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ROUND COMPRESSION FOR PARALLEL MATCHING1
ALGORITHMS2

ARTUR CZUMAJ∗, JAKUB ŁĄCKI† , ALEKSANDER MĄDRY‡ , SLOBODAN MITROVIĆ§ ,3
KRZYSZTOF ONAK¶, AND PIOTR SANKOWSKI‖4

Abstract. For over a decade now we have been witnessing the success of massive parallel5
computation (MPC) frameworks, such as MapReduce, Hadoop, Dryad, or Spark. Compared to6
the classic distributed algorithms or PRAM models, these frameworks allow for much more local7
computation. The fundamental question that arises in this context is though: can we leverage8
this additional power to obtain even faster parallel algorithms? A prominent example here is the9
maximum matching problem. It is well known that in the PRAM model one can compute a 2-10
approximate maximum matching in O(logn) rounds. Lattanzi et al. (SPAA 2011) showed that if11
each machine has n1+Ω(1) memory, this problem can also be solved 2-approximately in a constant12
number of rounds. These techniques, as well as the approaches developed in the follow up work, seem13
though to get stuck in a fundamental way at roughly O(logn) rounds once we enter the (at most)14
near-linear memory regime. In this paper, we break the above O(logn) round complexity bound15
even in the case of slightly sublinear memory per machine. In fact, our improvement here is almost16
exponential: we are able to deliver a (1 + ε)-approximate maximum matching, for any fixed constant17
ε > 0, in O

(
(log logn)2

)
rounds. To establish our result we need to deviate from the previous work18

in two important ways. Firstly, we use vertex–based graph partitioning, instead of the edge–based19
approaches that were utilized so far. Secondly, we develop a technique of round compression.20

Key words. maximum matching, vertex partitioning, round compression21
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1. Introduction. Over the last decade, massive parallelism became a major23
paradigm in computing, and we have witnessed the deployment of a number of very24
successful massively parallel computation frameworks, such as MapReduce [18, 19],25
Hadoop [44], Dryad [29], or Spark [45]. This paradigm and the corresponding models26
of computation are rather different from classical parallel algorithms models consid-27
ered widely in literature, such as the PRAM model. In particular, in this paper, we28
study the Massive Parallel Computation (MPC) model (also known as the Massively29
Parallel Communication model) that was abstracted out of capabilities of existing30
systems, starting with the work of Karloff, Suri, and Vassilvitskii [33, 25, 8, 3, 9]. The31
main difference between this model and the PRAM model is that the MPC model32
allows for much more (in principle, unbounded) local computation. This enables it33
to capture a more “coarse–grained,” and thus, potentially, more meaningful aspect34
of parallelism. It is often possible to simulate one clock step of PRAM in a constant35
number of rounds on MPC [33, 25]. This implies that algorithms for the PRAM model36
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usually give rise to MPC algorithms without incurring any asymptotic blow up in the37
number of parallel rounds. As a result, a vast body of work on PRAM algorithms38
naturally translates to the new model.39

It is thus natural to wonder: Are the MPC parallel round bounds “inherited” from40
the PRAM model tight? In particular, which problems can be solved in significantly41
smaller number of MPC rounds than what the lower bounds established for the PRAM42
model suggest?43

It is not hard to come up with an example of a problem for which indeed the44
MPC parallel round number is much smaller than its PRAM round complexity. For45
instance, computing the parity of n Boolean values takes only O(1) parallel rounds in46
the MPC model when space per machine is nΩ(1), while on PRAM it provably requires47
Ω(logn/ log logn) time [7] (as long as the total number of processors is polynomial).48
However, the answer is typically less obvious for other problems. This is particularly49
the case for graph problems, whose study in a variant of the MPC model was initiated50
already by Karloff et al. [33].51

In this paper, we focus on one such problem, which is also one of the most central52
graph problems both in sequential and parallel computations: maximum matching.53
Maximum matchings have been the cornerstone of algorithmic research since 1950s54
and their study inspired many important ideas, including the complexity class P55
[20]. In the PRAM model we can compute (1 + ε)-approximate matching in O(logn)56
rounds [37] using randomization. Deterministically, a (2 + ε)-approximation can be57
computed in O

(
log2 n

)
rounds [22]. We note that these results hold in a distributed58

message passing setting, where processors are located at graph nodes and can com-59

municate only with neighbors. In such a distributed setting, Ω
(√

logn/ log logn
)

60

time lower bound is known for computing any constant approximation to maximum61
matching [34].62

So far, in the MPC setting, the prior results are due to Lattanzi, Moseley, Suri,63
and Vassilvitskii [35], Ahn and Guha [1] and Assadi and Khanna [6]. Lattanzi et64
al. [35] put forth algorithms for several graph problems, such as connected compo-65
nents, minimum spanning tree, and maximum matching problem, that were based66
on a so-called filtering technique. In particular, using this technique, they have ob-67
tained an algorithm that can compute a 2-approximation to maximum matching in68
O(1/δ) MPC rounds, provided S, the space per machine, is significantly larger than69
the total number of vertices n, that is S = Ω

(
n1+δ), for some constant δ ∈ (0, 1).70

Later on, Ahn and Guha [1] provided an improved algorithm that computes a (1 + ε)-71
approximation in O(1/(δε)) rounds, provided S = Ω

(
n1+δ), for some constant δ > 0.72

Both these results, however, crucially require that space per machine is significantly73
superlinear in n, the number of vertices. In fact, if the space S is linear in n, which74
is a very natural setting for massively parallel graph algorithms, the performance of75
both these algorithms degrades to O(logn) parallel rounds, which matches what was76
known for the PRAM model. Recently, Assadi and Khanna [6] showed how to con-77
struct randomized composable coresets of size Õ(n) that give an O(1)-approximation78
for maximum matching. Their techniques apply to the MPC model only if the space79
per machine is Õ(n

√
n).80

We also note that the known PRAM maximal independent set and maximal81
matching algorithms [38, 2, 30] can be used to find a maximal matching (i.e., 2-82
approximation to maximum matching) in O(logn) MPC rounds as long as space per83
machine is at least nΩ(1) (i.e., S ≥ nc for some constant c > 0). We omit further details84
here, except mentioning that a more or less direct simulation of those algorithms is85
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ROUND COMPRESSION FOR PARALLEL MATCHING ALGORITHMS 3

possible via an O(1)-round sorting subroutine [25].86
The above results give rise to the following fundamental question: Can the max-87

imum matching be (approximately) solved in o(logn) parallel rounds in O(n) space88
per machine? The main result of this paper is an affirmative answer to that ques-89
tion. We show that, for any S = Ω(n), one can obtain an O(1)-approximation to90
maximum matching using O

(
(log logn)2) parallel MPC rounds. So, not only do we91

break the existing Ω(logn) barrier, but also provide an almost exponential improve-92
ment over the previous work. Our algorithm can also provide a (2 + ε), instead of93
O(1)-approximation, at the expense of the number of parallel rounds increasing by94
a factor of O(log(1/ε)). Finally, our approach can also provide algorithms that have95
o(logn) parallel round complexity also in the regime of S being (mildly) sublinear.96
For instance, we obtain O

(
(log logn)2) MPC rounds even if space per machine is97

S = n/(logn)O(log logn). The exact comparison of our bounds with previous results is98
given in Table 1.99

1.1. The Model. In this work, we adopt a version of the model introduced by100
Karloff, Suri, and Vassilvitskii [33] and refined in later works [25, 8, 3]. We call it101
massive parallel computation (MPC), which is a mutation of the name proposed by102
Beame et al. [8].103

In the MPC model, we have m machines at our disposal and each of them has104
S words of space. Initially, each machine receives its share of the input. In our case,105
the input is a collection E of edges and each machine receives approximately |E|/m106
of them.107

The computation proceeds in rounds. During the round, each of the machines108
processes its local data without communicating with other machines. At the end109
of each round, machines exchange messages. Each message is sent only to a single110
machine specified by the machine that is sending the message. All messages sent and111
received by each machine in each round have to fit into the machine’s local memory.112
Hence, their total length is bounded by S.1 This in particular implies that the total113
communication of the MPC model is bounded by m · S in each round. The messages114
are processed by recipients in the next round.115

At the end of the computation, machines collectively output the solution. The116
data output by each machine has to fit in its local memory. Hence again, each machine117
can output at most S words.118

The Range of Values for S and m. If the input is of size N , one usually wants S119
sublinear in the N , and the total space across all the machines to be at least N—so120
the input fits onto the machines—and ideally not much larger. Formally, one usually121
considers S ∈ Θ

(
N1−ε), for some ε > 0.122

In this paper, the focus is on graph algorithms. If n is the number of vertices in123
the graph, the input size can be as large as Θ

(
n2). Our parallel algorithm requires124

Θ(n) space per machine (or even slightly less), which is polynomially less than the125
size of the input for dense graphs.126

Sparse Graphs. Many practical large graphs are believed to have only O(n) edges.127
One natural example is social networks, in which most participants are likely to have128
a bounded number of friends. The additional advantage of our approach is that it129
allows for a small number of processing rounds even if a sparse input graph does not130
fit onto a single machine. If a small number—say, f(n)—of machines is needed even131

1This for instance allows a machine to send a single word to S/100 machines or S/100 words to
one machine, but not S/100 words to S/100 machines if S = ω(1), even if the messages are identical.
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to store the graph, our algorithm still requires only O
(
(log logn)2 + log f(n)

)
rounds132

for O(n/f(n)) space per machine.133
Communication vs. Computation Complexity. The main focus of this work is134

the number of (communication) rounds required to finish computation. Also, even135
though we do not make an effort to explicitly bound it, it is apparent from the136
design of our algorithms that every machine performs O(S polylogS) computation137
steps locally. This in particular implies that the overall work across all the machines138
is O(rN polylogS), where r is the number of rounds and N is the input size (i.e., the139
number of edges).140

The total communication during the computation is O(rN) words. This is at141
most O

(
rn2) words and it is known that computing a (1 + ε)-approximate matching142

in the message passing model with Θ(n) edges per player may require Ω
(
n2/(1 + ε)2)143

bits of communication [28]. Since our value of r is O
(
(log logn)2) when Θ(n) edges144

are assigned to each player, we lose a factor of Θ̃(logn) compared to this lower bound145
if words (and vertex identifiers) have Θ(logn) bits.146

1.2. Our Results. In our work, we focus on computing an O(1)-approximate147
maximum matching in the MPC model. We collect our results and compare to the148
previous work in Table 1. The table presents two interesting regimes for our algo-

Table 1
Comparison of our results for computing approximate maximum size matchings to the previous

results for the MPC model.

Source Approx. Space Rounds Remarks

[35] 2 n1+Ω(1) O(1) Maximal matching
O(n) O(logn)

[1] 1 + ε O
(
n1+1/p) O(p/ε) p > 1

2 nΩ(1) O(logn) Maximal matching
Simulate [38, 2, 30]

O(1)
O(n) O

(
(log logn)2)

2 + ε O
(
(log logn)2 · log(1/ε)

)
ε ∈ (0, 1/2)

here O(1)
O(n)/f(n)

O
(
(log logn)2 + log f(n)

)
2 ≤ f(n) = O

(
n1/2)

2 + ε O
(
(log logn)2 + log f(n)

)
· log(1/ε)

149
rithms. On the one hand, when the space per machine is S = O(n), we obtain an150
algorithm that requires O((log logn)2) rounds. This is the first known algorithm that,151
with linear space per machine, breaks the O(logn) round barrier. On the other hand,152
in the mildly sublinear regime of space per machine, i.e., when S = O(n/f(n)), for153
some function f(n) that is no(1), we obtain an algorithm that still requires o(logn)154
rounds. This, again, is the first such result in this regime. In particular, we prove the155
following result.156

Theorem 1.1. There exists an MPC algorithm that with constant probability con-157
structs an O(1)-approximate maximum matching in O

(
(log logn)2 + max

(
log n

S , 0
))

158
rounds, where S = nΩ(1) is the amount of space on each machine. This algorithm159
requires a total space of O(|E|+ n).160
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As a corollary, we obtain the following result that provides nearly 2-approximate161
maximum matching.162

Corollary 1.2. For any ε ∈ (0, 1
2 ), there exists an MPC algorithm that con-163

structs a (2 + ε)-approximation to maximum matching with constant probability in164
O
(
(log logn)2 + max

(
log n

S , 0
))
· log(1/ε) rounds, where S = nΩ(1) is the amount of165

space on each machine. This algorithm requires a total space of O(|E|+ n).166

Assadi et al. [5] observe that one can use a technique of McGregor [39] to extend167
our algorithm to compute a (1+ε)-approximation inO((log logn)2)·(1/ε)O(1/ε) rounds.168

It should also be noted that (as pointed out to us by Seth Pettie) any O(1)-169
approximation algorithm for unweighted matchings can be used to obtain a (2 + ε)-170
approximation algorithm for weighted matchings (see Section 4 of his paper with171
Lotker and Patt-Shamir [37] for details). In our setting this implies that Theorem172
1.1 yields an algorithm that computes a (2 + ε)-approximation to maximum weight173
matching in O((log logn)2 · (1/ε)) rounds and O(n logn) space per machine.174

Recently, by using the routing scheme of Lenzen [36], Behnezhad et al. [10] showed175
that our algorithm is adaptable to the congested clique model.176

1.3. Related Work. We note that there were efforts at modeling MapReduce177
computation [21] before the work of Karloff et al. Also a recent work [43] investigates178
the complexity of the MPC model.179

In the filtering technique, introduced by Lattanzi et al. [35], the input graph is180
iteratively sparsified until it can be stored on a single machine. For the matching181
problem, the sparsification is achieved by first obtaining a small sample of edges, then182
finding a maximal matching in the sample, and finally removing all the matched ver-183
tices. Once a sufficiently small graph is obtained, a maximal matching is computed184
on a single machine. In the S = Θ(n) regime, the authors show that their approach185
reduces the number of edges by a constant factor in each iteration. Despite this186
guarantee, until the very last step, each iteration may make little progress towards187
obtaining even an approximate maximal matching, resulting in a O(logn) round com-188
plexity of the algorithm. Similarly, the results of Ahn and Guha [1] require n1+Ω(1)189
space per machine to compute a O(1)-approximate maximum weight matching in a190
constant number of rounds and do not imply a similar bound for the case of linear191
space.192

We note that the algorithm of Lattanzi et al. [35] cannot be turned easily into a193
fast approximation algorithm when space per machine is sublinear. Even with Θ(n)194
space, their method is able to remove only a constant fraction of edges from the195
graph in each iteration, so Ω(logn) rounds are needed until only a matching is left.196
When S = Θ(n), their algorithm works as follows: sample uniformly at random Θ(n)197
edges of the graph, find maximal matching on the sampled set, remove the matched198
vertices, and repeat. We do not provide a formal proof here, but on the following199
graph this algorithm requires Ω̃(logn) rounds, even to discover a constant factor200
approximation. Consider a graph consisting of t separate regular graphs of degree 2i,201
for 0 ≤ i ≤ t − 1, each on 2t vertices. This graph has t2t nodes and the algorithm202
requires Ω̃(t) rounds even to find a constant approximate matching. The algorithm203
chooses edges uniformly at random, and few edges are selected each round from all204
but the densest remaining subgraphs. Thus, it takes multiple rounds until a matching205
of significant size is constructed for sparser subgraphs. This example emphasizes the206
weakness of direct edge sampling and motivates our vertex sampling scheme that we207
introduce in this paper.208
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Similarly, Ahn and Guha [1] build on the filtering approach of Lattanzi et al. and209
design a primal-dual method for computing a (1+ε)-approximate weighted maximum210
matching. They show that each iteration of their distributed algorithm either makes211
large progress in the dual, or they can construct a large approximate matching. Re-212
gardless of their new insights, their approach is inherently edge-sampling based and213
does not break the O(logn) round complexity barrier when S = O(n).214

Despite the fact that MPC model is rather new, computing matching is an im-215
portant problem in this model, as the above mentioned two papers demonstrate.216
This is further witnessed by the fact that the distributed and parallel complexity217
of maximal matching has been studied for many years already. The best determin-218
istic PRAM maximal matching algorithm, due to Israeli and Shiloach [31], runs in219
O
(
log3 n

)
rounds. Israeli and Itai [30] gave a randomized algorithm for this problem220

that runs in O(logn) rounds. Their algorithm works as well in CONGEST, a dis-221
tributed message-passing model with a processor assigned to each vertex and a limit222
on the amount of information sent along each edge per round. A more recent paper223
by Lotker, Patt-Shamir, and Pettie [37] gives a (1 + ε)-approximation to maximum224
matching in O(logn) rounds also in the CONGEST model, for any constant ε > 0.225
On the deterministic front, in the LOCAL model, which is a relaxation of CONGEST226
that allows for an arbitrary amount of data sent along each edge, a line of research227
initiated by Hańćkowiak, Karoński, and Panconesi [26, 27] led to an O

(
log3 n

)
-round228

algorithm by Fischer and Ghaffari [22].229
On the negative side, Kuhn, Moscibroda, and Wattenhofer [34] showed that any230

distributed algorithm, randomized or deterministic, that performs communication231

only between neighbors requires Ω
(√

logn/ log logn
)
rounds to compute a constant232

approximation to maximum matching. This lower bound applies to all distributed233
algorithms that have been mentioned above. Our algorithm circumvents this lower234
bound by loosening the only possible assumption there is to be loosened: single-hop235
communication. In a sense, we assign subgraphs to multiple machines and allow236
multi-hop communication between nodes in each subgraph.237

Finally, the ideas behind the peeling algorithm that is a starting point for this238
paper can be traced back to the papers of Israeli, Itai, and Shiloach [30, 31], which can239
be interpreted as matching high-degree vertices first in order to reduce the maximum240
degree. A sample distributed algorithm given in a work of Parnas and Ron [42] uses241
this idea to compute an O(logn) approximation for vertex cover. Their algorithm242
was extended by Onak and Rubinfeld [41] in order to provide an O(1)-approximation243
for vertex cover and maximum matching in a dynamic version of the problems. This244
was achieved by randomly matching high-degree vertices to their neighbors in con-245
secutive phases while reducing the maximum degree in the remaining graph. This246
approach was further developed in the dynamic graph setting by a number of pa-247
pers [15, 16, 17, 14]. Ideas similar to those in the paper of Parnas and Ron [42]248
were also used to compute polylogarithmic approximation in the streaming model by249
Kapralov, Khanna, and Sudan [32]. Our version of the peeling algorithm was directly250
inspired by the work of Onak and Rubinfeld [41] and features important modifications251
in order to make our analysis go through.252

1.4. Future Challenges. We show a parallel matching algorithm in the MPC253
model by taking an algorithm that can be seen as a distributed algorithm in the so-254
called LOCAL model. This algorithm requires Θ(logn) rounds and can be simulated255
in Θ(logn) MPC rounds relatively easily with nΩ(1) space per machine. We develop256
an approximate version of the algorithm that uses much fewer rounds by repeatedly257
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compressing a superconstant number of rounds of the original algorithm to O(1)258
rounds. It is a great question if this kind of speedup can be obtained for other—259
either distributed or PRAM—algorithms.260

As for the specific problem considered in this paper, an obvious question is261
whether our round complexity is optimal. We conjecture that there is a better al-262
gorithm that requires O(log logn) rounds, the square root of our complexity. Unfor-263
tunately, a factor of logn in one of our functions (see the logarithmic factor in α, a264
parameter defined later in the paper) propagates to the round complexity, where it265
imposes a penalty of log logn.266

Note also that as opposed to the paper of Onak and Rubinfeld [41], we do not267
obtain an O(1)-approximation to vertex cover. This stems from the fact that we268
discard so-called reference sets, which can be much bigger than the minimum vertex269
cover. This is unfortunately necessary in our analysis. Is there a way to fix this270
shortcoming of our approach?271

Finally, we suspect that there is a simpler algorithm for the problem that avoids272
the intricacies of our approach and proceeds by simply greedily matching high-degree273
vertices on induced subgraphs without sophisticated sampling in every phase. Unfor-274
tunately, we do not know how to analyze this kind of approach.275

1.5. Recent developments. Since an earlier version of this work was shared276
on arXiv, it has inspired a number of followup works. Assadi [4] applies the round277
compression idea to the distributed O(logn)-approximation algorithm for vertex cover278
of Parnas and Ron [42]. His algorithm uses techniques from his recent work with279
Khanna [6]. It computes an O(logn)-approximation to minimum vertex cover in280
O(log logn) rounds and with n/polylog(n) space per machine.281

The paper of Assadi et al. [5] addresses several open questions from this paper.282
They give an MPC algorithm that computes O(1)-approximation to both vertex cover283
and maximum matching in O(log logn) rounds and O(n/ polylog(n)) space per ma-284
chine (for maximum matching, the approximation factor is 1 + ε for any fixed ε).285
Their result builds on techniques developed originally for dynamic matching algo-286
rithms [12, 13] and composable coresets [6]. The paper of Ghaffari et al. [23] obtains287
similar results. They show how to compute a fractional matching and then apply a288
clever rounding scheme to transform it into an integral matching. This paper also289
gives an algorithm for computing a maximal independent set.290

Finally, Behnezhad et al. [11] address our question whether there is a simple291
greedy algorithm that achieves similar results with the same amount of computational292
resources. They give an algorithm that matches edges greedily in random order within293
each subgraph induced by a random vertex partition. One of the highlights of their294
approach is that it finds a maximal matching, which leads to a 2-approximation for295
vertex cover.296

The nδ space per machine regime, where δ ∈ (0, 1), has also been investigated297
more closely. A direct simulation of PRAM algorithms for problems mentioned in this298
section leads to O(logn)-round algorithms. This has been improved to Õ(

√
logn)299

rounds by exponentially speeding up the local exploration of sparsified neighbor-300
hoods [24, 40].301

2. Overview. In this section we present the main ideas and techniques behind302
our result. Our paper contains two main technical contributions.303

First, our algorithm randomly partitions vertices across the machines, and on each304
machine considers only the corresponding induced graph. We prove that it suffices305
to consider these induced subgraphs to obtain an approximate maximum matching.306
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Note that this approach greatly deviates from previous works, that used edge based307
partitioning.308

Second, we introduce a round compression technique. Namely, we start with309
an algorithm that executes O(logn) phases and can be naturally implemented in310
O(logn) MPC rounds and then demonstrate how to emulate this algorithm using311
only o(logn) MPC rounds. The underlying idea is quite simple: each machine inde-312
pendently runs multiple phases of the initial algorithm. This approach, however, has313
obvious challenges since the machines cannot communicate in a single round of the314
MPC algorithm. The rest of the section is devoted to describing our approach and315
illustrating how to overcome these challenges.316

2.1. Global Algorithm. To design an algorithm executed on machines locally,317
we start from a sequential peeling algorithm GlobalAlg (see Algorithm 2.1), which is318
a modified version of an algorithm used by Onak and Rubinfeld [41]. The algorithm319
had to be significantly adjusted in order to make our later analysis of a parallel version320
possible.321

The execution of GlobalAlg is divided into Θ(logn) phases. In each phase, the322
algorithm first computes a set H of high-degree vertices. Then it selects a set F of323
vertices, which we call friends. Next the algorithm selects a matching M̃ between H324
and F , using a simple randomized strategy. F is carefully constructed so that both325
F and M̃ are likely to be of order Θ(|H|). Finally, the algorithm removes all vertices326
in H ∪ F , hence reducing the maximum vertex degree in the graph by a constant327
factor, and proceeds to the next phase. The central property of GlobalAlg is that328
it returns an O(1) approximation to maximum matching with constant probability329
(Corollary 3.4). A detailed discussion of GlobalAlg is given in Section 3.330

Algorithm 2.1 GlobalAlg(G, ∆̃)
Global matching algorithm

Input: Graph G = (V,E) of maximum degree at most ∆̃
Output: A matching in G

1 ∆← ∆̃, M ← ∅, V ′ ← V
2 while ∆ ≥ 1 do

/* Invariant: the maximum degree in G[V ′] is at most ∆ */
3 Let H ⊂ V ′ be a set of vertices of degree at least ∆/2 in G[V ′]. We call vertices in H

heavy.
4 Create a set F of friends by selecting each vertex v ∈ V ′ independently with probability

|N(v) ∩H|/4∆.
5 Compute a matching M̃ in G[H ∪ F ] using MatchHeavy(H,F ) and add it to M .
6 V ′ ← V ′ \ (H ∪ F ), ∆← ∆/2
7 return M

2.2. Parallel Emulation of the Global Algorithm (Section 4). The fol-331
lowing two ways could be used to execute GlobalAlg in the MPC model: (1) place332
the whole graph on one machine, and trivially execute all the phases of GlobalAlg333
in a single round; or (2) simulate one phase of GlobalAlg in one MPC round while334
using O(n) space per machine, by distributing vertices randomly onto machines (see335
Section 6.1 for details). However, each of these approaches has severe drawbacks. The336
first approach requires Θ(|E|) space per machine, which is likely prohibitive for large337
graphs. On the other hand, while the second approach uses O(n) space, it requires338
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Algorithm 2.2 MatchHeavy(H,F )
Computing a matching in G[H ∪ F ]

Input: set H of heavy vertices and set F of friends
Output: a matching in G[H ∪ F ]

1 For every vertex v ∈ F pick uniformly at random a heavy neighbor v? in N(v) ∩H.
2 Independently at random color each vertex in H ∪ F either red or blue.
3 Select the following subset of edges: E? ← {(v, v?) : v ∈ F ∧ v is red ∧ v? ∈ H ∧ v? is blue}.
4 For every blue vertex w incident to an edge in E?, select one such edge and add it to M̃ .
5 return M̃

Θ(logn) rounds of MPC computation. We achieve the best of both worlds by showing339
how to emulate the behavior of multiple phases of GlobalAlg in a single MPC round340
with each machine using O(n) space, thus obtaining an MPC algorithm requiring341
o(logn) rounds. More specifically, we show that it is possible to emulate the behavior342
of GlobalAlg in O

(
(log logn)2) rounds with each machine using O(n) (or even only343

n/(logn)O(log logn)) space.344
Before we provide more details about our multi-phase emulation of GlobalAlg,345

let us mention the main obstacle such an emulation encounters. At the beginning of346
every phase, GlobalAlg has access to the full graph. Therefore, it can easily compute347
the set of heavy vertices H. On the other hand, machines in our MPC algorithm use348
O(n) space and thus have access only to a small subgraph of the input graph (when349
|E| � n). In the first phase this is not a big issue, as, thanks to randomness, each350
machine can estimate the degrees of high-degree vertices. However, the degrees of351
vertices can significantly change from phase to phase. Therefore, after each phase it352
is not clear how to select high-degree vertices in the next phase without inspecting353
the entire graph again. Hence, one of the main challenges in designing a multi-phase354
emulation of GlobalAlg is to ensure that machines at the beginning of every phase355
can estimate global degrees of vertices well enough to identify the set of heavy vertices,356
while each machine still having access only to its local subgraph. This property is357
achieved using a few modifications to the algorithm.358

2.2.1. Vertex Based Sampling. The algorithms for computing a maximal359
matching in PRAM and their simulations in the MPCmodel [38, 2, 31, 30] are designed360
to, roughly speaking, either halve the number of edges or halve the maximum degree in361
each round. Therefore, in the worst case, those algorithms inherently require Ω(logn)362
rounds to compute a maximal matching.363

On the other hand, all the algorithm for the maximal matching problem in the364
MPC model prior to ours ([35, 1, 6]) process the input graph by discarding edges,365
and eventually aggregate the remaining edges on a single machine to decide which of366
them are part of the final matching. It is not known how to design approaches similar367
to [35, 1, 6] while avoiding a step in which the maximal matching computation is368
performed on a single machine. This seems to be a barrier for improving upon O(logn)369
rounds, if the space available on each machine is O(n).370

The starting point of our new approach is alleviating this issue by resorting to a371
more careful vertex based sampling. Specifically, at each round, we randomly partition372
the vertex set into vertex sets V1, . . . , Vm and consider induced graphs on those subsets373
independently. Such sampling scheme has the following handy property: the union374
of matchings obtained across the machines is still a matching. Furthermore, we show375
that for the appropriate setting of parameters this sampling scheme allows us to handle376
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vertices of a wide range of degrees in a single round, unlike handling only high-degree377
vertices (that is, vertices with degree within a constant factor of the maximum degree)378
as guaranteed by [30, 31].379

2.2.2. Preserving Randomness. Our algorithm partitions the vertex set into380
m disjoint subsets Vi by assigning each vertex independently and uniformly at ran-381
dom. Then the graph induced by each subset Vi is processed on a separate machine.382
Each machine finds a set of heavy vertices, Hi, by estimating the global degree of383
each vertex of Vi. It is not hard to argue (using a standard concentration bound) that384
there is enough randomness in the initial partition so that local degrees in each in-385
duced subgraph roughly correspond to the global degrees. Hence, after the described386
partitioning, sets H and

⋃
i∈[m]Hi have very similar properties. This observation387

crucially relies on the fact that initially the vertices are distributed independently and388
uniformly at random.389

However, if the second phase of GlobalAlg is executed without randomly re-390
assigning vertices to sets after the first phase, the remaining vertices are no longer391
distributed independently and uniformly at random. In other words, after inspect-392
ing the neighborhood of every vertex locally and making a decision based on it, the393
randomness of the initial random partition may significantly decrease.394

Let us now make the following thought experiment. Imagine for a moment that395
there is an algorithm that emulates multiples phases of GlobalAlg in parallel and396
in every phase inspects only the vertices that end-up being matched. Then, from397
the point of view of the algorithm, the vertices that are not matched so far are still398
distributed independently and uniformly at random across the machines. Or, saying399
in a different way, if randomness of some vertices is not inspected while emulating400
a phase, then at the beginning of the next phase those vertices still have the same401
distribution as in the beginning of that MPC round. But, how does an algorithm402
learn about vertices that should be matched by inspecting no other vertex? How does403
the algorithm learn even only about high-degree vertices without looking at their404
neighborhood?405
In the sequel we show how to design an algorithm that looks only "slightly" at the406
vertices that do not end-up being matched. As we prove, that is sufficient to design407
a multi-phase emulation of GlobalAlg.408

We now discuss in more detail how to preserve two crucial properties of our vertex409
assignments throughout the execution of multiple phases: independent and nearly-410
uniform distribution.411

2.2.3. Independence (Lemma 4.3). As noted above, it is not clear how to412
compute vertex degrees without inspecting their local neighborhood. A key, and at413
first sight counter-intuitive, step in our approach is to estimate even local degrees of414
vertices (in contrast to computing them exactly). To obtain the estimates, it suffices415
to examine only small neighborhoods of vertices and in turn preserve the independent416
distribution of the intact ones. More precisely, we sample a small set of vertices417
on each machine, called reference sets, and use the set to estimate the local degrees418
of all vertices assigned to this machine. Furthermore, we show that with a proper419
adjustments of GlobalAlg these estimates are sufficient for capturing high-degree420
vertices.421

Very crucially, all the vertices that are used in computing a matching in one422
emulated phase (including the reference sets) are discarded at the end of the phase,423
even if they do not participate in the obtained matching. In this way we disregard the424
vertices which position is fixed and, intuitively, secure an independent distribution of425
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the vertices across the machines in the next phase.426
We also note, without going into details, that obtaining full independence required427

modifying how the set of friends is selected, compared to the original approach of428
Onak and Rubinfeld [41]. In their approach, each heavy vertex selected one friend429
at random. However, as before, in order to select exactly one friend would require430
examining neighborhood of heavy vertices. This, however, introduces dependencies431
between vertices that have not been selected. So instead, in our GlobalAlg, every432
vertex selects itself as a friend independently and proportionally to the number of high-433
degree vertices (found using the reference set), which again secures an independent434
distribution of the remaining vertices. The final properties of the obtained sets in435
either approach are very similar.436

2.2.4. Uniformity (Lemma 4.4). A very convenient property in the task of437
emulating multiple phases of GlobalAlg is a uniform distribution of vertices across438
all the machines at every phase – for such a distribution, we know the expected439
number of neighbors of each desired type assigned to the same machine. Obtaining440
perfect uniformity seems difficult—if not impossible in our setting—and we therefore441
settle for near uniformity of vertex assignments. The probability of the assignment442
of each vertex to each machine is allowed to differ slightly from that in the uniform443
distribution. Initially, the distribution of each vertex is uniform and with every phase444
it can deviate more and more from the uniform distribution. We bound the rate of445
the decay with high probability and execute multiple rounds as long as the deviation446
from the uniform distribution is negligible. More precisely, in the execution of the447
entire parallel algorithm, the sufficiently uniform distribution is on average kept over448

Ω
(

logn
(log logn)2

)
phases of the emulation of GlobalAlg.449

11
2

1

1
2

µH(r)

r

Fig. 1. An idealized version of µH : R → [0, 1].

In order to achieve the near uniformity, we modify the procedure for selecting H,450
the set of high-degree vertices. Instead of a hard threshold on the degrees of vertices451
that are included in H as in the sequential algorithm, we randomize the selection by452
using a carefully crafted threshold function µH . This function specifies the probability453
with which a vertex is included in H. It takes as input the ratio of the vertex’s degree454
to the current maximum degree (or, more precisely, the current upper bound on the455
maximum degree) and it smoothly transitions from 0 to 1 in the neighborhood of the456
original hard threshold (see Figure 1). The main intuition behind the introduction of457
this function is that we want to ensure that a vertex is not selected for H with almost458
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the same probability, independently of the machine on which it resides. Using a hard459
threshold instead of µH could result in the following deficiency. Consider a vertex v460
that has slightly too few neighbors to qualify as a heavy vertex. Still, it could happen,461
with a non-negligible probability, that the reference set of some machine contains so462
many neighbors of v that v would be considered heavy on this machine. However, if463
v is not included in the set of heavy vertices on that machine, it becomes clear after464
even a single phase that the vertex is not on the given machine, i.e., the vertex is on465
the given machine with probability zero. At this point the distribution is clearly no466
longer uniform.467

Function µH has further useful properties that we extensively exploit in our anal-468
ysis. We just note that in order to ensure near uniformity with high probability, we469
also have to ensure that each vertex is selected for F , the set of friends, with roughly470
the same probability on each machine.471

2.3. Organization. We start by analyzing GlobalAlg in Section 3. Section 4472
describes how to emulate a single phase of GlobalAlg in the MPC model. Section 5473
gives and analyzes our parallel algorithm by putting together components developed474
in the previous sections. The resulting parallel algorithm can be implemented in the475
MPC model in a fairly straightforward way by using the result of [25]. The details of476
the implementation are given in Section 6.477

3. Global Algorithm.478

3.1. Overview. Our point of start is a peeling algorithm GlobalAlg that takes479
as input a graph G, and removes from it vertices of lower and lower degree until no480
edge is left. See page 8 for its pseudocode. We use the term phase to refer to an481
iteration of the main loop in Lines 2–6.482

Each phase is associated with a threshold ∆. Initially, ∆ equals ∆̃, the upper483
bound on the maximum vertex degree. In every phase, ∆ is divided by two until484
it becomes less than one and the algorithm stops. Since during the execution of the485
algorithm we maintain the invariant that the maximum degree in the graph is at most486
∆, the graph has no edge left when the algorithm terminates.487

In each phase the algorithm matches, in expectation, a constant fraction of the488
vertices it removes. We use this fact to prove that, across all the phases, the algorithm489
computes a constant-factor approximate matching.490

We now describe in more detail the execution of each phase. First, the algorithm491
creates H, the set of vertices that have degree at least ∆/2 (Line 3). We call these492
vertices heavy. Then, the algorithm uses randomness to create F , a set of friends493
(Line 4). Each vertex v is independently included in F with probability equal to the494
number of its heavy neighbors divided by 4∆. We show that E [|F |] = O(|H|) and495
G[H ∪F ] contains a matching of expected size Ω(|H|). This kind of matching is likely496
found by MatchHeavy in Line 5.497

Note that GlobalAlg could as well compute a maximal matching in G[H ∪ F ]498
instead of calling MatchHeavy. However, for the purpose of the analysis, using499
MatchHeavy is simpler, as we can directly relate the size of the obtained match-500
ing to the size of H. In addition, we later give a parallel version of GlobalAlg, and501
MatchHeavy is easy to parallelize.502

At the end of the phase, vertices in both H and F are removed from the graph,503
while the matching found in G[H ∪ F ] is added to the global matching being con-504
structed. It is easy to see, that by removing H, the algorithm ensures that no vertex505
of degree larger than ∆/2 remains in the graph, and therefore the bound on the506
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maximum degree decreases by a factor of two.507

3.2. Analysis. We start our analysis of the algorithm by showing that the ex-508
ecution of MatchHeavy in each phase of GlobalAlg finds a relatively large matching509
in expectation.510

Lemma 3.1. Consider one phase of GlobalAlg. Let H be the set of heavy vertices.511

MatchHeavy finds a matching M̃ such that E
[∣∣∣M̃ ∣∣∣] ≥ 1

40 |H|.512

Proof. Observe that the set E? is a collection of vertex-disjoint stars: each edge513
connects a red vertex with a blue vertex and the red vertices have degree 1. Thus,514
a subset of E? forms a valid matching as long as no blue vertex is incident to two515
matched edges. Note that this is guaranteed by how edges are added to M̃ in Line 4.516

The size of the computed matching is the number of blue vertices in H that have517
at least one incident edge in E?. Let us now lower bound the number of such vertices.518
Consider an arbitrary u ∈ H. It has the desired properties exactly when the following519
three independent events happen: some v is selected in F and v selects u in Line 1;520
u is colored blue; and v is colored red. The joint probability of the two latter events521
is exactly 1

4 . The probability that u is not selected by some its neighbor v (either522
because v is not selected in F , or v is selected in F but v does not select u in Line 1)523
is524 (

1− 1
4∆

)|N(u)∩V ′|
≤
(

1− 1
4∆

)∆/2
≤ exp

(
− 1

4∆ ·
∆
2

)
≤ exp

(
−1

8

)
≤ 9

10 .525

This implies that u is selected by a neighbor v ∈ F with probability at least 1
10 .526

Therefore, with probability at least 1
10 ·

1
4 = 1

40 , u is blue and incident to an edge in527

E?. Hence, E
[∣∣∣M̃ ∣∣∣] ≥ 1

40 |H|.528

Next we show an upper bound on the expected size of F , the set of friends.529

Lemma 3.2. Let H be the set of heavy vertices selected in a phase of GlobalAlg.530
The following bound holds on the expected size of F , the set of friends, created in the531
same phase: E [|F |] ≤ 1

4 |H|.532

Proof. At the beginning of a phase, every vertex u ∈ V ′—including those in H—533
has its degree, |N(u)∩V ′|, bounded by ∆. Reversing the order of the summation and534
applying this fact, we get:535

E [|F |] =
∑
v∈V ′

|N(v) ∩H|
4∆ =

∑
u∈H

|N(u) ∩ V ′|
4∆ ≤ |H| ·∆4∆ = |H|4 .

536

We combine the last two bounds to lower bound the expected size of the matching537
computed by GlobalAlg.538

Lemma 3.3. Consider an input graph G with an upper bound ∆̃ on the maximum539
vertex degree. Assume that GlobalAlg(G, ∆̃) executes T def= blog ∆̃c + 1 phases. Let540
Hi, Fi, and M̃i be the sets H, F , and M̃ constructed in phase i for i ∈ [T ]. The541
following relationship holds on the expected sizes of these sets:542

T∑
i=1

E
[∣∣∣M̃i

∣∣∣] ≥ 1
50

T∑
i=1

E [|Hi|+ |Fi|]543
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Proof. For each phase i ∈ [T ], by applying the expectation over all possible544
settings of the set Hi, we learn from Lemmas 3.1 and 3.2 that545

E
[∣∣∣M̃i

∣∣∣] ≥ 1
40 E [|Hi|] and E [|Fi|] ≤

1
4 E [|Hi|] .546

It follows that547

1
50 E [|Hi|+ |Fi|] ≤

1
50 E [|Hi|] + 1

200 E [|Hi|] = 1
40 E [|Hi|] ≤ E

[∣∣∣M̃i

∣∣∣] ,548

and the statement of the lemma follows by summing over all phases.549

We do not use this fact directly in our paper, but note that the last lemma can550
be used to show that GlobalAlg can be used to find a large matching.551

Corollary 3.4. GlobalAlg computes a constant factor approximation to the552
maximum matching with Ω(1) probability.553

Proof. First, note that GlobalAlg finds a correct matching, i.e., no two different554
edges in M share an endpoint. This is implied by the fact that M is extended in555
every phase by a matching on a disjoint set of vertices.556

Let T and sets Hi, Fi, and M̃i for i ∈ [T ] be defined as in the statement of557
Lemma 3.3. Let MOPT be a maximum matching in the graph. Observe that at the558
end of the algorithm execution, the remaining graph is empty. This implies that559
the size of the maximum matching can be bounded by the total number of removed560
vertices, because each removed vertex decreases the maximum matching size by at561
most one:562

T∑
i=1
|Hi|+ |Fi| ≥ |MOPT| .563

Hence, using Lemma 3.3,564

E [|M |] =
T∑
i=1

E
[∣∣∣M̃i

∣∣∣] ≥ 1
50

T∑
i=1

E [|Hi|+ |Fi|] ≥
1
50 |MOPT| .565

Since |M | ≤ |MOPT|, |M | ≥ 1
100 |MOPT| with probability at least 1

100 . Otherwise,566
E [|M |] would be strictly less than 1

100 · |MOPT|+ 1 · 1
100 |MOPT| = 1

50 |MOPT|, which567
is not possible.568

4. Emulation of a Phase in a Randomly Partitioned Graph. In this569
section, we introduce a modified version of a single phase (one iteration of the main570
loop) of GlobalAlg. Our modifications later allow for implementing the algorithm in571
the MPC model. The pseudocode of the new procedure, EmulatePhase, is presented572
as Algorithm 4.1. We partition the vertices of the current graph into m sets Vi,573
1 ≤ i ≤ m. Each vertex is assigned independently and almost uniformly at random574
to one of the sets. For each set Vi, we run a subroutine LocalPhase (presented as575
Algorithm 4.2). This subroutine runs a carefully crafted approximate version of one576
phase of GlobalAlg with an appropriately rescaled threshold ∆. More precisely, the577
threshold passed to the subroutine is scaled down by a factor of m, which corresponds578
to how approximately vertex degrees decrease in subgraphs induced by each of the579
sets. The main intuition behind this modification is that we hope to break the problem580
up into smaller subproblems on disjoint induced subgraph, and obtain similar global581
properties by solving the problem approximately on each smaller part. Later, in582
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Algorithm 4.1 EmulatePhase(∆, G?,m,D)
Emulation of a single phase in a randomly partitioned graph

Input:
• threshold ∆
• induced subgraph G? = (V?, E?) of maximum degree 3

2 ∆
• number m of subgraphs
• ε-near uniform and independent distribution D on assignments of V? to [m]

Output: Remaining vertices and a matching
1 Pick a random assignment Φ : V? → [m] from D
2 for i ∈ [m] do
3 Vi ← {v ∈ V? : Φ(v) = i}
4 (V ′i ,Mi)← LocalPhase(i, G?[Vi],∆/m) /* LocalPhase = Algorithm 4.2 */

5 return
(⋃m

i=1 V
′
i ,
⋃m

i=1 Mi

)
Table 2

Global parameters α ∈ (1,∞) and µR ∈ (0, 1) and functions µH : R → [0, 1] and µF : R → [0, 1]
used in the parallel algorithm. α, µR, and µH depend on n, the total number of vertices in the
graph.

A multiplicative constant used in the exponent of µH :

α
def= 96 lnn.

The probability of the selection for a reference set:

µR
def=
(
106 · logn

)−1
.

The probability of the selection for a heavy set (used with r equal to the ratio of the
estimated degree to the current threshold):

µH(r) def=
{ 1

2 exp
(
α
2 (r − 1/2)

)
if r ≤ 1/2,

1− 1
2 exp

(
−α2 (r − 1/2)

)
if r > 1/2.

The probability of the selection for the set of friends (used with r equal to the ratio of
the number of heavy neighbors to the current threshold):

µF (r) def=
{

max{r/4, 0} if r ≤ 4,
1 if r > 4.

Section 5, we design an algorithm that assigns the subproblems to different machines583
and solves them in parallel.584

We now discuss LocalPhase (i.e., Algorithm 4.2) in more detail. Table 2 intro-585
duces two parameters, α and µR, and two functions, µH and µF , which are used in586
LocalPhase. Note first that α is a parameter used in the definition of µH but it is587
not used in the pseudocode of LocalPhase (or EmulatePhase) for anything else. It is,588
however, a convenient abbreviation in the analysis and the later parallel algorithm.589
The other three mathematical objects specify probabilities with which vertices are590
included in sets that are created in an execution of LocalPhase.591

Apart from creating its own versions of H, the set of heavy vertices, and F , the592
set of friends, LocalPhase constructs also a set Ri, which we refer to as a reference593
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Algorithm 4.2 LocalPhase(i, Gi,∆?)
Emulation of a single phase on an induced subgraph

Input:
• induced subgraph number i (useful only for the analysis)
• induced subgraph Gi = (Vi, Ei)
• threshold ∆? ∈ R+

Output: Remaining vertices and a matching on Vi

1 Create a reference set Ri by independently selecting each vertex in Vi with probability µR.
2 For each v ∈ Vi, d̂v ← |N(v) ∩Ri|/µR.
3 Create a set Hi of heavy vertices by independently selecting each v ∈ Vi with probability

µH

(
d̂v/∆?

)
.

4 Create a set Fi of friends by independently selecting each vertex in v ∈ Vi with probability
µF (|N(v) ∩Hi|/∆?).

5 Compute a maximal matching Mi in G[Hi ∪ Fi].
6 return (Vi \ (Ri ∪Hi ∪ Fi),Mi)

set. In Line 1, the algorithm puts each vertex in Ri independently and with the same594
probability µR. The reference set is used to estimate the degrees of other vertices in595
the same induced subgraph in Line 2. For each vertex vi, its estimate d̂v is defined596
as the number of v’s neighbors in Ri multiplied by µ−1

R to compensate for sampling.597
Next, in Line 3, the algorithm uses the estimates to create Hi, the set of heavy598
vertices. Recall that GlobalAlg uses a sharp threshold for selecting heavy vertices:599
all vertices of degree at least ∆/2 are placed in Hi. LocalPhase works differently.600
It divides the degree estimate by the current threshold ∆? and uses function µH to601
decide with what probability the corresponding vertex is included in Hi. A sketch602
of the function can be seen in Figure 1. The function transitions from almost 0 to603
almost 1 in the neighborhood of 1

2 at a limited pace. As a result vertices of degrees604
smaller than, say, 1

4∆ are very unlikely to be included in Hi and vertices of degree605
greater than 3

4∆ are very likely to be included in Hi. GlobalAlg can be seen as an606
algorithm that instead of µH , uses a step function that equals 0 for arguments less607
than 1

2 and abruptly jumps to 1 for larger arguments. Observe that without µH ,608
the vertices whose degrees barely qualify them as heavy could behave very differently609
depending on which set they were assigned to. We use µH to guarantee a smooth610
behavior in such cases. That is one of the key ingredients that we need for making611
sure that a set of vertices that remains on one machine after a phase has almost the612
same statistical properties as a set of vertices obtained by new random partitioning.613

Finally, in Line 4, LocalPhase creates a set of friends. This step is almost identical614
to what happens in the global algorithm. The only difference is that this time we have615
no upper bound on the number of heavy neighbors of a vertex. As a result that number616
divided by 4∆? can be greater than 1, in which case we have to replace it with 1 in617
order to obtain a proper probability. This is taken care of by function µF . Once618
Hi and Fi have been created, the algorithm finds a maximal matching Mi in the619
subgraph induced by the union of these two sets. The algorithm discards from the620
further consideration not only Hi and Fi, but also Ri. This eliminates dependencies621
in the possible distribution of assignments of vertices that have not been removed yet622
if we condition this distribution on the configuration of sets that have been removed.623
Intuitively, the probability of a vertex’s inclusion in any of these sets depends only624
on Ri and Hi but not on any other vertices. Hence, once we fix the sets of removed625
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vertices, the assignment of the remaining vertices to subgraphs is fully independent.2626
The output of LocalPhase is a subset of Vi to be considered in later phases and a627
matching Mi, which is used to expand the matching that we construct for the entire628
input graph. We now introduce additional concepts and notation. They are useful for629
describing and analyzing properties of the algorithm. A configuration describes sets630
Ri, Hi, and Fi, for 1 ≤ i ≤ m, constructed in an execution of EmulatePhase. We use631
it for conditioning a distribution of vertex assignments as described in the previous632
paragraph. We also formally define two important properties of distributions of vertex633
assignments: independence and near uniformity.634

Configurations. Let m and V? be the parameters to EmulatePhase: the number635
of subgraphs and the set of vertices in the graph to be partitioned, respectively. We636
say that637

C =
(
{Ri}i∈[m], {Hi}i∈[m], {Fi}i∈[m]

)
638

is an m-configuration if it represents a configuration of sets Ri, Hi, and Fi created by639
EmulatePhase in the simulation of a phase. Recall that for any i ∈ [m], Ri, Hi, and640
Fi are the sets created (and removed) by the execution of LocalPhase for Vi, the i-th641
subset of vertices.642

We say that a vertex v is fixed by C if it belongs to one of the sets in the config-643
uration, i.e.,644

v ∈
⋃
i∈[m]

(Ri ∪Hi ∪ Fi) .645

Conditional distribution. Let D be a distribution on assignments ϕ : V? → [m].646
Suppose that we execute EmulatePhase for D and let C be a non-zero probability647
m-configuration—composed of sets Ri, Hi, and Fi for i ∈ [m]—that can be created648
in this setting. Let V ′? be the set of vertices in V? that are not fixed by C. We write649
D[C] to denote the conditional distribution of possible assignments of vertices in V ′?650
to [m], given that for all i ∈ [m], Ri, Hi, and Fi in C were the sets constructed by651
LocalPhase for the i-th induced subgraph.652

Near uniformity and independence. Let D be a distribution on assignments ϕ :653
Ṽ → [m] for some set Ṽ and m. For each vertex v ∈ Ṽ , let pv : [m] → [0, 1] be654
the probability mass function of the marginal distribution of v’s assignment. For655
any ε ≥ 0, we say that D is ε-near uniform if for every vertex v and every i ∈ [m],656
pv(i) ∈ [(1 − ε)/m, (1 + ε)/m]. We say that D is an independent distribution if the657
probability of every assignment ϕ in D equals exactly

∏
v∈Ṽ pv(ϕ(v)).658

Concentration inequality. We use the following version of the Chernoff bound659
that depends on an upper bound on the expectation of the underlying independent660
random variables. It can be shown by combining two applications of the more standard661
version.662

Lemma 4.1 (Chernoff bound). Let X1, . . . , Xk be independently distributed663
random variables taking values in [0, 1]. Let X def= X1 + · · · + Xk and let U ≥ 0664
be an upper bound on the expectation of X, i.e., E[X] ≤ U . For any δ ∈ [0, 1],665
Pr(|X − E[X]| > δU) ≤ 2 exp(−δ2U/3).666

Concise range notation. Multiple times throughout a paper, we want to denote667
a range around some value. Instead of writing, say, [x − δ, x + δ], we introduce a668

2By way of comparison, consider observing an experiment in which we toss the same coin twice.
The bias of the coin is not fixed but comes from a random distribution. If we do not know the bias,
the outcomes of the coin tosses are not independent. However, if we do know the bias, the outcomes
are independent, even though they have the same bias.
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more concise notation. In this specific case, we would simply write Jx± δK. More669
formally, let E be a numerical expression that apart from standard operations also670
contains a single application of the binary or unary operator ±. We create two671
standard numerical expressions from E: E− and E+ that replace ± with − and +,672
respectively. Now we define JEK def= [min{E−, E+},max{E−, E+}].673

As another example, consider E =
√

101± 20. We have E− =
√

101− 20 = 9674
and E+ =

√
101 + 20 = 11. Hence

q√
101± 20

y
= [min{9, 11},max{9, 11}] = [9, 11].675

We now show the properties of EmulatePhase that we use to obtain our final676
parallel algorithm.677

4.1. Outline of the section. We start by showing that EmulatePhase com-678
putes a large matching as follows. Note that, each vertex belonging to Hi or Fi679
that EmulatePhase removes in the calls to LocalPhase can decrease the maximum680
matching size in the graph induced by the remaining vertices by one. We show that681
the matching that EmulatePhase constructs in the process captures on average at682
least a constant fraction of that loss. We also show that the effect of removing Ri is683
negligible. More precisely, in Section 4.2 we prove the following lemma.684

Lemma 4.2. Let ∆, G? = (V?, E?), m, and D be parameters for EmulatePhase685
such that686

• D is an independent and ε-near uniform distribution on assignments of ver-687
tices V? to [m] for ε ∈ [0, 1/200],688

• ∆
m ≥ 4000µ−2

R ln2 n,689
• the maximum degree of a vertex in G? is at most 3

2∆.690
For each i ∈ [m], let Hi, Fi, and Mi be the sets constructed by LocalPhase for the691
i-th induced subgraph. Then, the following relationship holds for their expected sizes:692 ∑

i∈[m]

E [|Hi ∪ Fi|] ≤ n−9 + 1200
∑
i∈[m]

E [|Mi|] .693

Note that Lemma 4.2 requires that the vertices are distributed independently694
and near uniformly in the m sets. This is trivially the case right after the vertices695
are partitioned independently at random. However, in the final algorithm, after we696
partition the vertices, we run multiple phases on each machine. In the rest of this697
section we show that running a single phase preserves independence of vertex distri-698
bution and only slightly disturbs the uniformity (Lemma 4.3 and Lemma 4.4). As we699
have mentioned before, independence stems from the fact that we use reference sets700
to estimate vertex degrees. We discard them at the end and condition on them, which701
leads to the independence of the distribution of vertices that are not removed.702

Lemma 4.3. Let D be an independent distribution of assignments of vertices in703
V? to [m]. Let C be a non-zero probability m-configuration that can be constructed by704
EmulatePhase for D. Let V ′? be the set of vertices of V? that are not fixed by C. Then705
D[C] is an independent distribution of vertices in V ′? on [m].706

Independence of the vertex assignment is a very handy feature that allows us707
to use Chernoff-like concentration inequalities in the analysis of multiple phase em-708
ulation. However, although the vertex assignment of non-removed vertices remains709
independent across machines from phase to phase, as stated by Lemma 4.3, their710
distribution is not necessarily uniform. Fortunately, we can show it is near uniform.711
The proof of near uniformity is the most involved proof in this paper. In a nutshell,712
the proof is structured as follows. We pick an arbitrary vertex v that has not been713
removed and show that with high probability it has the same number of neighbors in714
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all sets Ri. The same property holds for v’s neighbors in all sets Hi. We use this to715
show that the probability of a fixed configuration of sets removed in a single phase716
is roughly the same for all assignments of v to subgraphs. In other words, if v was717
distributed nearly uniformly before the execution of EmulatePhase, it is distributed718
only slightly less uniformly after the execution.719

Lemma 4.4. Let ∆, G? = (V?, E?), m, and D be parameters for EmulatePhase720
such that721

• D is an independent and ε-near uniform distribution on assignments of ver-722
tices V? to [m] for ε ∈ [0, (200 lnn)−1],723

• ∆
m ≥ 4000µ−2

R ln2 n.724
Let C be an m-configuration constructed by EmulatePhase. With probability at least725
1− n−4 both the following properties hold:726

• The maximum degree in the graph induced by the vertices not fixed in C is727
bounded by 3

4∆.728

• D[C] is 60α
((∆

m

)−1/4 + ε
)
-near uniform.729

4.2. Expected matching size. Now we prove Lemma 4.2, i.e., we show that730
EmulatePhase computes a large matching. In the proof we argue that the expected731
total size of sets Hi and Fi is not significantly impacted by relatively low-degree732
vertices classified as heavy or by an unlucky assignment of vertices to subgraphs733
resulting in local vertex degrees not corresponding to global degrees. Namely, we734
show that the expected number of friends a heavy vertex adds is O(1) and at the735
same time the probability that the vertex gets matched is Ω(1).736

Lemma 4.5. Let ∆, G? = (V?, E?), m, and D be parameters for EmulatePhase737
such that738

• D is an independent and ε-near uniform distribution on assignments of ver-739
tices V? to [m] for ε ∈ [0, 1/200],740

• ∆
m ≥ 4000µ−2

R ln2 n,741
• the maximum degree of a vertex in G? is at most 3

2∆.742
For each i ∈ [m], let Hi, Fi, and Mi be the sets constructed by LocalPhase for the743
i-th induced subgraph. Then, the following relationship holds for their expected sizes:744 ∑

i∈[m]

E [|Hi ∪ Fi|] ≤ n−9 + 1200
∑
i∈[m]

E [|Mi|] .745

Proof. We borrow more notation from EmulatePhase and the m executions of746
LocalPhase initiated by it. For i ∈ [m], Vi is the set inducing the i-th subgraph.747
Value ∆? = ∆

m is the rescaled threshold passed to the executions of LocalPhase. Ri748
is the reference set created by LocalPhase for the i-th induced subgraph.749

For each induced subgraph, LocalPhase computes a maximal matching Mi in750
Line 5. While such a matching is always large—its size is at least half the maximum751
matching size—it is hard to relate its size directly to the sizes of Hi and Fi. Therefore,752
we first analyze the size of a matching that would be created by MatchHeavy(G?[Hi∪753

Fi], Hi, Fi). We refer to this matching as M̃i and we later use the inequality
∣∣∣M̃i

∣∣∣ ≤754

2 |Mi|.755
We partition each Hi, i ∈ [m], into two sets: H ′i and H ′′i . H ′i is the subset of756

vertices in Hi of degree less than 1
8∆ in G?. H ′′i,t+1 is its complement, i.e., H ′′i

def=757
Hi \ H ′i. We start by bounding the expected total size of sets H ′i. What is the758
probability that a given vertex v of degree less than 1

8∆ is included in
⋃
i∈[m]Hi?759
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Suppose that v ∈ Vk, where k ∈ [m]. The expected number of v’s neighbors in Rk is760
at most (1 + ε) ·µR · 1

8∆/m ≤ 3
16µR∆? due to the independence and ε-near uniformity761

of D[C]. Using the independence, Lemma 4.1, and the lower bound on ∆?, we obtain762
the following bound:763

Pr
[
µRd̂v >

1
4µR∆?

]
≤ 2 exp

(
−1

3 ·
(

1
3

)2
· 3

16µR∆?

)
≤ 2 exp (−27 lnn) = 2n−27.764

If d̂v ≤ 1
4∆?, the probability that v is selected to Hk is at most µH(d̂v/∆?) ≤765

µH(1/4) ≤ 1
2n
−12. Hence v is selected to Hk—and therefore to H ′k—with probability766

at most 2n−27 + 1
2n
−12 ≤ n−12. This implies that

∑
i∈[m] E [|H ′i|] ≤ n · n−12 = n−11.767

We also partition the sets of friends, Fi for i ∈ [m], into two sets each: F ′i and768
F ′′i . This partition is based on the execution of MatchHeavy for the i-th subgraph.769
In Line 1, this algorithm selects for every vertex v ∈ Fi a random heavy neighbor770
v? ∈ Hi. If v? ∈ H ′i, we assign v to F ′i . Analogously, if v? ∈ H ′′i , we assign v to F ′′i .771
Obviously, a heavy vertex in H ′i can be selected only if H ′i is non-empty. By Markov’s772
inequality and the upper bound on

∑
i∈[m] E [|H ′i|], the probability that at least one773

set H ′i is non-empty is at most n−11. Even if for all i ∈ [m], all vertices in Fi select a774
heavy neighbor in H ′i whenever it is available, the total expected number of vertices775
in sets F ′i is at most

∑
i∈[m] E

[∣∣F ′i,t+1
∣∣] ≤ n · n−11 = n−10.776

Before we proceed to bounding sizes of the remaining sets, we prove that with777
high probability, all vertices have a number of neighbors close to the expectation. Let778
ϕ : V? → [m] be the assignment of vertices to subgraphs. We define E as the event779
that for all v ∈ V?,780 ∣∣∣∣ 1

m
|N(v) ∩ V?| −

∣∣N(v) ∩ Vϕ(v)
∣∣∣∣∣∣ ≤ 1

16∆?.781

Consider first one fixed v ∈ V?. The degree of v in G? is |N(v) ∩ V?| ≤ 3
2∆. Due to782

the near-uniformity and independence,783 ∣∣∣∣ 1
m
|N(v) ∩ V?| − E

[∣∣N(v) ∩ Vϕ(v)
∣∣]∣∣∣∣ ≤ ε · 3

2
∆
m
≤ 3

400∆?.784

This in particular implies that E
[∣∣N(v) ∩ Vϕ(v)

∣∣] ≤ ( 3
2 + 3

400
)

∆? ≤ 2∆?. Using785
the independence of D, Lemma 4.1, and the lower bound on ∆? (i.e., ∆? = ∆

m ≥786
4000µ−2

R ln2 n = 4 · 1015 · ln4 n),787

Pr
[∣∣E [∣∣N(v) ∩ Vϕ(v)

∣∣]− ∣∣N(v) ∩ Vϕ(v)
∣∣∣∣ > 1

20∆?

]
≤ 2 exp

(
−1

3 ·
(

1
20 ·

1
2

)2
· 2∆?

)
788

≤ 2 exp
(
−(1012 + 3) lnn

)
789

≤ n−(1012+2) ≤ n−12.790791

As a result, with this probability, we have792 ∣∣∣∣ 1
m
|N(v) ∩ V?| −

∣∣N(v) ∩ Vϕ(v)
∣∣∣∣∣∣ ≤ 1

20∆? + 3
400∆? ≤

1
16∆?.793

By the union bound, this bound holds for all vertices in V? simultaneously—and hence794
E occurs—with probability at least 1− n · n−12 = 1− n−11.795

This manuscript is for review purposes only.



ROUND COMPRESSION FOR PARALLEL MATCHING ALGORITHMS 21

If E does not occur, we can bound both
∑
i∈[m] |H ′′i | and

∑
i∈[m] |F ′′i | by n. This796

contributes at most n−11 · n = n−10 to the expected size of each of these quantities.797
Suppose now that E occurs. Consider an arbitrary v ∈ H ′′i for some i. The number798
of neighbors of v in Vi lies in the range

[ 1
8∆? − 1

16∆?,
3
2∆? + 1

16∆?

]
⊆
[ 1

16∆?, 2∆?

]
.799

Moreover, the expected number of vertices w ∈ F ′′i that select v in w? in Line 1 of800
MatchHeavy is bounded by 2∆? · 1

4∆?
= 1

2 . It follows that E [|F ′′i |] ≤ 1
2 E [|H ′′i |], given801

E . We now lower bound the expected size of M̃i given E . What is the probability802
that some vertex w ∈ Fi selects v as w? in MatchHeavy and (v, w) is added to M̃i?803

This occurs if one of v’s neighbors w is added to Fi and selects v as w?, and804
additionally, v and w are colored blue and red, respectively. The number of v’s805
neighbors is at least 1

16∆?. Since each vertex w in Vi has at most 2∆? neighbors,806
the number of heavy neighbors of w is bounded by the same number. This implies807
that in the process of selecting Fi, only the first branch in the definition of µF is808
used and each vertex w is included with probability exactly equal to the number of809
its neighbors in Hi divided by 4∆t+1. Then each heavy neighbor of w is selected as810
w? with probability one over the number of heavy neighbors of w. What this implies811
is that each neighbor w of v is selected for Fi and selects v as w? with probability812
exactly (4∆?)−1. Hence the probability that v is not selected as w? by any of its at813
least 1

16∆? neighbors w can be bounded by814 (
1− 1

4∆?

) 1
16 ∆?

≤ exp
(
− 1

4∆?
· 1

16∆?

)
= e−1/64.815

Therefore the probability that v is selected by some vertex w ∈ Fi as w? is at least816
1 − e−1/64 ≥ 1/100. Then with probability 1/4, these two vertices have appropriate817
colors and this or another edge incident to v with the same properties is added to818
M̃i. In summary, the probability that an edge (v, w) for some w as described is added819
to M̃i is at least 1/400. Since we do not count any edge in the matching twice for820

two heavy vertices, by the linearity of expectation E
[∣∣∣M̃i

∣∣∣] ≥ 1
400 E [|H ′′i |] given E .821

Overall, given E , we have822 ∑
i∈[m]

E [|H ′′i |+ |F ′′i |] ≤
3
2
∑
i∈[m]

E [|H ′′i |] ≤ 600
∑
i∈[m]

E
[∣∣∣M̃i

∣∣∣] .823

In general, without conditioning on E ,824 ∑
i∈[m]

E [|H ′′i |+ |F ′′i |] ≤ 2 · n−10 + 600
∑
i∈[m]

E
[∣∣∣M̃i

∣∣∣] .825

We now combine bounds on all terms to finish the proof of the lemma.826 ∑
i∈[m]

E [|Hi ∪ Fi|] ≤
∑
i∈[m]

E [|H ′i|+ |F ′i |+ |H ′′i |+ |F ′′i |]827

≤ n−11 + n−10 + 2n−10 + 600
∑
i∈[m]

E
[∣∣∣M̃i

∣∣∣]828

≤ n−9 + 1200
∑
i∈[m]

E [|Mi|] .829

830
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4.3. Independence. Next we prove Lemma 4.3. We start with an auxiliary831
lemma that gives a simple criterion under which an independent distribution remains832
independent after conditioning on a random event. Consider a random vector with833
independently distributed coordinates. Suppose that for any value of the vector,834
a random event E occurs when all coordinates “cooperate”, where each coordinate835
cooperates independently with probability that depends only on the value of that836
coordinate. We then show that the distribution of the vector’s coordinates given E837
remains independent.838

Lemma 4.6. Let k be a positive integer and A an arbitrary finite set. Let X =839
(X1, . . . , Xk) be a random vector in Ak with independently distributed coordinates. Let840
E be a random event of non-zero probability. If there exist functions pi : A→ [0, 1], for841
i ∈ [k], such that for any x = (x1, . . . , xk) ∈ Ak appearing with non-zero probability,842

Pr[E|X = x] =
k∏
i=1

pi(xi),843

then the conditional distribution of coordinates in X given E is independent as well.844

Proof. Since the distribution of coordinates in X is independent, there are k prob-845
ability mass functions p′i : A → [0, 1], i ∈ [k], such that for every x = (x1, . . . , xk) ∈846
Ak, Pr[X = x] =

∏k
i=1 p

′
i(xi). The probability of E can be expressed as847

Pr[E ] =
∑

x=(x1,...,xk)∈Ak
Pr[E ∧X = x] =

∑
x=(x1,...,xk)∈Ak

Pr[X=x]>0

Pr[E|X = x] · Pr[X = x]848

=
∑

x=(x1,...,xk)∈Ak

k∏
i=1

pi(xi)p′i(xi) =
k∏
i=1

∑
y∈A

pi(y)p′i(y).849

850

Note that, since the probability of E is positive, each term
∑
y∈A pi(y)p′i(y), i ∈ [k],851

in the above expression is positive. We can express the probability of any vector852
x = (x1, . . . , xk) ∈ Ak given E as follows:853

Pr[X = x|E ] = Pr[E ∧X = x]
Pr[E ] = Pr[E|X = x] · Pr[X = x]

Pr[E ]854

=
∏k
i=1 pi(xi)p′i(xi)∏k

i=1
∑
y∈A pi(y)p′i(y)

=
k∏
i=1

pi(xi)p′i(xi)∑
y∈A pi(y)p′i(y) .855

856

We define p′′i : A → [0, 1] as p′′i (x) def= pi(xi)p′i(xi)/
∑
y∈A pi(y)p′i(y) for each i ∈ [k].857

Each p′′i is a valid probability mass function on A. As a result we have Pr[X =858
x|E ] =

∏k
i=1 p

′′
i (xi), which proves that the distribution of coordinates in X given E is859

still independent with each coordinate distributed according to its probability mass860
function p′′i .861

We now prove Lemma 4.3 by applying Lemma 4.6 thrice. We refer to functions pi,862
which describe the probability of each coordinate cooperating, as cooperation proba-863
bility functions.864

Lemma 4.7. Let D be an independent distribution of assignments of vertices in865
V? to [m]. Let C be a non-zero probability m-configuration that can be constructed by866
EmulatePhase for D. Let V ′? be the set of vertices of V? that are not fixed by C. Then867
D[C] is an independent distribution of vertices in V ′? on [m].868
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Proof. C can be expressed as869

C =
(
{R?i }i∈[m], {H?

i }i∈[m], {F ?i }i∈[m]
)

870

for some subsets R?i , H?
i , and F ?i of V?, where i ∈ [m]. We write Φ to denote the871

random assignment of vertices to sets selected in Line 1 of EmulatePhase. Φ is a872
random variable distributed according to D.873

Let ER be the event that for all i ∈ [m], the reference set Ri generated for the874
i-th induced subgraph by LocalPhase equals exactly R?i . A vertex v that is assigned875
to a set Vi is included in Ri with probability exactly µR, independently of other876
vertices. Hence once we fix an assignment ϕ : V? → [m] of vertices to sets Vi, we can877
express the probability of ER as a product of probabilities that each vertex cooperates.878
More formally, Pr[ER|Φ = ϕ] =

∏
v∈V? qv(ϕ(v)) for cooperation probability functions879

qv : [m]→ [0, 1] defined as follows.880
• If v ∈

⋃
i∈[m]R

?
i , there is exactly one i ∈ [m] such that v ∈ R?i . If v is not881

assigned to Vi, ER cannot occur. If it is, v cooperates with ER with probability882
exactly µR, i.e., the probability of the selection for Ri. For this kind of v, the883
cooperation probability function is884

qv(i)
def=
{
µR if v ∈ R?i ,
0 if v 6∈ R?i .

885

• If v 6∈
⋃
i∈[m]R

?
i , v cooperates with ER if it is not selected for Rϕ(v), indepen-886

dently of its assignment ϕ(v), which happens with probability exactly 1−µR.887
Therefore, the cooperation probability can be defined as qv(i)

def= 1 − µR for888
all i ∈ [m].889

We invoke Lemma 4.6 to conclude that the conditional distribution of values of Φ890
given ER is independent as well.891

We now define an event EH that both ER occurs and for all i ∈ [m], Hi, the set892
of heavy vertices constructed for the i-th subgraph equals exactly H?

i . We want to893
show that the conditional distribution of values of Φ given EH is independent. Note894
that if Φ is selected from the conditional distribution given ER (i.e., all sets Ri are895
as expected) and we fix the assignment φ : V? → [m] of vertices to sets Vi, then896
each vertex v ∈ V? is assigned to Hφ(v)—this the only set Hi to which it can be897
assigned—independently of other vertices. As a result, we can express the probability898
of EH given ER and ϕ being the assignment as a product of cooperation probabilities899
for each vertex. More precisely, Pr[EH |Φ = ϕ, ER] =

∏
v∈V? q

′
v(ϕ(v)) for cooperation900

probability functions q′v : [m] → [0, 1] defined as follows, where ∆? is the threshold901
used in the m executions of LocalPhase.902

• If v ∈
⋃
i∈[m]H

?
i , then there is exactly one i such that v ∈ H?

i . EH can only903
occur if v is included in the corresponding Hi. This cannot happen if v is not904
assigned to the corresponding Vi by ϕ. If v is assigned to this Vi, it has to be905
selected for Hi, which happens with probability µH (|N(v) ∩R?i |/(µR∆?)).906
The cooperation probability function can be written in this case as907

q′v(i)
def=
{
µH(|N(v) ∩R?i |/(µR∆?)) if v ∈ H?

i ,
0 if v 6∈ H?

i .
908

• If v 6∈
⋃
i∈[m]H

?
i , v cannot be included in Hi corresponding to the set Vi909

to which it is assigned for EH to occur. This happens with probability 1 −910
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µH(|N(v) ∩ R?i |/(µR∆?)). Hence, we can define q′v(i)
def= 1 − µH(|N(v) ∩911

R?i |/(µR∆?)) for all i ∈ [m].912
We can now invoke Lemma 4.6 to conclude that the distribution of values of Φ given913
EH is independent.914

Finally, we define EF to be the event that both EH occurs and for each i ∈ [m], Fi,915
the set of friends selected for the i-th induced subgraph, equals exactly F ?i . We observe916
that once Φ is fixed to a specific assignment ϕ : V? → [m] and EH occurs (i.e., all sets917
Ri and Hi are as in C), then each vertex is independently included in Fϕ(v) with some918
specific probability that depends only on Hϕ(v), which is already fixed. In this setting,919
we can therefore express the probability of EF , which exactly specifies the composition920
of sets Fi, as a product of values provided by some cooperation probability functions921
q′′v : [m] → [0, 1]. More precisely, Pr[EF |Φ = ϕ, EH ] =

∏
v∈V? q

′′
v (ϕ(v)) for q′′v that we922

define next.923
• If v ∈

⋃
i∈[m] F

?
i , then there is exactly one i such that v ∈ F ?i . EF cannot924

occur if v is not assigned to Vi and selected for Fi. Hence, the cooperation925
probability function for v is926

q′′v (i) def=
{
µF (|N(v) ∩H?

i |/∆?) if v ∈ F ?i ,
0 if v 6∈ F ?i .

927

• If v 6∈
⋃
i∈[m] F

?
i , to whichever set Vi vertex v is assigned, it should not be928

included in Fi in order for EF to occur. Hence, q′′v (i) def= 1 − µF (|N(v) ∩929
H?
i?,t
|/∆t).930

We invoke Lemma 4.6 to conclude that the distribution of values of Φ given EF is931
independent as well. This is a distribution on assignments for the entire set V?. If we932
restrict it to assignments of V ′? ⊆ V?, we obtain a distribution that first, is independent933
as well, and second, equals exactly D[C].934

4.4. Near Uniformity. In this section we prove Lemma 4.4. We begin by935
showing a useful property of µH (see Table 2 for definition). Recall that GlobalAlg936
selects H, the set of heavy vertices, by taking all vertices of degree at least ∆/2. In937
LocalPhase the degree estimate of each vertex depends on the number of neighbors in938
the reference set in the vertex’s induced subgraph. We want the decision taken for each939
vertex to be approximately the same, independently of which subgraph it is assigned940
to. Therefore, we use µH , a function that specifies the probability of the inclusion941
in the set of heavy vertices and is relatively insensitive to small argument changes.942
The next lemma proves that this is indeed the case. Small additive changes to the943
parameter x to µH have small multiplicative impact on both µH(x) and 1− µH(x).944

Lemma 4.8 (Insensitivity of µH). Let δ ∈ [0, (α/2)−1] = [0, (48 lnn)−1]. For
any pair x and x′ of real numbers such that |x− x′| ≤ δ,

µH(x′) ∈ JµH(x)(1± αδ)K

and
1− µH(x′) ∈ J(1− µH(x))(1± αδ)K .

Proof. We define an auxiliary function f : R→ [0, 1]:

f(r) def=
{

1
2 exp

(
α
2 r
)

if r ≤ 0,
1− 1

2 exp
(
−α2 r

)
if r > 0.
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It is easy to verify that for all r ∈ R, µH(r) = f(r−1/2) and 1−µH(r) = f(−(r−1/2)).945
Therefore, in order to prove the lemma, it suffices to prove that for any r and r′ such946
that |r − r′| ≤ δ,947

(4.1) f(r)(1− αδ) ≤ f(r′) ≤ f(r)(1 + αδ),948

i.e., a small additive change to the argument of f has a limited multiplicative impact949
on the value of f .950

Note that f is differentiable in both (−∞, 0) and (0,∞). Additionally, it is
continuous in the entire range—the left and right branch of the function meet at
0—and both the left and right derivatives at 0 are equal. This implies that it is
differentiable at 0 as well. Its derivative is

f ′(r) =
{
α
4 · exp

(
α
2 r
)

if r ≤ 0,
α
4 · exp

(
−α2 r

)
if r > 0,

which is positive for all r, and therefore, f is strictly increasing. Note that f ′ is951
increasing in (−∞, 0] and decreasing in [0,∞). Hence the global maximum of f ′952
equals f ′(0) = α/4.953

In order to prove Inequality 4.1 for all r and r′ such that |r− r′| ≤ δ, we consider
two cases. Suppose first that r ≥ 0. By the upper bound on the derivative of f ,

f(r)− α

4 · |r − r
′| ≤ f(r′) ≤ f(r) + α

4 · |r − r
′|.

Since r ≥ 0, f(r) ≥ 1/2. This leads to

f(r)− f(r) · α2 · |r − r
′| ≤ f(r′) ≤ f(r) + f(r) · α2 · |r − r

′|.

By the bound on |r − r′|,

f(r)(1− αδ) ≤ f(r′) ≤ f(r)(1 + αδ),

which finishes the proof in the first case.954
Suppose now that r < 0. Since f is increasing, it suffices to bound the value of f955

from below at r − δ and from above and at r + δ. For r − δ, we obtain956

f(r − δ) = 1
2 exp

(α
2 (r − δ)

)
= f(r) exp

(
−α2 δ

)
957

≥ f(r)
(

1− α

2 δ
)
≥ f(r)(1− αδ).958

959
For r + δ, let us first define a function g : R→ R as

g(y) def= 1
2 exp

(α
2 y
)
.

For y ≤ 0, f(y) = g(y). For y > 0, g′(y) ≥ f ′(y) and hence, for any y ∈ R,
g(y) ≥ f(y). As a result, we obtain

f(r + δ) ≤ g(r + δ) = 1
2 exp

(α
2 (r + δ)

)
= f(r) · exp

(α
2 δ
)
.

By the bound on δ in the lemma statement, α2 δ ≤ 1. It follows from the convexity of
the exponential function that for any y ∈ [0, 1], exp(y) ≤ y · exp(1)+(1−y) · exp(0) ≤
3y + (1− y) = 1 + 2y. Continuing the reasoning,

f(r + δ) ≤ f(r) ·
(

1 + 2 · α2 δ
)

= f(r)(1 + αδ),

which finishes the proof of Inequality (4.1).960
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The main result of this section is Lemma 4.4 that states that if a distribution D961
of vertex assignments is near uniform, then EmulatePhase constructs a configuration962
C such that D[C] is near uniform as well, and also, the maximum degree in the graph963
induced by the vertices not removed by EmulatePhase is bounded.964

Lemma 4.9. Let ∆, G? = (V?, E?), m, and D be parameters for EmulatePhase965
such that966

• D is an independent and ε-near uniform distribution on assignments of ver-967
tices V? to [m] for ε ∈ [0, (200 lnn)−1],968

• ∆
m ≥ 4000µ−2

R ln2 n.969
Let C be an m-configuration constructed by EmulatePhase. With probability at least970
1− n−4 both the following properties hold:971

• The maximum degree in the graph induced by the vertices not fixed in C is972
bounded by 3

4∆.973

• D[C] is 60α
((∆

m

)−1/4 + ε
)
-near uniform.974

Proof overview (of Lemma 4.4). This is the most intricate proof of the entire975
paper. We therefore provide a short overview. First, we list again the variables in976
EmulatePhase and LocalPhase to which we refer in the proof and define additional977
convenient symbols. Then we introduce five simple random events (Events 1–5) that978
capture properties needed to prove Lemma 4.4. In Claim 4.10, we show that the979
probability of all these events occurring simultaneously is high. The proof of the980
claim follows mostly from a repetitive application of the Chernoff bound. In the981
next claim, Claim 4.11, we show that the occurrence of all the events has a few982
helpful consequences. First, high degree vertices get removed in the execution of983
EmulatePhase (which is one of our final desired properties). Second, each vertex v984
that is not fixed in C has a very similar number of neighbors in all sets Ri and it has985
a very similar number of neighbors in all sets Hi. In the final proof of Lemma 4.4,986
we use the fact that this implies that to whichever set Vi vertex v was assigned in987
EmulatePhase, the probability of its removal in EmulatePhase was more or less the988
same. This leads to the conclusion that if v was distributed nearly uniformly in D, it989
is distributed only slightly less uniformly in D[C].990

Notation. To simplify the presentation, for the rest of Section 4.4 we assume that991
∆, G? = (V?, E?), m, and D are the parameters to EmulatePhase as in the statement992
of Lemma 4.4. Additionally, for each i ∈ [m], Ri, Hi, and Fi are the sets constructed993
by LocalPhase for the i-th subgraph in the execution of EmulatePhase. We write C to994
denote the corresponding m-configuration, i.e., C =

(
{Ri}i∈[m], {Hi}i∈[m], {Fi}i∈[m]

)
.995

Furthermore, for each v ∈ V?, d̂v is the estimate of v’s degree in the subgraph to which996
it was assigned. This estimate is computed in Line 2 of LocalPhase. We also use ∆?997
to denote the rescaled threshold passed in all calls to LocalPhase, i.e., ∆? = ∆

m .998
We also introduce additional notation, that is not present in EmulatePhase or999

LocalPhase. For each v ∈ V?, dv
def= |N(v) ∩ V?|, i.e., dv is the degree of v in G?. For1000

each vertex v ∈ V?, we also introduce a notion of its weight: wv
def= µH(dv/∆), which1001

can be seen as a very rough approximation of v’s probability of being selected for the1002
set of heavy vertices. For any v ∈ V? and U ⊆ V?, we also introduce notation for the1003
total weight of v’s neighbors in U :1004

Wv(U) def=
∑

u∈N(v)∩U

wu.1005

Finally, for all i ∈ [m] and v ∈ V?, we also introduce a slightly less intuitive notion1006
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of the expected number of heavy neighbors of v in the i-th subgraph after the degree1007
estimates are fixed in Line 2 of LocalPhase and before vertices are assigned to the1008
heavy set in Line 3:1009

hv,i
def=

∑
u∈N(v)∩Vi

µH

(
d̂u/∆?

)
.1010

Obviously, each hv,i is a random variable.1011
Convenient random events. We now list five random events that we hope all to1012

occur simultaneously with high probability. The first event intuitively is the event1013
that high-degree vertices are likely to be included in the set of heavy vertices in Line 31014
of LocalPhase.1015

Event 1
For each vertex v ∈ V? such that dv ≥ 3

4∆,

µH

(
d̂v/∆?

)
≥ 1− 1

2n
−6.

1016

Another way to define this event would be to state that d̂v for such vertices v is high,1017
but this form is more suitable for our applications later. The next event is the event1018
that all such vertices are in fact classified as heavy.1019

Event 2
Each vertex v ∈ V? such that dv ≥ 3

4∆ belongs to
⋃
i∈[m]Hi.

1020

The next event is the event that low-degree vertices have a number of neighbors in1021
each set Ri close to the mean. This implies that if we were able to move a low-degree1022
vertex v to Vi, for any i ∈ [m], its estimated degree d̂v would not change significantly.1023

1024

Event 3
For each vertex v ∈ V? such that dv < 3

4∆ and each i ∈ [m],∣∣∣∣ 1
µR
|N(v) ∩Ri| −

dv
m

∣∣∣∣ ≤ ∆3/4
? + 3

4ε∆?.

1025

As a reminder, we use Wv(U) to denote the expected number of vertices in N(v)∩U1026
that are selected as heavy, where every vertex u is selected with respect to its global1027
degree du. The next event shows that Wv(Vi) does not deviate much from its mean.1028

Event 4
For each vertex v ∈ V? such that dv < 3

4∆ and each i ∈ [m],

|Wv(Vi)−Wv(V?)/m| ≤ ∆3/4
? + 3

4ε∆?.

1029

Recall that hv,i intuitively expresses the expected number of v’s neighbors in the i-th1030
induced subgraph at some specific stage in the execution of LocalPhase for the i-th1031
induced subgraph. The final event is the event that for all bounded hv,i, the actual1032
number of v’s neighbors in Hi does not deviate significantly from hv,i.1033
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Event 5
For each vertex v ∈ V? and each i ∈ [m], if hv,i ≤ 2∆?, then

||N(v) ∩Hi| − hv,i| ≤ ∆3/4
? .

1034

High probability of the random events. We now show that the probability of all1035
the events occurring is high. The proof follows mostly via elementary applications of1036
the Chernoff bound.1037

Claim 4.10. If ε ∈ [0, 1/100] and ∆
m ≥ 4000µ−2

R ln2 n, then Events 1–5 occur1038
simultaneously with probability at least 1− n−4.1039

Proof. We consider all events in order and later show by the union bound that1040
all of them hold simultaneously with high probability. In the proof of the lemma, we1041
extensively use the fact that ∆? = ∆

m ≥ 4000µ−2
R ln2 n = 4 · 1015 · ln4 n.1042

First, we consider Event 1 and Event 2, which we handle together. Consider a1043
vertex v such that dv ≥ 3

4∆. Let i? be the index of the set to which it is assigned. Since1044
D is ε-near uniform, the expectation of |N(v) ∩ Ri? |, the number of v’s neighbors in1045
Ri? , is at least (1−ε) 3

4µR
∆
m ≥

297
400µR∆?. Since vertices are both assigned to machines1046

independently and included in the reference set independently as well, we can apply1047
Lemma 4.1 to bound the deviation with high probability. The probability that the1048
number of neighbors is smaller than 9

10 ·
297
400µR∆? ≥ 5

8µR∆? is at most1049

2 exp
(
−1

3 ·
(

1
10

)2
· 297

400µR∆?

)
≤ 2 exp

(
− 1

405µR∆?

)
≤ 2n−9 ≤ 1

2n
−6.1050

Hence with probability at least 1− 1
2n
−6, d̂v ≥ 5

8∆? and µH
(
d̂v/∆?

)
≥ 1− 1

2n
−6. If1051

this is the case, v is not included in the set of heavy vertices in Line 3 of LocalPhase1052

with probability at most 1
2n
−6. Therefore, v has the desired value of µH

(
d̂v/∆?

)
and1053

belongs to Hi? with probability at least 1−n−6. By the union bound, this occurs for1054
all high degree vertices with probability at least 1− n−5, in which case both Event 11055
and Event 2 occur.1056

We now show that Event 3 occurs with high probability. Let v be an arbitrary1057
vertex such that dv < 3

4∆ and let i ∈ [m]. Let Xv,i
def= |N(v) ∩Ri|. Xv,i is a random1058

variable. Since D is ε-near uniform, E [Xv,i] ∈ J(1± ε)µRdv/mK. In particular, due1059
to the bounds on dv and ε, E[Xv,i] ≤ µR∆?. Due to the independence, we can use1060
Lemma 4.1 to bound the deviation of Xv,i from its expectation. We have1061

Pr
(
|Xv,i − E[Xv,i]| > µR∆3/4

?

)
≤ 2 exp

(
−1

3 ·
(

1
∆1/4
?

)2
· µR∆?

)
1062

= 2 exp
(
−1

3µR∆1/2
?

)
≤ 2n−21.1063

1064

Hence with probability 1− 2n−21, we have1065 ∣∣∣∣Xv,i − µR
dv
m

∣∣∣∣ ≤ |Xv,i − E[Xv,i]|+
∣∣∣∣E[Xv,i]− µR

dv
m

∣∣∣∣ ≤ µR∆3/4
? + εµR

dv
m

1066

≤ µR∆3/4
? + 3

4εµR∆?.1067
1068

This manuscript is for review purposes only.



ROUND COMPRESSION FOR PARALLEL MATCHING ALGORITHMS 29

By dividing both sides by µR, we obtain the desired bound1069 ∣∣∣∣Xv,i

µR
− dv
m

∣∣∣∣ =
∣∣∣∣ 1
µR
|N(v) ∩Ri| −

dv
m

∣∣∣∣ ≤ ∆3/4
? + 3

4ε∆?.1070

By the union bound, this holds for all v and i of interest—and therefore, Event 31071
occurs—with probability at least 1− |V?| ·m · 2n−21 ≥ 1− n−5.1072

We now move on to Event 4. Consider a vertex v such that dv < 3
4∆ and1073

i ∈ [m]. Note that since the weight of every vertex is at most 1, Wv(V?)/m ≤ dv/m <1074
3
4∆?. Since D[C] is ε-near uniform, E [Wv(Vi)] ∈ J(1± ε)Wv(V?)/mK. In particular,1075
E [Wv(Vi)] ≤ 101

100Wv(V?)/m ≤ 101
100 ·

3
4∆? ≤ ∆?. Since vertices are assigned to machines1076

independently, we can apply Lemma 4.1 to bound the deviation of Wv(Vi) from the1077
expectation:1078

Pr
(
|Wv(Vi)− E [Wv(Vi)]| > ∆3/4

?

)
≤ 2 exp

(
−1

3 ·
(

1
∆1/4
?

)2
·∆?

)
1079

= 2 exp
(
−1

3∆1/2
?

)
≤ 2n−21.1080

1081

As a result, with probability at least 1− 2n−21,1082

|Wv(Vi)−Wv(V?)/m| ≤ |Wv(Vi)− E [Wv(Vi)]|+ |E [Wv(Vi)]−Wv(V?)/m|1083

≤ ∆3/4
? + εWv(V?)/m ≤ ∆3/4

? + εdv/m ≤ ∆3/4
? + 3

4ε∆?.1084
1085

By the union bound, this holds for all v and i of interest—and therefore, Event 41086
occurs—with probability at least 1− |V?| ·m · 2n−21 ≥ 1− n−5.1087

To show that Event 5 occurs with high probability, recall first that hv,i is the1088
expected number of v’s neighbors to be added in Line 3 to Hi in the execution of1089
LocalPhase for the i-th subgraph. Note that the decision of adding a vertex to Hi1090
is made independently for each neighbor of v. Fix a v ∈ V? and i ∈ [m] such that1091
hv,i ≤ 2∆?. We apply Lemma 4.1 to bound the probability of a large deviation from1092
the expectation:1093

Pr
(
||N(v) ∩Hi| − hv,i| > ∆3/4

?

)
≤ 2 exp

(
−1

3 ·
(

1
2∆1/4

?

)2
· 2∆?

)
1094

= 2 exp
(
−1

6∆1/2
?

)
≤ 2n−10.1095

1096

By the union bound the probability that this bound does not hold for some v and i1097
such that hv,i ≤ 2∆? is by the union bound at most |V?| ·m · 2n−10 ≤ n−5. Hence,1098
Event 5 occurs with probability at least 1− n−5.1099

In summary, Events 1–5 occur simultaneously with probability at least 1−4·n−5 ≥1100
1− n−4 by another application of the union bound.1101

Consequences of the random events. We now show that if all the random events1102
occur, then a few helpful properties hold for every vertex v that is not fixed by the1103
constructed configuration C. Namely, v’s degree is at most 3

4∆, the number of v’s1104
neighbors is similar in all sets Ri is approximately the same, and the number of v’s1105
neighbors is similar in all sets Hi.1106
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Claim 4.11. If Events 1–5 occur for ε ∈ [0, (200 lnn)−1] and ∆
m ≥ 4000µ−2

R ln2 n,1107
then the following properties hold for every vertex v ∈ V? that is not fixed by C:1108

1. dv < 3
4∆.1109

2. There exists χv such that for all i ∈ [m],1110

|N(v) ∩Ri| /µR ∈
s
χv ±

(
∆3/4
? + 3

4ε∆?

){
.1111

3. There exists ψv ∈
[
0, 3

4∆?

]
such that for all i ∈ [m],1112

|N(v) ∩Hi| ∈
r
ψv ± α

(
∆3/4
? + ε∆?

)z
.1113

Proof. We use in the proof of the claim the fact that ∆? = ∆
m ≥ 4000µ−2

R ln2 n =1114
4 · 1015 · ln4 n. To prove the lemma, we fix a vertex v that is not fixed by C. The first1115
property is directly implied by Event 2. Suppose that dv ≥ 3

4∆. Then v is included1116
in the Hi corresponding to the subgraph to which it has been assigned and v is fixed1117
by C. We obtain a contradiction that implies that dv < 3

4∆.1118
For the second property, we now know that dv < 3

4∆. The property follows then1119

directly from Event 3 with χv
def= dv/m.1120

The last property requires a more complicated reasoning. We set1121

ψv
def= Wv(V?)/m <

3
4∆?.1122

Consider any i ∈ [m]. By Event 4,1123

(4.2) Wv(Vi) ∈
s
ψv ±

(
∆3/4
? + 3

4ε∆?

){
.1124

Consider now an arbitrary u ∈ V?. We bound the difference between wu = µH (du/∆),1125
which can be seen as the ideal probability of the inclusion in the set of heavy vertices,1126

and µH

(
d̂u/∆?

)
, the actual probability of this event in Line 3 of the appropriate1127

execution of LocalPhase. Let δ?
def= α

(
∆−1/4
? + 3

4ε
)
. We consider two cases.1128

• If du < 3
4∆, by Event 3, the monotonicity of µH , and Lemma 4.8,1129

µH

(
d̂u/∆?

)
∈

s
µH

(
du
∆ ±

(
∆−1/4
? + 3

4ε
)){

1130

⊆ Jwu · (1± δ?)K .11311132

Note that Lemma 4.8 is applied properly because ∆−1/4
? + 3

4ε ≤ (200 lnn)−1 +1133
(200 lnn)−1 ≤ (48 lnn)−1.1134

• If du ≥ 3
4∆, by Event 1, µH

(
d̂u/∆?

)
∈
[
1− 1

2n
−6, 1

]
. Concurrently, wu ∈1135

[µH(3/4), 1] =
[
1− 1

2n
−12, 1

]
. Because ∆? is relatively small, i.e., ∆? ≤ n,1136

µH

(
d̂u/∆?

)
∈

r
wu

(
1±∆−1/4

?

)z
⊆ Jwu · (1± δ?)K ,1137

which is the same bound as in the previous case.1138
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It follows from the bound that we just obtained and the definitions of Wv and hv,i1139
that1140

hv,i =
∑

u∈N(v)∩Vi

µH

(
d̂u/∆?

)
∈

u

v(1± δ?) ·
∑

u∈N(v)∩Vi

wu

}

~1141

= JWv (Vi) · (1± δ?)K .(4.3)11421143

We now combine bounds (4.2) and (4.3):1144

hv,i1145

∈
[
ψv (1− δ?)−

(
∆3/4
? + 3

4ε∆?

)
(1 + δ?) , ψv (1 + δ?) +

(
∆3/4
? + 3

4ε∆?

)
(1 + δ?)

]
1146

⊆
s
ψv ±

(
ψvδ? +

(
∆3/4
? + 3

4ε∆?

)
(1 + δ?)

){
.1147

1148

Due to the lower bound on ∆?, we obtain δ? ≤ α
(
(200 lnn)−1 + (200 lnn)−1) ≤ 1.1149

This enables us to simplify and further transform the bound on hv,i:1150

hv,i ∈
s
ψv ±

(
ψvδ? + 2

(
∆3/4
? + 3

4ε∆?

)){
1151

⊆
s
ψv ±

(
3
4α∆3/4

? + 9
16αε∆? + 2∆3/4

? + 3
2ε∆?

){
1152

⊆
s
ψv ± α

(
4
5∆3/4

? + ε∆?

){
.1153

1154

By applying the bound on ∆? again, we obtain a bound on the magnitude of the1155
second term in the above bound:1156

α

(
4
5∆3/4

? + ε∆?

)
= α

(
4
5∆−1/4

? + ε

)
∆?1157

≤ 96 lnn
(

1
200 lnn + 1

200 lnn

)
∆?1158

≤ ∆?.1159

This implies that hv,i ≤ ψv + ∆? ≤ 2∆?. The condition in Event 5 holds, and1160

therefore, ||N(v) ∩Hi| − hv,i| ≤ ∆3/4
? . We combine this with the bound on hv,i to1161

obtain1162

|N(v) ∩Hi| ∈
s
ψv ±

(
α

4
5∆3/4

? + αε∆? + ∆3/4
?

){
⊆

r
ψv ± α

(
∆3/4
? + ε∆?

)z
.

1163

Wrapping up the proof of near uniformity. We now finally prove Lemma 4.4.1164
Recall that it states that an ε-near uniform D is very likely to result in a near uniform1165
D[C] with a slightly worse parameter and that all vertices not fixed by C have bounded1166
degree. The proof combines the last two claims: Claim 4.10 and Claim 4.11. We1167
learn that C, the m-configuration constructed in the process is very likely to have the1168
properties listed in Claim 4.11. One of those properties is exactly the property that1169
all vertices not fixed by C have bounded degree. Hence we have to prove only the near1170
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uniformity property. We accomplish this by observing that the probability of C equal1171
to a specific m-configuration C? with good properties—those in Claim 4.11—does not1172
depend significantly on to which induced subgraph a given vertex v not fixed in C? is1173
assigned. This can be used to show that the conditional distribution of v given that1174
C = C? is near uniform as desired.1175

Proof of Lemma 4.4. By combining Claim 4.10 and Claim 4.11, we learn that1176
with probability at least 1− n−4, all properties listed in the statement of Claim 4.111177
hold for C, the configuration constructed by EmulatePhase. Since one of the properties1178
is exactly the same as in the statement of Lemma 4.4, it suffices to prove the other1179

one: that D[C] is 60α
(

∆−1/4
? + ε

)
-near uniform for C with this set of properties.1180

Fix C̃ =
(
{R̃i}i∈[m], {H̃i}i∈[m], {F̃i}i∈[m]

)
to be an m-configuration that has non-1181

zero probability when EmulatePhase is run for D and has the properties specified1182
by Claim 4.11. Consider an arbitrary vertex v ∈ V?. In order to prove the near1183

uniformity of D
[
C̃
]
, we show that v is assigned by it almost uniformly to [m]. Let1184

E be the event that EmulatePhase constructs C̃, i.e., C = C̃. For each i ∈ [m], let1185
E→i be the event that v is assigned to the i-th induced subgraph. Let p : [m]→ [0, 1]1186
be the probability mass function describing the probability of the assignment of v to1187
each of the m subgraphs in D. Obviously, p(i) = Pr[E→i] for all i ∈ [m]. Due to the1188
ε-near uniformity of D, p(i) =

q 1
m (1± ε)

y
.1189

For each i ∈ [m], let qi
def= Pr[E|E→i]. In order to express all qi’s in a suitable form,1190

we conduct a thought experiment. Suppose v were not present in the graph, but the1191
distribution of all the other vertices in the modified D remained the same. Let q? be1192
the probability of E , i.e., C = C̃, in this modified scenario. How does the probability1193
of E change if we add v back and condition on its assignment to a machine i? Note1194
first that conditioning on E→i does not impact the distribution of the other vertices,1195
because vertices are assigned to machines independently in D. In order for E still to1196
occur in this scenario, v cannot be assigned to any of R̃i, H̃i, or F̃i, for which it is1197
considered. Additionally, as long as this the case, v does not impact the behavior1198
of other vertices, which only depends on the content of these sets and independent1199
randomized decisions to include vertices. As a result we can express qi as a product1200
of q? and three probabilities: of v not being included in sets R̃i, H̃i, or F̃i.1201
(4.4)

qi = q? · (1− µR) ·

1− µH


∣∣∣N(v) ∩ R̃i

∣∣∣ /µR
∆?

 ·
1− µF


∣∣∣N(v) ∩ H̃i

∣∣∣
∆?

 .1202

Using the properties listed in Claim 4.11, we have1203 ∣∣∣N(v) ∩ R̃i
∣∣∣ /µR ∈ s

χv ±
(

∆3/4
? + 3

4ε∆?

){
,1204

and1205 ∣∣∣N(v) ∩ H̃i

∣∣∣ ∈ r
ψv ± α

(
∆3/4
? + ε∆?

)z
,1206

where χv and ψv are constants independent of machine i to which v has been assigned1207
and ψ ≤ 3

4∆?. In the next step, we use these bounds to derive bounds on the1208
multiplicative terms in Equation (4.4) that may depend on i. We also repeatedly use1209
the bounds ∆? = ∆

m ≥ 4000µ−2
R ln2 n = 4 · 1015 · ln4 n and ε ≤ (200 lnn)−1 from the1210
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lemma statement. First, due to Lemma 4.8,1211

1− µH


∣∣∣N(v) ∩ R̃i

∣∣∣ /µR
∆?

 ∈ s
1− µH

(
χv
∆?
±
(

∆−1/4
? + 3

4ε
)){

1212

⊆
s(

1− µH
(
χv
∆?

))
·
(

1± α
(

∆−1/4
? + 3

4ε
)){

.1213
1214

(Note that the application of Lemma 4.8 was correct, because we have that ∆−1/4
? +1215

3
4ε ≤ (200 lnn)−1 + (200 lnn)−1 < (96 lnn)−1.) Second,1216

1− µF


∣∣∣N(v) ∩ H̃i

∣∣∣
∆?

 ∈ s
1− µF

(
ψv
∆?
± α

(
∆−1/4
? + ε

)){
.1217

1218

Since ψv/∆? ≤ 3
4 and α

(
∆−1/4
? + ε

)
≤ (96 lnn) ·

(
(200 lnn)−1 + (200 lnn)−1) < 1,1219

the argument to µF in the above bound is always less than 4, and therefore, only one1220
branch of µF ’s definitions gets applied. Hence, we can eliminate µF :1221

1− µF


∣∣∣N(v) ∩ H̃i

∣∣∣
∆?

 ∈ s
1− ψv

4∆?
± α

4

(
∆−1/4
? + ε

){
.1222

1223

Since 1− ψv
4∆?
≥ 3

4 , we can further transform the bound to1224

1− µF


∣∣∣N(v) ∩ H̃i

∣∣∣
∆?

 ∈ s(
1− ψv

4∆?

)(
1± α

3

(
∆−1/4
? + ε

)){
.1225

1226

Let δ1
def= α

(
∆−1/4
? + 3

4ε
)

and δ2
def= α

3

(
∆−1/4
? + ε

)
. As a result, every qi can be1227

expressed as qi = ηvλiλ
′
i, where ηv is a constant independent of i, λi ∈ J1± δ1K, and1228

λ′i ∈ J1± δ2K. For every i, we can also write1229

Pr[E ∧ E→i] = Pr[E|E→i] · Pr[E→i] = ηvλiλ
′
i · p(i) = ηv

m
λiλ
′
iλ
′′
i ,1230

where λ′′i ∈ J1± εK. We now express the conditional probability of v being assigned1231
to the i-th subgraph in D given E :1232

Pr[E→i|E ] = Pr[E ∧ E→i]∑m
j=1 Pr[E ∧ E→j ]

= λiλ
′
iλ
′′
i∑m

j=1 λjλ
′
jλ
′′
j

.1233

Note that for any i, this implies that1234

(4.5) 1
m
· (1− δ1)(1− δ2)(1− ε)

(1 + δ1)(1 + δ2)(1 + ε) ≤ Pr[E→i|E ] ≤ 1
m
· (1 + δ1)(1 + δ2)(1 + ε)

(1− δ1)(1− δ2)(1− ε) .1235

Observe that1236

δ1 ≤ (96 lnn) ·
(
(7000 lnn)−1 + (250 lnn)−1) < 1/2,1237
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and1238

δ2 ≤
1
3 · (96 lnn) ·

(
(7000 lnn)−1 + (200 lnn)−1) < 1/2.1239

Hence all of δ1, δ2, and ε are at most 1/2. We can therefore transform (4.5) to1240

1
m
· (1− δ1)2(1− δ2)2(1− ε)21241

≤ Pr[E→i|E ]1242

≤ 1
m
· (1 + δ1)(1 + δ2)(1 + ε)(1 + 2δ1)(1 + 2δ2)(1 + 2ε),1243

and then1244

1
m
· (1− 2δ1 − 2δ2 − 2ε) ≤ Pr[E→i|E ] ≤ 1

m
· (1 + 45δ1 + 45δ2 + 45ε).1245

Hence1246

Pr[E→i|E ] ∈
s

1
m
· (1± 45(δ1 + δ2 + ε))

{
⊆

s
1
m
·
(

1± 60α
(

∆−1/4
? + ε

)){
,1247

which finishes the proof that D
[
C̃
]
is 60α

(
∆−1/4
? + ε

)
-near uniform.1248

5. Parallel Algorithm. In this section, we introduce our main parallel algo-1249
rithm. It builds on the ideas introduced in EmulatePhase. EmulatePhase randomly1250
partitions the graph into m induced subgraphs and runs on each of them LocalPhase,1251
which resembles a phase of GlobalAlg. As we have seen, the algorithm performs well1252
even if vertices are assigned to subgraphs not exactly uniformly so long as the as-1253
signment is fully independent. Additionally, with high probability, if we condition1254
on the configuration of sets Ri, Hi, and Fi that were removed, the distribution of1255
assignments of the remaining vertices is still nearly uniform and also independent.1256

These properties allow for the main idea behind the final parallel algorithm. We1257
partition vertices randomly into m induced subgraphs and then run LocalPhase mul-1258
tiple times on each of them with no repartitioning in the meantime. In each iteration,1259
for a given subgraph, we halve the local threshold ∆?. This corresponds to multiple1260
phases of the original global algorithm. As long as we can show that this approach1261
leads to finding a large matching, the obvious gain is that multiple phases of the1262
original algorithm translate to O(1) parallel rounds. This approach enables our main1263
result: the parallel round complexity reduction from O(logn) to O((log logn)2).1264

We present ParallelAlg, our parallel algorithm, as Algorithm 5.1. We write1265
S to denote a parameter specifying the amount of space per machine. After the1266
initialization of variables, the algorithm enters the main loop in Lines 2–10. The loop1267
is executed as long as ∆, an approximate upper bound on the maximum degree in the1268
remaining graph, is large enough. The loop implements the idea of running multiple1269
iterations of LocalPhase on each induced subgraph in a random partition. At the1270
beginning of the loop, the algorithm decides on m, the number of machines, and τ ,1271
the number of phases to be emulated. Then it creates a random partition of the1272
current set of vertices that results in m induced subgraphs. Next for each subgraph,1273
the algorithm first runs a security check that the set of edges fits onto a single machine1274
(see Line 7). If it does not, which is highly unlikely, the entire subgraph is removed1275
from the graph. Otherwise, the entire subgraph is sent to a single machine that1276
runs τ consecutive iterations of LocalPhase. Then the vertices not removed in the1277
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Algorithm 5.1 ParallelAlg(G,S)
The final parallel matching algorithm

Input:
• graph G = (V,E) on n vertices
• parameter S ∈ Z+ such that S ≤ n and S = nΩ(1) (each machine uses O(S) space)

Output: matching in G

1 ∆← n, V ′ ← V , M ← ∅
2 while ∆ ≥ n

S
(200 lnn)32 do

/* High-probability invariant: maximum degree in G[V ′] bounded by 3
2 ∆ */

3 m←
⌊√

n∆
S

⌋
/* number of machines used */

4 τ ←
⌈

1
16 log120α (∆/m)

⌉
/* number of phases to emulate */

5 Partition V ′ into m sets V1, . . . , Vm by assigning each vertex independently uniformly
at random.

6 foreach i ∈ [m] do in parallel
7 If the number of edges in G[Vi] is greater than 8S, Vi ← ∅.

for j ∈ [τ ] do (Vi,Mi,j)← LocalPhase
(
i, G[Vi],∆/

(
2j−1m

))
8 V ′ ←

⋃m

i=1 Vi
9 M ←M ∪

⋃m

i=1

⋃τ

j=1 Mi,j

10 ∆← ∆/2τ

11 Compute degrees of vertices V ′ in G[V ′] and remove from V ′ vertices of degree at least 2∆.
12 Directly simulate M ′ ← GlobalAlg(G[V ′], 2∆), using O(1) rounds per phase.
13 return M ∪M ′

executions of LocalPhase are collected for further computation and new matching1278
edges are added to the matching being constructed. During the execution of the loop,1279
the maximum degree in the graph induced by V ′, the set of vertices to be considered1280
is bounded by 3

2∆ with high probability. Once the loop finishes, we remove from1281
the graph vertices of degree higher than 2∆—there should be none—and we directly1282
simulate GlobalAlg on the remaining graph, using O(1) rounds per phase.1283

5.1. Some Properties of Thresholds. Before we analyze the behavior of the1284
algorithm, we observe that the value of ∆

m inside the main loop is at least polyloga-1285
rithmic and that the same property holds for the rescaled threshold that is passed to1286
LocalPhase.1287

Lemma 5.1. Consider a single iteration of the main loop of ParallelAlg (i.e.,1288
Lines 2–10). Let ∆ and m be set as in this iteration. The following two properties1289
hold:1290

• ∆/m ≥ (200 logn)16.1291
• The threshold ∆/

(
2j−1m

)
passed to LocalPhase in Line 7 is always at least1292

(∆/m)15/16 ≥ 4000µ−2
R ln2 n.1293

Proof. Let τ be also as in this iteration of the loop. The smallest threshold1294
passed to LocalPhase is ∆/(2τ−1m). Let λ def= S∆/n, where S is the parameter to1295
ParallelAlg. Due to the condition in Line 2, λ ≥ (200 lnn)32. Note that ∆ = λn/S.1296
Hence m ≤

√
n∆/S = n

S

√
λ. This implies that ∆/m ≥

√
λ ≥ (200 lnn)16, which1297

proves the first claim. Due to the definition of τ ,1298

2τ−1 ≤ (120α)τ−1 ≤ (∆/m)1/16.1299
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This implies that1300

∆/(2τ−1m) ≥ (∆/m)15/16 ≥ (200 lnn)15 > 4 · 1015 · ln4 n = 4000µ−2
R ln2 n.1301

We also observe that the probability of any set of vertices deleted by the security1302
check in Line 7 of ParallelAlg is low as long as the maximum degree in the graph1303
induced by the remaining vertices is bounded.1304

Lemma 5.2. Consider a single iteration of the main loop of ParallelAlg and let1305
∆ and V ′ be as in that iteration. If the maximum degree in G[V ′] is bounded by 3

2∆,1306
then the probability of any subset of vertices deleted in Line 7 is n−8.1307

Proof. Let m be as in the same iteration of the main loop of ParallelAlg. Con-1308
sider a single vertex v ∈ V ′. The expected number of v’s neighbors assigned to the1309
same subgraph is at most 3

2∆/m. Recall that due to Lemma 5.1, ∆
m ≥ 200 lnn. Since1310

the assignment of vertices to machines is fully independent, by Lemma 4.1 (i.e., the1311
Chernoff bound), the probability that v has more than 2∆/m neighbors is bounded1312
by1313

2 exp
(
−1

3 ·
(

1
3

)2
· 3

2 ·
∆
m

)
≤ 2 exp

(
− 1

18 · 200 lnn
)
≤ n−10.1314

Therefore, by the union bound, with probability 1 − n−9, no vertex has more than1315
2∆ neighbors in the same induced subgraph. As |V ′| ≤ n, the expected number of1316
vertices in each set Vi constructed in the iteration of the main loop is at most n/m ≥1317
∆/m ≥ 200 lnn. What is the probability that |Vi| > 2n/m? By the independence of1318
vertex assignments and Lemma 4.1, the probability of such event is at most1319

2 exp
(
−1

3 ·
n

m

)
≤ 2 exp

(
−1

3 · 200 lnn
)
≤ n−10.1320

Again by the union bound, the event |Vi| ≤ 2n/m, for all i simultaneously, occurs1321
with probability at least 1− n−9. Combining both bounds, with probability at least1322
1−2n−9 ≥ 1−n−8, all induced subgraphs have at most 2n/m vertices and the degree1323
of every vertex is bounded by 2∆/m. Hence the number of edges in one induced1324
subgraph is at most 1

2 ·
2n
m ·

2∆
m = 2n∆

m2 . By the definition of m and the setting of1325

parameters in the algorithm, m ≥ 1
2

√
n∆
S , where S is the parameter to ParallelAlg.1326

This implies that the number of edges is at most 2n∆/
(

1
2

√
n∆
S

)2
= 8S in every1327

induced subgraph with probability 1 − n−8, in which case no set Vi is deleted in1328
Line 7 of ParallelAlg.1329

5.2. Matching Size Analysis. The parallel algorithm runs multiple iterations1330
of LocalPhase on each induced subgraph, without repartitioning. A single iteration on1331
all subgraphs corresponds to running EmulatePhase once. We now show that in most1332
cases, the global algorithm simulates EmulatePhase on a well behaved distribution1333
with independently assigned vertices and all vertices distributed nearly uniformly1334
conditioned on the configurations of the previously removed sets Ri, Hi, and Fi.1335
We also show that the maximum degree in the remaining graph is likely to decrease1336
gracefully during the process.1337

Lemma 5.3. With probability at least 1− n−3:1338

This manuscript is for review purposes only.



ROUND COMPRESSION FOR PARALLEL MATCHING ALGORITHMS 37

• all parallel iterations of LocalPhase in ParallelAlg on each induced sub-1339
graph correspond to running EmulatePhase on independent and (200 lnn)−1-1340
near uniform distributions of assignments,1341

• the maximum degree of the graph induced by the remaining vertices after the1342
k-th simulation of EmulatePhase is 3

2∆/2k.1343

Proof. We first consider a single iteration of the main loop in ParallelAlg. Let1344
∆, τ , and m be set as in this iteration of the loop. For j ∈ [τ ], let ∆j

def= ∆/
(
2j−1m

)
1345

be the threshold passed to LocalPhase for the j-th iteration of LocalPhase on each1346
of the induced subgraphs. The parallel algorithm assigns vertices to subgraphs and1347
then iteratively runs LocalPhase on each of them. In this analysis we ignore the1348
exact assignment of vertices to subgraphs until they get removed as a member of one1349
of sets Ri, Hi, or Fi. Instead we look at the conditional distribution on assignments1350
given the configurations of sets Ri, Hi, and Fi removed in the previous iterations1351
corresponding to EmulatePhase. We write Dj , 1 ≤ j ≤ τ , to denote this distribution1352
of assignments before the execution of j-th iteration of LocalPhase on the induced1353
subgraphs, which corresponds to the j-th iteration of EmulatePhase for this iteration1354
of the main loop of ParallelAlg. Additionally, we write Dτ+1 to denote the same dis-1355
tribution after the τ -th iteration, i.e., at the end of the execution of the parallel block1356
in Lines 6–7 of ParallelAlg. Due to Lemma 4.3, the distributions of assignments are1357
all independent. We define εj , j ∈ [τ +1], to be the minimum positive value such that1358
Dj is εj-near uniform. Obviously, ε1 = 0, since the first distribution corresponds to a1359
perfectly uniform assignment. We want to apply Lemma 4.4 inductively to bound the1360
value of εj+1 as a function of εj with high probability. The lemma lists two conditions:1361
εj must be at most (200 lnn)−1 and the threshold passed to EmulatePhase has to be1362
at least 4000µ−2

H ln2 n. The latter condition holds due to Lemma 5.1. Hence as long1363
as εj is sufficiently small, Lemma 4.4 implies that with probability at least 1− n−4,1364

εj+1 ≤ 60α
((

∆
2τ−1m

)−1/4
+ εj

)
≤ 60α

((
∆
m

)−15/64
+ εj

)
,1365

and no high degree vertex survives in the remaining graph. One can easily show by1366
induction that if this recursion is satisfied for all 1 ≤ j ≤ τ , then εj ≤ (120α)j−1 ·1367 (∆
m

)−15/64 for all j ∈ [τ + 1]. In particular, by the definition of τ and Lemma 5.1, for1368
any j ∈ [τ ],1369

εj ≤ (120α)τ−1 ·
(

∆
m

)−15/64
≤
(

∆
m

)1/16
·
(

∆
m

)−15/64
≤
(

∆
m

)−11/64
≤ (200 lnn)−1,1370

This implies that as long the unlikely events specified in Lemma 4.4 do not occur for1371
any phase in any iteration of the main loop of ParallelAlg, we obtain the desired1372
properties: all intermediate distributions of possible assignments are (200 lnn)−1-1373
near uniform and the maximum degree in the graph decreases at the expected rate.1374
It remains to bound the probability of those unlikely events occurring for any phase.1375
By the union bound, their total probability is at most logn · n−4 ≤ n−3.1376

We now prove that the algorithm finds a large matching with constant probability.1377

Theorem 5.4. LetMOPT be an arbitrary maximum matching in a graph G. With1378
Ω(1) probability, ParallelAlg constructs a matching of size Ω(|MOPT|).1379

Proof. By combining Lemma 5.2 and Lemma 5.3, we learn that with probability1380
at least 1 − n · n−8 − n−3 ≥ 1 − 2n−3, we obtain a few useful properties. First, all1381
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relevant distributions corresponding to iterations of EmulatePhase are independent1382
and (200 lnn)−1-near uniform. Second, the maximum degree in the graph induced by1383
vertices still under consideration is bounded by 3

2∆ before and after every simulated1384
execution of EmulatePhase, where ∆ is the corresponding. As a result, no vertex is1385
deleted in Lines 7 or 11 due to the security checks.1386

We now use Lemma 4.2 to lower bound the expected size of the matching created1387
in every EmulatePhase simulation. Let τ? be the number of phases we simulate this1388
way. We have τ? ≤ logn. Let Hj , Fj , and Mj be random variables equal to the total1389
size of sets Hi, Fi, andMi created in the j-th phase. If the corresponding distribution1390
in the j-th phase is near uniform and the maximum is bounded, Lemma 4.2 yields1391

E [Hj + Fj ] ≤ n−9 + 1200 · E [Mj ] ,1392

i.e.,1393

E [Mj ] ≥
1

1200
(
E [Hj + Fj ]− n−9) .1394

Overall, without the assumption that the conditions of Lemma 4.2 are always met,1395
we obtain a lower bound1396 ∑

j∈[τ?]

E [Mj ] ≥
∑
j∈[τ?]

1
1200

(
E [Hj + Fj ]− n−9)− 2n−3 · n2 ,1397

in which we consider the worst case scenario that we lose as much as n/2 edges1398
in the size of the constructed matching when the unlikely negative events happen.1399
ParallelAlg continues the construction of a matching by directly simulating the1400
global algorithm. Let τ ′? be the number of phases in that part of the algorithm. We1401
define H′j , F′j , and M′

j , for j ∈ [τ ′?], to be random variables equal to the size of sets1402

H, F , and M̃ in GlobalAlg in the j-th phase of the simulation. By Lemma 3.3, we1403
have1404 ∑

j∈[τ ′?]

E
[
M′

j

]
≥
∑
j∈[τ ′?]

1
50
(
E
[
H′j + F′j

])
.1405

By combining both bounds we obtain a lower bound on the size of the constructed1406
matching. Let1407

M?
def=
∑
j∈[τ?]

E [Mj ] +
∑
j∈[τ ′?]

E
[
M′

j

]
1408

be the expected matching size, and let1409

V?
def=
∑
j∈[τ?]

E [Hj + Fj ] +
∑
j∈[τ ′?]

E
[
H′j + F′j

]
.1410

We have1411

M? ≥
1

1200V? −
1
n2 .1412

Consider a maximum matching MOPT. At the end of the algorithm, the graph is1413
empty. The expected number of edges in MOPT incident to a vertex in one of the1414
reference sets is bounded by |MOPT|·2µR ·logn ≤ 10−5|MOPT|. The expected number1415
of edges removed by the security checks is bounded by n

2 · n
−3. Hence the expected1416

number of edges in MOPT deleted as incident to vertices that are heavy or are friends1417
is at least (1 − 10−5)|MOPT| − 1/(2n2). Since we can assume without the loss of1418
generality that the graph is non-empty, it is at least 1

2 |MOPT|. Hence V? ≥ 1
2 |MOPT|,1419
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and M? ≥ 1
2400 |MOPT| − 1

n2 . For sufficiently large n (say, n ≥ 50), M? ≥ Ω (|MOPT|)1420
and by an averaging argument, ParallelAlg has to output an O(1)-multiplicative1421
approximation to the maximum matching with Ω(1) probability. For smaller n, it is1422
not difficult to show that at least one edge is output by the algorithm with constant1423
probability as long as it is not empty.1424

Finally, we want to argue that the above procedure can be used to compute 2 + ε1425
approximation to maximum matching at the cost of increasing the running time by a1426
factor of log(1/ε). The idea is to; execute algorithm ParallelAlg to compute constant1427
approximate matching; remove this matching from the graph; and repeat.1428

Corollary 5.5. Let MOPT be an arbitrary maximum matching in a graph G.1429
For any ε > 0, executing ParallelAlg on G and removing a constructed matching1430
repetitively, O(log(1/ε)) times, finds a multiplicative (2 + ε)-approximation to maxi-1431
mum matching, with Ω(1) probability.1432

Proof. Assume that the ParallelAlg succeeds with probability p and computes1433
c-approximate matching. Observe that each successful execution of ParallelAlg finds1434
a matchingMc of size at least 1

c |MOPT|. Removal ofMc from the graph decreases the1435
size of optimal matching by at least 1

c |MOPT| and at most by 2
c |MOPT|, because each1436

edge ofMc can be incident to at most two edges ofMOPT. Hence, when the size of the1437
remaining matching drops to at most ε|MOPT|, we have an 2+ε-multiplicative approx-1438
imation to maximum matching constructed. The number t of successful applications1439
of ParallelAlg need to satisfy.1440 (

1− 1
c

)t
≤ ε.1441

This gives t = O(log(1/ε)). In dt/pe = O(log(1/ε)) executions, we have t successes1442
with probability at least 1/2 by the properties of the median of the binomial distri-1443
bution.1444

6. MPC Implementation Details. In this section we present details of an1445
MPC implementation of our algorithm. We also analyze its round and space com-1446
plexity. In the description we heavily use some of the subroutines described in [25].1447
While the model used there is different, the properties of the distributed model used1448
in [25] also hold in the MPC model. Thus, the results carry over to the MPC model.1449

The results of [25] allow us to sort a set A of O(N) key-value pairs of size O(1)1450
and for every element of a sorted list, compute its index. Moreover, we can also do a1451
parallel search: given a collection A of O(N) key-value pairs and a collection of O(N)1452
queries, each containing a key of an element of A, we can annotate each query with1453
the corresponding key-value pair from A. Note that multiple queries may ask for the1454
same key, which is nontrivial to parallelize. If S = nΩ(1), all the above operations can1455
be implemented in O(1) rounds.1456

The search operation allows us to broadcast information from vertices to their1457
incident edges. Namely, we can build a collection of key-value pairs, where each key1458
is a vertex and the value is the corresponding information. Then, each edge {u, v}1459
may issue two queries to obtain the information associated with u and v.1460

6.1. GlobalAlg. We first show how to implement GlobalAlg, which is called in1461
Line 12 of ParallelAlg.1462

Lemma 6.1. Let S = nΩ(1). There exists an implementation of GlobalAlg in the1463
MPC model, which with high probability executes O(ln ∆̃) rounds and uses O(S) space1464
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per machine.1465

Proof. We first describe how to solve the following subproblem. Given a set X of1466
marked vertices, for each vertex v compute |N(v)∩X|. When all vertices are marked,1467
this just computes the degree of every vertex.1468

The subproblem can be solved as follows. Create a set AX = {(u, v) | u ∈ V, v ∈1469
X, {u, v} ∈ E} ∪ {(v,−∞), (v,∞) | v ∈ V }, and sort its elements lexicographically.1470
Denote the sorted sequence by QX . Then, for each element of AX compute its index1471
in QA.1472

Note that |N(v)∩X| is equal to the number of elements in QX between (v,−∞)1473
and (v,∞). Thus, having computed the indices of these two elements, we can compute1474
|N(v) ∩X|.1475

Let us now describe how to implement GlobalAlg. We can compute the degrees1476
of all vertices, as described above. Once we know the degrees, we can trivially mark1477
the vertices in H. The next step is to compute F and for that we need to obtain1478
|N(v) ∩H|, which can be done as described above.1479

After that, GlobalAlg computes a matching in G[H ∪ F ] by calling MatchHeavy1480
(see Algorithm 7). In the first step, MatchHeavy assigns to every v ∈ F a random1481
neighbor v? in H. This can again be easily done by using the sequence QH (i.e., QX1482
build for X = H). Note that for each v ∈ F we know the number of neighbors of1483
v that belong to H. Thus, each vertex v can pick an integer rv ∈ [1, |N(v) ∩ H|]1484
uniformly at random. Then, by adding rv and the index of (v,−∞) in QH , we obtain1485
the index in QH , which corresponds to an edge between v and its random neighbor1486
in H. The remaining lines of MatchHeavy are straightforward to implement. The1487
vertices can trivially pick their colors. After that, the set E? can be easily computed1488
by transmitting data from vertices to their adjacent edges. Implementing the following1489
steps of MatchHeavy is straightforward. Finally, picking the edges to be matched is1490
analogous to the step, when for each v ∈ F we picked a random neighbor in H.1491

Overall, each phase of GlobalAlg (that is, iteration of the main loop) is executed1492
in O(1) rounds. Thus, by Lemma 3.3, GlobalAlg can be simulated in O(ln ∆̃) rounds1493
as advertised.1494

6.2. Vertex and edge partitioning. We now show how to implement Line 51495
and compute the set of edges that are used in each call to LocalPhase in Line 71496
of ParallelAlg. Our goal is to annotate each edge with the machine number it is1497
supposed to go to. To that end, once the vertices pick their machine numbers, we1498
broadcast them to their adjacent edges. Every edge that receives two equal numbers1499
x is assigned to machine x.1500
In the implementation we do not check whether a machine is assigned too many edges1501
(Line 7), but rather show in Lemma 5.2 that not too many edges are assigned with1502
high probability.1503

6.3. LocalPhase. We now discuss the implementation of LocalPhase. Observe1504
that LocalPhase is executed locally. Therefore, the for loop at Line 7 of ParallelAlg1505
can also be executed locally on each machine. Thus, we only explain how to process1506
the output of LocalPhase.1507

Instead of returning the set of vertices and matched edges at Line 6 of the al-1508
gorithm LocalPhase, each vertex that should be returned is marked as discarded,1509
and each matched edge is marked as matched. After that, we need to discard edges,1510
whose at least one endpoint has been discarded. This can be done by broadcasting1511
information from vertices to adjacent edges. Note that some of the discarded edges1512
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might be also marked as matched.1513

6.4. Total space. Our algorithm keeps the edge- and the vertex-set of the input1514
graph, and maintains certain flags for each vertex and each edge, e.g., which vertices1515
are discarded and which edges are matched. Also, when an edge e is assigned to a1516
machine x (as described in Section 6.2), the algorithm creates a copy of e and sends1517
the copy to x. After that round, the copy of e is destroyed. Hence, the algorithm1518
maintains O(|E|+ n) many elements throughout the execution.1519

Moreover, for S ∈ nΩ(1), the results of [25] that we use as subroutines require the1520
overhead in total space of only O(1). Therefore, our algorithm requires a total space1521
of O(|E|+ n).1522

6.5. Putting all together. Lines 5, 7 and 7 can be implemented as described1523
in sections 6.2 and 6.3. Lines 8 and 9 do not need an actual implementation, as by1524
that point all the vertices that are not marked as discarded constitute V ′, and all the1525
edges incident to V \V ′ will be marked as discarded. Similarly, all the matched edges1526
will be marked as matched by the implementation of LocalPhase. All the edges and1527
vertices that are marked as discarded will be ignored in further processing. After all1528
the rounds are over, the matching consists of the edges marked as matched.1529

Let ∆? be the value of ∆ at Line 11, and hence the value of ∆ at the end of the1530
last while loop iteration. Let ∆′ be the value of ∆ just before the last iteration, i.e.,1531
∆? = ∆′/2τ , for the corresponding τ . Now consider the last call of LocalPhase at1532
Line 7. The last invocation has ∆′/(2τ−1) as a parameter. On the other hand, by1533
Claim 4.10 and Claim 4.11 we know that after the last invocation of LocalPhase with1534
high probability there is no vertex that has degree greater then 3

4∆′/(2τ−1) < 2∆?.1535
Therefore, with high probability there is no vertex that should be removed at Line 11,1536
and hence we do not implement that line either.1537

An implementation of Line 12 is described in Section 6.1. As explained in Sec-1538
tion 6.4, our algorithm requires a total space of O(|E|+ n). Finally, we can state the1539
following result.1540

Lemma 6.2. There exists an implementation of ParallelAlg in the MPC model1541
that with high probability executes O

(
(log logn)2 + max

(
log n

S , 0
))

rounds.1542

Proof. In the proof we analyze the case S ≤ n. Otherwise, for the case S > n, we1543
think of each machine being split into bS/nc "smaller" machines, each of the smaller1544
machines having space n.1545

We will analyze the number of iterations of the while loop ParallelAlg performs.1546
Let ∆i and τi be the value of ∆ and τ at the end of iteration i, respectively. Then,1547
from Line 3 and Line 4 we have1548

τi =
⌈

1
16 log120α (∆i−1/m)

⌉
≥ 1

16 log120α (∆i−1/m) ≥ 1
16 log120α

√
S∆i−1

n
.1549

Define γ := 1
32 log2 120α . By plugging in the above bound on τi, from Line 10, we derive1550

(6.1)

∆i = ∆i−1 · 2τi ≤ ∆i−1 · 2−
1
16 log120α

√
S∆i−1
n = ∆i−1 · 2−

log2
S∆i−1
n

32 log2 120α = ∆1−γ
i−1

(n
S

)γ
.1551

To obtain the number of iterations the while loop of ParallelAlg performs, we1552
derive for which i ≥ 1 the condition at Line 2 does not hold.1553
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Unraveling ∆i−1 further from (6.1) gives1554
(6.2)

∆i ≤ ∆(1−γ)i
0

(n
S

)γ∑i−1
j=0

(1−γ)j
≤ n(1−γ)i

(n
S

)γ 1−(1−γ)i
1−(1−γ) = n(1−γ)i

(n
S

)1−(1−γ)i
.1555

Observe that (c log logn)−1 ≤ γ ≤ (32 log logn)−1 < 1/2, for an absolute constant c1556
and n ≥ 4.1557

For S ≤ n and as γ < 1/2 we have1558

(6.3)
(n
S

)1−(1−γ)i
≤ n

S
.1559

On the other hand, for i? = log logn
γ ≤ c(log logn)2 we have1560

(6.4) n(1−γ)i? < logn.1561

Now putting together (6.2), (6.3), and (6.4) we conclude that1562

∆i? <
n

S
lnn.1563

Hence, the while loop of ParallelAlg performs O
(
(log logn)2) iterations.1564

Total round complexity. Every iteration of the while loop can be executed in1565
O(1) MPC rounds with probability at least 1− 1/n3. Since there are O

(
(log logn)2)1566

iterations, all the iterations of the loop can be performed in O
(
(log logn)2) many1567

rounds with probability at least 1− 1/n2.1568
On the other hand, by Lemma 6.1 and the condition at Line 2 of ParallelAlg,1569

the computation of Line 12 of ParallelAlg can be performed in O
(
log
(
n
S (lnn)32))1570

rounds. Putting the both bounds together we conclude that the round complexity of1571
ParallelAlg is O

(
(log logn)2 + log n

S

)
for the case S ≤ n. For the case S > n (recall1572

that in this regime we assume that each machine is divided into machines of space n)1573
the round complexity is O

(
(log logn)2).1574
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