotomy was performed in 7 four-month old female domestic sheep.
Prior to the surgical procedures, the animals received an intramuscular injection of 0.5 mg/kg
xylazine (Rompun 2%, Bayer Vital GmbH, Leverkusen, Germany) and 10 mg/kg ketamine
10% (Ketamin 10%, Bela-Pharm GmbH & Co. KG, Vechta, Germany), followed by
intubation. Inhalation anesthesia was maintained by 1.5 - 2.5% isoflurane delivered through a
ventilator (Excel 210 SE, Ohmeda-BOC Group, Madison, WI, USA). The degree of main
pulmonary artery (PA) tightening was controlled by directly measuring RV pressures using a
conductance catheter (Millar Instruments, Houston, TX, USA). The target of RV maximal

systolic pressure (RV-Pmax) was set to 50 - 60% above baseline level [17].

Conductance catheter measurements

Conductance catheter measurements were performed via left anterior thoracotomy before
PAB and via median sternotomy 3 months after PAB. The following parameters were
determined by analyzing pressure-volume loops: maximal RV pressure (RV-Pmax), end-
diastolic and end-systolic pressure (RV-Ped, RV-Pes), maximum and minimum rates of
pressure rise (RV-dP/dtmax, RV-dP/dtmin), and cardiac output of the RV (RV-CO).
Furthermore, the slopes of end-diastolic pressure-volume relation (RV-EDPVR), end-systolic
pressure-volume relation (RV-ESPVR), and the preload-recruitable stroke work (RV-PRSW)

were calculated after occluding the inferior vena cava by using a 23-mm balloon catheter
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(Fogarty Occlusion Catheter, Edward Lifesciences LLC, Irvine, CA, USA). End-systolic
elastance (Ees) was derived from pressure-volume loops. Arterial elastance (Ea) was
calculated as end-systolic pressure divided by stroke volume. The right ventricular — arterial

coupling was defined as the ratio of Ees to Ea.

Cardiac magnetic resonance

CMR was performed in seven female sheep 3 months after PAB and in four female healthy
control animals, age-matched with the animals 3 months after PAB. CMR was carried out
under anesthesia and mechanical ventilation on a 1.5-Tesla scanner (Magnetom Avanto,
Siemens Healthineers, Erlangen, Germany) using a phased-array cardiac coil and a vector
electrocardiographic system for cardiac gating. All measurements were taken at end-
expiration with the ventilator turned off to minimize motion artifacts. Steady-state free
precession (SSFP) cine images were obtained in the standard views for both ventricles,
including 10 — 12 contiguous, short-axis, 6-mm-thick slices encompassing both ventricles
from base to apex.

Phase-contrast CMR (PC-CMR) was employed to measure the flow in 5-mm-thick slices
orthogonally to the course of the PA and the aorta. Twenty-eight frames were acquired per
average cardiac cycle. Velocity-encoding gradients were set to cover a dynamic range from -
200 to 200 cm/s, with a sequential increase in maximum range if aliasing artifacts were
encountered. The maximal blood flow, the maximal flow velocity, and the changes in vessel
diameter throughout the cardiac cycle were measured at the banding area and 1 cm above the

aortic valve.

Cardiac magnetic resonance data analysis
Short-axis slices of both ventricles were loaded into a volume evaluation tool (Argus

software, Leonardo, Siemens Healthcare, Erlangen, Germany). Endocardial contours of both
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ventricles were manually outlined on the end-diastolic and end-systolic frames and epicardial
contours on the end-diastolic frames. End-systolic volumes (ESV), end-diastolic volumes
(EDV), and stroke volumes (SV) along with the ventricular muscle masses were calculated
for each ventricle separately.

The tricuspid valve annulus (TVA) displacement and velocity were determined to assess the
RV diastolic function — analogous to the method describing the mitral valve annulus
movement to assess the LV diastolic function [18-20]. TVA maximal longitudinal
displacement (TVA-MD), TVA maximal velocity in diastasis (TVA-VDS) — reflecting the
quiescent phase of diastole - and TVA maximal velocity in early diastole (TVA-VED) were
measured on 4-chamber cine images using a MATLAB platform (The MathWorks, Natick,
Massachusetts, USA). The longitudinal displacement and the displacement velocity of the
TVA were measured relative to a reference line drawn from the RV apex to the midpoint of
the TVA for each of the 20 phases throughout the cardiac cycle.

Finally, the PC-CMR data sets were loaded into the Argus flow evaluation tool. The inner
contours of the main PA at the banding site and of the aorta were outlined in each cardiac
phase on the magnitude images. Peak flow, peak velocity, time-to-peak flow, and cross-
sectional areas were calculated automatically. The time-to-peak flow was defined as the time
interval from the beginning of the anterograde flow upslope in systole to the peak systolic

flow.

Statistical Analysis

Statistical analysis was performed using SPSS software (Statistical Package for the Social
Sciences, Chicago, Illinois). CMR parameters were reported as mean + standard deviation
(SD). Since the group sizes were too small to reliably run tests on Gaussian distribution, all
pairwise comparisons were performed by applying the nonparametric Mann-Whitney U test.

Statistical significance was assumed for p < 0.05. Pearson’s correlation coefficients were
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calculated to assess the relationship between continuous variables. For interobserver
variability assessment, data sets were processed independently by two raters, blinded to each
other's measurements. For intraobserver variability, 12 months after the initial analysis, one of
the evaluators blindly and randomly reprocessed the data sets. Agreement was expressed by

the Pearson’s correlation coefficient and Bland-Altman analysis.

Results

Body weight and age of animals

The body weight of the animals in the operated group was 39 + 1.34 kg; the body weight of
those in the healthy control group was 42.25 + 1.89 kg (p = 0.078). The age of the animals in
the operated group was 25.28 + 0.75 weeks; the age of the animals in the healthy control
group was 24.50 £ 0.57 weeks (p = 0.089).

Conductance catheter measurements

The results of the conductance catheter measurements are summarized in Table 1. RV cardiac
output decreased significantly by 36% after PAB, which was due to a decrease in RV-SV as
heart rate did not change significantly. On the other hand, a significant increase in myocardial
contractility was observed since both the slope of the RV-ESPVR and the RV-PRSW
increased after the banding. The slope of RV-EDPVR decreased significantly after PAB,
indicating that diastolic compliance was raised. No statistically significant differences were
found for RV-Ped, RV-Pes, RV-Pmax, dP/dtmax, and dP/dtmin before and 3 months after
PAB. While Ea remained nearly unchanged after PAB, Ees increased significantly after PAB;
as a result, the ratio Ees/Ea increased.

Cardiac magnetic resonance measurements

The results of MR-based RV and left ventricle (LV) volume measurements are summarized in
Table 2. The average muscle mass of the RV was significantly higher in the PAB group. The

RV gjection fraction (RV-EF) was significantly lower in the PAB group than in the healthy
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controls, which could mainly be attributed to an increased RV-ESV. The RV-EDV were not
significantly different when comparing the means in the PAB group and the healthy controls.
No statistically significant difference was found between PAB and the healthy control animals
for TVA-MD (11.9 £+ 3.8 mm versus 11.8 £ 2.2 mm; p = 0.91) and TVA-VED (4.1 £ 0.1 cm/s
versus 4.6 = 1.8 cm/s; p = 0.27), with TVA-VDS (0.7 = 1.1 ecm/s versus 0.1 = 1.3 cm/s; p =
0.053), values tending to be higher in the PAB group.

The time difference between the peak flow in the PAB area and the peak flow in the aorta was
significantly different from healthy control subjects, indicating a shift to the right of the PA
peak flow in the PAB group. In detail, the time-to-peak flow in the PA was 195.4 £ 77.6 ms
compared to 88.8 £ 14.2 ms in the healthy control group (p < 0.01) (Figure 1). RV Pmax and
Ped correlated negatively with the time-to-peak flow in the pulmonary artery (r = -0.70 and -
0.69, respectively (Figure 2). The maximal flow velocity at the PAB area was 2.4 times higher
than in the healthy control group (172 £ 37.8 cm/s and 70.8 = 27.0 cm/s, respectively, p <
0.01).

Intraobserver variability was »=0.98, and bias —0.39 + 5.3 ml for RV-EDV; r=0.97, and
bias —0.55+3.7ml for RV-ESV; and »=0.94, and bias —0.45+6.5 g for RV-mass.
Interobserver variability was »=0.98, and bias —0.93 + 4.4 ml for RV-EDV; r=0.96, and

bias —0.55 + 3.2 ml for RV-ESV, and » = 0.91, and bias —0.36 £+ 4.9 ml for RV-mass.

Discussion

This study characterizes the RV responses to chronic pressure overload. An interesting result
is that the time-to-peak flow in the PA was significantly longer in animals with PAB than in
healthy controls and that this parameter correlated with RV-Pmax and RV-Ped. Cine CMR
findings showed that PAB-induced pressure overload increased the RV mass by 60%,

increased the RV-ESV significantly, and, consequently, decreased RV-EF. Conductance
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catheter-based measurements revealed that myocardial contractility of the RV rose
significantly (through an increase in PRSW and ESPVR) following PAB.

Leeuwenburgh et al. [21,22] reported that chronic RV pressure overload resulted in a
significant increase in RV free-wall thickness in lambs, due to a hyperplastic myocardial
response. Similarly, 3 months after PAB we found that RV masses increased by 60% as
compared to healthy control animals. Moreover, our conductance catheter data demonstrated a
significant increase in myocardial contractility, in line with the results presented by de
Vroomen et al. [23]. A few experimental studies have shown hypercontractility of the RV to
be a consequence of the increased afterload, thereby maintaining ventricular-arterial coupling
and RV ejection volumes [24,25]. In the study by Leeuwenburgh et al. [21], the hyperplastic
myocardial response to PAB was not associated with changes in RV volumes. In our study,
however, we observed that RV-ESV and, to a lesser extent, RV-EDV increased, while RV-EF
decreased significantly 3 months after PAB. Boehm et al. [26] showed that the indices of RV
systolic function deteriorated upon chronic pressure overload compared with sham-operated
rats. Nevertheless, pressure loop-derived indices demonstrated a hypercontractile RV, even in
animals with clinical signs of heart failure and ventricular-arterial decoupling. These findings
are consistent with our results regarding the RV volumes and the state of hypercontractility,
but our animals, in contrast, showed no clinical signs of right ventricular failure and right
ventricular — arterial coupling was preserved.

Evaluation of early RV dysfunction by CMR is challenging. A promising new technique is to
analyze the velocities of the atrioventricular junction, where the velocity in early diastole is a
parameter of diastolic function [27]. Although diastolic dysfunction after PAB has been
previously reported [28,29], our study demonstrated normal RV diastolic function based on
cine CMR data (TVA-VDS, TVA-VED) and catheter data (end-diastolic elastance, maximum

speed of pressure decline dP/dtmin, and end-diastolic pressure).
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PC-CMR-based flow measurements comprise a wide range of parameters that characterize the
pulmonary circulation [30-32]. The main result of our study was that the time-to-peak flow in
the PA was significantly longer in the PAB group than in healthy controls. This also held true
when comparing the differences in time-to-peak flow in the PA and aorta of both groups.
Moreover, the length of the time-to-peak flow correlated with the pressure parameters RV-
Pmax and RV-Ped. These findings, together with the normal RV-Pmax, RV-Pes, the
decreased RV-EF, and the increased RV-ESV, may indicate incipient RV dysfunction.
Limitations

This study is subject to the following limitations. Firstly, because conductance catheter
analyses were performed through different surgical access routes before and 3 months after
PAB, the changes in RV-Pmax, RV-Pes, and RV-Ped after PAB could be caused by the
thoracotomy method itself. This issue was addressed by Hoit et al. [33], who found that
hemodynamics of the LV in rats (heart rate, Ped, dP/dtmax, dP/dtmin) during closed-chest
preparation are significantly different than those in open-chest preparation. Performing sham
operations in our control group would have helped to clarify the influence of access routes on
the measurement results. Secondly, the number of animals in the two groups was small.
Although this is a common problem in translational research programs utilizing clinically
relevant large animal models, small sample sizes severely limit the statistical power of an
investigation [34]. Thirdly, the low temporal resolution (40 ms) of the PC-CMR pulse
sequence used for flow measurements in this study precluded estimation of mean PA pressure
by calculating the absolute acceleration time [31,35]. Fourthly, the time gap between MR
examination and final invasive pressure-volume examinations ranged between 7 and 10 days.
It is known that there can be considerable spontaneous variations in pulmonary functional
parameters even over a short period of time [36]. Simultaneous assessment of invasive
cardiovascular pressures combined with MRI-derived PA blood flow and RV volumes, as

proposed by Kuehne et al., should provide a solution to this problem [37]. The cross-sectional
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design of this study regarding the CMR examinations represents another limitation, as the
healthy controls were not the same animals in which the banding procedure was performed,
excluding longitudinal comparison. However, the choice of age-matched healthy control
animals excludes any growth-related influence on RV volumes.

Conclusions

Reducing the diameter of the pulmonary artery by 50% through PAB increased time-to-peak
PA flow and RV mass, decreased RV-EF (assessed by CMR), and increased myocardial
contractility (assessed by conductance catheter). Moreover, time-to-peak flow in the PA
correlated with RV pressure parameters. Although these changes may still be indicative of the
physiological adaptation process after PAB, the reduced RV-EF, the increased RV-ESV, and
the prolonged time-to-peak PA flow may point to a possible incipient RV failure. Therefore,
time-to-peak PA flow, RV-EF, and RV-ESV may serve as index parameters for incipient RV
failure that can be obtained noninvasively by CMR and may replace, in some cases, invasive
catheter measurements. Studies employing late gadolinium enhancement sequences should be
conducted in the future to detect areas of fibrosis in the RV myocardium as a possible marker

of PAB-induced RV remodeling.
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Table and Figure Legends

Figure 1 Flow pattern in the pulmonary artery throughout the cardiac cycle in pulmonary
artery banding group (red line) and controls (black dashed line). Rightward shift of the time-

to-peak flow in the PAB group (blue arrow)

Figure 2 Correlation between time-to-peak flow in the pulmonary artery and end-diastolic
pressure (RV-Ped) in panel A and maximal right ventricular pressure (RV-Pmax) in panel B

in animals after pulmonary artery banding. TTP = Time-to-peak
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Table 1 Conductance catheter-based measurements before and 3 months after pulmonary

artery banding

Table 2 Right and left ventricular volume measurements derived from cine cardiac magnetic

resonance
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Table 1: Conductance catheter-based measurements before and 3 months after pulmonary

artery banding
Before PAB After PAB

(n=7) (n=7) p Value
Heart rate, min’! 794+ 11.5 7741 +11.79 0.56
RV-CO, ml-min 3448.16 £ 904.57 2220.63 +552.4 <0.003
RV-Pmax, mmHg 2549 +£3.08 20.91 +£3.86 <0.06
RV-Ped, mmHg 9.37+3.39 4.61 £3.41 <0.06
RV-Pes, mmHg 18.1 £3.45 16.46 +4.19 0.22
RV-dP/dtmax, mmHg/s 334.74 £ 77.94 318.18 £ 111.86 0.63
RV-dP/dtmin, mmHg/s -324.73 +£59.91 -296.10 + 12.85 0.37
RV-ESPVR 0.52+0.18 1.34+0.58 <0.005
RV-EDPVR 0.20 £ 0.07 0.11+£0.09 <0.007
RV-PRSW, mmHg-ml 12.85+4.71 16.83 £5.93 <0.04
Ees, mmHg/ml 0.48+0.18 1.63 +1.28 <0.03
Ea, mmHg/ml 0.45+0.14 0.69 +0.38 0.07
Ees/Ea 1.07 +£0.37 236+ 141 <0.03

RV-CO =right ventricular cardiac output; RV-Pmax = right ventricular maximal pressure; RV-

Ped = right ventricular end-diastolic pressure; RV-Pes = right ventricular end-systolic pressure;

RV-dP/dtmax = maximal right ventricular pressure change; RV-dP/dtmin = minimal right

ventricular pressure change; RV-ESPVR = right ventricular end-systolic pressure volume

relationship; RV-EDPVR = right ventricular end-diastolic pressure volume relationship; RV-

PRSW = right ventricular pressure related stroke work. Ees = end-systolic elastance; Ea =

arterial elastance
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Table 2. Right and left ventricular volume measurements derived from cine cardiac magnetic
resonance. Values normalized to body weight in parenthesis.

PAB Group Healthy controls
(n=7) (n=4) p Value
RV Volumes
RV-ESV, ml 37.1+7.5 193 +£3.8 <0.05
(0.95+0.13) (0.45 +£0.08) (<0.01)
RV-EDV, ml 82.6+16.8 66.0 +24.0 0.37
(2.12+£0.37) (1.60 + 0.38) (0.06)
RV-SV, ml 46.8£12.9 57.5+2.1 0.30
(1.17£0.29) (1.22 £0.30) (0.72)
RV-EF, % 542+53 71.1+4.8 <0.01
RV-mass, g 39.2+5.8 23.5+43 <0.01
(1.12 £ 0.13) (0.55+0.11) (<0.001)
LV Volumes
LV-ESV, ml 559+122 359+6.4 0.07
(1.40 £ 0.30) (0.93 £ 0.30) (0.06)
LV-EDV, ml 1029+ 11.7 81.9+£20.5 0.13
(2.58 £0.28) (1.93 £ 0.45) (0.06)
LV-SV, ml 471+£1.9 46.6 + 15.5 0.95
(1.18 £ 0.29) (1.09 £ 0.35) (0.71)
LV-EF, % 40.9+10.0 46.1 £ 6.5 0.06
LV-mass, g 852+9.8 73.5+£14.5 0.21
(2.14 £ 0.28) (1.73 £ 0.34) (0.10)




