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Summary 

Chapter 1 presents a review of the background and current research regarding 

Schiff-base olefin polymerization catalysts, with special reference to the 

salicylaldimine species. An attempt is made to review trends within the current 

literature. 

Chapter 2 describes the synthesis and polymerization properties of tetradentate 

ligands with a bibenzyl backbone at titanium and zirconium centres, prepared with 

the intent of sterically hindering a 1,2-Migratory Insertion into the ligand imine 

functionality. A custom-built polymerization reactor was used to determine the 

stability of the catalytic systems. Steric protection is moderately successful in 

enhancing the stability of these systems. 

Chapter 3 reports the synthesis and detailed polymerization behaviour of a series of 

group 4 catalysts based on salicyloxazoline ligands, which should be resistant to 1,2-

Migratory Insertion. Comparisons are made between polymerization under 

different conditions, including using High-Throughput methodology to screen 

catalysts under a range of differing conditions rapidly. Such systems are extremely 

active for polymerization of ethene, but demonstrate limited stability at elevated 

temperature. 

Chapter 4 presents our investigations into the polymerization behaviour of 

salicyloxazoline catalysts containing a para-methoxy substituent on the phenoxy 

donor unit. This substituent significantly enhances the stability of the catalysts at 

elevated temperature.  



  xiv  

Chapter 5 explores the nature of the active species in polymerizations with group 4 

salicyloxazoline species. Alkyl cations of such species are generated from metal 

alkyl species with borate activators, and also from metal chloride species with 

MAO. We conclude that the primary deactivation mechanism is loss of ligand to 

aluminium co-catalyst, and that the methoxy substituent prevents this. A 

computational approach (DFT) is also applied, to examine the catalytic pathways 

which may be available to various stereoisomers of the catalyst. 

Chapter 6 details the experimental procedures used during this work. 
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1 Introduction 

1.1 Single-Site polymerization catalysts 

1.1.1 Background 

In the fifty years since the discovery of Ziegler-Natta type olefin polymerization 

catalysts,1 much work has been devoted to the development of single-site catalysts 

such as metallocenes2 and the so-called “Constrained Geometry Catalysts” (CGCs, 

Figure 1.1).3 Unlike heterogeneous catalysts such as the Ziegler-Natta systems, 

single-site catalysts have well-defined active sites, allowing systematic variation of 

the catalyst to exert a good degree of control over the resultant polymer structures. 

Until recently, the metallocene/alkylaluminium systems originally investigated by 

Kaminsky4 were the most active single-site olefin polymerization catalysts known; 

even today Cp2ZrCl2 is still the standard against which many new systems are 

compared.  

Si

N

M
Cl
Cl

CGC

M Cl
Cl

Metallocene  

Figure 1.1 – Single site catalysts 

 Of the post-metallocene olefin polymerization catalysts,5,6 those based on imine 

(and especially Schiff base) ligands have shown particular promise, and these will 

be the subject of this review. In particular we will focus on salicylimine-based 
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systems, and we will attempt where possible to relate catalyst structure to resultant 

polymerization activity and polymer properties. 

 Two of the most extensively investigated imine ligands are acen and salen7 

(Figure 1.2) which are tetradentate ligands, and usually co-ordinate in a planar trans 

manner.  

acen salen

N

O

N

O

N

OH

N

HO

 

Figure 1.2 - N2O2 Schiff Base Ligands 

 It is generally acknowledged that active single-site polymerization catalysts 

must have two cis-located sites available for and active towards olefin insertion.8 

Unsurprisingly therefore, the trans–complexes of acen and salen have not shown 

activity towards olefin polymerization. 

 Some work has shown that salen and acen (or derivatives) can adopt cis–β (i.e. 

cis,cis,cis, vide infra §1.2.1) geometry at group 4 metal centres,9 but the majority of 

examples are nevertheless of trans structures. [Zr(salen)Cl2(THF)] (in which the 

chlorides adopt cis geometry upon loss of the THF) has been shown to be a 

moderately active catalyst for ethene polymerization.10 

 Brookhart and co-workers have developed ligand systems for nickel (II) and 

palladium (II) centres, based on α-diimine11 (e.g. 1) and imine-phosphine12 (e.g. 2) 

donors (Figure 1.3) which are active catalysts for polymerization of ethene. 
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Figure 1.3 – Imine-based catalyst systems reported by Brookhart 

 The α-diimine systems were the first post-metallocene catalysts to show 

comparable activities and polymer molecular weights to the metallocenes, and have 

been comprehensively reviewed by Ittel et al.13 Variation of the ligand system and 

polymerization conditions can produce polyethene (PE) anywhere between 

oligomers and high molecular weight (MWt) PE, Mw ≈ 1,000,000 u, with optimum 

productivities in the region of 10-1000 kgPE molNi-1 bar-1 h-1. These catalysts can 

produce PE with unusual branching properties, as a result of migration of the active 

metal centre along the polymer chain. 

 Gibson and co-workers have also investigated imine based ligand systems.14 In 

1998, Gibson and Brookhart independently discovered15 a series of iron–centred 

imine-pyridine catalysts (one of the most active examples being 3) that are very 

active for ethene polymerization, producing unbranched high density polyethene 

(HDPE) of Mw typically ranging from 15,000 – 610,000 u, and with productivities of 

450 – 11,000 kgPE molFe-1 bar-1 h-1. 

N N
Fe

Cl Cl

(3)

N

 

Figure 1.4 - Brookhart/Gibson imine-pyridine system 
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1.1.2 Salicylimine Catalysts for Olefin Polymerization 

1.1.2.1 Ligand Design 

The salicylaldimine (phenoxy-imine, FI) catalyst systems (e.g. 4) discovered 

independently by Fujita and Coates16,17 have shown perhaps the greatest promise of 

the many post-metallocene systems investigated.18,19 The salicylaldimine unit allows 

for easy variations of the system on both the phenol and imine functionalities. As 

we shall see, such variations lead to profound effects on polymerization. 

 

tBu

O

N

(4)

MCl2

2

M = Ti, Zr, Hf

 

Figure 1.5 - Salicylaldimine precatalysts 

1.1.2.2 Metal Centres 

The polymerization properties of the group 4 salicylaldimine species will be 

discussed in detail in §1.3 below, this present section shall serve to briefly introduce 

the properties of such species. 

Titanium 

Titanium complexes of salicylaldimine ligands have proven to be active catalysts for 

ethene polymerization.20 Some examples using fluorinated aniline substituents on 

the imine functionality have been shown to be “living” catalysts for the 

polymerization of ethene and propene, producing high molecular weight 

polyethene (see §1.3.4). 



  5  

Zirconium 

Complexes of salicylaldimine ligands based on zirconium have shown extremely 

high activity for ethene polymerization when activated with methylaluminoxane 

(MAO), including some with productivities two orders of magnitude higher than 

[Cp2ZrCl2].17,18,21-24 Systems based on zirconium typically produce low molecular 

weight polyethene, and have been reported to produce multimodal polymer 

molecular weight distributions.25 

Hafnium 

Although there are fewer reports in the literature of investigations into the hafnium 

complexes of salicylaldimine ligands than into the titanium and zirconium 

analogues, those that have been presented17,21 suggest that the activity and product 

molecular weight of polymerizations using such species lie between those using 

titanium and zirconium based systems.  

Other Metals 

Vanadium complexes of salicylaldimine ligands have been reported to be active for 

ethene/propene copolymerization, exhibiting behaviour similar to commercial 

vanadium catalysts.26  When supported on MgCl2/EtmAl(OR)n, such complexes 

provide highly active, thermally robust catalysts for ethene polymerization.27 

 Gibson et al. have explored the properties of the chromium complexes of a range 

of salicylaldimine ligands, reporting moderate to high activity in the polymerization 

of ethene.28 They have reported forming high molecular weight linear PE with 

broad molecular weight distributions, and have suggested that the active species 

may retain only one of the initial two salicylaldimine ligands. 
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 Grubbs and co-workers have developed a series of salicylaldimine catalysts 

based on the later transition metals. The neutral Ni systems (5) tolerate heteroatoms 

and can thus co-polymerize ethene with functional additives.29 

(5)

R

O
NiN

Pri iPr
R'

L

 

Figure 1.6 - Grubbs' salicylaldimine systems 

1.2 Structures and Stability of Group 4 Complexes 

1.2.1 Stereochemistry 

There are eight different possible isomeric forms which two A,B-bidentate ligands 

and two monodentate ligands may adopt around an octahedral metal centre. This is 

shown in Figure 1.7 for the case of two N,O ligands and two chlorides; the cis–Cl 

species (a-c) also have corresponding enantiomers. 
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O
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a b c d e
cis, cis, cis* cis, cis, trans* cis, trans, cis* trans, trans,trans trans, cis, cis

* Λ enantiomer shown, Δ also exists  

Figure 1.7 - Isomers of two N,O ligands at an octahedral metal centre 

 Fujita investigated the relative energies of these isomers for species (4) where 

M = Zr, using Density Functional Theory (DFT).17 He calculated the cis,trans,cis-
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species (Figure 1.7c) to have the lowest formation enthalpy, with the other isomers 

20-40 kJ mol-1 higher in energy. The bulky phenoxy–groups are trans to each other in 

this orientation, the electron donating imine donors are trans to the electron 

withdrawing chloride ligands, and O-Ti π-bonding should occur.30 Knight has 

shown however that some such species may exist as a mixture of cis,trans,cis and 

cis,cis,cis isomers,31 with the cis,cis,cis isomer representing ~30% of the product. This 

is not reflected in the data presented by Fujita et al., but in any event the structural 

nature of the precatalyst may have little or no bearing on the nature of the active 

species in a polymerization – q.v. §1.3.1. 

1.2.2 Stability of C=N Bond 

The imine functionality in a salicylaldimine species is reactive, specifically toward 

reduction. This would be expected to significantly affect the nature of the active 

species in a polymerization, and so is of fundamental interest in the study of these 

species. 

1.2.2.1 1,2-Migratory Insertion 

In our laboratory, it has previously been shown that a biaryl-bridged 

salicylaldimine species may undergo 1,2-Migratory Insertion (MI) reactions with 

metal-bound alkyl ligands (Figure 1.8).32 
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Figure 1.8 - 1,2-MI of alkyl ligand to aldimine functionalty 
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Modification of the ligand by methyl-substitution of the phenoxy ring in the 

3-position effectively blocks the 1,2-MI deactivation pathway, although a slower 

radical decomposition pathway was demonstrated.33 The modified biaryl-bridged 

species are long-lived catalysts for ethene polymerization, albeit with far lower 

activity than the non-bridged equivalents. This latter observation has been 

attributed to increased congestion at the active site.31,34 Unbridged salicylaldimine 

species do not possess an increased lifetime when modified in the same way; they 

are believed to be insufficiently rigid to hold the methyl group in a position to block 

the MI reaction. 

1.2.2.2 Intramolecular Reduction 

A further possibility for reduction of the imine bond is the reaction with another 

component in the polymerization reaction. Typically, single-site catalysts are 

activated with an aluminium alkyl species, most commonly methylaluminoxane 

(MAO), which is present in large excess. Alternatively, they may be activated 

stoichiometrically with perfluorinated boron aryl species such as B(C6F5)3, 

[PhNHMe2][B(C6F5)4], or [CPh3][B(C6F5)4].35 When such stoichiometric activators are 

used, typically an amount of an aluminium species such as iBu3Al is added as a 

scavenger for protic impurities in solvent and monomer feeds. 

 Fujita has shown30 that the species 4 (M = Ti) produces* very different forms of 

PE when activated with iBu3Al/[Ph3C][B(C6F5)4] in comparison to those produced 

when activated with MAO; activation with MAO (1250 eq.) results in very high 

activity and poly(ethene) (PE) with low molecular weight (3310 kg mol-1 bar-1 h-1, 

Mv = 51 x 104 u), whereas activation with iBu3Al/[Ph3C][B(C6F5)4] results in 

                                                      

* Reaction conditions: 25 °C, 5 min polymerization time 
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moderate activity, but very high molecular weight (190 kg mol-1 bar-1 h-1, 

Mv = 481 x 104 u). 

 This behaviour was attributed to the reduction of the imine functionality in the 

ligand by aluminium hydride species present in iBu3Al. Indeed, reaction of the 

titanium complex with iBu3Al, followed by hydrolysis of the ligand yielded a 

salicylamine compound, whereas reaction with MAO and subsequent hydrolysis 

yielded the original salicylaldimine proligand (Figure 1.9).  

N

O

Ti

tBu

2

Cl

Cl

i) iBu3Al
ii) H2O

i) MAO
ii) H2O

NH

OH

tBu

N

OH

tBu  

Figure 1.9 - Reduction of salicylaldimine complex by iBu3Al 

1.2.2.3 Reduction-Resistant Ligands 

If the aldimine functionality in the ligand is replaced with a more substituted imine 

bond, reduction should be significantly slowed, or prevented altogether. There have 

been a number of attempts to produce such species, although as yet none have 

yielded highly active catalysts. 

Ketimines 

The synthesis of salicylketimine ligands is considerably more challenging than the 

synthesis of equivalent salicylaldimine species, and consequently complexes of such 
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are less frequently reported.36 Fujita reported forming some salicylketimine 

complexes, which showed low activity in ethene polymerization.21 

 Coates has recently developed a facile synthesis of salicylketimine compounds, 

and has found that the titanium complexes of such ligands (6) are active as catalysts 

for living polymerization of ethene when activated with MAO, albeit with low 

activity.37 In salicylaldimine species, living behaviour has only been observed in 

species possessing fluorinated aryl moieties (see §1.3.4). 

N

O

Ti

tBu

2

Cl

Cl
R

tBu

a) R = Me
b) R = Et
c) R = Ph
d) R = CF3

6  

Figure 1.10 - Titanium salicylketimine complexes 

Pyridyl Systems 

The use of pyridyl ligands as donors is widespread within single-site catalysis,5,6 

and some examples of salicyl-pyridyl systems on titanium (7) have been reported.38 

However, it is not necessarily constructive to compare directly the salicyl-pyridyl 

systems with salicylaldimine systems, since there are some fundamental differences 

between the cis, cis, trans (i.e. cis-O, trans-N) isomer in preference to the cis, trans, cis 

(i.e. cis-N, trans-O) preferred by salicylaldimines, and unlike the salicylaldimine 

complexes, a bulky substituent ortho to the oxygen donor is not required for high 

activity (see §1.3.2). 
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Figure 1.11 - Salicyl-pyridyl Systems 

Salicyloxazoline Systems 

Floriani has reported that group 4 metal alkyl complexes of salicyloxazoline 

ligands (8) could form cations when treated with [HNEt3][BPh4], but that these 

cations showed very low activity for ethene polymerization.39 Nickel complexes of 

such ligands were listed in a patent by workers at Du Pont,40 but no characterization 

or catalytic activity data were presented. 

N
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Figure 1.12 - Salicyloxazoline Ligands 

1.2.3 Metal Alkyl Species 

The great majority of reported salicylimine complexes discussed above are based on 

metal chloride centres; there are fewer reports of metal alkyl compounds. We have 

previously reported [L2Zr(CH2Ph)2] species,34 Coates has reported the formation of 

metal alkyl species with salicylketimine ligands,41 and Floriani has reported alkyls 

of salicyloxazoline ligands (vide supra). The rarity of reported group 4 metal alkyl 
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species with salicylaldimine ligands is of interest, since alkyl cations are implicated 

in the mechanism for polymerization (see §1.3.1), and are frequently observed for 

other single-site catalysts.35 

1.3 Polymerization 

1.3.1 Cation-Based Polymerization 

1.3.1.1 Cation Formation and Stability 

The active species in olefin polymerization catalyst mediated by single-site catalysts 

is generally believed to be a coordinatively unsaturated metal alkyl cation.6,17,42 

There are several possible routes to form such a species (Figure 1.13): abstraction of 

an alkyl anion, abstraction of an anionic spectator ligand such as chloride, or a 

combined alkylation/abstraction process such as that provided by MAO. 

LnM
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X

R

LnM
X

X

LnM
R

R = Alkyl
X = Halide

 

Figure 1.13 - Possible routes to formation of proposed active species 

In metallocene catalyst systems, there is good evidence that the counterion remains 

attached to the metal centre via bridging methyl groups, forming complexes of the 

type [L2M(μ-Me)2(AlMe2)]+[MeMAO]– or [L2M(Me)(μ-Me)(MAO)].43 

 Previous work in our laboratory has shown that the group 4 benzyl cations of 

salicylaldimine species formed with B(C6F5)3 show very poor stability, even at 

-78 °C.31 Recently, group 4 salicylaldimine alkyl cations have been formed by 
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reaction of the appropriate chloride species with TMA-depleted MAO.44 The reports 

by Fujita suggested that the cationic species initially formed decomposes into a 

second, inactive species (proposed to be LAlMe2), and that this decomposition was 

slower in the presence of monomer (Figure 1.14).  
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Figure 1.14 - Suggested decomposition pathway for salicylaldimine metal cations formed 

with MAO44 

A more comprehensive investigation by Talsi et al.45 confirms that the active species 

in polymerization is the alkyl cation, but goes further by establishing that a solvent 

molecule is weakly co-ordinated to the vacant site at the metal centre, and that – in 

contrast with the metallocene catalysts – the titanium methyl is not bridging to the 

MAO counterion. In contrast to the previous reports however, it was found that the 

polymeryl cation [L2TiP]+ decomposed more rapidly than the free cation, to [LAlMe2] 

and unidentified Ti3+ species (which were detected by EPR spectroscopy).  

 It seems likely that a rapid decomposition of the species believed to be 

responsible for polymer chain propagation will adversely affect the lifetime of such 

catalysts. 
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1.3.1.2 Cation Structures 

Although the stereochemistry of the precatalyst compounds being introduced to the 

polymerization reaction can be readily determined by NMR and crystallographic 

techniques, it is somewhat more challenging to directly determine the structural 

nature of the active species in the polymerization. Few alkyl cations of 

salicylaldimine catalysts have been reported, and all of those possess perfluorinated 

aryl substituents on the imine nitrogen.44,45 No crystal structures of such species 

have been presented. 

 Fujita has proposed that a number of differing geometrical isomers of the alkyl 

cation may be present in the reaction mixture,25,46 thus explaining the multimodal 

molecular weight distributions observed in the polymer produced by such systems. 

The relative formation energy of each of the cations shown in Figure 1.15 was 

calculated (DFT) for each of the complexes shown in Table 1.1.  
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Figure 1.15 - Calculated cationic structures 

 

Relative formation Energy kJ mol-1 

[relative probability of isomer] Complex R1 R2 
A B C 

Polymer 
Modality 

1 C6H5 H 0 [89%] 6.6 [9%] 11.2 [2%] 1 
2 C6H5 CH3 0 [37%] -1.2 [56%] 4.9 [7%] 2 
3 C6H5 OCH3 0 [90%] 6.9 [8%] 11.6 [2%] 2 
4 C6F5 H 0 [100%] 37.6 [0%] 29.3 [0%] 1 
5 C6F5 OCH3 0 [100%] 24.8 [0%] 22.6 [0%] 1 

Table 1.1 Formation energy and relative probability of isomers 

The resultant polymers generated from species 1, 2, 4 and 5 were found to have 

modality consistent with the predicted distribution of isomers of the cation (i.e. 

bimodal for complex 2, unimodal for 1, 4 and 5). Complex 3 however showed 

bimodal molecular weight distribution, but should be expected from the calculated 

energies to show a unimodal distribution. It seems therefore that such analysis is of 

only limited benefit. With hindsight, it seems likely that the influence of the 

counter-ion and co-ordinated polymer can not be so readily ignored. 

 The stability of the various possible isomers may only be one factor in 

determining the actual nature of the active species. It has been proposed that a 

methoxy substituent in the para position on the phenoxy ring can have a significant 

effect on stability of the active species, and therefore on the nature of the catalyst 

itself (q.v. §1.3.3) 
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1.3.2 Polymerization Activity 

One problem that arises when attempting to review the structure/activity 

relationships in this field is the infrequency with which the reported productivity of a 

particular catalyst system is deconvoluted into its component activity and lifetime.  

1.3.2.1 Steric Bulk 

It has been repeatedly observed that for the salicylaldimine catalysts, a large steric 

bulk ortho to the phenoxy donor is critical for high-yielding polymerization.17,21,23,47 It 

has been proposed that two factors may explain this effect: the bulk may protect the 

oxygen atom from co-ordination by Lewis acids (co-catalyst, or another molecule of 

the active cationic species),18,23,48 or it may be responsible for enhancing the 

separation of the ion pair.48,49 

1.3.2.2 Metal Centre 

The activity of salicylaldimine systems towards ethene polymerization varies 

considerably with the choice of metal. Titanium systems typically show significantly 

lower productivity than the zirconium homologues, but produce higher molecular 

weight polymer.18 During polymerization of ethene with 9/MAO, the titanium 

system shows an activity of 3.58 kgPE mmol-1 bar-1 h-1 and produces polymer with 

Mv = 32.6 x 104 u whereas the zirconium system shows activity of 519 kgPE mmol-1 

bar-1 h-1 with Mv = 1 x 104 u. 
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Figure 1.16 – Basic salicylaldimine complex structure 

 Titanium–based catalysts have been noted to give disproportionately high 

activity in n-hexane compared to toluene.30 This has been attributed to the 

elimination of competition between toluene and ethene for co-ordination at the 

active site, which is not unprecedented.50  

 The hafnium complexes have been less frequently reported than the titanium or 

zirconium species, but seem to show intermediate behaviour – moderate molecular 

weight and moderate activity.17,21 

1.3.3 Catalyst Deactivation 

When attempting to understand the nature of polymerization catalysts, it is of 

fundamental importance to differentiate between activity and lifetime. Much of the 

published work regarding salicylaldimine catalysts makes no distinction between 

the two components. Reported experiments typically utilize very short reaction 

times, and operate at approximately room temperature, where deactivation is likely 

to be slow.21-24 It has been the experience of our laboratory that salicylaldimine 

systems show limited lifetimes, especially at industrially favoured temperatures 

(≥ 50 °C).31 

 There are several possible routes to deactivation of the active species in 

polymerization: the most frequently proposed are reduction of the imine bond, 
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which may itself yield a catalytically active species (q.v. §1.2.2.2), or loss of ligand to 

aluminium (q.v. §1.3.1), which probably will not.  

 In an attempt to investigate the importance of ligand loss toward catalyst 

activity and lifetime, Fujita and co-workers synthesized a series of zirconium 

salicylaldimine catalysts possessing methoxy–substituents on the phenoxy ring, para 

to the oxygen donor, with the intention of strengthening the Zr–O bonds.51 They 

determined that the species including the methoxy functionality were substantially 

more “active” at high temperature than those without. It is impossible to determine 

using the data presented whether this modification has improved activity per se or 

has in fact improved lifetime, but the net result is an observed increase in 

productivity.  

 It was proposed that this enhancement in “activity” was caused by increasing 

the electron-donating ability of the ligand, but results obtained when the N-

substituent was varied are inconsistent with this, with cyclohexyl and n-hexyl 

substituents enhancing “activity” at high temperature, compared to a phenyl 

substituent. 

1.3.4 Living Polymerization 

There have been several examples of salicylimine catalysts which are believed to 

show “living” polymerization behaviour (i.e. the rates of chain transfer and 

termination reactions are zero).  

1.3.4.1 Fluoroaryl Species 

The first class of salicylimine group 4 catalysts reported as demonstrating living 

polymerization behaviour (for both ethene and propene) contained fluorine 

substituted aryl groups attached to the imine nitrogen. 
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 It has been proposed that an unprecedented attractive interaction between the 

fluorine ortho to the imine nitrogen and the β-hydrogen on the growing polymer 

chain (Figure 1.17) prevents chain-transfers, and this appears to be backed by 

theoretical and structural studies,52,53 including a recent neutron-diffraction study 

demonstrating [C–H···F–C] in titanium benzyl complexes.54  
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Figure 1.17 – “Living” catalysts 

However, studies utilizing QM and QM/MM techniques have suggested that the 

effect of the fluorine substituents is actually a steric effect.55-57 Chain propagation 

occurs via a compact four-centre transition state, whereas for β-hydride transfer to 

monomer a larger six-centre transition state is required. The presence of fluorine 

atoms in the ortho positions destabilizes the more sterically demanding transition to 

β-hydride transfer.56 This is conceptually similar to the way in which 

2,2’-substituted rac-bis(1-indenyl) ansa-metallocenes57 and square-planar Brookhart–

type systems13 are believed to operate. 

1.3.4.2 Ketimine Species 

The salicylketimine systems developed by Coates37 (7, see §1.2.2.3) also show living 

behaviour for polymerization of ethene, albeit at a low activity. This is of particular 

note since they do not have the fluorine substituents on the imine substituent 

necessary for living polymerization with salicylaldimine species (vide supra).  
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1.3.5 Polymer Properties 

Salicylaldimine catalyst systems can produce a number of novel polyolefinic 

materials, and a recent review has comprehensively discussed the nature of these 

materials and the use of salicylaldimine catalysts in their production.59 The 

following section of this introduction will briefly reiterate the classes of material 

available, and will attempt to relate the structure of the catalyst system to the 

materials produced.  

1.3.5.1 Poly(ethene) 

Molecular Weight Control 

Salicylaldimine catalysts produce high-density PE (HDPE), i.e. there is virtually no 

branching of the polymer chains. Variation of the ligand in the catalyst system 

produces substantial variation in the polymer produced, with molecular weight 

being variable between 103 and 107 u. 

 There does not appear to be a clear relationship between ligand structure and 

polymer molecular weight, but several factors play a role. Increased bulk on the 

substituent on the imine nitrogen usually results in a higher molecular weight.17,24 

Ortho-fluorination of an aryl substituent also increases the molecular weight of the 

polymer produced (q.v. §1.3.4.1). It seems likely that both effects are due to 

hindrance of β-hydride transfer from the growing polymer chain. 

 As previously discussed, it is believed that differing isomers of the active species 

present in the reaction mixture are responsible for multimodal polymer molecular 

weight distributions observed with some of these systems (q.v. §1.3.1.2). 
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 Activation of some precatalysts with iBu3Al has been shown to reduce the imine 

functionality to amine, resulting in a less active system, but one which produces 

much higher molecular weight PE22,30 (q.v. §1.2.2.2). 

 The choice of metal centre also plays a role in determining the molecular weight 

of the PE produced, varying in the order Ti > Hf > Zr.17,21  

Vinyl Terminated Polymers 

Some salicylaldimine catalyst systems, in particular those with cycloalkyl 

substituents on the imine nitrogen, give low molecular weight PE (Mw = 2000–

4000 u) with a high proportion (>90%) of vinyl unsaturation at one of the chain 

ends.60 This is also consistent with β-hydride elimination to monomer being the 

dominant termination reaction. 

 Vinyl terminated low molecular weight PEs are of interest due to the reactivity 

of the vinyl group. They may be used as intermediates in the formation of more 

complex polymer structures, for example as “macromonomers” for incorporation 

into a long-chain-branched PE system,61 by further functionalisation to form end-

functionalized PEs, or in the formation of block copolymers containing a PE 

segment and e.g. a polar polymer segment. 

1.3.5.2 Poly(propene) 

Salicylaldimine catalysts can produce a number of previously inaccessible 

poly(propene) (PP) products. In many cases the nature of the active species, and the 

mechanism for polymer insertion are unclear – hence precluding predictive design 

of catalyst systems. This is well put by Talarico and Cavallo:56 

“‘Catalyst design’, meaning the rational invention of a well-defined active 

species for a targeted application, is often associated with the metallocene 
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and post-metallocene breakthroughs in stereoselective olefin polymerization. 

The rapid and apparently endless implementation of new catalysts, leading 

to an amazing variety of largely unprecedented homopolymer and 

copolymer architectures, is actually perceived as a most convincing 

demonstration of the said association. In reality, designing one such catalyst 

from scratch is still a dream, and behind all reported discoveries is the 

classical mix of hard work and serendipity.” 

Syndiotactic Poly(propene) 

Salicylaldimine catalysts have demonstrated the ability to generate a wide range of 

PP architectures, depending on the choice of ligand, metal centre, and co-

catalyst/activator. Those based on titanium have shown the ability to produce 

highly syndiotactic PP (sPP) with very high peak melting temperatures (Tm).47,53  

This is somewhat surprising, since the precatalyst species preferentially form the 

C2-symmetric cis,trans,cis (i.e. cis-N, trans-O) isomers. It has been assumed that some 

fluxional process of the active species is responsible for this behaviour,16 and some 

theoretical (QM/MM-DFT) work57 has suggested that the mechanism is a site-

inversion between the Δ and Λ diastereoisomers of the proposed active species.  

 The polymerization mechanism in catalysts which produce sPP appears to be an 

initial 1,2-insertion of monomer followed by 2,1-insertion as the predominant 

propagation step.53,62 This is a very unusual mechanism, and has led to some unique 

polymer structures from diene monomers.63 

 The zirconium and hafnium analogues appear to favour a 1,2 insertion 

mechanism, and produce only slightly syndiotactic PPs.64 

 Similarly to ethene polymerization, a bulky substituent ortho to the phenoxy-

oxygen appears to be essential for high activity but in this case also for 
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syndioselectivity.47,53 This is not in itself enough to explain the relationship between 

catalyst structure and resultant PP, however; it appears that changes to ligand, 

metal, co-catalyst (even down to variations in the batch of MAO used), all affect the 

syndiotacticity of the product.59 

Isotactic Poly(propene) 

 Few examples of salicylaldimine ligands on zirconium and hafnium show any 

propene polymerization activity when activated with MAO, and those that do all 

have perfluorinated aryl substituents on the imine nitrogen, and produce very low 

molecular weight atactic PP (aPP) that may perhaps more accurately be described as 

oligomers.64 This is consistent with QM/MM analysis of the possible transition 

states during propene polymerization57 (i.e. to β-H elimination or to propagation) at 

different metal centres, which concur well with experimental results (c.f. §1.3.4.1). 

 When activated with iBu3Al/[(Ph3C)B(C6F5)4] (and hence presumably converted 

to salicylamine species, q.v. §1.2.2.2), some examples can produce moderately to 

highly isotactic PP (iPP).65 The best performance comes from those with adamantyl 

substituents ortho to the salicylic oxygen, and cyclohexyl substituents on the imine 

nitrogen, which generate very isotactic PPs with extremely high peak melting 

temperatures (up to 165 °C).66 
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Ti

MAO

MgCl2
BAr F

sPP

sPP

High MWt aPP

Zr/Hf

MAO

MgCl2
BAr F

Low MWt (oligomeric) aPP
(only with perfluorinated aryl substituents)

Not Reported

High MWt iPP  

Figure 1.18 - Effect of metal centre and co-catalyst on propene polymerization 

1.4 Conclusions 

A wide range of salicylimine catalysts have been developed, and are capable of 

producing many polyolefinic materials, but there is currently little ability to design a 

catalyst in this series to produce a given product. Further, the reduced activity of 

most of these catalyst series at elevated temperatures presents a significant obstacle 

to industrial application of these systems. In addition, the majority of reported 

species possess an aniline moiety, which would render material produced with such 

catalysts unusable in many key applications. 

 At the time we began this work, the mechanism of catalyst deactivation was 

unknown, and no reported data differentiated between activity and productivity, 

which is fundamental to understanding the catalyst system during polymerization. 

We recognized the potential importance of these systems, and our investigations 

were intended to shed light on possible ways to enhance their industrial 

applicability. 
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2 C2–bridged Salicylaldiminato Complexes 

2.1 Introduction 

One of the key issues concerning the Mitsui salicylaldimine catalysts1 is the loss of 

productivity at elevated temperatures (See §1.2.2, §1.3.3). One possible cause of 

catalyst deactivation is 1,2-Migratory Insertion of a metal-bound alkyl into the imine 

C=N unit, and previous researchers within our laboratory have investigated this 

process in the tetradentate biaryl–bridged system 1.2,3  

 

N
Me

N
Me

R1 R2

R3

R4HOOHR4

R3

R2 R1

1  

Figure 2.1 Biaryl precursor and ligand system 

As discussed in §1.2.2.1, methyl substitution at the R1 positions of 1 resulted in steric 

blocking of the MI reaction, and the complexes were shown to decompose instead 

via a slower radical pathway when a benzyl co-ligand was present. Such modified 

biaryl complexes are long-lived catalysts for ethylene polymerization, albeit with far 

lower activity than the analogous unbridged analogues. 

 The same increase in longevity was not observed for the unbridged 

salicylaldimine species. This was attributed to the increased flexibility of such 

complexes allowing the methyl group to move away from the site where it could 

block the MI. 
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 We proposed that the reduction in activity observed in the biaryl-bridged 

systems 1 compared to unbridged systems was due to increased crowding at the 

active site during polymerization. Thus, lengthening the bridge between the aryl 

functionalities may be expected to reduce the constraint in the complexes, and 

hopefully provide active catalysts whilst still providing enough rigidity for the 

methyl substituent to be effective in retarding MI reactions. 

 Thakkar and Patil have previously synthesised Cu(II), Ni(II) and Co(II) 

complexes of ligands such as 2, but their work was limited to characterization of the 

metal complexes and did not extend to investigations of reactivity.4 

N

HO
N

OH

2

R

R

 

 Fujita has previously investigated conceptually similar tetradentate ligands such 

as 3 (Figure 2.2), containing salicylaldimine units bridged through the imine unit, 

with varying length methylene chains (n = 2 – 6).5 Ethene polymerization 

productivity was reported to increase with increasing n, and activity is reported to 

be higher at elevated temperature. However, the catalysts were only tested for very 

short periods (2 or 5 minutes),* and correspondingly the issue of deactivation was 

not addressed. Furthermore, the change from the aryl-substituted imines to these 

alkyl-substituted species may reasonably be expected to alter the properties of the 

catalyst system. 
                                                      

* In their paper, Fujita et al. do not give details of the polymerization times at elevated 

temperature. We have calculated the reaction times from the reported productivities. 
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N

HO

3

R

N

OH
R

n

 

Figure 2.2 - N-Bridged salicylaldimines 

2.2 Bibenzyl systems 

2.2.1 Synthesis of proligands, H2L1-4 

Salicylaldehydes were synthesised via the method reported by Hofsløkken6 and 

optimised by Dr. Paul Knight in this laboratory (Scheme 2.1). 

OH OH OMgCl2
NEt3
paraformaldehyde

reflux 2.5 h
R R  

Scheme 2.1 - Synthesis of substituted salicylaldehydes 

The imine proligands shown in Table 2.1 were synthesised by condensation 

between 1,1’-ethylenedianiline and the appropriate salicylaldehyde in good yield, as 

shown in Scheme 2.2. Initially, we concentrated on the species containing a tBu 

substituent ortho to the phenoxy-oxygen (i.e. L1 and L2), since steric bulk in this 

position is believed to be essential for activity of phenoxy-imine catalysts. The 

species with less bulky substituents were investigated later, in response to our 

attempts to form metal alkyls. The methoxy-substituted species H2L5 was 

investigated following the results discussed in Chapter 3. For comparison, the 

unbridged ligands HL6 and HL7 were also used, as prepared by Dr Paul Knight in 

this laboratory (Figure 2.3)2,7. 
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NH2

H2N

OHO
R3

R1

R2

N

HO
R3

R1
R2

N

OH
R3

R1

R2

EtOH
reflux 12 h

2

 

Scheme 2.2 – Synthesis of bibenzyl proligands 

 R1 R2 R3 Yield 

H2L1 H Me tBu 86% 

H2L2 Me H tBu 95% 

H2L3 H Me Me 92% 

H2L4 Me H Me 89% 

H2L5 H OMe tBu 71% 

Table 2.1 – Proligands synthesised 

N

HO
tBu

N

HO
tBu

HL6 HL7
 

Figure 2.3 - Unbridged proligands for comparison with H2L1-5 

2.2.2 Synthesis and characterization of metal chloride complexes 

The species [LnMCl2] (n = 1, 2, M = Ti, Zr) were synthesised in good yield (~60-70%) 

via the routes shown in Scheme 2.3, and were purified by sublimation (vide infra). 

The unbridged titanium complexes [Ln2TiCl2] (n = 6, 7) were synthesised in the same 

fashion. Attempts to make [L5MCl2] (M = Ti, Zr) via salt-metathesis (Li, Na, K) 

resulted in intractable mixtures which decomposed upon attempted sublimation. 
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H2Ln Na2Ln
THF

ZrCl4.(THF)2

LnZrCl2
THF

TiCl4.(THF)2

LnTiCl2
THF

excess
NaH

 

Scheme 2.3 – Synthesis of metal chloride complexes 

2.2.2.1 Zirconium chloride complexes 

The zirconium chloride complexes [LnZrCl2] (n = 1,2) were synthesised by salt 

metathesis between the sodium salts Na2L1 and Na2L2 and [ZrCl4(THF)2]. The 

products were isolated by sublimation at ~300 °C and 10–6 bar. 1H NMR studies 

suggest that there are two products formed, in a ratio of approximately 1:4. The 

minor product gave sharp signals in 1H NMR spectra at 298 K, whereas the major 

product gave much broader signals. Upon cooling to 183 K, the 1H NMR signals 

from the major product became sharp. The signals from the minor product are 

consistent with a C2-symmetrical cis-α species (Figure 2.4). The major product is an 

unsymmetrical species, i.e. the cis-β isomer. Since the exchange process causing line 

broadening evidently does not facilitate exchange between the two isomers on this 

timescale it is likely to be associated with conformational fluxionality in the nine-

membered chelate structure. 

M
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N Cl

Cl

O
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M
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N O
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Cl

O

cis-α cis-β  

Figure 2.4 - cis-α and cis-β isomers 

2.2.2.2 Titanium chloride complexes 

Reaction of H2L1 and H2L2 with [TiCl4(THF)2] yielded crude products with 1H NMR 

spectra which indicated the presence of –OH groups, suggesting that species such as 
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[HLnTiClx(THF)y] were present. After sublimation at ~300 °C and 10–6 bar however, 

the –OH resonance is not detected, and the desired [TiLnCl2] (n = 1,2) complexes 

were isolated. 1H NMR spectrum shows the presence of one unsymmetrical 

compound, which we assign as the cis-β isomer. In contrast to the zirconium species, 

these resonances are sharp at 298K. 

 The molecular structure of [L2TiCl2] was determined by Dr Paul O’Shaugnessey 

using single-crystal X-ray diffractometry (XRD). The structure of the complex was 

thus confirmed as the cis-β isomer (Figure 2.6). To our knowledge this is the first 

example of a cis-β (or indeed a cis,cis,cis) structure of a titanium salicylaldimine. A 

number of cis,trans,cis (c.f. cis-α) structures have been reported however,7-10 and the 

bond distances and angles for [L2TiCl2] are unremarkable compared to these – for 

example [(4)2TiCl2] reported by Coates et al.9 (Table 2.2). 

OH

tBu

tBu
N

4

N
Me

N
Me

tBu

tBuHOOHtBu

tBu

5  

Figure 2.5 - Proligands used in comparison complexes 
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Figure 2.6 – Molecular structure of [L2TiCl2] (Hydrogen atoms omitted for clarity). 

Probability ellipsoids are set to the 50% level 

[L2TiCl2] [(4)2TiCl2]9  
Bond Length (Å) Bond Length (Å) 

Ti(1)-O(1) 1.828(3) Ti(1)-O(1) 1.8343(19) 
Ti(1)-O(2) 1.837(3) Ti(1)-O(2) 1.8390(19) 
Ti(1)-N(1) 2.240(4) Ti(1)-N(1) 2.202(2) 
Ti(1)-N(2) 2.239(4) Ti(1)-N(2) 2.219(2) 
Ti(1)-Cl(1) 2.3174(14) Ti(1)-Cl(1) 2.3098(9) 
Ti(1)-Cl(2) 2.3075(14) Ti(1)-Cl(2) 2.3175(8) 

Bonds Angle (°) Bonds Angle (°) 
O(1)-Ti(1)-N(2) 170.38(13) O(1)-Ti(1)-O(2) 171.39(8) 
O(1)-Ti(1)-N(1) 80.69(13) O(1)-Ti(1)-N(1) 81.06(8) 
O(2)-Ti(1)-N(2) 80.18(13) O(2)-Ti(1)-N(2) 79.91(8) 
O(2)-Ti(1)-N(1) 85.12(13) O(1)-Ti(1)-N(2) 92.36(9) 
N(2)-Ti(1)-N(1) 89.93(13) N(1)-Ti(1)-N(2) 83.49(8) 
Cl(2)-Ti(1)-Cl(1) 95.59(5) Cl(1)-Ti-Cl(2) 98.58(3) 
C(1)-O(1)-Ti(1) 140.4(3) O(2)-Ti(1)-N(1) 94.21(8) 
C(39)-O(2)-Ti(1) 145.3(3)   

Table 2.2 - Selected bond angles and distances for [L2TiCl2] with comparison to the 

reported molecular structure of [(4)2TiCl2]  
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Although the geometry at the metal is similar between the catalyst reported here 

and those previously reported, there are significant differences between the steric 

environments of the active sites (Figure 2.7).  

 (a) (b) (c) 

View toward 
active site 

  

View along 
Cl-Cl axis 

 

Figure 2.7 - Space filling models of [L2TiCl2] (a) from XRD structure compared to 

[(4)2TiCl2] (b) and [(5)TiBr2] (c) from reported XRD structures9,10 

In [(4)2TiCl2] and [(5)TiBr2] the halide ligands are equivalent, due to the C2-

symmetrical geometry of the systems, whereas in [L2TiCl2] the chlorides are 

inequivalent, due to the C1-symmetrical cis-β geometry. 

 [(4)2TiCl2] is relatively uncongested around the active site, in comparison to 

[(5)TiBr2]. This increased congestion of the active site has been previously reported 
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to be responsible for a substantial reduction in catalytic activity of the zirconium 

analogues, compared to unbridged catalysts.2,3 The active site of [L2TiCl2] is 

considerably more congested than that of the unbridged [(4)2TiCl2]; an aryl group is 

forced toward the active site, restricting approach to both chloride ligands from 

below (as depicted in Figure 2.7). 

2.3 Polymerization Testing 

Upon activation with MAO, the titanium and zirconium chloride complexes of L1 

and L2 were found to catalyse ethene polymerization at ambient and elevated 

temperatures. 

2.3.1 Methodology 

2.3.1.1 Schlenk Test 

The most common method of testing catalytic activity is what might be called a 

“Schlenk-test,” whereby a reaction is allowed to proceed for a known period of time 

before quenching. The “activity” reported is actually the bulk productivity over the 

measured timeframe. These catalysts were tested using this methodology, primarily 

to allow for comparison with other work underway or recently completed within 

the group.2,3 

2.3.1.2 Gas Pressure Burette 

In order to quantify productivity of the catalysis over time, and thus gain 

information on catalyst lifetime, we constructed a gas pressure burette system to 

facilitate ethene uptake measurements during the polymerization reactions. In such 

systems, gas is allowed to flow from a storage tank through a regulator into the 
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reaction vessel. By measuring the change in pressure of the storage tank, the gas 

uptake can be calculated. 

Gas Systems 

The equipment was constructed as shown in schematically in Figure 2.8 (Page 41), 

details are given in Appendix 1. The equipment is operated as follows: prior to a 

reaction, ethene is passed through a drying train consisting of BASF R3-11G 

deoxygenating agent and 3Å molecular sieves (E-2), and a filter (E-3), and then 

stored in an appropriately sized pressure burette (E-4, E-5, or E-6) at ca. 20 bar. 

During the reaction, the supply valve (V-5) is closed, and gas passes from the 

burette through the regulator (V-8) into the reaction vessel (E-8) at between 1 and 7 

bar as appropriate. 

Data Acquisition and Processing 

The pressure in the gas pressure burette is measured by a pressure transducer (I-1), 

and the temperature in the reactor is measured by a thermocouple (I-3). Data from 

the sensors is digitised by process meters (I-5 and I-6), and sampled at a selectable 

frequency by an attached PC (I-4), usually 1 s-1. 

 We wrote custom data acquisition software using the Java programming 

language,11 utilising the open-source libraries JFreeChart12 and RXTX13 for chart 

display and RS232 port control respectively. The software is controlled through a 

graphical user interface, and outputs data in CSV format.  
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Figure 2.8 - Gas Pressure Burette Schematic 

 The control software performs the conversion from pressure in the burette to 

moles of gas taken up, by applying the second-order virial equation of state14 

(Equation 2.1), due to the non-ideal behaviour of ethene. 
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Equation 2.2 

B = 2nd virial coefficient 

n = number of mols 

P = Pressure 

R = Gas Constant 

T = Temperature 

V = Total volume 

Vm = Molar Volume 
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This may be rearranged to the quadratic form shown in Equation 2.2, which may in 

turn be solved using the standard numerical quadratic solution, resulting in the 

form shown in Equation 2.3, which is solved by the software for each data point. 
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Equation 2.3 

Following the reaction, the pressure dataset is processed in Microcal Origin15 by 

applying a Savitzky-Golay smoothing method with 5th order polynomial16 to return 

the 1st derivative of the data, with an aperture of ±25 s. The Savitsky-Golay function 

is appropriate for smoothing experimental results due to its sensitivity to short-

duration events in the input data. In some cases, where the ethene uptake rate is 

very low, a 120 point FFT filter is applied to the derivative data, to remove high-

frequency noise. 

2.3.2 Results 

2.3.2.1 Initial results 

When activated with MAO, the precatalysts [LnTiCl2] (n = 1,2,6,7) were active for 

ethene polymerization,* the results are shown in Table 2.3. The experiments with 

                                                      

* Conditions: 3 µmol precatalyst, 500 ml toluene inc. 4ml 10% MAO/toluene, 1.2 bar C2. 

Under these conditions, the polymer produced has a “stringy” consistency, necessitating 

powerful overhead stirring of the reaction. 
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longer reaction times show lower measured productivities (Figure 2.9) and only 

limited variation in product molecular weights. 

Precatalyst Time 
(min) 

Polymer 
Yield (g) 

Productivity 
(kg mol-1 bar-1 h-1) Mn (u) Mw (u) PDi 

[L1TiCl2] 15 0.33 3.7 x 102 101,000 204,000 2.0 
[L1TiCl2] 60 0.45 1.3 x 102 113,000 233,000 2.1 
[L1TiCl2] 120 0.35 4.9 x 101 121,000 256,000 2.0 
[L2TiCl2] 15 0.94 1.0 x 103 182,000 398,000 2.2 
[L2TiCl2] 60 1.13 3.1 x 102 117,000 377,000 3.2 
[L2TiCl2] 120 1.17 1.6 x 102 137,000 370,000 2.7 
[L6TiCl2] 60 1.27 3.5 x 102 110,000 299,000 2.7 
[L7TiCl2] 60 0.67 1.9 x 102 61,300 256,000 4.2 

Table 2.3 - Initial productivity results for LnTiCl2 species at 50 °C 
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Figure 2.9 - Initial productivity results for LnTiCl2 species at 50 °C 

2.3.2.2 Activity profiling 

The catalysts were tested using the gas pressure burette apparatus, utilizing a much 

lower catalyst loading to facilitate easier stirring. The activity profiles of the 
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titanium species are shown in Figure 2.10, at 25 °C and 50 °C,* and the experimental 

results are summarized in Table 2.4. 
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Figure 2.10 Reaction profiles for [LnTiCl2] at 20 °C (left) and 50 °C (right) 

Precatalyst Temp. (°C) Yield (g) 
Productivity 

(kg mol-1 bar-1 h-

1) 
Mn (u) Mw (u) PDi 

[L1TiCl2] 25 3.72 2060 142,000 309,000 2.2 
[L2TiCl2] 25 4.34 2452 195,000 449,000 2.3 
[L1TiCl2] 50 0.58 321 56,200 214,000 3.8 
[L2TiCl2] 50 1.51 791 179,000 450,000 2.5 

Table 2.4 - LnTiCl2 ethene polymerization results 
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Figure 2.11 - GPC Results for [LnTiCl2] Catalysis 

It is clear from these charts that the variation of substitution has affected the course 

of the polymerization reaction. At 20 °C, both complexes show an initial high 

                                                      

* Conditions: 1.5 µmol precat., 100 ml toluene inc. 5ml 10% MAO/toluene, 1.2 bar C2, 1 h  
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activity, followed by a gradual loss of activity. The “protected” [L2TiCl2] species 

shows a slower loss of activity than the unprotected L1 species. At 50 °C, the effect is 

more pronounced, with both species suffering rapid loss of activity. However, 

whereas the unprotected species shows almost no activity after 600 s, the protected 

species still shows activity of around 200 kgPE mol-1 bar-1 h-1 after an hour (Figure 

2.12).  
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Figure 2.12 – [LnTiCl2] species at 50 °C, expanded vertical scale 

The “protected” [L2TiCl2] catalyst also produces polymer with higher MWt than 

[L1TiCl2], which suggests that the rate of polymer chain termination or transfer is 

lower for the L2 species.  

 The zirconium complexes were also tested,* and found to have much lower 

productivities. The ethene uptake was too low to obtain useful reaction profile data, 

but the results are summarized in Table 2.5. In all cases, the MWDs were 

multimodal (Figure 2.13), and it was possible to deconvolute the separate 

components. 

                                                      

* Conditions: 100 ml toluene inc. 5ml 10% MAO/toluene, 1.2 bar C2, 1 h 
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Precatalyst Cat. 
(mmol) 

Temp. 
(°C) 

Yield 
(g) 

Productivity 
(kg mol-1 bar-1 h-

1) 
Mn (u) Mw (u) PDi 

[L1ZrCl2] 2.8 20 0.13 39 900 31,400 (34.9) 
High     6,800 52,800 7.8 
Low     400 550 1.4 

[L2ZrCl2] 1.5 20 0.20 114 2,400 55,800 (23.3) 
High     253,000 434,000 1.7 
Mid     6,300 11,900 1.9 
Low     400 520 1.3 

[L1ZrCl2] 6.0 50 trace trace – – – 
[L2ZrCl2] 6.0 50 0.10 14 3,470 45,800 (13.2) 

High     86,900 131,000 1.5 
Low     2,670 10,300 3.9 

High, Mid, Low refer to the MWt of the peak in question. 

Table 2.5 - LnZrCl2 ethene polymerization results 
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Figure 2.13 - GPC Results for LnZrCl2 Catalysis 

2.3.2.3 Industrially-Relevant Conditions 

In collaboration with Theo Smit (Imperial College, London), we tested the titanium 

catalyst systems using an autoclave system, under conditions somewhat different to 

those we normally employ.* The activity profiles are shown below (Figure 2.14). It 

                                                      

* 1 L autoclave reactor, 10 μmol catalyst, 400 ml isobutane, 4 bar C2, 2 mmol MAO scavenger, 

catalysts pre-activated with 200 eq. MAO before injection. C2 uptake measured with a gas-

flow meter. 
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can be seen that the gas-uptake profiles recorded are very similar to those we 

observed using our gas pressure burette equipment. 
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Figure 2.14 - Gas Uptake for [LnTiCl2] at 25 °C (left) and 50 °C (right) 

2.4 Stilbene-based Complexes 

2.4.1 Proligand Synthesis 

In an attempt to increase the rigidity of the ligand system around the metal, we 

synthesized analogues of L1 and L2 utilizing a diaminostilbene backbone. 2,2’-

diaminostilbene was synthesized in two steps from 2-nitrobenzyl chloride, using the 

methods of Bischoff and Thiele (Scheme 2.4).17 

NO2

Cl

NO2

NO2KOH

EtOH

1. SnCl2/HCl
2. KOH

NH2

NH2

17% 77%
AcOH

 

Scheme 2.4 - Synthesis of 2,2'-diaminostilbene 

The ligands L8 and L9 were synthesized via condensation with the appropriate 

salicylaldehyde (Scheme 2.5). 
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Scheme 2.5 - Synthesis of stilbene-based proligands 

 R1 R2 Yield 

H2L8 H Me 93% 

H2L9 Me H 95% 

Table 2.6 - Stilbene proligands synthesized 

2.4.2 Complexation Behaviour 

Attempts to make the species [L8,9TiCl2] yielded products with NMR spectra more 

complex than expected and which could not be assigned initially. However, a 

crystal of [L8TiCl2] suitable for X-Ray structure determination was grown from 

DCM/Pentane, and the molecular structure is shown in Figure 2.16. The structure of 

one metal unit is shown in Figure 2.17. 

 The complex is an oxygen-bridged dimer in which the ligand has cyclized to 

form a quinoline unit (Figure 2.15). The source of the oxygen can not be determined 

with any certainty, but inadvertent ingress of water, or degradation of THF would 

seem to be the most probable explanations.  

N

N

N

N  

Figure 2.15 - Cyclization of L8 
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The asymmetric unit contains the quinoline complex, one chloride ligand, titanium 

and bridging oxygen, with a dimer in the unit cell. The bridging oxygen lies on a 

special position. There is a disordered molecule of DCM present; the disorder was 

modelled as a rotation about the Cl-Cl axis with major to minor occupancies of 

55:45. 

 The bond angles throughout the quinoline unit are 120°, and a hydrogen at 

C(11) was found in a difference Fourier map, demonstrating that C(11) is  sp2 

hybridised. No hydrogen was found at N(99). Together, this is good evidence for 

ligand having being oxidized to the quinoline. 

 The titanium centres are 5-coordinate (slightly distorted trigonal bipyramidal), 

and it is of note that the angles through the phenoxy donors differ significantly – 

165° for C(41)-O(1)-Ti(1) vs. 138° for C(7)-O(2)-Ti(1). The bond lengths from the 

titanium centre to the ligands all compare well with examples of oxo-bridged 

titanium species,18 although as there are no X-Ray structures of such 5-co-ordinate 

(N,O,O,O,Cl) O-bridged titanium species recorded in the literature, comparisons are 

necessarily indirect.  

Bond Length (Å) 
Ti(1)-O(1) 1.819(4) 
Ti(1)-O(2) 1.843(4) 
Ti(1)-O(3) 1.8214(10) 
Ti(1)-N(1) 2.190(5) 
Ti(1)-Cl(1) 2.3403(19) 

  
Bonds Angle (°) 

O(1)-Ti(1)-O(2) 126.52(18) 
O(2)-Ti(1)-O(3) 111.75(14) 
O(2)-Ti(1)-O(1) 126.52(18) 
O(2)-Ti(1)-N(1) 81.67(18) 
Cl(1)-Ti(1)-N(1) 172.88(14) 

C(38)-C(11)-C(13)    120.7(6) 
C(41)-O(1)-Ti(1) 165.7(4) 
C(7)-O(2)-Ti(1) 138.1(4) 

Table 2.7 - Selected bond lengths and angles for “L8 Ti”.  
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Figure 2.16 - Molecular structure of “L8 Ti” dimer (Hydrogen atoms omitted for clarity).  

Probability ellipsoids are given at the 50% level. 

 

Figure 2.17 - Molecular Structure of symmetry-independent part of “L8 Ti” 
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The NMR spectrum appears to be consistent with overlapping spectra of two 

compounds, one of which is the quinoline system, and one which is most likely to 

be some isomer of a dihydroquinoline, although the complexity of the spectrum 

precludes complete assignment. 

 This compound was essentially inactive for ethylene polymerization, which is 

unsurprising given the absence of available cis-situated co-ordination sites (q.v. 

§1.1.1). On the basis of these results, we decided not to investigate this system 

further. 

2.5 Conclusions 

Attempting to increase the lifetime of salicylaldimine catalysts by sterically blocking 

a proposed 1,2-Migratory Insertion to the imine functionality were partly successful; 

the “protected” species indeed showed a longer lifetime than the “unprotected” 

analogues. However, they are still deactivated at elevated temperatures. 

 Catalysis with the [L2MCl2] species produced higher MWt PE than catalysis with 

the L1 analogues, with a similar activity initially. This suggests that the rate of chain 

transfer is lower for these species. The most commonly observed chain-transfer 

mechanisms in single-site catalysts are β-H elimination (resulting in a vinyl end-

group),19 or transfer of the polymer chain to aluminium species present in the 

mixture.20 Both transfer mechanisms depend on a balance between the steric and 

electronic nature of the active site. To speculate, transfer to aluminium may be 

slowed by a sterically encumbered active site preventing approach of aluminium 

species, and β-H elimination may be favoured if the congestion similarly prevents 

approach of ethene monomer. 

 Since the initial activities of [L1TiCl2] and [L2TiCl2] are similar, it seems unlikely 

that the active site of one compound is significantly more congested than for the 
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other. The X-Ray structure of [L2TiCl2] shows that it is unlikely that the different 

substitution of L1 will significantly affect the active site geometry. Therefore, it 

seems probable that the difference in the polymer produced is not due to gross 

variation of geometry, but more likely due to some electronic effect. This may be 

variation of the electronic nature of the phenoxy-donor due to the differing 

substitution, or some more subtle interaction between the imine N and some other 

component of the reaction mixture (most likely some aluminium alkyl species) 

which is affected by the steric blocking.  

 Attempts to make complexes of salicyl-stilbene ligands yielded a mixture of 

products of an unexpected electrocyclization reaction.  

 Given the results presented above, we decided to investigate a ligand series 

which should be intrinsically less vulnerable to migratory insertion to the imine 

bond, and this work is discussed in Chapter 3. 
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3 Salicyloxazoline Systems 

3.1 Introduction 

Our attempts to block the Migratory Insertion reaction sterically (described in 

Chapter 2) showed only limited effectiveness – although the catalytic lifetime of the 

“protected” species was longer than that of the “unprotected” analogue, neither 

could be described as long-lived. Given these results, we proposed a modification to 

the ligand system which should render the complexes considerably more resistant 

to attack at the imine bond, by incorporation of the imine function within an 

oxazoline ring. The presence of the oxo-functionality in the oxazoline may also be 

expected to alter the chemistry of such systems in comparison to salicylaldimine 

systems. 

N

OH

O

R
R

R  

Figure 3.1 - Salicyloxazoline Ligand 

Group 4 complexes containing such salicyloxazoline ligand systems have previously 

been investigated by Floriani,1 (see §1.2.2.3) but were found to give only very low 

activity for ethylene polymerisation, perhaps because they did not possess bulky 

substituents ortho to the phenoxy-oxygen, and bulk in this position is reported to be 

essential for the activity of the analogous salicylaldimine catalysts2-4 (see §1.3.2.1). 
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3.2 Synthesis of Salicyloxazoline Proligands HL10-13 

A wide selection of salicylic acids are available commercially, and others are 

accessible in good yield from the respective phenols (See Scheme 3.1).5 
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Scheme 3.1 - Synthesis of Substituted Salicylic Acids 

The synthesis of salicyloxazolines by reaction of salicylic acids with 2-aminoalcohol 

in the presence of CCl4, PPh3 and a base such as triethylamine (TEA) was originally 

reported by Vorbrüggen.6 We optimized the conditions, as shown in Scheme 3.2 

below. It appears that small variations in the equivalences make little difference to 

the final yield.  

 This route is convenient, as a wide range of 2-aminoalcohols is available, 

including chiral non-racemic species. This work is however only concerned with the 

achiral analogues symmetrically substituted at the oxazoline 4-position. 
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Scheme 3.2 - Synthesis of Salicyloxazolines 

 R1 R2 R3 Yield 

HL10 H tBu tBu 47% 

HL11 Me tBu tBu 46% 

HL12 Me iPr iPr 33% 

HL13 Pha tBu tBu 11% 

a Vide Infra 

Table 3.1 - Salicyloxazoline Proligands Synthesized 

HL13 is a benzoxazole species (Figure 3.2), synthesized in a similar manner from 3,5-

di-tert-butylsalicylic acid and 2-hydroxyaniline. We felt that this species would 

provide an interesting link to the salicylaldimine catalysts, due to the presence of 

the aromatic substituent α to the imine nitrogen. The archetypical3,7 salicylaldimine 

proligand HL14 was synthesized for comparison.  

NOH
But

But

O

HL13

NOH
But

HL14

But

 

Figure 3.2 – Further proligands, HL13 and HL14 
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3.3 The Effect of Steric Bulk – Synthesis and Polymerization 

Testing of Metal Chloride Complexes of L10-14 

Various species [Ln2MCl2] were synthesized either via the salt-metathesis route 

shown in Scheme 3.3, or in one case by direct reaction between [TiCl4] with HL10. 

Products were purified by sublimation or recrystallization. 

2HLn
2NaH

2NaLn
THF

MCl4.(THF)2

Ln2MCl2
THF  

Scheme 3.3 - Salt-metathesis synthesis of metal chloride complexes 

Initially, we synthesized a library of salicyloxazoline complexes with varying steric 

bulk at the R1 (i.e. the oxazoline 4-position, α- to the nitrogen) and R2 (i.e. the phenol 

2-position, ortho- to the oxygen) positions, viz. [Ln2MCl2] (n = 10, 11, 12, M = Ti, Zr). 

For further comparison, we synthesized the hafnium complexes of HL10 and HL11, 

and the zirconium complex of the salicylbenzoxazole ligand HL13. Attempts to make 

the titanium complex of HL13 resulted in an intractable mixture of products. Since 

the polymerization activity and products can depend strongly on reaction 

conditions, we also synthesized the titanium and zirconium complexes of the 

salicylaldimine ligand HL14 for direct comparison. The yields of these complexes are 

shown in Table 3.2. 

 L10 L11 L12 L13 L14 

Ti 63% 70% 35% – 60% 

Zr 20% 44% 6% 39% 65% 

Hf 82% 36% – – – 

Table 3.2 - Yields of LnMCl2 Complexes 



Chapter 3  59 

3.4 Structural Characterization of Complexes 

Some of these metal chloride complexes demonstrate very broad 1H NMR spectra at 

room temperature. Variable temperature NMR experiments were conducted on 

selected species to investigate the nature of the dynamic process.  

 Energies of activation ΔG‡ may be calculated using the Eyring equation, in the 

form shown in Equation 3.1.8,* 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+=Δ

υδ
log972.9aG c

c
‡ T

T  

Equation 3.1 

a = 1.914 × 10-2 kJ mol-1 K-1 

Tc = Coalescence Temperature 

The Eyring equation may also be presented in the form: 

‡
‡

319.10loga S
T
H

T
k

Δ+
Δ−

=⎥⎦
⎤

⎢⎣
⎡ −  

Equation 3.2 

Thus, if it is possible to determine the rate of exchange across a range of 

temperatures, a plot of ⎥⎦
⎤

⎢⎣
⎡ − 319.10loga

T
k  vs. 

T−
1  should be a straight line with 

intercept ΔS‡ and gradient ΔH‡. 

                                                      

* See Appendix 2 for the derivation of these forms of the Eyring equation. There is also a 

contribution from the coupling energy, as this is a coalescing AB system. However, this 

contribution is 2 orders of magnitude lower than the uncertainty in the measurement for 

these systems and is ignored here. 
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3.4.1  [L102MCl2] 

3.4.1.1 Zirconium and Hafnium 

The L10 species of zirconium and hafnium both consist of a single C2-symmetric 

isomer (which we assign to be cis,trans,cis on the basis of XRD and DFT results for 

related species, q.v. §3.4.5, Chapters 1 & 5) which undergoes exchange between 

enantiomers. Selected spectra of the Zr complex are shown in Figure 3.3 (Hf is 

similar).  

ppm (t1)

3.003.504.00

233K

253K

273K

298K

313K

333K

353K

373K

 

Figure 3.3 – Exchange behaviour in the oxazoline CH2CH2 region of 1H NMR  

spectrum of [L102ZrCl2] 
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The calculated ΔG‡Tc values for the exchange are 57±2 kJ mol-1 for the zirconium 

complex, and 63±2 for the hafnium analogue.* These values may not be compared 

directly however, as the contribution from ΔS‡ is temperature dependent 

(ΔG‡T = ΔH‡ – TΔS‡). 

 We calculated the rate of exchange for [L102MCl2] (M = Zr, Hf) throughout the 

slow-exchange regime (233 – 273 K for Zr, 263 – 313 K for Hf) by iterative fitting to a 

simulation of the ABCD spin system of the oxazoline CH2-CH2 protons. A non-

exchanging fit was performed using the NUMARIT algorithm,9 and then the rate of 

exchange was determined iteratively using MEXICO,10 both algorithms as 

implemented in Spinworks 2.5.11 The results are shown in Figure 3.4 ([L102ZrCl2]) 

and Figure 3.5 ([L102HfCl2]). 
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Figure 3.4 - Eyring plot for [L102ZrCl2] (r2 = 0.986); f(k,T) = ⎥⎦
⎤

⎢⎣
⎡ − 319.10loga

T
k

 

                                                      

* It is possible to calculate ΔG‡ separately for each of the two sets of coalescing signals, the 

precise results are 57.3 (Tc = 298 K) and 57.1 kJ mol-1 (Tc = 308 K) for Zr and 62.3 (Tc = 323 K) 

and 59.3 kJ mol-1 (Tc = 308 K) for Hf. Accurate determination of Tc is the major term in the 

reported uncertainty. 
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Figure 3.5 - Eyring plot for [L102HfCl2] (r2 = 0.994); f(k,T) = ⎥⎦
⎤

⎢⎣
⎡ − 319.10loga

T
k

 

Linear regression of the data points using Origin 712 gives the thermodynamic 

parameters ΔH‡, ΔS‡ and thus ΔG‡ (Table 3.3).  

 ΔH‡ (kJ mol-1) ΔS (J K-1 mol-1) ΔG‡298 K (kJ mol-1) 

[L102ZrCl2] 25±3 -120±10  61±5 

[L102HfCl2] 39±2 -77±9 62±5 

Table 3.3 – Thermodynamic parameters from NMR lineshape analysis. The given 

uncertainties are the standard errors from the regression analysis 

Values of ΔG‡ at the various coalescence temperatures calculated from these 

parameters coincide in all cases with the ΔG‡ values calculated from the 

measurement of Tc, within experimental uncertainty (Table 3.4). 

 Tc 
ΔG‡ (kJ mol-1)  

(from Tc) 
ΔG‡ (kJ mol-1) 

(calc.) 

[L102ZrCl2] 298  57.3±2  60.8±5 

 308 57.1±2 62.0±5 

[L102HfCl2] 308 59.3±2 62.7±5 

 323 62.3±2 63.9±5 

Table 3.4 – Comparison of calculated ΔG‡ values using Tc and lineshape analysis 
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In related bis(chelate) species, similar processes have been assigned to either an in-

place trigonal (i.e. Bailar) twist,13,14 or to an N-dissociative mechanism involving a 

five-coordinate intermediate.15  

 The somewhat negative ΔS‡ implies an ordered transition state, which is 

suggestive of an in-place rearrangement. Furthermore, the thermodynamic 

parameters we observe correlate well with previously reported values for zirconium 

diamine-bis(phenolato) complexes, which undergo interconversion between 

diastereomers due to a non-dissociative rearrangement (ΔH‡ = 35.9±0.8 kJ mol-1, 

ΔS‡ = -105±5 J K-1 mol-1).14 

 However, as the ligands in our systems are unsymmetrical, a trigonal (Bailar) or 

rhombic (Ray-Dutt) twist16 would result not in an inversion, but rather an inter-

conversion between different diastereomers (Figure 3.6). The observed NMR spectra 

are consistent with one C2-symmetric species undergoing inversion, but there is no 

evidence for the presence of other diastereomers. It seems likely that the other 

diastereomers have much higher energies, and thus may be expected to rapidly 

interconvert via further twists before falling into the energy well of the other 

cis,trans,cis enantiomer. 
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Figure 3.6 – Trigonal and rhombic twists 
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3.4.1.2 Titanium 

[L102TiCl2] consists of two species in a ratio of ~2:1. The major product has a spectra 

consistent with a C2-symmetric complex, and a minor product which we could not 

fully assign, but appears to arise from an unsymmetrical complex. 

 VT NMR studies (Figure 3.7) show that the minor, unsymmetrical species 

demonstrates typical exchange behaviour (although the signal is not fully 

sharpened by 373 K in toluene) with ΔG‡Tc = 66±2 kJ mol-1 (Tc = 323 K). The 

complexity and degree of overlap of the signals rendered them unusable for 

generation of an Eyring plot. 

 Importantly, the resonances from the major product remain sharp across the 

range of temperatures accessible to us. Therefore, the fluxional behaviour does not 

facilitate exchange between species. This strongly suggests that there are two 

compounds present, rather than two stereoisomers.  

 The mass spectrum of the compound shows some evidence for the presence of 

higher molecular weight material, leading us to suspect that the minor species is an 

oxygen-bridged dimer of the type [L102TiCl(μ-O)TiClL102], although without further 

evidence this must remain entirely speculative. 
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Figure 3.7 - Exchange behaviour in aryl and oxazoline CH2CH2 regions of 1H NMR  

spectrum of [L102TiCl2] 

3.4.2 [L112MCl2] 

The 1H NMR spectra of [L112MCl2] consist of a single set of resonances consistent 

with a C2-symmetric isomer which do not demonstrate any noticeable line 

broadening over the range of temperatures accessible to us. This is consistent with 

the process causing the broadening of the L10 species being a nondissociative twist, 

as the increased steric bulk provided by the methyl substituents on the oxazoline 
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ring would be expected to present a significant hindrance to a twist rearrangement 

on any axis. 

3.4.3 [L132ZrCl2] 

The 1H NMR spectrum of the benzoxazole complex [L132ZrCl2] shows very broad 

resonances at 298 K, which sharpen upon heating or cooling. The spectrum is 

consistent with a C2-symmetric complex in the slow exchange regime undergoing a 

fluxional exchange and sharpening to the time-averaged signals in the fast-exchange 

regime.  

3.4.4 [L142MCl2] 

Although the original reports of the salicylaldimine catalysts by Fujita et al. make no 

mention of the presence of multiple isomers,4,7,17 it has been the experience of our 

laboratory that multiple isomers are indeed observed.18 Later publications by Fujita 

have discussed the observed isomers in the context of forming multimodal 

polymeric materials19 (c.f. §1.2.1). 

3.4.4.1 Titanium  

The spectra obtained from [L142TiCl2] show two sets of resonances in a ratio of ~2:1. 

The major product has a spectra consistent with a symmetrical complex, and the 

minor set appear to arise from an unsymmetrical complex. Neither set of resonances 

demonstrate any noticeable line broadening over the range of temperatures 

accessible to us. There is no evidence for higher molecular-weight species in the 

mass spectrum, suggesting that the unsymmetrical species is unlikely to be a 

dimeric species. 
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3.4.4.2 Zirconium 

Similarly to the titanium analogue, spectra obtained from [L142ZrCl2] also show two 

sets of resonances, the ratio between products is ~5:1. The major product has a 

spectrum consistent with a symmetrical complex, and the minor set appear to arise 

from an unsymmetrical complex. 

 The assignment of the aryl region of the 1H NMR spectrum of [L142ZrCl2] at 

263 K is shown in Figure 3.8. At this temperature the major isomer is sharp but the 

minor is very broad, making the assignment clearer. The aryl region of the 1H NMR 

spectra from 203-363 K are shown in Figure 3.9.  
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Figure 3.8 - Assignment of aryl region of [L142ZrCl2] (at 263K) 
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Figure 3.9 – Exchange behaviour in aryl region of 1H NMR  

spectrum of [L142ZrCl2] 

The presence of a minor, unsymmetrical (or C1 symmetrical) isomer is most clear 

around 233 K, and this spectrum is shown below (Figure 3.10). At this temperature, 

one of the aryl signals from the major (C2-symmetric) isomer is significantly 

broadened, masking some of the aryl signals from the minor isomer. As the 

temperature is increased, all the signals broaden, before the two sets of signals 

coalesce at around 333 K.  
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Figure 3.10 - Unsymmetrical minor isomer in [L142ZrCl2] (233 K); arrows indicate exchange 

between major and minor species 

3.4.5 Molecular Structure of [L112TiCl2] 

The molecular structure of [L112TiCl2] was determined by single-crystal X-ray 

diffractometry (crystals grown from DCM/pentane), and is shown in Figure 3.11. It 

can be seen that the ligands have adopted an essentially C2-symmetrical cis,trans,cis 

arrangement around the metal centre.  

 

Figure 3.11 – Molecular structure of [L112TiCl2] (Hydrogen atoms omitted for clarity). 

Probability ellipsoids are set to the 50% level 

1.001.502.006.507.007.50
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In this system, compared to the salicylaldimine [L142TiCl2], whose molecular 

structure has been reported by Coates,20 the two ligand tert-butyl groups are forced 

further toward the active site – the “bite angle” between the two tBu groups through 

the titanium centre is more acute (140.33° vs. 161.09°), the distance between them is 

shorter (8.652 Å vs. 9.069 Å), and the distance from the metal centre to the centroid 

of the tBu moieties is further (1.561 Å vs. 0.755 Å). This increased congestion at the 

active site is clearly visible in space-filling models of the species (Figure 3.12). 

[L112TiCl2] [L142TiCl2]20  
Bond Length (Å) Bond Length (Å) 

Ti(1)-O(101) 1.864(2) Ti(1)-O(1) 1.8343(19) 
Ti(1)-O(201) 1.878(2) Ti(1)-O(2) 1.8390(19) 
Ti(1)-N(112) 2.183(3) Ti(1)-N(1) 2.202(2) 
Ti(1)-N(212) 2.174(3) Ti(1)-N(2) 2.219(2) 
Ti(1)-Cl(2) 2.3192(11) Ti(1)-Cl(1) 2.3098(9) 
Ti(1)-Cl(3) 2.3227(10) Ti(1)-Cl(2) 2.3175(8) 

C(115)-C(215) 8.652 C(18)-C(35) 9.069 
Ti(1)-[C(115):C(215)] 1.561a Ti(1)-[C(18):C(35)] 0.755a 

Bonds Angle (°) Bonds Angle (°) 
O(101)-Ti(1)-O(201) 178.35(9) O(1)-Ti(1)-O(2) 171.39(8) 
O(101)-Ti(1)-N(112) 82.58(9) O(1)-Ti(1)-N(1) 81.06(8) 
O(201)-Ti(1)-N(212) 82.51(9) O(2)-Ti(1)-N(2) 79.91(8) 
O(101)-Ti(1)-N(212) 96.15(10) O(1)-Ti(1)-N(2) 92.36(9) 
N(112)-Ti(1)-N(212) 83.53(9) N(1)-Ti(1)-N(2) 83.49(8) 

Cl(2)-Ti-Cl(3) 100.08(4) Cl(1)-Ti-Cl(2) 98.58(3) 
O(201)-Ti(1)-N(112) 96.29(9) O(2)-Ti(1)-N(1) 94.21(8) 
C(115)-Ti(1)-C(215) 140.33 C(18)-Ti(1)-C(35) 161.09 

a I.e. the distance from the metal to the centroid between the quarternary 
 carbon atoms of the tBu groups over the active site. 

Table 3.5 - Selected bond angles and distances for [L2TiCl2] with comparison to the 

reported molecular structure of [L142TiCl2]  
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 (a) (b) 

View along 
tBu-tBu axis 

 
 

View along 
Cl-Cl axis 

  

Figure 3.12 – Space-filling models of [L112TiCl2] (a) from XRD structure and [L142TiCl2] (b) 

from reported XRD structure20  

 

3.5 Ligand Stability to MAO 

In order to determine whether the oxazoline ligand itself was stable in the presence 

of MAO, we treated a quantity of [L112ZrCl2] with 10% MAO/toluene for 1 h, and 

after cautious hydrolysis with water and subsequent extraction, recovered HL11 in 
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good yield, demonstrating that the ligand is not directly attacked (e.g. ring-opened) 

by the aluminium species in the polymerization reaction. 

3.6 Initial Polymerization Trials 

We screened the metal chloride complexes for activity in ethene polymerization 

using crude “Schlenk Test” productivity measurements (see §2.3.1.1).* Upon 

activation with MAO, the precatalysts [Ln2MCl2] were active for ethene 

polymerization; the results are summarized in Table 3.6, and shown graphically in 

Figure 3.13. It should be noted that themocontrol was not attempted for this series 

of trials. The experiments utilising the more productive catalysts became noticeably 

warm at the start. 

 The polymer products were analysed by Gel Permeation Chromatography 

(GPC) to determine their Molecular Weight (MWt) distributions, and the results are 

shown graphically in Figure 3.14. 

Precatalyst Precatalyst 
(μmol) Yield (g) Productivity 

(kg mol-1 bar-1 h-1) Mn (u) Mw (u) PDia 

[L102TiCl2] 18 0.21 10 8,255 229,000 (28) 
[L112TiCl2] 18 2.71 125 124,500 174,000 1.4 
[L122TiCl2] 18 0.12 5 2,325 75,250 (33) 
[L102ZrCl2] 14 1.05 62 840 127,500 (150) 
[L112ZrCl2] 16 5.75 308 765 28,300 (37) 
[L122ZrCl2] 14 0.04 2 2,015 346,500 (175) 
[L132ZrCl2] 14 3.60 216 495 5,040 (10) 
[L102HfCl2] 13 0.05 3 2,720 241,000 (89) 
[L112HfCl2] 14 1.73 107 490 28,300 (58) 
a numbers in brackets represent multimodal polymer products 

Table 3.6 – Initial polymerization results from LnMCl2 precatalysts 

                                                      

* Conditions: 175 ml toluene, 1000 eq. MAO, 1.2 bar C2, 60 min 
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Figure 3.13 – Graph to show productivities from Initial Trials 
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Figure 3.14 - MWDs from Initial Trials 
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This preliminary trial demonstrates that the system is active for ethene 

polymerization. Productivities vary in the order Zr > Ti > Hf, and L11 > L13 > L10 > 

L12. 

 With the exception of [L112TiCl2], the oxazoline catalysts produce multimodal 

polymers under these conditions. The catalysts based on L10 produce higher 

molecular-weight polymer than those based on L11, but with lower productivity. 

Those based on L12 produce multimodal polymer with very low activity. Molecular 

weight varies in the order Ti > Zr > Hf. 

 The [L132ZrCl2] produces a broad molecular weight distribution, at low 

molecular weight. 

 Given the preliminary nature of these results, we will not discuss this data in 

detail at this point, but rather in §3.9, in comparison to other polymerization 

methodologies (vide infra). 

3.7 High–Throughput (HT) Trials 

3.7.1 Methodology 

In order to generate further information regarding the ethene polymerization 

behaviour of this series of catalysts, we conducted a series of experiments using 

high-throughput methodology, utilizing an Argonaut Endeavor reactor, with the 

assistance of Dr Stefan Spitzmesser (BP/Innovene). We investigated only the 

titanium and zirconium complexes, and of these, only the more active species, 

namely [L112TiCl2], [L112ZrCl2] and [L132ZrCl2]. For comparison, we also tested the 

salicylaldimine catalysts [L142TiCl2] and [L142ZrCl2].  
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 The Endeavor reactor contains eight reaction vessels, each of which was loaded 

with 5 ml of solvent. We tested each catalyst under the following conditions (Table 

3.7):* 

Conditions Temp.  
(°C) 

Hexene 
(ml) 

1 30 0.5 
2 30 – 
3 50 – 
4 70 – 

Table 3.7 – Conditions for High Throughput screen 

3.7.2 Productivity 

The results are shown in Table 3.8, and graphically in Figure 3.15. We believe that 

the result from the test of [L112ZrCl2] under condition 4 is unreliable.† 

                                                      

* Common Conditions: 10 bar C2, 5 ml Toluene, 600 eq MAO, 30 min 

† The productivity under these conditions is disproportionately large, and the molecular 

weight distribution for the produced polyethene is considerably different to the other 

catalyst/conditions sets in the series. We believe that the most likely explanation is 

contamination of the reaction by another, more potent, catalyst which had previously been 

tested. The design of the equipment makes this somewhat likely, with catalyst solutions or 

suspensions being injected through 0.5 mm bore tubing. This tubing is readily blocked, and 

it seems that an amount of catalyst from a previous test had become lodged in the injector 

system, and entered the reaction, causing high activity and different product distribution. 

Unfortunately, due to the protocol for work-up of the product this error was not noted 

during the period when we had access to the Endeavor reactor, so the run could not be 

repeated. Thus, this datapoint is not shown in Figure 3.15. 
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Precatalyst Conditions Catalyst 
Load (μmol) 

Yield a 
(g) 

Productivity 
(kg mol-1 bar-1 h-1) 

[L112TiCl2] 1 1 0.114 2.3 × 101 

[L112TiCl2] 2 1 0.185 3.7 × 101 
[L112TiCl2] 3 1 0.212 4.2 × 101 
[L112TiCl2] 4 1 0.087 1.7 × 101 
[L112ZrCl2] 1 0.1 0.357 7.1 × 102 
[L112ZrCl2] 2 0.1 0.263 5.3 × 102 
[L112ZrCl2] 3 0.1 0.289 5.8 × 102 
[L112ZrCl2] 4b 0.1 0.591 1.2 × 103 
[L132ZrCl2] 1 0.1 0.180 3.6 × 102 
[L132ZrCl2] 2 0.1 0.183 3.7 × 102 
[L132ZrCl2] 3 0.1 0.094 1.9 × 102 
[L132ZrCl2] 4 0.1 0.075 1.5 × 102 
[L142TiCl2] 1 1 0.366 7.3 × 101 
[L142TiCl2] 2 1 0.593 1.2 × 102 
[L142TiCl2] 3 1 0.368 7.4 × 101 
[L142TiCl2] 4 1 0.371 7.4 × 101 
[L142ZrCl2] 1 0.1 0.501 1.0 × 103 
[L142ZrCl2] 2 0.1 0.330 6.6 × 102 
[L142ZrCl2] 3 0.1 0.425 8.5 × 102 
[L142ZrCl2] 4 0.1 0.438 8.8 × 102 

a Assuming all MAO is converted to Al2O3 
b We believe that this result should be discounted – vide supra 

Table 3.8 – Productivity Results from HT trial 
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Figure 3.15 - Graph to show productivities from HT trial 
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3.7.3 Hexene Incorporation 

Attempts to press the product into films suitable for IR analysis of hexene 

incorporation and DSC studies were unsuccessful. The increased productivities 

noted when hexene is present in the system suggest some interaction with the 

system, but it is not possible to determine whether it has been incorporated into the 

polymer under these conditions. 

3.7.4 Polymer Characterization 

The polymers produced were analysed using GPC, and the results are shown in 

Table 3.9. 

Precatalyst Conditions Mn (u) Mw (u) Modality PDi 
[L112TiCl2] 1 101,200 325,600 1 3.2 
[L112TiCl2] 2 127,900 372,500 1 2.9 
[L112TiCl2] 3 67,400 344,300 1 5.1 
[L112TiCl2] 4 53,600 262,700 2 (4.9) 
[L112ZrCl2] 1 1,700 14,800 2 (8.5) 
[L112ZrCl2] 2 2,100 19,700 2 (9.3) 
[L112ZrCl2] 3 3,800 34,200 2 (9.1) 
[L112ZrCl2] 4b 2,400 5,200 1 2.2a 
[L132ZrCl2] 1 700 1,000 1 1.3a 
[L132ZrCl2] 2 600 1,000 1 1.5a 
[L132ZrCl2] 3 700 1,000 1 1.5a 
[L132ZrCl2] 4 800 1,100 1 1.5a 
[L142TiCl2] 1 4,5200 122,100 1 2.7 
[L142TiCl2] 2 96,900 270,800 1 2.8 
[L142TiCl2] 3 89,600 275,300 1 3.1 
[L142TiCl2] 4 39,300 215,700 2 (5.5) 
[L142ZrCl2] 1 2,600 41,100 2 (15.9) 
[L142ZrCl2] 2 2,500 26,000 2 (10.3) 
[L142ZrCl2] 3 – –  –c 
[L142ZrCl2] 4 3,500 72,200 2 (20.8) 

a Molecular weight very low, so low confidence in PDi numbers 
b We believe that the reaction under these conditions should be 
discounted – vide supra 
c Sample unsuitable for GPC analysis 

Table 3.9 – Polymer Characterization from HT trial 
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3.7.4.1 Comparison with Salicylaldimine Catalysts under HT Conditions 

Figure 3.16 shows the molecular weight distributions over the range of 

temperatures tested, for the titanium and zirconium L11 and L14 systems. Both 

systems appear to show two distinct modes in the molecular weight distributions. 

For the titanium systems, increased temperature appears to favour the lower MWt 

mode in both ligand systems. In the zirconium systems however, increased 

temperature favours the higher MWt mode. 

 At a titanium centre, the salicyloxazoline system produces higher molecular 

weight polymer compared to the salicylaldimine. At a zirconium centre, the 

molecular weight is lower, but a higher proportion of the polymer is in the higher 

molecular weight mode compared to the product generated by the salicylaldimine 

system.  
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Figure 3.16 - MWDs for L11 and L14 catalysts obtained under HT conditions 

3.7.4.2 Benzoxazole System 

 In contrast, the benzoxazole system [L132ZrCl2] produces very low molecular 

weight polymer with a unimodal weight distribution (Figure 3.17). Structurally, the 

ligand is more similar than the other salicyloxazolines to the salicylaldimine ligand 

tested, but it generates substantially different polymer nonetheless. 
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Figure 3.17 - MWDs for [L132ZrCl2] in HT trial 

3.7.5 Conclusions from HT Trials 

The similarities between the behaviour of the salicylaldimine and salicyloxazoline 

catalyst systems suggest that the active species are closely related. The similar 

variations of polymer MWD with varying conditions are particularly striking. The 

lower MWt of the polymer produced by the benzoxazole-based catalyst suggests 

that this system may have a higher susceptibility to chain-transfer reactions during 

the polymerization; although being structurally more similar to the salicylaldimines, 

it behaves in a significantly different manner. 

 The reactor volume in the Endeavor is very small. Although it is well stirred, 

and despite using low catalyst loading we felt that there was a significant possibility 

that the reactions may be diffusion limited under these conditions, especially as the 

volume of polymer in the reactor rises. 

 Hence while the Endeavor reactor records the uptake of gas to each reactor, we 

have low confidence in the data obtained this way. As such, we still did not have a 

reliable measure of the lifetime of the catalysts. This data was obtained using the gas 

burette system discussed in Chapter 2. 
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3.8 Reaction Profiles 

We conducted a series of experiments to measure the uptake of ethene by these 

catalyst systems at 25 and 50 °C, using the gas burette apparatus described in 

Chapter 2. The productivity and MWt data are presented in Table 3.11. Where 

possible, a half-life (τ½) has been calculated for the catalyst decay (vide infra, §3.8.5). 

3.8.1 [L142MCl2] 

We initially tested the unbridged salicylaldimine catalysts [L142MCl2] (M = Ti, Zr) – 

which have been previously reported as long-lived.7,21,*  

 [L142TiCl2] shows good stability at 25 °C (τ½ = 3060 s), and gradual decay in 

activity at 50 °C (τ½ = 1610 s) (Figure 3.18). 

 This catalyst shows higher initial activity at 50 °C than at 25 °C, but the higher 

rate of decay at elevated temperature reduces this difference over the course of the 

run. Although the increase in measured ethene uptake is small (a factor of 2 at the 

start of the run), it is significant; at 50 °C the concentration of ethene in solution is 

approximately 60% of that at 25 °C.22 Assuming that the rate of polymerization has 

non-zero order in monomer concentration,23 this will affect the observed “activity”.  

 The zirconium analogue [L142ZrCl2] shows much higher initial activity, but far 

lower stability; at 25 °C the activity drops relatively steeply (τ½ = 640 s), whereas at 

50 °C the system is essentially inactive after 300 s  (τ½ = 60 s).  

 

                                                      

* Conditions: 100 ml toluene inc. 5 ml 10% w/v MAO/toluene solution, 1.2 bar C2,1 h 
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Figure 3.18 - Reaction profiles for [L142MCl2] 

 This is further evidence of how dramatically the choice of metal centre affects 

the course of the polymerization, with the titanium system exhibiting good stability, 

and the zirconium system rapid decay of activity. It should be noted that although 

the decrease in activity for the zirconium system at 25 °C is pronounced, the system 

still shows an activity of ca. 5 × 104 kg mol-1 bar-1 h-1) after 30 min – i.e. very highly 

active on the “Gibson scale.”24 

3.8.2 [L102MCl2] 

We tested the Zr and Ti complexes of L10 under similar conditions. The activities of 

the catalysts formed from both metal species are low, with the zirconium species 

demonstrating a somewhat higher activity and productivity (Figure 3.19). 

 The zirconium system appears to gradually increase in activity over the first 

1200 s of the reaction, before gradually decreasing after that point. The titanium 

system shows gradual decrease in activity from an initial peak. 

 Given the low activity, and the difficulties involved in measuring uptake at this 

level without substantially changing the reaction conditions, we did not test these 

catalysts at 50 °C. 
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Figure 3.19 - Reaction profiles for [L102MCl2] (M = Ti, Zr) 

3.8.3 [L112MCl2] 

In comparison with the systems utilizing L10, those using L11 show substantially 

higher activities. 

 [L112TiCl2] shows good stability at both 25 °C and 50 °C (τ½  = 4060 s, 2340 s 

respectively), (Figure 3.20). With a zirconium centre, the results are strikingly 

similar to those for the salicylaldimine catalyst [L142ZrCl2]. At 25 °C the activity 

drops relatively steeply (τ½ = 930 s), whereas at 50 °C the system is essentially 

inactive after 300 s (τ½ = 50 s).  

0 600 1200 1800 2400 3000 3600

0

2x102

4x102

6x102

8x102

1x103

 L11
2 TiCl2 25°C

 L11
2 TiCl2 50°C

A
ct

iv
ity

 (k
g 

m
ol

-1
 b

ar
-1
 h

-1
)

Time (s)

L11
2 TiCl2

0 600 1200 1800 2400 3000 3600

0

1x105

2x105

 L11
2 ZrCl2 25 °C (FFT)

 L11
2 ZrCl2 50 °C 

A
ct

iv
ity

 (k
g 

m
ol

-1
 b

ar
-1
 h

-1
)

Time (s)

L11
2 ZrCl2

 

Figure 3.20 - Reaction profiles for [L112MCl2] 

 At 25 °C the hafnium analogue shows behaviour intermediate between the 

zirconium and titanium species, with gradual decay in activity (τ½ = 2630 s), and an 

activity approximately twice that of the titanium species. This system was not tested 

at 50 °C. 
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Figure 3.21 - Reaction profile for [L112HfCl2] 

3.8.4 [L132ZrCl2] 

The salicylbenzoxazole species [L13ZrCL2] suffered very rapid deactivation at 25 °C 

(τ½ = 50 s), and was effectively inactive at 50 °C – no uptake of gas was measured 

and only a trace of polymer was recovered. 
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Figure 3.22 - Reaction profile for [L132ZrCl2] 

3.8.5 Productivity/Activity Measurements and Polymer Characterization 

3.8.5.1 Least-squares fitting 

An equation to represent the decay of activity over time was obtained by an 

iterative least-squares fitting of the data to a first-order exponential decay of the 

form 010 )/)(exp( ytxxAy +−−= , using Origin 7 (Table 3.10).12 Where the activity of 

a catalyst dropped to a constant value during the reaction, y0 was calculated, in all 

other cases, it was set to 0. The fit was constrained such that x0 ≥ 0. The half-life is 

given by 01 )2ln(
2

1 xt +=τ  and A represents the initial activity of the system at t = x0.  
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Precatalyst Temp. (°C) Data start (s) y0a x0 A t1 r2 τ½ 

[L112TiCl2] 25 600 [0] 0 1.70 × 102 5860 0.851 4060 
[L112TiCl2] 50 300 [0] 80 2.63 × 102 3270 0.946 2340 
[L112ZrCl2] 25 200 [0] 0 1.15 × 105 1350 0.988 930 
[L112ZrCl2] 50 50 240  0 6.23 × 104 80 0.986 50 
[L112HfCl2] 25 350 [0] 30 5.66 × 102 3750 0.950 2630 
[L132ZrCl2] 25 35 140 10 5.60 × 104 50 0.987 50 
[L142TiCl2] 25 200 [0] 0 3.18 × 103 4420 0.972 3060 
[L142TiCl2] 50 200 [0] 0 5.47 × 103 2320 0.985 1610 
[L142ZrCl2] 25 200 [0] 0 3.27 × 105 930 0.989 640 
[L142ZrCl2] 50 70 520 0 7.56 × 104 90 0.989 60 
a y0 and A have the units kg mol-1 bar-1 h-1, x0, t1 and τ½ have units s 

Table 3.10 – Least-squares fitting results for activity profiles for [LnMCl2]  

3.8.5.2 Productivity 

The detail of the reactions conducted is shown in Table 3.11, including the results of 

polymer characterization by GPC. 

Precatalyst Temp. 
(°C) 

Catalyst 
(mol) 

Yield 
(g) 

Productivity60 

(kg mol-1 bar-1 h-1) Mn (u) Mw (u) PDi 

[L102TiCl2] 25 1.8 × 10-5 0.19 8.8 7,300 10,600 (15)a 
[L102ZrCl2] 25 3.1 × 10-6 0.15 40 760 77,000 (102)a 
[L102HfCl2] 25 1.3 × 10-5 trace – – – – 
[L112TiCl2] 25 6.9 × 10-6 1.60 1.7 × 102 88,500 160,000 1.8 
[L112TiCl2] 50 7.7 × 10-6 1.09 1.3 × 102 129,000 172,000 1.3 
[L112ZrCl2] 25 1.3 × 10-8 0.61 3.9 × 104 1,900 9,400 (5.0)a 

[L112ZrCl2] 50 2.6 × 10-7 0.32 1.0 × 103 510 770 1.5 
[L112HfCl2] 25 7.0 × 10-6 2.91 3.5 × 102 1,200 39,400 (33)a 

[L132ZrCl2] 25 2.5 × 10-7 0.72 2.4 × 103 710 1,100 1.6 
[L132ZrCl2] 50 2.5 × 10-7 trace – – – – 
[L142TiCl2] 25 1.4 × 10-6 3.73 2.3 × 103 233,000 470,000 2.0 
[L142TiCl2] 50 1.4 × 10-6 4.62 2.8 × 103 125,000 276,000 2.2 
[L142ZrCl2] 25 1.3 × 10-8 1.28 8.3 × 104 16,200 55,400 2.5 
[L142ZrCl2] 50 6.4 × 10-7 1.82 2.4 × 103 870 11,900 (13.7)a 
a Multimodal MWt distribution observed. 

Table 3.11 - Results from activity profiling reactions for [Ln2MCl2]* 

                                                      

* Conditions: 100 ml toluene inc. 5ml 10% w/v MAO/toluene solution, 1.2 bar C2,1 h  
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3.8.5.3 Polymer Characterization 

The MWDs obtained are shown graphically in Figure 3.23, and are clearly very 

similar to those obtained from the non-thermocontrolled initial trials. The polymers 

produced by the various methodologies will be compared in detail in §3.9.2.  

The salient features of the MWDs obtained are: 

• The salicyloxazoline catalysts demonstrate behaviour very similar to the 

corresponding salicylaldimine species.  

• Titanium catalysts generate higher MWt polymers than the corresponding 

zirconium species 

• L10 species produce broad, multimodal distributions 

• L11 species produce much tighter distributions; [L112TiCl2] is unimodal, 

whereas [L112ZrCl2] demonstrates a minor mode with higher MWt. 

[L112HfCl2] shows a bimodal distribution, favouring the higher MWt mode 

somewhat 

• [L132ZrCl2] produces unimodal polymer with a low molecular weight 

• Increasing the temperature from 25 °C to 50 °C results in a lower MWt of the 

product for the L11 species 



Chapter 3  88 

L14
2

MCl
2

L13
2

ZrCl
2

L11
2 MCl2

2 3 4 5 6 7

0.0

0.5

1.0

1.5

2.0

dW
/d

lo
g(

M
)

log(M)

 L13

2
ZrCl

2
 25 °C

2 3 4 5 6 7

0.0

0.5

1.0

1.5

2.0

dW
/d

lo
g(

M
)

log(M)

 L10
2

TiCl
2
 25 °C

 L10

2
ZrCl

2
 25 °C

2 3 4 5 6 7

0.0

0.5

1.0

1.5

2.0
dW

/d
lo

g(
M

)

log(M)

 L14

2
TiCl

2
 50 °C

 L14
2 TiCl2 50 °C

 L14
2

ZrCl
2
 25 °C

 L14

2
ZrCl

2
 50 °C

2 3 4 5 6 7

0.0

0.5

1.0

1.5

2.0

dW
/d

lo
g(

M
)

log(M)

 L11
2

HfCl
2
 25 °C

 L11
2

TiCl
2
 25 °C

 L11

2
TiCl

2
 50 °C

 L11

2
ZrCl

2
 - 25 °C

 L11
2 ZrCl2 - 50 °C

L10
2

MCl
2

 

Figure 3.23 – MWDs from profiling reactions 

3.9 Comparison of Different Methodologies 

3.9.1 Catalyst Productivity vs. Activity 

It is clear that the different methods we have used to conduct polymerization 

reactions have resulted in significantly different observed productivities and 

activities. Table 3.12 summarizes the productivity and activity data presented 

above. 
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Precatalyst Temp. 
(°C)a 

Productivity60 

(Initial)b 
Productivity60 

(HT)b 
Productivity60 

(Profiled)b 
Activityt0 

(Profiled)b,c  
[L102TiCl2] low 10 – 8.8 – 
[L102ZrCl2] low 62 – 40 – 
[L102HfCl2] low 3 – – – 
[L112TiCl2] low 1.3 × 102 37 1.7 × 102 1.7 × 102 

[L112TiCl2] 50 – 42 1.3 × 102 2.6 × 102 

[L112ZrCl2] low 3.1 × 102 5.3 × 102 3.9 × 104 1.2 × 105 

[L112ZrCl2] 50 – 5.8 × 102 1.0 × 103 6.2 × 104 

[L112HfCl2] low 1.1 × 102 – 3.5 × 102 5.7 × 102 
[L132ZrCl2] low 2.2 × 102 3.7 × 102 2.4 × 103 5.6 × 104 
[L132ZrCl2] 50 – 1.9 × 102 trace – 
[L142TiCl2] low – 1.2 × 102 2.3 × 103 3.2 × 103 

[L142TiCl2] 50 – 74 2.8 × 103 5.5 × 103 

[L142ZrCl2] low – 6.6 × 102 8.3 × 104 3.3 × 105 

[L142ZrCl2] 50 – 8.5 × 102 2.4 × 103 7.6 × 104 

a “low” = ambient temperature for initial trials, 30 °C for HT trials, 25 °C for profile trials 
b units for all productivity measurements are kg mol-1 bar-1 h-1 
c from linear regression analysis (q.v. Table 3.10) 

Table 3.12 - Comparison of productivities & activities from different methodologies 

Upon comparison of the productivities recorded in our initial screening tests with 

those obtained during the carefully-controlled profiling tests, it is clear that the 

initial screening tests significantly underestimated the potential productivity of 

some of these catalysts – specifically [L112ZrCl2] and [L132ZrCl2]. This is not 

surprising given the results presented in §3.8 which clearly demonstrate the 

sensitivity of these systems to elevated temperature; in the initial trials the 

temperature was observed to rise - this would have lead to a rapid deactivation of 

the catalyst. 

 Comparison of the data from the HT trials with those recorded in our laboratory 

is less straightforward, due to the different conditions. The HT results consistently 

give productivity values an order of magnitude lower than those observed during 

our profiling reactions. Although the difference in temperature may be expected to 

influence the productivities observed, under HT conditions raising the temperature 

from 30 °C to 50 °C has only minimal effect on the observed productivity of the 

systems tested whereas a similar rise from 25 °C to 50 °C results in an order of 
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magnitude decrease in productivity for the zirconium systems when measured in 

our laboratory. From the activity profile data it is clear that this lower productivity 

at elevated temperature is a result of decreasing activity during the course of the 

reaction rather than lower initial activity (q.v. §3.8).  

 There are at least two possible explanations for this behaviour, viz.: i) At 10 bar 

the catalysts do not deactivate so readily. We will show in §4.6 that this is unlikely 

to be the case. ii) The experimental methodology employed during the HT trials 

leads to limited sensitivity towards differences in activity, as a result of diffusion 

limitation (q.v. §3.7.5). 

3.9.2 Polymer Properties 

The MWDs of the polymers produced during the initial trials correlate almost 

perfectly with those recorded at 25 °C with effective thermocontrol. The only 

notable exception is [L112HfCl2] which produces bimodal polymer; without 

thermocontrol the lower MWt mode is somewhat favoured whereas with 

thermocontrol the higher MWt mode is. The similarity between the polymer 

products with and without thermocontrol strongly suggests that the deactivation 

mechanism is absolute; the catalyst decomposes into an essentially inactive 

compound rather than some other catalytically active species. 

 The polymers produced during the high-throughput trials show some 

similarities with those produced in our laboratory: titanium produces higher MWt 

products than zirconium with both L11 and the analogous salicylaldimine L14 as 

ligands. On closer inspection, however, there are significant differences between the 

products. 

 Most significantly, under the HT conditions, clearly bimodal MWDs were 

observed in most cases, whereas in the results from our laboratory one mode 
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dominates. Comparison of the GPC traces for the zirconium species shows this 

effect most clearly* (the appropriate data for [L112ZrCl2] are reproduced in Figure 

3.24 and those for [L142ZrCl2] in Figure 3.25). 
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Figure 3.24 - Comparison of Schlenk and Endeavor products for [L112ZrCl2] 
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Figure 3.25 - Comparison of Schlenk and Endeavor products for [L142ZrCl2] 

                                                      

* N.B. the polymers produced from the Schlenk tests and from the Endeavor reactor were 

analysed under different (although similar) GPC conditions (those from the Schlenk tests 

were analysed by RAPRA Ltd, and those from the Endeavor by Innovene). We analysed 

some samples using both methods, the results obtained demonstrated excellent degree of 

correlation. See §6.1.4 for details of GPC techniques. 
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It should be noted that although the products obtained under profiling conditions 

are predominantly unimodal, they all demonstrate a tail of material in the high 

MWt region of the spectrum. These GPC data were obtained using a refractive index 

detector, but a differential pressure (viscosity) detector was online during the runs, 

and Figure 3.26 shows the chromatogram obtained for the product of [L112ZrCl2] 

under Schlenk conditions at 25 °C (cf. Figure 3.24 [left]). Although the overall 

molecular weight of the polymer is low, these data clearly show the presence of 

higher MWt material (higher MWt material has a shorter retention time in GPC). 
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Figure 3.26 - Differential pressure chromatogram of [L112ZrCl2] Schlenk product, 25 °C 

 Under the Endeavor conditions, increased temperature favoured increased 

molecular weight, whereas under Schlenk conditions the opposite is true. 

3.10 Summary and Conclusions 

We have presented a new series of catalysts based on salicyloxazoline ligands. In 

order to obtain highly-active catalyst systems it is necessary for the salicyloxazoline 

ligand to possess steric bulk at two positions; ortho to the phenoxy-donor, and α to 

the oxazoline nitrogen donor. Those systems based on zirconium show very high 

activity, those on titanium somewhat lower. The performance of the benzoxazole 
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system [L132ZrCl2] is interesting, demonstrating a high initial activity but a rapid 

deactivation.  

 We have unambiguously shown that the salicylaldimine catalysts suffer from 

rapid deactivation at 50 °C and, surprisingly, that the salicyloxazoline catalysts 

suffer similar deactivation. Hence, we began investigating another possible 

mechanism for catalyst deactivation, and this work is discussed in Chapter 4. 
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4 p-Methoxy-substituted Salicyloxazoline Catalysts 

4.1 Introduction 

Given the results of Chapter 3, we returned to the basic question of what process 

was responsible for the deactivation of salicyl-imine catalysts. Fujita has proposed 

that loss of ligand to aluminium species present in the reaction mixture may be 

responsible,1 and a  recent study by Talsi et al. has directly observed this ligand-loss 

process in salicylaldimine catalysts possessing perfluoroaryl functionality.2 

 Fujita has reported that modification of salicylaldimine catalysts by addition of a 

methoxy substituent para to the phenoxy oxygen increased the productivity of the 

system at higher temperatures3 (q.v. §1.3.3). Although the results show promise, the 

methodology employed makes it impossible to determine whether the effect of the 

substituent is to retard decomposition or rather to increase the underlying activity 

of the system. We decided to investigate the effect on the salicyloxazoline systems, 

using essentially the same methodology employed in Chapter 3. 

4.2 Synthesis of Proligand HL15 

In order to test the effect of an electron-donating substituent at the para-position on 

the phenol functionality of the salicyloxazoline catalysts, we synthesized a further 

ligand, HL15, utilising the same route discussed previously (q.v. §3.2), i.e. reaction of 

4-tert-butyl, 5-methoxysalicylic acid with 2-amino, 2-methylpropan-1-ol. 
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Figure 4.1 - Salicyloxazoline Proligand with Electron Donor Substituent 

4.3 Synthesis of Complexes of L15  

The metal chloride complexes [L152MCl2] (M = Ti, Zr, Hf) were synthesized by salt 

metathesis as described previously (q.v. §3.3). Complexes were purified by 

sublimation (at ca. 250 °C, 10-7 bar) or recrystallization from boiling toluene. 

4.3.1 Structure of Complexes 

1H NMR spectra of the complexes [L152MCl2] (M = Ti, Zr, Hf) each consist of a single 

set of resonances, consistent with C2-symmetrical complexes. There is no notable 

line-broadening as the samples are heated to 373 K. 

 Despite persistent efforts, we were unable to grow crystals of any [L152MCl2] 

complex suitable for structure determination. 

4.4 High Throughput Polymerization Trials 

We conducted trials of [L152TiCl4] and [L152ZrCl4] on the Endeavor reactor (q.v. §3.7), 

under the conditions shown in Table 4.1 (The titanium system was only tested 

under conditions 1-4). 
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Conditions Temp.  
(°C) 

Time 
(min) 

C2 
(bar) 

H2 
(bar)‡‡‡‡ 

Hexene 
(ml) 

1 30 30 10 – 0.5 
2 30 30 10 – – 
3 50 30 10 – – 
4 70 30 10 – – 
5 70 30 5 – – 
6 70 30 10.5 0.5 – 
7 90 30 10 – – 
8 105 30 10 – – 

Table 4.1 – Conditions for HT trial of L15MCl2 Systems 

4.4.1 Productivity 

The results are shown in Table 4.2, and graphically in Figure 4.2. The productivities 

of the L11 analogues are reproduced on that figure for ease of comparison. The 

systems based on L15 demonstrate higher productivities than those based on L14 

under all conditions.  

Precatalyst Conditions Catalyst 
Load (μmol) 

Yield a 
(g) 

Productivity 
(kg mol-1 bar-1 h-1) 

[L152TiCl2] 1 1.0 0.188 3.8 × 101 
[L152TiCl2] 2 1.0 0.453 9.1 × 101 
[L152TiCl2] 3 1.0 0.398 8.0 × 101 
[L152TiCl2] 4 1.0 0.305 6.1 × 101 
[L152ZrCl2] 1 0.1 0.484 9.7 × 102 

[L152ZrCl2] 2 0.1 0.559 1.1 × 103 
[L152ZrCl2] 3 0.1 0.428 8.6 × 102 
[L152ZrCl2] 4 0.1 0.238 4.8 × 102 
[L152ZrCl2] 5 0.1 0.068 2.7 × 102 
[L152ZrCl2] 6 0.1 0.173 3.5 × 102 
[L152ZrCl2] 7 0.1 0.286 5.7 × 102 
[L152ZrCl2] 8 0.1 0.100 2.0 × 102 

a Assuming all MAO is converted to Al2O3 

Table 4.2 – Productivity Results from HT trial of L15MCl2 Systems 

                                                      

‡‡‡‡ The Endeavor system pressurises the reactor to the desired pressure of hydrogen, then 

adds ethene to the desired total pressure. The partial pressure of H2 is not maintained during 

the run. Thus, if the polymerization is consuming hydrogen, the gas composition will vary 

through the run. 
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Figure 4.2 - Graph to show productivities from HT trial of L15 systems. L11 systems shown 

for comparison 

4.4.2 Hexene Incorporation 

We were again unable to perform IR analysis of the polymers produced, to 

determine hexene incorporation. We were, however, able to determine the melting 

properties of the polymers produced by [L15ZrCl2] under conditions 1 and 2, i.e. at 

30 °C, with and without hexene present in the system (Table 4.3). There is a small 

difference in the melting points of the two polymers, but this alone is insufficient 

evidence for incorporation of hexene. 

Precatalyst Conditions Tm (°C) ΔHm (J/g) 
[L152TiCl2] 1 134.46 201.25 
[L152TiCl2] 2 137.76 212.16 

Table 4.3 – Polymer Characterization from HT trial 

4.4.3 Polymer Characterization 

The polymers produced were analysed by GPC; the results are shown in Table 4.4. 
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Precatalyst Conditions Mn (u) Mw (u) Modality PDi 
[L152TiCl2] 1a – – – – 
[L152TiCl2] 2b 569,900 1,963,000 1 3.4 
[L152TiCl2] 3 132,500 502,300 1 3.8 
[L152TiCl2] 4a – – – – 
[L152ZrCl2] 1 7,000 54,300 1 7.8 
[L152ZrCl2] 2 19,900 136,600 1 6.9 
[L152ZrCl2] 3 5,200 98,900 2 (19.2) 
[L152ZrCl2] 4 17,300 53,200 1 3.1 
[L152ZrCl2] 5 4,100 49,500 2 (12.2) 
[L152ZrCl2] 6 2,200 23,200 2 (10.4) 
[L152ZrCl2] 7a – – – – 
[L152ZrCl2] 8a – – – – 
a Sample unsuitable for GPC analysis 
b MWt exceeds calibrated range for this GPC system. 

Table 4.4 – Polymer Characterization from HT trial 

4.4.3.1 Titanium System 

The MWDs for [L15TiCl2] are shown in Figure 4.3. The polymer has a higher 

molecular weight than is observed for the comparable L14 and L11 systems under the 

same conditions, and the PDi is also higher. Whereas the MWD produced by 

[L11TiCl2] at 50 °C is clearly bimodal, the L15 species produces a less clear 

distribution. There appears to be a shoulder on the main mode, and a tail to low 

MWt.  
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Figure 4.3 – MWDs for [L152TiCl2] in HT trial 
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4.4.3.2 Zirconium System 

The MWDs for [L15ZrCl2] are shown in Figure 4.4. In comparison with the L11 and 

L14 analogues, this system produces higher MWt polymer. The response to change 

of temperature is also dissimilar. At 30 °C, a broad unimodal distribution is evident, 

with a tail to low MWt. At 50 °C, the distribution is bimodal, but at 70 °C the 

distribution is unimodal with a lower PDi (3.1, vs. 6.9 at 30 °C).  
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Figure 4.4 - MWDs for [L152ZrCl2] in HT trial, varying temperature (l) and variation of gas 

mixture (r) 

Variation of the gas mixture similarly has a clear effect on the MWD of the polymers 

produced. Reduction of the ethene pressure to 5 bar results in a bimodal 

distribution, with the higher MWt slightly favoured, whereas addition of H2 results 

in a bimodal distribution with the lower molecular weight favoured. 

 There appear to be at least two distinct modes of polymerization occurring, and 

variations in the reaction conditions vary the proportion of the product polymer in 

each mode.  

4.5 Reaction Profiles 

We measured the catalytic profiles of these catalysts using the same methodology 

discussed previously (c.f. §2.3.1.2). 
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 [L152TiCl2] shows good stability at 25 °C (τ½ = 3950 s), and less stability at 50 °C 

(τ½ = 2890 s). Similarly to the salicylaldimine [L142TiCl2], this catalyst shows higher 

activity at elevated temperature. 

 [L152ZrCl2] demonstrates fair stability at 25 °C (τ½ = 2280 s), and somewhat lower 

stability at 50 °C (τ½ = 1490 s).  
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Figure 4.5 - Reaction profiles for [L15MCl2] 

4.5.1 Productivity/Activity Measurements and Polymer Characterization 

4.5.1.1 Least Squares Fitting 

The reaction profile data were analysed numerically using the same methodology as 

discussed previously (q.v. §3.8.5.1), and the results are shown below (Table 4.5). 

Precatalyst Temp. (°C) Data start (s) y0a x0 A t1 r2 τ½ 

[L15TiCl2] 25 250 [0] 0 3.33 × 102 5180 0.860 3590 
[L15TiCl2] 50 300 [0] 0 9.92 × 102 4170 0.966 2890 
[L15ZrCl2] 25 300 [0] 0 2.10 × 105 3280 0.941 2280 
[L15ZrCl2] 50 150 [0] 0 1.09 × 105 2150 0.958 1490 

a y0 and A have units kg mol-1 bar-1 h-1, x0, t1 and τ½ have units s 

Table 4.5 - Least-squares fitting results for activity profiles for [L152MCl2]  

4.5.1.2 Productivity 

The detail of the reactions conducted is shown in Table 4.6, including the results of 

polymer characterization by GPC. 
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Precatalyst Temp. 
(°C) 

Catalyst 
(mol) 

Yield 
(g) 

Productivity60 

(kg mol-1 bar-1 h-1) Mn (u) Mw (u) PDi 

[L152TiCl2] 25 1.4 × 10-5  4.20 2.57 × 102 420,000 719,000 1.7 
[L152TiCl2] 50 1.5 × 10-6 1.30 7.24 × 102 321,000 595,000 1.9 
[L152ZrCl2] 25 1.4 × 10-8 2.64 1.57 × 105 95,600 423,000 (4.4)a 
[L152ZrCl2] 50 1.4 × 10-8 0.89 5.27 × 104 4,960 80,600 (16.3)a 
a Multimodal MWt distribution observed. 

Table 4.6 - Results from activity profiling reactions for [L152MCl2]§§§§ 

4.5.1.3 Polymer Characterization 

The MWDs obtained are shown graphically in Figure 4.6, in comparison to the 

equivalent distributions obtained from the HT experiments. It can be seen that there 

is a much closer correlation between the two sets of data than was the case for the 

catalysts based on L11 and L14 discussed previously (c.f. §3.9.2). 
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Figure 4.6 - MWDs from profiling reactions (l) in comparison to MWDs from HT Trial (r) 

 

                                                      

§§§§ Conditions: 100 ml toluene inc. 5 ml 10% w/v MAO/toluene solution, 1.2 bar C2,1 h  



Chapter 4  103 

4.6 Industrially Relevant Conditions 

As a further test of the catalytic behaviour, we tested ethene polymerization with 

[L152ZrCl2] and [L112ZrCl2] in a 5 L autoclave reactor,***** with the assistance of Dr 

Stefan Spitzmesser (Innovene). The reaction involving [L112ZrCl2] was stopped after 

30 min as no further ethene uptake was measured.  

The summarized reaction details are given in Table 4.7, and the ethene uptake 

profile in Figure 4.7. The products were characterized by GPC, and the MWD plots 

are shown in Figure 4.8. 
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Figure 4.7 – Reaction profiles from large reactor trial of [L11,152ZrCl2] 

Precatalyst Temp 
 (°C) 

Time 
(min) 

Catalyst 
(mol) 

Yield 
(g) 

Productivity 

(kg mol-1 
bar-1 h-1) 

Mn (u) Mw (u) PDi 

[L112ZrCl2] 80 30 2.0 × 10-6 22 4.40 × 103 8,900 214,000 (24.06)a 
[L152ZrCl2] 80 60 2.0 × 10-6 414 4.14 × 104 122,000 745,000 6.11 
a Multimodal MWt distribution observed. 

Table 4.7 - Results from large reactor trial of [L11,152ZrCl2] 

                                                      

***** Conditions: 1.8 L isobutane, 2.0 μmol catalyst, 1000 eq. MAO, 10 bar C2, 30 min (L11), 

60 min (L15), 80 °C 
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Figure 4.8 - MWDs from large reactor trial 

The reactions under these conditions corroborate the results obtained using our gas 

pressure burette, as well as those obtained during the high-throughput tests. 

Although quantitative comparisons are of limited use due to the different 

conditions, it is clear that the main features are similar; [L112ZrCl2] is rapidly 

deactivated whereas [L152ZrCl2] shows greater stability and produces material with 

higher MWt. Under these conditions, the molecular weights of the products of both 

catalyst systems are somewhat higher than when tested in our gas pressure burette 

and in the Endeavor reactor.  

4.7 Propene Polymerization 

The [L152MCl2] (M = Ti, Zr) catalysts were active toward polymerization of propene.* 

The titanium species produced poly(propene) with an activity of 

0.87 kg mol-1 bar-1 h-1. Comparison of the 13C NMR spectrum of the polymer product 

with reported data for salicylaldimine products4 suggests that the product is 

syndiotactic-enriched, but that it demonstrates a significant degree of 

                                                      

* Conditions: 95 ml heptane, 5 ml 10%w/v MAO/toluene solution, 5 bar C3, 2 h (Ti), 3 h (Zr) 
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regioinversion. The product was characterized by GPC (Mn = 20,300 u, 

Mw = 167,000 u, PDi = 8.2); the MWD appears to be predominantly one mode, with 

shoulders to high and low MWt.  
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Figure 4.9 - MWD of poly(propene) produced by [L152TiCl2] 

The zirconium based catalyst was found to produce oligomers with an activity of 

4.8 kg mol-1 bar-1 h-1. The molecular weight was too low for GPC analysis, but NMR 

analysis suggests a degree of polymerization of about 18 (i.e. Mn around 800). 

 The productivity of the titanium systems for propene polymerization is 

somewhat lower than the reported productivities of titanium salicylaldimine 

catalysts,5 which are typically in the region of 2 – 6 kg mol-1 bar-1 h-1. Productivities 

were reported to increase somewhat when the steric bulk ortho to the phenoxy 

donor was reduced, giving productivities in the range 30 – 70 kg mol-1 bar-1 h-1. 

Propene polymerization was not reported for the salicylaldimine catalysts 

incorporating a methoxy moiety.  
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4.8 Effect of Methoxy Substitution on Catalytic Behaviour 

4.8.1 Stability 

The methoxy-substituted catalysts utilizing L15 show enhanced stability in 

comparison to the tert-butyl substituted species utilizing L11. 

Ligand Ti 
(25 °C) 

Zr 
(25 °C) 

Ti 
(50 °C) 

Zr 
(50 °C) 

L11 4060 930 2340 50 
L15 3590 2280 2890 1490 

Table 4.8 - Comparison of half lives (s) of L11 and L15 catalysts 

 For the titanium species, the stability at 25 and 50 °C is similar between L11 and 

L15 catalysts. Both titanium catalysts can reasonably be described as long lived at 

both temperatures. 

 The effect is more dramatic on the zirconium species however - the deactivation 

of [L11ZrCl2] (which is rapid at 25 °C and almost immediate at 50 °C) is significantly 

retarded by the OMe substitution. 

4.8.2 Activity 

The L15 catalysts demonstrate initial activities (from linear regression analysis) 

which are approximately double the initial activities of the L15 species Table 4.9). 

Ligand Ti 
(25 °C) 

Zr 
(25 °C) 

Ti 
(50 °C) 

Zr 
(50 °C) 

L11 1.70 × 102 1.15 × 105 2.63 × 102 6.23 × 104 
L15 3.33 × 102 2.10 × 105 9.92 × 102 1.09 × 105 

Table 4.9 – Comparison of initial activities (kg mol-1 bar-1 h-1)  

of L11 and L15 catalysts 

4.8.3 Polymer Properties 

The polymers produced by the catalysts utilizing L15 have significantly higher MWt 

than those produced by L11 catalysts.  
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Ligand Ti 
(25 °C) 

Zr 
(25 °C) 

Ti 
(50 °C) 

Zr 
(50 °C) 

L11 88,500 (1.8) 1,900 (5.0a) 129,000 (1.3) 510 (1.5) 
L15 420,000 (1.7) 95,600 (4.4a) 321,000 (1.9) 4,960 (16.3a) 

a Multimodal MWt distribution observed 

Table 4.10 – Comparison of product Mn from L11 and L15 catalysts  

(all units are u, PDi in brackets) 

It is interesting that the zirconium systems using L15 have higher Mn values, but also 

higher polydispersity (Figure 4.10); the distribution has been extended into the 

higher MWt region, rather than being displaced there.  

 There appear to be two modes present in the product, but both have higher 

molecular weights than the modes present in the product of the L11 catalyst. 
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Figure 4.10 - Comparison of L11 and L14 zirconium catalysts 

Thus, methoxy-substitution of the phenoxy donor affects not only the deactivation 

mechanism during the polymerization, but also the chain transfer or termination 

mechanisms. 

4.9 Summary and Conclusions 

A modification to the ligand system presented in Chapter 3, which is proposed to 

strengthen the bond between phenoxy-oxygen and metal centre, resulted in 



Chapter 4  108 

significant improvements in stability of the catalysis at 50 °C, leading to the 

conclusion that the primary deactivation mechanism is not 1,2-migratory insertion 

to the imine bond, but is more likely to be loss of ligand from the catalyst to 

aluminium species present in the polymerization. 

 Those catalysts based on zirconium are extremely active for the polymerization 

of ethene, and moderately productive for the oligomerization of propene, whereas 

those based on titanium are highly active for the polymerization of ethene, and 

active for the polymerization of propene, producing syndiotactic-enriched PP with 

moderate productivity. 

 In light of the mixtures of isomers observed for some of the catalysts presented 

here and in Chapter 3, and in order to investigate the possible nature of the active 

species, we decided to attempt to investigate the nature of that species directly, and 

this work is discussed in Chapter 5. 
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5 Structure and Activation of Imine Catalysts 

5.1 Introduction 

Metallocene and post-metallocene catalyst systems are primarily differentiated from 

the older Ziegler-Natta technologies by having well-defined active sites, and 

therefore studies into the nature of the active sites of such species are of great 

interest.1-3 The catalytically-active species are generally believed to be coordinatively 

unsaturated alkyl cation species (vide infra). There are several possible ways to form 

such species; the method most commonly applied during polymerization reactions 

is the treatment of a metal halide with MAO, which alkylates and ionizes the metal 

centre. MAO is typically present in significant excess, and its structure is poorly 

understood and probably poorly-defined.4-7 This precludes unequivocal structural 

assignment of cations formed with it, although spectroscopic techniques have 

recently been used to investigate such species with some success.8,9 

 As an alternative to MAO, the most commonly employed reagents are the 

various non-coordinating perfluoryarylborane and perfluoroarylborate species.1,10 

The most commonly employed are B(C6F5)3, [PhNMe2H][B(C6F5)4] and 

[CPh3][B(C6F5)4], which are capable of abstracting metal-bound alkyl species. In 

order to use such activators with metal chloride complexes, the complex is treated 

with an alkylating agent such as triisobutylaluminium. 

5.2 Synthesis of Metal Benzyl Complexes 

We synthesized the metal benzyl species [Ln2M(CH2Ph)2] (n = 10-12,15, M = Zr, Hf) 

by protonolysis between the proligand HLn with [M(CH2Ph)4] in toluene, pentane or 

diethyl ether, with the exclusion of light. The products were isolated by 
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recrystallization from pentane. The low yields represent difficulties in isolating the 

product rather than a low conversion; mixing ligand with metal precursor in a 

young’s-tap NMR tube led to 100% conversion. Attempts to form the titanium 

benzyl species yielded intractable mixtures. 

2HLn
M(CH2Ph)4

Ln2M(CH2Ph)2  

Figure 5.1 – Protonolysis synthesis of metal benzyl complexes 

 L10 L11 L12 L15 

Zr 44% 27% 26% 31% 

Hf 52% 30% 32%  37% 

Table 5.1 – Isolated yields of [LnM(CH2Ph)2] complexes 

5.2.1 Molecular Structures of [L2Hf(CH2Ph)2] complexes 

The molecular structures of [L10Hf(CH2Ph)2] and [L12Hf(CH2Ph)2] were determined 

by single-crystal X-ray diffractometry, and are shown in Figure 5.2. Both 

compounds have adopted C2-symmetric trans,cis,cis-geometries (i.e. the oxygen 

atoms are mutually trans). There are only minor differences between the structures 

of these two compounds, despite the significant reduction in steric bulk around the 

phenolate functionality in the L12 species. 

 As far as we are aware, these are the first reported [L2HfX2] (L = N,O-donor, 

X = halide or alkyl) structures, although the structure of the alkyl cation of a closely 

related species has been previously presented,11 and these structures are 

unremarkable compared to this.  



Chapter 5  112 

  
[L102Hf(CH2Ph)2] [L122Hf(CH2Ph)2] 

Figure 5.2 - Molecular structures of [L102Hf(CH2Ph)2] and [L122Hf(CH2Ph)2] (Hydrogen 

atoms omitted for clarity). Probability ellipsoids are set to the 50% level 

 [L102Hf(CH2Ph)2] [L122Hf(CH2Ph)2]a 
Bond Length (Å) Bond Length (Å) 

Hf(1)-O(101) 2.013(3) Hf(1)-O(101) 2.003(2) 
Hf(1)-O(201) 2.005(3)   
Hf(1)-N(112) 2.300(4) Hf(1)-N(112) 2.351(3) 
Hf(1)-N(212) 2.336(4)   
Hf(1)-C(301) 2.279(6) Hf(1)-C(201) 2.272(4) 
Hf(1)-C(401) 2.272(5)   

Bonds Angle (°) Bonds Angle (°) 
O(201)-Hf(1)-O(101) 159.64(13) O(101)#1-Hf(1)-O(101) 168.03(14) 
O(101)-Hf(1)-N(112) 76.35(14) O(101)-Hf(1)-N(112) 77.25(11) 
O(201)-Hf(1)-N(212) 76.21(14) O(101)-Hf(1)-N(112)#1 94.11(11) 
C(301)-Hf(1)-N(212) 173.4(2) C(201)-Hf(1)-N(112)#1 167.31(14) 
N(112)-Hf(1)-N(212) 82.72(14) N(112)#1-Hf(1)-N(112) 88.70(16) 
C(401)-Hf(1)-C(301) 92.4(2) C(201)#1-Hf(1)-C(201) 93.3(2) 
O(101)-Hf(1)-N(212) 88.39(14)   
C(102)-O(101)-Hf(1) 145.1(3) C(102)-O(101)-Hf(1) 141.5(3) 
C(202)-O(201)-Hf(1) 144.2(3)   

a Structure has crystallographic C2 symmetry 

Table 5.2 - Selected bond angles and lengths for [L102Hf(CH2Ph)2] and [L122Hf(CH2Ph)2] 
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5.3 Cation Synthesis and Stability 

5.3.1 Ionization Using Perfluoroarylboron Compounds 

We attempted to form the alkyl cations [Ln2Zr(CH2Ph)]+ (n = 11,15) by reaction of 

[Ln2Zr(CH2Ph)2] with B(C6F5)3 or [PhNMe2H][B(C6F5)4] in d5-bromobenzene in 

Young’s tap NMR tubes. 

 Reactions of both complexes with B(C6F5)3 lead to products with complicated 1H 

NMR spectra suggestive of rapid decomposition. We repeated the reaction of 

[L112Zr(CH2Ph)2] with B(C6F5)3 at -78 °C by distilling d2-dichloromethane onto the 

mixed solids, and transferring the NMR tube to the spectrometer at this 

temperature, but extensive decomposition was apparent immediately. 

 Reaction of [L112Zr(CH2Ph)2] with [PhNMe2H][B(C6F5)4] in CD5Br led to the 

production of a major component with 1H NMR signals consistent with the 

formation of an alkyl cation (Figure 5.3). The system is chiral, and the single CH2Ph 

group gives rise to a pair of AB doublets around 2.9 and 3.1 ppm. The oxazoline 

CH2 groups give a similar signal at 3.6 ppm, with matching Me signals at 0.7 and 

1.1 ppm. The aromatic CH resonances from L11 appear at 7.81 and 7.87 ppm. This 

spectrum is consistent with a five-coordinate species [L112Zr(CH2Ph)][B(C6F5)4]; the 

presence of an additional ligand such as PhNMe2 would lead to inequivalence of the 

two L11 ligands. 

 A minor unsymmetrical species is also present (see doublet signals in aromatic 

region, and overlapping signals 3.7-4.2 ppm). Notably, no corresponding zirconium 

CH2Ph signal was detected; perhaps the alkyl cation decomposes via loss of a benzyl 

radical12 or α-elimination. The mixture gradually decomposed further over a period 

of hours. Upon standing for several days, the mixture became a deep blue colour. 
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Figure 5.3 - Aryl and alkyl regions of 1H NMR spectrum of [L112Zr(CH2Ph)]+ 

Reaction of [L152Zr(CH2Ph)2] with [PhNMe2H][B(C6F5)4] gave a product with a 

1H NMR spectrum consistent with an alkyl cation; only this time the product was 

relatively clean. The alkyl region is shown in Figure 5.4, the aromatic region is 

complicated by overlapping signals. The very sharp singlet marked * is not 

consistent with any part of the expected cation spectrum. After standing for 48 h, a 

fine colourless precipitate had formed, and the integrals of the peaks assigned to the 

cation reduced to 30% of their original values (in comparison to the integral of the 

residual solvent protium signals), and the integral of the unidentified peak (*) grew 

to 4 times its original value. 
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Figure 5.4 - Alkyl region of 1H NMR spectrum of [L152Zr(CH2Ph)]+ 

5.3.2 Ionization using MAO 

Whilst studies using stoichiometric borate species as ionizers/counterions may be 

informative as to nature of a cationic species, ultimately studies using the same 

agents as in a polymerization reaction (i.e. MAO) should be more relevant, 

especially since the method of decomposition is of interest. 

 Makio and Fujita,13 and a more recently Talsi et al.8 have investigated the 

reaction of the perfluorinated titanium salicylaldimine complex [L2TiCl2] 

[HL = 2-tert-butyl-6-{(perfluorophenylimino)methyl}phenol] with MAO, utilizing 

NMR spectroscopy. The latter study confirms that the salicylaldimine was 

decomposed to LAlMe2 with τ½ around 1 h.   

 We investigated the species [Ln2MCl2] (n = 11,15, M = Ti, Zr) by direct reaction 

with TMA-depleted MAO in d5-bromobenzene, in Young’s tap NMR tubes. 
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 For comparison, we also synthesized [LnAlMe2] (n = 11,15) compounds by 

reaction of HLn with TMA (20 eq.) in d5-bromobenzene. A range of [LAlMe2] 

(L = imine or salicylaldimine ligand) complexes have been previously synthesized 

using a similar route.14 

5.3.2.1 [L112MCl2] 

Upon treatment of the L11 complexes (Figure 5.5, A, Ti is similar) with MAO, 

multiple unidentified species are initially generated (B). After standing for 24 h, 

[L112MCl2] is completely converted to L11AlMe2 (C, D). The fate of the metal is 

unclear. 

A

B

C

ppm (t1)

0.01.02.03.04.05.06.07.0

D

 

Figure 5.5 - 1H NMR spectra of A: [L112ZrCl2], B: [L112ZrCl2] + MAO,  

C: [L112ZrCl2] + MAO + 24 h, D: HL11 + TMA 
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The multiple signals generated initially may represent a mixture of the various 

possible isomers. Such mixtures of isomers in salicylaldimine catalyst have been 

proposed to be responsible for forming multimodal poly(ethene).15 

5.3.2.2 [L152MCl2] 

 The L15 complexes demonstrate different behaviour, immediately forming a new 

species, consistent with a reaction with MAO to form [L152M(Me)]+[Me(MAO)]–, but 

not with formation of L15AlMe2. The 1H NMR spectrum of the zirconium species is 

shown in Figure 5.6 (B) (The sharp singlet at ~3.6 ppm is caused by the OMe 

protons). This species has an element of chirality, as the oxazoline CH2 protons still 

appear as an AB doublet (around 3.6 and 3.8 ppm), and the C(CH3)2 signals are two 

singlets (at around 1.0 and 1.5 ppm). In the spectrum of [L15AlMe2] (C) this element 

of chirality is not present. The spectrum of the mixture of [L152ZrCl2] with MAO was 

unchanged after standing for 48 h at room temperature. 
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Figure 5.6 – 1H NMR spectra of A: [L152ZrCl2], B: [L152ZrCl2] + MAO, C: HL15 + TMA + 

MAO  

5.3.3 Conclusions from Cation Studies 

These results offer direct evidence that the effect of the methoxy substituent on L15 is 

to prevent loss of ligand from the complex to aluminium. Whereas [L112ZrCl2] forms 

a mixture of species on treatment with MAO, the methoxy-substituted L15 analogue 

appears to form just one. The L11 species is converted to [L11AlMe2] over ~24 h at 

room temperature, whereas the L15 analogue shows no conversion. 

 Reactions of [PhNMe2H][B(C6F5)4] with [Ln2Zr(CH2Ph)2] (n = 11,15) yield 

products with a 1H NMR spectra consistent with alkyl cations. The L15 cation is 

relatively stable, but the L11 analogue appears to suffer some other decomposition 

mechanism in the absence of aluminium, leading to unsymmetrical species which 

go on to decay further. The methoxy-substituted catalyst does not appear to 

decompose via this pathway; rather the cations formed slowly decompose to species 
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which are not detected by NMR spectroscopy (this may simply be due to 

precipitation, or, in the case of titanium, reduction to the 3+ state.8). 

5.4 Modelling Catalyst Species 

5.4.1 Isomeric Nature 

With Dr Stefan Spitzmesser at Innovene, we have calculated ΔEf for the precatalysts 

[L112ZrCl2] and [L152ZrCl2] using DFT* (Density Functional Theory); the relative 

energies of the various cis-Cl isomers are shown in Figure 5.7, and the structures 

themselves in Figure 5.8. 

  

 L112ZrCl2 L152ZrCl2 

Cis,cis,trans 1.3 -10.9 
Cis,cis,cis 3.3 -2.3 

Cis,trans,cis 0.0 0.0 

All units are kJ mol-1 
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Figure 5.7 - Formation Energies of isomers, relative to cis,trans,cis 

                                                      

* DMol3 software, with double-ζ basis set, single polarization function, and utilizing the 

Becke exchange functional (B88)16 in combination with the Perdew-Wang correlation 

functional (P91).17 See §0 for full details of calculation methodology. 
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 Cis,cis,trans Cis,trans,cis Cis,cis,cis 

L11 

   

L15 

   
Figure 5.8 - Optimized structures of [Ln2ZrCl2] (n = 11, 15) 

The difference between the energies of these isomers is relatively small; in related 

work in our group utilizing chiral salicyloxazoline ligands,18 the difference between 

isomers is of the order of 35 kJ mol-1.  

 If the various isomers are able to interchange, we would expect to see a 

statistical (Boltzmann) distribution between isomers, with occupancies as shown in 

Table 5.3. However, only one isomer is observed in the NMR spectra of both species 

(q.v. §3.4.2, §4.3.1). Whereas this may be valid for [L152ZrCl2], on the basis of these 

calculations we would expect to see a mixture of isomers for [L112ZrCl2]. The reason 

for this discrepancy is unclear, but it seems most likely to arise from the DFT 

calculations’ neglect of solvent effects, although this should not vary significantly 

between isomers. 
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 L112ZrCl2 L152ZrCl2 

Cis,cis,trans 14% 96% 
Cis,cis,cis 32% 3% 

Cis,trans,cis 54% 1% 

Table 5.3 – Calculated distribution of isomers 

5.4.2 Effect of Methoxy Substituent 

It has been proposed that the effect of the methoxy substituent in salicylaldimine 

catalysts is to strengthen the bonds between the zirconium centre and the ligands.19 

If this is indeed the case, it should result in those bonds in [L152ZrCl2] being shorter 

than the equivalent bonds in [L112ZrCl2].  

 The methoxy substituent is in conjugation with the aryl system in all the 

calculated structures of [L152ZrCl2] (the dihedral angle between the O-Me bond and 

the aryl is <0.1°, consistent with sp2 hybridization which is indicative of conjugation 

with the aryl system). However, comparison of the calculated structures shows that 

the methoxy substituent has only a very minor effect on the length of the Zr-O 

bonds (< 0.6 pm, Table 5.4). 

  Cis,cis,trans Cis,trans,cis Cis,cis,cis 
Ligand Bond Length (Å) Length (Å) Length (Å) 

Zr(1)-O(3) 2.047 2.056 2.042 L11 
Zr(1)-O(30) 2.056 2.055 2.013 
Zr(1)-O(3) 2.041 2.051 2.042 L15 
Zr(1)-O(30) 2.056 2.051 2.010 

Table 5.4 – Calculated lengths of Zr-O bonds in various isomers  

of [Ln2ZrCl2]  (n = 11, 15) 
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The 4-methoxy substituted salicylaldimine species previously reported by Fujita 

were crystallographically characterized* as having Zr-N bonds which were shorter 

(by 0.074 Å) than the 4-hydro analogues.19,20 Comparison of our calculated 

structures again shows only very slight differences in the length of these bonds, 

between the structures of complexes utilizing L11 vs. L15. 

  Cis,cis,trans Cis,trans,cis Cis,cis,cis 
Ligand Bond Length (Å) Length (Å) Length (Å) 

Zr(1)-N(5) 2.385 2.428 2.457 L11 
Zr(1)-N(32) 2.383 2.430 2.472 
Zr(1)-N(5) 2.391 2.436 2.463 L15 
Zr(1)-N(32) 2.381 2.435 2.472 

Table 5.5 - Calculated lengths of Zr-N bonds in various isomers with [Ln2ZrCl2] (n = 11, 15) 

It seems therefore that the effect of the methoxy substituent is not to strengthen the 

metal-ligand bonds in a straightforward manner: the calculated bond lengths do not 

support such an effect. There are several further possibilities as to how the methoxy 

substituent may prevent loss of ligand to aluminium, however. 

 The lowest energy isomer is predicted to be cis,trans,cis for [L112ZrCl2], and 

cis,cis,trans for the L15 analogue (vide supra). It is possible that the cis,cis,trans isomer 

disfavours ligand loss. This appears feasible; a close examination of the calculated 

structures shows that the cis,cis,trans isomer appears to be somewhat more 

congested around the phenoxy-oxygen than the cis,trans,cis. 

 Secondly, it is possible that the methoxy substituent has some other direct effect. 

For example, MAO may co-ordinate to it directly, and therefore not be suitably 

                                                      

* The original paper discussing this work does not mention the crystallographic structure 

determination; the bond lengths were presented in the later review article without associated 

crystallographic information. As far as we are aware, the full crystal structures have never 

been published. 
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oriented to accept the salicyloxazoline ligand. Since the structure of MAO is still 

poorly understood,5 this is merely speculative however. 

 Thirdly, the increased electron density at the phenoxy-oxygen may interfere 

with the mechanism of ligand-loss to aluminium. It is clear that although the bond 

lengths are similar between L11 and L15 species there is nonetheless an electronic 

effect at the metal centre, favouring the cis,cis,trans isomer in the L15 complex. 

 Some related work within our group, utilizing complexes of the type 

[Cp*LZrCl2] (Cp* = 1,2,3,4,5-pentamethylcyclopentadienyl) has shown that for those 

species the methoxy substituent has no effect on the lifetime of catalysis (direct 

reaction with MAO has not been attempted);21 this is consistent with a change in 

geometry being responsible for inhibiting ligand loss, since any electronic effect 

would be expected to similarly affect the half-sandwich complexes. 

5.4.3 Catalytic Cycle 

The catalytically-active species for olefin polymerization are generally believed to be 

coordinatively unsaturated metal alkyl complexes,3,4,7,22 operating via the Cossée 

mechanism (Figure 5.9).23 The olefin approaches the alkyl cation (A), forming a π-

complex (π). A 4-membered transition state (TS) leads to insertion of the olefin, and 

the resultant polymeryl chain is stabilized by a γ-agostic interaction (γ), before 

rearranging to be stabilized by a β-agostic interaction (β). 
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Figure 5.9 - Cossée mechanism 
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Using DFT, we modelled the expected intermediates in polymerization of ethene 

using [L152ZrCl2], where R = Me (The key stages are shown in Figure 5.10, for the 

trans-O isomer). 

A  π  TS 

 

→ 

 

→ 

 

  

β 

 
↓ 
γ 

  

 

← 

 

Figure 5.10 - Modelling Catalytic Process for trans-O [L152ZrCl2] 

The structures β and γ do not show any evidence of agostic interaction; if such 

interaction were present it we would expect to observe lengthened C-H bonds, and 

shorter Zr-H distances. Although the calculations were initiated from geometries 

consistent with agostic interactions, in all cases the optimizations have led to 
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5-coordinate structures with no such agostic interaction. This result is significant, as 

calculations for related [Cp*LZrCl2] complexes using the same methodology clearly 

show agostic interactions.21 

 The calculated energies (relative to the trans-O isomer of A) are shown in Figure 

5.11. Whereas the cis,trans,cis (i.e. trans-O) isomer of the dichloride complex is 

highest in energy (vide supra), in the methyl cation the trans-NO isomer has the 

highest energy. This may be rationalized if the reduction in steric demand around 

the metal centre stabilizes the cis,trans,cis structure more than it stabilizes the 

cis,cis,cis. Careful examination of the structures confirms that this is likely; in the 

cis,trans,cis dichloride structure the ligands are substantially distorted from planar 

co-ordination due to steric repulsion from the oxazoline dimethyl moiety. In the 

cis,cis,cis dichloride complex the ligands are more planar. Upon formation of the 

methyl cations, the situation is reversed (Table 5.6). 

Ligand 1 Ligand 2 Isomer dichloride Me cation dichloride Me cation 
cis,trans,cis -23.37° -2.46° -22.85° 0.36° 

cis,cis,cis -3.61° -18.93° 4.02° 6.88° 

Table 5.6 – Dihedral angles between N-Zr-O-C for each ligand in [L152ZrCl2] isomers 
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Figure 5.11 – Reaction energy profiles for C2 polymerization with  

isomers of [L152ZrCl2] (relative to trans-O: A) 

 A π TS γ β 
trans-O 0 -3.3 15.9 -95.8 -103.8 
trans-N -15.1 9.2 57.7 -102.9 -111.3 

trans-NO (vs. O) 24.7 15.1 43.1 -70.7 -90.0 
trans-NO (vs. N) 24.7 7.1 48.5 – -90.8 

Table 5.7 - Calculated energies (in kJ mol-1) for C2 polymerization with  

various isomers of [L152ZrCl2] 

No stable [L152Zr(Me)(ethene)]+ species (c.f. π in Figure 5.10) could be found where 

the N donors were trans; the energy given above is not optimized. The high ΔE‡ 

probably reflects the disfavourable nature of co-ordinating ethene to this species. 

This may have implications for the nature of the active species in the 

polymerization; although the cis,cis,trans dichloride complex is lowest in energy, at 

the equivalent methyl cation it appears to be energetically disfavourable to co-

ordinate ethene, i.e. although this isomer is predicted to be the thermodynamically 

most stable isomer, it is unlikely to be catalytically active in polymerization. 

 The “free” methyl cations (A) may be expected to undergo facile interchange via 

a rotational or pseudo-rotational (Berry twist) mechanism, and should have a 
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statistical distribution. This raises the possibility that only a minority of the available 

catalyst molecules will be active at any given time.  

 It has been suggested that electronic as well as steric flexibility in the 

salicylaldimine catalysts may play a role in their high activity, with the Zr-N bond 

trans to the polymeryl chain calculated to lengthen by ~0.1 Å upon formation of the 

ethene π-complex.24 We calculate that the same behaviour should occur in 

[L152Zr(Me)]+ (Table 5.8). 

Bond A π γ 
Zr(1)-N(4) 2.293 2.504 2.295 
Zr(1)-N(31) 2.283 2.257 2.285 
Zr(1)-O(2) 2.037 2.043 2.041 

Zr(1)-O(29) 2.035 2.034 2.041 

Table 5.8 – Calculated bond lengths (Å) for trans-O L152Zr species 

5.4.4 Conclusions from DFT Modelling 

We have calculated the energies of the various possible isomers of [L112ZrCl2] and 

[L152ZrCl2], and the reaction pathways for the various isomers of the L15 species. We 

have shown that the influence of the methoxy substituent is not a straightforward 

strengthening of the metal-ligand bonds and propose instead that the effect is an 

electronic one, favouring a different isomer.  

 We have come to the unexpected conclusion that the lowest energy isomer of 

[L152ZrCl2] is unlikely to be catalytically active. It is tempting to speculate that this 

isomer represents a “resting state” of the catalyst which is not active, but also not 

susceptible to ligand loss to aluminium.  

 However, there are several factors which are not included in these 

computational results, but which may be expected to influence the results. Firstly, 

the solvation energy is not modelled. It may be reasonable to assume that this will 

be similar between the different isomers, and should not affect the relative results.25  
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 Secondly, the counterion is not modelled in our calculations. It has previously 

been shown that for metallocene systems with stoichiometric activators that the 

counterion can strongly influence the catalytic process.1,4,25 This presents a particular 

problem where the counterion is MAO, the structure of which is still a matter of 

considerable debate (vide supra). In calculations of the insertion of ethene at a 

zirconocene centre,4 the presence of one possible form of MAO was calculated to 

reduce the activation barrier by 1-2 kJ mol-1. Interestingly, this study also calculated 

a significant increase in the activation barrier (~24 kJ mol-1) when a solvent (toluene) 

was modelled with the MAO counterion, but not with the naked cation. 

 In summary, whilst we believe that these computational results are of interest 

(especially for the purposes of comparison with other studies), the difficulty 

involved in including MAO in the calculations of the reaction pathways probably 

presents a significant barrier to accurate modelling. 
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6 Experimental Procedures 

6.1 General Procedures 

Where required, procedures were carried out under an atmosphere of argon using a 

dual-manifold vacuum/argon line and standard Schlenk procedures, and an 

MBraun argon-atmosphere dry-box. NMR samples were made up in Young’s type 

concentric stopcock tubes and sealed under argon. Solvents were dried over sodium 

wire (except dichloromethane), and then distilled over K (tetrahydrofuran), Na 

(toluene), Na/K alloy (pentane), or CaH2 (dichloromethane), under an atmosphere 

of N2. Deuterated solvents were freeze-thaw degassed and dried by refluxing over 

CaH2 (dichloromethane, bromobenzene) or molten K (all others) in vacuo, and then 

distilled to a Rotaflo ampoule and stored in the dry-box. All glassware was stored in 

an oven (>373 K) prior to use. Chemicals were purchased from Aldrich, Acros, 

Fluorochem or Fluka, and used without further purification unless otherwise noted. 

[M(CH2Ph)4] (M = Ti,Zr,Hf) were prepared in our laboratory according to published 

procedures1 

 NMR spectra were recorded at ~298 K on Bruker DPX300, DPX400, AC400 or 

DRX500 spectrometers unless otherwise noted. Spectra were referenced internally 

via residual protio-solvent resonances relative to tetramethylsilane (δ = 0). 

Microanalyses were conducted by Warwick Analytical Services Ltd, or by Medac 

Ltd. 

6.1.1 General Procedure for MAO activated Ethylene Polymerization 

To toluene under argon in a round-bottom flask with several quick-fit ports was 

added the appropriate quantity of MAO as a 10% w/v solution in toluene. The 
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solution was stirred gently until it reached a constant temperature. The vessel was 

evacuated, and then charged with ethylene at 1.2 bar, and the rate of stirring 

increased to 400 rpm. The solution was stirred until ethylene uptake ceased, and the 

appropriate precatalyst was injected as a toluene solution. The pressure of ethylene 

and rate of stirring were maintained for the duration of the experiment. After the 

appropriate time, the reaction was stopped by addition of MeOH (20 ml), and 

removal of the ethylene atmosphere. The polymer product was precipitated by 

pouring onto a solution of 5 % HCl in MeOH (~800 ml), and stirring for ~4 h. The 

product was recovered by filtration, and washed with 5 % HCl in MeOH followed 

by acetone. The polymer product was dried by heating to 70 °C in vacuo for 24 h. 

6.1.2 Ethylene polymerization in “Endeavor” reactor 

The “Endeavor” reactor is a parallel screening device containing 8 individual high-

pressure reactors. These were prepared by inserting a pre-weighed glass liner and 

attaching a plastic (PEEK) impeller for stirring. A solution of MAO in toluene 

(4 cm3, 0.15 M) was then injected into each vessel under an inert atmosphere. 

Hexene (0.5 ml) was then injected into the appropriate vessels. The vessels were 

then purged and heated to the appropriate temperatures. Hydrogen gas (0.5 bar) 

was introduced if required, followed by a constant supply of ethylene (10 bar), and 

the stirring was switched on. Then a solution of the catalyst in toluene (5 mM for a 

1 μM injection, 0.5 mM for a 0.1 μM injection) was then made, and pre-activated 

with MAO (10 eq., 0.5 M). The catalyst solution (0.2 ml) was injected into the vessel, 

followed by toluene (0.8 ml) to wash the syringe through. The ethylene uptake of 

the each vessel was monitored from the moment of injection for 30 minutes, 

whereupon the vessels were purged, returned to an inert atmosphere, and cooled to 

30 ºC. The polymers produced were then dried and weighed to obtain the final 
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productivity value for each catalyst, allowing for the residual weight of aluminium 

species present in the polymer.  

6.1.3 Ethylene polymerization in 5 L autoclave 

A catalyst solution was prepared by dissolving the appropriate precatalyst (2.0 

μmol) in toluene (15.7 ml) followed by the addition of MAO (3.9 ml, 0.5 M in 

toluene, 1000 eq. Al/Zr) to reach a final catalyst concentration of 0.1 mM. 10 ml of 

this catalyst solution were immediately transferred into a 5 L autoclave containing 

isobutane (1.8 L), MAO (2.0 ml, 0.5 M in toluene, 1000 eq Al/Zr) and ethylene (10 

bar) at 80 °C. The polymerization reaction was stopped after the appropriate time by 

venting all volatiles.  

6.1.4 GPC Analysis 

Samples generated in our laboratory were analysed by RAPRA Ltd. Samples 

generated using the Endeavor reactor were analysed by Innovene. 

6.1.4.1 Rapra Ltd. 

A single solution of each sample was prepared by adding 15 ml of solvent to 15 mg 

of sample and heating at 190 °C for 20 min with shaking to dissolve. Each sample 

solution was then filtered through a metal sinter at 160 °C and part of each filtered 

solution transferred to glass sample vials. The vials were then placed in a heated 

sample compartment and after an initial delay of thirty minutes to allow the 

samples to equilibrate thermally, injection of part of the contents of each vial was 

carried out automatically. 
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Instrument:  Polymer Laboratories GPC220, 

Columns: PLgel guard plus 2 x mixed bed-B, 30 cm, 10 

microns, 

Solvent: 1,2,4-trichlorobenzene with anti-oxidant, 

Flow-rate:  1.0 ml/min (nominal), 

Temperature:  160 °C (nominal), 

Detector:  refractive index (a Viscotek differential pressure 

detector was also online, but the data was not 

used for the traces reported, unless otherwise 

mentioned). 

Table 6.1 - Chromatographic details for RAPRA analysis 

Data capture and subsequent data handling was carried out using Viscotek ‘Trisec’ 

3.0 software. 

The GPC system used for the work was calibrated with polystyrene and a 

mathematical procedure involving the use of literature viscosity constants has been 

applied to the calibration to allow for the difference in chemical type between the 

sample and the calibrants (the Mark Houwink parameters used are identified 

below). The results are therefore expressed as for polyethene. 

 Polystyrene (calibrants) Polyethene 

A 0.707 0.725 

Log K -3.917 -3.391 

Table 6.2 – Mark Houwink parameters for RAPRA analysis 

6.1.4.2 Innovene 

A single solution of each sample was prepared by adding 10 ml of solvent to 4.5 mg 

of sample and shaking in a PL SP260 dissolution rig at 160 °C for 120 minutes. 2 ml 
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of each filtered solution were transferred to glass sample vials, which were then 

placed in a heated sample compartment and injection of part of the contents of each 

vial was carried out automatically. 

Instrument:  Polymer Laboratories GPC220 

Columns: PLgel HTS-B (150 x 7.5 mm) for rapid GPC 

Solvent: 1,2,4-trichlorobenzene with 1 g/l BHT 

Flow-rate:  1.0 ml/min (nominal) 

Temperature:  160 °C (nominal) 

Detector:  refractive index. 

Table 6.3 - Chromatographic details for RAPRA analysis 

Data capture and subsequent data handling was carried out using PL Cirrus GPC 

Online software (v 1.2). 

The GPC system used for the work was calibrated with polystyrene and a 

mathematical procedure involving the use of literature viscosity constants has been 

applied to the calibration to allow for the difference in chemical type between the 

sample and the calibrants (the Mark Houwink parameters used are identified 

below). The results are therefore expressed as for polyethene. 

 Polystyrene (calibrants) Polyethene 

A 0.707 0.725 

K 12.1 40.6 

Table 6.4 – Mark Houwink parameters for RAPRA analysis 

6.1.5 Molecular Modeling Details 

All geometry optimizations were performed with the DMol3 Density Functional 

Theory (DFT) code2 as implemented in the Accelrys MaterialsStudio (versions 3.1 

and 3.2).3 DMol3 utilizes a basis set of numeric atomic functions, which are exact 
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solutions to the Kohn-Sham equations for the atoms. These basis sets are generally 

more complete than a comparable set of linearly independent Gaussian functions, 

and have smaller basis set superposition errors. In the present study, a polarized 

split valence basis set (termed “double numeric polarized” (DNP)) was used, i.e. a 

double-ζ basis set with polarization functions (functions with angular momentum 

one higher than that of the highest occupied orbital in the free atom: 2p for H; 3d for 

C, N, O; 5p for Zr). All geometry optimizations employed delocalized internal 

coordinates.4 

The generalized gradient approximation (GGA) functional utilizing the 

Becke exchange functional (B88)5 in combination with the Perdew-Wang correlation 

functional (P91)6 was used for all geometry optimizations. The convergence criteria 

for these optimizations consisted of threshold values of 2 × 10-5 Ha, 0.004 Ha Å-1 and 

0.005 Å for energy, gradient and displacement convergence, respectively, while a 

self consistent field (SCF) density convergence threshold value of 1 × 10-5 was 

specified. 

Preliminary transition state geometries were obtained by the integrated linear 

synchronous transit/quadratic synchronous transit (LST/QST) algorithm7 available 

in MaterialsStudio. These preliminary structures were then subjected to full TS 

optimizations using an eigenvector following algorithm. All transition structure 

geometries exhibited only one imaginary frequency in the reaction coordinate. All 

calculated reaction energies were derived from the total electronic energies of the 

geometries after optimization. 
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6.1.6 Synthesis of Metal Reagents 

6.1.6.1 [ZrCl4(THF)2]8 

A Schlenk vessel with stirrer bar was charged with zirconium tetrachloride (15.8 g, 

67.8 mmol) and dichloromethane (80 ml). The suspension was stirred vigorously 

and THF (12.1 ml, 149 mmol) was added dropwise. The solid material dissolved 

upon addition of THF. The solution was filtered, pentane (80 ml) was added and the 

solution kept at –30 ºC overnight. A white crystalline solid was obtained, which was 

filtered, washed with pentane and dried in vacuo, yielding [ZrCl4(THF)2] (22.22 g, 

87 %). 

6.1.6.2 [TiCl4(THF)2]8 

A Schlenk vessel with stirrer bar was charged with dichloromethane (30 ml) and 

titanium tetrachloride (2.9 ml, 26.4 mmol). The solution was stirred vigorously and 

THF (9 ml, 111.1 mmol) was added dropwise over 1 h. The solution was stirred for a 

further 20 min. Pentane (60 ml) was added, and then the solution was cooled to –30 

ºC and kept overnight to yield a bright yellow crystalline solid. This was recovered 

by filtration and dried in vacuo, yielding [TiCl4(THF)2] (8.1 g, 92 %). 

6.2 Bibenzyl Proligands 

6.2.1 2-hydroxy-3-tert-butyl-6-methylbenzaldehyde 

To 2-tert-butyl-5-methylphenol (16.5 g, 0.10 mol) in dry acetonitrile (500 ml) under 

argon was added dry TEA (55 ml), followed by dry MgCl2 (14.4 g, 0.15 mol). The 

mixture was stirred for 30 min. Dry paraformaldehyde (21 g, 0.70 mol) was added, 

and the mixture was heated at reflux for 2 h, before being allowed to cool to rt. The 

product was extracted with Et2O (7 × 100 ml), dried (MgSO4) and filtered through 
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celite. The solvent was then removed in vacuo. Distillation under reduced pressure 

(125 – 150 °C, 10-2 bar) yielded the desired product as a yellow-green oil (3.8 g, 18%).  

HO

O

But  

1H NMR 400 MHz (CDCl3): δ ppm 12.76 (s, 1H, OH), 10.29 (s, 1H, Ar–CH=O), 7.38 

(d, 1H, ArH, 3JHH = 8 Hz), 6.64 (d, 1H, ArH, 3JHH = 8 Hz), 2.55 (s, 3H, Ar-CH3), 1.43 (s, 

9H, C(CH3)3) 

 13C{1H} NMR 100 MHz (CDCl3): δ ppm 195.6 (Ar–CH=O), 162.7, 139.5, 136.2, 134.3, 

120.9, 118.2 (Ar), 34.4 (C(CH3)3), 29.1 (C(CH3)3), 17.6 (Ar–CH3) 

MS (EI+): m/z 192 (M+) 

6.2.2 H2L1 

To 3-tert-butyl-2-hydroxy-5-methylbenzaldehyde (2.00 g, 10.40 mmol) was added 

2,2’-diaminobibenzyl (1.06 g, 5.00 mmol), and then EtOH (~40 ml). The solution was 

heated at reflux for 18 h, during which time it turned bright orange. The mixture 

was cooled to 0 °C, and the powder product was recovered by filtration and then 

washed with ice-cold EtOH. H2L1 was recovered as a yellow-orange powder (2.40 g, 

86%). 

N

HO
tBu

2

 

1H NMR 300 MHz (CDCl3): δ ppm  13.96 (s, 2H, OH), 8.46 (s, 2H, N=CH), 7.45 (dd, 

2H, ArH, 3JHH = 8 Hz, 4JHH = 2 Hz), 7.23 (td, 2H, ArH, 3JHH = 8 Hz, 4JHH = 2 Hz), 7.23 

(d, 2H, ArH, 3JHH = 8 Hz), 7.13 (tt, 2H, ArH, 3JHH = 8 Hz, 4JHH = 1 Hz), 7.05 (dd, 2H, 
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ArH, 3JHH = 8 Hz, 4JHH = 1 Hz),  7.03 (d, 2H, ArH, 4JHH = 2 Hz), 3.07 (s, 4H, Ar–CH2), 

2.33 (s, 6H, Ar–CH3), 1.53 (s, 18H, C(CH3)3) 

13C{1H} NMR 75 MHz (CDCl3): δ ppm 161.6 (N=CH), 158.2, 147.0, 137.3, 135.8, 130.6, 

126.8, 118.8 (Ar), 131.3, 130.3, 127.3, 126.7, 117.6 (ArH), 34.6 (C(CH3)3), 33.9 (Ar–CH2), 

29.2 (C(CH3)3), 18.76 (Ar–CH3) 

MS (EI+): m/z 560 (M+) 

EA: found (calc) C: 80.97 (81.39), H: 7.90 (7.91), N: 5.11 (5.00) 

6.2.3 H2L2 

To 2-hydroxy-3-tert-butyl-6-methylbenzaldehyde (1.82 g, 9.47 mmol) was added 

2,2’-diaminobibenzyl (0.994 g, 4.68 mmol), and then EtOH (~40 ml). The solution 

was heated at reflux for 18 h, during which time it turned bright orange. The 

mixture was cooled to 0 °C, and the powder product was recovered by filtration and 

then washed with ice-cold EtOH. H2L2 was recovered as a yellow-orange powder 

(2.50 g, 95%). 

N

HO
tBu

2

 

1H NMR 400 MHz (CDCl3): δ ppm 14.97 (s, 2H, OH), 8.86 (s, 2H, N=CH), 7.48 (d, 

2H, ArH, 3JHH = 8 Hz), 7.27 (d, 2H, ArH, 3JHH = 8 Hz), 7.23 (t, 2H, ArH, 3JHH = 8 Hz), 

7.11 (t, 2H, ArH, 3JHH = 8 Hz), 7.05 (d, 2H, ArH, 3JHH = 8 Hz), 6.64 (d, 2H, ArH, 

3JHH = 8 Hz), 3.08 (s, 4H, Ar–CH2), 2.49 (s, 6H, Ar–CH3), 1.50 (s, 18H, C(CH3)3) 

13C{1H} NMR 100 MHz (CDCl3): δ ppm 160.6 (N=CH), 161.7, 147.2, 137.3, 135.9, 

135.8, 130.7, 130.5, 127.3, 126.8, 119.9, 117.8, 117.0 (Ar), 34.6 (C(CH3)3), 33.9 (Ar–CH2), 

29.2 (C(CH3)3), 18.76 (Ar–CH3) 
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MS (EI+): m/z 560 (M+) 

EA: found (calc) C: 81.44 (81.39), H: 7.92 (7.91), N: 5.01 (5.00) 

6.2.4 H2L3 

To 2-hydroxy-3,5-dimethylbenzaldehyde (0.920 g, 6.13 mmol) in EtOH was added 

2,2’-diaminobibenzyl (0.594 g, 2.80 mmol), with stirring. The mixture was stirred at 

room temperature for 18 h, during which time it turned bright orange. The mixture 

was cooled to 0 °C, and the powder product was recovered by filtration and then 

washed with ice-cold EtOH. The supernatant was cooled to 5 °C for 3 days, and 

another crop of orange powder was recovered by filtration and washing with EtOH. 

The crops were combined, leaving H2L3 as an orange powder (1.22 g, 92%). 

N

HO2

 

1H NMR 400 MHz (CDCl3): δ ppm 13.84 (s, 2H, OH), 8.05 (S, 2H, N=CH), 7.26–6.8 

(m, 12H, ArH), 3.07 (s, 4H, Ar–CH2), 2.32 (s, 6H, Ar–CH3), 2.28 (s, 6H, Ar–CH3) 

13C{1H} NMR 100 MHz (CDCl3): δ ppm 163.3 (N=CH), 157.5, 148.3, 135.6, 135.4, 

130.8, 130.3, 127.7, 127.6, 126.8, 126.7, 118.7, 118.6 (Ar), 33.6 (Ar–CH2), 20.8, 15.9 (Ar–

CH3) 

MS (EI+): m/z 476 (M+) 

EA: found (calc) C: 80.71 (80.64), H: 6.78 (6.77), N: 5.84 (5.88) 

6.2.5 H2L4 

To 2-hydroxy-3,6-dimethylbenzaldehyde (1.06 g, 7.06 mmol) in an RBF was added 

2,2’-diaminobibenzyl (0.750 g, 3.54 mmol). EtOH (~40 ml) was added, and the 

mixture was warmed gently to aid dissolution. The mixture was stirred at room 



Chapter 6   141  

temperature for 66 h, during which time it turned bright orange. The mixture was 

cooled to 0 °C, and the powder product was recovered by filtration and then 

washed with ice-cold EtOH. The supernatant was concentrated in vacuo, then cooled 

to 5 °C for 7 days, and another crop of orange-yellow powder was recovered by 

filtration and washed with EtOH. The crops were combined, leaving H2L4 as an 

orange powder (1.5 g, 89%). 

N

HO2

 

1H NMR 400 MHz (CDCl3): δ ppm 14.29 (s, 2H, OH), 8.65 (S, 2H, N=CH), 7.20 (m, 

4H, 2 overlapping ArH signals), 7.09 (m, 4H, 2 overlapping ArH signals), 6.93 (d, 

2H, ArH), 6.59 (d, 2H, ArH), 3.10 (s, 4H, Ar–CH2), 2.46 (s, 6H, Ar–CH3), 2.24 (s, 6H, 

Ar–CH3) 

13C{1H} NMR 100 MHz (CDCl3): δ ppm 161.0 (N=CH), 160.8, 148.2, 137.3, 135.9, 

134.6, 130.9, 127.6, 127.0, 124.8, 120.6, 118.5, 117.0 (Ar), 33.5 (Ar–CH2), 19.3, 15.9 (Ar–

CH3) 

MS (EI+): m/z 476 (M+) 

EA: found (calc) C: 80.14 (80.64), H: 6.87 (6.77), N: 5.91 (5.88) 

6.2.6 HL5 (9) 

To 3-tert-butyl-2-hydroxy-5-metoxybenzaldehyde (1.61 g, 7.83 mmol) was added 

2,2’-diaminobibenzyl (0.79 g, 3.72 mmol), and then EtOH (~40 ml). The solution was 

heated at reflux for 18 h, during which time it turned bright orange. The mixture 

was cooled to 0 °C, and the powder product was recovered by filtration and then 
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washed with ice-cold EtOH. H2L5 was recovered as a yellow-orange powder (1.71 g, 

74%). 

N

HO
tBu

OMe

2

 

1H NMR 400 MHz (CDCl3): δ ppm 13.73 (s, 2H, OH), 8.43 (S, 2H, N=CH), 7.42–6.69 

(m, 12H, ArH), 3.81 (s, 6H, OMe), 3.06 (s, 4H, Ar–CH2), 2.32 (s, 6H, Ar–CH3), 2.28 (s, 

18H, C(CH3)3) 

13C{1H} NMR 100 MHz (CDCl3): δ ppm 162.6 (N=CH), 155.1, 151.4, 146.9, 139.2, 

135.8, 130.6, 127.3, 126.8, 119.2, 118.4, 117.6, 111.8 (Ar), 55.76 (OCH3), 33.8 (Ar-CH2) 

33.7 (C(CH3)3), 29.1 (C(CH3)3) 

6.3 Bibenzyl Complexes 

6.3.1 [L1ZrCl2] 

To H2L1 (0.537 g, 0.959 mmol) in a Schlenk tube was added NaH (92 mg, 3.8 mmol) 

under argon. THF (~20 ml) was added, and the mixture was stirred for 18 h. The 

solution was filtered via cannula into a Schlenk tube containing ZrCl4.2THF (0.359 g, 

0.952 mmol) at 0 °C, and the mixture was stirred for 66 h. A fine precipitate was 

allowed to settle out. The solution was filtered via cannula, and then the solvent was 

removed in vacuo, leaving a yellow solid. Sublimation at ~175 °C and 10–6 bar 

yielded [L1ZrCl2] (0.457 g, 67%). 
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Zr
N

O

But

N

O

But

Cl Cl

 

NMR shows that there are two products: a sharp symmetrical one (cis-α), and a 

much broader unsymmetrical one (cis-β), in a ratio of approximately 1:4. 

1H NMR 400 MHz (CD2Cl2): 

cis-α (298Κ): δ ppm 8.05 (s, 2H, N=CH), 7.60 (d, 2H, Ar, 3JHH = 7 Hz), 7.40 (s, 2H, Ar), 

7.18 (d, 2H, ArH, 3JHH = 7 Hz), 7.00 (m, 4H, ArH), 6.87 (d, 2H, ArH), 3.07 (s, 2H, Ar–

CH2, 2JHH = 13Hz), 2.65 (d, 2H, Ar–CH2, 2JHH = 13Hz), 2.28 (s, 6H, Ar–CH3), 1.56 (s, 

18H, C(CH3)3) 

cis-β (298Κ): δ ppm 8.13 (br, 1H, N=CH), 7.97 (br, 1H, N=CH), 7.6–7.0 (br, 9H, ArH), 

6.5 (br, 2H, ArH), 6.3 (br, 1H, ArH), 3.6 (br, 1H, Ar–CH2), 3.5 (br, 1H, Ar–CH2), 3.3 

(br, 1H, Ar–CH2), 3.0 (br, 1H, Ar–CH2),  2.3 (br, 3H, Ar–CH3), 2.2 (br, 3H, Ar–CH3), 

1.6 (br, 9H, C(CH3)3), 1.4 (br, 9H, C(CH3)3) 

cis-α (183Κ): δ ppm 8.06 (s, 2H, N=CH), 7.49 (d, 2H, ArH, 3JHH = 8 Hz), 7.34 (s, 2H, 

ArH), 7.19(d, 2H, ArH, overlapping cis–β signal), 6.99 (t, 2H, ArH, 3JHH = 8 Hz), 6.93 

(t, 2H, Ar, 3JHH = 8 Hz), 6.86 (s, 2H, ArH), 3.04 (d, 2H, Ar–CH2, 2JHH = 12Hz), 2.57 (d, 

2H, Ar–CH2, 2JHH = 12Hz), 2.21 (s, 6H, Ar–CH3), 1.46 (s, 18H, C(CH3)3, overlapping 

cis–β signal) 

cis-β (183Κ): δ ppm 8.16 (br, 1H, N=CH), 7.92 (br, 1H, N=CH), 7.47 (d, 1H, ArH, 

3JHH = 8 Hz), 7.43 (s, 1H, Ar), 7.35 (d, 1H, ArH), 7.27-7.20 (m, 4H, ArH, overlapping 

cis–α signal), 7.16 (s, 1H, ArH), 6.93 (t, 1H, ArH, 3JHH = 8 Hz), 6.47 (s, 1H, ArH), 6.44 

(s, 1H, ArH, 3JHH = 8 Hz), 6.22 (s, 1H, ArH, 3JHH = 8 Hz), 3.43 (m, 1H, Ar–CH2), 3.32-
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3.25 (m, 2H, Ar–CH2), 2.94 (m, 1H, Ar–CH2), 2.29 (s, 3H, Ar–CH3), 2.15 (s, 3H, Ar–

CH3), 1.46 (s, 9H, C(CH3)3, overlapping cis–α signal), 1.32 (s, 9H, C(CH3)3) 

MS (EI+): m/z 718 (M+), 683 ([M - Cl]+), 647 ([M - 2Cl]+) 

EA: found (calc for C38H42Cl2N2O2Zr) C: 62.29 (63.31), H: 5.60 (5.87), N: 3.76 (3.89) 

6.3.2 [L2ZrCl2] 

To H2L2 (0.580 g, 1.04 mmol) in a Schlenk tube was added NaH (110 mg, 4.6 mmol) 

under argon. THF (~200 ml) was added, and the mixture was stirred for 18 h. The 

solution was filtered via cannula into a Schlenk tube containing ZrCl4.2THF (0.392 g, 

1.04 mmol) in THF at 0 °C, and the mixture was stirred for 18 h. A fine precipitate 

was allowed to settle out. The solution was filtered via cannula, and then the solvent 

was removed in vacuo, leaving a yellow solid. Sublimation at ~305 °C and 10–6 bar 

yielded [L1ZrCl2] (0.500 g, 67%). 

NMR suggests that there are two products: a sharp symmetrical product (cis-α), and 

a much broader unsymmetrical one (cis-β), in a ratio of approximately 1:4.  

Zr
N

O

But

N

O

But

Cl Cl

 

1H NMR 400 MHz (CD2Cl2): 

cis-α (298 K): δ ppm 8.47 (s, 2H, N=CH), 7.62 (d, 2H, ArH, 3JHH = 9 Hz), 7.45 (d, 2H, 

ArH, 3JHH = 8 Hz), 7.21 (d, 2H, ArH, 3JHH = 8 Hz), 6.97 (m, 4H, ArH), 6.66 (d, 2H, 

ArH, 3JHH = 8 Hz), 3.10 (d, 2H, ArCH2, 2JHH = 12 Hz), 2.72 (d, 2H, Ar–CH2, 

2JHH = 13 Hz), 2.30 (s, 6H, Ar–CH3), 1.56 (s, 18H, C(CH3)3). 
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 cis-β (298 K): δ ppm 8.40 (br, 2H, N=CH), 7.43 (br, Ar–H), 7.36 (d, 2H, Ar–H, 

3JHH = 8 Hz), 7.18 (br, ArH), 6.68 (br, ArH), 3.48 (br, 4H, Ar–CH2), 2.28 (br, 6H, Me), 

1.51 (br, 18H, C(CH3)3). 

cis-β (253 K): δ ppm 7.57 (s, 1H, N=CH), 7.55 (s, 1H, N=CH), 7.56 (d, 1H, ArH, 

3JHH = 8 Hz), 7.53 (d, 1H, ArH, 3JHH = 8 Hz), 7.39 – 7.31 (m, 4H, ArH), 7.27 (t, 1H,ArH, 

3JHH = 7 Hz), 7.03 (t, 1H, ArH, 3JHH = 8 Hz), 6.84 (d, 1H, ArH, 3JHH = 8 Hz), 6.54 (d, 

1H, ArH, 3JHH = 8 Hz), 6.50 (t, 1H, ArH, 3JHH = 8 Hz), 6.33 (d, 1H, ArH, 3JHH = 7 Hz), 

3.55 (m, 1H, Ar–CH2), 3.49 (m, 1H, Ar–CH2), 3.35 (m, 1H, Ar–CH2), 3.00 (m, 1H, Ar–

CH2), 2.40 (s, 3H, Ar–CH3), 2.11 (s, 3H, Ar–CH3), 1.55 (s, 9H, C(CH3)3), 1.39 (s, 9H, 

C(CH3)3). 

13C{1H} NMR 100 MHz (CD2Cl2): cis-α and cis-β, δ ppm 169.6 (N=CH), 148.1, 140.3, 

136.7, 135.9, 134.6, 133.9, 130.9, 127.0, 126.7, 125.8, 122.3), 122.1 (Ar), 34.8 (Ar–CH2), 

33.3 (CMe3), 29.7, 29.5 (C(CH3)3), 19.0 (Ar–CH3) 

MS (EI+): m/z 703 ([M–CH3]+), 648 ([M–(Cl)2]+) 

EA: found (calc for C38H42Cl2N2O2Zr) C: 63.96 (63.31), H: 5.96 (5.87), N: 3.74 (3.89)  

6.3.3 [L1TiCl2] 

To H2L1 (0.492 g, 0.879 mmol) in a Schlenk tube was added TiCl4.2THF (0.291 g, 

0.87 mmol), under argon. Toluene (~20 ml) was added, and the mixture was stirred 

for 66 h. The solvent was removed in vacuo, leaving a red solid. Sublimation at 250 

°C and 10–6 bar yielded [L1TiCl2] (0.343 g, 58%). 

NMR suggests that there is one cis–β unsymmetrical product. 
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Ti
N

O

But

N

O

But

Cl Cl

 

1H NMR 400 MHz (CD2Cl2): δ ppm 8.00 (s, 1H, N=CH), 7.75 (s, 1H, N=CH), 7.72 (d, 

1H, ArH, 3JHH = 8 Hz), 7.35 (s, 1H, ArH), 7.17–7.04 (m, 6H, ArH), 6.93 (t, 1H, ArH, 

3JHH = 8 Hz), 6.40 (t, 1H, ArH, 3JHH = 8 Hz), 6.40 (s, 1H, ArH), 6.18 (d, 1H, ArH, 

3JHH = 8 Hz), 3.45 (m, 1H, Ar–CH2), 3.3 (m, 1H, Ar–CH2), 3.05 (m, 1H, Ar–CH2), 2.8 

(m, 1H, Ar–CH2), 2.27 (s, 3H, Ar–CH3), 2.11 (s, 3H, Ar–CH3), 1.5 (s, 9H, C(CH3)3), 1.3 

(s, 9H, C(CH3)3) 

13C{1H} NMR 100 MHz (CD2Cl2): δ ppm 171.4, 167.1 (N=CH), 161.6, 160.2, 154.7, 

149.9, 139.7, 138.1, 137.3, 133.9, 132.1, 131.6, 126.6, 125.0 (Ar), 36.6, 35.7, (Ar–CH2), 

30.4, 30.2, (C(CH3)3),  27.3 (C(CH3)3), 21.4, 21.1 (Ar–CH3) 

MS (EI+): m/z 676 (M+), 641 ([M – Cl]+), 605 ([M – 2Cl]+) 

EA: found (calc for C38H42Cl2N2O2Ti) C: 67.01 (67.36), H: 6.14 (6.25), N: 4.25 (4.13) 

6.3.4 [L2TiCl2] 

To H2L2 (0.582 g, 1.04 mmol) in a Schlenk tube was added TiCl4.2THF (0.347 g, 

10.4 mmol) under argon. Toluene (~20 ml) was added, and the mixture was stirred 

for 18 h. The solvent was removed in vacuo, leaving a red solid. Sublimation at 305 

°C and 10–6 bar yielded [L2TiCl2] (0.482 g 68%). 

NMR suggests that there is one cis–β unsymmetrical product. 
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Ti
N

O

But

N

O

But

Cl Cl

 

1H NMR 400 MHz (CD2Cl2): δ ppm 8.38 (s, 1H, N=CH), 8.31 (s, 1H, N=CH), 7.6 (d, 

1H, ArH, 3JHH = 8 Hz), 7.57 (d, 1H, ArH, 3JHH = 8 Hz), 7.35–7.17 (m, 5H, ArH), 7.03 (t, 

1H, ArH, 3JHH = 8 Hz), 6.91 (d, 1H, ArH, 3JHH = 8 Hz), 6.58 (d, 1H, ArH, 3JHH = 8 Hz), 

6.50 (t, 1H, ArH, 3JHH = 8 Hz), 6.32 (d, 1H, ArH, 3JHH = 8 Hz), 3.6–3.5 (m, 2H, Ar–

CH2), 3.3 (m, 1H, Ar–CH2), 2.9 (m, 1H, Ar–CH2), 2.42 (s, 3H, Ar–CH3), 2.08 (s, 3H, 

Ar–CH3), 1.59 (s, 9H, C(CH3)3), 1.43 (s, 9H, C(CH3)3) 

13C{1H} NMR 100 MHz (CD2Cl2): δ ppm 168.7, 164.1 (N=CH), 134.0, 133.8, 131.1, 

128.5, 128.1, 128.1, 127.0, 126.8, 126.3, 124.8, 124.6, 124.4 (Ar C–H), 155.2, 150.1, 140.9, 

140.4, 140.3, 136.1, 135.8, 125.5, 123.5 (quarternary Ar C), 36.9, 35.6 (Ar–CH2), 27.2 

(C(CH3)3), 30.4, 30.3, (C(CH3)3),  20.2, 19.3 (CH3) 

MS (EI+): m/z 676 (M+), 641 ([M – Cl]+), 605 ([M – 2Cl]+) 

EA: found (calc for C38H42Cl2N2O2Ti) C: 67.85 (67.36), H: 6.27 (6.25) N: 4.35 (4.13) 

6.3.5 [L(1,2)M(CH2Ph)2] 

To the appropriate ligand (~10 mg, 0.18 mmol) in a young’s-tap NMR tube was 

added [M(CH2Ph)4] (M = Ti, Zr, 1 eq) in d8-toluene, under argon. The tube was 

sealed, and shaken. 

The NMR spectra of the Zr reactions could not be interpreted – no tractable 

products could be distinguished. The Ti reactions showed very complicated 1H 

NMR spectra, suggesting a mix of more than one product, and a number of peaks 

between 3-5 ppm indicate the presence of breakdown products9. 
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6.4 Stilbene Ligands 

6.4.1 2,2’-dinitrostilbene (2,2’-DNS)11 

To 2-nitrobenzyl chloride (5.05 g, 29.43 mmol) in EtOH (20 ml) was added slowly 

KOH (8.26 g, 148 mmol) in warm EtOH (50 ml) with vigorous stirring. The mixture 

became warm. The mixture was stirred overnight, and a yellow precipitate was 

recovered by filtration, washed with EtOH, and recrystallized from ethyl acetate, 

yielding 2,2’-dinitrostilbene as needle like yellow crystals (1.39 g, 18%). 

NO2

NO2

 

1H NMR 400 MHz (CDCl3): δ ppm 8.04 (dd, 4JHH = 1 Hz, 3JHH = 8 Hz, 2H, ArH), 7.81 

(dd, 4JHH = 1 Hz, 3JHH = 8 Hz, 2H, ArH), 7.67 (td, 4JHH = 1 Hz, 3JHH = 8 Hz, 2H, ArH), 

6.57 (s, 2H, CH=CH), 7.48 (td, 4JHH = 1 Hz, 3JHH = 8 Hz, 2H, ArH) 

13C{1H} NMR 100 MHz (CDCl3): δ ppm 147.9, 133.7, 132.6, 129.1, 128.9 124.9 (Ar) 

130.0 (C=C) 

EA: found (calc for C14H10N2O4) C: 62.12 (62.22), H: 3.69 (3.73), N: 10.21 (10.37) 

MS (EI+): m/z 270 (M+) 

6.4.2 2,2’-diaminostilbene (2,2’-DAS)12 

To SnCl2 (15.4 g, 81.9 mmol) suspended in glacial acetic acid (40 ml) was added 

concentrated HCl until all SnCl2 had dissolved (~20 ml). To this was added 2,2’-

DNS (1.34 g, 4.96 mmol). The mixture was stirred for 15 minutes at room 

temperature, and then gradually warmed to 70 °C. The mixture was stirred at that 

temperature for 1 h, and then allowed to cool to room temperature. A yellow 

precipitate (2,2-DAS.2(HCl)) was recovered by filtration, and washed with glacial 
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acetic acid. This was then dissolved in hot water, and basified with KOH, causing a 

flocculent yellow precipitate to form. After cooling, the precipitate was extracted 

with Et2O, and dried over MgSO4. The solvent was removed in vacuo, and the 

yellow solid remaining was recrystallized from toluene, leaving 2,2’-

diaminostilbene as bright yellow flake-like crystals (0.80 g, 77%).  

NH2

NH2

 

1H NMR 400 MHz (CDCl3): δ ppm 7.40 (dd, 4JHH = 1 Hz, 3JHH = 8 Hz, 2H, ArH), 7.12 

(td, 4JHH = 1 Hz, 3JHH = 8 Hz, 2H, ArH), 7.03 (s, 2H, CH=CH), 6.81 (td, 4JHH = 1 Hz, 

3JHH = 8 Hz, 2H, ArH), 6.72 (dd, 4JHH = 1 Hz, 3JHH = 8 Hz, 2H, ArH), 5-2.5 (v. br, ~6H, 

NH3) 

13C{1H} NMR 100 MHz (CDCl3): δ ppm 143.9, 128.7, 127.2, 124.1, 119.2, 116.2 (Ar) 

125.9 (C=C) 

EA: found (calc for C14H14N2) C: 79.96 (79.97), H: 6.72 (6.71), N: 13.38 (13.32) 

MS (EI+): m/z 120 (M+) 

6.4.3 H2L8 

To 2,2’-DAS (0.569 g, 2.71 mmol) and 2-hydroxy,3-tert-butyl,5-methylbenzaldehyde 

(1.13 g, 5.96 mmol) was added EtOH, and the mixture was stirred at reflux for 18 h, 

during which time a yellow precipitate formed. The mixture was cooled, and the 

precipitate recovered by filtration. Washing with EtOH yielded H2L8 as a yellow 

powder (1.38 g, 93%). 
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N OH
tBu

NOH
But

 

1H NMR 400 MHz (CDCl3): δ ppm 8.45 (s, 2H, N=CH), 7.81 (dd, 4JHH = 2 Hz, 3JHH = 

8 Hz, 2H, ArH), 7.6 (s, 2H, CH=CH), 7.34-7.24 (m, 2H, overlapping ArH signals), 7.10 

(dd, 4JHH = 2 Hz, 3JHH = 8 Hz, 2H, ArH), 7.05 (d, 4JHH = 2 Hz, 2H, ArH), 2.32 (s, 6H, Ar-

CH3), 1.50 (s, 18H, C(CH3)3) 

13C{1H} NMR 100 MHz (CDCl3): δ ppm 163.71 (N=CH), 158.55, 146.76, 137.45, 131.70, 

131.67, 130.46, 128.72, 127.11, 126.88, 126.17, 118.96, 118.70 (Ar), 126.04, (C=C), 34.89 

(C(CH3)3), 29.39 (C(CH3)3), 20.71 (Ar-CH3) 

MS (EI+): m/z 558(M+) 

EA: found (calc for C38H42N2O2) C: 80.19 (81.68), H: 7.53 (7.58), N: 4.86 (5.01) 

6.4.4 H2L9 

To 2,2’-DAS (0.193 g, 0.92 mmol) and 2-hydroxy,3-tert-butyl,6-methylbenzaldehyde 

(0.390 g, 2 eq) in an RBF was added EtOH. The mixture was stirred at reflux for 24 h, 

during which time an orange precipitate formed. The mixture was cooled, and the 

precipitate recovered by filtration. Washing with EtOH yielded H2L9 as an orange 

powder (0.49 g, 95%). 

N OH
tBu

NOH
But
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1H NMR 400 MHz (CD2Cl2): δ ppm 14.95 (s, 2H, OH), 9.02 (s, 2H, N=CH), 7.88 (d, 

3JHH = 8 Hz, 2H, ArH), 7.69 (s, 2H, CH=CH), 7.42-7.21 (m, 10H, overlapping ArH 

signals), 6.70 (d, 3JHH = 8 Hz, 2H, ArH), 2.54 (s, 6H, Ar-CH3), 1.51 (s, 18H, C(CH3)3) 

13C{1H} NMR 100 MHz (CD2Cl2): δ ppm 162.0 (N=CH), 147.2, 146.8, 138.3, 132.1, 

127.6, 117.6 (Ar), 131.2, 129.3, 127.3, 126.4, 120.5, 119.3 (ArH), 126.2, (C=C), 35.6 

(C(CH3)3), 29.39 (C(CH3)3), 19.0 (Ar-CH3) 

MS (EI+): m/z 558 (M+) 

EA: found (calc for C38H42N2O2) C: 81.41 (81.68), H: 7.60 (7.58), N: 5.11 (5.01) 

6.5 Salicyloxazoline Proligands 

6.5.1 3-tert-butyl-2-hydroxy-5-methoxybenzoic acid 

To a hot solution of ninhydrin (24 g, 0.14 mol) in acetic acid was added 4-hydroxy,3-

tert-butylanisole (24.3 g, 0.14 mol). The mixture was heated to reflux for 2.5 h and 

then allowed to cool to room temperature, affording yellow crystals which were 

recovered by suction (31.3 g, not dried). 

The crystalline product was added to acetic acid, and 4-methylaniline 

(19.7 g, 0.184 mol) was added. The mixture was heated to reflux for 24 h, and then 

allowed to cool to room temperature before being poured into water (500 ml). An 

unpleasant sticky precipitate formed, and the mixture was stirred with an overhead 

stirrer for 18 h to break up the lumps. The solid material was recovered by suction 

filtration (no. 3 sinter), stirred with Et2O for 15 min and then collected by suction 

filtration, yielding a yellow powder (33.5 g).  

The product was added to a solution of NaOH (2M, ~100 ml), heated to 

reflux for 15 min, and then allowed to cool to room temperature. A white precipitate 

was removed by suction filtration and washed with water. The washings were 
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combined with the yellow filtrate, and acidified with HCl (conc.). The resulting 

white precipitate was isolated by vacuum filtration, washed with cold water and 

recrystallized from EtOH/H2O, giving the title compound as a fine white powder 

(8.75 g 28%). 

OH
tBu

OMe

O

OH

 

1H NMR 400 MHz (CDCl3): δ ppm 10.85 (br. s, 1H, COOH), 7.27, 7.12 (2 × d, 

4JHH = 2 Hz, 1H, ArH), 4.70 (br. S, 1H, OH), 3.74 (s, 3H, OCH3), 1.37 (s, 9H, C(CH3)3) 

13C{1H} NMR 100 MHz (CDCl3): δ ppm 175.0 (COOH), 156.9, 151.2 , 139.9 , 124.2 

(Ar), 123.9, 108.8 (ArH), 55.7 (OCH3), 35.1 (C(CH3)3), 29.3 (C(CH3)3) 

EA: found (calc for C12H16O4) C: 64.31 (64.27), H: 7.07 (7.19), N: 0.13 (0.00) 

MS (ESI): m/z 223 (M+) 

6.5.2 HL10 

To 3,5-di-tert-butyl salicylic acid (2.49 g, 10.0 mmol) in a Schlenk vessel was added 

PPh3 (10.4 g, 39.6 mmol), and the atmosphere in the vessel replaced with argon. 

Acetonitrile (~25 ml), and then triethylamine (5.5 ml, 55 mmol) were added, with 

stirring. 2-Aminoethanol (0.60 g, 10 mmol) was injected in a small volume of 

acetonitrile. CCl4 (9.5 ml, 39 mmol) was added dropwise over 3 hours. The mixture 

was stirred for 48 hours, after which time the solution was filtered, washed through 

with a little Et2O, which caused a further precipitation, this precipitate was also 

removed by filtration. The solvents were removed in vacuo, and the product 

extracted with hexane (3 × 100 ml). The combined extracts were dried in vacuo, and 

the pale yellow powder was purified by flash chromatography on a silica column, 
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eluted with hexane-ethyl acetate (50:1), affording HL11 as a pale yellow powder 

(1.3 g, 47%) after removal of solvent. 

OH
But

But

N

O

 

1H NMR 400 MHz (CDCl3): δ ppm 12.47 (s, 1H, OH), 7.44 (d, 4JHH = 2.5 Hz, 1H, 

ArH), 7.33 (d, 4JHH = 2.5 Hz, 1H, ArH), 4.30 (t, 3JHH = 9 Hz, 2H, CH2), 3.99 (t, 3JHH = 

9 Hz, 2H, ArH), 1.34 (s, 9H, C(CH3)3), 1.21 (s, 9H, C(CH3)3) 

13C{1H} NMR 100 MHz (CDCl3): δ ppm 167.1 (N=C–O), 156.8, 140.0, 136.4 (Ar), 

127.9, 122.2 (Ar C-H), 109.9 (Ar), 66.5, 53.4 (CH2), 35.2, 34.3 (C(CH3)3), 31.5, 29.5 

(C(CH3)3) 

EA: found (calc for C17H25NO2) C: 74.20 (74.14), H: 9.35 (9.15), N: 4.98 (5.09) 

MS (EI): m/z 275 (M+) 

IR (ATR): cm–1: 2956, 1636 (C=N), 1596, 1438, 1370, 1251, 1216, 1187, 1099, 1013, 960, 

890, 799, 780, 722 

 

6.5.3 HL11 

To 3,5-di-tert-butyl salicylic acid (2.5 g, 10.0 mmol) in a Schlenk vessel was added 

PPh3 (10.4 g, 39.6 mmol), and the atmosphere in the vessel replaced with argon. 

Acetonitrile (~25 ml), and then triethylamine (6 ml, 60 mmol) were added, with 

stirring. 2-amino-2-methyl-1-propanol (0.89 g, 10 mmol) was injected in a small 

volume of acetonitrile. CCl4 (10 ml, 40 mmol) was added dropwise over 3 hours. 

The mixture was stirred for 48 hours, after which time the solution was filtered, 

washed through with a little Et2O, which caused a further precipitation, this 



Chapter 6   154  

precipitate was also removed by filtration. The solvents were removed in vacuo, and 

the product extracted with hexane (3 × 100 ml). The combined extracts were dried in 

vacuo, and the pale yellow powder was purified by flash chromatography on a silica 

column, eluted with hexane-ethyl acetate (50:1), affording HL10 as a pale yellow 

powder (1.4 g, 46%) after removal of solvent. 

OH
But

But

N

O

 

1H NMR 400 MHz (CDCl3): δ ppm 12.60 (s, 1H, OH), 7.54 (d, 4JHH = 2 Hz, 1H, ArH), 

7.44 (d, 4JHH = 2 Hz, 1H, ArH), 4.09 (s, 2H, CH2), 1.46 (s, 9H, C(CH3)3), 1.40 (s, 6H, 

CH3) 1.32 (s, 9H, C(CH3)3) 

13C{1H} NMR 100 MHz (CDCl3): δ ppm 164.3 (N=C–O), 156.8, 140.0, 136.3 (Ar), 

127.8, 122.0 (Ar C-H), 109.9 (Ar), 78.1 (CH2), 67.0 (C(CH3)2), 35.1, 34.2 (C(CH3)3), 31.5, 

29.5 (C(CH3)3), 28.6 (CH3) 

EA: found (calc for C19H29NO2) C: 75.14 (75.21), H: 9.63 (9.63), N: 4.62 (4.51) 

MS (EI): m/z 303 (M+), 288 ([M-CH3]+) 

IR (ATR): cm–1: 2963, 2137, 1634 (C=N), 1595, 1438, 1366, 1251, 1183, 1098, 978, 891, 

805, 781, 721 

6.5.4 HL12 

To 3,5-di-isopropylsalicylic acid (2.45 g, 11 mmol) in a Schlenk vessel was added 

PPh3 (11.5 g, 43.8 mmol), and the atmosphere in the vessel replaced with argon. 

Acetonitrile (~25 ml), and then triethylamine (6 ml, 60 mmol) were added, with 

stirring. 2-amino-2-methyl-1-propanol (0.98 g, 11 mmol) was injected in a small 

volume of acetonitrile. CCl4 (10.6 ml, 108 mmol) was added dropwise over 4 hours. 
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The mixture was stirred for 48 hours, after which time the solution was filtered, 

washed through with a little Et2O, which caused a further precipitation, this 

precipitate was also removed by filtration. The solvents were removed in vacuo, and 

the product extracted with hexane (3 × 100 ml). The combined extracts were dried in 

vacuo, and the pale yellow powder was purified by flash chromatography on a silica 

column, eluted with hexane-ethyl acetate (50:1), affording HL13 as a pale yellow 

crystalline solid (1.01 g, 33%) after removal of solvent. 

OH N

O

 

1H NMR 400 MHz (CDCl3): δ ppm 12.25 (s, 1H, OH), 7.27 (d, 4JHH = 2 Hz, 1H, ArH), 

7.09 (d, 4JHH = 2 Hz, 1H, ArH), 4.00 (s, 2H, CH2), 3.30 (sept., 3JHH = 7 Hz, 1H, 

CH(CH3)2), 2.77 (sept., 3JHH = 7 Hz, 1H, CH(CH3)2), 1.30 (s, 6H, CH3), 1.18 (d, 6H, 

3JHH = 7 Hz, CH(CH3)2), 1.15 (d, 6H, 3JHH = 7 Hz, CH(CH3)2) 

13C{1H} NMR 100 MHz (CDCl3): δ ppm 164.1 (N=C–O); 155.5, 138.5, 135.7 (Ar), 

128.5, 122.3 (Ar C–H),  109.9 (Ar), 78.3 (C(CH3)2), 67.0 (CH2), 33.6 (CH(CH3)2), 28.6 

(CH3), 27.1 (CH(CH3)2), 24.2, 22.5 (CH(CH3)2) 

EA: found (calc for C17H25NO2) C: 74.01 (74.14), H: 9.15 (9.15), N: 5.03 (5.09) 

MS (EI): m/z 275 (M+), 260 ([M – CH3]+), 188 ([M – 4CH3, H]+) 

IR (ATR): cm–1: 2962, 2137, 1674, 1635 (C=N), 1597, 1455, 1365, 1249, 1193, 1168, 

1092, 978, 944, 888, 799, 785, 745 



Chapter 6   156  

6.5.5 HL13 

To 3,5-di-tert-butyl salicylic acid (2.03 g, 8.1 mmol) in a Schlenk vessel was added 

PPh3 (8.5 g, 33 mmol) and 2-aminophenol (0.89 g, 8.1 mmol), and the atmosphere in 

the vessel was replaced with argon. Acetonitrile (~25 ml), and then triethylamine 

(4.5 ml, 45 mmol) were added, with stirring. CCl4 (7.8 ml, 81 mmol) was added 

dropwise over 4 hours. The mixture was stirred for 48 hours, after which time the 

solution was filtered, washed through with a little Et2O, which caused a further 

precipitation, this precipitate was also removed by filtration. The solvents were 

removed in vacuo, and the product extracted with hexane (3 × 100 ml). The 

combined extracts were dried in vacuo, and the pale yellow powder was purified by 

flash chromatography on a silica column, eluted with hexane-ethyl acetate (50:1), 

affording HL12 as a fine white powder (0.30 g, 11%) after removal of solvent. 

OH
But

But

N

O

 

 

1H NMR 400 MHz (CDCl3): δ ppm 11.95 (s, 1H, OH), 7.92 (d, 4JHH = 2 Hz, 1H, ArH), 

7.71 (m, 1H, ArH), 7.62 (m, 1H, ArH), 7.52 (d, 4JHH = 2 Hz, 1H, ArH), 1.50 (s, 9H, 

C(CH3)3), 1.39 (s, 9H, C(CH3)3) 

13C{1H} NMR 100 MHz (CDCl3): δ ppm 164.0 (benzoxazole N=C-O), 155.9, 149.1, 

141.1, 140.1, 137.2, 128.5, 125.1, 124.6, 121.3, 113.0, 110.6, 109.8 (Ar), 35.3, 

34.5 (C(CH3)3), 31.5, 29.5 (C(CH3)3) 

EA: found (calc for C21H25NO2) C: 78.13 (77.98), H: 7.89 (7.79), 4.33 (4.33) 

MS (EI+): m/z 323 (M+), 308 ([M–CH3]+) 



Chapter 6   157  

IR (ATR): cm–1 2959, 2361, 1624 (C=N), 1545, 1454, 1437, 1361, 1247, 1176, 1109, 1089, 

953, 886, 868, 804, 776, 758, 743, 700, 668 

6.5.6 HL15 

To 3-tert-butyl,5-methoxysalicylic acid (1.90 g, 8.05 mmol) in a Schlenk vessel was 

added PPh3 (8.45 g, 32 mmol), and the atmosphere in the vessel replaced with 

argon. Acetonitrile (~25 ml), and then triethylamine (4.25 ml, 42 mmol) were added, 

with stirring. 2-amino-2-methyl-1-propanol (0.79 g, 8.9 mmol) was injected in a 

small volume of acetonitrile. CCl4 (7.7 ml) was added dropwise over 4 hours. The 

mixture was stirred for 48 hours, after which time the solution was filtered, washed 

through with a little Et2O, which caused a further precipitation, this precipitate was 

also removed by filtration. The solvents were removed in vacuo, and the product 

extracted with hexane (3 × 100 ml). The combined extracts were dried in vacuo, and 

the pale yellow powder was purified by flash chromatography on a silica column, 

eluted with hexane-ethyl acetate (50:1), affording HL15 as a pale yellow crystalline 

solid (1.2 g, 54%) after removal of solvent. 

OH
But

OMe

N

O

 

1H NMR 400 MHz (CDCl3): δ ppm 12.34 (s, 1H, OH), 7.02 (s, 2H, ArH), 4.08 (s, 2H, 

CH2), 3.77 (s, 3H, OCH3), 1.42 (s, 9H, C(CH3)3), 1.40 (s, 6H, C(CH3)2) 

13C{1H} NMR 100 MHz (CDCl3): δ ppm 164.1 (N=C-O), 153.8, 151.0, 138.8, 119.5, 

111.0, 107.4 (Ar), 78.2 (OCH2), 67.3 (C(CH3)2), 55.7 (OCH3), 35.0 (C(CH3)3, 29.3 

(C(CH3)3), 28.6 (C(CH3)2) 

EA: found (calc for C16H23NO3) C: 69.09 (69.29), H: 8.36 (8.36), N: 5.04 (5.05) 
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MS (ESI): m/z 278 (M+) 

IR (ATR): cm–1: 2951 (C-H), 1631 (C=C), 1596 (C=N), 1469, 1449, 1431, 1411, 1390, 

1368, 1332, 1288, 1270, 1233, 1203, 1169, 1089, 1060, 1021, 980, 948, 931, 902, 883, 851, 

788, 777, 748, 654 

6.6 Salicyloxazalinato Complexes 

6.6.1 Chloride Complexes 

6.6.1.1 General Procedure for Synthesis of Ln2MCl2 Complexes 

To the appropriate ligand (100-500 mg) in a Schlenk vessel under argon was added 

NaH (2 eq), and then THF (~20 ml) with stirring. The mixture was left stirring for 

~20 h. Stirring was ceased, allowing excess NaH to settle out. The solution was 

filtered via cannula into another Schlenk vessel containing MCl4 or MCl4.THF2 

(0.5 eq) as appropriate, with stirring. Stirring was continued for ~20 h, and then 

ceased to allow NaCl precipitate to settle, before removal of the solvent in vacuo, 

extraction in DCM and filtration of the solution via cannula. The solvent was 

removed in vacuo, yielding a crude product which was purified by sublimation or 

recrystallization, as appropriate. 

6.6.1.2 [L102TiCl2] 

To TiCl4 (0.46 ml of 10% v/v solution in DCM, 0.42 mmol) in DCM being stirred in a 

Schlenk vessel under argon, at –78 °C was added HL10 (0.240 g, 0.84 mol) in DCM. 

The vessel was allowed to warm to room temperature, and stirring was continued 

for 16 h. The solution was filtered via cannula, and the volatiles where removed in 

vacuo. The solid was sublimated at 275 °C, 10-6 bar, yielding [L102TiCl2] as a red 

powder (0.179 g, 63%). 
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NMR spectra suggest the presence of two isomers, predominantly a C2–symmetric 

cis,trans,cis species, with a further unsymmetrical species present, in a ratio of 

approximately 2:1. The 1H signals from the oxazoline CH2-CH2 protons or both 

isomers overlap considerably, precluding detailed assignment of this region of the 

spectrum. 

O

But

But

N
O

2

TiCl2

 

Resonances arising from the minor isomer are enclosed in square brackets in the 1H 

spectrum. Signal was too low for assignment of minor isomer peaks in 13C NMR. 

Integrals are consistent within each species. 

1H NMR 500 MHz (d8-toluene, 253 K): δ ppm [7.87, 7.85, 7.74, 7.60 (4 × d, 4JHH = 

2 Hz, 1H, ArH)], 7.85, 7.80  (2 × d, 4JHH = 2 Hz, 1H, ArH), 2.8–4.7 (overlapping 

multiplets from both isomers, 4H from each, CH2–CH2), 1.85, 1.31 (2 × s, 9H, tBu), 

[1.40, 1.31, 1.27, 1.23 (4 × s, 9H, tBu)] 

13C{1H} NMR 125 MHz (d8-toluene): δ ppm 166.3 (N=C), 162.4, 142.9, 139.1, (Ar) 

130.7, 123.7 (Ar C–H), 115.4 (Ar), 79.2 (O–CH2–CH2-N), 54.6 (O–CH2–CH2-N), 35.8, 

34.7 (C(CH3)3), 31.5, 30.17 (C(CH3)3) 

EA: found (calc for C34H48N2O4Cl2Ti) C: 59.64 (61.18), H: 7.01 (7.25), N: 3.98 (4.20) 

MS (EI+): m/z 666 (M+), 631 ([M–Cl]+), 596 ([M–2Cl]+) 
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6.6.1.3 [L102ZrCl2] 

Following the general method, L10 (0.152 g, 0.529 mmol), NaH (35 mg, 1.5 mmol), 

and [ZrCl4] (83 mg, 0.356 mmol) were used. The mixture turned from pale to 

slightly darker yellow. The crude product was purified by sublimation at 275-

300 °C, 10-6 bar, yielding [L102ZrCl2] as a yellow solid (99.9 mg, 20%).  

O

But

But

N
O

2

ZrCl2

 

1H NMR 400 MHz (CD2Cl2): δ ppm 7.68 (d, 4JHH = 2.5 Hz, 1H, ArH), 7.63 (d, 4JHH = 

2.5 Hz, 1H, ArH), 4.48 (br. m, 2H, CH2), 3.7-4.2 (br, 2H, CH2), 1.50 (s, 9H, tBu), 1.29 (s, 

9H, tBu) 

13C{1H} NMR 100 MHz (CD2Cl2): δ ppm 169.5 (N=C), 159.9, 142.5, 139.0 (Ar) 131.3, 

124.3 (Ar C–H), 113.7 (Ar) 68.2 (CH2), 35.6, 34.8 (C(CH3)3), 31.5 29.8 (C(CH3)3) 

EA: found (calc for C34H48N2O4Cl2Zr) C: 57.28 (57.44), H: 6.71 (6.81), N: 4.02 (3.61) 

MS (EI+): m/z 708 (M+), 694 ([M–CH3]+) 

6.6.1.4 [L102HfCl2] 

Following the general method, L11 (0.175 g, 0.61 mmol), NaH (30 mg) and [HfCl4] 

(100 mg, 0.31 mmol) were used. The mixture turned pale yellow. The solid was 

recrystallized from DCM/Pentane, yielding [L112HfCl2] as a pale yellow crystalline 

solid (0.210 g, 82%). 
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O

But

But

N
O

2

HfCl2

 

1H NMR 500 MHz (d8-toluene, 253K): δ ppm 7.87 (d, 4JHH = 2.5 Hz, 1H, ArH), 7.85 

(d, 4JHH = 2.5 Hz, 1H, ArH), 3.90, 3.27, 2.88, 2.82 (4 × m, 1H, CH2), 1.81 (s, 9H, tBu), 

1.34 (s, 9H, tBu) 

13C{1H} NMR 100 MHz (C6D6): δ ppm 161.2, 141.6 (Ar) 131.1, 124.0 (Ar C–H), 113.7 

(Ar), 67.1 (CH2), 35.8, 34.5 (C(CH3)3), 31.5, 30.0 (C(CH3)3) 

EA: found (calc for C34H48N2O4Cl2Hf) C: 48.06 (51.16), H: 5.83 (6.06), N: 3.21 (3.51) 

MS (CI+): m/z 798 (M+), 783 ([M–CH3]+) 763 ([M-Cl]+) 

6.6.1.5 [L112TiCl2] 

Following the general method, L11 (0.330 g, 1.09 mmol), NaH (50 mg), and 

[TiCl4.THF2] (175 mg, 0.523 mmol), were used. The mixture turned deep red, and 

was then heated to 60 °C for 20 h, and then allowed to cool to room temperature, 

before filtering the solution via cannula. The solvent was removed in vacuo. The 

solid product was sublimated at 290 °C, yielding [L112TiCl2] as a red crystalline solid 

(0.285 g, 70%). 

O

But

But

N
O
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TiCl2
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1H NMR 400 MHz (CD2Cl2): δ ppm 7.80 (d, 4JHH = 2.5 Hz, 1H, ArH), 7.75 (d, 4JHH = 

2.5 Hz, 1H, ArH), 4.31 (d, 2JHH = 8.5 Hz, 1H, CH2), 3.98 (d, 2JHH = 8.5 Hz, 1H, CH2), 

1.64 (s, 3H, CH3), 1.63 (s, 9H, tBu), 1.39 (s, 9H, tBu), 1.20 (s, 3H, CH3) 

13C{1H} NMR 100 MHz (CD2Cl2): δ ppm 167.8 (N=C), 162.3, 143.8, 138.5 (Ar) 131.4, 

124.6 (Ar C–H), 117.4 (Ar), 79.7 (O-C-C(CH3)2), 71.8 (C-C(CH3)2-N), 35.7, 

34.9 (C(CH3)3), 31.5, 30.5 (C(CH3)3), 28.8, 25.9 (C(CH3)2) 

EA: found (calc for C36H56N2O4Cl2Ti) C: 62.84 (63.07), H: 7.78 (7.80), N: 3.87 (3.76) 

MS (EI+): m/z 722 (M+), 687 ([M–Cl]+), 652 ([M–2Cl]+), 420 ([M-L11]+), 302 ([L11]+) 

6.6.1.6 [L112ZrCl2] 

Following the general method, L11 (0.318 g, 1.05 mmol), NaH (48 mg), and 

[ZrCl4] (118 mg, 0.506 mmol), were used. The mixture turned yellow. The crude 

product was recrystallized from DCM/Pentane, yielding [L112ZrCl2] as a pale yellow 

crystalline solid (0.180 g, 44%). 

O
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N
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ZrCl2

 

1H NMR 400 MHz (CD2Cl2): δ ppm 7.80 (d, 4JHH = 2.5 Hz, 1H, ArH), 7.71 (d, 4JHH = 

2.5 Hz, 1H, ArH), 4.30 (d, 2JHH = 8.5 Hz, 1H, CH2), 4.03 (d, 2JHH = 8.5 Hz, 1H, CH2), 

1.60 (s, 3H, CH3), 1.59 (s, 9H, tBu), 1.37 (s, 9H, tBu), 1.22 (s, 3H, CH3) 

13C{1H} NMR 100 MHz (CD2Cl2): δ ppm 169.5 (N=C), 159.7, 142.1, 139.2, (Ar) 131.4, 

124.5 (Ar C–H), 117.4 (Ar), 79.2 (O-C-C(CH3)2), 69.9 (C-C(CH3)2-N), 35.4, 

34.6 (C(CH3)3), 31.3, 30.0 (C(CH3)3), 28.9, 26.3 (C(CH3)2) 
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EA: found (calc for C36H56N2O4Cl2Zr) C: 59.55 (59.51), H: 7.28 (7.36), N: 3.74 (3.65) 

MS (EI+): m/z 766 (M+), 751 ([M–CH3]+), 730 ([M–Cl]+) 

6.6.1.7 [L112HfCl2] 

Following the general method, L11 (0.200 g, 0.63 mmol), NaH (30 mg, 2 eq), and 

[HfCl4] (105 mg, 0.327 mmol), were used. The mixture turned pale yellow. The 

crude product was recrystallized from DCM/Pentane, yielding [L112HfCl2] as a pale 

yellow crystalline solid (0.185 g, 36%). 
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1H NMR 400 MHz (C6D5Br): δ ppm 7.90 (d, 4JHH = 2.5 Hz, 1H, ArH), 7.74 (d, 4JHH = 

2.5 Hz, 1H, ArH), 3.85 (d, 2JHH = 8.5 Hz, 1H, CH2), 3.64 (d, 2JHH = 8.4 Hz, 1H, CH2), 

1.67 (s, 3H, CH3), 1.49 (s, 9H, tBu), 1.23 (s, 9H, tBu), 1.00 (s, 3H, CH3) 

13C{1H} NMR 100 MHz (CD2Cl2): δ ppm 160.7 (N=C), 141.5, 140.3, , (Ar) 131.6, 124.4 

(Ar C–H), 114.9 (Ar), 79.0 (O-C-C(CH3)2), 69.8 (C-C(CH3)2-N), 35.5, 34.5 (C(CH3)3), 

31.6, 30.5 (C(CH3)3), 28.9, 26.3 (C(CH3)2) 

EA: found (calc for C36H56N2O4Cl2Hf) C: 53.29 (53.43), H: 6.58 (6.61), N: 3.23 (3.28) 

MS (EI+): m/z 854 (M+), 839 ([M–CH3]+), 819 ([M–Cl]+) 

6.6.1.8 [L122TiCl2] 

Following the general method, L12 (0.233 g, 0.85 mmol), NaH (40 mg), and 

[TiCl4.THF2] (140 mg, 0.419 mmol) were used. The mixture turned deep red, and 

stirring was continued for 20 h. The product precipitated out with the NaCl by-
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product. The crude reaction mixture was dried in vacuo, and then sublimated at 

275 °C, 10-6 bar, yielding [L122TiCl2] as a red crystalline solid (0.098 g, 35%). 

O

N
O

2

TiCl2

 

1H NMR 400 MHz (CD5Br): δ ppm 7.75 (d, 4JHH = 2 Hz, 1H, ArH), 7.46 (d, 

4JHH = 2 Hz, 1H, ArH), 3.89 (sept., 3JHH = 7 Hz, 1H CH(CH3)2), 3.83 (d, 3JHH = 8 Hz, 

1H, O–CH2) 3.61 (d, 3JHH = 8 Hz, 1H, O–CH2) 2.81 (sept., 3JHH = 7 Hz, 1H CH(CH3)2), 

1.76 (s, 3H, CH3) 1.53 (d, 3JHH = 7 Hz, 3H, CH(CH3)2) 1.38 (d, 3JHH = 7 Hz, 3H, 

CH(CH3)2) 1.20 (d, 3JHH = 7 Hz, 3H, CH(CH3)2) 1.19 (d, 3JHH = 7 Hz, 3H, CH(CH3)2) 

0.94 (s, 3H, CH3) 

13C{1H} NMR 100 MHz (CD5Br): , 137.0, 133.1, 120.2, 111.8, 75.5, 66.4, 29.6, 24.9, 20.2, 

20.0, 19.8, 18.0, 23.8, 22.5 

EA: found (calc for C34H48N2O4Cl2Ti) C: 60.95 (61.18) H: 7.14 (7.25), N: 4.16 (4.20) 

MS (EI+): m/z 666 (M+), 631 ([M–Cl]+) 

6.6.1.9 [L122ZrCl2] 

Following the general method, L12 (0.441 g, 1.6 mmol), NaH (77 mg), and [ZrCl4] 

(187 mg, 0.802 mmol) were used. The mixture turned yellow. After stirring for 20 h, 

stirring was ceased, and the product precipitated out with the NaCl by-product. The 

product was extracted with THF (3 × 10 ml), and the solvent was removed in vacuo, 

and the resulting powder then sublimated at 275 °C, 10-6 bar, yielding a yellow solid 

(0.066 g, 6%). The 1H NMR spectrum appears to show the presence of two isomers 
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in a ratio of approximately 4:1, with many overlapping peaks, precluding detailed 

assignment of many regions of the spectrum. 

O

N
O

2

ZrCl2

 

1H NMR 400 MHz (d5-pyridine): δ ppm 7.83 (d, 4JHH = 2 Hz, 1H, ArH), 7.63 (d, 4JHH = 

2 Hz, 1H, ArH), 3.6-4.3 (m, 6H, overlapping signals from O-CH2, CH(CH3)2), 2.8-3.0 

(m, 2H, overlapping signals from CH(CH3)2 from both isomers). 1.92 (s, 3H, CH3), 

1.35-1.50 (m, 12H, overlapping CH3 signals) 1.15-1.30 (m, 18H, overlapping CH3 

signals)  

The product was not sufficiently soluble in any deuterated solvent available to us 

for determination of the 13C NMR spectrum. 

EA: found (calc for C34H48N2O4Cl2Zr) C: 56.58 (57.44) H: 6.74 (6.81), N: 3.90 (3.94) 

MS (EI+): m/z  708 (M+), 694 (M-CH3]+), 673 ([M-Cl]+) 

6.6.1.10 [L132ZrCl2] 

Following the general method, L12 (0.250 g, 0.77 mmol), NaH (40 mg) and [ZrCl4] 

(90 mg) were used. The mixture turned deep red. The solid was sublimated at 

280 °C, 10-6 bar, yielding [L132ZrCl2] as a pale yellow microcrystalline solid (0.242 g, 

39%). 
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1H NMR 400 MHz (CD2Cl2): δ ppm 7.95 (d, 4JHH = 2 Hz, 1H, Ar) 7.65 (br. s, 1H, Ar), 

7.47 (br. m, 2H, 2 overlapping Ar), 7.20 (br. m, 1H, Ar), 7.01 (br. s, 1H, Ar), 1.52 (br. 

a, 9H, C(CH3)3), 1.31 (s, 9H, C(CH3)3) 

13C{1H} NMR 100 MHz (CD2Cl2): δ ppm 165.6 (N=C–O), 159.2, 148.2, 143.8, 138.2, 

136.5 (Ar), 131.8, 126.8, 126.0, 123.4 (ArH), 114.6 (Ar), 111.1 (ArH), 35.8, 35.0 

(C(CH3)3), 31.5, 29.8(C(CH3)3) 

EA: found (calc for C42H48N2O4Cl2Zr) C: 62.50 (62.51), H: 6.12 (6.00), N: 3.47 (3.47) 

MS (EI+): m/z 806 (M+), 791 ([M-CH3]+), 769 ([M-Cl]+), 737 ([M-2Cl]+) 

6.6.1.11 [L142TiCl2] 

Following the general method, L14 (0.335 g, 1.08 mmol), NaH (52 mg, 2 eq), and 

[TiCl4].THF2 (180 mg, 0.54 mmol), were used. The mixture turned deep red. The 

crude product was extracted with DCM and sublimated at 250 °C, 10-6 bar. A deep 

red microcrystalline solid was recovered (0.241 g, 60%). 

O

tBu

N

2

TiCl2
tBu
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NMR spectra are extremely complicated due to overlapping signals from two 

isomers in a 7:4 ratio, and could not be fully assigned. Where possible, the signals 

from the major species are reported here. 

1H NMR (400 MHz CD2Cl2): δ ppm 8.00 (s, 1H, N=CH), 7.41 (d, 4JHH = 2.5 Hz, 1H, 

ArH), 7.02 (d, 4JHH = 2.5 Hz, ArH), 7.4-6.8 (m, many overlapping Ar signals), 1.24, 

1.20 (2 × s, 9H, C(CH3)3) 

13C{1H} NMR (CD2Cl2): δ ppm 167.7 (N=C),159.4, 152.8, 144.1, 137.9 (Ar), 132.5, 

129.7, 128.8, 127.1, 123.7 (Ar C-H), 124.9 (Ar C-C=N), 35.4, 34.6 (2 × C(CH3)3), 31.4, 

29.8 (C(CH3)3) 

EA: found (calc for C42H52N2O2Cl2Ti) C: 66.88 (68.57), H: 6.96 (7.12), N: 3.91 (3.81) 

MS (EI+): m/z 734 (M+) 

6.6.1.12 [L142ZrCl2] 

Following the general method, L14 (0.430 g, 1.39 mmol), NaH (70 mg, 2 eq), and 

[ZrCl4].THF2 (165 mg, 0.71 mmol), were used. The mixture turned yellow. The crude 

product was extracted with DCM and sublimated at 265 °C, 10-6 bar. A yellow 

microcrystalline solid was recovered (0.351 g, 65%). 

O

tBu

N

2

ZrCl2
tBu

 

Compound is a mixture of 2 isomers in a 5:1 ratio. The major isomer is reported 

here. 
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1H NMR (500 MHz toluene-d8 363K): δ ppm 7.55 (d, 4JHH = 2.4 Hz, 1H, ArH), 7.50 (s, 

1H, N=CH), 7.01 (d, 3JHH = 7.5 Hz, 1H, ArH) 6.82 (t, 3JHH = 7.5 Hz, 1H, ArH), 6.70 (t, 

3JHH = 7.5 Hz, 1H, ArH), 6.62 (d, 4JHH = 2.4 Hz, ArH), 1.61, 1.30 (2 × s, 9H, C(CH3)3) 

13C{1H} NMR (100 MHz CD2Cl2): δ ppm 171.1 (N=C), 142.8, 138.8, 133.1 (Ar), 132.7, 

130.3, 129.0, 127.0, 123.4 (Ar C-H), 123.0 (Ar), 35.4, 34.5 (2 × C(CH3)3), 31.4, 29.7 

(C(CH3)3) 

EA: found (calc for C42H52N2O2Cl2Zr) C: 64.90 (64.76), H: 6.70 (6.73), N: 3.76 (3.60) 

MS (EI+): m/z 778 (M+) 

6.6.1.13 [L152TiCl2] 

Following the general method, L15 (0.215 g, 1.13 mmol), NaH (40 mg, 2 eq), and 

[TiCl4].THF2 (132 mg, 0.395 mmol), were used. The mixture turned yellow. The 

crude product was recrystallized from boiling toluene, and then washed with cold 

pentane, yielding of [L152TiCl2] as a deep red crystalline solid (0.204 g, 57%). 

O

tBu

N
O

2

TiCl2
MeO

 

1H NMR (400 MHz CD2Cl2): δ ppm 7.23 (m, 2H, ArH), 4.28 (d, 2JHH = 8.4 Hz, 1H, 

CH2), 3.95 (d, 2JHH = 8.4 Hz, 1H, CH2), 3.81 (s, 3H, OCH3), 1.59 (s, 3H, CH3), 1.57 (s, 

9H, tBu) 1.17 (s, 3H, CH3) 

13C{1H} NMR (CD2Cl2): δ ppm 167.1 (N=C), 159.4, 153.6, 141.1 (Ar) 118.0 (Ar C–OMe) 

122.5, 109.3 (Ar C–H), 79.7 (O-C-C(CH3)2), 72.0 (C-C(CH3)2-N), 56.0 (OCH3), 

35.6 (C(CH3)3), 30.3 (C(CH3)3), 28.8, 25.8 (C(CH3)2) 
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EA: found (calc for C36H44N2O6Cl2Ti) C: 57.66 (57.24), H: 6.78 (6.60), N: 4.34 (4.17) 

MS (EI+): m/z 670 (M+), 638 ([M–Cl]+) 

6.6.1.14 [L152ZrCl2] 

Following the general method, L15 (0.439 g, 1.62 mmol), NaH (80 mg, 2 eq), and 

[ZrCl4].THF2 (300 mg, 0.795 mmol), were used. The mixture turned yellow. The 

crude product was recrystallized from boiling toluene, and then washed with cold 

pentane, yielding [L152ZrCl2] as a pale yellow crystalline solid (0.300 g, 52%). 

O

tBu

N
O

2

ZrCl2
MeO

 

1H NMR (CD2Cl2): δ ppm 7.26 (m, 2H, ArH), 4.29 (d, 2JHH = 8.5 Hz, 1H, CH2), 4.04 (d, 

2JHH = 8.5 Hz, 1H, CH2), 3.81 (s, 3H, OCH3), 1.59 (s, 3H, CH3), 1.58 (s, 9H, tBu) 1.20 (s, 

3H, CH3) 

13C{1H} NMR (CD2Cl2): δ ppm 169.0 (N=C), 156.8, 152.4, 141.7 (Ar) 115.4 (Ar C–OMe) 

122.8, 109.2 (Ar C–H), 79.2 (O-C-C(CH3)2), 70.1 (C-C(CH3)2-N), 55.8 (OCH3), 

35.3 (C(CH3)3), 29.7 (C(CH3)3), 28.8, 26.2 (C(CH3)2) 

EA: found (calc for [L152ZrCl2] + 0.4 Toluene) C: 56.94 (55.61), H: 6.36 (6.33), N: 3.54 

(3.43) 

MS (EI+): m/z 712 (M+),  677 ([M–Cl]+) 

6.6.1.15 [L152HfCl2] 

Following the general method, L15 (0.214 g, 0.79 mmol), NaH (40 mg, 2 eq), and 

[HfCl4] (128 mg, 0.399 mmol), were used. The mixture turned yellow. The crude 
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product was recrystallized from boiling toluene, and then washed with cold 

pentane, yielding [L152HfCl2] as a pale yellow crystalline solid (0.101 g, 32%). 

O

tBu

N
O

2

HfCl2
MeO

 

1H NMR 400 MHz (CD2Cl2): δ ppm 7.28 (d, 3JHH = 3 Hz, 1H, ArH), 7.25 (d, 3JHH = 

3 Hz, 1H, ArH), 4.33 (d, 2JHH = 8.5 Hz, 1H, CH2), 4.04 (d, 2JHH = 8.5 Hz, 1H, CH2), 3.82 

(s, 3H, OCH3), 1.61 (s, 3H, CH3), 1.56 (s, 9H, tBu) 1.23 (s, 3H, CH3) 

13C{1H} NMR 100 MHz (CD2Cl2): δ ppm 152.3, 142.6, 115.2 (Ar) 114.9 (Ar C–OMe) 

123.4, 109.2 (Ar C–H), 79.6 (O-C-C(CH3)2), 70.4 (C-C(CH3)2-N), 56.0 (OCH3), 35.4 

(C(CH3)3), 30.0 (C(CH3)3), 29.0, 26.3 (C(CH3)2) 

EA: found (calc for C36H44N2O6Cl2Hf) C: 47.97 (47.92), H: 5.59 (5.53), N: 3.31 (3.49) 

MS (EI+): m/z 802 (M+) 

6.6.2 Benzyl Complexes 

6.6.2.1 [L102Zr(CH2Ph)2] 

To HL10 (0.175 g, 0.61 mmol), in a Schlenk vessel under argon was added 

[Zr(CH2Ph)4] (0.139 g, 0.305 mmol), and pentane was added at -78 °C with stirring 

and the exclusion of light. The mixture was allowed to warm to room temperature, 

and stirred for 3 h. The product was recrystallized from pentane, yielding 

[L102Zr(CH2Ph)2] as a pale yellow powder (0.110 g, 44%). 
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O

But

But

N
O

2

Zr(CH2Ph)2

 

1H NMR 400 MHz (C6D6): δ ppm 8.07 (d, 4JHH = 2 Hz, 1H, ArH), 7.86 (br. s, 1H, ArH), 

6.9-7.2 (m, 4H, overlapping benzyl C6H5 signals), 6.75 (m, 1H, C6H5), 3-4 (br. m, 4H, 

CH2–CH2), 2.92 (br. s, 2H, CH2Ph), 1.87 (br. s, 9H, C(CH3)3), 1.43 (s, 9H, C(CH3)3) 

13C{1H} NMR 100 MHz (C6D6): δ ppm 174.3 (N=C), 168.9, 163.9, 161.0, 144.5, 112.5 

(Ar), 130.9, 129.6, 128.7, 122.6, 120.4 (Ar C-H), 72.4 (O-C-C(CH3)2), 69.1 (CH2Ph),  66.5 

(O-CH2-C), 55.7 (C-CH2-N) 31.6, 30.3 (C(CH3)3), 34.5, 27.8 (C(CH3)3)  

EA: found (calc for C48H62N2O4Cl2Zr) C: 65.78 (70.11), H: 7.46 (7.60), N: 3.64 (3.41) 

MS (EI+): m/z 820 (M+), 729 ([M–(CH2Ph)]+) 

6.6.2.2 [L102Hf(CH2Ph)2] 

To [Hf(CH2Ph)4] (0.224 g, 0.41 mmol) in toluene (20 ml) in a Schlenk vessel under 

argon was added HL10 (0.237 g, 0.862 mmol) in toluene (10 ml) with stirring. Stirring 

was continued for 10 min, and then the solvent was removed in vacuo. Excess 

toluene was removed azeotropically with pentane, and the product was 

recrystallized from toluene/pentane, yielding the product as a pale yellow 

microcrystalline solid (196 mg, 52%). 
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O

But

But

N
O

2

Hf(CH2Ph)2

 

1H NMR 400 MHz (C6D6): δ ppm 8.00 (br. s, 1H, ArH), 7.92 (br. s, 1H, ArH), 6.9-7.2 

(m, 4H, overlapping benzyl C6H5 signals), 6.73 (m, 1H, C6H5), 2.6-3.6 (br. m, 6H, 

overlapping CH2–CH2, CH2Ph), 1.91 (br. s, 9H, C(CH3)3), 1.38 (s, 9H, C(CH3)3) 

13C{1H} NMR 100 MHz (C6D6): δ ppm 175.0 (N=C), 160.0, 152.2, 142.3, 137.2 (Ar), 

130.3, 128.0, 127.1, 125.3, 118.1 (Ar C-H), 116.5 (Ar), 75.5 (O-C-C(CH3)2), 72.0 

(CH2Ph), 64.6 (O-CH2-C), 52.3 (C-CH2-N) 35.5, 34.6 (C(CH3)3), 30.2, 31.0 (C(CH3)3)  

EA: found (calc for C48H62N2O4Hf) C: 61.22 (63.39), H: 6.86 (6.87), N: 3.03 (3.08) 

MS (EI+): m/z 910 (M+), 819 ([M–(CH2Ph)]+) 

6.6.2.3 [L112Zr(CH2Ph)2] 

To HL11 (0.320 g, 1.06 mmol), in a Schlenk vessel under argon was added 

[Zr(CH2Ph)4] (0.240 g, 0.527 mmol). Toluene (~10 ml) was added with stirring and 

the exclusion of light. The mixture was stirred for 30 min, and then the solvent was 

removed in vacuo. The product was recrystallized from pentane, yielding 

[L112Zr(CH2Ph)2] as a deep yellow powder (0.250 g 27%). 

O

But

But

N
O

2

Zr(CH2Ph)2
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1H NMR 400 MHz (d8-toluene): δ ppm 8.03, 7.80 (2 × d, 4JHH = 3 Hz, 1H, ArH), 6.89 

(m, 4H, overlapping benzyl C6H5 signals), 6.60-6.66 (m, 1H, C6H5), 3.30, 3.20 (2 × d, 

2JHH = 8 Hz, 1H, O–CH2), 2.92, 2.80 (2 × d, 1H, 2JHH = 11 Hz, CH2Ph), 1.78, 1.32 (2 × s, 

9H, C(CH3)3), 0.98, 0.73 (2 × s, 3H, N–C(CH3)2) 

13C{1H} NMR 100 MHz (d8-toluene): δ ppm 168.3 (N=C), 161.0, 150.2, 141.1, 139.3 

(Ar), 130.7, 127.8, 126.5, 124.8, 120.1 (Ar C-H), 116.5 (Ar), 78.0 (O-C-C(CH3)2), 72.0 

(CH2Ph), 69.2 (C-C(CH3)2-N), 35.9, 34.7 (C(CH3)3), 31.8, 31.7 (C(CH3)3), 27.7, 26.5 

(C(CH3)2) 

EA: found (calc for C52H70N2O4Zr) C: 69.50 (71.11), H: 8.00 (8.03), N: 3.08 (3.19) 

MS (EI+): m/z 878(M+), 785 ([M–(CH2Ph)]+) 

6.6.2.4 [L112Hf(CH2Ph)2] 

To HL11 (0.180 g, 0.57 mmol), in a Schlenk vessel under argon was added 

[Hf(CH2Ph)4] (0.155 g, 0.28 mmol). Toluene (~10 ml) was added with stirring and 

the exclusion of light. The mixture was stirred for 15 min, and then the solvent was 

removed in vacuo. The product was recrystallized from toluene/pentane, yielding 

[L112Hf(CH2Ph)2] as  a deep yellow powder (0.082 g, 30%). 

O

But

But

N
O

2

Hf(CH2Ph)2

 

1H NMR 300 MHz (C6D6): δ ppm 8.21, 7.95 (2 × d, 4JHH = 2.6 Hz, 1H, ArH), 7.1 (m, 

4H, overlapping benzyl C6H5 signals), 6.80 (tt, 3JHH = 7.1 Hz,  4JHH = 1.6 Hz, 1H, 



Chapter 6   174  

C6H5), 3.37, 3.23 (2 × d, 2JHH = 8.3 Hz, 1H, O–CH2), 2.82, 2.75 (2 × d, 1H, 2JHH = 

11.3 Hz, CH2Ph), 1.89, 1.43 (2 × s, 9H, C(CH3)3), 1.14, 0.85 (2 × s, 3H, N–C(CH3)2) 

13C{1H} NMR 75 MHz (C6D6): δ ppm 168.9 (N=C), 161.6, 151.3, 141.4, 140.2 (Ar), 

131.3, 127.9, 127.2, 125.0, 120.6 (Ar C-H), 78.5 (O-C-C(CH3)2), 75.8 (C-C(CH3)2-N), 

69.6 (CH2Ph), 36.1, 34.9 (C(CH3)3), 32.0, 31.1 (C(CH3)3),28.2, 26.7 (C(CH3)2) 

EA: found (calc for C52H70N2O4Hf) C: 62.91 (64.68), H: 7.18 (7.31), N: 3.16 (2.90) 

MS (EI+): m/z 875 ([M–(CH2Ph)]+) 

6.6.2.5 [L122Zr(CH2Ph)2] 

To HL12 (0.183 g, 0.66 mmol), in a Schlenk vessel under argon was added 

[Zr(CH2Ph)4] (0.152 g, 0.334 mmol), and the mixture made up with toluene (~20 ml), 

with stirring and the exclusion of light. The mixture was stirred for 30 min, and then 

the solvent was removed in vacuo. The product was recrystallized from pentane, 

yielding [L122Zr(CH2Ph)2] as a deep yellow powder (0.140 g, 26%). 

O

N
O

2

Zr(CH2Ph)2

 

1H NMR 400 MHz (d8-toluene): δ ppm 7.85, 7.46 (2 × d, 4JHH = 2 Hz, 1H, ArH), 7.00-

7.10 (m, 4H, overlapping benzyl C6H5 signals), 6.70-6.86 (m, 1H, C6H5), 4.03 (sept., 

3JHH = 7 Hz, 1H, CH(CH3)2), 3.38, 3.30 (2 × d, 2JHH = 8 Hz, 1H, O–CH2), 2.82 (sept., 

3JHH = 7 Hz, 1H, CH(CH3)2) 2.74, 2.69 (2 × d, 1H, 2JHH = 11 Hz, CH2Ph), 1.54, 1.46 (2 × 

d, 3JHH = 7 Hz, 3H, CH(CH3)2), 1.28 (s, 3H, N–C(CH3)2), 1.27, 1.25 (2 × d, 3JHH = 7 Hz, 

3H, CH(CH3)2),  0.70 (s, 3H, N–C(CH3)2) 
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13C{1H} NMR 100 MHz (C6D6): δ ppm 167.5 (N=C), 159.1, 149.6, 139.4, 138.9 (Ar), 

130.1, 126.3, 124.6, 120.1 (Ar C-H), 114.8 (Ar), 78.3 (O-C-C(CH3)2), 70.4 (CH2Ph), 68.8 

(C-C(CH3)2-N), 34.0, 26.7  (CH(CH3)2), 27.8, 27.7, 24.4, 24.4 (CH(CH3)2), 23.9, 23.5 

(C(CH3)2)  

EA: found (calc for C48H62N2O4Zr) C: 69.21 (70.11), H: 7.48 (7.60), N: 3.52 (3.41) 

MS (EI+): m/z  729 ([M–(CH2Ph)]+) 

6.6.2.6 [L122Hf(CH2Ph)2] 

To HL12 (0.192 g, 0.69 mmol), in a Schlenk vessel under argon was added 

[Hf(CH2Ph)4] (0.189 g, 0.34 mmol), and the mixture made up with toluene, with 

stirring and the exclusion of light. The mixture was stirred for 1 h, then the solvent 

was removed in vacuo. The product was recrystallized from toluene/pet. ether (40-

60°), yielding [L122Hf(CH2Ph)2] as a deep yellow powder (0.101 g, 32%). 

O

N
O

2

Hf(CH2Ph)2

 

1H NMR 400 MHz (C6D6): δ ppm7.78, 7.37 (2 × d, 4JHH = 2.4 Hz, 1H, ArH), 6.9-7.1 (m, 

4H, overlapping benzyl C6H5 signals), 6.66 (tt, 3JHH = 7.2 Hz, 4JHH = 1.2 Hz, 1H, C6H5), 

3.90 (sept., 3JHH = 6.8 Hz, 1H, CH(CH3)2), 3.35, 3.24 (2 × d, 2JHH = 8.3 Hz, 1H, O–CH2), 

2.76 (sept., 3JHH = 6.8 Hz, 1H, CH(CH3)2) 2.51, 2.43 (2 × d, 1H, 2JHH = 11.4 Hz, CH2Ph), 

1.44, 1.38, (2 × d, 3JHH = 7.0 Hz, 3H, CH(CH3)2), 1.28 (s, 3H, N–C(CH3)2), 1.22, 1.20 (2 

× d, 3JHH = 4.4 Hz, 3H, CH(CH3)2), 0.66 (s, 3H, N–C(CH3)2) 
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13C{1H} NMR 100 MHz (C6D6): δ ppm 168.0 (N=C), 159.4, 150.8, 139.5, 139.2 (Ar), 

131.0, 127.6, 126.4, 124.3, 120.0 (Ar C-H), 114.5 (Ar), 78.6 (O-C-C(CH3)2), 74.5 

(CH2Ph), 68.8 (C-C(CH3)2-N), 34.0, 26.6 (CH(CH3)2), 27.8, 27.8, 24.4, 24.4 

(CH(CH3)2),23.8, 24.6 (C(CH3)2)  

EA: found (calc for C48H62N2O4Hf) C: 62.93 (63.39), H: 6.78 (6.87), N: 3.12 (3.08) 

MS (EI+): m/z  819 ([M–(CH2Ph)]+) 

6.6.2.7 [L132Zr(CH2Ph)2] 

To HL13 (0.013 g, 0.04 mmol), in a Young’s-tap NMR tube under argon was added 

[Zr(CH2Ph)4] (0.030 g, 0.02 mmol), and the mixture made up with C6D6, sealed and 

briefly shaken. The 1H NMR spectrum was recorded immediately. 

O

tBu

N
O

2

Zr(CH2Ph)2

tBu

 

6.9-7.2 (m, 4H, overlapping benzyl C6H5 signals), 6.75 (m, 1H, C6H5), 3-4 (br. m, 4H, 

CH2–CH2), 2.92 (br. s, 2H, CH2Ph), 1.87 (br. s, 9H, C(CH3)3), 1.43 (s, 9H, C(CH3)3) 

6.6.2.8 [L152Zr(CH2Ph)2] 

To HL15 (0.265 g, 0.98 mmol), in a Schlenk vessel under argon was added 

Zr(CH2Ph)2 (0.225 g, 0.49 mmol), and the mixture made up with Et2O (~20 ml), with 

stirring at -78 °C and the exclusion of light. The mixture was stirred for 15 min, and 

then allowed to warm to room temperature, yielding an orange precipitate which 

was recovered by cannula filtration, and was washed with Et2O, yielding 

[L152Zr(CH2Ph)2] as a yellow powder (0.255 g, 31%). 
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O

tBu

N
O

2

Zr(CH2Ph)2
MeO

 

1H NMR 400 MHz (C6D6): δ ppm 7.61, 7.56 (2 × d, 4JHH = 3.2 Hz, 1H, ArH), 7.14 (m, 

4H, overlapping benzyl C6H5 signals), 6.84 (m, 1H, C6H5), 3.56 (s, 3H, OCH3), 3.34, 

3.26 (2 × d, 2JHH = 8 Hz, 1H, O–CH2), 3.12, 3.04 (2 × d, 1H, 2JHH = 11 Hz, CH2Ph), 1.83 

(s, 9H, C(CH3), 1.07, 0.85 (2 × s, 3H, N–C(CH3)2) 

13C{1H} NMR 100 MHz (C6D6): δ ppm 167.7 (N=C), 157.8, 152.3, 150.4, 141.5 (Ar), 126 

(overlapping Ar C-H), 122.7, 122.5, 120.2 (Ar C-H), 116.6 (Ar), 109.8, 109.6 (Ar C-H) 

77.8 (O-C-C(CH3)2), 71.8 (CH2Ph), 69.2 (C-C(CH3)2-N), 55.1 (OCH3) 35.7 (C(CH3)3), 

30.5 (C(CH3)3), 26.5, 26.4 (C(CH3)2)  

EA: found (calc for C46H58N2O6Zr) C: 66.29 (66.87), H: 7.06 (7.08), N: 2.97 (3.39) 

MS (EI+): m/z  732 ([M–(CH2Ph)]+) 

6.6.2.9 [L152Hf(CH2Ph)2] 

To HL15 (0.245 g, 0.90 mmol), in a Schlenk vessel under argon was added 

[Hf(CH2Ph)4] (0.250 g, 0.46 mmol). Et2O (~20 ml) was added with stirring at -78 °C 

and the exclusion of light. The mixture was stirred for 15 min, and then allowed to 

warm to room temperature (1 h) with stirring, yielding an orange precipitate. The 

solution was cooled to -18 °C for 15 h, and then to -78 °C, and the product was then 

recovered by cannula filtration, washed with Et2O, and dried in vacuo yielding 

[L152Hf(CH2Ph)2] as  a yellow powder (0.155 g, 37%). 



Chapter 6   178  

O

tBu

N
O

2

Hf(CH2Ph)2
MeO

 

1H NMR 400 MHz (C6D6): δ ppm 7.59, 7.56 (2 × d, 4JHH = 3.2 Hz, 1H, ArH), 7.19-7.07 

(m, 4H, overlapping benzyl C6H5 signals), 6.84 (m, 1H, C6H5), 3.56 (s, 3H, OCH3), 

3.35, 3.26 (2 × d, 2JHH = 8 Hz, 1H, O–CH2), 2.80, 2.74 (2 × d, 1H, 2JHH = 11 Hz, CH2Ph), 

1.79 (s, 9H, C(CH3), 1.79, 0.87 (2 × s, 3H, N–C(CH3)2) 

13C{1H} NMR 100 MHz (C6D6): δ ppm 168.1 (N=C), 158.2, 152.2, 151.0, 142.1 (Ar), 

126.8, 123.0, 122.9, 120.3, (Ar C-H), 116.2 (Ar), 109.5, 109.4 (Ar C-H) 78.0 (O-C-

C(CH3)2), 75.4 (CH2Ph), 69.3 (C-C(CH3)2-N), 55.1 (OCH3) 35.6 (C(CH3)3), 30.4 

(C(CH3)3), 26.4 (overlapping C(CH3)2)  

EA: found (calc for C46H58N2O6Hf) C: 59.54 (60.48), H: 6.36 (6.40), N: 2.89 (3.07) 

MS (EI+): m/z  822 ([M–(CH2Ph)]+) 

6.7 Alkyl Cations 

6.7.1 General Procedure for Formation of Alkyl Cations 

To the appropriate precursor (L2MCl2 or L2M(CH2Ph)) (~15 mg) in a sample vial 

was added MAO (20 eq.) or [B(C6F5)3] or [PhNHMe2][B(C6F5)4] (1.1 eq.) as 

appropriate, in a glovebox under argon. d5-bromobenzene (~3 ml) was added, and 

the mixture was transferred to a Young’s-tap NMR tube and sealed. The samples 

were handled with exclusion of light as far as possible. 



Chapter 6   179  

6.7.2 [L112Zr(CH2Ph)]+ 

Following the general procedure, [L112Zr(CH2Ph)2] (15.0 mg, 27.1 μmol) and 

[PhNHMe2][B(C6F5)4] (23.5 mg 29.8 μmol) were used. NMR shows the presence of 

two compounds (q.v. Chapter 5), the major one is reported here. 

1H NMR 400 MHz (C6D5Br): δ ppm 7.94, 7.89 (2 × d, 4JHH = 2.5 Hz, 2H, ArH), 6.5-7.2 

(m, overlapping Ar and solvent signals), 3.66 (m, 4H, CH2), 3.22, 2.99 (2 × d, 3JHH = 

8.6 Hz, 1H, CH2Ph), 2.61 (s, 12H, PhNMe2), 2.17 (s, 6H, CH3Ph), 1.58, 1.31 (2 × s, 18H, 

C(CH3)3), 1.05, 0.76 (2 × s, 6H, C(CH3)2) 

6.7.3 [L152Zr(CH2Ph)]+ 

Following the general procedure, [L152Zr(CH2Ph)2] (15.0 mg, 18.2 μmol) and 

[PhNHMe2][B(C6F5)4] (16.0 mg 19.9 μmol) were used.  

1H NMR 400 MHz (C6D5Br): δ ppm 6.5-7.3 (m, overlapping Ar and solvent signals), 

3.50 (m, 4H, CH2), 3.55 (s, 6H, OMe), 3.10, 2.88 (2 × d, 3JHH = 8.8 Hz, 1H, CH2Ph), 2.58 

(s, 9H, PhNMe2), 2.09 (s, 3H, tol), 1.42 (s, 18H, C(CH3)3), 0.97, 0.72 (2 × s, 6H, 

C(CH3)2) 

6.7.4 [L152TiMe]+ 

Following the general procedure, [L152TiCl2] (12.1 mg, 18.1 μmol) and MAO (19.4 mg 

0.35 mmol) were used. 

1H NMR 400 MHz (C6D5Br): δ ppm 7.34, 7.18 (2 × br. s, 1H, Ar), 3.92 (br. d, 1H, CH2), 

3.62-3.70 (overlapping signals from OMe and CH2, 4H), 1.54 (br. s, 9H, C(CH3)3), 

1.40, 0.95 (2 × br. s, 3H, C(CH3)2) 

6.7.5 [L152ZrMe]+ 

Following the general procedure, [L152ZrCl2] (15.0 mg, 21 μmol) and MAO (23.0 mg 

0.41 mmol) were used. 



Chapter 6   180  

1H NMR 400 MHz (C6D5Br): δ ppm 7.46, 7.38 (2 × br. s, 1H, Ar), 3.82 (br. d, 1H, CH2), 

3.66-3.71 (overlapping signals from OMe and CH2, 4H), 1.61 (br. s, 9H, C(CH3)3), 

1.47, 0.96 (2 × br. s, 3H, C(CH3)2) 
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Appendix A Design of Gas Pressure Burette 

C2Supply

Drying Train

 

Figure A.1 - Gas Burette Schematic 
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 Component Description Manufacturer Model 

E-1 Ethylene supply cylinder     

E-2 R3-11G/3A molecular sieves drying train Swagelok 304L-HDF4-300  

E-3 2 micron filter Swagelok SS-4FW-2 

E-4 300CC sample cylinder Swagelok 304L-HDF4-300 

E-5 1000CC sample cylinder Swagelok 304L-HDF4-1000 

E-6 2250CC sample cylinder Swagelok 304L-HDF4-2250 

E-7 Connection to Schlenk line     

E-8 Reaction Vessel     

I-1 Input Gauge Druck PDCR 4010 (20 bar) 

I-2 Output gauge Tescom 4802-V200N 

I-3 Thermocouple in reaction media     

I-4 Control     

I-5 Meter with RS232 interface Druck DPI282 with RS232 interface 

I-6 ADC with RS232 Interface Druck DPI280 with RS232 interface 

I-7 Pressure Dial Tescom 4802-V200N 

V-1 20 bar cylinder regulator BOC HP1502B-GL-BS4 

V-2 C2 Isolation Swagelok SS-4P4T-BK 

V-3 Rig isolation Swagelok SS-4P4T-BK 

V-4 Meter Valve Swagelok SS-4L2 

V-5, V-6, V-7   Swagelok SS-42S4 

V-8 Reactor Regulator Tescom 44-2262-241 
V-9, V-10, 
V-11, V-12   Swagelok SS-42S4 

V-13 Quick Connect Swagelok SS-QC4-D-400/SS-QC4-B-400 

V-14 Catalyst Injection Valve Swagelok SS-43S4 

V-15 Catalyst Injection Port Swagelok   

V-97 Commissioning purge Swagelok SS-42S4 

V-98 Regeneration Gas Connection Swagelok SS-4P4T-RD 

V-99 Regeneration Purge Connection Swagelok SS-4P4T-RD 

Table A.5 - Gas Burette Components 
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Appendix B Derivation from Eyring Equation  

Energies of activation ΔG‡ may be calculated using the Eyring equation (Equation 

3)1 

( )RTGTk
‡

e
h

k B Δ−= κ  

Equation 3 

k = rate constant 

κ = transmission coefficient* 

kB = Boltzmann constant 

h = Planck Constant 

T = Temperature 

Now, at the coalescence temperature,  

2
δπ υ

=k  

Equation 4 

δν = Frequency difference between exchanging signals  

                                                      

* The transmission coefficient κ is the fraction of all reacting molecules reaching the transition 

state that proceed to deactivated product molecules, which can generally be assumed to be 

unity for polyatomic molecules in adiabatic reactions  
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Incorporating this into the Eyring equation, and assuming κ = 1, that equation may 

be rearranged to the form shown in Equation 5, and it is this equation which has 

been used to calculate ΔG‡ values.* 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+=Δ

υδ
log972.9aG c

c
‡ T

T  

Equation 5 

a = 1.914 × 10-2 kJ mol-1 K-1 

Tc = Coalescence Temperature 

It is also possible to rewrite Equation 3 by substitution with ‡‡‡ STHG Δ−Δ=Δ  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ

= RT
H

R
S

Tk

‡‡

ee
h

k Bκ  

Equation 6 

Inserting the physical constants, and again assuming that κ=1, the equation may be 

rearranged to: 

‡
‡

319.10loga S
T
H

T
k

Δ+
Δ−

=⎥⎦
⎤

⎢⎣
⎡ −  

Equation 7 

Thus, if it is possible to determine the rate of exchange across a range of 

temperatures, a plot of ⎥⎦
⎤

⎢⎣
⎡ − 319.10loga

T
k  vs. 

T−
1  should be a straight line with 

intercept ΔS‡ and gradient ΔH‡. 

                                                      

* There is also a contribution from the coupling energy, as this is a coalescing AB system. 

However, this contribution is 2 orders of magnitude lower than the uncertainty in the 

measurement for these systems and is ignored here. 
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Appendix C Crystallographic Details  

 

 

 [L2TiCl2] “L8Ti” dimer [L11TiCl2]a [L102Hf(CH2Ph)2] [L122Hf(CH2Ph)2] 

Molecular 

Formula 
C38H42Cl2N2O2Ti C78H80Cl6N4O5Ti2 C46.75H66Cl2N2O4Ti C48H62HfN2O4 C48H62HfN2O4 

Formula 

Weight 
677.54 1461.96 838.82 909.49 909.49 

Crystal System Monoclinic Triclinic Monoclinic Orthorhombic Orthorhombic 

Space group P2(1)/c P-1 P2(1)/c Pna2(1) Pbcn 

a (Å) 10.0069(10) 10.1255(5) 9.7104(14) 11.767(4) 11.5979(13) 

b (Å) 24.991(3) 13.3124(6) 34.437(5) 13.767(4) 14.6219(16) 

c (Å) 14.2392(14) 15.5812(8) 15.283(2) 27.252(9) 26.033(3) 

α (°) 90 111.086(2) 90 90 90 

β (°) 103.530(2) 105.789(2) 97.594(3) 90 90 

γ (°) 90 91.592(2) 90 90 90 

Cell Volume 

(Å3) 
3462.2(6) 1867.13(16) 5065.7(12) 4415(2) 4414.7(8) 

Z 4 1 4 4 4 

μ (mm-1) 0.437 0.481 0.313 2.406 2.407 

Total  

Reflections 
18169 9875 27654 26348 26180 

Unique 

Reflections 
4516 6473 9885 9175 5466 

R1, wR2 

[I>2σ(I)] 
0.0348, 0.0942 0.0787, 0.1858 0.0761, 0.2520 0.0357, 0.0697 0.0393, 0.0794 

a  The asymmetric unit contains the Ti, two ligands, two chlorines and one and a quarter toluenes. One of the toluenes (C301-

C307/C31A-C37A) was highly disordered. The disordered toluene was modelled at a half occupancy over two positions (roughly 

3:2, C301-C307:C31A-C37A) with the minor component being refined isotropically. The other toluene C401-C407 was refined at 3/4 

occupancy and hence 1.25 molecules of toluene in the asymmetric unit. This explains the fractional empirical formula.   
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