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A set of positive Gaussian measure with uniformly

zero density everywhere.

David Preiss Elena Riss Jaroslav Tišer

Abstract

Existing negative results on invalidity of analogues of classical Density and Dif-

ferentiation Theorems in infinite dimensional spaces are considerably strengthened

by a construction of a Gaussian measure γ on a separable Hilbert space H for which

the Density Theorem fails uniformly, i.e., there is a set M ⊂ H of positive γ-measure

such that

lim
rց0

sup
x∈H

γ(B(x, r) ∩M)

γB(x, r)
= 0.

Keywords. Gaussian measures on Hilbert spaces, Density Theorem

1 Introduction

Our aim here is to show that already for Gaussian measures on separable Hilbert spaces

the classical Density Theorem may fail in a very strong, and perhaps surprising, way.

Recall that for a given locally finite Borel measure µ on a metric space X the validity of

this Theorem means that for every Borel set M ⊂ X ,

lim
rց0

µ(B(x, r) ∩M)

µB(x, r)
= 1M(x) for µ almost every x ∈ X . (1.1)

This was first proved by Lebesgue for the Lebesgue measure on the real line. Nowa-

days there is a number of different short arguments showing this result of Lebesgue, for
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example [18] and [4], but most textbook proofs have as their main step the Vitali Cover-

ing Theorem. These proofs or their simple modification can show the Density Theorem

for measures absolutely continuous with respect to the Lebesgue measure on any finite

dimensional Banach space. However, the Density Theorem is known to hold for every lo-

cally finite Borel measure on every finite dimensional Banach space, which is most usually

proved using much stronger covering result than Vitali’s, namely the Besicovitch-Morse

covering theorem. (See, for example, [7].)

When one abandons the assumption of finite dimensionality the situation becomes

quite different. Since it is not difficult to see that in every infinite dimensional Banach

spaces there are measures for which the Density Theorem fails, the main question is

whether it or similar results hold for measures that in some questions act as a suitable

infinite dimensional replacement for the Lebesgue measure. Gaussian measures are the

most natural candidate, both because of their importance in mathematics (for which see,

for example, [2, Chapter 7]) and because of their known use in geometric problems of na-

ture similar to the Density Theorem. For example, an analogue of Rademacher’s Theorem

on almost everywhere differentiability of real-valued (and even some vector-valued) Lips-

chitz functions holds (with Gateaux derivatives) in every separable Banach space for every

non-degenerated Gaussian measure. (See [10] or [1] for further results in this direction.)

Nearer to our theme, [16] shows that some Gaussian measures are so well approximated

by finite dimensional ones that it is possible to use the dimension independent estimate of

the Hardy–Littlewood maximal operator from [15] to show the following Theorem giv-

ing a class of infinite dimensional Gaussian measures on a Hilbert space for which the

Differentiation Theorem holds for all Lp functions with p > 1. The quality of the ap-

proximation of a given Gaussian measure by finite dimensional ones may be measured,

for example, by the speed of decrease of the eigenvalues of its covariance operator. (We

will actually not use the covariance operator but a representation of Gaussian measures on

Hilbert spaces in which these eigenvalues are directly related to the norm, see Section 2.)

Theorem T (Tišer 1988). Suppose the eigenvalues λk of the covariance operator of a

non-degenerated Gaussian measure γ on a separable Hilbert space H satisfy

lim
k→∞

ks
λk+1

λk
= 0

for some s > 5/2. Then for every f ∈ Lp(γ) where p > 1,

lim
rց0

1

γB(x, r)

∫

B(x,r)

f dγ = f(x) (1.2)

for γ almost every x ∈ H .

The first negative result related to our problem was a simple observation made in

[11] that the Vitali Covering Theorem need not hold for Gaussian measures on infinitely
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dimensional separable Hilbert spaces. This result was strengthened in [17] by showing

that this theorem fails for every infinite dimensional Gaussian measure on a separable

Hilbert space and in [12] by showing that even the Density Theorem may fail for Gaussian

measures on Hilbert spaces: there are a Gaussian measure γ on a separable Hilbert space

and a Borel set M with γM > 0 such that the limit in (1.1) is equal to zero γ almost

everywhere. Since the set

{

x ∈M
∣

∣

∣
lim
rց0

γ(B(x, r) ∩M)

γB(x, r)
= 0

}

is γ measurable and has strictly positive γ measure, it contains a compact set of strictly

positive γ measure, and we easily see that for this set the limit in (1.1) is equal to zero

everywhere.

The above negative results left open the possibility that at least a (very) weak version

of the Density Theorem holds for any Gaussian measure γ on a separable Hilbert spaceH ,

namely, that for any Borel set M ⊂ H with γM > 0, and any η > 0, there are arbitrarily

small balls B(x, r) such that

γ(B(x, r) ∩M)

γB(x, r)
> 1− η. (1.3)

An analogous question for the Differentiation Theorem was answered in a surprising way

in [13] by providing a rather artificial example of a Gaussian measure γ on a separable

Hilbert space H together with an integrable function f ∈ L1(γ) so that

lim
rց0

inf

{

1

γB(x, r)

∫

B(x,r)

f dγ
∣

∣

∣
x ∈ H

}

= ∞. (1.4)

In other words, the averages of an integrable function over balls may, instead of converg-

ing to the function almost everywhere as in (1.2), tend to infinity uniformly over points of

the space.

Here we refute even the above very weak version of the Density Theorem in perhaps

the strongest possible way: not only that for small balls the ratio on the left of (1.3) is not

bigger than 1− η, but, as r tends to zero, it converges to zero uniformly over points of H .

Rather naturally, based on Theorem T, one expects that this may hold for those Gaussian

measures that are badly approximated by finite dimensional ones. The following main

result of this note shows that this is indeed the case. Moreover, the Gaussian measures for

which we show that the Density Theorem (and, as we will see shortly, also the Differen-

tiation Theorem) fails in so strong way are no more artificial, they include the Gaussian

measures whose eigenvalues of the covariance operator are k−s where 1 < s < 6/5.

Theorem 1. Suppose the eigenvalues λk of the covariance operator of a non-degenerated

Gaussian measure γ on a separable Hilbert space H form a non-increasing sequence
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satisfying

lim sup
k→∞

k

(

λk
λk+1

− 1

)

<
6

5
.

Then for every ε > 0 there is a Borel set M ⊂ H such that γ(H \M) < ε and

lim
rց0

sup

{

γ(B(x, r) ∩M)

γB(x, r)

∣

∣

∣
x ∈ H

}

= 0.

This Theorem will be proved at the end of this note as a consequence of the rather tech-

nical Proposition 14 which can be used to provide a host of other examples of Gaussian

measures with the same property. (See the remark following this Proposition.) Neverthe-

less, our methods do not allow us to decide what happens when the eigenvalues are k−s

where s ≥ 6/5.

As it is customary, and often more convenient, to state the Density Theorem in an

equivalent form for the complement Q := H \M , we also point it out.

Corollary 2. Suppose γ satisfies the assumptions of Theorem 1. Then for every ε > 0

there is a Borel set Q ⊂ H such that γQ < ε and

lim
rց0

inf

{

γ(B(x, r) ∩Q)
γB(x, r)

∣

∣

∣
x ∈ H

}

= 1.

A simple consequence of our main result is that a function satisfying (1.4) can actually

belong to all Lp(γ) for 1 ≤ p < ∞. To see it, it suffices to use the following Corollary

with ϕ(x) := ex.

Corollary 3. Suppose γ satisfies the assumptions of Theorem 1 and ϕ : [0,∞) −→ [0,∞)

is non-decreasing. Then there is a function f ∈ L1(γ) such that
∫

ϕ(|f |) dγ <∞ and

lim
rց0

inf

{

1

γB(x, r)

∫

B(x,r)

f dγ
∣

∣

∣
x ∈ H

}

= ∞.

Proof. Let ψ(x) := x + ϕ(x) and choose numbers ε1 ≥ ε2 ≥ · · · > 0 such that
∑∞

k=1 εkψ(k
2) <∞. By Corollary 2 we choose sets Qn with γQn < 2−nεn satisfying

lim
rց0

inf

{

γ(B(x, r) ∩Qn)

γB(x, r)

∣

∣

∣
x ∈ H

}

= 1.

Put Ak :=
⋃∞

n=kQn and f =
∑∞

k=1 k1Ak
. Then γAk ≤ εk and f(x) ≤ k2 for x ∈

Ak \ Ak+1, hence

∫

ψ(f) dγ ≤
∞
∑

k=1

ψ(k2)γ(Ak \ Ak+1) ≤
∞
∑

k=1

εkψ(k
2) <∞,

which shows that f ∈ L1(γ) and that
∫

ϕ(|f |) dγ <∞.
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To prove the remaining statement, fix any n and choose sn small enough to satisfy

inf

{

γ(B(x, r) ∩Qn)

γB(x, r)

∣

∣

∣
x ∈ H

}

≥ 1
2
,

for all 0 < r < sn. Then, since f ≥ n1Qn
, for any x ∈ H and 0 < r < sn,

1

γB(x, r)

∫

B(x,r)

f dγ ≥ n
γ(B(x, r) ∩Qn)

γB(x, r)
≥ 1

2
n.

2 Gaussian measures, other notions and notation

We collect some of the notions and results used throughout the paper. We will use two

notations for norms in vector spaces, | · | and ‖ · ‖. Both will be induced by a scalar

product, the one giving | · | will be denoted by 〈·, ·〉 but we will not need any notation for

the one inducing ‖ · ‖. For the Euclidean norm in R
n we will always use the symbol | · |.

If U is a closed linear subspace of a Hilbert space H , then the same symbol U will denote

the orthogonal projection fromH onto U . In particular, Ux is the orthogonal projection of

an element x ∈ H onto U . By B(x, r) we denote the closed ball centred at x with radius

r > 0. We may use the same symbol for balls in different spaces (or different norms);

when it is not clear from the context which space is intended, we will specify it.

It will be convenient to use in any finite dimensional Hilbert space (H, | · |) notions

that we introduce only in Euclidean spaces. All that we need may be obtained by choosing

an orthonormal basis of H and identifying H with R
n in the usual way (the result will

not depend on the choice of the basis). In particular, the Lebesgue measure Ln on H may

be defined in this way; or it may be defined as the Hausdorff measure Hn of dimension

n = dimH .

We will often use the special case of the coarea formula, or of the polar coordinates,

saying that for every non-negative Borel function f on an (n + 1)-dimensional Hilbert

space H ,
∫

H

f(x) dLn+1(x) =

∫

W

∫ ∞

0

f(sw)snds dHn(w) (2.1)

where W := {w ∈ H | |w| = 1}. In particular, for every Borel set E ⊂ R,

∫

{x∈H| |x|∈E}
e−c|x|2dLn+1(x) = ωn

∫

E

e−cs2snds (2.2)

where ωn := Hn{w ∈ R
n+1 | |w| = 1}.

The term “measure” will be used only for locally finite Borel measures on separable

Banach spaces; such measures are often called Radon measures (In fact, with the excep-

tion of the Lebesgue and Hausdorff measures all our measures will be finite.) The support

of a measure µ is defined as the set of x such that µB(x, r) > 0 for every r > 0.
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An important role in our arguments is played by log-concave measures and functions.

Out of a number of equivalent definitions of log-concavity of measures we choose, as in

[6], the one that is easiest to apply, namely the requirement that it satisfies the Prékopa-

Leindler inequality. So a measure on a separable Banach space X will be called log-

concave provided that
∫

X

f dµ ≥
(

∫

X

g dµ
)s(

∫

X

h dµ
)t

(2.3)

whenever 0 < s, t < 1, s+ t = 1 and f, g, h are non-negative Borel measurable functions

satisfying

f(sx+ ty) ≥ g(x)sh(y)t (2.4)

for every x, y ∈ X . Notice that the usual statement of the Prékopa-Leindler inequality

says that Ln is a log-concave measure on R
n. (See [9, 14].)

A Borel measurable function f : X −→ [0,∞) is said to be log-concave if the function

x 7→ − log f(x) is convex. Here we let log t = −∞ for t ≤ 0 and allow convex function

to attain also the value +∞.

The following properties of log-concave measures and functions, which we will freely

use, follow immediately from the definition.

• If µ is a log-concave measure on X and f a µ-integrable log-concave function on X ,

the measure µE :=
∫

E
f dµ is log-concave.

• If µ is a log-concave measure on Y and f a log-concave function on X × Y such that

y 7→ f(x, y) is µ-integrable for all x ∈ X , the function g(x) :=
∫

Y
f(x, y) dµ(x) is

log-concave.

We will make a deep use of some basic instances of the concentration of measure

phenomenon. (See, for example, [8] for the basic techniques and uses of this important

concept.) At this moment it suffices to say that what we need originates in the special case

of the concentration phenomenon according to which in high dimensional spaces for any

given point x log-concave measures and so (integrals of) log-concave functions tend to

be concentrated close to some sphere {y | |y − x| = c}. Unusually, it will be important

for us to relate the values of c for two concentration problems (in spaces of different

dimension). For that, the main tool will be concentration of log-concave functions close

to their maximum.

To gain information on the position of the point at which given log-concave functions

attain maximum, the subdifferential criterion for a convex function to attain its minimum

will become useful. Recall that, when f is a convex function on R
n and f(x) < ∞, the

subdifferential of f at x is defined as the set

∂f(x) = {x∗ ∈ R
n | 〈x∗, y − x〉 ≤ f(y)− f(x) for all y ∈ R

n}.
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Clearly, f attains its minimum at x if and only if zero belongs to ∂f(x).

There is a vast literature on Gaussian measures, both on finite dimensional spaces and

on Banach spaces; see, for example, [2] and references there. We will remind ourselves

only of the notions that we need.

Definition 4. The standard Gaussian measure on R
n is defined by

γF =
1

(2π)n/2

∫

F

exp
(

−|x|2
2

)

dx

for Borel sets F ⊂ R
n. The standard Gaussian measure on R

N is defined as the countable

product of the one-dimensional standard Gaussian measures.

Gaussian measures on infinitely dimensional situation will be seriously used only in

Section 6, but we introduce them already now in order to enable an informal presentation

of the thinking behind the proof of Theorem 1 in the next Section. Up to an isomorphism,

non-degenerated Gaussian measures on infinitely dimensional separable Hilbert spaces

are fully described in the following way.

Gaussian measures on Hilbert spaces. The measure γ is the restriction of the standard

Gaussian measure from R
N to

H :=
{

x ∈ R
N

∣

∣

∣

∞
∑

i=1

λix
2
i <∞

}

equipped with the norm

‖x‖ :=
(

∞
∑

i=1

λix
2
i

)1/2

,

where λ1 ≥ λ2 ≥ · · · > 0 satisfy
∑∞

i=1 λi <∞.

The summability condition on the series of λi is sufficient (as well as necessary) for

γ to be a Borel measure on H . In this representation, the λi are precisely the eigenvalues

of the covariance operator of γ that have been used in the statements of Theorem T and

Theorem 1. The corresponding eigenvectors are ui := (δi,j)j∈N ∈ H , where δi,j = 1 when

i = j and δi,j = 0 otherwise. We will also denote

|x| =
(

∞
∑

i=1

x2i

)1/2

and 〈x, y〉 =
∞
∑

i=1

xiyi provided that |x|, |y| <∞

and point out that, perhaps somewhat illogically,

B(x, r) = {y ∈ H | ‖y − x‖ ≤ r}
denotes a ball in the norm ‖ · ‖.

Finally, we recall that Gaussian measures are log-concave. Indeed, on each of the

spaces Hn := span{u1, . . . , un} the function x 7→ e−|x|2/2 is log-concave and integrable

with respect to the log-concave measure Ln. Hence the standard Gaussian measure on Hn

is log-concave, and by [6, Corollary 5] so is their weak limit γ.
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3 Sketch of main arguments

Although some of our arguments may seem to be quite technical, the basic idea behind

them is rather simple. We choose mutually orthogonal finite dimensional subspaces Hi of

H , each spanned by a subset of the uj , with dimHi = ni ր ∞ and for suitable τi > 0

define

M :=

∞
⋂

i=1

Mi where Mi :=
{

y ∈ H
∣

∣

∣

∣|Hiy| −
√
ni

∣

∣ ≤ τi
}

.

By the well known result on concentration of norm for the standard Gaussian measure

(which will be also given in Corollary 7) the set M has positive γ measure for τi much

smaller that
√
ni, for example for τi = 2

√
log ni. Given any z ∈ H , r > 0 and ε > 0, the

concentration phenomenon should also provide constants ci such that the restriction of γ

to the ball B(z, r) is concentrated close to the {y ∈ B(z, r) | |Hiy| = ci}. In other words

there are (small) σi > 0 such that

γ
{

y ∈ B(z, r)
∣

∣

∣

∣|Hiy| − ci
∣

∣ > σi
}

≤ εγB(z, r).

Provided that |√ni − ci| > τi + σi for some i, we get that γ(M ∩ B(z, r)) ≤ εγB(z, r),

and provided that for all small r > 0 this can be done for all z, we are done.

The main source of the technicalities in our arguments is that the ci are not easy to es-

timate. We therefore explain the reasoning that lead us to the conclusion that with suitable

choices of λi and Hi the above approach may go through. For simplicity we will assume

that, when restricted to Hi, ‖ · ‖ is a constant multiple of | · |; this corresponds to what was

used in [12] and [13] and what we called artificial examples.

We first look at what happens when we fix some i and use Fubini’s Theorem to cal-

culate the measures γB(z, r) and γ(Mi ∩ B(z, r)). After letting n = ni, x = Hiz and

T :=
{

y ∈ Hi

∣

∣

∣

∣|y| − √
n
∣

∣ ≤ τi
}

, it gives

γB(z, r) =

∫

Hi

Φ(y)e−|y|2/2 dLn(y) and γ(Mi ∩ B(z, r)) =

∫

T

Φ(y)e−|y|2/2dLn(y)

where Φ: Hi −→ [0,∞) and Φ(y) depends only on distance of y to x in the norm ‖ · ‖
and so also in the norm | · |. (Without much loss of imagination we may assume that Φ is

the indicator of some ball about x.) Moreover, Φ is log-concave and so the concentration

phenomenon gives that for some ρ = ρi(z, r) > 0 its integral is concentrated close to the

sphere {y ∈ Hi | |y − x| = ρ}. The situation is illustrated in Figures 1 and 2 where we

ignore the widths of concentration (the constants τi and σi) as they are much smaller than

the radii of concentration (
√
ni and ρ).

We will distinguish several cases, one “good” (for failing the Density Theorem) in the

sense that it shows γ(Mi ∩ B(z, r)) ≤ εγB(z, r), and three “bad” in the sense that they

do not. For their explanation, we will denote by S(y, t) the sphere in Hi centred at y with
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radius t and use two basic instances of the concentration phenomenon: in any cone C

in Hi with vertex at the origin, the standard Gaussian measure is concentrated close to

C ∩ S(0,
√
n) and the (n − 1) dimensional measure of a spherical cap is concentrated

close to its boundary. So, for example, if C has spherical base, we may approximate γC

by κne
−n/2tn−2 where t is the radius of the sphere S(0,

√
n) ∩ ∂C and κn is a constant

depending on n only.

x

C
√
n

̺

0

Figure 1. Concentration outside S(0,
√
n).

√
n

x

̺

0

C

Figure 2. Concentration on S(0,
√
n).
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Figures 1 and 2 indicate a “good” and a “bad” case, respectively. We explain them

as (a) and (b) below, and add two additional simple “bad”cases.

(a) Figure 1 gives an example of a “good” case. To explain it, we pick a suitable s >

0 whose choice will be indicated shortly, and let U := S(0,
√
n + s) ∩ S(x, ρ).

(In Figure 1, U is the boundary of the dashed spherical cap, or equivalently its

intersection with S(x, ρ).) Also let

W := S(0,
√
n) ∩ S(x, ρ) and V := S(0,

√
n) ∩ ∂C.

We notice that U, V,W are n−2 dimensional spheres and denote their radii u, v, w,

respectively. The way in which S(0,
√
n) and S(x, ρ) intersect (as opposed to the

way in which they intersect in Figure 2) gives that v ≥ w + cs where c > 0 is a

(small) constant independent of n. Hence

u = (1 + s/
√
n)v ≥ (1 + s/

√
n+ cs/w)w.

Since Φ is constant on S(x, ρ), the concentration arguments indicated above show

that

γ(M ∩B(z, r)) ≤ κne
−n/2wn−2 and γB(z, r) ≥ κne

−(
√
n+s)2/2un−2.

Hence

γ(M ∩ B(z, r)) ≤ es
√
n+s2/2(1 + s/

√
n+ cs/w)−n+2γB(z, r).

For suitable s (and under reasonable assumptions on the sizes involved in Figure 1),

expansion of the coefficient in front of γB(z, r) leads to the main term e−ncs/w,

which is a small number.

(b) As stated above, inside the whole cone C the standard Gaussian measure is concen-

trated close to the sphere S(0,
√
n)∩∂C. But S(0,

√
n)∩∂C is contained in S(x, ρ)

which is contained in C. Since Φ is constant on S(x, ρ), the integral of Φ(y)e−|y|2/2

is also concentrated close to S(0,
√
n) ∩ ∂C.

(c) Another “bad” case occurs when x is close to S(0,
√
n) and ρ is small, for example

because then the support of Φ may be contained in T .

(d) Final “bad” case occurs when the set S(0,
√
n) ∩ x⊥ (close to which the Gaussian

measure on the whole of Hi is concentrated) is (almost) contained in S(x, ρ).

Understanding of these cases was enough to show that the almost everywhere version

of the Density Theorem fails for some Gaussian measures. Since the centre belongs to M ,
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the situation from (b) cannot occur for any i (or, more precisely, it is subsumed in (c)) and,

since r is small, (c) occurs for small i. Hence the only way in which the density ratio may

be close to one is that (c) occurs for some i while (d) occurs for i+1. Roughly, this would

mean that ρi(x, r) should be about τi and ρi+1(x, r) about
√
2ni+1. But this is impossible

when the dimensions of Hi and Hi+1 as well as the ratios of ‖ · ‖ and | · | on these spaces

are not too far from each other. The reason for this is best seen by noticing that if both

these dimensions and ratios were the same, symmetry would show that ρi(x, r) is very

close to ρi+1(x, r).

√
n

x

̺

0

C

Figure 3. Concentration far from S(0,
√
n) ∩ x⊥.

The above programme was realized in [12] and in [13] it was refined to get a function

satisfying (1.4). Nevertheless, these ideas were too weak to show Theorem 1 till the sec-

ond named author made several key observations that we summarize in the following two

points.

(R1) The possibility (b) for the choice of “bad” centre and radius is also far from (d). As

illustrated in Figure 3, when we are in the situation from (b) then, even if ρ is quite

close to |x|2+n (which means that S(0,
√
n)∩S(x, ρ) is close to S(0,

√
n)∩x⊥),

the integral of Φ(y)e−|y|2/2 is concentrated close to the hyperplane indicated by

the dash line which is far from x⊥. The only way in which this discrepancy may

disappear is to have ρ very big, but this should imply that |x| is big. As we are

treating only small values of r, this should mean thatB(x, r) is far from S(0,
√
n),

implying that γ(M∩B(x, r)) = 0. However, both the size of x and r are measured
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in the norm ‖ ·‖ (which is a small multiple of | · |), so this argument needs refining.

For this, consider the dash line in Figure 3 as representing the hyperplane {y ∈
Hi | 〈y, x〉 = α} close to which the restriction of the function 〈·, x〉 to the ball

B(x, r) is concentrated. In Lemma 12(iii) we get not only that |x| is big, but obtain

a lower bound α ≥ n/4. (Incidentally, α has the same lower bound also in the

case (c), since then |x| = √
n and B(x, ρ) is a small ball around x. So the two

“bad” cases, (b) and (c) may be treated as one, which will allow us to reduce the

number of cases in Lemmas 12 and 13 from four to three.)

(R2) For one index i, (R1) does not give a strong enough estimate. However, assum-

ing the case (a) never occurs, there is a chain of indexes k, k + 1, . . . , l starting

at (b), ending at (d) such that for every i = k, . . . , l − 1 either (b) or (c) occurs.

A strengthened discrepancy argument (see below) shows that this chain is long,

and (R1) provides a lower estimate of ‖Hiz‖ for mutually orthogonal vectors Hiz,

i = k, . . . , l − 1. Under conditions that are reflected in our assumptions on the

eigenvalues of the covariance operator of the Gaussian measure γ, this finally

gives that ‖z‖ is big and, since r has an upper bound, B(z, r) does not meet M

and so γ(M ∩ B(z, r)) = 0.

As pointed out, in (R2) we need a strengthened discrepancy argument of [12]. More

precisely, we need to understand, given z, r, what happens in Hi+1 provided that (b) oc-

curred for Hi. Calculating γB(z, r) and γ(Mi ∩ Mi+1 ∩ B(z, r)) using Fubini’s Theo-

rem, we are faced with two concentration problems for a function, say, Ψ in the space

Hi ⊕ Hi+1, namely with the problem of relation of the concentration constant of |Hiy|
to the concentration constant of |Hi+1y|. As we need rather sharp estimates, we use that

Ψ(y) depends only on four variables: 〈y,Hiz〉, 〈y,Hi+1z〉, the shortest distances ofHiy to

a multiple of Hiz and the shortest distances of Hi+1y to a multiple of Hi+1z. This allows

us to transform the problem to a four dimensional one for a new function that happens to

be logarithmically concave. For this function we use that its integral is concentrated close

to its maximum, which relatively easily allows comparison of concentration constants for

different functions.

The above discussion assumed a simplifying condition that on each Hi the norms ‖ · ‖
and | · | are multiple of each other. As this cannot be the case for the most interesting

choices of the eigenvalues in Theorem 1 including λk = k−s for 1 < s < 6/5, the

estimates we need are more technical than needed for the simplified case. We therefore

use the following Section 4 to show basic results on concentration of integrals of log-

concave functions close to their maximum. One of the standard results on concentration of

Gaussian measures is given in Corollary 7 as an immediate consequence. The following

Section 5 contains the main technical estimates needed to prove Theorem 1. There we

introduce a class of log-concave functions that can appear by an application of Fubini’s
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Theorem alluded to above. This allows us to reduce the dimension of the spaces in which

the concentration is needed to either two or four. In order to estimate concentration of

these functions, we obtain an equation for their maximum in Lemma 11, and prove the

corresponding variant of the discrepancy between the “bad” cases in Lemma 12, where (i)

corresponds to (a), (ii) to (d) and (iii) to joined (b) and (c). The main Lemma 13 of this

Section considers a longer sum of the spaces Hi to realize the idea of (R2).

Finally Proposition 14 of Sections 6 does in a more general form what was indicated

here. It gives a rather technical criterion for uniform failure of the Density Theorem that

involves the behaviour of the eigenvalues λk. Theorem 1 as well as other results indicated

in the final Remark easily follow.

4 Concentration around maximum

Results on concentration of log-concave functions are nowadays standard (see, for exam-

ple, [3]). Most often, they treat concentration about mean value or median, while to prove

our main concentration estimates in Section 5, concentration about maximum is consid-

erably more convenient. To make our proof complete, we therefore provide the full basic

argument.

Lemma 5. Let g : R −→ [0,∞) be log-concave, a ∈ R and g(a) > 0. Then for t ≥ 0,
∫ ∞

a+t

g(s) ds ≤ g(a+ t)

g(a)

∫ ∞

a

g(s) ds

and for t ≤ 0,
∫ a+t

−∞
g(s) ds ≤ g(a+ t)

g(a)

∫ a

−∞
g(s) ds.

Proof. We show only the first statement, the second being analogous. The case g(a+t) ≥
g(a) is obvious, since the integral on the left is clearly bounded by the integral on the

right, and so is the case g(a + t) = 0 since then g(s) = 0 for all s ≥ a + t. So assume

0 < g(a+ t) < g(a) and let

h(s) := −αs + β

be an affine function passing through the two points
(

a, log g(a)
)

and
(

a+t, log g(a+t)
)

.

Since log g(a+t) < log g(a), the coefficient α > 0. Further, by concavity of log g we have

log g(s) ≥ h(s) for s ∈ (a, a+ t) and log g(s) ≤ h(s) for s ∈ (a + t,∞). Equivalently,

g(s) ≥ e−αs+β and g(s) ≤ e−αs+β

for s belonging to (a, a + t) and (a + t,∞), respectively. Denote A = 1/α. Integrating

the first inequality over (a, a+ t) and the second over (a+ t,∞), we get
∫ a+t

a

g(s) ds ≥ A(g(a)− g(a+ t))
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and
∫ ∞

a+t

g(s) ds ≤ Ag(a+ t).

Combining these two estimates we obtain

∫ a+t

a

g(s) ds ≥ g(a)− g(a+ t)

g(a+ t)

∫ ∞

a+t

g(s) ds =
g(a)

g(a+ t)

∫ ∞

a+t

g(s) ds−
∫ ∞

a+t

g(s) ds,

and the statement follows by adding
∫∞
a+t

g(s) ds.

Lemma 6. Suppose ϕ : [0,∞) −→ [0,∞) is log-concave and c, r ≥ 0.

(i) If t→ ϕ(t)ect
2

is non-increasing on [r,∞), then for every s ≥ r and 0 ≤ k ≤ 2cr2,
∫ ∞

s

ϕ(t) tk dt ≤ e−c(s−r)2
∫ ∞

r

ϕ(t) tk dt.

(ii) if t→ ϕ(t)ect
2

is non-decreasing on (0, r], then for every 0 < s ≤ r and k ≥ 2cr2,
∫ s

0

ϕ(t) tk dt ≤ e−c(s−r)2
∫ r

0

ϕ(t) tk dt.

Proof. First notice that the case c = 0 is trivial and the statement (ii) is vacuously true

when r = 0. Also, under the assumption of (i),

ϕ(t)ect
2 ≥ ϕ(t + s)ec(t+s)2 ≥ ϕ(t+ s)ect

2+cs2

for every t, s ≥ 0. Thus ϕ(t + s) ≤ ϕ(t)e−cs2 and integrating over t ∈ (0,∞) shows that

the inequality (i) holds with r = 0. Hence we may assume that c, r > 0.

Notice that the integrand ϕ(t)tk is log-concave. We multiply the inequality ϕ(s)ecs
2 ≤

ϕ(r)ecr
2

, which holds in both cases, by e−cs2 to get

ϕ(s) ≤ ecr
2−cs2ϕ(r).

Also,

k log s = k log r + k log(1 + (s− r)/r) ≤ k log r + k(s− r)/r, i.e. sk ≤ rkek(s−r)/r.

Combining the last two inequalities and using that our assumptions imply k(s − r)/r ≤
2c(s− r)r, we get

ϕ(s) sk ≤ ecr
2−cs2ϕ(r) rkek(s−r)/r ≤ ecr

2−cs2+2c(s−r)rϕ(r) rk = e−c(s−r)2ϕ(r) rk.

By the first statement of Lemma 5 with a = r and a+ t = s,
∫ ∞

s

ϕ(t) tk dt ≤ ϕ(s) sk

ϕ(r) rk

∫ ∞

r

ϕ(t) tk dt ≤ e−c(s−r)2
∫ ∞

r

ϕ(t) tk dt,

which is (i). The second statement of Lemma 5 with the same choice establishes (ii).
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Corollary 7. Let n ∈ N, c > 0 and r =
√

(n− 1)/2c. Then for every λ > 0,

∫

{x∈Rn| ||x|−r|>λ}
e−c|x|2dLn(x) ≤ e−cλ2

∫

Rn

e−c|x|2dLn(x).

Proof. Using (2.2) we get

∫

{x∈Rn| ||x|−r|>λ}
e−c|x|2dLn(x) = ωn−1

∫ r−λ

0

e−ct2tn−1 dt+ωn−1

∫ ∞

r+λ

e−ct2tn−1 dt (4.1)

where
∫ r−λ

0
e−ct2tn−1 dt is set equal to zero if λ ≥ r. We apply Lemma 6 to ϕ(t) = e−ct2

and k = 2cr2 = n − 1. Observe that ϕ meets the assumptions of both (i) and (ii). Hence

the estimate (4.1) may be continued by

≤ ωn−1e
−cλ2

∫ r

0

e−ct2tn−1 dt+ ωn−1e
−cλ2

∫ ∞

r

e−ct2tn−1 dt = e−cλ2

∫

Rn

e−c|x|2dLn(x).

Lemma 8. Let ϕ : Rn −→ [0,∞) attain its maximum at p ∈ R
n. Assume further that a

positive semi-definite quadratic form Q on R
n is such that the function x 7→ ϕ(x) eQ(x) is

log-concave. Then ψ(x) := ϕ(x)eQ(x−p) is log-concave and attains its maximum at p.

Proof. The function ψ is log-concave since ψ(x) = ϕ(x) eQ(x)eh(x) where the function

h(x) := Q(x− p)−Q(x) is affine. Hence g(x) := − logψ(x) = − logϕ(x)−Q(x− p)

is a convex function. Assuming, as we may, ϕ(p) > 0, we see that − logϕ attains its

minimum at p. Using it, we infer

lim inf
t→0

g(p+ tx)− g(p)

t
= lim inf

t→0

− logϕ(p+ tx) + logϕ(p)−Q(tx)

t

≥ lim inf
t→0

−t2Q(x)
t

= 0.

This estimate means that zero belongs to the subdifferential of g at p. Hence g attains its

minimum at p and, consequently, ψ = e−g attains its maximum at p.

Lemma 9. Suppose ϕ : Rn −→ [0,∞) attains its maximum at p ∈ R
n and a positive

semi-definite quadratic form Q on R
n is such that the function x 7→ ϕ(x)eQ(x) is log-

concave. Then for every τ ≥ (n− 1)/2,

∫

{x∈Rn|Q(x−p)≥τ}
ϕ dLn ≤ e−σ

∫

Rn

ϕ dLn. (4.2)

where σ :=
(√

τ −
√

(n− 1)/2
)2

.

Proof. Clearly, only the situation when ϕ(p) > 0 and the integral on the right of (4.2) is

finite needs treatment. By Lemma 8, ψ(x) := ϕ(x)eQ(x−p) is log-concave and attains its

maximum at p.
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Let S =
{

u ∈ R
n
∣

∣ |u| = 1, Q(u) > 0
}

. For u ∈ S define ϕu : R −→ [0,∞) by

ϕu(t) := ϕ(p+ tu). Given τ ≥ (n− 1)/2, we let for u ∈ S,

ru :=
( τ

Q(u)

)1/2

−
( σ

Q(u)

)1/2

and su :=
( τ

Q(u)

)1/2

.

Then by (2.1),
∫

{x∈Rn|Q(x−p)≥τ}
ϕdLn =

∫

S

∫ ∞

su

ϕu(t) t
n−1dt dHn−1(u). (4.3)

We estimate the inner integral on the right side of this inequality by an application of

Lemma 6 (i) with ϕu(t) = ψ(p + tu)e−Q(tu), c = Q(u), r = ru, s = su and k = n − 1.

To see that its assumptions hold is straightforward: since ψ is log-concave, ϕu(t) and

ϕu(t)e
ct2 are also log-concave. Together with the assumption that ϕu(t)e

Q(tu) attains its

maximum at t = 0 this gives that ϕu(t)e
ct2 is non-increasing on [0,∞). Finally, by an

assumption, 2cr2 = 2(
√
τ − √

σ)2 = n − 1 = k and, clearly, 0 ≤ r ≤ s. Hence, using

first Lemma 6 (i) and then (2.1) we can finish the estimates started at (4.3),

≤
∫

S

e−Q(u)(su−ru)2
∫ ∞

ru

ϕu(t) t
n−1dt dHn−1(u)

= e−σ

∫

S

∫ ∞

ru

ϕu(t) t
n−1dt dHn−1(u)

≤ e−σ

∫

Rn

ϕdLn.

5 Main concentration estimates

We recall from Section 2 that both | · | and ‖ · ‖ are used to denote a norm induced by

a scalar product on a vector space H and that 〈·, ·〉 denotes the scalar product inducing

| · |. Additionally, it will be convenient to let 〈u, v〉+ := max{0, 〈u, v〉}. To indicate the

reason for distinguishing the two norms, we notice that | · | is used for the norm related

to the standard Gaussian measure γ (so it is the Euclidean norm in R
n or the usual norm

in ℓ2 in the infinite dimensional situation) while ‖ · ‖ is used for a norm in which γ is

σ-additive or for its approximation in the finite dimensional case. In statements in which

only one norm is used, and so this distinction is immaterial, we try to use the notation that

corresponds best to later usage.

WhenH is equipped with ‖·‖ and x ∈ H , we denote by F(H, ‖·‖, x) the collection of

bounded log-concave ‖ · ‖-upper semi-continuous functions Ψ: H −→ [0,∞) such that

Ψ(u) depends only on ‖u − x‖ and Ψ(u) > 0 for all u from a ‖ · ‖-neighbourhood of x.

In the case when ‖u‖ = 〈u,A(u)〉1/2 where A is a bounded positive definite symmetric

linear operator on (H, | · |), we will write ‖ · ‖A and F(H,A, x) instead of ‖ · ‖ and

F(H, ‖ · ‖, x), respectively.
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Lemma 10. Let V be a closed subspace of the Hilbert space (H, ‖ · ‖), Z its orthogonal

complement, and ν a finite log-concave Borel measure on Z. Suppose further that x ∈ H

is such that Zx belongs to the support of ν and Ψ ∈ F(H, ‖ · ‖, x). Then the function

Φ(v) :=
∫

Z
Ψ(v + z) dν(z) belongs to F(V, ‖ · ‖, V x).

Proof. As noticed in Section 2, Φ is log-concave. Clearly, it is bounded and, using that

Ψ is bounded and upper semi-continuous, we infer from Fatou’s Lemma that Φ is upper

semi-continuous. Since Ψ(y) = f(‖y − x‖2) for some f , we have

Φ(v) =

∫

Z

f(‖v + z − x‖2) dν(z) =
∫

Z

f(‖v − V x‖2 + ‖z − Zx‖2) dν(z).

Hence Φ(v) depends on the value of ‖v − V x‖ only.

Finally, to show that Φ > 0 on a neighbourhood of V x, let r > 0 be such that Ψ > 0

on B(x, r). Then Ψ(v + z) > 0 whenever v ∈ V B
(

x, 1
2
r
)

and z ∈ ZB
(

x, 1
2
r
)

. Since

ν ZB
(

x, 1
2
r
)

> 0, we see that Φ(v) > 0 for v ∈ V B
(

x, 1
2
r
)

.

Lemma 11. Suppose that A is a positive definite symmetric linear operator on a finite

dimensional Hilbert space (H, | · |), x ∈ H , and Ψ ∈ F(H,A, x). Suppose further that

I is a finite index set, and for each i ∈ I we are given ni ∈ N and wi ∈ H such that

〈x, wi〉 ≤ 0 and

{u ∈ H | Ψ(u) > 0} ∩
⋂

i∈I
{u ∈ H | 〈u, wi〉 > 0} 6= ∅. (5.1)

Then there is a unique point p ∈ H at which the log-concave function

f(u) := e−|u|2/2Ψ(u)
∏

i∈I
〈u, wi〉ni

+

attains its maximum. Moreover, 〈p, wi〉 > 0 for each i ∈ I and there is λ ≥ 0 such that

p+ λA(p− x)−
∑

i∈I

niwi

〈p, wi〉
= 0.

Proof. Recall that h(u) := − logΨ(u) is a convex function depending only on ‖u−x‖A.

Since h is even with respect to x (i.e. h(u) = h(2x − u)) it attains its minimum at x.

Consider any point p ∈ H such that p 6= x and h(p) <∞. We show that any y ∈ ∂h(p) is

a non-negative multiple ofA(p−x). For this, it suffices to show that 〈y, u〉 ≤ 0 whenever

〈u,A(p− x)〉 < 0. So assume that u ∈ H is such that 〈u,A(p− x)〉 < 0. Then for small

t > 0,

‖tu+ p− x‖2A = t2‖u‖2A + 2t〈u,A(p− x)〉 + ‖p− x‖2A ≤ ‖p− x‖2A.

It follows that h(tu+ p) ≤ h(p) and so

〈tu, y〉 ≤ h(tu+ p)− h(p) ≤ 0.
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So indeed 〈y, u〉 ≤ 0 whenever 〈u,A(p− x)〉 < 0, and we infer that y = λA(p − x) for

some λ ≥ 0.

To finish the proof, we introduce the function g := − log f , i.e.

g(u) = |u|2/2 + h(u)−
∑

i∈I
ni log〈u, wi〉+.

The function g is convex, lower semi-continuous, and not identically +∞ due to the

condition (5.1). Moreover g(u) tends to infinity when |u| → ∞ and hence g attains its

minimum at some point p ∈ H . From 5.1 we see that g(p) < ∞ and, observing that g is

strictly convex on the set {u ∈ H | g(u) < ∞}, that p is unique. Since g(p) < ∞, we

have 〈p, wi〉 > 0 for all i ∈ I and so p 6= x. Further, zero belongs to the subdifferential

of g at p. Since |u|2/2−∑

i∈I ni log〈u, wi〉 is smooth on a neighbourhood of p, the latter

condition implies that

0 = p+ y −
∑

i∈I

niwi

〈p, wi〉

for some y ∈ ∂h(p). Recalling that y = λA(p− x) we obtain

p+ λA(p− x)−
∑

i∈I

niwi

〈p, wi〉
= 0.

Lemma 12. Let {v, w} be an orthonormal basis of a 2-dimensional Hilbert space (U, | · |)
and let A be a symmetric linear operator on U with eigenvalues α ≥ β ≥ 8α/9 > 0.

Suppose further that n ∈ N, 0 < τ ≤ 2−6
√
n, and x is a multiple of v satisfying |x| ≤

2−6n/τ and (α− β)|x| ≤ α
√
n/18. Finally, let λ ≥ 0 and p ∈ U satisfy 〈p, w〉 > 0 and

p+ λA(p− x)− nw

〈p, w〉 = 0. (5.2)

Then at least one of the following statements holds:

(i)
∣

∣|p| − √
n
∣

∣ > 2τ ;

(ii) λα ≤ 23τ/
√
n and |p−√

nw| ≤ 25τ(1 + |x|/√n);

(iii) λα ≥ 2−3n/(
√
n + |x|)2 and |〈p, x〉| ≥ n/4.

Proof. If λ = 0 we get p =
√
nw and (ii) holds. Hence we may assume λ > 0 and,

replacing A by λA, that λ = 1. Observe that

|〈z, Au〉| ≤ α|z||u|, 〈u,Au〉 ≥ β|u|2 and |〈u,Az〉 − α〈u, z〉| ≤ (α− β)|u||z|.

These inequalities will be used without a reference.

Suppose that (i) fails. Then, letting κ := 1 + 2−5, we have

|p| ≤
√
n+ 2τ ≤ κ

√
n (5.3)



Set of positive Gaussian measure may have uniformly zero density 19

and

∣

∣|p|2 − n
∣

∣ =
∣

∣|p| − √
n
∣

∣(|p|+√
n) ≤ 2τ(κ

√
n +

√
n) ≤ 4κτ

√
n. (5.4)

Multiplying (5.2) by v we obtain

|〈p, v〉| = |〈v, A(p− x)〉| ≤ α|p− x| ≤ α(|p|+ |x|)
≤ α(κ

√
n+ |x|) ≤ 2α(

√
n+ |x|). (5.5)

If α ≤ 23τ/
√
n, (5.5) shows

|〈p, v〉| ≤ 24τ(1 + |x|/
√
n).

By the assumptions 0 < τ ≤ 2−6
√
n and |x| ≤ 2−6n/τ this implies |〈p, v〉| ≤ √

n/2. So

〈p, v〉2 ≤ |〈p, v〉|√n/2 and, using also (5.4) and (5.5), we obtain the second inequality

in (ii) by estimating

|p−√
nw| ≤ |√n−

√

|p|2 − 〈p, v〉2|+ |〈p, v〉| ≤ |n− |p|2 + 〈p, v〉2|√
n

+ |〈p, v〉|

≤ 4κτ + 3
2
|〈p, v〉| ≤ 4κτ + 24τ(1 + |x|/

√
n) ≤ 25τ(1 + |x|/

√
n).

It remains to assume α > 23τ/
√
n and show (iii). Multiplying (5.2) by p and using

(5.4) we get

〈p, Ax〉 = 〈p, Ap〉+ |p|2 − n ≥ β|p|2 + |p|2 − n ≥ 8α

9

(

n− 4κτ
√
n)
)

− 4κτ
√
n

≥ 8αn

9
(1− 2−4κ)− αn

2
κ =

(8− 5κ)αn

9
,

where we have estimated the first occurrence of τ by τ ≤ 2−6
√
n and the second by

τ ≤ 2−3α
√
n. Using (α− β)|x| ≤ α

√
n/18, (5.3) and κ ≤ 23/22, we get

α|〈p, x〉| ≥ |〈p, Ax〉| − (α− β)|p||x| ≥ (8− 5κ)αn

9
− α

√
n

18
κ
√
n

=
(16− 11κ)αn

18
≥ αn

4
.

Since α > 0, this gives the second inequality in (iii). Using also (5.5) and the assumption

that x is a multiple of v, we get the first inequality of (iii) by estimating

2α(
√
n+ |x|)2 ≥ |x||〈p, v〉| = |〈p, x〉| ≥ n/4.

Lemma 13. Let I = {k, k + 1, . . . , l} where k, l ∈ N, k ≤ l. For each i ∈ I , let {vi, wi}
be an orthonormal basis of a 2-dimensional Hilbert space (Ui, | · |) and Ai a symmetric
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linear operator on Ui with eigenvalues αi ≥ βi ≥ 8αi/9 > 0. Suppose further that

ni ∈ N, τi ≥ 4, xi is a multiple of vi satisfying (αi − βi)|xi| ≤ αi
√
ni/18 and

165τj(1 + |xi|/
√
ni)

2 ≤ √
njαj/αi when k ≤ i ≤ j ≤ min{i+ 1, l}. (5.6)

Let U denote the orthogonal direct sum of the Ui, A =
∑

i∈I Ai ◦ Ui, x =
∑

i∈I xi,

Ψ ∈ F(U,A, x) and µ be the Borel measure on U defined by

µE :=

∫

E

e−|u|2/2Ψ(u)
∏

i∈I
〈u, wi〉ni

+ dL2s(u), where s = l − k + 1. (5.7)

Then at least one of the following statements holds:

(i) µ
{

u ∈ U
∣

∣ |Uku−
√
nkwk| ≥

√
nk/2

}

≤ e−τ2
k
/4µU .

(ii) µ
{

u ∈ U
∣

∣

∣

∣|Uiu| −
√
ni

∣

∣ ≤ τi
}

≤ e−τ2i /4µU for some i ∈ I .

(iii) µ
{

u ∈ U
∣

∣ |〈Uiu, xi〉| ≤ ni/5
}

≤ e−τ2i /4µU for each i ∈ I .

Proof. The case µ ≡ 0 being trivial, we assume µ 6≡ 0. In particular,

{u ∈ U | Ψ(u) > 0} ∩
⋂

i∈I
{u ∈ U | 〈u, wi〉 > 0} 6= ∅.

We will also assume that (i) and (ii) fail, i.e.

µ
{

u ∈ U
∣

∣ |Uku−
√
nkwk| ≥

√
nk/2

}

> e−τ2
k
/4µU (5.8)

and for every i ∈ I ,

µ
{

u ∈ U
∣

∣

∣

∣|Uiu| −
√
ni

∣

∣ ≤ τi
}

> e−τ2i /4µU. (5.9)

The proof will have five steps in which we will consider validity of inequalities

µ
{

u ∈ U
∣

∣ |Uiu−
√
niwi| ≥ 33τi(1 + |xi|/

√
ni)

}

≤ e−τ2i /4µU (5.10)

and (iii), i.e.

µ
{

u ∈ U
∣

∣ |〈Uiu, xi〉| ≤ ni/5
}

≤ e−τ2i /4µU. (5.11)

First we make a simple observation about the incompatibility of (5.10) and (5.11). Then

we show that for each i at least one of these two inequalities holds, and observe that (5.10)

fails for i = k. The last observation is then extended to all i, and finally, this combined

with the incompatibility of (5.10) and (5.11) easily finishes the proof.
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STEP 1. The inequalities (5.10) and (5.11) cannot both hold for the same i. Indeed,

the inequality (5.6) with j = i implies

33τi|xi|(1 + |xi|/
√
ni) ≤

|xi|
√
ni

5(1 + |xi|/
√
ni)

≤ ni

5
,

and so for each u ∈ U , either

|Uiu−
√
niwi| ≥ 33τi(1 + |xi|/

√
ni)

or

|〈Uiu, xi〉| = |〈Uiu−
√
niwi, xi〉| ≤ 33τi|xi|(1 + |xi|/

√
ni) ≤ ni/5.

Hence validity of both (5.10) and (5.11) would give a contradiction by

µU ≤ µ
{

u ∈ U
∣

∣ |Uiu−
√
niwi| ≥ 33τi(1 + |xi|/

√
ni)

}

+ µ
{

u ∈ U
∣

∣ |〈Uiu, xi〉| ≤ ni/5
}

≤ 2e−τ2i /4µU < µU. �

STEP 2. For each i ∈ I , either (5.10) or (5.11) holds. Fix i ∈ I . We apply Lemma 10

with H = U , V = Ui, Z =
⊕

m∈I\{i} Um, x and Ψ given in the assumptions, and the

Borel measure ν on Z defined by

νF =

∫

F

e−|z|2/2
∏

j∈I\{i}
〈z, wj〉nj

+ dL2s−2(z).

Hence Φ(u) =
∫

Z
Ψ(u+ z) dν(z) belongs to F(Ui, Ai, xi), and by Fubini’s Theorem for

every Borel set E ⊂ Ui.

µ(U−1
i E) =

∫

E

e−|u|2/2Φ(u)〈u, wi〉ni

+ dL2(u). (5.12)

By Lemma 11 the integrand of (5.12) attains its maximum at a point p ∈ Ui such that

〈p, wi〉 > 0 and for some λ ≥ 0,

p+ λAi(p− xi)−
niwi

〈p, wi〉
= 0. (5.13)

Since the integrand multiplied by e|u|
2/2 is log-concave, we may use Lemma 9 in R

2 with

Q(u) = |u|2/2 and τ = τ 2i /2. Since τi ≥ 4, we get

σ = (τi/
√
2− 1/

√
2)2 ≥ 1

2
τ 2i (1− 1

4
)2 ≥ τ 2i /4,

and so

µ
{

u ∈ U
∣

∣ |Uiu− p| ≥ τi
}

≤ e−σµU ≤ e−τ2i /4µU. (5.14)

By Lemma 12 with the choice n = ni and τ = τi at least one of the following

statements holds:
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(a)
∣

∣|p| − √
ni

∣

∣ > 2τi;

(b) |p−√
niwi| ≤ 25τi(1 + |xi|/

√
ni);

(c) |〈p, xi〉| ≥ ni/4.

If (a) holds, then {u ∈ U
∣

∣

∣

∣|Uiu| −
√
ni

∣

∣ ≤ τi
}

⊂
{

u ∈ U
∣

∣ |Uiu − p| ≥ τi} and

hence (5.14) implies

µ
{

u ∈ U
∣

∣

∣

∣|Uiu| −
√
ni

∣

∣ ≤ τi
}

≤ µ
{

u ∈ U
∣

∣ |Uiu− p| ≥ τi} ≤ e−τ2i /4µU.

Since this contradicts (5.9), we infer that (a) fails.

When (b) holds,

{

u ∈ U
∣

∣ |Uiu−
√
niwi| ≥ 33τi(1 + |xi|/

√
ni)

}

⊂
{

u ∈ U
∣

∣ |Uiu− p| ≥ τi
}

,

and we get (5.10) by inferring from (5.14) that

µ
{

u ∈ U
∣

∣ |Uiu−
√
niwi| ≥ 33τi(1 + |xi|/

√
ni)

}

≤ µ
{

u ∈ U
∣

∣ |Uiu− p| ≥ τi
}

≤ e−τ2i /4µU.

Finally, when (c) holds, we observe that xi 6= 0 and use (5.6) to infer that τi ≤ ni/20|xi|.
Hence |〈Uiu, xi〉| ≤ ni/5 implies

|Uiu− p| ≥ (|〈p, xi〉| − |〈Uiu, xi〉|)/|xi| ≥ ni/20|xi| ≥ τi

and we obtain (5.11) by estimating

µ
{

u ∈ U
∣

∣ |〈Uiu, xi〉| ≤ ni/5
}

≤ µ
{

u ∈ U
∣

∣ |Uiu− p| ≥ τi
}

≤ e−τ2i /4µU. �

STEP 3. The inequality (5.10) fails for i = k. This follows from (5.8) since (5.6)

implies 33τk(1 + |xk|/
√
nk) <

√
nk/2,

STEP 4. The inequality (5.10) fails for each k ≤ i ≤ l. By STEP 3, if this is not the

case, there is k ≤ i < l such that (5.10) fails for i but holds for j := i+1, and by STEP 1

this implies that (5.11) fails for j.

Let Ui,j := Ui ⊕ Uj , xi,j := xi + xj and Ai,j := Ai ◦ Ui + Aj ◦ Uj . Similarly to the

proof of STEP 2, we use Lemma 10 with H = U , V = Ui,j , Z =
⊕

m∈I\{i,j} Um, the

given x and Ψ, and the Borel measure ν on Z defined by

νF =

∫

F

e−|z|2/2
∏

m∈I\{i,j}
〈z, wm〉nm

+ dL2s−4(z).

Hence Φ(u) =
∫

Z
Ψ(u+ z) dν(z) belongs to F(Ui,j, Ai,j, xi,j), and by Fubini’s Theorem

for every Borel set E ⊂ Ui,j .

µ(U−1
i,j E) =

∫

E

e−|u|2/2Φ(u)〈u, wi〉ni

+ 〈u, wj〉nj

+ dL4(u). (5.15)
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Again, similarly to STEP 2 it suffices to make appropriate estimates of the integral in

(5.15).

By Lemma 11 the integrand of (5.15) attains its maximum at a point p = pi + pj ,

where pi ∈ Ui and pj ∈ Uj , such that 〈pi, wi〉 > 0, 〈pj, wj〉 > 0 and for some λ ≥ 0,

p+ λAi,j(p− xi,j)−
niwi

〈p, wi〉
− njwj

〈p, wj〉
= 0. (5.16)

Notice that (5.16) holds coordinate-wise, i.e. for each ι = i, j,

pι + λAι(pι − xι)−
nιwι

〈pι, wι〉
= 0.

Hence by Lemma 12 for each ι = i, j at least one of the following statements holds:

(a) ||pι| −
√
nι| > 2τι;

(b) λαι ≤ 23τι/
√
nι and |pι −

√
nιwι| ≤ 25τι(1 + |xι|/

√
nι);

(c) λαι ≥ 2−3nι/(
√
nι + |xι|)2 and |〈pι, xι〉| ≥ nι/4.

In a way completely similar to end of the proof of STEP 2 we see that for each ι = i, j,

(a) fails, the condition (b) implies (5.10), and (c) implies (5.11). Since (5.10) fails for i,

we see that (b) fails and hence (c) holds for ι = i. Since (5.11) fails for j, (c) fails and

hence (b) holds for ι = j. Summarizing, (b) holds for ι = j and (c) for ι = i. Moreover,

the validity of (c) for ι = i implies that λ > 0, and we get the final contradiction by

using (5.6) to estimate

αj

αi
≤ 23τj√

nj

23(
√
ni + |xi|)2
ni

=
64τj√
nj

(

1 +
|xi|√
ni

)2

<
αj

αi
. �

STEP 5. End of proof. By STEP 4 and STEP 2, (5.11) holds for each k ≤ i ≤ l, which

is exactly the statement of (iii).

6 Invalid density theorems

Proposition 14. Suppose that λj > 0, j ∈ N, are such that for some ni, mi ∈ N satisfying

mi+1 > mi + ni + 1 and some σi ≥ 1 and ξi, τi > 0,

(i) ξi ≤ λj ≤ ξiσi whenever mi ≤ j ≤ mi + ni + 1;

(ii) σi = 1 +O(
√
ξini);

(iii) τi = O
(

ξi
√
ni min{ni, ni−1}

)

;

(iv)
∑∞

i=1 e
−τ2i <∞.
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Then for every Gaussian measure γ in a separable Hilbert space H whose covariance

operator has eigenvalues λj and for every ε > 0 there is a Borel set M ⊂ H with

γM > 1− ε such that

lim
r→0

sup
x∈H

γ(M ∩B(x, r))

γB(x, r)
= 0. (6.1)

Proof. Let C ∈ (0,∞) be such that σi ≤ 1 + C
√
ξini and τi ≤ 1

4
Cξi

√
ni min{ni, ni−1},

and choose η ∈ (0, 1) such that

18Cη ≤ 1, and 8 · 165Cη2 ≤ 1.

Recalling that existence of γ implies
∑∞

j=1 λj < ∞ and that limi→∞ τi = ∞ because

of (iv), we find i0 ∈ N such that mi0 > 1,
∑∞

j=mi0
λj < η2 and τi ≥ 1 for i ≥ i0.

Observing that then ξini < η2 for i ≥ i0 by (i), we shift the parameter i by redefining

(ni, mi, σi, ξi, τi) as (ni0+i, mi0+i, σi0+i, ξi0+i, 4τi0+i),

respectively, to achieve, in addition to (i), also validity of the following inequalities for

each i:

(v) ξini ≤ η2/16;

(vi) σi ≤ 1 + C
√
ξini, so in particular σi ≤ 1 + Cη and σi ≤ 9/8;

(vii) τi ≤ Cξi
√
ni min{ni, ni−1} if i ≥ 2, in particular τi ≤

√
ni;

(viii) τi ≥ 4 and
∑∞

i=1 e
−τ2i /16 <∞.

We recall notation introduced in Section 2: H := {x ∈ R
N | ∑∞

i=1 λix
2
i < ∞}

equipped with the norm ‖x‖ = (
∑∞

i=1 λix
2
i )

1/2, γ is the restriction of the countable

product of the one-dimensional standard Gaussian measures to H , |x| = (
∑∞

i=1 x
2
i )

1/2,

〈x, y〉 = ∑∞
i=1 xiyi when |x|, |y| <∞,B(x, r) = {y ∈ H | ‖y−x‖ ≤ r} and uj ∈ H are

defined by uj := (δi,j)i∈N, where δi,j = 1 when i = j and δi,j = 0 otherwise. Additionally,

for i ∈ N we let Hi denote

Hi := span{uj ∈ H | mi ≤ j ≤ mi + ni + 1}.

The rest of the proof consists of three steps. In the first we define the desired set M , in the

second step we introduce measures µw, and finally in the third step we apply Lemma 13

to a µw for a suitably chosen parameter w.

STEP 1. Our plan is to find for each ε > 0 a Borel set L = Lε ⊂ H and r0 > 0 such

that γL > 1 − ε and γ(L ∩ B(x, r)) ≤ εγB(x, r) for every x ∈ H and 0 < r < r0.

Clearly, the set M required in the Proposition can then be obtained as M =
⋂∞

i=1 Lε/2i .
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For the rest of the proof we fix ε > 0 and find k ∈ N, k ≥ 2, large enough that
∑∞

i=k e
−τ2i /8 < ε. We let

L :=
∞
⋂

i=k

Mi,

where Mi :=
{

x ∈ H
∣

∣

∣

∣|Hix| −
√
ni

∣

∣≤ τi
}

. Since τi ≥ 1 ≥ 1/
√
ni, we see that

τi − (
√
ni + 1−√

ni) ≥ τi − 1/(2
√
ni) ≥ τi/2.

Hence Mi ⊃
{

x ∈ H
∣

∣

∣

∣|Hix| −
√
ni + 1

∣

∣≤ τi/2
}

. Noticing that dimHi = ni + 2, we

infer from Corollary 7 with c = 1/2, n = ni +2 and λ = τi/2 that γMi ≥ 1− e−τ2i /8 and

so

γL ≥ 1−
∞
∑

i=k

e−τ2i /8 > 1− ε.

Let r0 =
√
ξknk/2 and suppose, for a contradiction, that γ(L ∩ B(x, r)) > εγB(x, r)

for some x ∈ H and 0 < r < r0. Fix such x and r and find ρ > 0 such that

γ(L ∩ B(x, r)) > εγB(x, r) + ρ. (6.2)

Choose l > k such that e−τ2
l
/4/(1 − e−τ2

l
/4) < ρ and put I = {k, k + 1, . . . , l}

and J = N \ I . Let U be the linear span of
⋃

i∈I Hi and Z the ‖ · ‖-closed linear span

of
⋃

j∈J Hj . Also denote n := dimU =
∑

i∈I(ni + 2), s := #I = l − k + 1 and

q :=
∑

i∈I ni. Lemma 10 applied with V = U , x chosen above, Ψ = 1B(x,r), and the

standard Gaussian measure ν on Z shows that the function Φ(u) =
∫

Z
Ψ(u + z) dν(z)

belongs to F(U, ‖ · ‖, Ux). Clearly, Φ ≤ 1, Φ(u) = 0 for ‖u − Ux‖ > r and by Fubini’s

Theorem for every Borel set E ⊂ U ,

γ{y ∈ B(x, r) | Uy ∈ E} = (2π)−n/2

∫

E

e−|u|2/2Φ(u) dLn(u). (6.3)

STEP 2. For i ∈ I let xi := Hix. Notice thatMi∩B(xi, r) 6= ∅ sinceMi∩B(xi, r) = ∅
would imply L ∩ B(x, r) = ∅, which contradicts (6.2). Choosing u ∈ Mi ∩ B(xi, r) and

using that τi ≤
√
ni by (vii) and |u− xi| ≤ ‖u− xi‖/

√
ξi by (i), we use (v) and r ≤ η/2

to get

|xi| ≤ |u|+ |u− xi| ≤
√
ni + τi + r/

√

ξi ≤ 2
√
ni + r/

√

ξi ≤ η/
√

ξi. (6.4)

Choose now vi ∈ Hi with |vi| = 1 such that xi = |xi|vi and put

W = {w ∈ U | 〈w, vi〉 = 0 and |Hiw| = 1 for every i ∈ I}.

As pointed out by one of the referees, it may help to notice that the set W , being a product

of mutually orthogonal spheres Si = {u ∈ Hi | 〈u, vi〉 = 0, |u| = 1}, i ∈ I , has a torus

structure.
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Let w ∈ W , w = (wi)i∈I , wi ∈ Hi. We denote Uw := span{vj , wj | j ∈ I} and define

a Borel measure µw on Uw by

µwF = (2π)−n/2

∫

F

e−|u|2/2Φ(u)
∏

j∈I
〈u, wj〉nj

+ dL2s(u). (6.5)

By (6.3) and iterated application of cylindrical coordinates, we obtain for every Borel set

E ⊂ U ,

γ{y ∈ B(x, r) | Uy ∈ E} =

∫

W

µw(E ∩ Uw) dHq. (6.6)

Using this with the orthogonal projection of L on U , so with the set

E1 := UL =
⋂

i∈I

{

x ∈ H
∣

∣

∣

∣|Hix| −
√
ni

∣

∣≤ τi
}

,

and recalling (6.2), we get

∫

W

µw(E1 ∩Uw) dHq = γ{y ∈ B(x, r) | Uy ∈ E1} ≥ γ(L∩B(x, r)) > εγB(x, r) + ρ.

Since (6.6) with E2 := U gives

γB(x, r) =

∫

W

µwUw dHq,

we conclude that
∫

W

µw(E1 ∩ Uw) dHq ≥ γ(L ∩ B(x, r)) >

∫

W

(

εµwUw + ρ (HqW )−1
)

dHq.

So there is w ∈ W such that

µw(E1 ∩ Uw) ≥ εµwUw + ρ (HqW )−1. (6.7)

STEP 3. We fix such a w and use Lemma 13 to show that this leads to a contradic-

tion. First we define the remaining parameters needed for an application of this Lemma.

For i ∈ I we let (Ui, | · |) be the span of {vi, wi} (so Uw is the space denoted by U in

Lemma 13) and choose a positive definite symmetric linear operator Ai on Ui such that

‖u‖2 = 〈u,Aiu〉 for u ∈ Ui. Using the last inequality from (vi), we see that the eigenval-

ues αi ≥ βi of Ai satisfy

ξiσi ≥ αi ≥ βi ≥ ξi ≥ 8ξiσi/9 ≥ 8αi/9 > 0.

Since ni, τi and xi have been already defined and xi is a multiple of vi, we just need to

verify the remaining inequalities required in the assumptions of Lemma 13. The inequality

τi ≥ 4 is in (viii). Using the estimate of |xi| from (6.4) and (vi), we get

18(αi − βi)|xi| ≤ 18(σi − 1)ξiη/
√

ξi ≤ 18Cηξi
√
ni ≤ αi

√
ni.
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Whenever i ≥ 1 and j = i or j = i+ 1 we use (6.4), ni ≤ η2/ξi (see (v)) and

4 · 165Cσiη2 ≤ 8 · 165Cη2 ≤ 1

to estimate

165τj(1 + |xi|/
√
ni)

2 ≤ 2 · 165Cξj
√
njni

(

1 + η2/ξini

)

≤ 2 · 165Cξj
√
njη

2/ξi + 2 · 165Cξj
√
njη

2/ξi

= 4 · 165Cσiξj
√
njη

2/σiξi

≤ √
njαj/αi.

Hence Lemma 13 may be applied and consequently at least one of the following state-

ments holds:

(a) µw

{

u ∈ Uw

∣

∣ |Uku−
√
nkwk| ≥

√
nk/2

}

≤ e−τ2
k
/4µwUw.

(b) µw

{

u ∈ Uw

∣

∣

∣

∣|Uiu| −
√
ni

∣

∣ ≤ τi
}

≤ e−τ2i /4µwUw for some i ∈ I .

(c) µw

{

u ∈ Uw

∣

∣ |〈Uiu, xi〉| ≤ ni/5
}

≤ e−τ2i /4µwUw for each i ∈ I .

We show that each of these possibilities leads to a contradiction.

Using that xk is a multiple of vk to infer that |xk −
√
nkwk| ≥

√
nk, and recalling that

Φ(u) = 0 when ‖u− Uwx‖ > r, we see that the support of µw is contained in

{

u ∈ Uw

∣

∣ ‖u− Uwx‖ ≤ r
}

⊂
{

u ∈ Uw

∣

∣ ‖Uku− xk‖ ≤ r
}

⊂
{

u ∈ Uw

∣

∣ |Uku− xk| ≤ r/
√

ξk
}

⊂
{

u ∈ Uw

∣

∣ |Uku− xk| <
√
nk/2

}

⊂
{

u ∈ Uw

∣

∣ |Uku−
√
nkwk| ≥

√
nk/2

}

,

which clearly contradicts (a).

If (b) were true, then

µw(E1 ∩ Uw) ≤ µw

{

u ∈ Uw

∣

∣

∣

∣|Uiu| −
√
ni

∣

∣ ≤ τi
}

≤ e−τ2i /4µwUw < εµwUw,

which contradicts (6.7).

Finally, we show that (c) fails as well. To this aim we observe that for any i ∈ I the

standard formulas for the Γ-function and area of the sphere (see, e.g., [5, pages 250–251])

give,

∫

Ui

e−|u|2/2〈u, wi〉ni

+ dL2(u) =

∫

R

e−t2/2dt ·
∫ ∞

0

e−t2/2tnidt = (2π)(ni+2)/2(HniWi)
−1,
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whereWi := {u ∈ Hi | |u| = 1, 〈u, vi〉 = 0}. We look at i 6= l and use the above equality

together with the facts that Φ ≤ 1 and n =
∑

i∈I(ni + 2) to get

µw

{

u ∈ Uw

∣

∣ |〈Ulu, vl〉| ≥ τl
}

≤ (2π)−n/2

∫

{u∈Uw| |〈u,vl〉|≥τl}
e−|u|2/2

∏

i∈I
〈u, wi〉ni

+ dL2s(u)

=
(

(2π)(nl+2)/2
l−1
∏

i=k

HniWi

)−1
∫

{u∈Ul| |〈u,vl〉|≥τl}
e−|u|2/2〈u, wl〉nl

+ dL2(u).

The last integrand attains its maximum at
√
nlwl and its multiple by e|u|

2/2 is log-concave.

Hence, Lemma 9 with n = 2, ϕ(u) = e−|u|2/2〈u, wl〉nl
+ , Q(u) = |u|2/2, and τ = τ 2l /2

gives

µw

{

u ∈ Uw

∣

∣ |〈Ulu, vl〉| ≥ τl
}

≤
(

(2π)(nl+2)/2
l−1
∏

i=k

HniWi

)−1
∫

{u∈Ul| |〈u,vl〉|≥τl

}
e−|u|2/2〈u, wl〉nl

+ dL2(u)

≤
(

(2π)(nl+2)/2

l−1
∏

i=k

HniWi

)−1
∫

{u∈Ul| |u−
√
nlwl|≥τl

}
e−|u|2/2〈u, wl〉nl

+ dL2(u)

≤
(

(2π)(nl+2)/2
l−1
∏

i=k

HniWi

)−1

e−τ2
l
/4

∫

Ul

e−|u|2/2〈u, wl〉nl

+ dL2(u)

= e−τ2
l
/4(HqW )−1.

Since (6.4), (vii) and (v) imply τl|xl| ≤ ητl/
√
ξl ≤ Cη

√
ξlnlnl ≤ Cη2nl ≤ nl/5, we have

{

u ∈ Uw

∣

∣ |〈Ulu, vl〉| ≤ τl
}

⊂
{

u ∈ Uw

∣

∣ |〈Ulu, xl〉| ≤ nl/5
}

.

Hence, assuming (c) holds,

µwUw ≤ µw

{

u ∈ Uw

∣

∣ |〈u, vl〉| ≤ τl
}

+ µw

{

u ∈ Uw

∣

∣ |〈u, vl〉| ≥ τl
}

≤ e−τ2
l
/4µwUw + e−τ2

l
/4(HqW )−1.

Hence

µwUw ≤ e−τ2
l
/4

1− e−τ2
l
/4

(HqW )−1.

Recalling that l satisfies e−τ2
l
/4/(1− e−τ2

l
/4) < ρ, this yields µwUw ≤ ρ (HqW )−1, which

contradicts (6.7) and so finishes the proof.



Set of positive Gaussian measure may have uniformly zero density 29

7 Proof of Theorem 1

Choose m ∈ N and 1 < p < 6/5 such that k(λk/λk+1 − 1) < p for k ≥ m. Then for

every k ≥ m,
kpλk

(k + 1)pλk+1
<

1 + p/k

(1 + 1/k)p
< 1,

and hence the sequence kpλk is increasing for k ≥ m. If it is not already the case, we

increase m so that m ≥ 2 and (1 + (m2−p + 2)/m)p < 2.

We show that the assumptions of Proposition 14 hold with mi, ni, σi, ξi, τi defined by

mi := mi,

ni := ⌈m2−p
i ⌉, i.e., ni ∈ N and m2−p

i ≤ ni < m2−p
i + 1,

σi := (1 + (ni + 1)/mi)
p,

ξi := λmi
/σi and

τi := m
3−5p/2
i .

For that, we observe that our assumptions on m imply σi ≤ 2 and make the following

estimates:

• For mi ≤ j ≤ mi + ni + 1, λj ≤ λmi
= ξiσi and λj ≥ (mi/j)

pλmi
≥ ξi; hence

ξi ≤ λj ≤ ξiσi.

• Clearly, σi − 1 = O(ni/mi) = O(m1−p
i ). On the other hand recalling that kpλk is

increasing we obtain mp
iλmi

≥ mpλm, hence λmi
≥ λmm

pm−p
i and

ξini ≥
λmi

2
m2−p

i ≥ λmm
p

2
m2−2p

i .

Hence σi = 1 +O(
√
ξini).

• If i > m and j = i or j = i− 1, then

ξi
√
ninj ≥ 1

2
λmi

m
1−p/2
i m2−p

j ≥ 1
2
m2p−2λmm

3−5p/2
i ,

and hence τi = O(ξi
√
ni min{ni, ni−1}).

• ∑∞
i=1 e

−τ2i <∞ since p < 6/5.

Hence the statement follows from Proposition 14.

Remark. In addition to those given in Theorem 1 there are many other choices of λj

satisfying the conditions of Proposition 14. In the introduction we indicated perhaps the

simplest way of choosing them which may be realized, for example, by letting λj = 32−i

for 16i−1 ≤ j ≤ 16i, with the remaining parameters required by Proposition 14 given by

ni = mi = 16i, σi = 1, ξi = 32−i, and τi = 2i.
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Acknowledgements. The research leading to these results has received funding from the European Research

Council / ERC Grant Agreement no. 291497. The third named author was supported by GAČR 16-07378S
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[18] Luděk Zajı́ček: An elementary proof of the one-dimensional density theorem, Amer. Math. Monthly

86 (1979), 297–298.


	Introduction
	Gaussian measures, other notions and notation
	Sketch of main arguments
	Concentration around maximum
	Main concentration estimates
	Invalid density theorems
	Proof of Theorem 1

