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Abstract

This thesis comprises three essays on different topics of empirical finance. Particularly, the first paper
(chapter 2) studies the effects of central bank intervention; The second paper (chapter 3) proposes a novel
method to calibrate the predictability of exchange rates; The third paper (chapter 4) investigates the
price stability in the era of high frequency trading: whether the U.S. stocks suffer more from transient
jumps than they used to.

Chapter 2 studies the effects of Japanese central bank intervention from the market microstructure
perspective. We measure its impact on the price and volatility level, and other market participants’
behavior. The endogeneity problem is solved by adopting a novel instrumental variable: the long run part
of the intervention time series. The empirical results indicate that adopting this IV does make qualitative
differences. We show that the intervention successfully moves the price level of JPY/USD, and increases
the volatility. The empirical evidence supports the damping channel, but not the coordination channel.
The intervention has relatively persistent price impact, which lasts for roughly 16 days. Moreover, the
Markov switching model shows that the intervention has greater price impact in the high volatility
regime, and vice versa.

Chapter 3 introduces a nonparametric model-independent methodology to calibrate the predictability of
exchange rates. In order to predict the exchange rates, the predictors should contain enough information
about the future return, regardless of the specification of the model. The information transfer from
the predictors to future return can be measured by their mutual information. According to Shannon’s
channel coding theorem, it is the measure of the statistical dependence, linear and nonlinear, and not just
the linear dependence as the correlation coefficient measures. The information transfer also acts as the
upper bound of the predictive power of any model based on these predictors. Empirically, we evaluate the
predictability at the hourly, daily and monthly frequency, and find that exchange rates are systematically
predictable intraday, but not on other frequencies. Moreover, the linear model is suboptimal and fails
to capture most of the information, which explains why it is so hard for the traditional linear models to
outperform the random walk benchmark.

Chapter 4 conducts a comprehensive empirical exercise to identify all the permanent and transient jumps
in the 20 years Trade and Quote (TAQ) data. We aim to answer the following questions: whether the
markets have become more unstable, and if HFTs are responsible for causing the increased instability.
Empirically, we document the cross-sectional variations: the small market cap, low volume and market
liquidity, and low-priced stocks become more unstable, and most of the increased jumps are transient,
which cannot be attributed to the increase in information events. On the other hand, the large market
cap, high volume and liquidity, and high-priced stocks suffer from fewer price jumps. The structural
change of the jumps happens around 2003, which coincides with the auto-quote implementation. We
also find further supporting evidence that more HFT participation is associated with more jumps.
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Chapter 1

Introduction

This doctoral thesis comprises of three essays on three topics of empirical finance. They are

in the fields of market microstructure, foreign exchange, and their intersection. The first essay

(chapter 2) is on the effects of central bank intervention, from a market microstructure point

of view. In particular, we first resolve the endogeneity problem by introducing an instrumental

variable. Then the effects of the intervention on different variables can be evaluated accurately

with the help of the new IV. The second essay (chapter 3) introduces a model-independent

method to calibrate the predictability of exchange rates. The ideas in information theory are

applied to time series predictability problem. Mutual information calibrates the upper bound for

the predictive power of any model based on a given set of predictors. The third essay (chapter 4)

conducts a comprehensive empirical exercise to identify all the transient and permanent jumps

in the intraday stock prices. We document the cross-sectional variations in the price jumps for

different stock buckets, especially around 2003, when auto-quote greatly reduces the trading

latency. We also try to answer if HFTs are responsible for causing the increased transient

jumps in the small market cap, low volume and market liquidity, and low-priced stocks. In the

following paragraphs, we will discuss the main points of these three essays one by one.

The first essay (chapter 2) aims at evaluating the effects of the intervention on various quantities,

such as the price and volatility level of the exchange rate, based on Japanese official foreign

exchange interventions from Japan’s Ministry of Finance and the Reuters interdealer order flow

data. To be more specific, we focus on the following questions. Can the interventions move
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the price level of the exchange rate in the desired way? Is the impact of the intervention on

the exchange rate permanent or transitory? In other words, does it decay over time, and how

long does it take for the price impact to dissipate completely? Another question of interest

is that whether central bank intervention will calm the market or it would raise the volatility.

Moreover, do the interventions coordinate the private order flow into the direction set by the

central bank (coordination channel)? Would the price impact of private order flow be reduced

or even eliminated by the interventions, as suggested in the theoretical argument of the damping

channel? Last but not least, whether the effectiveness of the intervention depends on the market

condition, for instance, does the price impact of the intervention depends on the prevailing

volatility level of the exchange rate?

However, the intervention is very likely to be an endogenous variable, which means that the

results could be biased or even misleading if one fails to separate the causality from the reverse

causality. The importance of correctly assessing the effects of the interventions cannot be

overlooked. The central bankers cannot make the right decision without the accurate feedback.

For instance, considering the case that the central bank intends to support the exchange rate

‘leaning against the wind’, but if they ignore the endogeneity problem and wrongly conclude

that the intervention is not effective, they would decide not to intervene in the future. But

actually, the intervention may have strong price impact on the price level, once the endogeneity

issue is resolved.

The research on the effects of central bank intervention is suffered from severe endogeneity

problem (Fatum and Hutchison 2003, Neely 2005). It is the main difficulty of evaluating the

effects of the intervention on various financial variables, such as price level, volatility, order

flow and the number of trades. For instance, previous studies report that intervention has a

much stronger impact when the central bank intervenes ‘with-the-market’, in contrast to the

intervention ‘leaning against the wind’ (for instance, Payne and Vitale 2003). This clearly reveals

the possibility that the regressor, intervention, is endogenous with respect to the dependent

variable, the change in price level. With regard to the volatility, Dominguez (2003) documents

that, based on USD/DEM returns, the volatility on Fed intervention days is always higher than

that in the control sample. The problem is that whether it is due to the fact that intervention

is usually conducted on high volatility days, or the intervention raises the volatility level on the
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intervention day. Simple OLS regressions would produce biased estimates, or may even wrongly

draw completely opposite conclusions.

Previous studies use several methods to alleviate the endogeneity issue. First of all, intraday

data provide opportunities for more precise analyses, compared with daily data. Menkhoff

(2010) points out that ‘Intraday data focus on a narrow time window which contains less noise,

i.e. fewer other influences on exchange rates occurring during the day, and which tentatively

overcomes the endogeneity problem of interventions’. Based on the intraday intervention data

made available by the Swiss National Bank, the high-frequency studies such as Fischer and

Zurlinden (1999) and Payne and Vitale (2003), which tend to be less afflicted by the endogeneity

problems, have also found intervention to be effective at moving the exchange rate. The intraday

studies rely on press reports, such as Reuters newswire. But there are serious mistakes in

the press reports on interventions (e.g., Frenkel et al., 2004, Fischer 2006). Furthermore, the

central bank would be more interested in the long term effects, instead of the intraday price

impact. Resolving the endogeneity problem by going to high frequency has a disadvantage: the

effectiveness at the high frequency (intraday) does not guarantee the effectiveness at the daily

frequency or longer horizon. For instance, the price would move very dramatically at the very

minute/hour of the intervention, but it may revert back to the original level by the end of the

day.

Another possible way to evaluate the ‘real’ effect of the intervention on the exchange rate is

to construct the “counterfactual”, which is the hypothetical exchange rate movement in the

absence of intervention. Fatum and Hutchison (2010) introduce the method of propensity-

score matching to estimate the “average treatment effect” of the intervention. They match

the intervention days (treatment) and non-intervention days (control) based on the estimated

probability of intervention (a propensity score) for each day in the given sample. Chamon,

Garcia and Souza (2015) use a synthetic control approach to estimate the effect of Brazilian

intervention: constructing a synthetic control group provides a counterfactual exchange rate.

But the methodology is used for the one-time event, and not appropriate for studying the effect

of frequent interventions.

One of the contributions of chapter 2 is adopting a novel instrumental variable to study central

bank intervention. The instrumental variable introduced in this chapter makes sure that the
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researchers are able to obtain an accurate assessment of the effects of central bank intervention.

To obtain the instrumental variable, we decompose the time series of intervention into two

orthogonal components using wavelet analysis: the short scale part, which has all the variations

within the one-day horizon, and the long term part, which contains all the variations with the

horizon longer than (including) two days. Intuitively speaking, since the long term component

does not contain the contemporaneous information within the day, we expect it not to be directly

correlated with the dependent variable, the contemporaneous price movement. On the other

hand, the long term component is highly correlated with the endogenous explanatory variable

by design: the long term component preserves most of the variations of the original time series.

Empirical, we document that the intervention has positive and significant price impact, which

means that interventions can move the price level of the exchange rate in the desired way.

The price impact of intervention gradually decays as the horizon becomes longer, and we show

that it would last for approximately 16 trading days. With regard to the volatility, Japanese

intervention would increase the volatility of JPY/USD. Furthermore, the empirical results do

not support the coordination channel: the intervention does not change market order flow.

But it would increase the number of trades contemporaneously, and decrease the number of

trades in the following day. In other words, the intervention cannot align the market order

flow to the direction of the intervention, but there is weak evidence that market participants

do trade on the intervention events. However, we find empirical evidence that supports the

damping channel: the private trade’s price impact is reduced considerably in the presence of

the intervention. Last but not least, we also extends the linear model studying price impact

into a two-state Markov switching model, and show that intervention would have greater price

impact in the high volatility regime. Therefore, the price impact of the intervention depends

on the market condition, and if the objective of the central bank is influencing the price level,

the intervention should be conducted when the volatility level is high.

Chapter 3 proposes a new methodology to assess the out-of-sample predictability of financial

time series. Since Meese and Rogoff (1983a,b, 1988), it is well known that exchange rates are

very difficult to predict. The random walk model generally outperforms the economic models

in the out-of-sample forecasting exercises, which is called “the Meese and Rogoff puzzle”. The

traditional model-dependent method cannot differentiate whether the failure is due to misspec-
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ification of the forecasting model or lacking information in the predictors. If it is the former,

different economic or econometric models might improve the forecasting performance. On the

other hand, if the predictors contain no information about the future price movement, it is

impossible to predict based on these predictors, regardless of the specification of the forecasting

model.

We use an information-theoretical quantity called mutual information to calibrate the infor-

mation transfer from the predictors to the future return. Mutual information measures all

statistical dependence, linear and nonlinear, and not just the linear dependence as the correla-

tion coefficient measures. Measuring the information transfer can help us to distinguish lack of

information from model misspecification. Pinpointing the underlying cause of failure is very im-

portant for time series predictability problem, since the lack of information should be solved by

searching for better predictors, rather than trying difference economic and econometric models.

Our goal is to provide a model-independent criterion for calibrating the predictability of time

series by drawing an analogy between predictability and Shannon’s channel coding theorem

(Shannon 1948, Shannon and Weaver 1949). The logic is straightforward: in order to be able

to predict, the predictors have to carry information about the future return of the exchange

rate. In the language of statistics, the predictors and the future price movement must be sta-

tistical dependent. This necessity is independent of the specific economic model or econometric

methodology adopted by the researcher. On the other hand, for a given set of predictors, the

predictive power of any model must be bounded by an upper limit, which is the information

transfer from the predictors to the future return.

Why is mutual information the correct measure of information transfer or statistical depen-

dence? In information theory, mutual information specifies a noisy channel’s reliable infor-

mation transmission capacity, beyond which error-free communication is impossible. In other

words, mutual information specifies the upper bound of the information transmission rate of the

noise communication channel. This is the great insight of Shannon’s channel coding theorem.

Essentially, a noisy communication channel is two statistical dependent random variables. Mu-

tual information is the capacity of information transfer between these two variables. Therefore,

mutual information is the right measure that can calibrate the information transfer from the

predictors to the future return.
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We investigate the exchange rate predictability at various horizons: hourly, daily and monthly.

The exchange rates in our dataset are the most frequently traded ones in the FX markets. Em-

pirically, we find that the exchange rates are systematically predictable at the hourly frequency.

The intraday predictive power is mainly from the interdependence of the exchange rate returns

at the hourly frequency, whereas order flow has very small predictive power for the future return.

One important point is that the linear model that are frequently used in the literature fails to

capture most of the information transfer, which explains why it is so hard for the linear model

to outperform the random walk benchmark, i.e. the Meese and Rogoff puzzle. It also suggests

that the optimal forecasting model based on historical returns of the exchange rate must be non-

linear. At daily and monthly frequency, the exchange rates are not systematically predictable

based on historical returns, order flow, and macroeconomic fundamentals. Our finding suggests

that for more than half of the currency pairs, the factors have small but significant information

transfer, but for all the exchange rates, the linear model does not have any significant predictive

power. Furthermore, unlike the hourly frequency, the historical movements of exchange rates

do not have any predictive power for the future return at the daily and monthly frequency.

In chapter 4, we are motivated to conduct a thorough empirical study on the price jumps in

the high frequency data, and further answer the question whether the markets have become

more unstable in the era of high frequency trading. We are also very interested in finding out

whether the increased instability is due to the changes in permanent or transient jumps. While

the increase in permanent jumps can be explained as more information events in recent years,

the increase in extreme transient jumps can only be attributed to the deterioration of market

quality.

Based on the Trade and Quote (TAQ) database, we identify all the permanent/transient jumps

of the CRSP common shares in the period from January 1995 to December 2014. With the

Flash Crash type of transient jump in mind, we detect transient jumps that last 2.5 minutes

to one hour. Considering that jump properties of the stocks may be dependent on the stock

characteristics, especially the market microstructure and liquidity related quantities, in each

month, we divide the stocks with jumps into four buckets (quartiles) according to the value of

a chosen characteristic, and calculate the mean values of the number of jumps (permanent and

transient), the number of jump days and the percentage of jump stocks. We observe a structural
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change in the jump statistics around 2003. It coincides with the introduction of auto-quote,

which reduce the trading latency considerably and made high frequency trading much easier.

Meanwhile, there is cross-sectional variation in the jump properties across different buckets

of stocks: in terms of the price jumps, some of the stocks become more stable, while others

suffer from much more transient jumps. General speaking, the stocks with low market cap

and volume, large bid-ask spread and relative tick size experience more jump after 2003, while

they are the relatively more stable ones before 2003. These are the thinly-traded penny stocks

become more unstable. Notably, most of the increase in jumps is the changes in transient

jumps, which are not information-driven. It means that the worsening price stability is not due

to more frequent market-relevant news after 2003. On contrary, the considerable increase in

transient jumps actually reveals the deterioration of market quality for these stocks in recent

years. On the other hand, the stocks on the other end of the characteristic spectrum (high

market cap and volume, small bid-ask spread and relative tick size) actually become more

stable after 2003. These are the large firms and blue-chip stocks, which are traded very actively

by market participants. These stocks become more stable in the era of high frequency trading.

This observation is in line with the empirical literature that high frequency trading improves

the market liquidity (Hendershott, Jones, and Menkveld 2011). In conclusion, when trying to

answer the question whether the stock price has become unstable in the era of HFT, one needs

to be specific on the characteristics of the stock.

We are also interested in finding out whether the high frequency traders should be held ac-

countable for the increase or decrease in the jumps. HFTs could play a role in these transient

price jumps for several reasons (Biais and Foucault 2014). First, because of the similar trading

strategies, HFTs may all react at the same time to erroneous signals by sending buy or sell

market orders consuming market liquidity, triggering sharp price movements. Alternatively,

after the arrival of a large sell (buy) market order, the limit orders may all got canceled by

HFTs for safety reasons, and if the large market order does not appear to be informationally

motivated, HFTs would resubmit new limit orders very quickly. Moreover, as the endogenous

liquidity providers, HFTs may withdraw their quotes and stop marking the market in the ad-

verse market conditions. In any case, waves of cancellations or market orders submissions by

HFTs reacting to the same event may exacerbate the transient price jumps.
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To study this issue, we run panel regressions around the event of auto-quote introduction on

the NYSE around early 2003. By fitting a linear model with dummy variables of auto-quote

and quartiles as well as their interaction terms to the data of NYSE shares, we can estimate

the number of jumps (permanent/transient) and jump days for each quartile before and after

the auto-quote introduction. The panel data regressions using characteristic quartile dummy

variables confirm the results obtained previously: the structural shift and heterogeneous changes

in the jump properties across different characteristic buckets of stocks.

More importantly, when the stocks are grouped into quartiles according to the quote-to-trade

ratio, the panel data regression results indicate that the stocks in the quartile with the highest

quote-to-trade ratio become much more unstable after auto-quote, and most of the incremental

jumps are transient. As we all know that one of the distinguishing features of HFTs is the high

quote-to-trade ratio, because HFTs would submit and quickly cancel their quotes at milliseconds

or higher frequency, the actual trades that go through are merely a very small fraction of the

total number of quote posted by the HFTs. Similarly, as the message-to-trade ratio used in

Hasbrouck and Saar (2013), the quote-to-trade ratio can be used as a proxy for HFT. The stock

with high quote-to-trade ratio has a higher percentage of HFT participation. Therefore, the

dramatic increase in transient jump for the high quote-to-trade ratio stocks after auto-quote

suggests that HFT does cause instability in the stock price.

Another supporting evidence is that we also empirically document that the quartile with the

greatest relative tick size become much more unstable: the number of jumps, especially the

transient ones, increase considerably after auto-quote. Considering that the large relative tick

size is associated with a high percentage of HFT participation (Yao, Ye 2014), this empirical

evidence also implies that HFTs cause more transient jumps in these low-priced stocks.

Overall speaking, the empirical evidence points at the fact that HFTs increase jumps in the

small market cap, low volume and market liquidity, and large relative tick size (‘penny’) stocks,

while for the large market cap stocks with high volume and market liquidity, their price sta-

bility is actually improved considerably. Due to the lack of high frequency trading data, our

indirect evidence cannot completely pin down this claim. Nonetheless, the empirical fact of the

deterioration in market quality and price stability for these small illiquid low-priced stocks are

genuine, regardless whether it is caused by HFT or not.
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Finally, Chapter 5 concludes with a discussion of the findings and contributions of this thesis,

and discusses future potential research questions.
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Chapter 2

Central Bank Intervention: Its

Effects and the Endogeneity

Problem

2.1 Introduction

This paper introduces a novel instrumental variable to study some of the most important re-

search questions of central bank intervention, from the market microstructure point of view.

Based on Japanese official foreign exchange interventions from Japan’s Ministry of Finance and

the Reuters interdealer order flow data, we want to find out the effects of the interventions

on various quantities, such as the price and volatility level of the exchange rate. To be more

specific, this paper focuses on the following questions. Can the interventions move the price

level of the exchange rate in the desired way? Is the impact of the intervention on the exchange

rate permanent or transitory? In other words, does it decay over time, and how long does it

take for the price impact to dissipate completely? Another question of interest is that whether

central bank intervention will calm the market or it would raise the volatility. Moreover, do the

interventions coordinate the private order flow into the direction set by the central bank (coor-

dination channel)? Would the price impact of private order flow be reduced or even eliminated

by the interventions, as suggested in the theoretical argument of the damping channel? Last
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but not least, whether the effectiveness of the intervention depends on the market condition,

for instance, does the price impact of the intervention depends on the prevailing volatility level

of the exchange rate?

This paper underlines the importance of using the instrumental variable when evaluating central

bank interventions. First of all, the intervention is very likely to be an endogenous variable,

which means that the results could be biased or even misleading if one fails to separate the

causality from the reverse causality. Therefore, the importance of correctly assessing the effects

of the interventions cannot be overlooked. The central bankers decide to intervene with certain

intention: for instance, supporting or suppressing the value of the currency, or reducing the

volatility and calming the market. Regardless the underlying intention of intervention, the key

is evaluating the effects of the intervention accurately, without which the central bankers cannot

get the right feedback and adjust their action accordingly. For instance, considering the case

that the central bank intends to support the exchange rate ‘leaning against the wind’, but if

they ignore the endogeneity problem and wrongly conclude that the intervention is not effective,

they may decide not to intervene in the future. But actually, the intervention may have strong

price impact on the price level, once the endogeneity issue is taken care of.

We are going to evaluate the effects of the Japanese central bank interventions on JPY/USD.

JPY/USD is one of the most heavily traded exchange rates, and Japan is one of the advanced

economies that still conduct interventions in recent years. More importantly, the data on

Japanese central bank intervention is publicly available. Another desirable fact is that Japanese

foreign exchange intervention was automatically sterilized (Ito 2002, 2007). The intervention

is formally considered sterilized as the dollar purchases are financed by the sale of yen assets

issued by the Ministry of Finance. From the researcher’s point of view, sterilized intervention

is more interesting, because any changes in monetary base due to foreign exchange interven-

tion are absorbed by open market operations in the opposite direction so that monetary basis

remains unchanged (Ito 2007). The sterilized foreign exchange interventions tend to be less

effective at moving exchange rates compared with unsterilized interventions: the unsterilized

intervention results in the expansion of domestic money base so that the interest rate declines,

which encourages capital outflows and cause the home currency to depreciate.

Central bank intervention is defined as “purchases and sales of foreign currencies by the mone-
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tary authorities with an intention to influence the foreign exchange rate” (Ito 2007). There are

several points need to be clarified here. First one is that the monetary authorities often buy

and sell foreign exchanges for its ordinary activities, which are inevitable, but these transactions

without the intentions of influencing the exchange rate should not be considered as interven-

tion. Second, as Ito (2007) points out, intervention is fiscal operation rather than monetary

operation, and the balance is shown in the budget rather than the balance sheet of the Central

Bank. There are other important issues that influence the exchange rate, such as monetary

policy, quantitative easing (QE), and currency swaps line among central banks, but these issues

are beyond our scope of the central bank intervention studied in this paper.

As for the intention of Japanese central bank intervention, Nanto (2007) states that “In Japans

case, the Bank of Japan (in consultation with the Ministry of Finance) has bought U.S. Treasury

securities and other liquid dollar assets at times when the value of the dollar relative to the yen

was declining. The intended result was to keep the value of the yen from appreciating too quickly

in order to keep the price of Japanese exports from rising in markets such as those in the United

States and to maintain the profitability of those exports.” In other extreme scenarios, such as

the unfortunate earthquake and tsunami happened in 2011, G7 central banks coordinately

intervened to stabilize the yen, tamping its value down after Japans devastating earthquake

triggered a yen surge and raised fears about the global economy.

The Japanese central bank interventions were carried out in the spot market, and they are

automatically sterilized. No derivative, including forward, was used. The interventions are

carried out directly by the Bank of Japan or carried out by other Central Banks on behalf of

the Bank of Japan (Ito 2007). However, the disclosed intervention data do not specify the exact

time of day and which market intervention was conducted.

Since the end of last century, many advanced economies no longer intervene the exchange

rate, such as the United States, the Euro area, and the United Kingdom. They have moved

away from actual interventions to communication or oral intervention, which would guide and

influence foreign exchange markets (Fratzscher, 2008). Although central bank intervention

has lost its role among certain industrialized countries, it is still a very important research

topic. First of all, most of the currencies in the world are not fully flexible, especially those

of the emerging markets, such as Chinese Renminbi. Moreover, some developed economies
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still intervene occasionally, for instance, Reserve Bank of Australia, which has not intervened

since September 2001, conducted two brief phases of intervention in August 2007 and October

- November 2008, the global financial crisis, in order to provide market liquidity and address

market dysfunction (Newman, Potter, and Wright, 2011). Therefore, a better and more precise

understanding of the effect of central bank intervention is still of great use.

The early literature on foreign exchange is surveyed by Sarno and Taylor (2001), which typically

focuses on advanced economies and generally concludes that sterilized intervention is not very

effective at influencing the price level of the exchange rates. More recently, many papers using

daily intervention and exchange rate data to investigate the effect of central bank intervention:

Fatum and Hutchison (2003, 2006), Edison, Cashin, and Liang (2003), Aguilar and Nydalh

(2000), Kim, Kortian, and Sheen (2000), Ito (2002), and Chaboud and Humpage (2005). These

studies obtain mixed evidence for the hypothesis that intervention influences exchange rates

in the desired direction, but coordinated interventions are found to be much more successful

(e.g., Ito 2002). On the other hand, papers based on intraday data reach the consensus that

interventions successfully move the price, at least in the very short term, within one-day horizon

(Fischer and Zurlinden 1999, Payne and Vitale 2003, Pasquariello 2007, Fatum and King 2005,

Menkhoff 2010).

Another strand of literature on central bank intervention focuses on the effect on exchange rate

volatility. Theoretically, the forward-looking rational expectations exchange rate model implies

that a credible central bank intervention should either dampen exchange rate volatility or should

not affect volatility at all. If interventions are not credible, or the signals sent by monetary

authorities are ambiguous, interventions should amplify exchange rate volatility (Dominguez

1998). Empirically, the results are mixed. There are studies find that intervention operations

increase exchange rate volatility, for instance, Frankel, Pierdzioch and Stadtmann (2005), and,

Beine et al. (2007), whereas Dominguez (1998) examines the effects of US, German and Japanese

intervention policies and finds that interventions generally increase exchange rate volatility for

the 1977-1994 period, except in the mid-1980s, interventions appear to have reduced exchange

rate volatility. Some studies based on intraday data find that interventions increase volatility

intraday, but at the daily frequency, they may reduce volatility overall (Menkhoff 2010). Kim

(2007) studies the Japanese interventions from 1991 to 2004, and finds that interventions reduce
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volatility significantly overnight, but not contemporaneously. Dominguez (2006) reports that

interventions increase volatility in the short run (intraday and daily frequency), but no evidence

indicates that interventions influence longer-term volatility.

The research on the effects of central bank intervention is suffered from severe endogeneity

problem (Fatum and Hutchison 2003, Neely 2005). It is the main difficulty of evaluating the

effects of the intervention on various financial variables, such as price level, volatility, order

flow and the number of trades. For instance, previous studies report that intervention has a

much stronger impact when the central bank intervenes ‘with-the-market’, in contrast to the

intervention ‘leaning against the wind’ (for instance, Payne and Vitale 2003). This clearly reveals

the possibility that the regressor, intervention, is endogenous with respect to the dependent

variable, the change in price level. With regard to the volatility, Dominguez (2003) documents

that, based on USD/DEM returns, the volatility on Fed intervention days is always higher than

in the control sample. The problem is that whether it is due to the fact that intervention is

usually conducted on high volatility days, or the intervention raises the volatility level on the

intervention day. Simple OLS regressions would produce biased estimates, or may even wrongly

draw completely opposite conclusions because of the reverse causality. Ideally, in order to gauge

the effects correctly, one has to compare the case when the central bank intervenes with the

‘counterfactual’: what it would have been without the interventions. To separate the causality

from central bank interventions to other economic variables, we use the instrumental variables,

which is a widely used econometric method to address the endogeneity.

Previous studies use several methods to alleviate the endogeneity issue. First of all, intraday

data provide opportunities for more precise analyses, compared with daily data. Menkhoff

(2010) points out that ‘Intraday data focus on a narrow time window which contains less noise,

i.e. fewer other influences on exchange rates occurring during the day, and which tentatively

overcomes the endogeneity problem of interventions’. Based on the intraday intervention data

made available by the Swiss National Bank, the high-frequency studies such as Fischer and

Zurlinden (1999) and Payne and Vitale (2003), which tend to be less afflicted by the endogeneity

problems, have also found intervention to be effective at moving the exchange rate. The intraday

studies rely on press reports, such as Reuters newswire. But there are serious mistakes in

the press reports on interventions (e.g., Frenkel et al., 2004, Fischer 2006). Furthermore, the
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central bank would be more interested in the long term effects, instead of the intraday price

impact. Resolving the endogeneity problem by going to high frequency has a disadvantage: the

effectiveness at the high frequency (intraday) does not guarantee the effectiveness at the daily or

lower frequency. For instance, the price would move very dramatically at the very minute/hour

of the intervention, but it may revert back to the original level by the end of the day.

Another possible way to evaluate the ‘real’ effect of the intervention on the exchange rate is

to construct the “counterfactual”, which is the hypothetical exchange rate movement in the

absence of intervention. Fatum and Hutchison (2010) introduce the method of propensity-

score matching to estimate the “average treatment effect” of the intervention. They match

the intervention days (treatment) and non-intervention days (control) based on the estimated

probability of intervention (a propensity score) for each day in the given sample. Chamon,

Garcia and Souza (2015) use a synthetic control approach to estimate the effect of Brazilian

intervention: constructing a synthetic control group provides a counterfactual exchange rate.

But the methodology is used for the one-time event, and not appropriate for studying the effect

of frequent interventions.

One of the contributions of this paper is adopting a novel instrumental variable to study central

bank intervention. The instrumental variable introduced in this study makes sure that the

researchers are able to obtain an accurate assessment of the effects of central bank intervention.

To obtain the instrumental variable, we decompose the time series of intervention into two

orthogonal components using wavelet analysis: the short scale component, which has all the

variations within the one-day horizon, and the long term component, which contains all the

variations with the horizon longer than two days. We are going to argue that since the long

term component of the intervention does not contain the contemporaneous information within

the day, we expect it not to be directly caused by the dependent variable, the contemporaneous

price movement.

To evaluate the effect of the intervention on various variables, we regress the dependent variable

on the intervention and other control variables. The dependent variable, such as the return, can

also be treated as the sum of two orthogonal components as well. The short term component of

the dependent variable that contains variations of one-day scale is statistically uncorrelated with

the instrumental variable by design (the wavelet decomposition at different scales are orthogonal
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to each other since the wavelet basis functions at different scales are orthogonal to each other).

Meanwhile, the long term component of the return contains variations longer than two days,

in other words, the long term component contains the long term smoothed movement or trend

from current to the future, not the variation within current day. The intervention decision of

the central bank generally is based on past and current price movements. It is not possible

that the intervention decision is based on the long term movement from now to the future,

which is essentially the future information that is not available to the central banker at real

time. To sum up, the long term component of the return does not directly cause the IV, and

remembering the fact that the short term component of the return is uncorrelated with the IV

by design, as discussed earlier, therefore, The instrumental variable, the long term component

of the intervention time series, is expected to be a valid instrumental.

Another concern is that the central bank may forecast the future exchange rate, and made the

decision of the intervention directly based on the future exchange rate, hence the long term

component of the dependent variable would directly cause the intervention. This concern is

raised quite naturally. But there are two things to point out, first of all is that the future

exchange rate is very hard to forecast, as we will discuss in the next chapter of this dissertation.

The likelihood that central bank can forecast the exchange rate very accurately and made

intervention decision directly based on that is very small, given the fact that we are considering

the exchange rate in the floating regime. Second of all, even if the central bank can forecast the

exchange rate to a certain degree, it does not necessarily mean that the long term component

of the exchange rate return will directly cause the long term component of the intervention,

since the current value of the intervention long term component is the smoothed/averaged

of current and future intervention. Moreover, whether the instrumental variable is indeed

exogenous is always subject to econometric test. Applying the instrumental variable merely

based on economic or logic reasoning is a useful but not reliable way to conduct empirical

research. In the next subsection, we will carry out the overidentification test to confirm that

the instrumental variable is valid with respect to various dependent variables.

The second validity check for the instrumental variable is that it should contain information

of the original endogenous explanatory variable. It suggests that finding an exogenous but

uncorrelated variable would not help. In our case, the long term component is highly correlated
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with the endogenous explanatory variable by design, since the long term component is part of

the intervention time series, it preserves most of the variations of the original time series.

Empirically, for each regression, we verify that the instrumental variables are truly exogenous

using the overidentification test, then apply the IV and two-stage least square (2SLS) to estimate

the model. Comparing the results based on 2SLS, we can find out whether the conclusions

based on OLS are qualitatively different. Furthermore, one can also test the exogeneity of

the original regressors using the Hausman test, which essentially compares the OLS and 2SLS

estimates. For instance, if the Hausman tests fail to reject the null hypothesis that intervention

is exogenous, then one can treat the intervention as an exogenous variable with respect to that

specific dependent variable.

A novel method is used in this paper, namely the wavelet analysis. Wavelet analysis is originated

in the applied math and signal processing studies, but lately have been applied to economics

and financial problems. Just to name a few, Vacha and Barunik (2012) study the co-movement

of energy commodities using wavelet coherence analysis; In and Kim (2007) examine how well

the Fama-French factor model works on different time scales; In and Kim (2006c) study the

relationship between stock and futures markets with wavelet cross-correlation; Gencay et al.

(2005) use wavelet method to estimate the systematic risk of an asset; Gencay et al. (2004) show

that the leverage effect is weak at high frequencies but becomes prominent at lower frequencies.

Wavelet analysis decomposes the time series into orthogonal components at different scales or

horizons, while preserving the information/variations localized in time. The motivation for

using this novel method is mainly twofold. First of all, this method produces the instrumental

variable for evaluating the effects of the intervention. As discussed earlier, the decomposed long-

term component is adopted as the instrumental variable. Second of all, decomposing time series

into components at different scales would allow us to study whether the economic relationship

varies at different time scale. To be more specific, we want to evaluate the persistence of

the price impact. The orthogonality of the variable components at different time scales would

guarantee that, at each time scale, we can regress the component of return on the corresponding

component of the intervention, and estimate the scale-specific coefficient of the intervention,

without worrying about the potential bias when different scales are coupled together. In such

a way, we can examine the decay of price impact by carrying out the regressions scale by scale.
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Wavelet analysis can be used to decompose the time series into the long-term component

and short-term component. In this aspect, it is similar in nature to other signal process-

ing/econometric methods. Broadly speaking, when wavelet method is used to decompose time

series into long/short term components, it can be view as a type of high/low band-pass filter.

There are other methods, such as band-pass filter based on Fourier analysis, and Hodrick-

Prescott filter, which aims to fit a smooth line as close as possible to the original time series

while penalizing the curvature of the fitted curve. However, these do not preserve the tempo-

ral information localized in time. Moreover, Hodrick-Prescott filter uses an ad-hoc parameter

for the regularization term, and tuning the parameter can be difficult and unreliable. More

importantly, to study the persistence of price impact, we will use wavelet analysis to do multi-

resolution analysis, i.e., decomposing the time series into orthogonal components at different

time horizons. In my opinion, wavelet analysis can handle these research problems quite effi-

ciently.

We document that one unit of intervention has a positive and significant price impact, which

means that interventions can move the price level of the exchange rate in the desired way; but

for the first subsample, the estimate is not strongly significant. The price impact of intervention

gradually decays as the horizon becomes longer, and we show that it would last for approx-

imately 16 trading days. With regard to the volatility, Japanese intervention would increase

the volatility of JPY/USD. Furthermore, the empirical results do not support the coordination

channel: the intervention does not change market order flow. But it would increase the number

of trades contemporaneously, and decrease the number of trades in the following day. In other

words, the intervention cannot align the market order flow to the direction of the interven-

tion, but market participants do trade on the intervention events. However, we find empirical

evidence that supports the damping channel: the private trade’s price impact is reduced consid-

erably in the presence of the intervention. Last but not least, this paper also extends the linear

model studying price impact to a two-state Markov switching model, and show that intervention

would have a greater price impact in the high volatility regime. Therefore, the price impact

of the intervention depends on the market condition, and if the objective of the central bank

is influencing the price level, the intervention should be conducted when the volatility level is

high.
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2.2 Instrumental Variable

To assess the effects of central bank intervention, various quantities of interest are treated as

the dependent variable, such as the return, volatility, market order flow, the number of trades,

while the explanatory variables are the intervention and other relevant variables, depending

on the model specification. As mentioned before, in order to correctly estimate the effects of

the central bank intervention, potential endogeneity problem in these regressions needs to be

resolved. The results of simple OLS regression could be biased or even completely misleading due

to the fact that intervention could be endogenous. Furthermore, without the valid instrumental

variable, there is no way to find out whether the potential endogenous regressors are truly

endogenous. Therefore, the instrumental variable is of the essence for evaluating the effects of

the intervention.

Let’s consider the case where central bank aims at influencing the price level of the exchange

rate. On one hand, the interventions may arise from the fact that exchange rate deviates from

the desired price level, in other words, undesirable movements of the exchange rate cause the

central bank to intervene; on the other hand, interventions cause the exchange rate price level

to move as well. Researchers are aiming at assessing the causality from the interventions to the

price level movements, but the reverse causality could be much stronger. For instance, if central

bank intervenes leaning against the wind to support the price of its currency, the intervention

may not be able to reverse the trend, but had there not been an intervention, the exchange

rate would have depreciated much more. In this case, the OLS estimate of the intervention’s

coefficient would be negative, which is qualitatively different from the positive estimate using

the 2SLS regression.

The same logic applies to other variables, such as the volatility of the exchange rate. If the

central bank aims at calming down the market by intervening, the interventions would occur

when volatility is unusually high. In this case, the OLS regression will wrongly draw the

conclusion that central bank intervention increases the volatility. However, it might be the case

that the interventions successfully bring the volatility down.
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2.2.1 Wavelet Analysis

As mentioned before, wavelets analysis is used to obtain the orthogonal decomposition of the

relevant economic variables at different time scales. Due to limited space, we will discuss the

wavelet analysis very briefly here. We refer the interested readers to Ramsey and Lampart

(1998), and Ramsey (2002) for more details.

Wavelet analysis can be seen as an extension of the Fourier analysis. In Fourier analysis, the

sine and cosine functions at various frequencies are used to expand the given function or time

series. Suppose the original function or time series is X(t), where t ∈ [0, T ]. Based on Fourier

analysis, X(t) can be decomposed into components at different frequencies:

X(t) = a0 +
∞∑
ω=1

{aω cos(2πωt/T ) + bω sin(2πωt/T )}, t ∈ [0, T ] (2.1)

The orthogonal basis functions cos(2πωt/T ) and sin(2πωt/T ) capture the variations at dif-

ferent frequency ω = 1, 2, 3, 4, ..., and aω and bω are the amplitudes of corresponding fre-

quencies. Intuitively, the component at frequency ω = 1, a1 cos(2πt/T ) + b1 sin(2πt/T ), rep-

resents the long term component or trend in the original time series that fluctuates slowly.

While the high frequency components, for instance the component at the frequency ω = 100,

a100 cos(200πt/T ) + b100 sin(200πt/T ), would captures the high frequency variations that os-

cillates 100 time faster. The superposition of components at different frequencies recovers the

original time series X(t).

However, the drawback of Fourier analysis is that it assumes that the frequency content of

the time series is invariant across time. After transforming the original time series from time

domain into frequency domain, only the frequency information is preserved, all the temporal

information is lost. Moreover, the sine and cosine basis functions do not die out, hence they

are not adaptive to changes that localized in time. For example, if the time series have high

frequency oscillation in the first ten percent of the time series, and continue with low frequency

fluctuations for the rest, Fourier analysis would correctly identify that there are two frequency

components for the whole time series, but it cannot differentiate the change in frequency content

localized in time, i.e., the temporal information is completely lost. However, the temporal order

of the time series is of the essence for many economic/financial studies, if we want to study the
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relationship and causality among different variables based on their temporal information.

Compared with Fourier analysis, wavelet analysis are more suitable for handling financial/economic

time series. The examples of the Morlet and Haar wavelets are shown in figures 2.1 and 2.2. As

oppose to sine and cosine functions in Fourier analysis, the basis function of the wavelet analysis

are localized in both time and frequency, hence the temporal information would be preserved

as we study the time series variations at different scale/horizon. The decomposed components

based on wavelet analysis at different scale can adaptively capture the local behavior of the

time series in different time periods.

Insert figure 2.1 about here

Insert figure 2.2 about here

To study the variations at different scale/horizon, the scaling or dilation property of wavelets

function is particularly important. Given ψ(t) is the wavelet function at scale 1 and centered

at 0. The Haar wavelet used in this study is in the following form:

ψ(t) =


1 0 ≤ t < 1

2 ,

−1 1
2 ≤ t < 1,

0 otherwise.

(2.2)

which is shown graphically in figure 2.2. The basis function at scale s and centered at time u

is defined as

ψu,s(t) =
1√
s
ψ

(
t− u
s

)
, (2.3)

Intuitively, the wavelet functions at large scales (lower frequency) are dilated or stretched in

the time dimension by s times, and in order to capture the variation around time u, the whole

wavelet function is shifted to the new location of time u. Therefore, the wavelet ψu,s(t) is

concentrated in a neighborhood of size proportional to s and centered around time u. The

factor 1√
s

ensure that the energy of wavelet is normalized to one, which means the integration

of the squared wavelet function ψ2
u,s(t) equals to one. Function ψu,s(t) is also referred as the

mother wavelet function, as opposed to the father wavelet or scaling function ψu,s(t) that we

will discuss next.
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Notice that the integration of the wavelet function ψu,s(t) (eq. 2.3) with respect to t equals

zero, which suggest that at scale s, wavelet function ψu,s(t) captures the fluctuations around

a local average level, but it cannot represent the local average level of the original time series.

Therefore, we need the scaling functions to span the average level of the time series. The scaling

function of Haar wavelet is as follows

φ(t) =


1 0 ≤ t < 1,

0 otherwise.

(2.4)

The scaling function at scale s and centered at time u is defined similarly as equation 2.3:

φu,s(t) =
1√
s
φ

(
t− u
s

)
, (2.5)

Therefore, it is easy to see that the scale function φu,s(t) captures the local average of the

original function at scale s and location u.

When wavelet functions are used for multi-resolution analysis, time series Xt is decomposed

into orthogonal components by scale:

Xt =
5∑
j=1

Xt[dj ] +Xt[a5] = Xt[d1] +Xt[d2] +Xt[d3] +Xt[d4] +Xt[d5] +Xt[a5], (2.6)

where Xt could be one of the variables, such as ∆st, mot, and It, and Xt[dj ] is the component

of Xt at the jth scale. Intuitively speaking, the component Xt[di] captures the variations at

2j−1 days horizon, and none of the other scales:

Xt[di] =
∑
u

cuψu,di(t) , (2.7)

where ψu,di(t) is the wavelet function at scale di and location u, and cu is the amplitude of

ψu,di(t) at location u.

The multi-resolution analysis (equation 2.6) can be seen as the process of peeling the onion.

First of all, we extract the highest frequency variations at the 1-day horizon, which comprise the

component Xt[d1]; after Xt[d1] has been taken from the original time series, Xt[d2] captures the
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variations between 1 day and 2 day horizon; similarly, Xt[d3] captures the variations between

2-day and 4-day horizon, and so on. At last, all the details from scale 1 to 5 have been extracted

from the time series, what is left is the long-term variations that are not captured by Xt[di],

i = 1, 2, 3, 4, 5, and they all encapsulated in component Xt[a5]. Xt[ai] represents the long term

variations at the horizon of 25 days or greater:

Xt[ai] =
∑
u

fuφu,ai(t) , (2.8)

where fu is the coefficient of the scaling function φu,ai(t) at time u.

Moreover, the components at different scales are completely uncorrelated from each other by

design, since the wavelet basis functions at any two different scales are orthogonal to each other:

∫
R
ψu1,s1(t)ψu2,s2(t) dt = δu1,u2δs1,s2 , (2.9)

where function δu1,u2 represents the Kronecker delta, which equals to 1 if u1 = u2, and zero

otherwise. Equation 2.9 suggests that the basis functions at different scales or different locations

are orthogonal to each other. Moreover, we also have the detail function ψu,s(t) (such as equation

2.2) and scaling function φu,s(t) (such as equation 2.4) are orthogonal to each other at all

scales. This is why we use wavelet analysis to decompose the relationship between the exchange

rate movement and the intervention by time scale, without worrying about the relationship at

different scales being coupled together.

2.2.2 Wavelet Based Instrumental Variable

Due to the potential severe endogeneity issue, one needs a valid instrumental variable (IV) for

evaluating the effects of the interventions correctly. To construct the IV, we decompose the time

series of intervention into two orthogonal components using wavelet analysis (Haar wavelet).

The original time series of intervention denoted as It, is decomposed into two orthogonal com-

ponents: It = It[d1] + It[a1]. The first part It[d1] contains all of the short-term variations or

small-scale ‘details’ within one day horizon; the second component It[a1] is the long-term part of

intervention, which is an approximation of the original time series: it contains all the variations
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at two-day horizon or longer, which are not captured by It[d1]. The long-term component It[a1]

can be viewed as the result when we apply the low pass filter on the original time series of

intervention: the one-day variations are averaged out using current and next day’s variation.

The component It[a1] is used as an instrumental variable to resolve the possible endogeneity

issue. The time series of the original central bank intervention and its long-term and short-term

components are shown in figure 2.3.

Insert figure 2.3

To estimate the effect of the intervention, the variable of interest Xt is regressed on the inter-

vention:

Xt = α+ βIt + εt , (2.10)

The intervention It is decomposed into two parts using Haar wavelet:

It = It[a1] + It[d1] , (2.11)

where It[d1] contains the “details” at one-day horizon, and It[a1] captures the variation at two-

day horizon or longer. We are going to use It[a1] as the instrumental variable. On the other

hand, dependent variable Xt can be decomposed into two orthogonal components as well:

Xt = Xt[a1] +Xt[d1] . (2.12)

Now the regression is written in the following form

Xt[a1] +Xt[d1] = α+ βIt + εt . (2.13)

We apply the instrumental variable It[a1] on both sides of the equation. Xt[d1] is orthogonal to

It[a1] by design. Now we need to argue that Xt[a1] does not directly cause It[a1]. Let’s consider

the case that Xt is the return time series. Then Xt[a1], as the long term component of the

return, contains the return from now to more than two days in the future, meanwhile, Xt[a1]

does not have the variations within current day. The intervention decision of the central bank

generally is based on past and current price movements. It is not possible that the intervention

decision is based on the long term movement from now to the future, which is essentially
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the future information that is not available to the central banker in real time. Hence, the

long term component of the return Xt[a1] does not directly cause the IV, as well as It[a1].

Therefore, instrumental variable It[a1] should be exogenous with respect to the dependent

variable. Moreover, instrumental variable It[a1] still preserves the long term variations of the

original time series It, so it is expected to be highly correlated with the original explanatory

variable, the intervention It.

However, eventually, the validity of instrumental variable is subjected to the empirical test.

The overidentification tests the joint null hypothesis that the excluded instruments are valid

instruments, i.e., uncorrelated with the error term and correctly excluded from the estimated

equation. A rejection of the test suggests the invalidity of the instruments. The p value of the

overidentification test reported in each regression (tables 2.1 to 2.5) ensures the validity of the

IV. Moreover, because the long term component contains most of the information of the original

time series, the strength of the IV is very good. Meanwhile, the R2 of the 2SLS regression is

also an indicator of the strength of the instrumental variables: If the R2 of the 2SLS regression

is zero, the instrumental variables have very little information about the original regressors, in

which case all coefficients would be not significantly different from zero, due to the weakness

or irrelevance of the instrumental variables. In other words, one can easily find some truly

exogenous variables, but they still are not valid instrumental variables because they do not

have explanatory power for the endogenous regressors.

We are going to observe that the two-stage least square (2SLS) regressions do produce some

qualitative different results, in comparison to those of the OLS regressions. For instance, using

2SLS, we conclude that intervention would not change the market order flow, but OLS results

indicate otherwise. Estimates from OLS regressions wrongly suggest that intervention would

increase the market order flow at the event day, and decrease it the next day. This study

underlines the necessity and importance of the instrumental variable. The central bankers

can correctly assess the effects of the intervention, and check whether the realized effects fit

their original intention for the interventions. In contrast, without the help of the instrumental

variable, the feedback obtained by the central bank could be biased or even very misleading,

which leads to suboptimal decision making.
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2.3 Data

Our sample includes data from the Reuters trading system Dealing 3000. The sample periods

are January 1996 to December 2002, and November 2003 to February 2013. The original data

consists of a continuous record of transactions and orders. For the purpose of our study, the

data is aggregated into daily frequency. Market order flow mo is measured as the difference

between the trades initiated by buyers and the trades initiated by sellers from period t− 1 to t.

The unit of the market order flow is thousand of trades. Since the minimum size of the trade is

1 million USD, approximately the unit of mo is 1 billion USD. The number of trades Nt measure

the total number of the trades from period t−1 to t: it is the summation of the trade quantities

initiated by buyers and the trade quantities initiated by sellers. Since we don’t know the dollar

amount of the trade, the number of trades Nt is a proxy measure for the trading volume.

The concern with the Reuters data is that since EBS (Electronic Broking Services) is the primary

trading venue for JPY/USD, while Reuters dealing system is only a minor trading venue, the

order flow data from Reuters has weak explanatory power. Regressing the concurrent return

on the order flow produces R2 equals to 10%, approximately. This is a disadvantage of our

order flow data. However, it is still beneficial to include the interdealer order flow as a control

variable, when we regress the variable of interest on the order flow of central bank intervention.

With respect to the price level, the log of the closing price of the exchange rate at 21:00 GMT

on day t is denoted by st. The exchange rate return or difference of the logged price, ∆st, is

calculated as the difference between the log midpoint exchange rate at date t and t−1. The unit

of ∆st is basis points. The volatility of the exchange rate σt is the realized volatility calculated

based on the intraday exchange rate movements from 21:00 GMT on day t−1 to the same time

on day t.

The Japanese official exchange rate intervention data is publicly available on the website of

Ministry of Finance. The data contains the exact date of the intervention, the currency pairs,

the amount of the intervention, as well as its direction (for example, USD is bought and JPY

is sold) from January 1996 to February 2013. The intervention It is the time series contains

the signed amount of the intervention. The unit of the intervention is 100 billion JPY, which is

equivalent to 1 billion USD, roughly speaking. The sign of the intervention is defined as positive
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if USD is sold and JPY is bought. Moreover, if there is no intervention at day t, the value of It

is simply set as zero.

2.4 Models and Empirical Results

In this section, we empirically study the impacts of Japanese central bank interventions on

various variables, such as the price and volatility levels of the exchange rate, the order flow

and the total number of trades. Naturally, the central bank intervenes the exchange rate with

certain goals in mind. To determine whether the intervention is successful or not, ideally one

needs to know what is the purpose behind the interventions. For instance, simply determining

the success of the interventions based on the price impact would not be appropriate if the central

bank wants to calm the market and smooth the adjustments of the exchange rate. However,

there is no way for us to find out the true incentive of the central bank. The next best thing is

to carry out an exhaustive empirical study on the variables of interest.

For simplicity, the linear model is adopted for most of the econometric exercises in this paper.

The variable of interest would be put on the left hand side as the dependent variable, while

the intervention, other control variables, and the lagged terms are included as the independent

variables on the right hand side. The linear model will be estimated using the OLS and 2SLS

methods. In addition, there are two extra research questions need to be answered with more

complicated models. First of all, we would like to find out whether the price impact of the

intervention is transient or permanent. If the central bank aims at influencing the price level,

but the price impact of the intervention is transient and decays to zero the very next day, for

example, then it is not worth the effort to intervene in the first place. Therefore, it would be

interesting to measure the duration of the price impact. Moreover, we also want to check if the

price impact of the intervention depends on the market condition, i.e., the volatility level of the

exchange rate. Because the price impact of the order flow is dependent on the volatility level:

the price impact of the order flow is high when the volatility is high, and vice versa. Therefore,

it is natural to expect that the price impact of central bank interventions would be high during

the high volatility regime. Using the Markov-switching model, we can capture the asymmetry

of the price impact in different regimes, as well as identify the state probability at each point
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of time.

2.4.1 Effect on the Price Level

First of all, does the Japanese central bank intervention successfully move the price of the ex-

change rate? To answer this question, we study the price impact of the interventions on the

price level of the exchange rate (JPY/USD). Note that the Japanese central bank interventions

are universally sterilized. Sterilization of intervention means that any changes in monetary base

due to foreign exchange intervention are absorbed by open market operations in the opposite

direction, so that monetary basis remains unchanged (Ito 2007). In theory, sterilized foreign

exchange interventions tend to be less effective at moving exchange rates than unsterilized inter-

ventions. This is due to the fact that unsterilized intervention to buy the foreign currency results

in the expansion of domestic money base so that the interest rate declines. The lower interest

rate will encourage capital outflows and cause the home currency to depreciate. However, if the

central bank absorbs the expanded money due to intervention by selling domestic bonds in open

market operations, then the monetary base and the interest rate remain unchanged, so there

is no policy effect on capital flows. Therefore, theoretically, the unsterilized interventions are

effective in moving the price level of the exchange rate, while the sterilized interventions would

not be effective. Although the sterilized interventions have no impact on the domestic money

supply, they would still alter the public relative supplies of available yen and dollar assets.

The specification of the linear model is as follows:

∆st = β0 + βs∆st−1 + βIIt + βmomot + lagged terms+ εt, (2.14)

where ∆st is the difference of logged price of the exchange rate, i.e., the daily return, mot and It

are the size of market order flow and central bank intervention, respectively. In addition, lagged

terms will also be added to this equation. The model is a natural extension of the Evans-Lyons

model. If intervention successfully moves the price level, the loading of intervention βI should

be significant and positive.

Model (2.14) also controls for the market order flow mot, which is the most important determi-

nant of the changes in exchange rate. Evans and Lyons (2002) argue that order flow contains
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private information on the exchange rate. Their empirical finding is that for two major ex-

change rates (mark/dollar and yen/dollar), including order flow as regressor would increase the

R2 dramatically, from 1-5% (the case when the only regressor is the interest rate differential) to

40-60%. Further research shows that the information content of order flow is not just private

information. Order flow plays an intermediary role between exchange rates and macroeconomic

fundamentals (Rime et al. 2010). Since placing an order is a willingness to back one’s beliefs

with real money, order flow is also a vehicle to aggregate macroeconomic information among all

the market participants. Other studies (Love and Payne 2008, Evans and Lyons 2008; Carlson

and Lo 2006) also document the empirical evidence to show that the impact of macro news

operates primarily through order flow.

The data on central bank intervention and order flow is sampled at the daily frequency. The

interest rate is also available at the daily frequency, but as a determinant of the exchange rate

movement, interest rate differentials can only explain a few percent of the total variation, if

any at all. This is the “exchange rate disconnect” puzzle (Meese and Rogoff, 1983; Cheung et

al., 2005), which points out that fundamental variables, such as the underlying fundamentals:

interest rates, inflation rates, and output, cannot explain the changes in exchange rates, espe-

cially in the short run (daily or monthly frequency). Therefore, we only control for the order

flow that influences the exchange rate return beyond interventions. Omitting the order flow,

the most important determinant, may cause some biases when evaluating the price impact of

the intervention.

Insert table 2.1 about here

Insert table 2.2 about here

The empirical results of model (2.14) are reported in tables 2.1 and 2.2. As a robustness check,

table 2.2 contains the regressions with the additional lagged terms of the independent variables.

The upper, middle and lower parts of the tables report the results based on the whole sample,

the first part (Jan. 1996 to Dec. 2002), and the second part of the sample (Nov. 2003 to

Feb. 2013), respectively. Moreover, the estimates on the left and right hand sides are estimated

using two-stage least square (2SLS) and ordinary least square (OLS) regressions, respectively.

In table 2.1, the price impacts of the market order flow and intervention are both positive.
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Every unit of market order flow (one thousand number of trades) has price impact of around

400 basis points, and every unit of intervention (100 billion JPY) can move the price level for

about 3 or 4 basis points. The price impact of each unit of the intervention is much smaller

than that of the market order flow. Based on the 2SLS estimates, the impact of the intervention

is statistically significant for the whole sample and the second subsample, but not for the first

subsample. The 2SLS and OLS estimates are qualitatively similar, but the coefficient of the

intervention is slightly greater for OLS estimates. The similarity of the intervention coefficients

based on 2SLS and OLS suggests that the intervention is unlikely to be endogenous with respect

to the daily exchange rate movement. For the whole sample, first and second subsample, the

Hausman tests fail to reject the null hypothesis that intervention is exogenous. Hence we treat

the intervention as an exogenous variable when the dependent variable is the exchange rate

movement. As reported in table 2.2, the intervention has similar price impact when the lagged

terms are included.

2.4.2 Effect on the Volatility

To study the effect of the intervention on the volatility, the endogeneity issue also needs to be

addressed. As we have mentioned, if the central bank tends to intervene when the market is

extremely volatile, the intervention is an endogenous variable with respect to the dependent

variable, the volatility of exchange rate. If it is indeed the case, OLS estimates are biased or

even mistaken. Similarly, the absolute value of the market order flow |mot| and the number of

trades Nt can also be endogenous with respect to the volatility. For example, the order flow

imbalance may cause the volatility to increase, simultaneously, the volatility could also drive

the order flow imbalance. The similar argument also applies to the number of trades Nt. To

address the endogeneity problem, we use the long term components of the time series |It|, |mot|

and Nt as the instrumental variables to evaluate the effect of Japanese central bank intervention

on the volatility of JPY/USD.

One thing to note is that if the volatility σt is the dependent variable, R2 of the regression would

be very close to 1, which suggests the existence of the non-stationarity. The augmented Dickey-

Fuller (ADF) test fails to reject the null hypothesis that there is a unit root in the time series

of the volatility σt. To avoid the results of the spurious regression, we take the first difference
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of the volatility σt and use it (∆σt) as the dependent variable. The model specification is as

follows:

∆σt = β0 + βσ∆σt−1 + βI |It|+ βmo|mot|+ βNNt + lagged terms+ εt, (2.15)

where Nt is the number of trade at day t, |It| and |mot| are the absolute values of the intervention

It and market order flow mot, respectively. Due to the symmetry of the exchange rate, the

positive and negative It and mot are expected to have the same impact on the volatility: the

order flow of selling JPY for USD should have the same effect on the volatility of JPY/USD as

the order flow of selling USD for JPY. Therefore, in model 2.15, the absolute values of It and

mot are used as the regressors for the dependent variable, ∆σt. If the central bank intervention

would raise the volatility of the exchange rate, the estimates of βI in model 2.15 should be

positive and significant. In our empirical exercise, additional lagged terms of the regressors are

also included in the regression 2.15.

Insert table 2.3 about here

To avoid the potential endogeneity problem, we estimate model (2.15) using OLS as well as

2SLS regressions. The estimates based on 2SLS and OLS are reported on the left and right

hand sides of the table 2.3, respectively. The estimates from simple OLS regressions indicate

that central bank intervention would raise the volatility level, especially the day after the inter-

vention, because the coefficient of |It−1|, the lagged absolute value of the intervention, is positive

and statistically significant. For the two-stage least square (2SLS) regression, first of all, we use

the overidentification tests to make sure that the instrumental variables are exogenous. The

overidentification tests reported in table 2.3 confirm the exogeneity of the instrumental vari-

ables: the joint null hypothesis that the excluded instruments are valid instruments cannot be

rejected, because the p values are greater than 0.05. Moreover, the R2 of the 2SLS regression

is very close to that of the OLS regression. It indicates that the instrumental variables have

very good explanatory power for the original explanatory variables as well. The estimates of

2SLS regressions reported in table 2.3 are qualitatively identical to the OLS estimates, which

support the conclusion that the Japanese central bank intervention increases the volatility level

of JPY/USD.
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2.4.3 Coordination Channel

Another interesting topic is to see how the intervention changes the behavior of other market

participants. The intervention can work indirectly by inducing changes in the behavior of the

market participants. This indirect channel is referred as the coordination channel. Taylor (2005)

and Hung (1997) provide theoretical models for the coordination channel. In the Taylor (2005),

intervention serves as a coordinating signal that induces fundamentalists to trade jointly, and

this shift in private behavior accounts for intervention’s success. Hung (1997) is in the same

spirit, the difference is that the intervention induces a shift in the behavior of non-fundamental

noise traders.

Empirically, we investigate whether the intervention causes the order flow and the number of

trades to change. For the effect on the market order flow, we have the following model:

mot = β0 +

5∑
i=1

βmoimot−i +

2∑
i=0

βIi Ît−i +

2∑
i=0

βsi∆st−i + εt, (2.16)

where the market order flow mot is the dependent variable, and the explanatory variables are

the sign function of the central bank intervention Ît, difference of the logged price (return) ∆st,

and the lagged terms of these variables. The sign function of the intervention is defined as

Ît = sign(It). If the central bank intervenes by selling JPY for USD at day t, Ît = 1; if it

sells USD for JPY, Ît = −1; if there is no intervention, Ît is zero. In theory, the coordination

channel of the intervention suggests that the market participants would trade in line with the

direction of the central bank intervention. Hence we expect that the coefficient βI to be positive

and significant. In model 2.17, the intervention Ît and price change ∆st could be endogenous

with respect to the dependent variable mot. Similar as before, the long term component of the

intervention time series and other exogenous variables are introduced as the IV.

The results based on 2SLS and OLS are reported on the left and right hand sides of table

2.4, respectively. In this case, OLS and 2SLS produce qualitatively different results, which

substantiates the importance of the instrumental variables. The OLS estimates indicate that

the intervention would increase the contemporaneous market order flow and decrease the market

order of the next day. Aggregately, the intervention slightly increases the market order flow.

However, with the help of the instrumental variables, two-stage least square regressions draw
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a completely different conclusion. The intervention does not have any significant effect on

the market order flow, since the parameters of the intervention and the lagged terms are not

significantly different from zero. Moreover, the overidentification tests reported in table 2.4

guarantee us that the instrumental variables are valid, since the p values are much greater than

0.05. The R2 of 2SLS regressions confirm the explanatory power of the instrumental variables

for the original dependent variables. In conclusion, the empirical results based on 2SLS do not

support the coordination channel. Since the intervention does not induce the market orders to

become more aligned with the direction set by the central bank.

Insert table 2.4 about here

Following the same procedure, we also study the effect of the intervention on the number of

trades. The model specification is as follows:

Nt = β0 +
6∑
i=1

βNiNt−i +
2∑
i=0

βIi |Ît−i|+
1∑
i=0

βmoi |mot−i|+
1∑
i=0

βsi |∆st−i|+ εt, (2.17)

where the regressors are the indicator of the intervention |Ît|, whose value would be 1 if central

bank intervenes, otherwise its value is zero; |mot| and |∆st−i| are the absolute values of the

market order flow and price movement, respectively. The empirical results are reported in

table 2.5. The 2SLS and OLS regressions produce qualitatively similar estimates, although

the statistical significance of the 2SLS estimates is weaker. For the whole sample and the

first subsample of the data, the results imply that Japanese central bank intervention would

increase the number of trade on the contemporaneous day, and decrease the number of trades

the next day. For the second subsample, the 2SLS regression suggests that the intervention

does not change the number of trades at all. Moreover, similarly as before, the validity of the

instrumental variables is assured by the results of the overidentification tests and the R2 of the

2SLS regressions.

Insert table 2.5 about here

To sum up, the Japanese central bank intervention does not cause the order flow imbalance to

change at all. It does not support the coordination channel, which suggests that the market

order flow would be coordinated into the direction set by the central bank. However, for the
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first subsample of the data, the intervention does change the number of trades: the number

of trades would increase significantly at the intervention day, then decrease the day after the

intervention. It means that the market participant would actively trade at the event of the

intervention. So the intervention does cause the trading volume to increase, but the direction

of the order imbalance is not aligned by the central bank intervention.

2.4.4 Damping Channel

Another indirect channel of the intervention is the damping channel, if the intervention is

credible, it would damp the price impact of the private trades (Vitale 1999, Killeen, Lyons,

and Moore 2006). To be more specific, intervention represents a signal about the exchange rate

target of the central bank. The stronger the commitment, the more effective the intervention.

At the extreme case, where the intervention is most effective, the informativeness of order

flow vanishes, and private trades have no price impact. In this case, the elasticity of private

demand becomes infinite and the volatility shrinks to zero. This is the fixed exchange rate

regime. In contrast, when the intervention is perfectly ineffective at influencing the price level

of the exchange rate, the price impact of the order flow is not changed by the intervention at

all. Therefore, coordination channel suggests that the intervention is more effective when it

dampens the price impact of the private order flow.

Insert table 2.6 about here

The model for evaluating the damping channel is as follows:

∆st = β0 + βs,1∆st−1 + βs,2∆st−2 + βIIt + βmomot + β∗mot ∗ Ît + εt, (2.18)

where mot ∗ Ît is the interaction term between the order flow mot and the indicator function

of intervention. The model is the same one evaluating the price impact of the intervention and

order flow, with the extra interaction term. When there is an intervention, the price impact

of the order flow mot would be βmo + β∗; if there is no intervention, the price impact is βmo.

Therefore, if the damping channel is effective, the coefficient of the interaction term should be

negative and significantly different from zero, which means that the private orders’ price impact

would be smaller if there is an intervention. The estimates of model 2.18 are reported in table 2.6.
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It is easy to observe that for the whole sample and the first subsample, the empirical evidence

supports the damping channel: the loading of the interaction term is negative and significant.

It suggests that the price impact of market order flow would decrease in the presence of central

bank intervention. However, the coefficient of the interaction term is not significant from zero

for the second subsample. It is due to the fact that there are fewer interventions in the second

subsample.

2.4.5 Duration of the Price Impact

After confirming the statistical significance of the price impact of the intervention, we would

also like to find out whether the price impact is permanent or transitory. To be more specific,

what is the price impact of the intervention at different horizons? Does it last for a day or a

month? From the point of view of the central bank, the persistence of the price impact matters,

because if the effect of interventions is transient, then it is not worth the effort to intervene in

the first place.

We will measure the duration of the price impact by studying the price impact at different

scales or horizons. In other words, we want to decompose the economic relationship between

the exchange rate movement and the intervention by timescale. To accomplish this goal, we

decompose the original time series into orthogonal components at different horizons or time

scales. Each component captures all the variations at that particular time scale, and ‘orthogonal’

means that the components at different scales are completely uncorrelated from each other. To

estimate the price impact at a particular scale, we regress the component of the price movements

on the corresponding components of the regressors. Furthermore, since the intervention is

exogenous with respect to the price movement, as established before, we simply use OLS to

estimate the parameters scale by scale. Based on the coefficients, one can check if the price

impact of the intervention decays as the time scale grows.

The methodology we adopt is similar as Ramsey and Lampart (1998), which studies the econom-

ic relationship between expenditure and income at different time scales. Ramsey and Lampart

(1998) decompose the time series of the expenditure and income into orthogonal components at

various scales. They document the statistically significant relationship between the long term
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expenditure and long term income, but not between the short term ones. It means that in

the long term, higher income would increase the expenditure, but there is no clear relationship

between them in the short term. It sounds reasonable and is consistent with the economic

theory.

In this paper, wavelets analysis is used to obtain the orthogonal decomposition of the relevant

economic variables at five different time scales. Due to limited space, we will not discuss

wavelet analysis here. We refer the interested readers to Ramsey and Lampart (1998), and

Ramsey (2002) for more details. Briefly speaking, the time series of the return (∆st), market

order flow (mot) and intervention (It) are decomposed into orthogonal components by scale:

Xt =

5∑
j=1

Xt[dj ] +Xt[a5] = Xt[d1] +Xt[d2] +Xt[d3] +Xt[d4] +Xt[d5] +Xt[a5], (2.19)

where X represents one of the variables, such as ∆st, mot, and It, and Xt[dj ] is the component

of Xt at the jth scale. Intuitively speaking, the component Xt[di] captures the variations at

2j−1 days horizon, and none of the other scales. To be more specific, Xt[d1] is the highest

frequency variations at the 1 day horizon; Xt[d2] captures the variations between 1 day and 2

day horizon; Xt[d3] captures the variations between 2 day and 4 day horizon, and so on ... At

last, the component Xt[a5] contains all the variations with the horizon greater than (including)

25 days. Essentially, {Xt[di], i = 1, 2, ..., 5} capture the variations or ‘details’ at various scales,

while Xt[a5] contains the long term variations that are not captured by {Xt[di], i = 1, 2, ..., 5},

so Xt[a5] is the long term ‘average’ or ‘approximation’ of the original time series Xt. Moreover,

the components at different scales are completely uncorrelated from each other by design: the

wavelet bases at different scale are orthogonal to each other. This is why we can decompose the

relationship between the exchange rate movement and the intervention by time scale, without

worrying about the relationship at different scales being coupled together.

Insert table 2.7 about here

At scale j, we regress the component ∆st[dj ] on the corresponding components of mot and It:

∆st[dj ] = β0[dj ] + βs[dj ]∆st−1[dj ] + βI[dj ]It[dj ] + βmo[dj ]mot[dj ] + εt, j = 1, 2, ..., 5, (2.20)
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where ∆st[dj ], It[dj ], and mot[dj ] are the components of ∆st, mot, and It at scale j, respectively.

The coefficient βs[dj ] measures the price impact at scale j. If the central bank interventions have

long lasting effect on the price level, we expect that the coefficients on the intervention will be

significant at small as well as large scales. The model 2.20 is estimated using OLS method,

and the regression results at scales 1 to 5 are reported in table 2.7. The estimates of βI[dj ]

suggest that the price impact of intervention gradually decays to zero as the scale becomes

greater: the price impact starts to decay at scale 4; and at scale j = 5, or the horizon of 16

(24) trading days, the impact of intervention would dissipate completely. Notice that the price

impact of the market order flow has much more persistent price impact. It gradually decays,

but is still strongly significant from zero after 25 trading days. Therefore, we conclude that

Japanese central bank interventions have a relatively long-lasting price impact.

2.4.6 Volatility Regimes and Price Impact

Last but not least, we want to investigate whether the price impact of the intervention depends

on the market condition. The previous researchers find that the effect of the intervention is

higher if trading volumes are higher, or if the intervention occurs shortly after important macro

announcements (e.g., Dominguez 2003). The conjecture we are going to test is that the price

impact of the intervention should be greater in the high volatility regime. It is because that the

Evans-Lyons model (Killeen, Lyons, and Moore 2006) suggests that price impact of order flow

would increase with the volatility level. Due to the fact that the elasticity of public’s speculative

demand is finite and inversely related to the volatility of the exchange rate, if the volatility is

high, the elasticity of public’s speculative demand would be low, which means the public would

trade less aggressively. Moreover, since the dealers don’t want to hold overnight positions, at

the end of the trading day, if the market is volatile, they have to make more adjustment to the

quote, in order to induce the speculators to re-absorb all the positions. Therefore, the order

flow will have a greater impact on the exchange rate in the high volatility regime.

To measure the asymmetry of the price impact in high and low volatility regimes, we use the

Markov switching model. It is a very parsimonious extension of the single regime model. There

is a strand of research uses Markov switching model to study the secular changes in the economic

system. Hamilton’s (1989) seminal work applies the regime switching model to study business
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cycle, recessions and expansions. The regimes in his paper are closely tied to the recession

indicators as identified ex post by the NBER business cycle dating committee. Sim and Zha

(2006) use a multivariate regime-switching model to investigate U.S. monetary policy between

the 1970s and the 1980s, during which the monetary policy changed a great deal. They find

three estimated regimes corresponding to periods when most observers believe that monetary

policy actually differed. Perez-Quiros and Timmermann (2000) adopt the regime switching

framework to model the variation of small and large firms’ risk over the economic cycle: small

firms with little collateral is more strongly affected by tighter credit market conditions in a

recession state than large ones. For further applications of Markov switching model in finance,

see Henkel, Martin and Nardari (2011), Engel and Hamilton (1990), and Ichiue and Koyama

(2011).

As the returns of other financial assets, time series of the changes in exchange rates display two

features: recurring alternation of stable and volatile regimes and volatility clustering, which can

be observed in the upper part in figure (2.4). The Markov switching model can accommodate

these two features, while has the flexibility of allowing the linear relationship between economic

variables to be different in different regimes of the world. Our Markov-switching model is a

two-regime extension of the linear model (2.14):

∆St = β0,s + βS,s∆St−1 + βmo,smot + βI,sIt + εt,s , εt,s ∼ N(0, σ2
s) for s=1 or 2. (2.21)

where the subscript s in equation (2.21) denotes the particular state the system is in. To be

more specific, the model is as follows

∆St = β0,1 + βS,1∆St−1 + βmo,1mot + βI,1It + εt,1, εt,1 ∼ N(0, σ2
1) for state 1, (2.22)

∆St = β0,2 + βS,2∆St−1 + βmo,2mot + βI,2It + εt,2, εt,2 ∼ N(0, σ2
2) for state 2. (2.23)

At time t, the system is either in state 1 or state 2. Each pair of the corresponding parameters

in different states can be different, for example, the price impact of the market order flow could

be different: βmo,1 6= βmo,2. The transition of states, or regimes, is stochastic: from time t to

t+ 1, the system has some probability to stay in the original state, or it can jump to the other
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state with a certain probability. The evolution of the regime or state is governed by a first-order

Markov chain, and the transition probability from state i to state j is

Pr(st+1 = j|st = i) = pij , (2.24)

where we assume pij is a constant, which needs to be estimated empirically. There are four

transition probabilities, pij , i = 1, 2, but only two of them are independent, because of the

following relationships:

Pr(st = 1|st−1 = 1) = p11 = 1− Pr(st = 2|st−1 = 1) = 1− p12 , (2.25)

and

Pr(st = 1|st−1 = 2) = p21 = 1− Pr(st = 2|st−1 = 2) = 1− p22 . (2.26)

Another thing worth mentioning is that in the specification of our model, equation (2.21), we

don’t impose any assumption related to the high/low volatility regimes ex ante. We simply allow

the possibility of the existence of two states at each point of time, and each pair of parameters

across two states could be different. The identification of the state probability at each point of

time and the values of the parameters are estimated ex post by the econometric method, based

on the data.

Insert table 2.8 here

We estimate the probabilities of the system in state 1 and 2 at every point of time t, as well

as the coefficients in equation (2.21). Figure (2.4) shows the daily price changes in JPY/USD,

conditional standard deviation of equation (2.21), and the smoothed state probability of state

2 based on the second subsample of the data. It is easy to observe that the smoothed state

probability of state 2 exactly coincides with the turbulent periods of the exchange rate: at each

point of time, if the volatility level is high, the state probability of state 2 would be one or close

to one, and vice versa. Hence, state 1 and 2 correspond to the low and high volatility regimes,

respectively. Note that in the original assumption of the model 2.21, we do not specify the

correspondence between state 2 and the high volatility regime: states 1 and 2 are completely

symmetry ex ante. Based on the data, the smoothed state probability of state 2 at each point
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of time is inferred. By comparing the time series of the volatility and smoothed probability of

state 2, we can identify that the state 2 actually corresponds to the high volatility regime.

The estimates of the Markov switching model based on the whole sample, first and second

subsamples are reported in table 2.8. It is easy to observe the asymmetry of the coefficients

across two states: βmo,1 < βmo,2, and βI,1 < βI,2, which indicate that both market order flow

and central bank intervention have greater price impact in the high volatility regime, compared

with those in the low volatility regime. For instance, the estimated coefficients of intervention

in state 1 and 2 are 3.34 and 12.81, respectively; and the loadings of the market order flow in

state 1 and 2 are 370.9 and 604.1, respectively. The results are consistent with the theoretical

argument discussed before.

With regards to the other properties of the Markov switching model, one can observe that p11

and p22 are much greater than p12 and p21, respectively. It implies that the system is much more

likely to stay in the same regime than transfer to the other regime: periods of high volatility are

followed by periods of high volatility, and periods of low volatility are followed by periods low

volatility. This is the feature of volatility clustering. The low volatility regime is much more

persistent, as p11 is very close to one. We can also observe that the low volatility regime lasts

longer, compared with the high volatility one: the expected state durations of the low volatility

regime (state 1) are much greater than those of the high volatility regime (state 2).

Furthermore, we should point out that it is a universal fact that the price impact of the order

flow is greater in the high volatility regime. It is not just specific to JPY/USD or happens

by accident. Based on the order flow data of thirteen exchange rates actively traded on the

Reuters dealing system, we study the price impact of market order flow using Markov switching

model. The sample period is 2003 to 2013. Table (2.9) summarizes the estimates of the Markow

switching model with market order flow mot as explanatory variable. State 2 corresponds the

high volatility regime. The results verify that, for all the thirteen different exchange rates, the

market order flow has much greater impact on the exchange rates when the volatility is high.

The fact that the price impact is volatility dependent has policy implications as well. First

of all, with the intention to move the price level of the exchange rate, central bank should

intervene when it is volatile, because the intervention would have much greater price impact;

40



on the other hand, if the central bank intends to adjust its portfolio holdings (foreign reserve)

without disturbing the exchange rate, the trades should be carried out when the volatility is

low. If central bank executes transactions representing its government, it would be better off to

trade when the volatility level is low, because the greater price impact during volatile periods

would incur greater transaction cost.

2.5 Conclusions

This paper conducts a thorough empirical investigation on the effects of the central bank inter-

vention. To evaluate the effects of the intervention accurately, we propose a novel instrumental

variable to resolve the endogeneity issue. Since the central bank intervention is highly likely to

be endogenous variable with respect to various dependent variables, the instrumental variable

method in this paper would be indispensable for the central bank to obtain accurate feedbacks

on its interventions. Empirically, we find that the Japanese central bank intervention success-

fully moves the price level of the exchange rate, and it also increases the volatility level. With

respect to the effects on the market participants behavior, on one hand, the market order is

not changed by the intervention, which does not support the coordination channel; on the other

hand, the intervention increases the total number of trades on the intervention day but decreases

it in the following day. With respect to the damping channel, we do find the evidence that the

private trades’ price impact is damped by the central bank intervention. Moreover, the price

impact of the intervention lasts for 16 trading days, while the price impact of the market order

flow is much more persistent. We also document that the price impact of the intervention de-

pends on the volatility of the exchange rate: the price impact would be high when the volatility

is high, and vice versa. Last but not least, we discuss the policy implications of our empirical

results.
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Figure 2.1: Morlet wavelet

This figure shows the basis function of Morlet wavelet.

Figure 2.2: Haar wavelet

This figure shows the basis function of Haar wavelet.
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Figure 2.3: Japanese central bank intervention and its wavelet decomposition

This figure shows the time series of Japanese central bank intervention and its wavelet decomposition using Haar
wavelet. The sample period is 1996 to 2013. The first panel shows the original central bank intervention. The
second and third panels shows the long-term component ‘a1’ (It[a1]) and the short term component ‘d1’ (It[d1]).
The unit is 100 million JPY.
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Figure 2.4: Correspondence between the states of the Markov switching model and the volatility
regimes
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This figure shows the correspondence between the states of the Markov switching model and the high/low
volatility regimes of JPY/USD. The two-state Markov switching model is as follows: ∆St = β0,s + βS,s∆St−1 +
βmo,smot + βI,sIt + εt,s , εt,s ∼ N(0, σ2

s), for s=1 or 2, where subscript s labels the state of the system, mot is
the market order flow, It is the intervention, ∆St is the daily changes in JPY/USD (difference of logged price).
The upper diagram shows the daily changes in JPY/USD, the middle diagram reports the conditional standard
deviation of the equation, and the lower diagram is the smoothed state probability of state 2. The results are
based on the second part of the data (Nov. 2003 to Feb. 2013)
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Table 2.1: Effect on the price level, without the lagged variables

2SLS, the whole sample OLS, the whole sample

Variable Parameter S.E. t Value Variable Parameter S.E. t Value
Intercept -3.5920 1.0794 -3.33 Intercept -3.7488 1.0773 -3.48
∆St−1 -0.1139 0.0138 -8.26 ∆St−1 -0.1130 0.0138 -8.21
It 3.3101 1.2325 2.69 It 4.8442 0.9346 5.18
mot 393.0025 15.3793 25.55 mot 390.8935 15.3399 25.48

R-Square 0.1372 R-Square 0.1403
Adj R-Sq 0.1366 Adj R-Sq 0.1398

Test for Overidentifying Restrictions p value = 0.2266

2SLS, first part of the sample OLS, first part of the sample, OLS

Variable Parameter S.E. t Value Variable Parameter S.E. t Value
Intercept -8.0189 1.6328 -4.91 Intercept -8.1542 1.6308 -5
∆St−1 -0.1250 0.0191 -6.56 ∆St−1 -0.1241 0.0190 -6.52
It 3.3370 2.2048 1.51 It 4.6234 1.6091 2.87
mot 393.7743 17.7514 22.18 mot 392.2864 17.6883 22.18

R-Square 0.1937 R-Square 0.1953
Adj R-Sq 0.1926 Adj R-Sq 0.1943

Test for Overidentifying Restrictions p value = 0.6016

2SLS, Second part of the sample OLS, second part of the sample

Variable Parameter S.E. t Value Variable Parameter S.E. t Value
Intercept 0.8369 1.4398 0.58 Intercept 0.6509 1.4342 0.45
∆St−1 -0.1017 0.0200 -5.08 ∆St−1 -0.1011 0.0200 -5.05
It 2.9016 1.4554 1.99 It 4.6720 1.1251 4.15
mot 463.7536 37.5765 12.34 mot 458.5447 37.4481 12.24

R-Square 0.0728 R-Square 0.0777
Adj R-Sq 0.0716 Adj R-Sq 0.0766

Test for Overidentifying Restrictions p value = 0.1949

The table reports the results of the model ∆st = β0+βs∆st−1+βIIt+βmomot+εt, where ∆st
is the return (difference of the logged price), It is the central bank intervention, and mot is the
market order flow. The coefficients of It and mot measure the price impact of the intervention
and market order flow, respectively. The 2SLS and OLS estimates are shown on the left and
right hand side of the table. The results are based on the whole sample, the first part (Jan.
1996 to Dec. 2002), and the second part of the data (Nov. 2003 to Feb. 2013), respectively.
The p values of the overidentification tests indicate the exogeneity of the instrumental variables
cannot be rejected.
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Table 2.2: Effect on the price level, with the lagged variables

2SLS, the whole sample OLS, the whole sample

Variable Parameter S.E. t Value Variable Parameter S.E. t Value
Intercept -3.1177 1.0914 -2.86 Intercept -3.1913 1.0903 -2.93
∆St−1 -0.1061 0.0147 -7.2 ∆St−1 -0.1055 0.0147 -7.17
It 3.9267 1.2477 3.15 It 5.2543 0.9515 5.52
It−1 0.1552 0.9647 0.16 It−1 -0.0108 0.9593 -0.01
It−2 -2.1685 0.9571 -2.27 It−2 -2.2996 0.9536 -2.41
It−3 -1.4429 0.9509 -1.52 It−3 -1.5298 0.9493 -1.61
mot 398.2107 15.6464 25.45 mot 396.7122 15.6166 25.4
mot−1 -27.5054 16.6077 -1.66 mot−1 -26.9673 16.6010 -1.62

R-Square 0.1394 R-Square 0.1428
Adj R-Sq 0.1381 Adj R-Sq 0.1415

Test for Overidentifying Restrictions p value = 0.2837

2SLS, first part of the sample OLS, first part of the sample

Variable Parameter S.E. t Value Variable Parameter S.E. t Value
Intercept -7.7522 1.6822 -4.61 Intercept -7.8543 1.6807 -4.67
∆St−1 -0.1257 0.0210 -5.99 ∆St−1 -0.1248 0.0210 -5.95
It 2.4608 1.9840 1.24 It 4.7483 1.6181 2.93
It−1 1.7945 1.6247 1.1 It−1 1.6466 1.6223 1.01
It−2 -2.3623 1.6173 -1.46 It−2 -2.5371 1.6142 -1.57
It−3 -2.0716 1.6133 -1.28 It−3 -2.1025 1.6125 -1.30
mot 396.2563 17.9413 22.09 mot 394.2039 17.9038 22.02
mot−1 -4.0073 19.6591 -0.20 mot−1 -3.0782 19.6448 -0.16

R-Square 0.1951 R-Square 0.1973
Adj R-Sq 0.1926 Adj R-Sq 0.1948

Test for Overidentifying Restrictions p value = 0.6293

2SLS, Second part of the sample OLS, second part of the sample

Variable Parameter S.E. t Value Variable Parameter S.E. t Value
Intercept 1.0428 1.4458 0.72 Intercept 0.9407 1.4434 0.65
∆St−1 -0.0918 0.0207 -4.44 ∆St−1 -0.0910 0.0207 -4.4
It 4.0910 1.5260 2.68 It 5.4277 1.1573 4.69
It−1 -0.9492 1.1816 -0.80 It−1 -1.1571 1.1711 -0.99
It−2 -2.0300 1.1670 -1.74 It−2 -2.1677 1.1621 -1.87
It−3 -1.1427 1.1574 -0.99 It−3 -1.2659 1.1534 -1.10
mot 478.5274 38.4071 12.46 mot 474.8952 38.3009 12.4
mot−1 -71.9244 39.3667 -1.83 mot−1 -71.9911 39.3553 -1.83

R-Square 0.0769 R-Square 0.0823
Adj R-Sq 0.0741 Adj R-Sq 0.0795

Test for Overidentifying Restrictions p value = 0.2255

The table reports the results of the model ∆st = β0+βs∆st−1+βIIt+βmomot+lagged terms+
εt, where ∆st is the return, It is the central bank intervention, and mot is the market order
flow. The coefficients of It and mot measure the price impact of the intervention and market
order flow, respectively. The 2SLS and OLS estimates are shown on the left and right hand
side of the table. The results are based on the whole sample, the first part (Jan. 1996 to Dec.
2002), and the second part of the data (Nov. 2003 to Feb. 2013), respectively. The p values of
the overidentification tests indicate the exogeneity of the instrumental variables.
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Table 2.3: Effect on the volatility

2SLS, the whole sample OLS, the whole sample

Variable Parameter S.E. t Value Variable Parameter S.E. t Value
Intercept -0.1526 0.0758 -2.01 Intercept -0.1719 0.0716 -2.4
∆σt−1 0.1143 0.0148 7.74 ∆σt−1 0.1140 0.0148 7.73
∆σt−2 -0.0131 0.0146 -0.89 ∆σt−2 -0.0130 0.0146 -0.89
|It| -0.0484 0.0560 -0.86 |It| 0.0191 0.0427 0.45
|It−1| 0.2773 0.0432 6.41 |It−1| 0.2683 0.0430 6.24
|It−2| -0.0869 0.0433 -2.01 |It−2| -0.0934 0.0431 -2.16
|It−3| -0.0326 0.0430 -0.76 |It−3| -0.0365 0.0429 -0.85
|mot| -3.1807 1.7268 -1.84 |mot| -1.7182 1.0980 -1.56
|mot−1| 4.7882 1.1134 4.3 |mot−1| 4.5863 1.1010 4.17
Nt -0.2298 0.1230 -1.87 Nt -0.3363 0.0956 -3.52
Nt−1 0.7941 0.1235 6.43 Nt−1 0.8401 0.1154 7.28
Nt−2 -0.4703 0.0825 -5.7 Nt−2 -0.4679 0.0824 -5.68

R-Square 0.0484 Adj R-Sq 0.0461 R-Square 0.0502 Adj R-Sq 0.0479

Test for Overidentifying Restrictions p value = 0.1631

2SLS, first part of the sample OLS, first part of the sample

Variable Parameter S.E. t Value Variable Parameter S.E. t Value
Intercept -0.4854 0.1844 -2.63 Intercept -0.4340 0.1733 -2.5
∆σt−1 0.0438 0.0212 2.07 ∆σt−1 0.0434 0.0212 2.05
∆σt−2 -0.0015 0.0209 -0.07 ∆σt−2 -0.0011 0.0209 -0.05
|It| 0.1062 0.0994 1.07 |It| 0.1440 0.0811 1.77
|It−1| 0.1492 0.0817 1.83 |It−1| 0.1423 0.0815 1.75
|It−2| -0.0571 0.0816 -0.7 |It−2| -0.0602 0.0814 -0.74
|It−3| -0.0424 0.0812 -0.52 |It−3| -0.0433 0.0811 -0.53
|mot| -3.4131 2.2964 -1.49 |mot| -2.1320 1.4178 -1.5
|mot−1| 3.6490 1.4301 2.55 |mot−1| 3.4620 1.4215 2.44
Nt -0.1281 0.1626 -0.79 Nt -0.2770 0.1217 -2.28
Nt−1 0.7920 0.1469 5.39 Nt−1 0.8595 0.1379 6.23
Nt−2 -0.3103 0.1059 -2.93 Nt−2 -0.3250 0.1049 -3.1

R-Square 0.0399 Adj R-Sq 0.0351 R-Square 0.0438 Adj R-Sq 0.0391

Test for Overidentifying Restrictions p value = 0.1446

2SLS, Second part of the sample OLS, second part of the sample

Variable Parameter S.E. t Value Variable Parameter S.E. t Value
Intercept -0.3583 0.1109 -3.23 Intercept -0.4089 0.1092 -3.74
∆σt−1 0.2588 0.0206 12.57 ∆σt−1 0.2596 0.0206 12.63
∆σt−2 -0.0721 0.0203 -3.54 ∆σt−2 -0.0706 0.0203 -3.48
|It| -0.0857 0.0566 -1.51 |It| -0.0555 0.0430 -1.29
|It−1| 0.3581 0.0438 8.19 |It−1| 0.3546 0.0433 8.18
|It−2| -0.1572 0.0442 -3.56 |It−2| -0.1579 0.0440 -3.59
|It−3| 0.0133 0.0438 0.3 |It−3| 0.0098 0.0436 0.22
|mot| -5.8072 3.2106 -1.81 |mot| -4.2816 2.1814 -1.96
|mot−1| 4.5211 2.2207 2.04 |mot−1| 4.1623 2.1809 1.91
Nt -0.2561 0.9979 -0.26 Nt 0.7131 0.7975 0.89
Nt−1 7.0790 0.8749 8.09 Nt−1 6.5847 0.8439 7.8
Nt−2 -4.4021 0.7500 -5.87 Nt−2 -4.7518 0.7373 -6.44

R-Square 0.12835 Adj R-Sq 0.12419 R-Square 0.1279 Adj R-Sq 0.1237

Test for Overidentifying Restrictions p value = 0.6024

The table reports the results of the model ∆σt = β0 + βσ∆σt−1 + βI |It| + βmo|mot| + βNNt +
lagged terms + εt, where ∆σt is the difference of the volatility; |It| and |mot| are the absolute
value of the intervention and market order flow, respectively; Nt is the number of trades. The
2SLS and OLS estimates are shown on the left and right hand side of the table. The results are
based on the whole sample, the first part (Jan. 1996 to Dec. 2002), and the second part of the
data (Nov. 2003 to Feb. 2013), respectively.
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Table 2.4: Effect on the market order flow

2SLS, the whole sample OLS, the whole sample

Variable Parameter S.E. t Value Variable Parameter S.E. t Value
Intercept 0.0060 0.0010 6.04 Intercept 0.0059 0.0010 6.07
mot−1 0.1502 0.0149 10.07 mot−1 0.1508 0.0149 10.16
mot−2 0.0829 0.0150 5.53 mot−2 0.0831 0.0150 5.55
mot−3 0.0530 0.0141 3.77 mot−3 0.0529 0.0140 3.76
mot−4 0.0621 0.0140 4.44 mot−4 0.0624 0.0140 4.46
mot−5 0.0134 0.0139 0.96 mot−5 0.0137 0.0138 0.99
Ît 0.0147 0.0283 0.52 Ît 0.0260 0.0082 3.16
Ît−1 -0.0124 0.0142 -0.87 Ît−1 -0.0171 0.0086 -1.99
Ît−2 0.0117 0.0115 1.02 Ît−2 0.0084 0.0082 1.02
∆St 0.0003 0.0000 24.79 ∆St 0.0003 0.0000 25.48

∆St−1 0.0000 0.0000 2.79 ∆St−1 0.0000 0.0000 2.88
∆St−2 0.0000 0.0000 -0.56 ∆St−2 0.0000 0.0000 -0.53

R-Square 0.1793 Adj R-Sq 0.1773 R-Square 0.1808 Adj R-Sq 0.1788

Test for Overidentifying Restrictions p value = 0.8194

2SLS, first part of the sample OLS, first part of the sample

Variable Parameter S.E. t Value Variable Parameter S.E. t Value
Intercept 0.0162 0.0019 8.41 Intercept 0.0161 0.0019 8.45
mot−1 0.1174 0.0213 5.51 mot−1 0.1181 0.0213 5.56
mot−2 0.0506 0.0214 2.37 mot−2 0.0509 0.0214 2.38
mot−3 0.0365 0.0194 1.88 mot−3 0.0363 0.0194 1.87
mot−4 0.0420 0.0194 2.17 mot−4 0.0426 0.0194 2.2
mot−5 -0.0014 0.0193 -0.07 mot−5 -0.0007 0.0192 -0.04
Ît 0.0169 0.0336 0.5 Ît 0.0326 0.0134 2.44
Ît−1 -0.0049 0.0149 -0.33 Ît−1 -0.0082 0.0134 -0.61
Ît−2 0.0240 0.0149 1.62 Ît−2 0.0207 0.0134 1.55
∆St 0.0005 0.0000 21.36 ∆St 0.0004 0.0000 21.83

∆St−1 0.0001 0.0000 2.61 ∆St−1 0.0001 0.0000 2.66
∆St−2 0.0000 0.0000 0.41 ∆St−2 0.0000 0.0000 0.43

R-Square 0.2116 Adj R-Sq 0.2077 R-Square 0.2133 Adj R-Sq 0.2094

Test for Overidentifying Restrictions p value = 0.6990

2SLS, second part of the sample OLS, second part of the sample

Variable Parameter S.E. t Value Variable Parameter S.E. t Value
Intercept -0.0015 0.0008 -1.93 Intercept -0.0014 0.0008 -1.88
mot−1 0.1694 0.0209 8.12 mot−1 0.1700 0.0208 8.16
mot−2 0.1106 0.0211 5.25 mot−2 0.1103 0.0210 5.24
mot−3 0.0672 0.0205 3.27 mot−3 0.0669 0.0205 3.26
mot−4 0.0638 0.0204 3.12 mot−4 0.0633 0.0204 3.1
mot−5 0.0046 0.0202 0.23 mot−5 0.0052 0.0201 0.26
Ît 0.0276 0.0321 0.86 Ît 0.0124 0.0086 1.45
Ît−1 -0.0163 0.0220 -0.74 Ît−1 -0.0067 0.0100 -0.67
Ît−2 -0.0010 0.0113 -0.09 Ît−2 0.0025 0.0086 0.29
∆St 0.0001 0.0000 12.55 ∆St 0.0001 0.0000 12.83

∆St−1 0.0000 0.0000 2.69 ∆St−1 0.0000 0.0000 2.64
∆St−2 0.0000 0.0000 -0.56 ∆St−2 0.0000 0.0000 -0.6

R-Square 0.1421 Adj R-Sq 0.1380 R-Square 0.1427 Adj R-Sq 0.1386

Test for Overidentifying Restrictions p value = 0.4611

The table reports the results of the model mot = β0 +
∑5
i=1 βmoimot−i +

∑2
i=0 βIi Ît−i +∑2

i=0 βsi∆st−i + εt, where mot is the market order flow, Ît−i = sign(It−i), the sign function
of the intervention, and ∆st is the return. The 2SLS and OLS estimates are shown on the left and
right hand side of the table. The results are based on the whole sample, the first part (Jan. 1996
to Dec. 2002), and the second part of the data (Nov. 2003 to Feb. 2013), respectively.
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Table 2.5: Effect on the number of trades

2SLS, the whole sample OLS, the whole sample

Variable Parameter S.E. t Value Variable Parameter S.E. t Value
Intercept -0.0394 0.0324 -1.21 Intercept -0.0902 0.0127 -7.12
Nt−1 0.5685 0.0355 16.03 Nt−1 0.5121 0.0138 37.11
Nt−2 -0.1520 0.0199 -7.66 Nt−2 -0.1283 0.0137 -9.34
Nt−3 0.0838 0.0167 5.01 Nt−3 0.0699 0.0138 5.08
Nt−4 0.0160 0.0146 1.1 Nt−4 0.0162 0.0138 1.18
Nt−5 -0.0134 0.0151 -0.88 Nt−5 -0.0056 0.0136 -0.41
Nt−6 0.3688 0.0248 14.84 Nt−6 0.3309 0.0117 28.39
|Ît| 0.2391 0.2143 1.12 |Ît| 0.2174 0.0557 3.9
|Ît−1| -0.2664 0.1083 -2.46 |Ît−1| -0.2354 0.0582 -4.05
|Ît−2| 0.1181 0.0836 1.41 |Ît−2| 0.1008 0.0559 1.8
|mot| 1.7591 1.7497 1.01 |mot| 4.7887 0.1292 37.07
|mot−1| -0.3789 0.2434 -1.56 |mot−1| -0.6991 0.1466 -4.77
|∆St| 0.0018 0.0004 4.71 |∆St| 0.0013 0.0001 11.04
|∆St−1| -0.0006 0.0002 -2.9 |∆St−1| -0.0003 0.0001 -2.73
R-Square 0.7037 Adj R-Sq 0.7028 R-Square 0.7515 Adj R-Sq 0.7508

Test for Overidentifying Restrictions p value = 0.6840

2SLS, first part of the sample OLS, first part of the sample

Variable Parameter S.E. t Value Variable Parameter S.E. t Value
Intercept 0.0989 0.0951 1.04 Intercept 0.0450 0.0369 1.22
Nt−1 0.4929 0.0563 8.75 Nt−1 0.4637 0.0201 23.08
Nt−2 -0.1539 0.0339 -4.53 Nt−2 -0.1386 0.0192 -7.24
Nt−3 0.0562 0.0220 2.55 Nt−3 0.0509 0.0191 2.66
Nt−4 -0.0085 0.0203 -0.42 Nt−4 -0.0055 0.0191 -0.29
Nt−5 -0.0198 0.0213 -0.93 Nt−5 -0.0141 0.0189 -0.74
Nt−6 0.3143 0.0320 9.83 Nt−6 0.2991 0.0166 18.05
|Ît| 0.3957 0.3749 1.06 |Ît| 0.3354 0.0981 3.42
|Ît−1| -0.2642 0.1266 -2.09 |Ît−1| -0.2407 0.0979 -2.46
|Ît−2| 0.1406 0.1240 1.13 |Ît−2| 0.1317 0.0980 1.34
|mot| 3.6901 2.8680 1.29 |mot| 5.2363 0.1949 26.87
|mot−1| -0.3725 0.3102 -1.2 |mot−1| -0.4745 0.2234 -2.12
|∆St| 0.0024 0.0008 2.83 |∆St| 0.0021 0.0002 9.63
|∆St−1| -0.0007 0.0005 -1.48 |∆St−1| -0.0005 0.0002 -2.23
R-Square 0.5001 Adj R-Sq 0.4971 R-Square 0.5908 Adj R-Sq 0.5884

Test for Overidentifying Restrictions p value = 0.9957

2SLS, second part of the sample OLS, second part of the sample

Variable Parameter S.E. t Value Variable Parameter S.E. t Value
Intercept 0.0075 0.0038 1.96 Intercept 0.0082 0.0032 2.54
Nt−1 0.3514 0.0241 14.56 Nt−1 0.3531 0.0208 16.97
Nt−2 0.1125 0.0244 4.6 Nt−2 0.1153 0.0199 5.8
Nt−3 0.0870 0.0200 4.34 Nt−3 0.0880 0.0199 4.42
Nt−4 0.0757 0.0213 3.56 Nt−4 0.0776 0.0199 3.89
Nt−5 0.0239 0.0210 1.14 Nt−5 0.0257 0.0198 1.3
Nt−6 0.0509 0.0205 2.49 Nt−6 0.0529 0.0186 2.85
|Ît| -0.0097 0.0600 -0.16 |Ît| 0.0226 0.0153 1.48
|Ît−1| 0.0078 0.0403 0.19 |Ît−1| -0.0124 0.0178 -0.7
|Ît−2| -0.0019 0.0208 -0.09 |Ît−2| -0.0097 0.0153 -0.63
|mot| 1.0769 0.4329 2.49 |mot| 0.9907 0.0500 19.82
|mot−1| -0.1349 0.0946 -1.43 |mot−1| -0.1205 0.0539 -2.23
|∆St| 0.0003 0.0001 6.18 |∆St| 0.0003 0.0000 11.91
|∆St−1| -0.0001 0.0000 -1.62 |∆St−1| -0.0001 0.0000 -1.8
R-Square 0.55459 Adj R-Sq 0.55207 R-Square 0.5973 Adj R-Sq 0.595

Test for Overidentifying Restrictions p value = 0.6101

The model is Nt = β0 +
∑6
i=1 βNiNt−i+

∑2
i=0 βIi |Ît−i|+

∑1
i=0 βmoi |mot−i|+

∑1
i=0 βsi |∆st−i|+ εt,

where Nt is the number of trades, |Ît−i| is the indicator function of the intervention, and |mot| is
the absolute value of the market order flow. The 2SLS and OLS estimates are shown on the left
and right hand side of the table. The results are based on the whole sample, the first part (Jan.
1996 to Dec. 2002), and the second part of the data (Nov. 2003 to Feb. 2013), respectively.
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Table 2.6: Damping Channel

OLS, the whole sample OLS, first part of sample OLS, second part of sample

Variable Parameter S.E. t Value Parameter S.E. t Value Parameter S.E. t Value
Intercept -3.67 1.08 -3.4 -7.98 1.63 -4.9 0.64 1.44 0.45
∆St−1 -0.11 0.01 -8.29 -0.13 0.02 -6.69 -0.10 0.02 -5
∆St−2 -0.01 0.01 -0.87 -0.03 0.02 -1.53 0.01 0.02 0.44
It 5.41 0.99 5.49 5.57 1.68 3.31 4.19 1.43 2.92
mot 394.18 15.45 25.52 396.32 17.79 22.28 455.82 37.70 12.09

mot ∗ Ît -167.46 92.20 -1.82 -185.03 99.77 -1.85 196.44 358.84 0.55
R-Square 0.1408 0.1969 0.078
Adj R-Sq 0.1399 0.1951 0.076

The model is ∆st = β0 +βs,1∆st−1 +βs,2∆st−2 +βIIt+βmomot+β∗mot ∗ Ît+εt, where ∆st is the change
in exchange rate, It is the intervention, and mot is the market order flow, and mot ∗ Ît is the interaction
term between the market order flow and indicator function of the intervention. The value of Ît is 1 if the
central bank intervenes, otherwise it is zero. The OLS estimates are based on the whole sample, the first
part (Jan. 1996 to Dec. 2002), and the second part of the data (Nov. 2003 to Feb. 2013), respectively.
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Table 2.7: Price impact at different time scales

Original data scale 3

Variable Parameter S.E. t Value Variable Parameter S.E. t Value
Intercept -3.7488 1.0773 -3.48 Intercept 0.0042 0.2961 0.01
∆St−1 -0.1130 0.0138 -8.21 ∆st−1[d3] 0.5695 0.0115 49.49
It 4.8442 0.9346 5.18 It[d3] 5.6790 0.7596 7.48
mot 390.8935 15.3399 25.48 mot[d3] 203.9709 11.8670 17.19

R-Square 0.1403 R-Square 0.4285
Adj R-Sq 0.1398 Adj R-Sq 0.4281

scale 1 scale 4

Variable Parameter S.E. t Value Variable Parameter S.E. t Value
Intercept -0.0213 0.6839 -0.03 Intercept 0.0011 0.1470 0.01
∆st−1[d1] -0.4778 0.0121 -39.5 ∆st−1[d4] 0.7627 0.0088 86.4
It[d1] 5.2145 0.9243 5.64 It[d4] 0.6100 0.4157 1.47
mot[d1] 337.0337 15.3557 21.95 mot[d4] 149.7648 8.6533 17.31

R-Square 0.3537 R-Square 0.6845
Adj R-Sq 0.3533 Adj R-Sq 0.6843

scale 2 scale 5

Variable Parameter S.E. t Value Variable Parameter S.E. t Value
Intercept -0.0054 0.4955 -0.01 Intercept -0.0024 0.0833 -0.03
∆st−1[d2] 0.2042 0.0136 15.04 ∆st−1[d5] 0.8635 0.0067 128.24
It[d2] 4.7500 0.9058 5.24 It[d5] -0.3644 0.3512 -1.04
mot[d2] 367.8855 15.4285 23.84 mot[d5] 83.7317 5.5334 15.13

R-Square 0.1675 R-Square 0.8328
Adj R-Sq 0.1670 Adj R-Sq 0.8327

The table reports the results of the model ∆st[dj ] = β0[dj ] + βs[dj ]∆st−1[dj ] + βI[dj ]It[dj ] +
βmo[dj ]mot[dj ] + εt, j = 1, 2, ..., 5, where [dj ] labels the component of the variable at the scale
j. For instance, the daily return ∆st is decomposed into independent components at different
scales, and ∆st[dj ] denotes the component of ∆st at the time scale j. The loading of the
component of the intervention at scale j, βI[dj ], measures the price impact of the intervention at
scale j. Due to the fact that the intervention is exogenous with respect to ∆st, which is verified
empirically, the model is estimated using OLS.
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Table 2.8: Price impact and volatility regimes

The whole sample First part of the sample Second part of the sample

state 1 state 2 state 1 state 2 state 1 state 2

Intercept -2.1398 -3.0127 Intercept -5.7689 -25.9446 Intercept 1.4614 -2.9925
p value 0.02 0.36 p value 0.00 0.08 p value 0.22 0.61
∆St−1 -0.1449 -0.0658 ∆St−1 -0.2002 0.0622 ∆St−1 -0.0744 -0.1486
p value 0.00 0.19 p value 0.00 0.43 p value 0.00 0.02
mot 370.9045 604.1050 mot 377.2795 574.8658 mot 442.0392 559.5118

p value 0.00 0.00 p value 0.00 0.00 p value 0.00 0.04
It 3.3407 12.8133 It 2.1598 19.5289 It 3.7885 14.2441

p value 0.00 0.03 p value 0.21 0.10 p value 0.00 0.08
State duration 39.46 4.01 State duration 42.59 3.60 State duration 73.80 9.56

Pj1 0.97 0.25 Pj1 0.98 0.28 Pj1 0.99 0.10
Pj2 0.03 0.75 Pj2 0.02 0.72 Pj2 0.01 0.90

p value 0.00 0.00 p value 0.00 0.03 p value 0.00 0.00

The table reports the results of the two-state Markov switching model ∆St = β0,s + βS,s∆St−1 + βmo,smot +
βI,sIt+ εt,s , εt,s ∼ N(0, σ2

s), for s=1 or 2, where subscript s labels the state of the system. The coefficients βI,1
and βI,2 measure the price impact of the intervention at state 1 and 2, respectively. The transition probability
Pij is the probability of transitioning from state i to state j in a single step. The state duration is the expected
number of periods (days) the system stays in the particular state before it transits to the other state. Based on
the smoothed probability reported in figure 2.4, state 2 correspond to the high volatility regime, thus state 1
corresponds to the low volatility regime.
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Table 2.9: Price impact of the order flow and the volatility regimes

β0,s SEβ0,s tβ0,s βmo,s SEβmo,s tβmo,s StateDuration TrP pi1 TrP pi2 PTrP

AUD/USD state 1 -1.6660 1.0531 -1.5820 122.1298 3.1676 38.5565 72.5030 0.9862 0.0138 0
AUD/USD state 2 -46.7278 8.7481 -5.3415 229.7329 22.1173 10.3870 13.0939 0.0764 0.9236 0

CAD/USD state 1 -10.5622 0.9518 -11.0973 115.9651 3.7159 31.2078 87.0696 0.9885 0.0115 0
CAD/USD state 2 -13.1039 2.8739 -4.5597 174.6527 11.3517 15.3856 44.5347 0.0225 0.9775 0

EUR/USD state 1 -7.9222 1.0954 -7.2319 296.9106 9.1175 32.5650 447.7359 0.9978 0.0022 0
EUR/USD state 2 1.8583 2.3201 0.8010 428.9224 29.3408 14.6186 152.9111 0.0065 0.9935 0

EUR/GBP state 1 -5.7320 0.8500 -6.7436 91.3033 4.4829 20.3672 53.7676 0.9814 0.0186 0
EUR/GBP state 2 -0.7237 1.6853 -0.4294 118.4898 14.0854 8.4123 18.8641 0.0530 0.9470 0

EUR/NOK state 1 -2.6175 0.7251 -3.6098 243.8860 8.7705 27.8076 89.2448 0.9888 0.0112 0
EUR/NOK state 2 -3.0136 3.4423 -0.8755 474.7056 51.0166 9.3049 16.8228 0.0594 0.9406 0

EUR/SEK state 1 -4.0759 0.7025 -5.8019 201.4736 9.1024 22.1341 57.9345 0.9827 0.0173 0
EUR/SEK state 2 -9.7351 3.1857 -3.0559 365.0681 34.5563 10.5644 18.1854 0.0550 0.9450 0

GBP/USD state 1 -5.1792 0.8517 -6.0808 118.1860 3.1581 37.4229 563.1606 0.9982 0.0018 0
GBP/USD state 2 -22.4445 5.5630 -4.0346 189.9040 19.3740 9.8020 84.5461 0.0118 0.9882 0

HKD/USD state 1 -0.0065 0.0276 -0.2367 5.3025 0.6737 7.8708 13.9152 0.0719 0.9281 0
HKD/USD state 2 -0.5115 0.1128 -4.5339 35.6890 1.7851 19.9926 16.8474 0.9406 0.0594 0

JPY/USD state 1 1.8369 1.2109 1.5169 428.1934 36.5310 11.7214 61.7060 0.9838 0.0162 0
JPY/USD state 2 -4.4538 6.3296 -0.7036 679.6838 257.8614 2.6358 8.2129 0.1218 0.8782 0

MXN/USD state 1 -11.5018 1.1229 -10.2426 151.3133 7.2685 20.8178 56.4272 0.9823 0.0177 0
MXN/USD state 2 11.4457 5.9978 1.9083 181.8231 36.7518 4.9473 16.1884 0.0618 0.9382 0

NZD/USD state 1 -1.9448 1.3146 -1.4794 284.5357 11.0595 25.7278 104.1812 0.9904 0.0096 0
NZD/USD state 2 -22.4289 5.0719 -4.4222 520.4838 41.0740 12.6718 36.0628 0.0277 0.9723 0

SGD/USD state 1 -6.0628 0.5744 -10.5544 159.2413 7.6867 20.7164 47.7526 0.9791 0.0209 0
SGD/USD state 2 -7.6523 2.1566 -3.5483 234.9747 19.6622 11.9506 17.0801 0.0585 0.9415 0

ZAR/USD state 1 -26.7563 2.0305 -13.1769 430.4965 17.1726 25.0688 64.1344 0.9844 0.0156 0
ZAR/USD state 2 -35.1039 9.3424 -3.7575 775.5638 71.2427 10.8862 17.8321 0.0561 0.9439 0

The table shows that the price impact of the order flow is high in the high volatility regime and vice versa, based
on the results of 13 different currency pairs. The two-state Markov switching model is as follows: ∆St = β0,s +
βmo,smot + εt,s , εt,s ∼ N(0, σ2

s), for s = 1, 2, where mot is the market order flow, ∆St is the difference of logged
price. The loadings of the market order flow in different states, βmo,1 and βmo,2, capture the asymmetry of the price
impact in different states. The smoothed state probability identifies that State 2 corresponds to the high volatility
state, while state 1 is the low volatility state. The last three columns contain the transition probabilities pi1, pi1,
and the p value of the transition probability, respectively.
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Chapter 3

Calibrating the Predictability of

Exchange Rates: A

Model-Independent Approach

3.1 Introduction

The main purpose of this paper is to propose a new methodology to assess the out-of-sample

predictability of financial time series. Traditionally, the predictability is studied based on model-

dependent method: the researcher selects the forecasting model, carries out the econometric

exercise, then compares the forecasting performance with that of the benchmark, such as random

walk, according to the chosen evaluation method, for instance, mean squared forecast error.

The disadvantage of the model-dependent approach is that one cannot differentiate whether

the failure is due to misspecification of the forecasting model or lacking information in the

predictors. If it is the former, different economic or econometric models might improve the

forecasting performance. On the other hand, if the predictors contain no information about the

future price movement, it is impossible to predict based on these predictors, regardless of the

specification of the forecasting model. In this paper, we use an information-theoretical quantity

called mutual information to calibrate the information transfer from the predictors to the future

return. Mutual information measures all statistical dependence, linear and nonlinear, and not
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just the linear dependence as the correlation coefficient measures.

Measuring the information transfer (in other words, the true statistical dependence) will help

us to distinguish lack of information from model misspecification. Pinpointing the underlying

cause is very important for time series predictability problem, since the lack of information

can only be solved by searching for better predictors, rather than trying difference economic

and econometric models. Failure to find any predictor with statistically significant information

transfer suggests that it is impossible to predict at all. This is precisely the issue with the model-

dependent exchange rate forecasting literature: researchers keep trying different models and

methods based on a limited set of predictors, without asking whether the failure in forecasting

exchange rates is due to model misspecification or lack of information.

Generally speaking, the linear measures of statistical dependence such as auto-correlation and

cross-correlation are not unbiased measures of the statistical dependence. They are unbiased

under the circumstance where the variables are multivariate Gaussian distributed and their

interaction is linear. So correlation is not very useful when it comes to quantifying the pre-

dictability of time series. However, based on Shannon’s channel coding theorem, we can establish

the fact that the correct measure of the statistical dependence should be an information theo-

retical quantity called mutual information. It can be used to calibrate the information transfer

from the predictors to the future return, without imposing any ex ante assumption on the dis-

tribution of the variables and their linear or nonlinear relationship. Moreover, due to the fact

that the information transfer is the upper bound of the predictive power of any model based

on given predictors, the statistical significance of mutual information is the necessary condition

for the time series predictability, as we will elaborate later.

In this paper we apply the nonparametric model-independent method to answer one important

question: are exchange rates predictable? This question has puzzled the researchers for several

decades. There has been a huge number of model-dependent studies devoted to predicting

the exchange rates, using different economic models and econometric methods. However, since

Meese and Rogoff (1983a,b, 1988), it is well known that exchange rates are very difficult to

predict. The benchmark random walk model generally outperforms the economic models in

the out-of-sample forecasting exercises, which is called “the Meese and Rogoff puzzle”. Rossi

(2013) provides an excellent review of the related literature. She finds that the performance
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usually depends on the choice of predictor, sample period, the specification of the model, and

the forecast evaluation method. Overall speaking, there is no forecasting model can consistently

predict the exchange rates.

As we have mentioned, the shortcoming of the traditional model-dependent methodology is that

it cannot differentiate lack of information from model misspecification. Failure of the previous

models and predictors does not rule out the possibility of future success. In principle, there are a

countless number of model specifications based on various predictors. Testing the performance of

these model specifications one by one is time-consuming. There is still no conclusive answer after

more than three decades of model-dependent researches. Therefore model-dependent approach

is not very effective in determining the predictability of exchange rates.

In this paper, we approach the predictability problem from a different perspective. The goal

is to provide a model-independent criterion for calibrating the predictability of time series by

drawing an analogy between predictability and Shannon’s channel coding theorem (Shannon

1948, Shannon and Weaver 1949). The logic is straightforward: in order to be able to predict,

the predictors have to carry information about the future return of the exchange rate. In the

language of statistics, the predictors and the future price movement must be statistical depen-

dent. This necessity is independent of the specific economic model or econometric methodology

adopted by the researcher. On the other hand, for a given set of predictors, the predictive power

of any model must be bounded by an upper limit, which is the information transfer from the

predictors to the future return.

Why is mutual information the correct measure of information transfer or statistical depen-

dence? In information theory, mutual information specifies a noisy channel’s reliable infor-

mation transmission capacity, beyond which error-free communication is impossible. In other

words, mutual information specifies the upper bound of the information transmission rate of the

noise communication channel. This is the great insight of Shannon’s channel coding theorem.

Essentially, a noisy communication channel is two statistical dependent random variables. Mu-

tual information is the capacity of information transfer between these two variables. Therefore,

mutual information is the right measure that can calibrate the information transfer from the

predictors to the future return.
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The last thing needed to clarify is what this study is not about, and how our approach is different

from the traditional model-dependent methods in the literature. Very different from the model-

dependent forecasting method, this study aims to provide a measure for the upper bound of the

exchange rate predictability via measure the true statistical dependence between the predictors

and future return. However, we cannot stress enough, this study does not actually carry out the

out-of-sample forecasting exercise in the traditional model-dependent sense, which is to find the

model, estimate the model parameters using a sample of rolling window, then make one step

forward forecasts. This study we don’t carry out any model-dependent forecasting exercise as

such, since the whole purpose of this study is to propose a non-parametric model-independent

method to calibrate the predictability. Our method calibrates the time series predictability, but

it does not specify the analytical form of the optimal forecasting model. Therefore, we do not

have traditional measures of forecasting performance, such as RMSE or OOS-R2.

We investigate the exchange rate predictability at various horizons: hourly, daily and monthly.

The exchange rates in our dataset are the most frequently traded ones in the FX markets. At

the hourly, daily and monthly frequency, there are 13, 15 and 10 currency pairs, respectively.

With both economic and market microstructure literature in mind, the variables used to predict

are limit and market order flow and the available monetary fundamentals: differentials of inter-

est rate, money supply, inflation, and industrial production. From the market microstructure

point of view, order flow is the most important determinant of exchange rate movements, since

it aggregates the information among the market participants (Evans and Lyons 2002, Rime,

Sarno, and Sojli 2010, Kozhan, Moore and Payne 2014). From the macroeconomic perspec-

tive, differentials of interest rate, money supply, inflation, and industrial production are the

fundamentals usually used in economic models (Rossi 2013). The availability of the data is

frequency-dependent: order flow is available at the hourly and daily frequency; interest rate is

the only fundamental documented at the daily frequency; at the monthly frequency, the fol-

lowing macroeconomic fundamentals are available: interest rate, money supply, inflation, and

industrial production (output).

Empirically, we find that the exchange rates are systematically predictable at the hourly fre-

quency. The intraday predictive power is mainly from the interdependence of the exchange

rate returns at the hourly frequency, whereas order flow has very small predictive power for
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the future return. One important point is that the linear model that are frequently used in the

literature fails to capture most of the information transfer, which explains why it is so hard

for the linear model to outperform the random walk benchmark, i.e. the Meese and Rogoff

puzzle. It also suggests that the optimal forecasting model based on historical returns of the

exchange rate must be nonlinear 1. At daily and monthly frequency, the exchange rates are not

systematically predictable based on historical returns, order flow, and macroeconomic funda-

mentals. Our study finds that for more than half of the currency pairs, the factors have small

but significant information transfer, but for all the exchange rates, the linear model does not

have any significant predictive power. Furthermore, unlike the hourly frequency, the historical

movements of exchange rates do not have any predictive power for the future return at the daily

and monthly frequency.

This study has several contributions to the literature. First of all, as far as we know, this is the

first study to use the model-independent methodology to calibrate the time series predictability.

we apply information theory to study predictability, and shed some light on the Meese and

Rogoff puzzle: why the exchange rates are so difficult to predict by traditional linear models.

Second, given the set of predictors, the model-independent non-parametric method proposed in

this paper can be used to assess the predictability of time series, and estimate the upper bound of

the predictive power of any forecasting model. Moreover, it can be used for predictor selection:

one should adopt the predictors with significant information transfer from the predictors to the

future return. Third, it also provides some guidance for the model specification. For instance,

whether the model is optimal or suboptimal, and if it is suboptimal, how good is its performance

compared to the optimal forecasting model. Our method can be useful for model selection as

well: one can rank the performance of different models based on the information transfer from

the model to the future return. Furthermore, once the functional form of the model is chosen,

it can be useful for parameter estimation: the parameters should be chosen such that the

information transfer from the model to the future return is maximized. Last but not least, the

method is applicable for other predictability questions as well. For instance, the predictability

of stock returns or any other economic variable of interest.

1The nonlinear forecasting model f(x) predicts ∆S out-of-sample.
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3.2 Literature Review

There are a large number of studies on the model-dependent predictability of the exchange

rates. Please refer to Rossi (2013), Frankel and Rose (1995), Mark (1995), Engel, Mark and

West (2007) for the literature reviews on this topic. In the early 1980s, the seminal paper-

s by Meese and Rogoff (1983a,b) first examine the out-of-sample forecasting performance of

three exchange rate models. They find that economic models do not outperform the random

walk benchmark, which essentially suggests that the exchange rates are not predictable. Che-

ung, Chinn and Pascual (2005) provide a comprehensively examination on the out-of-sample

forecasting performance of various economic models. They confirm that these models cannot

consistently outperform the random walk model. Other researchers also conduct the empirical

exercises based on traditional predictors, such as interest rate differentials (Alquist and Chinn

2008, Clark and West 2006, and Molodtsova and Papell 2009), price and inflation differentials

(Rogoff 1996), money and output differentials (Chinn and Meese 1995, Taylor and Sarno 1998),

productivity differentials (Wright 2008), portfolio balance (Cheung, Chinn and Pascual 2005).

In some studies, certain economic models occasionally outperform the random walk benchmark

for some countries and certain time periods, but generally speaking, the exchange rates are

not predictable systematically. More recently, studies such as Molodtsova and Papell (2009),

Giacomini and Rossi (2010), Inoue and Rossi (2012), find empirical evidence that Taylor rule

fundamentals have better forecasting performance than the traditional predictors. Rossi (2013)

concludes that none of the predictors, models, or tests systematically find the empirical support

of superior exchange rate forecasting ability across all countries and time periods.

As regards to the market microstructure approach to the exchange rates, Evans and Lyons (2002)

introduce a portfolio shifts model, which argues that changes in exchange rates are determined

by a combination of innovations in public and private information. Private information is

made public through the process of trading. In other words, private information is revealed

by order flow, which is measured as the net of buyer- over seller-initiated trades in the foreign

exchange market. Evans and Lyons (2002) show that order flow is a critical determinant of two

major exchange rates (mark/dollar and yen/dollar). The empirical finding is that R2 of the

linear regression increases from 1-5% to 40-60% after adding market order flow as a regressor.
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Further research shows that order flow plays an intermediary role between exchange rates and

macroeconomic fundamentals (Rime, Sarno and Sojli, 2010). Order flow does not only contain

private information, but it is also a vehicle for aggregating macroeconomic information among

all the market participants. The reason that order flow has more explanatory power than

macroeconomic fundamentals is due to the fact that the conventional measures of expected

future fundamentals are so imprecise that an order flow “proxy” performs much better than

macroeconomic fundamentals in explaining the exchange rates. Rime et al. (2010) also show

that order flow is a predictor of daily exchange rates in an out-of-sample exercise. The forecast

analysis is based on economic criteria, where an investor can earn profits from an asset allocation

strategy that exploits this predictability. Evans and Lyons (2005, 2006) argue that gradual

learning in the foreign exchange market can generate not only explanatory, but also forecasting

power in order flow. More recently, Kozhan, Moore and Payne (2014) show that besides the

market order flow, the limit order flow is also an important determinant of the exchange rates.

With respect to the literature on the applications of information theory. Schreiber (2000) uses

Transfer Entropy to study the information transfer between two time series. Barnett, Barnett

and Seth (2009) show that Granger causality and Transfer Entropy are equivalent for Gaussian

variables. Information theoretical measures such as transfer entropy have been used to study

complex system and structure of the network, especially in the field of neuroscience (for instance,

Vicente, Wibral, Lindner, and Pipa, 2011, Wibral, Vicente, and Lizier, 2014). However, these

inter-discipline studies just use the mutual information as a measure for information transfer.

None of them use information theory to discusses the issue of time series predictability, nor

any of them gives a solid rationale for the fact that mutual information is the right measure of

the statistical dependence. Answering these questions will give us the dominating reasons that

information theory is relevant for time series predictability.

3.3 Methodology

The setting of out-of-sample exchange rate forecasting is as follows. There are time series of

the exchange rate returns, ∆S, and the factors X, which comprises of the variables adopted

by the forecasting model, such as order flow and monetary fundamentals. At each point of
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time t, to forecast the return in the next period, ∆St+1, we can use the available information

of the factors X and the exchange rate movements ∆S up to and including time t: X
(k)
t =

{Xt−k+1, ...,Xt−1,Xt} and ∆S
(k)
t = {∆St−k+1, ...,∆St−1,∆St}. Here only a finite number of

lagged observations are included, because it is reasonable to assume that the observations prior

to time t − k + 1 are irrelevant to the exchange rate return ∆St+1. It is not a restrictive

assumption, since the number of the lagged periods k can be adjusted with ease.

If the future return, ∆St+1, is predictable, there should be some statistical dependence be-

tween the predictors {X(k)
t ,∆S

(k)
t } and the future return ∆St+1. More precisely, X

(k)
t and

∆S
(k)
t should contain some information about the future return ∆St+1. Empirically, the esti-

mated information transfer from X
(k)
t and ∆S

(k)
t to ∆St+1 should be positive and significant

from zero. On the other hand, if X
(k)
t and ∆S

(k)
t contain no information about the future

return ∆St+1, forecasting the future movements of the exchange rate using X
(k)
t and ∆S

(k)
t

would be an impossible mission, because {X(k)
t ,∆S

(k)
t } and ∆St+1 are complete statistically

independent. As we are going to argue in the next section, the correct measure of information

transfer from {X(k)
t ,∆S

(k)
t } to ∆St+1 is their mutual information, which captures the linear

and nonlinear statistical dependence between the predictors and the future return. It is denot-

ed as I(X
(k)
t ,∆S

(k)
t ; ∆St+1), where the semicolon separates the predictors and the future price

movement.

Moreover, mutual information I(X
(k)
t ,∆S

(k)
t ; ∆St+1) is the upper bound on the predictive power

of any model based on {X(k)
t , ∆S

(k)
t }:

I(X
(k)
t ,∆S

(k)
t ; ∆St+1) ≥ I(f(X

(k)
t ,∆S

(k)
t ); ∆St+1) , (3.1)

where f(X
(k)
t ,∆S

(k)
t ) is the forecasting model. This is the data processing inequality of infor-

mation theory. Intuitively speaking, it is impossible to increase the information carried by a

given set of predictors about the future return via any operations or processing. In other words,

the information content of a signal cannot be increased via any local operation. Therefore, the

necessary condition for the predictability is that mutual information I(X
(k)
t ,∆S

(k)
t ; ∆St+1) is

positive and statistically different from zero. If I(X
(k)
t ,∆S

(k)
t ; ∆St+1) is positive and significant,

there should exist a optimal model f∗(X
(k)
t ,∆S

(k)
t ) that can fully take advantage of the pre-
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dictive power of {X(k)
t ,∆S

(k)
t } for the future return ∆St+1. On the other hand, if the mutual

information I(X
(k)
t ,∆S

(k)
t ; ∆St+1) is zero, any forecasting model f(X

(k)
t ,∆S

(k)
t ) should satisfy

I(f(X
(k)
t ,∆S

(k)
t ); ∆St+1) = 0, due to the inequality (3.1). Therefore, any endeavor based on

predictors {X(k)
t ,∆S

(k)
t } would be fruitless. Given the set of predictors, this necessary condition

for predictability is independent of the specification of the forecasting model. However, in the

case that the predictability has been established, our methodology does not directly show us

how to predict. In other words, in this paper we focus on the “existence” of the optimal model

f∗(X
(k)
t , ∆S

(k)
t ), but not its specific form.

Based on the chain-rule for mutual information, the information transfer from {X(k)
t ,∆S

(k)
t } to

∆St+1 can be further decomposed into two parts:

I(X
(k)
t ,∆S

(k)
t ; ∆St+1) = I(∆S

(k)
t ; ∆St+1) + I(X

(k)
t ; ∆St+1|∆S

(k)
t ) . (3.2)

The first part measures the auto-predictive power of the exchange rate. To be more specific,

it is the predictive power of the historical movements ∆S
(k)
t for the future return ∆St+1. For

convenience, we refer it as Auto-Information-Transfer (AIT). The other part is the predictive

power of the factors X
(k)
t for the future movement ∆St+1, which is called Transfer Entropy

(TE).

Equation 3.2 can be viewed as follows: the total information about future return contained

in two predictors ∆S
(k)
t and X

(k)
t are consisted of two parts: the first part is the information

contained in the historical price movement ∆S
(k)
t ; and the second part is the information con-

tained in predictor X
(k)
t , given ∆S

(k)
t is known. This decomposition is related to the chain rule

of the probability P (X2, X1|Z) = P (X2|X1, Z) ·P(X1|Z). We will postpone the details to next

section.

This decomposition provides us with the opportunity to investigate these two sources of pre-

dictive power separately. We will estimate AIT and TE empirically, and test their statistical

significance. The statistical significance of TE (or AIT) means that there is positive informa-

tion transfer from X
(k)
t (or ∆S

(k)
t ) to the future return ∆St+1. If it is the case, it is possible to

predict the exchange rate using certain models based on X
(k)
t (or ∆S

(k)
t ). On the other hand,

if there is no statistically significant information transfer (AIT and TE), then it is absolutely
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impossible to predict future exchange rate based on the given predictors.

Before investigating the predictability empirically, we are going to study the contemporaneous

information transfer, or equivalently, the explanatory power of factors X for the contempora-

neous exchange rate movement. The purpose of studying the contemporaneous case before the

predictive case is two folds. First, as a sanity check for this new methodology, we empirically es-

tablish the equivalence between Contemporaneous Transfer Entropy (CTE) I(Xt ; ∆St|∆St−1)

under the linear-Gaussian assumption, and R2 from the linear regression ∆St = α + βXt + εt.

The equivalence is proved analytically by Barnett, Barnett and Seth (2009). For all the ex-

change rates, we empirically establish the equivalence between these two measures: R2 and the

Gaussian estimate of CTE. Moreover, the nonparametric estimates of CTE are consistent with

the known empirical facts as well, for instance, market order flow has good explanatory power

for the contemporaneous return. Second, more importantly, the numerical values of Contempo-

raneous Transfer Entropy (CTE) provide us with a frame of reference to interpret the magnitude

of information transfer. The issue is that after estimating the number of nats or bits of the infor-

mation transfer, we still don’t have any sense of the scale of large or small information transfer.

For instance, how large is 0.01 nats, and what does it mean? One straightforward method is to

compare the information transfer across time with its contemporaneous conterparts: the value

of CTE. To be more specific, the results from the contemporaneous case indicate that market

order flow (mo) has very good explanatory power, while interest rate differential (IR) has very

small explanatory power for the contemporaneous exchange rate movements. Therefore the

values of CTE can be used as benchmarks to assess the magnitudes of information transfer as

well as their economic significance. Please note that we are not aiming to compare the informa-

tion transfer across time with the contemporaneous information transfer. It will not be a fair

competition because the contemporaneous information transfer would be much greater, since

there are variables has good contemporaneous explanatory power, such as the order flow (Evans

and Lyons 2002). We merely use the values of the contemporaneous information transfer as a

frame of reference, which helps us to make sense out of the units in nats.

In this paper, the measures of information transfer are empirically estimated with two different

methods: multivariate Gaussian model and the Kraskov, Stogbauer, and Grassberger (2004)

(KSG) method. The first method imposes the linear-Gaussian model ex ante, which assumes
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that the variables are multivariate Gaussian distributed, and their relationship is linear. Esti-

mating information measure boils down to estimating the sample covariance matrix. Naturally,

this method is equivalent to the frequent-used linear regression, which is also under the same

linear-Gaussian assumption. The shortcoming of this method is that if the true underlying mod-

el (or data generating process) governing the time series are not linear-Gaussian, the estimates

subjected to linear-Gaussian assumption would be biased. KSG method improves the method

of Kozachenko and Leonenko (1987) based on kernel estimation. It uses a dynamically altered

kernel width to adjust to the density of samples in the neighborhood of any given observation,

in order to correct the bias in the probability density function estimation, especially when the

sample is finite. KSG method does not impose the Gaussian or any other parametric model

ex ante. In comparison to the Gaussian estimator, it can accommodate non-Gaussian distri-

bution and the non-linear relationships among the variables. In other words, this method is

nonparametric and model-independent. Vicente and Wibral (2014) provide an updated survey

of various types of estimators.

Obviously, once we estimate the information transfer, their statistical significance also needs to

be tested. If the null hypothesis that TE I(X
(k)
t ; ∆St+1|∆S

(k)
t ) (or AIT I(∆S

(k)
t ; ∆St+1)) equals

to zero cannot be rejected, factors X (or the historical movements of exchange rate) do not have

any predictive power for the future exchange rate return. To test the statistical significance of

the estimate, the simulated samples under the null hypothesis is computed. The null is that

there is no information transfer. By comparing the original estimate and the estimates based on

simulated samples under the null, we can find if the original estimate is statistically significant.

We refer to it as resampling method. It is in nature the same procedure as the bootstrap

method.

Here we briefly explain the resampling method for testing the statistical significance of condi-

tional mutual information I(Y ;Z|W ) or mutual information I(Y ;Z). Let’s assume we want to

test the significance of conditional mutual information I(Y ;Z|W ). First, we generate random

permutations of the original sample {yt, t = 1, 2, ..., T} by randomly shuffling the sequential

order of the original sample while keeping all the observations. These simulated samples are

denoted as {yst , t = 1, 2, ..., T}, where s = 1, 2, ..., S, and the total number of the simulated sam-

ples can be set as S = 1000, for example. Next, for each simulated sample {yst , t = 1, 2, ..., T},
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conditional mutual information I(Y s;Z|W ) can be estimated. In such way, we can generate

a population of I(Y s;Z|W ), s = 1, 2, ..., S, under the null hypothesis that the conditional mu-

tual information is zero. This is due to the fact that by doing random permutation of the

original sample, the distribution of Y is kept: p(ys) = p(y), while any potential conditional

dependence between Y and Z is destroyed: p(z|ys, w) = p(z|w), because the sequential corre-

spondence between Y and Z has been destroyed by random shuffling. Equivalently, we have

I(Y s;Z|W ) = 0. Hence I(Y s;Z|W ) satisfies the null hypothesis that the conditional mutu-

al information I(Y ;Z|W ) is zero. Once a population of I(Y s;Z|W ) has been estimated, we

can obtain the p-value of I(Y ;Z|W ) by comparing its value with the empirical distribution of

I(Y s;Z|W ). Alternatively, one can also calculate the standard deviation of I(Y s;Z|W ), and

determine whether conditional mutual information I(Y ;Z|W ) is statistically significant based

on the usual two standard deviation rule of thumb. For simplicity, we only report the p-values

in the later section. Similarly, the statistical significance of mutual information I(Y ;Z) can also

be tested.

3.4 Information Theory and the Predictability of Time Series

In this section, we are going to lay the theoretical foundation for our methodology. It can be

skipped for the readers without the interest in going into the details of information theory.

The measure of information transfer in this study is based on information theory. It is a vast

area, due to the limited space, we only discuss the most important points relevant to our study.

Instead of being mathematically rigorous, the discussion here just tries to be straightforward and

intuitive. For a full-fledged treatment, please refer to the monographs on information theory,

such as Gray (2011), Cover and Thomas (2006).

The most fundamental concept of information theory is Shannon’s Entropy, which is a measure

of information content. Assume there is a random variable Y , with probability density function

p(y). The measure of the information content of a particular event Y = y is defined as

h(y) = log
1

p(y)
. (3.3)
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The logic behinds this is that if the probability of event y is very large, for example, close to 1,

which means that it is very likely to happen, the knowledge that event Y = y occurred provides

very little information; in contrast, if something very improbable happened, it conveys a lot of

information. It is a measure of information gained, or the level of “surprise”, in finding out this

event.

The measure of information, such as h(y) in equation 3.3, is in units of “bits” if logs in the

equations are the logarithm to the base 2, or in units of “nats” if logs are base-e logarithm. In

other words, if we have chosen base 2 for the information formula, one unit of information is

called a bit; and if we have chosen base e for the information formula, one unit of information

is called a nat.

The entropy of a random variable Y , is defined as the expected information content of all events

with positive probability:

H(Y ) =

∫
p(y)h(y) dy =

∫
p(y) log

1

p(y)
dy = −

∫
p(y) log p(y) dy . (3.4)

Entropy H(Y ) measures the information contained in Y . It is the expected degree of uncertainty

of the probability distribution p(y). A related concept is conditional entropy. It quantifies the

amount of information in one random variable (Z) given we already know the other (Y ). The

conditional entropy of Z conditional on Y is

H(Z|Y ) =

∫
Y
p(y)H(Z|Y = y) dy = −

∫
Y

∫
Z
p(z, y) log p(z|y) dz dy. (3.5)

Conditional entropy H(Z|Y ) is a measure of what Y does not say about Z, or the amount of

uncertainty remaining about Z after Y is known. H(Z|Y ) = 0 if and only if the value of Z

is completely determined by the value of Y , in this case, knowing Y completely reduces the

uncertainty or information content of Z to zero. Conversely, H(Z|Y ) = H(Z) if and only if Z

and Y are independent random variables: knowing Y tells us nothing about Z.

The most important quantity for out-of-sample predictability is called mutual information (MI).

The mutual information of two random variables is a measure of the mutual dependence between

these two variables. More specifically, it quantifies the amount of information obtained about
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one random variable (Z), through the other random variable (Y ). MI is defined as

I(Y ;Z) =

∫
Y

∫
Z
p(z, y) log

(
p(z, y)

p(z) p(y)

)
dz dy (3.6)

=

∫
Y

∫
Z
p(z, y) log

(
p(z|y)

p(z)

)
dz dy (3.7)

= H(Z)−H(Z|Y ). (3.8)

It can be shown that mutual information I(Y ;Z) is non-negative. If Y and Z are independent:

P (Y,Z) = P (Y )P (Z), we have I(Y ;Z) = 0, which means that Y dose not have any information

about Z, or the information transfer from Y to Z should be zero. On the other hand, if

the value of Z is completely determined by the value of Y , we have H(Z|Y ) = 0, which

means that I(Y ;Z) = H(Z). In this case, knowing variable Y provides all the information

about the variable Z. Overall speaking, mutual information is a general measure to quantify

the dependence between two variables. Moreover, mutual information precisely measures the

information transfer from one variable to the other.

A related concept is conditional mutual information, I(Y ;Z|W ), which is the expected value of

the mutual information of two random variables, Y and Z, given the value of a third variable,

W . It is defined as

I(Y ;Z|W ) = EW
(
I(Y ;Z)|W

)
(3.9)

=

∫
W
p(w)

∫
Y

∫
Z
p(z, y|w) log

p(z, y|w)

p(z|w)p(y|w)
dy dz dw (3.10)

=

∫
W

∫
Y

∫
Z
p(w)p(z, y|w) log

p(z|y, w)

p(z|w)
dy dz dw (3.11)

= H(Z|W )−H(Z|Y,W ). (3.12)

It measures the reduction in the uncertainty of Z due to knowledge of Y when W is given. The

last useful equality is the chain-rule for mutual information: the mutual information between
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{Y,W} and Z can be decomposed into two parts:

I(Y,W ;Z) = H(Z)−H(Z|Y,W ) (3.13)

= H(Z)−H(Z|W ) +H(Z|W )−H(Z|Y,W ) (3.14)

= I(W ;Z) + I(Y ;Z|W ), (3.15)

where I(W ;Z) is the mutual information between W and Z, and I(Y ;Z|W ) is the conditional

mutual information between Y and Z given W .

Information theory mainly comprises of two parts, source encoding and channel communication.

The first one is about data compression while the later one is related to the topic of information

transfer via a noisy communication channel. In this paper, we want to link the theory of channel

communication and information transfer to the predictability of time series. For the details of

the mechanism of information transfer through a noisy channel, please refer to the appendix.

Here we just present the channel coding theorem, which is based on the Theorem 7.7.1 in Cover

and Thomas (2006):

Channel Coding Theorem. For information channel Y to Z, we define the channel capacity

as C = maxp(y) I(Y ;Z). All the information transmission rates below capacity C are achievable.

Specifically, for every rate R < C, there exists a sequence of codes of length n and transmission

rate R with the maximum probability of error goes to zero as n → ∞. Conversely, if any

sequence of codes of length n and transmission rate R with the probability of error goes to zero

as n→∞, the transmission rate R must satisfy R ≤ C.

With respect to the predictability of time series, the relevant point in Shannon’s channel coding

theorem is that the information transfer from Y to Z is measured by mutual information

I(Y ;Z). Statistically speaking, the channel coding theorem indicates that I(Y ;Z) measures

the statistical dependence between Y and Z. In contrast to other frequently-used measures of

linear statistical dependence, such as covariance, mutual information is the right measure of the

‘dependence’ or information transfer from random variable Y to Z. This is exactly due to the

fact that Shannon has proved in the channel coding theorem: reliable information transfer is

achievable for any information transmission rate lower than I(Y ;Z), while information transfer

is impossible for any transmission rate greater than I(Y ;Z).
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The previous literature usually gives a different argument based on the source encoding theorem

to validate that mutual information measures the information transfer (for example, Schreiber

2000). However, the reasoning is not very convincing. The source encoding theorem is another

important component of Shannon’s information theory, but in our opinion, source encoding is

about data compression and does not directly related to information transfer. On the other

hand, noisy channel communication is all about information transfer from one variable (Y ) to

the other (Z). Hence we believe the channel coding theorem is the right part of information

theory relevant to information transfer and time series predictability.

For the exchange rate to be predictable, there has to be positive information transfer from {X(k)
t ,

∆S
(k)
t } to ∆St+1, where X

(k)
t = {Xt−k+1, ...,Xt−1,Xt} and ∆S

(k)
t = {∆St−k+1, ...,∆St−1,∆St}.

Furthermore, mutual information I(X
(k)
t ,∆S

(k)
t ; ∆St+1) is actually the upper bound of the

predictive power of any model, f(X
(k)
t ,∆S

(k)
t ). It is based on another important result of

information theory, the data processing inequality. Given the set of predictors {X(k)
t ,∆S

(k)
t },

the researcher can process these predictors with any localized operation, and use model f of

any functional form, linear or nonlinear, the data processing inequality (Gray, 2011, Cover

and Thomas, 2006) guarantees that f(X
(k)
t ,∆S

(k)
t ) can only carry less or equal amount of

information about the future exchange rate ∆St+1:

I(f(X
(k)
t ,∆S

(k)
t ) ; ∆St+1) ≤ I(X

(k)
t ,∆S

(k)
t ; ∆St+1) . (3.16)

In other words, one can not create more information based on the information he already has.

The mutual information I(X
(k)
t ,∆S

(k)
t ; ∆St+1) is the upper bound of the predictive power of any

model f(X
(k)
t ,∆S

(k)
t ). Therefore, if the exchange rate is predictable by predictors {X(k)

t ,∆S
(k)
t },

mutual information I(X
(k)
t ,∆S

(k)
t ; ∆St+1) has to be positive and significantly different from zero.

As to the forecasting performance of the model f(X
(k)
t ,∆S

(k)
t ), we should expect that the model

with mutual information I(f(X
(k)
t ,∆S

(k)
t ) ; ∆St+1) closer to the upper bound to have greater

predictive power. In other words, mutual information I(f(X
(k)
t ,∆S

(k)
t ) ; ∆St+1) can be used as a

metric to evaluate the out-of-sample forecasting performance of the model. The performance of

different economic models can be ranked based on mutual information I(f(X
(k)
t ,∆S

(k)
t ) ; ∆St+1).

The total information transfer from X
(k)
t and ∆S

(k)
t to ∆St+1 can be further decomposed into
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two parts:

I(X
(k)
t ,∆S

(k)
t ; ∆St+1) = I(∆S

(k)
t ; ∆St+1) + I(X

(k)
t ; ∆St+1|∆S

(k)
t ) . (3.17)

Here we have used the chain-rule for mutual information, equation (3.15). Equation (3.17)

simply points out that the information transfer from X
(k)
t and S

(k)
t to ∆St+1 can be decomposed

into two parts: the information transfer from current and past movements of the exchange rate

to its future return, and the information transfer from factors X
(k)
t to the future return ∆St+1

conditional on the historical returns of the exchange rate. We refer the first term on the right

hand side of equation (3.17) as the Auto-Information-Transfer (AIT). AIT quantifies the auto-

predictive power of the exchange rates, as well as the “memory” of the time series across time.

The second term is known as Transfer Entropy (TE):

TE = I(X
(k)
t ; ∆St+1|∆S

(k)
t ) . (3.18)

It calibrates the predictive power of factors X for the future return ∆St+1. In the following

sections, we will estimate AIT and TE using the time series of exchange rates and various

factors, and discuss exchange rate predictability at the hourly, daily and monthly frequency

based on the empirical results.

3.5 Data

Three types of data are used in our study: exchange rates, order flow, and macroeconomic

fundamentals. At the daily and hourly frequency, the sample period is November 19th, 2003

to February 28th, 2014. The exchange rates and order flows data are obtained from Thomson

Reuters Dealing system. At the daily frequency, there are fifteen exchange rates in the sample:

Australian Dollar/U.S. Dollar (AUD), Canadian Dollar/U.S. Dollar (CAD), Swiss Franc/U.S.

Dollar (CHF), Euro/U.S. Dollar (EUR), Euro/British Pound (EURGBP), Euro/Swiss Franc

(EURCHF), Euro/Norwegian Krone (EURNOK), Euro/Swedish Krona (EURSEK), British

Pound/U.S. Dollar (GBP), Hong Kong Dollar/U.S. Dollar (HKD), Japanese yen/U.S. Dollar

(JPY), Mexican Peso/U.S. Dollar (MXN), New Zealand Dollar/U.S. Dollar (NZD), Singapore
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Dollar/U.S. Dollar (SGD), South African Rand/U.S. Dollar (ZAR). At the hourly frequen-

cy, there are thirteen exchange rates, including the exchange rates listed above, except Swiss

Franc/U.S. Dollar (CHF) and Euro/Swiss Franc (EURCHF). They are excluded due to the fact

that these two exchange rates are mainly traded on the EBS system instead of the Reuters

system, as a result, a small percentage of the hourly order flow observations are missing.

Market order flow mo is measured as the difference between the trade quantities initiated by

buyers and the trade quantities initiated by sellers in each period. The limit order flow lo is

calculated as the sum of all bid order quantities arriving at the best price (either price improving

or best price matching) minus the sum of all offer order quantities at the best over the corre-

sponding period. Moreover, the data also contains 3-month interest rates of the corresponding

countries, obtained from Datastream. The interest rate is the only macroeconomic fundamental

that is available at the daily frequency.

The data at the monthly frequency is collected separately. Because based on the original ten-

year exchange rates data, the monthly sampled time series would be too short for accurate

nonparametric estimation. Aiming at better information transfer estimation, we should enlarge

the sample period as long as possible. Meanwhile, some difficult tradeoffs have to be taken into

account during the data collection. The first one is the availability of the data: the exchange

rates and macroeconomic fundamentals of different countries are of very different length. The

consideration is that time series in our sample should have the greatest length possible. More-

over, we also try to collect the fundamentals for as many currency pairs as possible, since our

aim is to assess whether the exchange rates can be predicted systemically. Taking these factors

into account, we set the sample period as January 1980 to December 2013, which means every

time series contains 34 years of data and 408 monthly observations. The macroeconomic funda-

mentals at the monthly frequency are the interest rate, money supply, inflation, and industrial

production. Ten currency pairs are selected: Australian Dollar/U.S. Dollar (AUD), Canadian

Dollar/U.S. Dollar (CAD), Swiss Franc/U.S. Dollar (CHF), Danish Krone/U.S. Dollar (DKK),

British Pound/U.S. Dollar (GBP), Japanese yen/U.S. Dollar (JPY), Norwegian Krone/U.S.

Dollar (NOK), New Zealand Dollar/U.S. Dollar (NZD), Swedish Krona/U.S. Dollar (SEK),

South African Rand/U.S. Dollar (ZAR).

Another caveat is that for some macroeconomic fundamentals, the stationarity of the time series
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could be questionable. For instance, for some currency pairs, the log difference of the monetary

supplies of the two corresponding countries is not stationary: an obvious trend can be spotted

by eyeballing the time series plot.

The non-stationarity of these time series may be due to various economic reasons, a recom-

mended further exercise is to carry out sub-sample analysis. However, for monthly data, there

are merely 12 data points each year, while our non-parametric estimation method definably re-

quires more than several hundred data points for accurate and sensible estimates. To avoid any

spurious results, we will use the growth rate of the monetary supply, instead of the monetary

supply itself. For similar reasons, we use the difference of inflations as a factor, rather than the

difference of the price levels. Another point is that even for most of the econometric methods

such as regression, to avoid spurious results, stationarity of the time series are also required.

3.6 Estimation and Empirical Results

In the first and second parts of this section, we will discuss the contemporaneous and predictive

information transfer, respectively. The former quantifies the explanatory power of the factors

for the concurrent exchange rate movements, and the later gauges the predictive power for

the future returns. In the first subsections, we will examine the contemporaneous information

transfer (or the explanatory power) of the factors, and compare the results with the known

empirical results based on linear regression. The contemporaneous results are supportive for

the validity of the new measure of information transfer, which contains the traditional method

as a special case under the linear-Gaussian assumption. At the same time, they serve as the

frame of reference for the out-of-sample case. Then, in the second subsection, we are going to

investigate the predictability of the exchange rates by estimating Transfer Entropy (TE) and

Auto-Information-Transfer (AIT), using data at the hourly, daily and monthly frequency.

3.6.1 Contemporaneous Transfer Entropy and Explanatory Power

The contemporaneous explanatory power of factors X are measured by Contemporaneous

Transfer Entropy (CTE) I(Xt ; ∆St|∆St−1). This measure is similar as Transfer Entropy
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I(X
(k)
t ; ∆St+1|∆S

(k)
t ) (equation 3.18), but with k = 1, and the delay of factors X with re-

spect to ∆S is zero. CTE quantifies the contemporaneous information transfer from Xt to

∆St. It is a model-independent measure for the explanatory power of factors X. At hourly

frequency, three different sets of factors X are used: limit order flow lo, market order flow mo,

and their combination {lo,mo}. Because from the market microstructure perspective, limit

order flow (lo) and market order flow (mo) are crucial explanatory variables, which have been

documented repeatedly in the literature. Table 3.1 reports the estimates and p-values of CTE

I(Xt ; ∆St|∆St−1), and the values of R2 from the linear regressions ∆St = α+ βXt + εt, at the

hourly frequency.

Insert table 3.1 about here

The first three subsections of table 3.1 report Gaussian estimates of the Contemporaneous

Transfer Entropy I(Xt ; ∆St|∆St−1) and the corresponding R2 from the linear regressions. The

values of R2 suggest that mo has very good explanatory power for the contemporaneous ex-

change rate movements, and lo has small explanatory power. These results are consistent with

the established results in previous studies, such as Evans and Lyons (2002), Chinn and Moore

(2011), and Kozhan, Moore and Payne (2014). For several currency pairs mainly traded on

the EBS dealing system, our order flow data from the Reuters system have weaker explanatory

power. In other words, the occasional low explanatory power is not due to the fact that order

flow is a poor explanatory variable. In table 3.1, the Gaussian estimates of CTE are labeled

with subscript G. The p-values indicate that the Gaussian estimates of CTE are all significant

from zero, for both market order flow mo and limit order lo.

The results in the last three subsections are estimated by the KSG method. Compared with

Gaussian estimates, KSG estimates are the model-independent nonparametric measurements

of the information transfer, without any ex ante assumption about the distribution of the

time series or the relationship among them. In table 3.1, all KSG estimates are positive and

statistically significant from zero. The CTE of mo and {mo, lo} are at the order of magnitude

of 0.1 nats, and the CTE of lo is roughly 10 times smaller, at the order of magnitude of 0.01

nats. One thing to notice is that the Gaussian estimates are smaller than the corresponding
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KSG estimates. It is logical because Gaussian estimates are constrained by the linear-Gaussian

model, while it is not the case for KSG estimates. Comparing the Gaussian and KSG estimates

in table 3.1, we find that the linear-Gaussian model is able to capture a large fraction of the

total contemporaneous information transfer.

Insert figure 3.1 about here

As we have discussed, mutual information (equation 3.6) is the correct measure to quantify the

statistical dependence between two variables. Compared with its linear counterpart, mutual in-

formation is more general, since it can capture the linear as well as nonlinear dependence. If we

impose the assumption that the time series have linear interaction, and the distribution is multi-

variate Gaussian, we expect that there is a simple equivalence between CTE I(Xt ; ∆St|∆St−1)

under linear-Gaussian assumption, and R2 from the linear regression ∆St = α+βXt + εt (Bar-

nett, Barnett and Seth, 2009). Remind that R2 captures the explanatory power of regressors

Xt for the dependent variable ∆St. In the language of information theory, R2 is the informa-

tion obtained about ∆St through the regressors Xt in the framework of linear model, which is

exactly the same as CTE I(Xt ; ∆St|∆St−1) under linear-Gaussian assumption. Therefore their

equivalence is very natural. To illustrate the equivalence empirically, we plot the values of R2

against the corresponding Gaussian estimates of CTE in figure 3.1. The Gaussian estimates

of CTE are on the X axis, and the corresponding R2s are on the Y axis. The coordinates are

the values reported in the first three subsections of table 3.1. One can easily spot the linear

correspondence between these two measures.

One of the purposes of studying contemporaneous information transfer is to provide a frame

of reference for interpreting the level of the information transfer. The equivalence between

Gaussian estimates of CTE and R2 of the linear regression establishes the connection between

the unit of the new measure and that of the traditional one. At least qualitatively, it helps

us to make sense of the scale or order of magnitude of the information transfer. In the next

subsection, when evaluating the economic significance of information transfer from {X(k)
t ,∆S

(k)
t }

to ∆St+1, the contemporaneous counterpart can be used to evaluate how many nats (or bits) of

information transfer is economically big enough. In table 3.1, the Gaussian estimates CTEG,mo
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and CTEG,lo, which are at the order of magnitude of 0.1 nats and 0.01 nats, respectively.

Considering the well-known empirical fact that the explanatory power of mo is good, and

explanatory power of lo is quite small, the estimates of CTE can be used as yardsticks to

assess the magnitude of predictive power. To be more specific, we are going to compare the

estimates of the Auto-Information-Transfer and Transfer Entropy with the estimates of CTE.

For instance, if the estimate of TE I(X
(k)
t ; ∆St+1|∆S

(k)
t ) is at the order of magnitude of 0.001

nats, the information transfer from X
(k)
t to ∆S

(k)
t is approximately one hundred (or ten) times

smaller than the CTE of mo (or lo), we would say that the predictive power of factors X is

negligible, and TE is not economic significant. In this case, even though TE itself might be

statistically significant, but the magnitude of information transfer is so small such that there is

no model based on X is able to predict the exchange rate in any economic meaningful way.

Table 3.2 show the contemporaneous results at daily frequency. There are fifteen exchange rates,

and three different sets of factors are used: interest rate differential IR, market order flow mo,

and their combination {mo, IR}. The estimates of Contemporaneous Transfer Entropy (CTE)

I(Xt ; ∆St|∆St−1) and R2 from the linear regression are reported in table 3.2. Similarly as

before, the estimates of CTE in the first three subsections of table 3.2 are based on Gaussian

method, while those in the last three subsections are estimated using KSG method. The results

are mainly twofold. First, the values of R2 suggest that IR has very small explanatory power.

CTE of IR are at the order of magnitude of 0.01 nats, and some of them are not statistically

significant. Second, based on the values of R2, market order flow mo has good explanatory

power in general, except for several exchange rates that are mainly traded on EBS dealing

system, as we explained before. The CTE of mo is generally at the order of magnitude of 0.1

nats, and significantly different from zero. Furthermore, the equivalence of R2 and Gaussian

estimates of I(Xt ; ∆St|∆St−1) is shown in figure 3.2, similarly as the case at hourly frequency.

Moreover, the majority of the total information transfer, which is measured by KSG estimates

of the CTE, can be captured by the linear-Gaussian model.

Insert table 3.2 about here

Insert figure 3.2 about here
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3.6.2 Transfer Entropy, Auto-Information-Transfer and Predictive Power

Having studied the contemporaneous explanatory power of various factors, now we are going

to investigate the out-of-sample predictability of exchange rates. As we have discussed, time

series predictability depends on the information transfer from factors X
(k)
t and historical move-

ments ∆S
(k)
t to the future return in the next period, ∆St+1. We have argued that based on

Shannon’s channel coding theorem, the correct information transfer is measured by mutual infor-

mation I(X
(k)
t ,∆S

(k)
t ; ∆St+1). For any model based on X

(k)
t and ∆S

(k)
t , I(X

(k)
t ,∆S

(k)
t ; ∆St+1)

is the upper bound of the predictive power. Therefore, as a measure of the predictability,

mutual information I(X
(k)
t ,∆S

(k)
t ; ∆St+1) is independent from the economic model or econo-

metric method adopted for forecasting. Empirically, we will estimate Transfer Entropy (TE)

I(X
(k)
t ; ∆St+1|∆S

(k)
t ) and Auto-Information-Transfer (AIT) I(∆S

(k)
t ; ∆St+1). They calibrate

the predictive power of two different sources: the chosen factors X and historical movements

of the exchange rate. The other advantage of our method is that information transfer can

be estimated based on the nonparametric method as well as the linear-Gaussian method. In

such way, the performance of the linear-Gaussian model can be compared with that of the

optimal scenario. For instance, what fraction of the total information can be harnessed by the

frequently-used linear model?

For the predictability at the hourly frequency, the estimates of TE and AIT with k = 1 are

reported in table 3.3. In the first two subsections of this table, we have the Gaussian and KSG

estimates of TE, and the last two subsections show the Gaussian and KSG estimates of AIT.

The subscript G in table 3.3 indicates the Gaussian estimate of TE (or AIT), which measures

the predictive power of the linear-Gaussian model based on factors X (or the historical returns

∆S
(k)
t ). The KSG estimate of TE (or AIT) is the non-parametric model-independent estimation

of information transfer, it quantifies the maximum predictive power of factors X (or ∆S
(k)
t ) for

the future return.

The first subsection of table 3.3 shows that the Gaussian estimates TEG,lo are not significant

from zero in eight out of thirteen cases. For market order flow, mo, and their combination, molo,

roughly half of the exchange rates have statistically significant Gaussian estimates TEG,mo and

TEG,molo. However, their values are very small, at the order of magnitude of 0.0001 nats or even
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smaller. As we have discussed, the contemporaneous information transfer (CTE) from mo and lo

to the exchange rate are at the order of magnitude of 0.1 nats and 0.01 nats, respectively, which

concrete the levels of “large” and “small” information transfer. Compared to these yardsticks,

0.0001 nats is 1000 and 100 times smaller. Hence we think it is safe to say that the Gaussian

estimates of TE are not economically significant. In other words, at the hourly frequency, the

linear-Gaussian model based on limit and market order flow has negligible predictive power.

The model-independent KSG estimates of TE I(X
(k)
t ; ∆St+1|∆S

(k)
t ) with k = 1 are reported in

the second subsection of table 3.3. It can be easily observed that KSG estimates are greater

than their Gaussian counterparts, which is consistent with our expectation. For mo and molo,

more than half of the KSG estimates of TE are statistically significant, and roughly at the order

of magnitude of 0.01 nats. Remember that in the previous subsection, the CTE of lo is also

approximately 0.01 nats. Therefore, for these exchange rates with significant TEmo/TEmolo, the

optimal model based on mo or molo has small predictive power. The optimal model can fully

exploit the information contained in mo or molo about the future exchange rate movements.

However, the specification of the optimal model is beyond the scope of this paper. Our method

evaluate the predictability but does not show the specification of the optimal model. However,

we do know that the linear model has already been excluded. By comparing the KSG estimates

with their linear-Gaussian counterparts, we see that the linear-Gaussian model merely captures

a very small fraction of the total information transfer.

Now let’s look into the predictability based on the historical returns. The Gaussian and KSG

estimates of AIT I(∆S
(k)
t ; ∆St+1) with k = 1 are presented in the last two subsections of table

3.3. The p-values suggest that they are all significantly different from zero. It means that at the

hourly frequency, the time series of the exchange rate returns have strong interdependence across

time. Another thing to notice is that there is an enormous difference between the magnitudes

of Gaussian and KSG estimates of AIT. The Gaussian estimates of AIT are at the order of

magnitude of 0.001 nats, which suggests that the predictive power of the linear model based

on historical exchange rate movements is very small. In comparison, the KSG estimates are at

the order of magnitude of 0.1 or even 1 nats, which are 100 times greater than the Gaussian

estimates. Compared to the CTE benchmarks, the information transfer from ∆S
(k)
t to ∆St+1

is very large, generally speaking. Therefore, at the hourly frequency, the exchange rates are
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predictable using the optimal model based on its historical returns. On the other hand, the

Gaussian estimates of AIT indicate that the predictive power of the linear model is 100 times

smaller than the optimal model. In other words, the frequently-used linear-Gaussian model

fails to capture most of the predictive power of the historical returns. The optimal forecasting

model must be nonlinear. However, once again, our approach just examines the predictability

and the existence of the optimal model, but not its specification.

Insert table 3.3 about here

Before we move to discuss the results at the daily and monthly frequency, we should point

out that since the estimates of these information measures are carried out using numerical

method, there would be small numerical errors incurred in the numerical computation process.

Therefore it could be the case that the true value is zero, and its numeric estimate is zero

plus some small numerical errors, positive or negative. In this case, the estimate could be a

small negative value. Since we believe all numerics should be faithfully reported, we will not

automatically correct these small negative estimates and set them as zero. The way we cope with

this issue is based on the statistical significance test: if the small negative value is negative but

not significantly different from zero at all, there is nothing to worry about. The non-significant

negative value is not due to something fundamentally incorrect. As with any numerical method,

statistical/econometric estimation incurs small numerical error as well. There is no need to feel

alerted here. The small numerical error is inevitable for any empirical studies.

With respect to the predictability at the daily frequency, the forecasting factors are interest rate

differential IR, market order flow mo, and their combination, denoted as moIR. The estimates

are summarized in table 3.4. In the first subsection of table 3.4, the Gaussian estimates of TE

are very small, roughly at the order of magnitude of 0.0001 nats, and not statistically significant,

which suggests that it is impossible to predict exchange rate using the linear-Gaussian model

with mo and IR as predictors. On the other hand, the KSG estimates in the second subsection

of table 3.4 indicate that TEIR is at the order of magnitude of 0.01 nats and statistically

significant for most of the exchange rates, while TEmo is generally not significant. Hence for

these exchange rates with significant TEIR, there exists an optimal model based on IR with
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small predictive power at the daily frequency. However, none of the model based on mo has

any predictive power.

For the auto-predictive power at the daily frequency, some of the Gaussian estimates of AIT are

significantly different from zero, but their values are too small to be economically significant.

Moreover, the majority of the KSG estimates of AIT are not significant, which suggests that at

the daily frequency, the historical observations of the exchange rate have no predictive power

for its future movement. This is consistent with the stylized empirical fact that daily returns

are not serially correlated across time. However, there is an astronomical difference between

the time series predictability at the hourly and daily frequency. The time series of exchange

rates are systematically predictable at the hourly frequency, but not at the daily frequency. It

is mainly due to the disappearance of the statistical dependence across time when the sampling

frequency moves from hourly to daily. In a word, the time series predictability is not time scale

invariant.

Insert table 3.4 about here

At the monthly frequency, the macroeconomic fundamentals for forecasting are the differentials

of interest rate (IR), inflation (IF ), money growth M , and industrial production prod. As we

have discussed, the log difference of monetary supply is non-stationary for some exchange rates.

Hence we will use the difference in the growth rate of monetary supply instead. For the similar

reason, the difference of inflation is adopted as a forecasting factor, rather than the difference

of price level. Another relevant issue is the length of the time series. In our dataset, every time

series sampled at the monthly frequency has 408 observations in the thirty-four-year sample

period. The number of the observations is not ideal for nonparametric estimation, but the

empirical estimates seem reasonable, as we will see soon. The caveat for working with quarterly

or even annually data is that the time series with merely 100 or 40 observations may be too

short for reliable nonparametric estimation of the mutual information.

Table 3.5 reports the predictability of ten different exchange rates at the monthly frequency.

The estimates of Transfer Entropy (TE) are labeled with subscripts 1 to 4, which correspond

to four different sets of factors: {IR}, {IR and IF}, {IR, IF and M}, {IR, IF , M and
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prod}, respectively. For the estimation of information transfer, similar as before, two different

methods are used: the linear-Gaussian model and model-independent KSG method. In table

3.5, the results with subscript G are the Gaussian estimates, and the rest of them are the KSG

estimates.

Insert table 3.5 about here

The following conclusion can be drawn with respect to the predictability at the monthly frequen-

cy. First of all, based on the Gaussian estimates of the Transfer Entropy (TE), the predictive

power of the linear-Gaussian model is not statistically significant for every single exchange rate.

It explains why it is very hard for the linear model to outperform the random walk benchmark,

i.e., the Meese and Rogoff puzzle. Second, most of the model-independent KSG estimates are

actually significant, especially when all the fundamentals are included. The KSG estimates of

TE are at the order of magnitude of 0.01 nats, which suggests that the optimal forecasting

model would have small predictive power for the future exchange rate return. But the p-values

suggest that the exchange rates are not predictable systematically. Statistical significance of

the predictive power depends on the specific currency pairs. Third, comparing the Gaussian

and KSG estimates, we can tell that the linear model actually fails to capture most of the in-

formation transfer, as the cases at the hourly and daily frequency. Furthermore, regarding the

predictive power of the historical returns, most of the AIT estimates are not significant. The

only exception is the exchange rate of Swedish Krona/U.S. Dollar (SEK). Therefore, there is

no statistical dependence cross time the at the daily and monthly frequency, but at the hourly

frequency, the time series are highly interdependent.

To summarize, our empirical results suggest that time series predictability of the exchange rates

are frequency dependent: they are not systematically predictable at the daily and monthly fre-

quency, but at a higher frequency, such as the hourly frequency, they are predictable. The

strong intraday predictive power mainly comes from the historical observations of the exchange

rate. Meanwhile, we also document that the intraday market order flow has small but signif-

icant predictive power. The intraday results indicate that there exists an optimal model that

can predict exchange rates systematically. Its specification is beyond the scope of this study, al-

80



though we do know that it should be nonlinear, because the Gaussian estimates of AIT and TE

suggest that the forecasting performance of the linear-Gaussian model is generally quite poor.

The frequently-used linear-Gaussian model fails to exploit most of the information transferred

across time. At daily and monthly frequency, for more than half of the exchange rates, the

macroeconomic fundamentals have small predictive power for some exchange rates. However,

the linear model is suboptimal and does not have significant predictive power.

Once we have established there is non-linear stability, the next step is to carry out forecasting

exercise using various non-linear models. The investigation of the best non-linear model for

forecasting exchange rate is beyond the scope of this study. However, as we have mentioned,

the upper bound of predictability estimated with our method should be used as the benchmark

to evaluate forecasting models.

3.7 Conclusions and Discussion

We propose a model-independent nonparametric method to examine the predictability of any

time series. This paper studies the time series predictability in the context of exchange rates,

because their out-of-sample predictability has puzzled the researchers for several decades. In-

tuitively, in order to predict exchange rate systematically, the predictors should contain enough

information about the future movement of the exchange rate. The information transfer from

predictors to the future exchange rate movement is measured by their mutual information,

which also acts as the upper bound of the predictive power of any model based on the same

set of predictors. Empirically, we show that the exchange rates are predictable at the hourly

frequency, but not at the daily and monthly frequency. The intraday predictability mainly

comes from the historical observations of the exchange rate itself. For the predictability at dai-

ly and monthly frequency, the information transfer from historical returns to the future return

is not statistically different from zero, which means the exchange rate movements are statis-

tically independent across time. However, for some currency pairs, there is small information

transfer from macroeconomic fundamentals to the future exchange rate movement. It depends

on the specific exchange rates, and they are not predictable systematically. The frequently used

linear-Gaussian model has very poor forecasting performance, because it fails to capture most

81



of the information transfer across time. It explains why it is so hard for the linear forecasting

models to outperform the random walk benchmark. The optimal forecasting model should be

nonlinear.

Last but not least, let’s discuss the contributions and potential applications of our nonparamet-

ric method based on information theory. First, it introduces a model-independent methodology

to examine the predictability of time series, once the set of predictors is given. The predictabil-

ity can be evaluated using this approach, before one starts to try various forecasting models,

because statistically significant information transfer is the necessary condition for the out-of-

sample predictability. If there is no significant information transfer, the fruitless effort of testing

various economic or econometric models can be avoided. Second, our method is very useful for

predictor selection. One should choose the predictors with significant information transfer and

discard those with no information transfer. Third, the methodology proposed in this paper is

not limited to the predictability of exchange rates. It is also applicable to other financial or

economic predictability questions, for example, the predictability of stock returns, or any other

economic/financial time series. The only caveat is that there should be enough data points

in the sample, in order for the nonparametric estimation to work properly. Fourth, although

the method does not directly show us how to predict, it can provide some useful guidance: for

instance, does the linear model have good forecasting performance? What is the upper bound of

the predictive power? Has the model reached the upper limit, or is there any room for improve-

ment? Moreover, our method is useful for comparing the forecasting performance of the models

(model selection): the model f with information transfer I(f(X
(k)
t ,∆S

(k)
t ); ∆St+1) closer to

the upper limit I(X
(k)
t ,∆S

(k)
t ; ∆St+1) must have better forecasting performance. Therefore the

pecking order of the models can be established by comparing the rates of information transfer.

Moreover, another potential application of our method is parameter estimation: one can esti-

mate the parameters of the forecasting model based on the “principle of maximum information

transfer”. To be more specific, once the model and the predictors are selected, one can search

for the ‘optimal’ values of the parameters by maximizing the information transfer from model

f to the future return.
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3.8 Appendix: Mechanism of Noisy Channel Communication

In this paper, we want to link the theory of channel communication and information transfer

to the predictability of time series. To see the relevance, let’s we briefly discuss the mechanism

of information transfer through a noisy channel.

A noisy channel has two ends, one is input Y , and the other is output Z. The output Z and the

input Y must be statistically dependent (P (Y, Z) 6= P (Y )P (Z)), otherwise it is not possible to

communicate through this channel at all. Assume the encoder at the input end needs to send

a message to the receiver. He encodes the message into a length-n string of source symbols

Yn, and send these symbols one by one through the noisy channel. The receiver at the other

end will receive a length-n string of symbols Zn, then try to decode Zn in order to recover the

original message Yn. To be more concrete, in the digital age, the source symbols Yn and the

received symbols Zn can be long strings of 1s and 0s, such as 010100111001001... The noisy

channel can be a copper wire, or a wireless network connecting two devices; and the message

can be the content of a book, a movie, or a piece of music.

Communication via a perfect channel is easy, the receiver would obtain the exact symbol/signal

sent by the encoder: for instance, if encoder sends 1 via the perfect channel, the receiver will

get 1 for sure. There will be no distortion. Hence the receiver on the end of the perfect channel

can recover the original message effortlessly. However, the practical problem is that in the real

world, all the communication channels are noisy. The received symbols Zn are subjected to

some distortion: Zn 6= Yn. For example, when the encoder sends a particular symbol from one

end, say y = 1, instead of receiving the exact same signal with certainty, the output end may

receive something different, z = 0, with a certain probability. This is clearly an error. Due to

the noise and distortion in the communication channel, the received symbols Zn will never be

exactly the same as the source symbol Yn, hence the decoder may never recover the original

message sent by the encoder. Considering the unfortunate fact that all communication channels

in the real world are inherently noisy, reliable error-free communication was once thought as

impossible, until Shannon’s channel coding theorem pointed out the right direction.

Shannon’s great insight is that even though a channel is noisy, through which error-free com-

munication is still achievable, as long as the information transmission rate, which is defined as
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the amount of information per source symbol (bits per source symbol), is lower than a certain

bound, also known as the channel capacity. Shannon showed that the channel capacity of the

noisy channel Y to Z is measured by the mutual information between Y and Z: I(Y ;Z)2.

Mutual information I(Y ;Z) acts as the upper bound of the transmission rate is due to the fact

that for a given channel Y to Z, the encoder of the message alway has the flexibility of lowering

the information rate in his source symbols Yn, just by adding more redundancy. However, if

one tries to transfer information at a rate greater than the channel capacity, the probability

of error at the receiver end would go to one exponentially fast, as the length of the symbols

goes to infinity. Reliable information transmission is infeasible at any rate greater than the

channel capacity I(Y ;Z). This is the channel coding theorem. To understand this point from

more fundamental principles, one needs to know the concepts of the asymptotic equipartition

property (AEP) and the Joint Typicality. Due to the limited space of our study, we refer the

reader to the monographs for more detailed discussion, such as Gray (2011), Cover and Thomas

(2006).

2More precisely, in information theory, the channel capacity is maxp(y) I(Y ;Z). It is because when communi-
cating through channel Y to Z, the sender has the flexibility of choosing the most favorable p(Y ) to maximize
I(Y ;Z), in order to maximize the information transmission rate of this channel. On the other hand, the condition-
al probability p(Z|Y ) is the intrinsic property of the noisy channel Y to Z. Therefore, p(Z|Y ) is predetermined
and not adjustable.
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Table 3.1: Explanatory power at the hourly frequency: Contemporaneous Transfer Entropy and R2

k = 1 AUD CAD EUR
EUR
GBP

EUR
NOK

EUR
SEK GBP HKD JPY MXN NZD SGD ZAR

CTEG,lo 0.0096 0.0143 0.0256 0.0132 0.0021 0.0016 0.0200 0.0015 0.0032 0.0021 0.0053 0.0021 0.0006
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
R2
lo 0.0191 0.0283 0.0505 0.0252 0.0041 0.0031 0.0395 0.0029 0.0066 0.0042 0.0107 0.0043 0.0012

adj R2
lo 0.0191 0.0283 0.0505 0.0252 0.0041 0.0031 0.0395 0.0028 0.0066 0.0042 0.0107 0.0042 0.0011

CTEG,mo 0.1797 0.1615 0.1417 0.0499 0.1368 0.1390 0.1496 0.1360 0.0261 0.0772 0.1058 0.1584 0.1423
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
R2
mo 0.2995 0.2751 0.2430 0.0898 0.2365 0.2415 0.2560 0.2311 0.0497 0.1438 0.1878 0.2669 0.2432

adj R2
mo 0.2995 0.2751 0.2430 0.0898 0.2365 0.2415 0.2560 0.2311 0.0496 0.1437 0.1878 0.2669 0.2432

CTEG,molo 0.1973 0.1838 0.1543 0.0543 0.1378 0.1405 0.1624 0.1408 0.0291 0.0781 0.1143 0.1656 0.1435
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
R2
molo 0.3240 0.3068 0.2627 0.0976 0.2379 0.2437 0.2752 0.2383 0.0556 0.1453 0.2015 0.2771 0.2451

adj R2
molo 0.3239 0.3068 0.2626 0.0976 0.2379 0.2437 0.2752 0.2383 0.0556 0.1453 0.2015 0.2771 0.2451

CTElo 0.0335 0.0375 0.0573 0.0484 0.0234 0.0196 0.0477 0.0317 0.0403 0.0341 0.0219 0.0247 0.0194
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

CTEmo 0.2579 0.2085 0.1683 0.1379 0.1924 0.1929 0.1996 0.1741 0.0576 0.1698 0.1404 0.1960 0.2095
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

CTEmolo 0.2981 0.2717 0.1995 0.1586 0.2131 0.2252 0.2342 0.2190 0.0852 0.1934 0.1673 0.2398 0.2457
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

The contemporaneous explanatory power at the hourly frequency. We estimate the Contemporaneous Transfer
Entropy (CTE) of the following factors X: limit order flow (lo) and market order flow (mo), and their combination
(molo). There are thirteen exchange rates in the sample. The first three subsections report the Contemporaneous
Transfer Entropy I(Xt ; ∆St|∆St−1) estimated using the linear-Gaussian model, and R2 of the linear regression
∆St = α+βXt+εt. The Gaussian estimates are labeled with subscript G. In the last three subsection of the table,
Contemporaneous Transfer Entropy I(Xt ; ∆St|∆St−1) is estimated using KSG method. The p-value is calculated
using the empirical distribution of CTE estimates based on the simulated samples under the null hypothesis that
there is no information transfer. The number of the simulated samples is S = 1000.
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Table 3.2: Explanatory power at the daily frequency: Contemporaneous Transfer Entropy and R2

k = 1 AUD CAD CHF EUR
EUR
CHF

EUR
GBP

EUR
NOK

EUR
SEK GBP HKD JPY MXN NZD SGD ZAR

CTEG,IR 0.0003 0.0011 0.0000 0.0003 0.0000 0.0000 0.0001 0.0000 0.0012 0.0009 0.0000 0.0000 0.0012 0.0001 0.0001
p-value 0.1830 0.0180 0.8480 0.2400 0.7720 0.6270 0.4240 0.6260 0.0090 0.0510 0.8430 0.9410 0.0070 0.6000 0.5420
R2
IR 0.0006 0.0020 0.0000 0.0006 0.0000 0.0001 0.0003 0.0001 0.0025 0.0016 0.0000 0.0000 0.0024 0.0001 0.0001

adj R2
IR 0.0002 0.0016 -0.0004 0.0001 -0.0004 -0.0003 -0.0001 -0.0004 0.0021 0.0011 -0.0004 -0.0004 0.0020 -0.0003 -0.0003

CTEG,mo 0.1725 0.1611 0.0073 0.1925 0.0274 0.0850 0.1513 0.1214 0.1864 0.1164 0.0332 0.0470 0.1291 0.1546 0.1488
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
R2
mo 0.2875 0.2684 0.0145 0.3165 0.0532 0.1590 0.2595 0.2148 0.3127 0.2049 0.0604 0.0915 0.2261 0.2638 0.2563

adj R2
mo 0.2872 0.2681 0.0141 0.3162 0.0528 0.1586 0.2592 0.2145 0.3125 0.2046 0.0600 0.0911 0.2258 0.2635 0.2560

CTEG,moIR 0.1727 0.1632 0.0075 0.1933 0.0276 0.0867 0.1519 0.1226 0.1931 0.1191 0.0333 0.0475 0.1329 0.1552 0.1511
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
R2
moIR 0.2878 0.2709 0.0149 0.3177 0.0535 0.1618 0.2604 0.2167 0.3220 0.2089 0.0604 0.0923 0.2316 0.2647 0.2599

adj R2
moIR 0.2873 0.2703 0.0140 0.3171 0.0527 0.1611 0.2598 0.2160 0.3214 0.2082 0.0596 0.0915 0.2310 0.2641 0.2593

CTEIR 0.0485 0.0131 0.0077 0.0383 0.0374 0.0337 0.0292 0.0461 0.0111 0.0390 0.0206 0.0406 0.0201 0.0150 0.0170
p-value 0.0000 0.0910 0.2460 0.0020 0.0000 0.0020 0.0070 0.0000 0.1360 0.0000 0.0240 0.0000 0.0330 0.0810 0.0800

CTEmo 0.2803 0.2062 0.0072 0.2247 0.0784 0.0959 0.1861 0.1539 0.2349 0.1110 0.0318 0.1173 0.1718 0.2069 0.1883
p-value 0.0000 0.0000 0.2170 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0040 0.0000 0.0000 0.0000 0.0000

CTEmoIR 0.3426 0.2490 0.0470 0.2806 0.1228 0.1428 0.2059 0.1780 0.2607 0.1282 0.0843 0.1457 0.1935 0.2584 0.2470
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

The contemporaneous explanatory power at the daily frequency. We estimate the Contemporaneous Transfer Entropy
(CTE) of the following factors X: market order flow (mo), interest rate differential (IR), and their combination
(moIR). There are fifteen exchange rates in the sample. The first three subsections report the Contemporaneous
Transfer Entropy I(Xt ; ∆St|∆St−1) estimated using the linear-Gaussian model, and R2 of the linear regression
∆St = α+ βXt + εt. The Gaussian estimates are labeled with subscript G. In the last three subsection of the table,
Contemporaneous Transfer Entropy I(Xt ; ∆St|∆St−1) is estimated using KSG method. The p-value is calculated
using the empirical distribution of CTE estimates based on the simulated samples under the null hypothesis that
there is no information transfer. The number of the simulated samples is S = 5000.
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Table 3.3: Predictive power at the hourly frequency: Transfer Entropy and AIT

k = 1 AUD CAD EUR
EUR
GBP

EUR
NOK

EUR
SEK

GBP HKD JPY MXN NZD SGD ZAR

TEG,lo 0.0000 0.0000 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000
p-value 0.0760 0.0250 0.0010 0.0000 0.0160 0.1250 0.4890 0.0700 0.0000 0.0680 0.5470 0.2000 0.1040
TEG,mo 0.0000 0.0001 0.0002 0.0006 0.0000 0.0000 0.0001 0.0001 0.0000 0.0001 0.0001 0.0000 0.0000
p-value 0.8680 0.0010 0.0000 0.0000 0.6450 0.2990 0.0000 0.0010 0.4070 0.0090 0.0020 0.4180 0.3650
TEG,molo 0.0000 0.0001 0.0003 0.0006 0.0001 0.0000 0.0001 0.0002 0.0002 0.0001 0.0001 0.0000 0.0000
p-value 0.2080 0.0010 0.0000 0.0000 0.0400 0.1800 0.0000 0.0040 0.0030 0.0140 0.0020 0.3810 0.1840

TElo 0.0111 0.0115 0.0011 0.0113 0.0056 0.0083 0.0022 0.0038 -0.0015 0.0101 0.0084 -0.0029 0.0066
p-value 0.0000 0.0000 0.3210 0.0000 0.0220 0.0030 0.1570 0.0060 0.6720 0.0000 0.0000 0.7730 0.0080
TEmo 0.0104 0.0111 0.0061 0.0097 0.0098 0.0110 0.0077 -0.0015 0.0022 0.0092 0.0021 -0.0018 0.0099
p-value 0.0000 0.0000 0.0100 0.0000 0.0000 0.0000 0.0000 0.2750 0.2340 0.0000 0.1700 0.6430 0.0000
TEmolo 0.0071 0.0164 0.0069 0.0108 0.0084 0.0111 0.0116 0.0027 0.0065 0.0146 0.0024 0.0021 0.0096
p-value 0.0040 0.0000 0.0100 0.0000 0.0010 0.0000 0.0000 0.0770 0.0240 0.0000 0.1820 0.2010 0.0010

AITG 0.0005 0.0007 0.0009 0.0107 0.0034 0.0018 0.0004 0.0044 0.0011 0.0051 0.0015 0.0019 0.0014
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AIT 0.8595 1.0769 0.7142 1.0352 0.3866 0.4656 0.6442 2.2566 0.2856 0.1510 0.9598 1.2745 0.1260
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

The predictive power at the hourly frequency. The factors X are limit order flow (lo), market order
flow (mo), and their combination (molo). In total, there are thirteen exchange rates in the sample. This

table reports the estimates of Transfer Entropy (TE) I(X
(k)
t ; ∆St+1|∆S

(k)
t ) and Auto-Information-Transfer

(AIT) I(∆S
(k)
t ; ∆St+1). The first two subsections of this table contain the Gaussian and KSG estimates of

TE, and the lasts two subsections show the Gaussian and KSG estimates of AIT. The Gaussian estimates
are labeled with subscript G. The p-value is calculated using the empirical distribution of CTE/AIT
estimates based on the simulated samples under the null hypothesis that there is no information transfer.
The number of the simulated samples is S = 1000.
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Table 3.4: Predictive power at the daily frequency: Transfer Entropy and AIT

k=1 AUD CAD CHF EUR
EUR

CHF

EUR

GBP

EUR

NOK

EUR

SEK
GBP HKD JPY MXN NZD SGD ZAR

TEG,IR 0.0003 0.0008 0.0000 0.0003 0.0000 0.0001 0.0004 0.0000 0.0012 0.0006 0.0000 0.0000 0.0011 0.0001 0.0001

p-value 0.1867 0.0337 0.9433 0.2497 0.8900 0.5860 0.1800 0.6827 0.0077 0.0970 0.8730 0.9370 0.0160 0.5233 0.5463

TEG,mo 0.0000 0.0000 0.0003 0.0001 0.0000 0.0002 0.0003 0.0000 0.0000 0.0001 0.0002 0.0013 0.0002 0.0007 0.0001

p-value 0.9753 0.9503 0.2450 0.4693 0.9173 0.2840 0.2177 0.7447 0.9450 0.5863 0.3930 0.0133 0.2640 0.0690 0.5043

TEG,moIR 0.0003 0.0008 0.0003 0.0005 0.0000 0.0003 0.0008 0.0001 0.0012 0.0007 0.0002 0.0014 0.0014 0.0008 0.0002

p-value 0.4430 0.1117 0.4880 0.3547 0.9837 0.4270 0.1540 0.8630 0.0353 0.2077 0.6690 0.0533 0.0253 0.1680 0.6007

TEIR 0.0468 0.0128 0.0137 0.0362 0.0312 0.0341 0.0368 0.0464 0.0134 0.0252 0.0228 0.0339 0.0304 0.0224 0.0119

p-value 0.0000 0.1283 0.1140 0.0013 0.0040 0.0007 0.0017 0.0000 0.1023 0.0117 0.0210 0.0033 0.0027 0.0187 0.1633

TEmo 0.0050 -0.0113 -0.0007 -0.0135 -0.0077 0.0179 0.0165 0.0036 0.0229 0.0108 0.0084 -0.0045 -0.0086 0.0117 -0.0069

p-value 0.3257 0.8373 0.5143 0.8740 0.7550 0.0577 0.0903 0.3773 0.0220 0.1783 0.2417 0.6310 0.7687 0.1453 0.7240

TEmoIR 0.0239 0.0366 0.0235 0.0245 0.0362 0.0576 0.0198 0.0463 0.0140 0.0238 0.0032 0.0137 0.0280 0.0165 0.0191

p-value 0.0117 0.0000 0.0183 0.0210 0.0003 0.0000 0.0487 0.0003 0.1033 0.0193 0.4063 0.1247 0.0077 0.0797 0.0527

AITG 0.0009 0.0006 0.0002 0.0000 0.0003 0.0018 0.0001 0.0008 0.0012 0.0011 0.0035 0.0019 0.0001 0.0004 0.0003

p-value 0.0263 0.0697 0.3527 0.7257 0.2297 0.0017 0.4827 0.0457 0.0097 0.0343 0.0000 0.0067 0.5997 0.2010 0.2150

AIT -0.0087 0.0221 -0.0196 0.0033 0.1030 0.0144 0.0119 0.0143 0.0240 0.1155 0.0046 0.0305 0.0219 0.0484 0.0188

p-value 0.7290 0.0523 0.9157 0.4027 0.0000 0.1527 0.2157 0.1640 0.0453 0.0000 0.3777 0.0233 0.0613 0.0017 0.1220

The predictive power at the daily frequency. The factors X are market order flow (mo), interest rate differential
(IR) and their combination (moIR). In total, there are fifteen exchange rates in the sample. This table

reports the estimates of Transfer Entropy (TE) I(X
(k)
t ; ∆St+1|∆S

(k)
t ) and Auto-Information-Transfer (AIT)

I(∆S
(k)
t ; ∆St+1). The first two subsections of this table contain the Gaussian and KSG estimates of TE, and

the lasts two subsections show the Gaussian and KSG estimates of AIT. The Gaussian estimates are labeled
with subscript G. The p-value is calculated using the empirical distribution of CTE/AIT estimates based on the
simulated samples under the null hypothesis that there is no information transfer. The number of the simulated
samples is S = 5000.
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Table 3.5: Predictive power at the monthly frequency: Transfer Entropy and AIT

k=1 AUD CAD CHF DKK GBP JPY NOK NZD SEK ZAR

TE1,G 0.00000 0.00013 0.00551 0.00256 0.00562 0.00650 0.00007 0.00191 0.00015 0.00032
p-value 0.99760 0.74020 0.03600 0.15020 0.03620 0.01940 0.81340 0.20580 0.72380 0.60920
TE2,G 0.00420 0.00380 0.00760 0.00552 0.00603 0.00654 0.00088 0.00219 0.00148 0.00167
p-value 0.18720 0.21420 0.05160 0.10300 0.09180 0.06800 0.66940 0.41180 0.54040 0.51033
TE3,G 0.00427 0.00384 0.00849 0.00820 0.00616 0.00659 0.00107 0.00221 0.00148 0.00179
p-value 0.32840 0.36840 0.07920 0.07480 0.16140 0.13900 0.82540 0.60900 0.75260 0.68340
TE4,G 0.00572 0.00450 0.00851 0.00976 0.01119 0.00913 0.00139 0.00829 0.00732 0.00594
p-value 0.31640 0.46240 0.15240 0.08400 0.05840 0.09560 0.88000 0.13140 0.19560 0.28880

TE1 0.01474 -0.02085 0.01891 0.05923 0.02053 0.01388 0.02939 0.03278 0.09616 0.05617
p-value 0.26640 0.79960 0.22100 0.00660 0.20080 0.27280 0.11320 0.07780 0.00000 0.00940
TE2 0.06852 0.02299 0.05210 0.02593 0.06184 -0.03029 0.02317 0.03203 0.06405 0.05184
p-value 0.00400 0.16000 0.01800 0.14000 0.00920 0.90120 0.16860 0.09220 0.00720 0.01620
TE3 0.06966 0.02396 0.04308 0.02870 0.05503 -0.01664 0.06946 0.07774 0.05004 0.03586
p-value 0.00180 0.14560 0.03900 0.11860 0.01180 0.75140 0.00220 0.00080 0.01920 0.05220
TE4 0.04426 0.02560 0.05851 0.05260 0.06348 0.03241 0.05298 0.10281 0.07616 0.03135
p-value 0.03040 0.13280 0.00620 0.01280 0.00420 0.07380 0.00900 0.00000 0.00040 0.07660

AITG 0.00227 0.00190 0.00040 0.00137 0.00364 0.00132 0.00063 0.00001 0.00600 0.00095
p-value 0.17620 0.20680 0.57880 0.28560 0.08560 0.30700 0.47440 0.94040 0.02280 0.36220

AIT -0.03457 -0.03031 0.06653 0.02035 -0.05336 0.01516 0.00656 -0.03054 0.05755 -0.02215
p-value 0.85380 0.81620 0.03060 0.25680 0.95140 0.31620 0.41460 0.82700 0.04920 0.74780

The predictive power at the monthly frequency. The macroeconomic fundamentals are the interest rate (IR),
inflation (IF ), money growth M , and industrial production differentials prod. The estimates of the Transfer
Entropy (TE) and Auto-Information-Transfer (AIT) are labeled with subscripts 1 to 4, which corresponds to
four different sets of factors: {IR}, {IR and IF}, {IR, IF and M}, {IR, IF , M and prod}, respectively.
There are ten exchange rates in the sample. This table reports the estimates of Transfer Entropy (TE)

I(X
(k)
t ; ∆St+1|∆S

(k)
t ) and Auto-Information-Transfer (AIT) I(∆S

(k)
t ; ∆St+1). The first two subsections of the

table contain the Gaussian and KSG estimates of TE, and the lasts two subsections show the Gaussian and
KSG estimates of AIT. The Gaussian estimates are labeled with subscript G. The p-value is calculated using
the empirical distribution of CTE/AIT estimates based on the simulated samples under the null hypothesis
that there is no information transfer. The number of the simulated samples is S = 5000.
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Figure 3.1: The equivalence between R2 and Gaussian estimate of CTE at the hourly frequency
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The three figures show the linear equivalence between the Gaussian estimates of Contemporaneous Transfer
Entropy (CTE) I(Xt ; ∆St|∆St−1) and R2 of the linear regression ∆St = α+ βXt + εt at the hourly frequency.
The factors X are limit order flow (lo), market order flow (mo), and their combination (molo). The coordinates
are the Gaussian estimates of CTE and linear regression R2 reported in table 3.1.

Figure 3.2: The equivalence between R2 and Gaussian estimate of CTE at the daily frequency
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The three figures show the linear equivalence between the Gaussian estimates of Contemporaneous Transfer
Entropy (CTE) I(Xt ; ∆St|∆St−1) and R2 of the linear regression ∆St = α + βXt + εt at the daily frequency.
The factors X are market order flow (mo), interest rate differential (IR) and their combination (moIR). The
coordinates are the Gaussian estimates of CTE and linear regression R2 reported in table 3.2.
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Chapter 4

Transient and Permanent Jumps in

the High Frequency Data

4.1 Introduction

In recent years, market participants and media often complain that the financial markets have

become more and more unstable, and accuse the high frequency traders of causing it, especially

after the Flash Crash, which the U.S. financial markets experienced on May 6, 2010. The

heated debate is related to the issue of market quality and stability. There are two pressing

questions need to be investigated in a scientific and objective way: whether the financial markets

have become more stable or unstable, and if the high frequency trading is responsible for it?

The extreme transient price jumps reflect the unnecessary price and market instability. Their

prevalence is a manifestation the low market quality. In this paper, we will answer these

questions by empirically identifying all the transient and permanent jumps in the U.S. common

shares of recent twenty years, then aggregate the data into jump-related quantities and study

the evolution of these properties over time, in the presence of several separate cross-sections of

firms.

The stock price can be viewed as a process consisting of two components: continuous price

movement in addition to a discontinuous jump component. The jump component of the stock

price can be either permanent or transient. The permanent ones are caused by arrivals of new
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information: such as the press releases from the Federal Reserve, earning announcements of the

companies, and critical political events, etc. Theoretically speaking, when the relevant news hit

the markets, the asset price will incorporate the news immediately, such that the price reflects

all the available information (Fama 1970, Malkiel 2003). At the moment of news arrival, the

asset price would adjust accordingly and jump to the new fair value of the asset. In contrast, the

transient price jump does not result from the arrival of any relevant information. The dramatic

oscillation of stock price does not reflect the changes in the fundamental value of underlying

asset price. Therefore the disturbance in the price should not be permanent. The transient

jump is actually the extreme case of price instability. A notable example of the transient jumps

is the 2010 Flash Crash, during which S&P 500, Dow Jones Industrial Average and Nasdaq

Composite, collapsed and rebounded very rapidly. The whole process lasted for approximately

36 minutes, after which the market indexes roughly recovered to their original values.

While permanent jump is resulted from information arrival, the transient jump without any

fundamental reason is the kind of risk that bothers market participants, especially when they

happen systematically across the markets, such as the Flash Crash. The existence of frequent

or systematic large transient jumps indicates that the markets are fragile and dysfunctional.

The price would deviate significantly from the market consensus all of a sudden for no apparent

reason, so the price cannot reflect the fair value of the fundamentals. At the same time, the

transient jumps can be seen as a source of unnecessary risk and price instability that the market

participants abhor. Transient extreme price movements could harm the investors if the price

that their trades locks in happens to be much worse than the fair value. The prevalence of

transient jumps reflects low market quality, which would harm the investors’ confidence.

The market participants are worried about an increase in so-called “mini flash crashes”, the

dramatic transient price jumps in individual stocks. For instance, an article of from the media

USA today writes (“Mini flash crashes worry traders”, USA today, May 17, 2011): “Mini flash

crashes still occur routinely with individual stocks ... Despite efforts to prevent another flash

crash, the infamous day on May 6, 2010, when the Dow Jones industrials fell roughly 900

points, only to quickly recover, regulators and markets have moved to implement safeguards.

Yet, traders and market observers are still seeing individual stocks and ETFs suffer flash-crash-

like events, when stocks fall suddenly for no reason and quickly rebound, suggesting many of the
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underlying problems haven’t been solved. ... For the first month and three days of 2011, stocks

showed perplexing moves in 139 cases, rising or falling about 1% or more in less than a second,

only to recover, says Nanex. There were 1,818 such occurrences in 2010 and 2,715 in 2009,

Nanex says.”

Therefore, we are motivated to conduct a thorough empirical study on the price jumps in

the high frequency data, and further answer the question whether the markets have become

more unstable in the era of high frequency trading. We are also very interested in finding out

whether the increased instability is due to permanent or transient jumps. Because the increase

in permanent jumps can be explained as more information events in recent years, however,

the increase in extreme transient jumps can only be attributed to the deterioration of market

stability.

Based on the Trade and Quote (TAQ) database, we identify all the permanent/transient jumps

of the CRSP common shares in the period from January 1995 to December 2014. With the

Flash Crash type of transient jump in mind, we detect transient jumps that last 5 minutes to

one hour. The econometric procedures of the jump test and permanent/transient classification

will be discussed in detail later. For empirical investigation, the intraday detected jumps are

aggregated to monthly frequency. In each month, the stocks are grouped into four buckets

(quartiles) according to the value of the chosen characteristic. For each bucket (quartile), we

calculate the mean values of the number of jumps (permanent and transient), the number of

jump days, and the percentage of jump stocks. As a result, we find that the properties of

detected jumps depend on stock characteristics, especially the market microstructure related

quantities. More importantly, we document a structural change in the jump statistics around

2003. It coincides with the introduction of auto-quote, which greatly reduces the trading latency

and made high frequency trading much easier.

Why does the implementation of auto-quote matter? First of all, we should have some under-

standing of what auto-quote is and its meaning to the high frequency trading. Prior to 2003,

the specialists on the NYSE were responsible for manually disseminating the inside quote. The

manual procedure would slow down the speed of algorithmic traders: the latency was quite high.

But started from early 2003, the traditional manual quote was replaced by a newly automated

quote system. From then on NYSE electronically updates any change to the NYSE limit order
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book. This market structure change provides much quicker feedback to trading algorithms, thus

made the high frequency trading easier. Hendershott, Jones, and Menkveld (2011) document

that auto-quote is associated with a significant increase in their proxy for algorithmic trading

activity. In early 2003, NYSE gradually phases in the auto-quote among all the stocks, 515 of

them adopted auto-quote in the first three months of 2003, whereas for the rest of the stocks,

the auto-quote started on May 27, 2003. The gradual implementation of auto-quote on the

NYSE can be used to study the effects of high frequency trading on the stability of the markets.

We document that the jump properties are heterogeneous across different characteristic-based

buckets of stocks. Meanwhile, there is an evident structural break in jump statistics around

the start of 2003, which coincides with the auto-quote introduction. General speaking, the

stocks with low market cap and volume, large bid-ask spread and relative tick size experience

more jump after 2003, in contrast, they are the relatively more stable stocks before auto-quote.

Notably, most of the increased jumps are transient ones, which are not information-driven.

It means that the worsening price stability is not due to more frequent market-relevant news

after 2003. The sizable increase in transient jumps actually reveals the deterioration of market

quality for these small-cap thinly-traded low-priced stocks.

On the other hand, it is a completely different picture for the stocks on the other end of the

spectrum: stocks with high market cap and volume, small bid-ask spread and relative tick size,

have actually become more stable after 2003. In the era of high frequency trading, the large-cap

stocks with active trading are less prone to jumps. This observation is in line with the empirical

literature that high frequency trading improves the market liquidity for those stocks priced

higher than five dollars (Hendershott, Jones, and Menkveld 2011). In conclusion, whether the

stock price is prone to transient jump in the new era of electronic trading depends on the stock

characteristics.

Furthermore, as we have documented that the structural change in jump properties coincides

with the auto-quote introduction, it is to natural ask whether the high frequency traders should

be held accountable for the increase or decrease in the jumps. HFTs could play a role in these

transient price jumps for several reasons (Biais and Foucault 2014). First, because of the similar

trading strategies, HFTs may all react at the same time to erroneous signals by sending buy or

sell market orders consuming market liquidity, triggering sharp price movements. Alternatively,
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after the arrival of a large sell (buy) market order, the limit orders may all got canceled by

HFTs for safety reasons, and if the large market order does not appear to be informationally

motivated, HFTs would resubmit new limit orders very quickly. Moreover, as the endogenous

liquidity providers, HFTs may withdraw their quotes and stop marking the market in the adverse

market conditions. In any case, waves of cancellations or market orders submissions by HFTs

reacting to the same event may exacerbate the transient price jumps. For the thinly-traded

small-cap stocks, traditional market makers are crowded out by HFTs after the great latency

reduction in 2003, and as endogenous liquidity providers, HFTs have the less long-term risk-

bearing capacity and they might withdraw liquidity or stop making the market under adverse

market conditions. Thus the thinly-traded small-cap stocks is more prone to frequent transient

jumps or mini flash crashes. We will go into this discussion in detail later.

To study these research questions more rigorously, we run panel regressions around the event

of auto-quote implementation on the NYSE around early 2003. By fitting a linear model with

dummy variables of auto-quote and quartiles as well as their interaction terms to the data,

we can estimate the number of jumps (permanent/transient) and jump days for each quartile

before and after the auto-quote introduction. The panel data regressions confirm the results

obtained previously: the structural shift in early 2003 and the heterogeneous jump properties

across different characteristic-based buckets of stocks.

More importantly, when the stocks are grouped into quartiles according to the quote-to-trade

ratio, the regression results indicate that the stocks in the highest quote-to-trade ratio quartile

have become much more unstable after auto-quote, and most of the increased jumps are tran-

sient. As we all know that one of the distinguishing features of HFTs is the high quote-to-trade

ratio, because HFTs would submit and quickly cancel their quotes at a very higher frequency,

the actual trades are merely a very small fraction of the total number of quote posted by the

HFTs. The quote-to-trade ratio can be used as a proxy for HFT (Hagstromer and Norden, 2013,

Friederich and Payne, 2015). Similarly, the message-to-trade ratio proxy is also used (Hasbrouck

and Saar, 2013). The stock with high quote-to-trade ratio has a higher percentage of HFT par-

ticipation. Therefore, the dramatic increase in transient jumps for the high quote-to-trade ratio

stocks after auto-quote suggests that HFTs cause more extreme price movements.

Another supporting evidence is that we also document that the quartile with the greatest
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relative tick size become much more unstable: the number of jumps in these stocks, especially

the transient ones, have increased considerably after auto-quote. Considering that the large

relative tick size is associated with a high percentage of HFT participation (Yao and Ye 2014),

this empirical evidence also implies that HFTs cause more transient jumps in these low-priced

stocks.

Overall speaking, the empirical evidence points to the fact that HFTs increase jumps in the

small market cap, low volume and market liquidity, and large relative tick size (low-priced)

stocks. The stocks with high HFT participation (proxied by high quote-to-trade ratio, and

large relative tick size) are more prone to transient jumps. As for the large market cap stocks

with high volume and market liquidity, their price stability is actually improved considerably.

However, due to lack of high frequency trading data, our indirect evidence cannot completely pin

down the association between the increased price instability and HFT activities. Nonetheless,

the empirical fact of market stability deterioration for small illiquid low-priced stocks is iron-

clad, regardless whether it is caused by HFT or not.

One may wonder why HFT could have different effects on large-cap, high volume and liquidity

stocks versus small-cap, low volume and liquidity stocks. First of all, the daily dollar trading

volume of large-cap, high volume stock is thousands of times greater than that of the small-cap

illiquid stock, which is mainly traded by retail investors through online brokerage accounts.

For the heavily-traded large-cap liquid stocks, when the trading latency decreases due to auto-

quote, the trade size decreases and the number of trades increase, meanwhile, the non-stop

trading could take place at a finer and finer time scale (milliseconds or higher) as the trading

technology advances. Thus the price at the macroscopic time scale would become more stable

compared with the pre-auto-quote time when the lumpiness of supply and demand for liquidity

happens at the scale of minutes. On the other hand, for thinly traded small-cap stocks, the

liquidity traders arrive at a much lower rate and the daily trading volume is low. As the latency

greatly reduced by auto-quote, slow market makers would be driven out of the market due

to much higher exposure to the pick-off risk, because the liquidity traders still arrive at the

same rate, but now slow market makers would be picked off more frequently by HFTs as the

trading latency reduced. Another contributing factor is that in the pre-auto-quote time, there

are market specialists with long-term risk bearing capability maintain the market liquidity and
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continuous trading. In the new era of electronic trading, they are replaced by endogenous

liquidity providers (HFTs).

There are the other factors that change over time, e.g., Regulation NMS (order protection)

rules, fragmentation, etc. Can the these changes be another explanation for increased jumps?

The answer embeds in the empirical evidence, as we will observe later, the structural change

in jump statistics happens around the beginning of 2003, which coincide with the auto-quote

implementation. Regulation NMS Trading Phase Date occurs on February 5, 2007, and is fully

implemented by October 15, 2007. The market fragmentation mainly happened after 2007

Regulation NMS. SEC (2013) says: “prior to the implementation of Regulation NMS in 2007,

the market for NYSE-listed stocks was highly centralized, with the NYSE executing 79% of

volume in its listings. The remaining 21% was executed primarily off-exchange by broker-dealer

internalizers... After Regulation NMS, the NYSEs market share in its listings declined from

79% in 2005 to 25% in 2009, while the total volume in NYSE-listed stocks during this period

increased by 181%”. As for Nasdaq, the time line of market fragmentation is similar. For those

interested in the details, please refer to SEC (2013). While these market changes could have

some influences on the jumps as well, none of them coincides with the fundamental structural

shifts in jump dynamic around the start of 2003, which is the focus of this study.

This paper is the first one that documents the cross-sectional variation in the effects of al-

gorithmic trading on transient price jumps. In particular, while the current market making

system is good for majority of the stocks, the thinly-traded small market cap, low-priced s-

tocks would benefit from the traditional specialist market making system, where the liquidity

providers are the exchange-regulated market makers subjected to affirmative obligations, such

as requirements for continuous liquidity provision on both sides of the market.

4.2 Physical Clock versus Volume Clock

We recognize that the volume clock is useful in analyzing certain problems, for instance, VPIN

(Easley, Lopez de Prado, and O’Hara 2012), and trade execution (Easley, Lopez de Prado, and

O’Hara 2015). However, testing jumps using price time series under volume clock may not be

a sensible choice, for the following reasons:
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First of all, one difficulty of using volume clock comes from the cross-sectional heterogeneity of

the volumes. In our data sample, there are liquid large market cap stocks such as Coca-Cola

(NYSE: KO), as well as low-priced small-cap stocks, such as JMP group (NYSE: JMP). The

volume of Coca-Cola is more than 500 times greater than JMP. We are not sure if it makes

sense to sample the prices of these two stocks based on same volume bucket, and compare the

volume-clock-based jumps of Coca-Cola and JMP. To be more specific, if we set the volume

clock in such a way that there are 360 volume minutes per calendar trading day for Coca-Cola,

its price is sampled at the minute frequency. Using the same volume bucket as the clock, one

calendar trading day of JMP is only considered as less than one volume minutes since the

volume of JMP is 500 times smaller. As a consequence, the price of JMP would be sampled at

the daily frequency. It completely contradicts our purpose of investigating the “flash crash” or

“mini flash crash” type of jumps. In this case, we essentially focus on testing the jumps in high

volume stocks while overlooking the jumps in thinly-traded stocks.

One may consider using different volume buckets to time Coca-Cola and JMP separately. But

now the concern becomes what is the sensible choice? It could be a quite arbitrary decision.

Moreover, if one needs to choose different volume buckets for each unique stock in the U.S.

markets, making economic sensible and convincing choice would be a challenge.

In our empirical analysis, the detected jumps in different stocks are compared cross-sectionally

based on stock characteristics. Because we are aware that the trading protocols, rules, and

technology are quite different now and ten years ago. Cross-sectional comparison mitigates the

issue of varying market conditions over the years. At any point in time, the cross-sectional

comparison among different characteristic buckets should be reliable.

Second, volume clock shifts out focus on the jumps in these high volume periods while overlook-

ing the jumps in normal market condition and the liquidity dry-up periods. Let’s consider the

market condition when the market liquidity dries up. At the moment, trading volume is low,

while the asset prices become very unstable. As the market liquidity dries up, the price insta-

bility can be caused by the unusually large price impact of the trade, or by the canceled quotes

as market makers are withdrawing their liquidity provision. In these scenarios, price jumps are

in companion with thin trading volume. If the clock based on volume bucket is adopted, we

would have slowed the time, and as consequence, the extreme price movements during liquidity
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dry-up periods would look more benign. From a different perspective, during liquidity dry-up

periods, since volume is low, we would downsample the price data points comparing to the

normal times (we would sample the data points at a much lower frequency because the volume

clock runs slower than the physical clock). As a result, there will be fewer jumps identified using

volume clock because there are fewer data points sampled during these extreme periods. On

the other hand, there are also very volatile times with high trading volume. If the volume clock

is adopted, we essentially focus on the jumps during high volume periods while overlooking the

jumps in normal market condition and the liquidity dry-up periods. But this deviates from our

aim to investigate all the transient and permanent jumps in the U.S. stocks.

What’s more concerned is that by dilating or shrinking the local time frame may completely

change the nature of the identified jumps. For instance, the econometric test identifies a jump

if there is a large sharp change in price relative to the local volatility. However, if the local time

frame is dilated (stretched), i.e., the volume clock runs much slower than the physical clock,

the sharp price change would look much milder and not so different from random walk. Then

the jump based on physical clock would not be classified as a jump using volume clock.

Third, testing the jump based on volume clock would run into some econometric difficulties as

well. As the current jump tests are all based on the price movements with the physical clock.

We are not sure if there is an econometrically sound way to test price jumps when the price is

timed with the volume-based clock.

Therefore, we think it makes more sense to simply using the physical clock, because this paper

aims to investigate the market stability from an average investor point of view. The time

experienced by the average investors is the physical time, not volume-bucket time artificially

introduce by researchers. Let alone to say, the actual meaning of volume clock is still a very

debatable issue (Andersen and Bondarenko 2014a, 2014b).

4.3 Literature Review

The research that is closest to ours is Gao and Mizrach (2016), which is recently referred to

us by Prof.Richard Payne. They study the breakups and breakdowns of the limit order book.
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To be more specific, they examine stocks whose bids (asks) move more than 10% at the NBBO

between 09:35 and 15:55 but recover within the trading day. There is a breakdown (or breakup)

of the limit order book happen if the national best bids (asks) fall (rise) 10% below (above)

the 09:35 price, and rebound within 2.5% of the 09:35 price at 15:55. They find that market

quality (in terms of the limit order book breakups and breakdowns) has improved since the

implementation of Reg.NMS, since mid-October 2007.

Although Gao and Mizrach (2016) share some similar starting points as our study, i.e., the

market stability issue, their research is completely different from ours in the following ways.

First of all, Gao and Mizrach (2016) interest in the breakdowns/breakups of the limit order book

while we are interested in the transient jumps that last from 5 minutes to 1 hour. To be more

specific, Gao and Mizrach (2016) study bids and asks separately for identifying breakdowns

in bids and breakups in asks. They focus on the dysfunction of the limit order book and

scrutinize every change in the NBBO. In contrast, our research aims to differentiate transient

price jumps from instantaneous volatility and market microstructure noise: we sample mid

prices at a lower frequency (2.5 minutes) and mitigate the market microstructure noise with

pre-averaging procedure. Second, their definition of breakdown (breakups) does not differentiate

transient extreme price movements from high volatility: when simulating the whole day’s price

path using random walks, one would generate many realizations of price paths that satisfy the

breakdown/breakup conditions, especially when the volatility is high. In other words, the bids

“breakdown” to a level lower than 10% of 09:35 price and come back within 2.5% of the 09:35

price do not necessarily mean dysfunction or instability of the markets, although it does contain

the events of market instability as its subset. While our transient jump test aims at identifying

the jumps using econometrically rigourous method, then test if the subsequent price movements

after the jump come back inside the volatility cone within 1 hour. Last but not least, although

the sample period of their data (1993-2013) is similar as ours, the conclusions of their study are

quite different from ours: Gao and Mizrach (2016) reports the breakdown frequency in all U.S.

stocks aggregately, while we document that the jump properties depend on stock characteristics.

Moreover, the event in their study is the implementation of Reg.NMS in October 2007, while

we focus on the implementation of auto-quote in early 2003, around which the major structural

changes in jump properties happened.
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With respect to other relevant studies, Hendershott, Jones, and Menkveld (2011) use the imple-

mentation of auto-quote on NYSE in 2003 to study the effect of algorithmic trading on market

liquidity. They find that the market liquidity, the quoted and effective bid-ask spread, improves

after the introduction of auto-quote for the large market cap stocks, while there is no significant

effect on market liquidity for small market cap stocks. Additionally, they show the reduction

in trading cost is driven by a reduction in adverse selection component of the bid-ask spread.

Note that Hendershott, Jones, and Menkveld (2011) exclude the stocks with price smaller than

5 dollars, for which we find that the transient jumps increase dramatically after 2003. Consid-

ering that the low-priced stock is usually the stocks with small market capitalization and low

market liquidity, the dataset of Hendershott, Jones, and Menkveld (2011) excludes these stocks.

Boehmer, Fong and Wu (2012) obtain similar findings based on a wide range of countries.

Interestingly, they find cross-sectional variations in the effect of algorithmic trading (AT): while

AT improves liquidity and informational efficiency for the large market cap and high-priced

stocks, greater AT reduces liquidity and worsens the volatility for the smallest capitalization

stocks. In line with Boehmer, Fong and Wu (2012), we also document completely different

effects of algorithmic trading on the large cap high-priced stocks and small cap low-priced

stocks. The difference is that Boehmer, Fong and Wu (2012) focus on market liquidity and

volatility, while our paper is about market stability, especially the transient price jumps that

are not information driven.

A related topic is the effect of algorithmic trading (AT) on volatility. However, the empirical

findings are rather mixed. Hasbrouck and Saar (2013) use the number of linked messages as a

proxy for algorithmic trading and find a negative effect of AT on volatility. Using the ban on

short-sales in the U.S. markets for about three weeks in September and October 2008, Brogaard

(2011) finds a negative effect of HFT on volatility. However, Boehmer, Fong and Wu (2012)

document a positive association between their measure of algorithmic trading and volatility,

based on their international sample of stocks.

Brogaard et al. (2016) study the extreme price movements and the behavior of HFTs. The

extreme price movements (EPMs) are defined as the 10-second absolute midquote returns that

belong to the 99.9th percentile of the return distribution. Brogaard et al. (2016) find that HFTs

provide liquidity during extreme price movements (EPMs) by absorbing imbalances created by
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non-high frequency traders (nHFTs). But this observation is limited to EPMs in single stocks.

When several stocks experience simultaneous EPMs, HFT liquidity demand dominates their

supply.

Menkveld and Zoican (2017) investigate the case when the trading platforms reduce their la-

tency, the market liquidity could be hurt because the market makers are more likely to meet

the high frequency bandits and less likely to meet the liquidity traders. The argument is rel-

evant to our study on market stability. The implementation of auto-quote on NYSE reduces

latency, thus the manual market makers, who have greater long-term risk-bearing capability are

more likely to meet the high frequency arbitragers (bandits). This creates an adverse selection

problem for the slow market makers who would be crowded out of the market by HFTs. In the

extreme market conditions, the absence of slow market makers could impair the resilience of

the market (Biais and Foucault 2014, and the references therein).

4.4 Jump Test

In this section, we briefly introduce the related literature on jump tests first, then discuss

the econometrics of the jump test used in this paper. Most of the previous studies consider

testing jumps with the low frequency data, for which the market microstructure is irrelevant.

Aı̈t-Sahalia (2002) proposes a test based on the transition function of the stochastic process.

Carr and Wu (2003) introduce a method based on short dated options. Barndorff-Nielsen

and Shephard (2006) use the realized variance and the realized bi-power variation to identify

days with jumps. Jiang and Oomen (2008) propose a method based on the variance swap

contract and the higher order return moments to identify days with jumps. Lee and Mykland

(2008) test the large increment relative to the local volatility. Aı̈t-Sahalia and Jacod (2009)

sample the power variations at different frequencies in order to test the jump. More recently,

Christensen, Oomen and Podolskij (2014), and Lee Mykland (2012) propose nonparametric

jump tests which allow us to asymptotically remove the market microstructure noise and discover

jumps in the high frequency data. However, these jump tests do not differentiate whether the

jump is permanent and transient. In this paper, we further extend the pre-averaged Lee Mykland

test in Christensen, Oomen and Podolskij (2014) to classify the jump as either transient or
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permanent.

The nonparametric jump test of Lee and Mykland (2008) detects the existence of a jump at

time ti, without making assumptions about whether there are jumps before or after ti. The

intuition of the LM jump test is as follows. At the time of the jump, we would expect the

stock price has a very large realized return, much greater than usual continuous innovations.

But since the data is sampled at the discrete time, we need to differentiate whether the large

realized return is due to high spot volatility or it is actually a jump. To distinguish those two

cases, the return at time ti is standardized by instantaneous volatility, which measures the local

variation from the continuous part of the process. To be more specific, the statistic of the jump

test is the ratio of realized return to instantaneous volatility. If the test statistic is greater than

the selected threshold (test statistic), the price change in the current period is large enough

relative to the instantaneous volatility, the price movement should be identified as a jump.

In the presence of the jumps, the traditional variance estimator, realized variance (or quadratic

variation), is not good for estimating the integrated variance of the underlying continuous part

of price process. Realized variance includes the integrated variance as well as the jump variation.

A consistent estimator for the integrated variance is called the realized bipower variation, which

is robust to the large or small jumps added to the diffusive part of the process. (Barndorff-

Nielsen and Shephard, 2004; and Aı̈t-Sahalia, 2004). The realized variance is equal to the sum of

squared returns, while the realized bipower variation is calculated by taking the sum of products

of consecutive absolute returns, as in equation (4.2). Since jumps are unlikely to occur in two

consecutive intraday periods, when intervals are small enough, the realized bipower variation

will converge to the integrated variance asymptotically. The difference between realized variance

and realized bipower variation estimates the quadratic variation of the jump component. In

other words, the quadratic variation of the process can be separated into its continuous and

jump components.

The instantaneous volatility at time ti is estimated similarly as the realized bipower variation,

using a local movement of the process within a window size K prior to time ti. The window size

K is chosen in such a way that the effect of jumps on the volatility estimation disappears, on the

other hand, the window size K should not be too large, since the estimates of the instantaneous

volatility should reflect the local behavior prior to ti. Lee and Mykland (2008) suggest using
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a K value of
√

252×N , where N is the number of the observations within a day. The test

statistic of LM jump test is

L(ti) =
logS(ti)− logS(ti−1)

σ̂(ti)
, (4.1)

where σ̂(ti) is the instantaneous volatility at time ti, which is the square root of the instan-

taneous variance estimated with the realized bi-power variation over a historical window of K

observations prior to time ti:

σ̂2(ti) =
π

2

1

K − 2

i−1∑
j=i−K+2

| logS(tj)− logS(tj−1)|| logS(tj−1)− logS(tj−2)|. (4.2)

Following Lee and Mykland (2008), the rejection threshold of ξ ≡ |L(ti)|−Cn
Sn

is β∗, such that

P (ξ ≤ β∗) = exp(− exp(−β∗)), where Cn = (2 logn)2

c − log π+log(logn)
2c(2 logn)0.5

and Sn = 1/
(
c(2 log n)0.5

)
,

and c =
√

2/
√
π. For instance, for 1% significant level, β∗ = − log(− log(0.99)) = 4.6001. If

|L(ti)|−Cn
Sn

> 4.6001, the null hypothesis of no jump at ti is rejected.

When testing the jumps using the high frequency financial data, one needs to distinguish jumps

in efficient prices from microstructure noise. The microstructure noise is induced by the frictions

such as the discreteness of the prices, bid and ask bounce, the discreteness of the observations,

and other trading mechanics (O’Hara 1995, and Hasbrouck 2007). The presence of microstruc-

ture noise has a negative impact on the previously described jump tests (Andersen and Benzoni,

2009). It is important to distinguish the efficient price jumps from noise. Recently, Christensen,

Oomen and Podolskij (2014) propose a test to detect jumps in high frequency data by com-

bining pre-averaging with the jump test of Lee and Mykland (2008). Pre-averaging is useful to

smoothen the impact of microstructure noise in the high frequency data. Jacod et al. (2009)

and Podolskij and Vetter (2009) propose the local averaging procedure, which asymptotically

removes the noise and approximate the true underlying prices.

In this paper, the pre-averaged return is averaged in a local neighborhood with K∗ observations,

and K∗ ≥ 2 and even. Christensen, Oomen and Podolskij (2014) suggest to use K∗ = θ
√
N

and the value of θ should be in the range of 0.1 to 2. In our empirical jump test, we set θ = 0.4
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and K∗ = 4. The pre-averaged return is calculated using the following equation:

r∗t,i,K∗ =
1

K∗

 K∗−1∑
j=K∗/2

logSt−i−j −
K∗/2−1∑
l=0

logSt−i−l

 . (4.3)

The LM pre-average statistic L∗(ti) is calculated similarly as before:

L∗(ti) =
r∗t,i,K∗

σ̂∗t,i,K∗
, (4.4)

where σ̂∗t,i,K∗ is the square root of the instantaneous variance:

σ̂∗ 2
t,i,K∗ =

π

2

1

K − 2

i−1∑
j=i−K+2

|r∗t,j−K∗,K∗ ||r∗t,j,K∗ |. (4.5)

Note that the instantaneous variance σ̂∗ 2
t,i,K∗ is also calculated using the pre-averaged return.

The reject threshold of the pre-averaged statistic L∗(ti) is the same as the previous case. The

test statistics follow the same distribution. The only difference is the additional pre-average

procedure before constructing the test statistic.

We identify the jumps using the pre-average LM test, then further classify the detected jumps

into permanent or transient ones. Differentiating transient jumps from the permanent ones is

important because our focus is the market instability in the form of transient extreme price

movements, which are not information driven. For stock i, at each time point t, firstly we

apply the pre-average LM test to examine the return time series and label all the jumps. For

each detected jump, we check if its subsequent price path reverts back inside the diffusion region

(volatility cone) of the initial price Si,t within a certain period of time. The diffusion region is the

price range that is reachable by the continuous price process following the geometric Brownian

motion. We set the diffusion region of the price as (Si,t − σ̂∗t,i,K∗
√
T − t , Si,t + σ̂∗t,i,K∗

√
T − t),

where Si,t is the log price right before the jump, T−t is the interval from time T to the reference

point of the jump, t. At the reference point of the jump (T = t), the size of the diffusion region

is zero. As time passes, the diffusion region grows in proportional to the instantaneous volatility

and square root of the time interval.

In this paper, we define the maximum duration of the transient jump as one hour. It means
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that after the initial jump, if the price would come back and enter the diffusion region within

one hour, then the jump is labeled as transient, otherwise it is permanent. Intuitively, if the

stock price has jumped and keep staying at the new price level without coming back to the

pre-jump level in a certain period of time, the jump should be labeled as a permanent jump.

On the other hand, it should be taken as a transient jump if the price reverts back to the small

neighborhood of the initial price level.

Of course, the one-hour duration cutoff is a relatively subjective choice. However, the maximum

duration cannot be set too long, since the diffusion region of the random walk grows as the square

root of the interval. If the interval is set as a very large value, the diffusion region would be so

large that every jump’s subsequent path would enter the diffusion region, merely because of the

randomness. In this case, all permanent jumps would be falsely identified as transient. From a

different point of view, one-hour interval cutoff is appropriate since this paper is interested in

the flash crash type of transient jumps, which have the duration of 5 minutes to 1 hour. With

respect to the jumps at much higher frequency, as we will elaborate in the next section, for

various reasons, these high frequency price oscillations are not the subject of this study.

Another issue with the one-hour cutoff of transient jump duration is that some jumps that

are more transient in nature may be classified as permanent jumps. For instance, if the price

reverts back to diffusion region around the pre-jump price level in 62 minutes, because it is

longer than one hour, the jump would be labeled as permanent. Clearly, this would be a

misclassification. This misclassification is inevitable. What’s need to be pointed out is that

misclassifying transient jumps as permanent would only weaken our claim that the majority

of the increased jump are transient. In other words, the potential misclassification implies

that the actual results could be slightly stronger than the results reported here. This being

said, we document the supporting evidence for the successful classification of permanent and

transient jumps: the number of permanent jumps per jump day is invariant across time and

stock characteristics. We will discuss this in the section on jump statistics.
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4.5 Data

Using the pre-average LM test specified in the previous section, we detect all the transient

and permanent price jumps of CSRP stocks based on WRDS NBBO data from January 1995

to December 2014. The WRDS NBBO (National Best Bid and Offer) stores all the output

datasets that contain the NBBOs at each second for all stocks with quotes data in TAQ. The

NBBO is updated throughout the day to show the highest bids and lowest offers for a security

among all exchanges and market makers. We calculate the mid-price based on the NBBO. The

mid-price does not have the bid-ask bounce of the trade price, hence it can mitigate the market

microstructure noise.

This paper is not about the jumps at the frequency of seconds or tick by tick. Because the

movements of quoted prices at very high frequency are more relevant for high frequency traders.

The transient jumps at the frequency of minutes or longer are more important or ‘observable’ to

the average investors and non-HFT market participants. Moreover, the estimator of the realized

variance is biased when sampling the price at a high frequency due to the existence of market

microstructure noise. Therefore, prices are often sampled at a lower frequency. Andersen and

Benzoni (2009) suggest that the volatility signature plot is useful for determining an optimum

sampling frequency. The volatility signature plot of SPDR S&P 500 ETF (SPY) tells us that

the sampling frequency should be around 30 seconds at least. Meanwhile, we also need to

consider the feasibility of the computational task when carrying out the empirical exercise. As

we need to process 20 years worth of TAQ data on U.S. equities, it would be computationally

expensive if the data is sampled at a very high frequency. Considering all these factors and we

are interested in the transient jumps with the duration of 5 minutes to 1 hour, the NBBO is

sub-sampled at the sampling frequency of 2.5 minutes. In such a way, the minimum duration

of the detected transient jump would be 5 minutes. Because for the transient jump that jumps

away from the pre-jump price level then immediately reverts back to the neighborhood of the

pre-jump price, the duration of the whole process (jumps away and reverts back) is 5 minutes.

As for the choice of 1 hour maximum duration, please refer to the discussion in the previous

section.

Following Lee and Mykland (2008), the window size for the instantaneous volatility estimation
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is chosen as K =
√

252×N = 199, where N is the number of observations in a trading day. It

means that to test the jump at time ti, we will use the 199 observations prior to ti to estimate

the instantaneous volatility. The pre-average window is set as K∗ = 4. Considering that we are

interested in identifying the extreme price jumps, so the confidence level is set as α = 0.999,

equivalently, the rejection threshold for the statistic L∗(ti) (equation 4.4) is 4.9166. Intuitively,

if the pre-averaged return at time ti, r
∗
t,i,K∗ , is 4.9166 times of the pre-averaged instantaneous

volatility, then the price movement is too drastic relative to the local volatility such that it

should be classified as a jump.

We only consider the jumps in the intraday price movements: the gap between the opening

price and the closing price of two consecutive days is not considered as a jump. Moreover, the

jumps in the first half hour of the trading day are not taken into account, because the price

movements tend to be very volatile in the first half hour. For the detected jumps, we document

the stock symbol, date, test statistic, the type of jump (transient or permanent), the beginning

time of the jump, and come-back time if it is transient. We further aggregate the jump data

into monthly frequency and calculate the number of jumps, transient jumps and permanent

jumps, which are denoted as nJi,t, n
tran
i,t and npermi,t , respectively, as well as the number of jump

days DJ
i,t. The subscripts i, t represent that the variable is for stock i and month t.

To study the cross-sectional properties of the jumps, we also need the relevant stocks charac-

teristics. Hence, we merge the dataset of detected jumps based on TAQ with other datasets

such as CRSP, Compustat, I/B/E/S, etc. First, we link every symbol in the TAQ jump dataset

with its corresponding CUSIP via the TAQ Master file. Then, based on the matched CUSIP

and date, we merge the jump dataset with the CRSP and compustat, etc. Furthermore, we

only keep the common shares with the share code equals to 10 or 11 (shrcd=10, 11). The

following stock characteristics are collected: price (relative tick size), volume, market capital-

ization, bid-ask spread percentage, market depth, quote-to-trade ratio, book to market ratio,

market beta, institutional holding, short interest, analyst coverage, bi-power variation, and the

exchange code.

The relative tick size is relevant because the percentage of high frequency trading volume in-

creases with the relative tick size: the larger the relative tick size, the more participation of

the high frequency trading (Yao, Ye 2014). Intuitively speaking, the HFTs prefer to compete
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in speed rather than in price (by undercutting the price), because of their speed advantage

against the traditional market makers. The large relative tick size gives the HFTs an advantage

to compete in speed: the traditional market makers cannot compete by improving the quoted

price by a fraction of the tick size, because tick size is the minimum increment in price; on the

other hand, the larger the relative tick size, the greater the rent HFT can extract from its speed

advantage. The stock price is inversely related to the relative tick size. Therefore, the percent-

age of HFT volume is positively related to the relative tick size, and negatively related to the

stock price. The relative tick size is an important characteristic from the market microstructure

point of view.

With respect to other market microstructure related characteristics, the volume is the total

number of shares of a stock traded during that month. The market capitalization is calculated

as the shares outstanding times the stock price. Moreover, as for the liquidity measure, we

calculate the quoted and effective bid-ask spread percentage using the TAQ data, using the

method in Holden and Jacobsen (2014). The market depth is defined as the average of the

dollar ask and bid depths. The dollar ask (bid) depth is the dollar amount available at the best

ask (bid) quote from the exchange or market maker with the largest size quoted at that price.

The quote-to-trade ratio is the number of quotes divided by the number of trades. Because HFT

strategies involve frequent cancel-and-replace quote traffic, the number of quotes that leads to a

trade is typically much greater for HFTs than for non-algorithmic traders. The quote-to-trade

ratio is used as a proxy for the HFT in the literature (Hagstromer and Norden, 2013, Friederich

and Payne, 2015). Moreover, the data set also contains the exchange codes, which use 1,2, and

3 to represent NYSE, AMEX, and Nasdaq, respectively.

The second category is the traditional asset pricing characteristics, such as book-to-market

ratio, market beta, institutional holding, short interest, analyst coverage, volatility (bi-power

variation). The book-to-market ratio is a financial ratio used to compare a company’s current

market value to its book value. The market beta of the stock is estimated using a rolling window

based regression. To estimate βt,i of stock i at month t, we regress the return of stock i on the

market’s return, using the twenty-four-month data prior to current month t. For institutional

holding, we calculate the percentage of institutional holding based on the Thomson (Thomson

Reuters) institutional holdings data. The short interest data is the SHORTINT variable of
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compustat database. It reflects the short positions resulting from short sales. Short selling

is the selling of a security that the seller does not own, or any sale that is completed by the

delivery of a security borrowed by the seller. Furthermore, we use two variables to describe the

analyst coverage: the number of analysts following a stock, reported in the NUMEST variable

of I/B/E/S, and analyst forecast dispersion, which is the standard deviation calculated on the

forecast issued during the month, labeled as stdev. Bi-power variation is the square root of

the pre-averaged instantaneous variance (equation 4.5), which captures the variation of the

continuous price component.

To show the cross-sectional variation in the jump properties, we group the stocks into 4 buckets

based on the characteristics discussed below. The market capitalization quartiles are constructed

according to the Fama-French monthly market equity (ME) breakpoints, which are available

from Kenneth French’s data library. The stock price is inversely related to the relative tick

size. For the price buckets, the stocks are grouped into four categories based on the following

price ranges: smaller than 5 dollars, 5 to 25 dollars, 25 to 50 dollars, and greater than 50

dollars. With respect to the following characteristics: volume, effective/quoted bid-ask spread

percentage, market depth, quote-to-trade ratio, book-to-market ratio, market beta, institutional

holding, short interest, bi-power variation, we categorize the stocks into four equal-sized groups

based on the respective characteristic in each month. Last but not least, for the analyst coverage,

the stocks are categorized into four buckets based on the following criteria: if the number of

analyst forecasts is smaller than 3, greater than or equal to 3 and smaller than 6, greater

than or equal to 6 and smaller than 11, greater than or equal to 11. For each characteristic,

the buckets of stocks are labeled from 0 to 3, among which quartile 0 has the lowest value of

the corresponding characteristic while quartile 3 has the greatest. For example, stocks in the

quartile 0 of the market capitalization have the smallest market cap, and those in the quartile

3 have the greatest market cap.

4.6 Jump Statistics

Before carrying out the econometric analysis, it would be useful to visualize the statistics of the

detected jumps and observe how they vary across different quartiles and evolve over time. Based
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on the stocks with jumps, the following statistics will be studied: the total number of jumps

per stock in a month (nJ), the number of jump days per stock in a month (DJ), the average

number of jumps per jump day (n̄JD), and the percentage of jump stocks in a month (pJ), which

is defined as the number of the stocks with jump(s) divided by the total number of the stocks in

a month. Moreover, it would also be very interesting to differentiate the transient/permanent

jumps or positive/negative ones, and investigate their properties separately. It turns out that

the statistics of positive and negative jumps are completely symmetric, so it would not be

interesting to report them separately. On the other hand, the differentiation between transient

and permanent jump is economic meaningful, as we have argued before, the transient ones are

the flash crash type of price instability that worries the market participants, in contrast, the

permanent jumps are caused by arrivals of the new information. The results of these jump

statistics are aggregated into monthly frequency and shown in the figures 4.1 to 4.21.

Empirically, we document a clearly structural change in the jump properties across time. The

structural change happened around 2003, which coincided with the introduction of auto-quote.

Moreover, another interesting observation is that the properties of the jumps are heterogeneous

across different characteristic buckets. General speaking, the stocks with large market capital-

ization and volume, small relative tick size, low quote-to-trade ratio, and high market liquidity

(in terms of the bid-ask spread and market depth), become more stable after 2003. On the oth-

er hand, the stocks with small market capitalization and volume, large relative tick size, high

quote-to-trade ratio, and low market liquidity, become much more unstable and experience more

jumps after 2003. Moreover, prior to 2003, before the introduction of auto-quote, these small

cap, low volume and market liquidity stocks are actually more stable compared with those on

the other end of the spectrum. Note that for those stocks experienced a dramatic structural

change in the jump properties, the majority of the changes comes from the transient jumps,

which are the instability of the stock price, not driven by new information. In the following

paragraphs, we are going to discuss these empirical results in detail.

For those small-cap, relative illiquid, low-priced and high quote-to-trade ratio stocks, the number

of permanent jumps rise as well, as the number of transient jumps increases after 2003. We

would like to argue that the increased permanent jumps are due to the fact that there are

more information-driven events: because the empirical results on the number of jumps per
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jump day (n̄JD) show that the numbers of permanent jumps per jump day are roughly the same

for different characteristic quartiles/groups, before and after 2003. It implies that one news

event incurs the same number of permanent jumps, and the number of permanent jumps per

information event is approximately invariant across time and stock characteristics. This is the

supporting evidence for the successful classification of transient and permanent jumps. If the

misclassification of transient jump as permanent is a severe issue, we would definitely see the

number of permanent jumps per jump day rise with the number of transient jumps per jump

day. Based on this conclusion, we can further infer that the number of information events/days

increase after 2003 for these small-cap illiquid stocks (since the number of permanent jumps

increases but the number of permanent jump per jump day does not change).

Now let’s discuss the jump properties based on various stock characteristics. First of all, for

the stocks in the lowest market cap quartile (capt0 ), the total number of jumps per stock (nJ)

started to increase dramatically from 2003 and onwards, but prior to 2003, it had the smallest

number of jumps compared to other large market cap quartiles. On the other hand, for the

stocks in other three market cap quartiles, the number of jumps occurred in a month slightly

decreased since 2003. When the jumps are separated into transient and permanent ones and

studied separately, it is easy to tell that the majority of the increase in the total number of

jumps comes from the increase in transient jumps, whereas the increase in permanent jumps

is much smaller. Note that since we classify any jump with the duration longer than one hour

as permanent, so it is possible that some jumps are more transient in nature are labeled as

permanent. Hence there is an even greater increase in the number of transient jumps than it

appears here. The claim that the increase in the number of jumps is mainly due to transient

jumps is stronger than it seems.

Similar structural change is observed when we study the number of jump days per stock in

a month (DJ). The ranking of DJ across different market cap quartiles reverses before and

after 2003: at the beginning of our sample period, the large market cap stocks have the largest

number of jump days (DJ) while the small market cap stocks have the smallest. However, from

2003 and onwards, the number of jump days increases considerably for the smallest market

cap quartile. In contrast, the number of jump days decreases for the other three market cap

quartiles, while the largest market cap quartile has the greatest reduction in the jump days.
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Regarding the different types of the jumps, we can observe that, for the smallest market cap

quartile, the number of transient jump days has a greater increase than the number of permanent

jump days.

For the number of jumps per jump day in a month (n̄JD), one can see that there is a steady

increase in n̄JD for the small market cap quartile after 2003, and the increase mainly comes

from transient jumps. In contrast, for permanent jumps, the number of jumps per jump day is

roughly stable over time, and does not have any structural change after 2003. Another thing to

notice is that after 2003, n̄JD of the large market cap quartiles has some large spikes in certain

months, but we don’t have a good explanation so far.

With respect to the percentage of the jump stocks (pJ), we see that for the small market cap

stocks, pJ increase significantly and steadily, from several percent in 1995 to roughly 80 percent

after 2003. It suggests the small market cap stocks used to be very stable now become very

unstable: most of the stocks would experience sudden jumps, transient or permanent. For

large market cap stocks, the percentage of jump stocks is relatively large in 1995, more than 60

percent, and it becomes oscillatory since 2003: in certain months, most of the stocks experience

jumps, while in other months, it is not the case.

We have discussed the results of market cap quartiles in detail. Similar results are obtained for

the quartiles of other market microstructure related characteristics. For example, the relevant

properties of the jump data also experienced a structural shift around 2003 for the volume

quartiles (figures 4.5 to 4.8). The ranking of the number of jumps nJ and jump days DJ across

different volume quartiles has completely reversed after 2003. For the quartile of the largest

volume, vol3, the number of jumps and jump days in a month remain stable and even decrease

slightly. For other quartiles, the smaller the volume, the greater the increase in nJ and DJ after

2003. For the number of jumps per jump day, the small volume stocks have great increases in

n̄JD, while those of the large volume stocks does not increase on average, but in certain months

from now and then, the number of jumps per jump day becomes very large. Another thing

to notice is that the changes in n̄JD after 2003 mainly come the transient jumps, because n̄JD

roughly remain stable across all the volume quartiles. For the percentage of jump stocks (pJ),

the smaller the volume of the stock, the greater the increase in pJ . Aggregately, most of the

stocks didn’t experience any jump before 2003, but the story completely changed later: most
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of the stocks do experience some price jump every month after 2003.

When the jump dataset is grouped into quartiles based on the price level, which is inversely

related to relative tick size, one can easily observe similar structural change around 2003 as well

(figures 4.9 to 4.11). As discussed before, four price ranges are chosen: smaller than 5 dollars,

between 5 and 25 dollars, between 25 and 50 dollars, and greater than 50 dollars, according

to which the stocks are categorized into four groups. Briefly speaking, the results are similar

as before: the stocks with low stock price (thus large relative tick size) become significantly

unstable, in terms of the total number of jumps, and the number of jump days, etc; whereas

those with high-priced stocks (with small relative tick size) do not experience more price jumps

after 2003. Therefore, one can conclude that large relative tick size is associated with more

price jumps after auto-quote. Due to the fact that the percentage of the high frequency trading

increases with the relative tick size, in addition to the structural change happened in 2003, it

suggests that the high frequency trading is associated with more jumps of the low-priced stocks.

We also study the properties of the jumps with the market liquidity as the characteristic, for

instance, the quoted and effective spread percentage (figures 4.12 to 4.17). The monthly percent

quoted spread is aggregated by taking the time-weighted average of percent quoted spreads over

the whole month, and monthly percent effective spread is the dollar-volume-weighted average

of percent effective spread computed over all trades in the month. When the stocks with jumps

are grouped into quartiles of bid-ask spread percentage, as expected, we obtain similar results:

the structural change of the jump properties over time and the heterogeneity across different

levels of market liquidity. For the most liquid stocks, the total number of jumps in a month

did not increase, however illiquid stocks experienced more jumps as well as more jump days

after 2003. Of course, most of the changes come from the transient jumps. Furthermore, other

market liquidity measures have the similar results as well. Due to the limit space, we will not

discuss the rest of the characteristics one by one.

It would be interesting to see the jump properties across different exchanges as well (figures

4.18 to 4.21). The stocks are categorized based on the exchanges they list. In the CRSP data,

EXCHCD is a code indicating the exchange. Most of the CRSP stocks have normal exchange

codes 1, 2, and 3, which correspond to NYSE, AMEX and the Nasdaq Stock Markets. The

number of jumps nJ and the number of jumps days DJ of the NYSE stocks do not increase
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over time, whereas those of the AMEX and Nasdaq stocks do increase significantly after 2003.

Between the two, AMEX stocks have the greater surge in price jumps. Hence NYSE stocks are

the most stable ones in terms of the jumps and jump days. Moreover, we also observe that for

NYSE stocks, the number of jumps per jump day n̄JD roughly stays stable on average, except

for the spikes every few months, while the stocks listed on the other two exchanges have a

considerable increase in n̄JD. Comparing the transient and permanent jumps, we see that the

increase since 2003 is mainly due to the increase in transient jumps. For permanent jumps, the

number of jumps per jump day (n̄JD) stays flat, it does not have any structural change after

2003, regardless which exchange the stock is listed.

4.7 Panel Regression Results

Having visualized the jump statistics of different characteristic buckets evolving over time, it

is beneficial to study the research question in a more rigorous way. Based on the auto-quote

implementation dates of NYSE stocks, we study the structural change around 2003 and the

heterogeneous jump properties across different characteristic quartiles. The fixed effect panel

data regression with auto-quote and characteristic quartiles/buckets dummy variables, as well

as their interaction terms is used to capture these properties of the jumps. The dummy variable

of auto-quote equals 0 before the introduction of auto-quote, which happened around early 2003,

and 1 after auto-quote. The dummy variable of the characteristic quartile/buckets equals 1 for

the stocks belong to the quartile/buckets, and 0 otherwise. The interaction term of auto-quote

and quartile/group dummies is 1 if and only if the stock belongs to the quartile/group and the

auto-quote has been implemented for the stock as well, otherwise the interaction term is 0.

The monthly aggregated dataset which contains 1379 NYSE stocks from January 1999 to De-

cember 2006. Note that as pointed out before, the NYSE listed stocks are the most stable ones

after 2003, compared with the stocks listed on other exchanges. Hence it is natural to expect

the before-after effects of auto-quote estimated based on NYSE stocks would be weaker than

those based on the whole CRSP universe.

The fixed effect panel data regressions are used to study the number of jumps and jump days
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around the event of NYSE’s auto-quote implementation:

Yi,t = αi + λt + βa I
auto
i,t +

3∑
j=1

βj I
j
i,t +

3∑
j=1

γi I
auto∗j
i,t + controls , (4.6)

where the independent variable Yi,t is one of the variables that quantify the price instability:

the number of jumps (nJi,t), the number of transient/permanent jumps (ntransi,t /npermi,t ) and the

number of jump days (DJ
i,t). The subscripts i and t denote that it is the observation of stock

i at month t. On the right hand side of equation (4.6), Iautoi,t is the indicator of auto-quote for

stock i at month t. The value of Iautoi,t is 0 for the periods prior to auto-quote of stock i, and

1 after auto-quote. Moreover, Iji,t, j = 0, 1, 2, 3, is the quartile indicator: for stock i in quartile

k, Iji,t = 0 if j 6= k, and Iji,t = 1 if j = k. The quartiles are grouped based on one of the

characteristics. In equation (4.6), as the quartile 0 is the base case, I0
i,t is not included in the

regression. Regressors Iauto∗ji,t is the interaction terms of Iautoi,t and Iji,t. Last but not least, to

test the robustness of the results, certain control variables are added in the regressions, such

as market cap, volume, inverse price, bid-ask spread percentage, bipower variation, etc., which

will be reported in tables 4.1 to 4.9.

Table 4.1 reports the fixed effect panel data regressions when the stocks are grouped into market

capitalization quartiles. The model specification is the same as equation (4.6), in which the

dependent variables are the number of jumps nJi,t, the number of permanent jumps npermi,t , the

number of transient jumps ntrani,t , and the number of jump days DJ
i,t. The results are presented

by column: for example, first two columns show the results with nJi,t as the dependent variable,

the next two show the results for ntrani,t , and so forth.

In table 4.1, the coefficients for relevant variables are all significantly different from zero, and

the results are robust to control variables. The before-and-after effects of the NYSE auto-quote

implementation across different market capitalization quartiles can be evaluated based on these

coefficient estimates. To be more specific, the base case is the number of jumps of market

cap quartile 0 (capt0 ) before auto-quote, its value is set as zero for convenience (Please refer

to the jump statistics in the previous section for the scale of the baseline, which should be

smaller than the counterpart in the previous section, since we only consider the stocks with

jumps previously). After auto-quote, nJ,capt0i,t of quartile capt0 becomes 5.077 per month (as the
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coefficient of Iautoi,t is 5.077), in other words, nJ,capt0i,t increases because of the auto-quote. For

market quartile 1 (capt1 ), before auto-quote, nJ,capt1i,t = βcapt1i,t Icapt1i,t = 4.102, however, after auto-

quote, nJ,capt1i,t = βautoi,t Iautoi,t +βcapt1i,t Icapt1i,t +βcapt1∗autoi,t Icapt1∗autoi,t = 5.077+4.102−9.965 = −0.786.

Similarly, for market cap quartile 2 (capt2 ), before auto-quote, nJ,capt2i,t equals 3.051, after the

auto-quote, it becomes 5.077 + 3.051 − 9.693 = −1.565. For market quartile 3 (capt3 ), before

auto-quote, nJ,capt3i,t is 1.010 relative to the base case, after the auto-quote, it becomes 5.077 +

1.010−7.420 = −1.333. Similarly, we can obtain the following results for the number of transient

jumps ntransi,t : before auto-quote, the base case capt0 is set as zero, the number of jump days

for capt1, capt2, and capt3 are 2.964, 2.075, 0.496, respectively; after auto-quote, the number

of transient jumps become 4.05, −0.47, −1.08, −1.00 for capt0 to capt3, respectively. For the

convenience of comparison, the before-and-after effects are computed based on the coefficients

estimates, and compiled in table 4.9. Qualitatively speaking, the results are completely aligned

with our previous research: quartile capt0 has the smallest market capitalization, and it is the

most stable bucket before auto-quote. However, while the other stocks become more stable

after auto-quote, the number of jumps for stocks in quartile capt0 increase considerably after

auto-quote.

Furthermore, by observing the results in the subsequent columns, we find that the majority of

the changes in nJi,t is because of transient jumps. To be more specific, for quartile capt0, nJi,t

increases by 5.077, out of which 4.046 is the transient jumps, only 1.031 is the permanent jump.

Considering that we may misclassify some of the transient-in-nature jumps as permanent, the

conclusion that the price instability deterioration is mainly due to the increased transient jumps

after auto-quote could be stronger than it appears there. Moreover, for quartiles capt1 to capt3,

the transient jumps decrease considerably, which reflects the fact that most of those mid to large

market cap stocks actually become more stable.

Tables 4.2 to 4.8 report the fixed effect panel regressions with the stock buckets of volume, price,

effective spread, quoted spread, quote-to-trade ratio, market depth, bi-power variation, respec-

tively. For each stock characteristic, quartile/bucket 0 has the lowest value of the corresponding

characteristic, while quartile/bucket 3 has the greatest value of the characteristic. Similarly, as

the results of market cap quartiles, the estimates of relevant coefficients are significantly differ-

ent from zero, and robust when additional control variables are added. The net effects on nJi,t,
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npermi,t , ntrani,t , and DJ
i,t before and after auto-quote implementation are calculated and compiled

in table 4.9. The calculations are similar as shown previously for the market cap quartiles. To

avoid the repetitive discussion, we will not discuss tables 4.2 to 4.8 one by one, as we did for the

market cap quartiles. Let’s just point out that these results based on NYSE stocks provide us

with very similar empirical results as the previous results based on all CRSP common shares:

the low-priced stocks and the ones with the smallest market cap, trading volume, and market

liquidity, measured by effective/quoted spread and market depth, become more unstable after

2003, especially the drastic increase in the transient jumps. However, these stocks are the most

stable bucket cross-sectionally before 2003. In contrast, the stocks on the other end of the char-

acteristic spectra: the high-priced, large market cap and volume, high market liquidity stocks,

become stable after auto-quote.

The relative tick size (inverse stock price) and quote-to-trade ratio are the two characteristics

that particularly interesting to us, because they are related to the high frequency trading ac-

tivities, as discussed before. Table 4.3 shows the panel data regressions of price quartiles. The

four stocks buckets have the following price ranges: smaller than 5 dollars (prc0 ), between 5

and 25 dollars (prc1 ), between 25 and 50 dollars (prc2 ), and greater than 50 dollars (prc3 ).

The stock price is inversely related to relative tick size. The low-priced stocks with large rela-

tively tick size have more high frequency activities (Yao and Ye, 2014). The results compiled in

table 4.9 (third panel) indicate that the low-priced stocks (with large relative tick size) become

significantly unstable, especially in terms of the transient jumps; whereas the high-priced stocks

(with small relative tick size) experience less price jumps after 2003. Due to the fact that high

frequency trading increases with the relative tick size, one can conclude that for these low-priced

stocks, high frequency trading causes the price instability.

Furthermore, when the stocks are divided into buckets based on the quote-to-trade ratio, which

is a proxy for high frequency trading, we observe that the stocks in quartile qt ratio3, which has

the greatest quote-to-trade ratio, becomes very unstable after auto-quote. Before auto-quote

implementation, quartile qt ratio3 is the most unstable one (nJi,t = 3.624) compared with the

other quartiles; after auto-quote implementation, nJi,t increases to 12.598, out of which more

than 10 increased jumps are transient. At the same time, the other quartiles with less high

frequency trading become slightly more stable, as in table 4.9. It indicates that the quartile
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of stocks with the most HFT activities are more prone to extreme price movements, especially

the transient jumps, while other stocks with less HFT activities become more stable after the

auto-quote implementation.

Theoretically, we can interpret the results as follows: the auto-quote reduces the latency con-

siderably thus algorithmic trading becomes much easier. After the latency reduction, the slow

market makers are more likely to meet high frequency bandits, relative to the chance of them

trading with liquidity traders, as discussed in Menkveld and Zoican (2017). Thus slow market

makers are more likely to be picked off than they are used to be. The slow market makers, who

have greater long-term risk-bearing capability, would be crowded out of the market by HFTs,

especially for the thinly-traded stocks. Compared with stock high volume and market liquidity,

the slow market makers are facing more severe adverse selection problem in the thinly-traded

stocks after the latency deduction. On top of this, the traditional designated market makers are

replaced by endogenous liquidity providers, who may synchronously withdraw from the market

when it is too risky to make the market, such as what has happened during the flash crash.

(Biais and Foucault 2014, Kirilenko, Kyle, Samadi and Tuzun 2017).

Based on the empirical evidence, high frequency trading can be a double-edged sword. While

the stocks with large market cap, volume, and market liquidity, and small relative stick size

have become more stable after the reduction of latency, which is consistent with the previous

empirical studies that suggest HFT is beneficial, the low-priced stocks with small market cap,

volume and liquidity are suffered from large surges of transient jumps that cannot be attributed

to information arrivals. The effects of high frequency trading can be destabilizing, which is in

line with the argument of Menkveld and Zoican (2017).

Interestingly, the bi-power variation, which is the continuous part of the total variation, is not

a relevant characteristic with respect to the jump properties: when stocks are grouped into

bi-power variation buckets, the variables nJi,t, n
perm
i,t , ntransi,t , and DJ

i,t all uniformly decrease

across different quartiles. We also document that the quartile with smallest short interest and

analyst coverage become more unstable after auto-quote, while the other quartiles have the

fewer number of jumps and jump days, and the majority of the increase is because of transient

jumps. The regression results based on other characteristics, such as book-to-market ratio,

beta, institutional holding, short interest, analyst coverage, are not reported here in tables.
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Another thing worth mentioning is that some results for the middle quartiles seem slightly

different from the diagrams before. The reasons are mainly two-fold: first of all, the diagrams

in the previous section are based on all of the stocks in the CRSP universe, which contains the

stocks listed on all the exchanges. However, the panel data regressions are merely based on the

NYSE stocks, due to the limitation that only the dates of NYSE auto-quote implementation

are available to us. Moreover, the diagrams of the previous section are only based on the jump

stocks, while the non-jump stocks are not included. The variables such as the number of jumps

are averaged among all the stocks with jumps, not among all the stocks.

4.8 conclusion

This paper studies the price stability of U.S. common stocks in the recent 20 years. Based on the

high frequency TAQ data, we first identify all the transient and permanent jumps in the stock

price. We find that there is a structural change in the jump properties after the implementation

of auto-quote, which greatly reduce the latency of the trading platform and make high frequency

trading much easier. The empirical findings indicate that the effects of HFT (or algorithmic

trading) and auto-quote implementation are very different cross-sectionally. It depends on the

characteristics of the stocks: the small market cap, low volume and market liquidity, low-

priced stocks become unstable. The number of jumps, especially the transient jumps, increase

dramatically. It indicates that the market stability deteriorates for these stocks, since the

increase in transient jumps cannot be explained by more news events and information arrivals.

On the other hand, most of the stocks, in particular, the stocks with large market cap, high

volume and liquidity, high-priced stocks are more stable after auto-quote. The empirical results

suggest that HFT does not only have positive effects on the market liquidity and stability, which

consistent with the theoretical literature. The policy implication is that for these small cap,

low-priced and thinly-traded stocks, the existence of the designated specialists and slow market

makers is good for the market stability. But these long-term risk-bearing market makers are

likely to be crowded out by the high frequency traders when the trading latency is very low.

The policy makers may take this into account for the market design.
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Table 4.1: Fixed effect panel regressions with market capitalization buckets

depend variable nJi,t nJi,t npermi,t npermi,t ntrani,t ntrani,t DJi,t DJi,t

Iautoi,t 5.077 5.603 1.031 1.027 4.046 4.576 1.789 2.088
(6.326) (6.603) (4.749) (4.463) (6.801) (7.277) (5.397) (6.061)

Icapt1i,t 4.102 4.301 1.137 1.077 2.964 3.224 1.634 1.662
(6.166) (6.300) (6.567) (5.942) (5.952) (6.358) (6.288) (6.209)

Icapt2i,t 3.051 3.661 0.976 0.915 2.075 2.746 1.336 1.523
(3.946) (4.316) (4.510) (3.823) (3.648) (4.431) (4.055) (4.279)

Icapt3i,t 1.010 1.983 0.513 0.449 0.496 1.533 0.471 0.774
(1.422) (2.359) (2.425) (1.830) (0.955) (2.498) (1.540) (2.211)

Iauto∗capt1i,t -9.965 -9.391 -2.481 -2.375 -7.484 -7.017 -4.117 -3.910
(-13.95) (-13.54) (-12.92) (-12.46) (-14.14) (-13.77) (-15.32) (-14.77)

Iauto∗capt2i,t -9.693 -9.448 -2.493 -2.418 -7.200 -7.030 -4.276 -4.226
(-10.04) (-9.864) (-9.021) (-8.668) (-10.33) (-10.25) (-10.47) (-10.41)

Iauto∗capt3i,t -7.420 -7.510 -1.883 -1.838 -5.538 -5.672 -3.213 -3.300
(-7.517) (-7.589) (-6.438) (-6.168) (-7.858) (-8.088) (-7.343) (-7.567)

log vol -0.442 0.0354 -0.477 -0.279
(-2.946) (0.896) (-4.169) (-4.741)

inv prc 4.768 0.306 4.462 0.980
(4.124) (1.161) (4.849) (2.448)

effective sprd -29.82 -8.530 -21.29 -14.11
(-1.927) (-1.809) (-1.975) (-1.726)

btm 4.70e-05 4.82e-06 4.22e-05 8.86e-06
(6.260) (2.374) (7.651) (5.795)

beta -0.345 -0.113 -0.232 -0.183
(-4.409) (-4.516) (-4.099) (-5.570)

inst hld -3.730 -0.613 -3.117 -1.170
(-6.445) (-3.689) (-7.134) (-4.600)

shortint -3.399 -1.210 -2.189 -2.020
(-1.890) (-2.335) (-1.629) (-3.190)

numest -0.0500 -0.00893 -0.0411 -0.0127
(-3.515) (-1.890) (-3.996) (-1.950)

stdev 0.0355 0.00713 0.0284 0.00749
(1.613) (1.761) (1.566) (1.322)

depth 0.000300 5.48e-05 0.000246 7.79e-05
(2.225) (2.258) (2.202) (2.218)

qt ratio 0.0374 0.00750 0.0299 0.00957
(2.897) (2.947) (2.871) (2.534)

bipower 5.01e-05 1.73e-05 3.28e-05 -4.36e-05
(0.486) (0.453) (0.372) (-1.220)

Constant 1.98e-09 1.18e-09 1.37e-09 1.34e-09 9.47e-10 1.69e-10 1.59e-09 1.21e-09
(1.87e-08) (1.08e-08) (4.43e-08) (4.42e-08) (1.18e-08) (2.01e-09) (3.01e-08) (2.35e-08)

Observations 91,522 91,522 91,522 91,522 91,522 91,522 91,522 91,522
R-squared 0.110 0.145 0.071 0.081 0.103 0.146 0.155 0.179

The stocks are grouped into four market capitalization buckets: quartile 0 (capt0 ) has the smallest market cap,
while quartile 3 (capt3 ) has the greatest. The model specification is Yi,t = αi+λt+βa I

auto
i,t +

∑3
j=1 βj I

captj
i,t +∑3

j=1 γi I
auto∗captj
i,t + controls , where the independent variable Yi,t is one of the variables: nJi,t, n

perm
i,t , ntransi,t

and DJ
i,t. Iautoi,t is the indicator of auto-quote for stock i at month t, Icaptji,t is the indicator of market cap

quartile j, and Iauto∗captji,t is the interaction term between Iautoi,t and Iji,t. The base case is quartile 0 (capt0 )
before auto-quotation in 2003. The regression results are accounted for the two-dimension clustered standard
errors. With respect to the control variables, log vol is the logged volume; inv prc is the inverse of price,
which is proportional to the relative tick size; effective sprd is the effective spread percentage; btm is the
book-to-market ratio, beta is the beta of the stock estimated using the two-year rolling window prior to the
month t; inst hld is the institution holding percentage; shortint is the short interest percentage; numest is the
number of analyst forecasts; stdev is the standard deviation of analyst forecasts; depth is the market depth;
qt ratio is the quote-to-trade ratio; bipower is the bi-power variation. The sample is 1379 NYSE stocks from
January 1999 to December 2006.
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Table 4.2: Fixed effect panel regressions with volume buckets

depend variable nJi,t nJi,t npermi,t npermi,t ntrani,t ntrani,t DJi,t DJi,t

Iautoi,t 19.95 19.84 4.553 4.559 15.40 15.28 6.686 6.824
(22.09) (20.83) (18.50) (17.96) (22.67) (21.14) (21.46) (20.72)

Ivol1i,t 6.522 6.545 1.907 1.905 4.614 4.640 2.495 2.526
(12.18) (12.54) (11.96) (12.14) (11.93) (12.36) (13.68) (13.77)

Ivol2i,t 9.782 10.39 2.964 3.068 6.817 7.318 4.104 4.379
(14.52) (15.33) (15.27) (15.64) (13.86) (14.85) (16.40) (16.63)

Ivol3i,t 8.494 9.879 2.769 3.022 5.724 6.857 3.390 4.007
(12.12) (13.39) (14.02) (14.84) (11.08) (12.53) (11.72) (12.58)

Iauto∗vol1i,t -18.08 -17.03 -4.321 -4.149 -13.76 -12.88 -5.766 -5.482
(-20.98) (-19.35) (-17.67) (-16.99) (-21.57) (-19.57) (-20.53) (-19.07)

Iauto∗vol2i,t -24.72 -23.44 -6.007 -5.788 -18.72 -17.65 -9.117 -8.744
(-24.97) (-22.88) (-21.33) (-20.25) (-25.78) (-23.32) (-26.38) (-24.22)

Iauto∗vol3i,t -23.22 -22.31 -5.631 -5.473 -17.59 -16.83 -8.497 -8.279
(-21.59) (-19.98) (-18.49) (-17.62) (-22.28) (-20.40) (-20.43) (-19.16)

log capt -1.685 -0.392 -1.294 -0.814
(-10.08) (-8.058) (-10.26) (-10.29)

inv prc -0.146 -0.825 0.679 -1.412
(-0.128) (-3.004) (0.742) (-3.471)

effective sprd -30.58 -8.865 -21.72 -14.69
(-1.679) (-1.608) (-1.707) (-1.575)

btm 4.78e-05 5.01e-06 4.28e-05 9.18e-06
(5.530) (2.145) (6.746) (4.681)

beta -0.337 -0.101 -0.237 -0.177
(-4.526) (-4.218) (-4.361) (-5.594)

inst hld -1.739 -0.0910 -1.648 -0.443
(-3.320) (-0.578) (-4.203) (-1.932)

shortint -4.247 -0.990 -3.257 -2.504
(-2.872) (-2.246) (-2.924) (-4.363)

numest -0.0366 -0.00569 -0.0310 -0.00664
(-2.680) (-1.241) (-3.142) (-1.074)

stdev 0.0358 0.00734 0.0285 0.00765
(1.611) (1.770) (1.561) (1.323)

depth 0.000307 5.66e-05 0.000250 8.14e-05
(2.237) (2.272) (2.214) (2.237)

qt ratio 0.0208 0.00327 0.0175 0.00464
(2.509) (2.277) (2.520) (1.996)

bipower 3.40e-05 2.22e-05 1.18e-05 -5.53e-05
(0.324) (0.545) (0.134) (-1.557)

Constant -1.31e-08 -1.30e-08 -2.15e-09 -2.14e-09 -1.06e-08 -1.05e-08 -3.66e-09 -3.75e-09
(-1.27e-07) (-1.28e-07) (-7.13e-08) (-7.21e-08) (-1.36e-07) (-1.37e-07) (-7.19e-08) (-7.97e-08)

Observations 91,522 91,522 91,522 91,522 91,522 91,522 91,522 91,522
R-squared 0.195 0.221 0.109 0.117 0.192 0.223 0.215 0.237

The stocks are grouped into four trading volume buckets: quartile 0 (capt0 ) has the smallest volume, while
quartile 3 (capt3 ) has the greatest. The model specification is Yi,t = αi + λt + βa I

auto
i,t +

∑3
j=1 βj I

volj
i,t +∑3

j=1 γi I
auto∗volj
i,t + controls , where the independent variable Yi,t is one of the variables: nJi,t, n

perm
i,t , ntransi,t

and DJ
i,t. I

auto
i,t is the indicator of auto-quote for stock i at month t, Ivolji,t is the indicator of volume quartile

j, and Iauto∗volji,t is the interaction term between Iautoi,t and Ivolji,t . The base case is quartile 0 (vol0 ) before
auto-quotation in 2003. The regression results are accounted for the two-dimension clustered standard errors.
With respect to the control variables, log capt is the logged market cap; inv prc is the inverse of price, which
is proportional to the relative tick size; effective sprd is the effective spread percentage; btm is the book-to-
market ratio, beta is the beta of the stock estimated using the two-year rolling window prior to the month t;
inst hld is the institution holding percentage; shortint is the short interest percentage; numest is the number
of analyst forecasts; stdev is the standard deviation of analyst forecasts; depth is the market depth; qt ratio
is the quote-to-trade ratio; bipower is the bi-power variation. The sample is 1379 NYSE stocks from January
1999 to December 2006.
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Table 4.3: Fixed effect panel regressions with price buckets

depend variable nJi,t nJi,t npermi,t npermi,t ntrani,t ntrani,t DJi,t DJi,t

Iautoi,t 7.933 7.719 1.719 1.619 6.214 6.100 2.767 2.799
(9.835) (9.740) (9.433) (8.869) (9.622) (9.673) (9.658) (9.841)

Iprc1i,t 1.240 2.357 0.681 0.898 0.559 1.460 0.820 1.180
(1.783) (3.490) (4.423) (5.747) (1.019) (2.765) (3.139) (4.396)

Iprc2i,t 2.268 4.046 1.106 1.456 1.162 2.590 1.253 1.852
(2.940) (5.223) (6.114) (7.590) (1.933) (4.348) (4.076) (5.658)

Iprc3i,t 1.402 3.576 1.007 1.459 0.395 2.117 0.865 1.603
(2.034) (4.978) (6.184) (7.866) (0.726) (3.814) (3.181) (5.305)

Iauto∗prc1i,t -7.876 -7.109 -1.938 -1.785 -5.938 -5.324 -3.058 -2.814
(-9.788) (-9.274) (-10.78) (-10.21) (-9.191) (-8.681) (-10.80) (-10.29)

Iauto∗prc2i,t -11.68 -10.66 -2.952 -2.744 -8.727 -7.912 -4.777 -4.443
(-12.52) (-11.86) (-13.05) (-12.33) (-11.96) (-11.32) (-13.34) (-12.62)

Iauto∗prc3i,t -11.07 -9.947 -2.951 -2.721 -8.116 -7.226 -4.569 -4.205
(-12.35) (-11.39) (-12.71) (-11.86) (-11.67) (-10.69) (-13.01) (-12.06)

log capt -1.178 -0.316 -0.863 -0.433
(-6.204) (-5.730) (-6.105) (-5.409)

log vol -0.233 0.0856 -0.319 -0.200
(-1.651) (2.352) (-2.929) (-3.729)

effective sprd -35.64 -10.21 -25.43 -17.09
(-1.919) (-1.809) (-1.963) (-1.732)

btm 4.79e-05 5.08e-06 4.28e-05 9.19e-06
(5.895) (2.296) (7.208) (5.172)

beta -0.268 -0.0929 -0.175 -0.151
(-3.207) (-3.545) (-2.881) (-4.429)

inst hld -3.153 -0.484 -2.669 -0.842
(-5.413) (-2.943) (-6.003) (-3.608)

shortint -3.504 -1.312 -2.192 -1.944
(-1.747) (-2.359) (-1.455) (-2.848)

numest -0.0320 -0.00377 -0.0283 -0.00549
(-2.116) (-0.775) (-2.564) (-0.796)

stdev 0.0348 0.00678 0.0280 0.00737
(1.619) (1.754) (1.575) (1.325)

depth 0.000296 5.21e-05 0.000244 7.75e-05
(2.257) (2.258) (2.239) (2.260)

qt ratio 0.0446 0.00927 0.0353 0.0126
(3.000) (3.080) (2.969) (2.725)

bipower 7.99e-05 1.99e-05 5.99e-05 -2.82e-05
(0.773) (0.555) (0.653) (-0.765)

Constant -8.33e-09 -7.83e-09 -1.17e-09 -9.84e-10 -6.83e-09 -6.51e-09 -2.54e-09 -2.48e-09
(-8.52e-08) (-7.52e-08) (-4.02e-08) (-3.39e-08) (-9.27e-08) (-8.11e-08) (-5.29e-08) (-5.20e-08)

Observations 91,522 91,522 91,522 91,522 91,522 91,522 91,522 91,522
R-squared 0.064 0.102 0.048 0.061 0.058 0.102 0.101 0.129

The stocks are grouped into four price buckets based on the following price ranges: smaller than 5 dollars
(prc0 ), 5 to 25 dollars (prc1 ), 25 to 50 dollars (prc2 ), and greater than 50 dollars (prc3 ). The model
specification is Yi,t = αi+λt+βa I

auto
i,t +

∑3
j=1 βj I

prcj
i,t +

∑3
j=1 γi I

auto∗prcj
i,t +controls , where the independent

variable Yi,t is one of the variables: nJi,t, n
perm
i,t , ntransi,t and DJ

i,t. Iautoi,t is the indicator of auto-quote for

stock i at month t, Iprcji,t is the indicator of price bucket j, and Iauto∗prcji,t is the interaction term between

Iautoi,t and Iprcji,t . The base case is bucket 0 (prc0 ) before auto-quotation in 2003. The regression results are
accounted for the two-dimension clustered standard errors. With respect to the control variables, log capt is
the logged market cap; log vol is the logged volume; effective sprd is the effective spread percentage; btm is
the book-to-market ratio, beta is the beta of the stock estimated using the two-year rolling window prior to
the month t; inst hld is the institution holding percentage; shortint is the short interest percentage; numest
is the number of analyst forecasts; stdev is the standard deviation of analyst forecasts; depth is the market
depth; qt ratio is the quote-to-trade ratio; bipower is the bi-power variation. The sample is 1379 NYSE stocks
from January 1999 to December 2006.
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Table 4.4: Fixed effect panel regressions with effective spread buckets

depend variable nJi,t nJi,t npermi,t npermi,t ntrani,t ntrani,t DJi,t DJi,t

Iautoi,t -3.822 -2.973 -1.255 -1.124 -2.567 -1.849 -2.080 -1.640
(-15.05) (-10.35) (-14.77) (-11.69) (-14.39) (-8.995) (-16.64) (-11.79)

Ieffsprd1i,t -0.355 -0.918 -0.273 -0.350 -0.0829 -0.569 -0.348 -0.634
(-1.125) (-2.640) (-2.883) (-3.444) (-0.361) (-2.236) (-2.338) (-3.797)

Ieffsprd2i,t -2.843 -3.881 -1.269 -1.348 -1.575 -2.533 -1.610 -2.132
(-4.118) (-5.465) (-7.177) (-7.118) (-3.004) (-4.760) (-5.795) (-7.073)

Ieffsprd3i,t -2.474 -3.650 -1.311 -1.236 -1.163 -2.414 -1.885 -2.465
(-2.515) (-4.055) (-5.326) (-4.964) (-1.534) (-3.575) (-5.512) (-7.093)

Iauto∗effsprd1i,t 1.816 2.135 0.612 0.642 1.204 1.494 1.252 1.433
(2.880) (3.484) (3.182) (3.398) (2.709) (3.469) (4.244) (5.046)

Iauto∗effsprd2i,t 14.31 14.13 3.782 3.714 10.53 10.42 5.988 6.011
(14.51) (15.01) (14.09) (13.97) (14.37) (15.08) (14.79) (15.43)

Iauto∗effsprd3i,t 21.06 19.62 5.139 4.860 15.92 14.76 7.666 7.280
(15.26) (13.99) (14.24) (13.08) (15.19) (13.92) (15.94) (14.87)

log capt -1.130 -0.333 -0.797 -0.558
(-6.035) (-5.939) (-5.708) (-6.437)

log vol -0.169 0.103 -0.272 -0.173
(-1.295) (2.894) (-2.718) (-3.267)

inv prc -2.582 -1.398 -1.184 -1.279
(-2.110) (-4.890) (-1.203) (-2.945)

btm 4.85e-05 5.21e-06 4.32e-05 9.45e-06
(5.610) (2.240) (6.820) (4.788)

beta -0.447 -0.137 -0.311 -0.221
(-5.936) (-5.537) (-5.756) (-6.997)

inst hld -1.490 -0.112 -1.379 -0.399
(-2.882) (-0.750) (-3.488) (-1.844)

shortint -4.480 -1.531 -2.948 -2.480
(-2.853) (-3.242) (-2.530) (-4.422)

numest -0.0270 -0.00322 -0.0237 -0.00267
(-1.935) (-0.693) (-2.362) (-0.423)

stdev 0.0328 0.00645 0.0264 0.00656
(1.609) (1.740) (1.563) (1.283)

depth 0.000279 4.90e-05 0.000230 7.02e-05
(2.260) (2.260) (2.239) (2.263)

qt ratio 0.0268 0.00501 0.0218 0.00678
(2.597) (2.580) (2.578) (2.244)

bipower -6.33e-05 -1.05e-05 -5.28e-05 -8.26e-05
(-0.508) (-0.331) (-0.464) (-1.795)

Constant 7.84e-09 6.92e-09 2.93e-09 2.81e-09 5.24e-09 4.45e-09 4.10e-09 3.65e-09
(7.06e-08) (6.28e-08) (9.33e-08) (9.24e-08) (6.22e-08) (5.25e-08) (7.54e-08) (7.15e-08)

Observations 91,522 91,522 91,522 91,522 91,522 91,522 91,522 91,522
R-squared 0.169 0.190 0.097 0.104 0.167 0.192 0.187 0.207

The stocks are grouped into four effective spread buckets: quartile 0 (effsprd0 ) has the smallest effective
spread, while quartile 3 (effsprd3 ) has the greatest. The model specification is Yi,t = αi + λt + βa I

auto
i,t +∑3

j=1 βj I
effsprdj
i,t +

∑3
j=1 γi I

auto∗effsprdj
i,t +controls , where the independent variable Yi,t is one of the variables:

nJi,t, n
perm
i,t , ntransi,t and DJ

i,t. I
auto
i,t is the indicator of auto-quote for stock i at month t, Ieffsprdji,t is the indicator

of effective spread quartile j, and Iauto∗effsprdji,t is the interaction term between Iautoi,t and Ieffsprdji,t . The base
case is quartile 0 (effsprd0 ) before auto-quotation in 2003. The regression results are accounted for the two-
dimension clustered standard errors. With respect to the control variables, log capt is the logged market cap;
log vol is the logged volume; inv prc is the inverse of price, which is proportional to the relative tick size; btm
is the book-to-market ratio, beta is the beta of the stock estimated using the two-year rolling window prior to
the month t; inst hld is the institution holding percentage; shortint is the short interest percentage; numest
is the number of analyst forecasts; stdev is the standard deviation of analyst forecasts; depth is the market
depth; qt ratio is the quote-to-trade ratio; bipower is the bi-power variation. The sample is 1379 NYSE stocks
from January 1999 to December 2006.
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Table 4.5: Fixed effect panel regressions with quoted spread buckets

depend variable nJi,t nJi,t npermi,t npermi,t ntrani,t ntrani,t DJi,t DJi,t

Iautoi,t -3.767 -2.913 -1.240 -1.093 -2.526 -1.820 -2.066 -1.631
(-14.59) (-10.03) (-14.11) (-11.05) (-14.10) (-8.881) (-16.20) (-11.60)

Iquotsprd1i,t -0.123 -0.853 -0.282 -0.400 0.159 -0.452 -0.161 -0.509
(-0.412) (-2.604) (-2.994) (-4.032) (0.750) (-1.920) (-1.138) (-3.251)

Iquotsprd2i,t -3.178 -4.566 -1.489 -1.675 -1.689 -2.891 -1.634 -2.268
(-4.689) (-6.424) (-8.725) (-9.144) (-3.275) (-5.385) (-5.919) (-7.550)

Iquotsprd3i,t -3.202 -5.083 -1.625 -1.760 -1.577 -3.323 -2.043 -2.822
(-3.124) (-5.134) (-6.527) (-7.014) (-1.991) (-4.398) (-5.774) (-7.790)

Iauto∗quotsprd1i,t 1.345 1.719 0.504 0.554 0.841 1.164 1.003 1.202
(2.094) (2.745) (2.495) (2.785) (1.882) (2.685) (3.297) (4.083)

Iauto∗quotsprd2i,t 13.81 13.76 3.635 3.608 10.17 10.16 5.868 5.930
(13.78) (14.11) (13.17) (13.07) (13.80) (14.30) (13.88) (14.42)

Iauto∗quotsprd3i,t 22.09 20.80 5.291 5.024 16.80 15.78 8.107 7.762
(15.54) (14.26) (14.11) (13.08) (15.73) (14.38) (16.29) (15.21)

log capt -1.319 -0.394 -0.925 -0.621
(-7.154) (-7.398) (-6.629) (-7.361)

log vol -0.121 0.105 -0.226 -0.158
(-0.926) (2.927) (-2.263) (-2.934)

inv prc -1.964 -1.161 -0.803 -1.254
(-1.487) (-4.043) (-0.749) (-2.796)

btm 4.84e-05 5.19e-06 4.32e-05 9.44e-06
(5.573) (2.229) (6.768) (4.714)

beta -0.421 -0.127 -0.294 -0.212
(-5.496) (-5.154) (-5.314) (-6.669)

inst hld -1.504 -0.144 -1.359 -0.379
(-2.890) (-0.972) (-3.405) (-1.722)

shortint -3.437 -1.294 -2.143 -2.078
(-2.126) (-2.624) (-1.807) (-3.537)

numest -0.0273 -0.00345 -0.0238 -0.00200
(-1.961) (-0.742) (-2.375) (-0.318)

stdev 0.0337 0.00669 0.0270 0.00685
(1.607) (1.744) (1.560) (1.295)

depth 0.000284 5.07e-05 0.000234 7.22e-05
(2.253) (2.268) (2.231) (2.262)

qt ratio 0.0264 0.00511 0.0213 0.00657
(2.602) (2.611) (2.579) (2.215)

bipower -9.44e-05 -1.55e-05 -7.89e-05 -9.70e-05
(-0.747) (-0.481) (-0.682) (-2.032)

Constant 7.30e-09 6.72e-09 2.91e-09 2.82e-09 4.72e-09 4.23e-09 4.02e-09 3.71e-09
(6.64e-08) (6.15e-08) (9.38e-08) (9.31e-08) (5.65e-08) (5.04e-08) (7.49e-08) (7.36e-08)

Observations 91,522 91,522 91,522 91,522 91,522 91,522 91,522 91,522
R-squared 0.168 0.190 0.094 0.101 0.168 0.193 0.188 0.209

The stocks are grouped into four quoted spread buckets: quartile 0 (quotsprd0 ) has the smallest quoted
spread, while quartile 3 (quotsprd3 ) has the greatest. The model specification is Yi,t = αi + λt + βa I

auto
i,t +∑3

j=1 βj I
quotsprdj
i,t +

∑3
j=1 γi I

auto∗quotsprdj
i,t + controls , where the independent variable Yi,t is one of the vari-

ables: nJi,t, n
perm
i,t , ntransi,t and DJ

i,t. I
auto
i,t is the indicator of auto-quote for stock i at month t, Iquotsprdji,t is the

indicator of quoted spread quartile j, and Iauto∗quotsprdji,t is the interaction term between Iautoi,t and Iquotsprdji,t .
The base case is quartile 0 (quotsprd0 ) before auto-quotation in 2003. The regression results are accounted
for the two-dimension clustered standard errors. With respect to the control variables, log capt is the logged
market cap; log vol is the logged volume; inv prc is the inverse of price, which is proportional to the relative
tick size; btm is the book-to-market ratio, beta is the beta of the stock estimated using the two-year rolling
window prior to the month t; inst hld is the institution holding percentage; shortint is the short interest
percentage; numest is the number of analyst forecasts; stdev is the standard deviation of analyst forecasts;
depth is the market depth; qt ratio is the quote-to-trade ratio; bipower is the bi-power variation. The sample
is 1379 NYSE stocks from January 1999 to December 2006.
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Table 4.6: Fixed effect panel regressions with quote-to-trade ratio buckets

depend variable nJi,t nJi,t npermi,t npermi,t ntrani,t ntrani,t DJi,t DJi,t

Iautoi,t -0.452 0.0881 -0.175 -0.0870 -0.277 0.175 -0.418 -0.169
(-2.384) (0.410) (-2.767) (-1.268) (-1.884) (1.083) (-5.099) (-1.782)

Iqt ratio1i,t 2.118 2.230 0.541 0.634 1.577 1.595 0.974 1.018
(11.79) (12.13) (10.32) (11.74) (11.68) (11.60) (14.23) (14.32)

Iqt ratio2i,t 2.970 3.209 0.961 1.154 2.009 2.055 1.465 1.555
(16.83) (13.89) (14.04) (15.54) (16.06) (11.92) (17.78) (15.32)

Iqt ratio3i,t 3.624 4.022 1.078 1.393 2.545 2.629 1.755 1.870
(11.50) (9.902) (11.97) (12.98) (10.60) (8.415) (12.52) (10.45)

Iauto∗qt ratio1i,t -2.063 -1.980 -0.554 -0.556 -1.509 -1.424 -0.885 -0.873
(-10.99) (-11.16) (-10.12) (-10.27) (-10.39) (-10.44) (-11.04) (-11.57)

Iauto∗qt ratio2i,t -0.208 -0.155 -0.400 -0.438 0.191 0.282 -0.131 -0.127
(-0.371) (-0.294) (-2.656) (-3.021) (0.454) (0.719) (-0.474) (-0.499)

Iauto∗qt ratio3i,t 13.05 12.88 2.628 2.593 10.43 10.28 4.263 4.183
(10.67) (10.38) (8.351) (8.101) (11.30) (11.02) (10.32) (9.980)

log capt -1.568 -0.424 -1.144 -0.750
(-8.343) (-7.349) (-8.324) (-9.152)

log vol 0.703 0.371 0.331 0.231
(4.610) (8.819) (2.900) (3.640)

inv prc 0.654 -0.710 1.365 -0.942
(0.519) (-2.171) (1.394) (-1.951)

effective sprd -42.68 -12.33 -30.35 -20.50
(-1.673) (-1.619) (-1.695) (-1.583)

btm 4.85e-05 5.25e-06 4.32e-05 9.48e-06
(5.752) (2.318) (6.982) (5.058)

beta -0.355 -0.119 -0.236 -0.184
(-4.269) (-4.600) (-3.905) (-5.248)

inst hld -1.520 -0.0310 -1.489 -0.253
(-2.701) (-0.194) (-3.511) (-1.019)

shortint -2.380 -0.843 -1.537 -1.476
(-1.330) (-1.651) (-1.148) (-2.265)

numest -0.0667 -0.0169 -0.0498 -0.0214
(-5.048) (-4.019) (-5.091) (-3.633)

stdev 0.0301 0.00514 0.0250 0.00501
(1.557) (1.716) (1.514) (1.123)

depth 0.000270 4.25e-05 0.000227 6.39e-05
(2.197) (2.241) (2.174) (2.189)

bipower 0.000114 3.19e-05 8.19e-05 -1.24e-05
(1.156) (0.754) (1.037) (-0.427)

Constant 3.20e-09 2.86e-09 1.44e-09 1.44e-09 2.10e-09 1.76e-09 1.89e-09 1.72e-09
(2.59e-08) (2.38e-08) (4.30e-08) (4.44e-08) (2.23e-08) (1.92e-08) (3.12e-08) (3.05e-08)

Observations 91,522 91,522 91,522 91,522 91,522 91,522 91,522 91,522
R-squared 0.151 0.172 0.082 0.094 0.151 0.175 0.164 0.183

The stocks are grouped into four quote-to-trade ratio buckets: quartile 0 (quotsprd0 ) has the smallest quote-to-
trade ratio, while quartile 3 (quotsprd3 ) has the greatest. The model specification is Yi,t = αi + λt + βa Iautoi,t +∑3
j=1 βj I

qt ratioj
i,t +

∑3
j=1 γi I

auto∗qt ratioj
i,t + controls , where the independent variable Yi,t is one of the variables:

nJi,t, n
perm
i,t , ntransi,t and DJi,t. Iautoi,t is the indicator of auto-quote for stock i at month t, Iqt ratioji,t is the indicator

of quote-to-trade ratio quartile j, and Iauto∗qt ratioji,t is the interaction term between Iautoi,t and Iqt ratioji,t . The base

case is quartile 0 (qt ratio0 ) before auto-quotation in 2003. The regression results are accounted for the two-dimension
clustered standard errors. With respect to the control variables, log capt is the logged market cap; log vol is the logged
volume; inv prc is the inverse of price, which is proportional to the relative tick size; effective sprd is the effective spread
percentage; btm is the book-to-market ratio, beta is the beta of the stock estimated using the two-year rolling window
prior to the month t; inst hld is the institution holding percentage; shortint is the short interest percentage; numest is
the number of analyst forecasts; stdev is the standard deviation of analyst forecasts; depth is the market depth; bipower
is the bi-power variation. The sample is 1379 NYSE stocks from January 1999 to December 2006.
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Table 4.7: Fixed effect panel regressions with market depth buckets

depend variable nJi,t nJi,t npermi,t npermi,t ntrani,t ntrani,t DJi,t DJi,t

Iautoi,t 4.182 5.391 0.821 0.992 3.360 4.399 1.432 2.003
(5.220) (6.230) (3.839) (4.270) (5.634) (6.833) (4.242) (5.626)

Idepth1i,t 4.520 5.122 1.236 1.299 3.285 3.822 1.859 2.109
(8.176) (9.098) (8.818) (8.938) (7.882) (9.058) (8.365) (9.322)

Idepth2i,t 6.127 7.707 1.782 1.999 4.345 5.708 2.507 3.170
(8.142) (9.249) (8.881) (9.014) (7.796) (9.239) (7.673) (8.915)

Idepth3i,t 5.878 8.427 1.663 2.045 4.215 6.382 2.148 3.220
(7.545) (9.056) (7.717) (8.111) (7.364) (9.268) (6.461) (8.309)

Iauto∗depth1i,t -7.536 -6.834 -1.880 -1.728 -5.656 -5.107 -3.221 -2.968
(-12.39) (-11.85) (-11.26) (-10.62) (-12.63) (-12.16) (-13.61) (-13.08)

Iauto∗depth2i,t -8.737 -8.442 -2.287 -2.189 -6.450 -6.253 -3.869 -3.782
(-9.371) (-9.175) (-8.688) (-8.301) (-9.539) (-9.430) (-9.589) (-9.513)

Iauto∗depth3i,t -6.376 -6.860 -1.640 -1.682 -4.737 -5.178 -2.746 -2.971
(-6.309) (-6.658) (-5.654) (-5.627) (-6.484) (-6.991) (-6.233) (-6.688)

log capt -1.689 -0.442 -1.247 -0.745
(-9.274) (-8.075) (-9.148) (-8.802)

log vol -0.718 -0.0305 -0.687 -0.359
(-4.895) (-0.785) (-6.089) (-6.588)

inv prc 0.763 -0.735 1.498 -0.806
(0.622) (-2.592) (1.518) (-1.843)

effective sprd -34.81 -9.779 -25.03 -16.36
(-1.851) (-1.756) (-1.888) (-1.686)

btm 5.01e-05 5.42e-06 4.47e-05 9.74e-06
(6.057) (2.461) (7.333) (5.538)

beta -0.227 -0.0851 -0.142 -0.137
(-2.859) (-3.378) (-2.460) (-4.206)

inst hld -3.001 -0.423 -2.579 -0.819
(-5.749) (-2.758) (-6.520) (-3.790)

shortint -4.459 -1.457 -3.002 -2.215
(-2.383) (-2.761) (-2.135) (-3.420)

numest -0.0436 -0.00756 -0.0361 -0.0102
(-3.046) (-1.604) (-3.484) (-1.576)

stdev -0.00338 4.98e-05 -0.00343 -0.00260
(-1.802) (0.0808) (-1.773) (-2.206)

qt ratio 0.0391 0.00794 0.0312 0.0104
(2.927) (2.989) (2.899) (2.597)

bipower 8.52e-05 2.42e-05 6.10e-05 -3.16e-05
(0.787) (0.646) (0.650) (-0.870)

Constant -5.31e-09 -6.54e-09 -4.80e-10 -6.16e-10 -4.50e-09 -5.58e-09 -1.58e-09 -2.16e-09
(-5.06e-08) (-6.11e-08) (-1.58e-08) (-2.04e-08) (-5.65e-08) (-6.83e-08) (-3.02e-08) (-4.38e-08)

Observations 91,522 91,522 91,522 91,522 91,522 91,522 91,522 91,522
R-squared 0.087 0.133 0.063 0.077 0.078 0.133 0.127 0.167

The stocks are grouped into four market depth buckets: quartile 0 (depth0 ) has the smallest market depth,
while quartile 3 (depth3 ) has the greatest. The model specification is Yi,t = αi+λt+βa I

auto
i,t +

∑3
j=1 βj I

depthj
i,t +∑3

j=1 γi I
auto∗depthj
i,t + controls , where the independent variable Yi,t is one of the variables: nJi,t, n

perm
i,t , ntransi,t

and DJ
i,t. I

auto
i,t is the indicator of auto-quote for stock i at month t, Idepthji,t is the indicator of market depth

quartile j, and Iauto∗depthji,t is the interaction term between Iautoi,t and Idepthji,t . The base case is quartile 0
(depth0 ) before auto-quotation in 2003. The regression results are accounted for the two-dimension clustered
standard errors. With respect to the control variables, log capt is the logged market cap; log vol is the logged
volume; inv prc is the inverse of price, which is proportional to the relative tick size; effective sprd is the
effective spread percentage; btm is the book-to-market ratio, beta is the beta of the stock estimated using the
two-year rolling window prior to the month t; inst hld is the institution holding percentage; shortint is the
short interest percentage; numest is the number of analyst forecasts; stdev is the standard deviation of analyst
forecasts; qt ratio is the quote-to-trade ratio; bipower is the bi-power variation. The sample is 1379 NYSE
stocks from January 1999 to December 2006.
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Table 4.8: Fixed effect panel regressions with bipower variation buckets

depend variable nJi,t nJi,t npermi,t npermi,t ntrani,t ntrani,t DJi,t DJi,t

Iautoi,t -0.996 -0.379 -0.543 -0.476 -0.453 0.0971 -1.037 -0.703
(-3.134) (-1.064) (-5.830) (-4.596) (-1.908) (0.362) (-7.508) (-4.538)

Ibipower1i,t 0.602 0.636 0.159 0.144 0.443 0.492 0.154 0.192
(3.298) (3.339) (2.632) (2.288) (3.436) (3.662) (1.899) (2.264)

Ibipower2i,t 0.138 0.198 0.0343 0.00767 0.103 0.190 -0.0934 -0.0343
(0.634) (0.859) (0.487) (0.102) (0.674) (1.170) (-0.967) (-0.337)

Ibipower3i,t -0.847 -0.841 -0.180 -0.219 -0.667 -0.622 -0.719 -0.639
(-2.951) (-2.750) (-2.124) (-2.323) (-3.180) (-2.844) (-6.161) (-5.028)

Iauto∗bipower1i,t -1.665 -1.438 -0.387 -0.348 -1.278 -1.090 -0.501 -0.433
(-7.448) (-6.645) (-5.995) (-5.437) (-7.631) (-6.802) (-5.835) (-5.070)

Iauto∗bipower2i,t -1.373 -1.056 -0.287 -0.238 -1.086 -0.819 -0.308 -0.200
(-4.784) (-3.885) (-3.644) (-3.080) (-5.018) (-4.041) (-2.721) (-1.846)

Iauto∗bipower3i,t 0.194 0.475 0.0622 0.0885 0.132 0.386 0.502 0.591
(0.518) (1.381) (0.631) (0.922) (0.458) (1.492) (3.291) (4.182)

log capt -1.547 -0.411 -1.136 -0.732
(-7.803) (-6.843) (-7.754) (-8.410)

log vol -0.113 0.124 -0.238 -0.111
(-0.735) (3.042) (-2.001) (-1.887)

inv prc -0.451 -1.066 0.615 -1.336
(-0.332) (-3.171) (0.578) (-2.735)

effective sprd -45.52 -12.52 -33.00 -20.52
(-1.805) (-1.739) (-1.830) (-1.690)

btm 4.66e-05 4.73e-06 4.19e-05 8.73e-06
(6.732) (2.494) (8.274) (6.553)

beta -0.210 -0.0777 -0.132 -0.125
(-2.381) (-2.890) (-2.050) (-3.458)

inst hld -3.134 -0.470 -2.664 -0.911
(-5.282) (-2.741) (-5.998) (-3.677)

shortint -3.257 -1.217 -2.040 -1.919
(-1.596) (-2.137) (-1.335) (-2.671)

numest -0.0414 -0.00665 -0.0348 -0.00975
(-2.653) (-1.349) (-3.047) (-1.366)

stdev 0.0368 0.00740 0.0294 0.00819
(1.611) (1.746) (1.567) (1.341)

depth 0.000319 5.92e-05 0.000260 8.71e-05
(2.244) (2.251) (2.227) (2.244)

qt ratio 0.0475 0.0101 0.0374 0.0141
(3.037) (3.128) (3.004) (2.802)

Constant 2.94e-09 2.41e-09 1.68e-09 1.64e-09 1.59e-09 1.11e-09 2.27e-09 1.98e-09
(2.86e-08) (2.28e-08) (5.56e-08) (5.44e-08) (2.05e-08) (1.37e-08) (4.37e-08) (4.01e-08)

Observations 91,522 91,522 91,522 91,522 91,522 91,522 91,522 91,522
R-squared 0.024 0.073 0.027 0.043 0.017 0.075 0.057 0.096

The stocks are grouped into four bi-power variation buckets: quartile 0 (bipower0 ) has the smallest market
depth, while quartile 3 (bipower3 ) has the greatest. The model specification is Yi,t = αi + λt + βa I

auto
i,t +∑3

j=1 βj I
bipowerj
i,t +

∑3
j=1 γi I

auto∗bipowerj
i,t +controls , where the independent variable Yi,t is one of the variables:

nJi,t, n
perm
i,t , ntransi,t and DJ

i,t. I
auto
i,t is the indicator of auto-quote for stock i at month t, Ibipowerji,t is the indicator

of bi-power variation quartile j, and Iauto∗bipowerji,t is the interaction term between Iautoi,t and Ibipowerji,t . The
base case is quartile 0 (bipower0 ) before auto-quotation in 2003. The regression results are accounted for the
two-dimension clustered standard errors. With respect to the control variables, log capt is the logged market
cap; log vol is the logged volume; inv prc is the inverse of price, which is proportional to the relative tick
size; effective sprd is the effective spread percentage; btm is the book-to-market ratio, beta is the beta of the
stock estimated using the two-year rolling window prior to the month t; inst hld is the institution holding
percentage; shortint is the short interest percentage; numest is the number of analyst forecasts; stdev is the
standard deviation of analyst forecasts; depth is the market depth; qt ratio is the quote-to-trade ratio. The
sample is 1379 NYSE stocks from January 1999 to December 2006.
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Table 4.9: The effects of NYSE auto-quote, based on the regression results

no control nJi,t npermi,t ntransi,t DJi,t

before after change before after change before after change before after change

capt0 0.00 5.077 5.08 0.00 1.031 1.03 0.00 4.046 4.05 0.00 1.789 1.79
capt1 4.102 -0.79 -4.89 1.137 -0.31 -1.45 2.964 -0.47 -3.44 1.634 -0.69 -2.33
capt2 3.051 -1.57 -4.62 0.976 -0.49 -1.46 2.075 -1.08 -3.15 1.336 -1.15 -2.49
capt3 1.010 -1.33 -2.34 0.513 -0.34 -0.85 0.496 -1.00 -1.49 0.471 -0.95 -1.42

vol0 0.00 19.95 19.95 0.00 4.553 4.55 0.00 15.40 15.40 0.00 6.686 6.69
vol1 6.522 8.39 1.87 1.907 2.14 0.23 4.614 6.26 1.65 2.495 3.42 0.92
vol2 9.782 5.01 -4.77 2.964 1.51 -1.45 6.817 3.52 -3.30 4.104 1.67 -2.43
vol3 8.494 5.22 -3.27 2.769 1.69 -1.08 5.724 3.56 -2.16 3.390 1.58 -1.81

prc0 0.00 7.933 7.93 0.00 1.719 1.72 0.00 6.214 6.21 0.00 2.767 2.77
prc1 1.240 1.30 0.06 0.681 0.46 -0.22 0.559 0.84 0.28 0.820 0.53 -0.29
prc2 2.268 -1.48 -3.75 1.106 -0.13 -1.23 1.162 -1.35 -2.51 1.253 -0.76 -2.01
prc3 1.402 -1.74 -3.14 1.007 -0.23 -1.23 0.395 -1.51 -1.90 0.865 -0.94 -1.80

effsprd0 0.00 -3.822 -3.82 0.00 -1.255 -1.26 0.00 -2.567 -2.57 0.00 -2.080 -2.08
effsprd1 -0.355 -2.36 -2.01 -0.273 -0.92 -0.64 -0.0829 -1.45 -1.36 -0.348 -1.18 -0.83
effsprd2 -2.843 7.65 10.49 -1.269 1.26 2.53 -1.575 6.39 7.96 -1.610 2.30 3.91
effsprd3 -2.474 14.76 17.24 -1.311 2.57 3.88 -1.163 12.19 13.35 -1.885 3.70 5.59

quotdsprd0 0.00 -3.767 -3.77 0.00 -1.240 -1.24 0.00 -2.526 -2.53 0.00 -2.066 -2.07
quotdsprd1 -0.123 -2.55 -2.42 -0.282 -1.02 -0.74 0.159 -1.53 -1.69 -0.161 -1.22 -1.06
quotdsprd2 -3.178 6.87 10.04 -1.489 0.91 2.40 -1.689 5.96 7.64 -1.634 2.17 3.80
quotdsprd3 -3.202 15.12 18.32 -1.625 2.43 4.05 -1.577 12.70 14.27 -2.043 4.00 6.04

qt ratio0 0.00 -0.452 -0.452 0.00 -0.175 -0.175 0.00 -0.277 -0.277 0.00 -0.418 -0.418
qt ratio1 2.118 -0.397 -2.515 0.541 -0.188 -0.729 1.577 -0.209 -1.786 0.974 -0.329 -1.303
qt ratio2 2.970 2.31 -0.66 0.961 0.386 -0.575 2.009 1.923 -0.086 1.465 0.916 -0.549
qt ratio3 3.624 16.222 12.598 1.078 3.531 2.453 2.545 12.698 10.153 1.755 5.6 3.845

depth0 0.00 4.182 4.182 0.00 0.821 0.821 0.00 3.360 3.36 0.00 1.432 1.432
depth1 4.520 1.166 -3.354 1.236 0.177 -1.059 3.285 0.989 -2.296 1.859 0.07 -1.789
depth2 6.127 1.572 -4.555 1.782 0.316 -1.466 4.345 1.255 -3.09 2.507 0.07 -2.437
depth3 5.878 3.684 -2.194 1.663 0.844 -0.819 4.215 2.838 -1.377 2.148 0.834 -1.314

bipower0 0.00 -0.996 -0.996 0.00 -0.543 -0.543 0.00 -0.453 -0.453 0.00 -1.037 -1.037
bipower1 0.602 -2.059 -2.661 0.159 -0.771 -0.93 0.443 -1.288 -1.731 0.154 -1.384 -1.538
bipower2 0.138 -2.231 -2.369 0.0343 -0.7957 -0.83 0.103 -1.436 -1.539 -0.0934 -1.4384 -1.345
bipower3 -0.847 -1.649 -0.802 -0.180 -0.6608 -0.4808 -0.667 -0.988 -0.321 -0.719 -1.254 -0.535

This table shows the effects of NYSE auto-quote implementation on the following variables across different
characteristic buckets: the number of jumps nJi,t, the number of permanent jumps npermi,t , the number of

transient jumps ntransi,t , and jump days DJ
i,t before and after the introduction of auto-quote. The change is the

difference of the values before and after auto-quote. The results are calculated based on the panel regression
estimates without the control variables, which are reported in tables 4.1 to 4.8. For each characteristic, the
base case is quartile/bucket 0, which has the smallest value of the corresponding characteristic. For the base
case before auto-quote, the values of nJi,t, n

perm
i,t , ntransi,t , and DJ

i,t are set as zero.
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Figure 4.1: Average numbers of jumps in a month for market capitalization quartiles
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This table reports the number of jumps in a month. In each month, the jump stocks are grouped into quartiles
based on the market cap. Quartile 0 has the smallest market cap while quartile 3 has the greatest. First subfigure
shows the results of all jumps, including both transient and permanent jumps. Second subfigure shows the results
of the transient jumps. Third subfigure shows the results for the permanent jumps. The sample period is January
1995 to December 2014.
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Figure 4.2: Average numbers of jump days in a month for market capitalization quartiles
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This table reports the number of jump days in a month. In each month, the jump stocks are grouped into
quartiles based on the market cap. Quartile 0 has the smallest market cap while quartile 3 has the greatest.
First subfigure shows the results of all jumps, including both transient and permanent jumps. Second subfigure
shows the results of the transient jumps. Third subfigure shows the results for the permanent jumps. The sample
period is January 1995 to December 2014.
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Figure 4.3: Average numbers of jumps per jump day in a month for market capitalization
quartiles
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This table reports the number of jumps per jump day. In each month, the jump stocks are grouped into quartiles
based on the market cap. Quartile 0 has the smallest market cap while quartile 3 has the greatest. First subfigure
shows the results of all jumps, including both transient and permanent jumps. Second subfigure shows the results
of the transient jumps. Third subfigure shows the results for the permanent jumps. The sample period is January
1995 to December 2014.
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Figure 4.4: The percentage of jump stocks for market capitalization quartiles

0

0.2

0.4

0.6

0.8

1

1.2

1
9
9
5
0
1

1
9
9
5
1
0

1
9
9
6
0
7

1
9
9
7
0
4

1
9
9
8
0
1

1
9
9
8
1
0

1
9
9
9
0
7

2
0
0
0
0
4

2
0
0
1
0
1

2
0
0
1
1
0

2
0
0
2
0
7

2
0
0
3
0
4

2
0
0
4
0
1

2
0
0
4
1
0

2
0
0
5
0
7

2
0
0
6
0
4

2
0
0
7
0
1

2
0
0
7
1
0

2
0
0
8
0
7

2
0
0
9
0
4

2
0
1
0
0
1

2
0
1
0
1
0

2
0
1
1
0
7

2
0
1
2
0
4

2
0
1
3
0
1

2
0
1
3
1
0

2
0
1
4
0
7

all, capt0

all, capt1

all, capt2

all, capt3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
9
9
5
0
1

1
9
9
5
1
1

1
9
9
6
0
9

1
9
9
7
0
7

1
9
9
8
0
5

1
9
9
9
0
3

2
0
0
0
0
1

2
0
0
0
1
1

2
0
0
1
0
9

2
0
0
2
0
7

2
0
0
3
0
5

2
0
0
4
0
3

2
0
0
5
0
1

2
0
0
5
1
1

2
0
0
6
0
9

2
0
0
7
0
7

2
0
0
8
0
5

2
0
0
9
0
3

2
0
1
0
0
1

2
0
1
0
1
1

2
0
1
1
0
9

2
0
1
2
0
7

2
0
1
3
0
5

2
0
1
4
0
3

trans, capt0

trans, capt1

trans, capt2

trans, capt3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
9
9
5
0
1

1
9
9
5
1
1

1
9
9
6
0
9

1
9
9
7
0
7

1
9
9
8
0
5

1
9
9
9
0
3

2
0
0
0
0
1

2
0
0
0
1
1

2
0
0
1
0
9

2
0
0
2
0
7

2
0
0
3
0
5

2
0
0
4
0
3

2
0
0
5
0
1

2
0
0
5
1
1

2
0
0
6
0
9

2
0
0
7
0
7

2
0
0
8
0
5

2
0
0
9
0
3

2
0
1
0
0
1

2
0
1
0
1
1

2
0
1
1
0
9

2
0
1
2
0
7

2
0
1
3
0
5

2
0
1
4
0
3

perm, capt0

perm, capt1

perm, capt2

perm, capt3

This table reports the percentage of jump stocks. In each month, the jump stocks are grouped into quartiles
based on the market cap. The percentage of jump stocks is the number of the jump stocks divided by the total
number of stocks in each quartile. Quartile 0 has the smallest market cap while quartile 3 has the greatest. First
subfigure shows the results of all jumps, including both transient and permanent jumps. Second subfigure shows
the results of the transient jumps. Third subfigure shows the results for the permanent jumps. The sample period
is January 1995 to December 2014.
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Figure 4.5: Average numbers of jumps in a month for volume quartiles

0

5

10

15

20

25

30

35

40

45

1
9
9
5
0
1

1
9
9
5
1
0

1
9
9
6
0
7

1
9
9
7
0
4

1
9
9
8
0
1

1
9
9
8
1
0

1
9
9
9
0
7

2
0
0
0
0
4

2
0
0
1
0
1

2
0
0
1
1
0

2
0
0
2
0
7

2
0
0
3
0
4

2
0
0
4
0
1

2
0
0
4
1
0

2
0
0
5
0
7

2
0
0
6
0
4

2
0
0
7
0
1

2
0
0
7
1
0

2
0
0
8
0
7

2
0
0
9
0
4

2
0
1
0
0
1

2
0
1
0
1
0

2
0
1
1
0
7

2
0
1
2
0
4

2
0
1
3
0
1

2
0
1
3
1
0

2
0
1
4
0
7

all, vol0

all, vol1

all, vol2

all, vol3

0

5

10

15

20

25

30

35

1
9
9
5
0
1

1
9
9
5
1
0

1
9
9
6
0
7

1
9
9
7
0
4

1
9
9
8
0
1

1
9
9
8
1
0

1
9
9
9
0
7

2
0
0
0
0
4

2
0
0
1
0
1

2
0
0
1
1
0

2
0
0
2
0
7

2
0
0
3
0
4

2
0
0
4
0
1

2
0
0
4
1
0

2
0
0
5
0
7

2
0
0
6
0
4

2
0
0
7
0
1

2
0
0
7
1
0

2
0
0
8
0
7

2
0
0
9
0
4

2
0
1
0
0
1

2
0
1
0
1
0

2
0
1
1
0
7

2
0
1
2
0
4

2
0
1
3
0
1

2
0
1
3
1
0

2
0
1
4
0
7

trans, vol0

trans, vol1

trans, vol2

trans, vol3

0

1

2

3

4

5

6

7

8

9

1
9
9
5
0
1

1
9
9
5
1
0

1
9
9
6
0
7

1
9
9
7
0
4

1
9
9
8
0
1

1
9
9
8
1
0

1
9
9
9
0
7

2
0
0
0
0
4

2
0
0
1
0
1

2
0
0
1
1
0

2
0
0
2
0
7

2
0
0
3
0
4

2
0
0
4
0
1

2
0
0
4
1
0

2
0
0
5
0
7

2
0
0
6
0
4

2
0
0
7
0
1

2
0
0
7
1
0

2
0
0
8
0
7

2
0
0
9
0
4

2
0
1
0
0
1

2
0
1
0
1
0

2
0
1
1
0
7

2
0
1
2
0
4

2
0
1
3
0
1

2
0
1
3
1
0

2
0
1
4
0
7

perm, vol0

perm, vol1

perm, vol2

perm, vol3

This table reports the number of jumps in a month. In each month, the jump stocks are grouped into quartiles
based on the trading volume. Quartile 0 has the smallest volume while quartile 3 has the greatest. First subfigure
shows the results of all jumps, including both transient and permanent jumps. Second subfigure shows the results
of the transient jumps. Third subfigure shows the results for the permanent jumps. The sample period is January
1995 to December 2014.
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Figure 4.6: Average numbers of jump days in a month for volume quartiles
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This table reports the number of jump days in a month. In each month, the jump stocks are grouped into
quartiles based on the trading volume. Quartile 0 has the smallest volume while quartile 3 has the greatest.
First subfigure shows the results of all jumps, including both transient and permanent jumps. Second subfigure
shows the results of the transient jumps. Third subfigure shows the results for the permanent jumps. The sample
period is January 1995 to December 2014.

135



Figure 4.7: Average numbers of jumps per jump day in a month for volume quartiles
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This table reports the number of jumps per jump day in a month. In each month, the jump stocks are grouped
into quartiles based on the trading volume. Quartile 0 has the smallest volume while quartile 3 has the greatest.
First subfigure shows the results of all jumps, including both transient and permanent jumps. Second subfigure
shows the results of the transient jumps. Third subfigure shows the results for the permanent jumps. The sample
period is January 1995 to December 2014.
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Figure 4.8: The percentage of jump stocks for volume quartile
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This table reports the percentage of jump stocks. In each month, the jump stocks are grouped into quartiles
based on trading volume. The percentage of jump stocks is the number of the jump stocks divided by the total
number of stocks in each quartile. Quartile 0 has the smallest volume while quartile 3 has the greatest. First
subfigure shows the results of all jumps, including both transient and permanent jumps. Second subfigure shows
the results of the transient jumps. Third subfigure shows the results for the permanent jumps. The sample period
is January 1995 to December 2014.
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Figure 4.9: Average numbers of jumps in a month for price buckets
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This table reports the number of jumps in a month. In each month, the jump stocks are grouped into buckets
based on the stock price: smaller than 5 dollars (prc0), 5 to 25 dollars (prc1), 25 to 50 dollars (prc2), and greater
than 50 dollars (prc3). First subfigure shows the results of all jumps, including both transient and permanent
jumps. Second subfigure shows the results of the transient jumps. Third subfigure shows the results for the
permanent jumps. The sample period is January 1995 to December 2014.
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Figure 4.10: Average numbers of jump days in a month for price buckets
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This table reports the number of jump days in a month. In each month, the jump stocks are grouped into buckets
based on the stock price: smaller than 5 dollars (prc0), 5 to 25 dollars (prc1), 25 to 50 dollars (prc2), and greater
than 50 dollars (prc3). First subfigure shows the results of all jumps, including both transient and permanent
jumps. Second subfigure shows the results of the transient jumps. Third subfigure shows the results for the
permanent jumps. The sample period is January 1995 to December 2014.
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Figure 4.11: Average numbers of jumps per jump day in a month for price buckets
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This table reports the number of jumps per jump day in a month. In each month, the jump stocks are grouped
into buckets based on the stock price: smaller than 5 dollars (prc0), 5 to 25 dollars (prc1), 25 to 50 dollars (prc2),
and greater than 50 dollars (prc3). First subfigure shows the results of all jumps, including both transient and
permanent jumps. Second subfigure shows the results of the transient jumps. Third subfigure shows the results
for the permanent jumps. The sample period is January 1995 to December 2014.
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Figure 4.12: Average numbers of jumps in a month for quoted spread quartiles
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This table reports the number of jumps in a month. In each month, the jump stocks are grouped into quartiles
based on the quoted bid-ask spread. Quartile 0 has the smallest quoted spread while quartile 3 has the greatest.
First subfigure shows the results of all jumps, including both transient and permanent jumps. Second subfigure
shows the results of the transient jumps. Third subfigure shows the results for the permanent jumps. The sample
period is January 1995 to December 2012.
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Figure 4.13: Average numbers of jump days in a month for quoted spread quartiles
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This table reports the number of jump days in a month. In each month, the jump stocks are grouped into
quartiles based on the quoted bid-ask spread. Quartile 0 has the smallest quoted spread while quartile 3 has the
greatest. First subfigure shows the results of all jumps, including both transient and permanent jumps. Second
subfigure shows the results of the transient jumps. Third subfigure shows the results for the permanent jumps.
The sample period is January 1995 to December 2012.
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Figure 4.14: Average numbers of jumps per jump day in a month for quoted spread quartiles
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This table reports the number of jumps per jump day in a month. In each month, the jump stocks are grouped
into quartiles based on the quoted bid-ask spread. Quartile 0 has the smallest quoted spread while quartile 3
has the greatest. First subfigure shows the results of all jumps, including both transient and permanent jumps.
Second subfigure shows the results of the transient jumps. Third subfigure shows the results for the permanent
jumps. The sample period is January 1995 to December 2012.
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Figure 4.15: Average numbers of jumps in a month for effective spread quartiles
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This table reports the number of jumps in a month. In each month, the jump stocks are grouped into quartiles
based on the effective bid-ask spread. Quartile 0 has the smallest effective spread while quartile 3 has the greatest.
First subfigure shows the results of all jumps, including both transient and permanent jumps. Second subfigure
shows the results of the transient jumps. Third subfigure shows the results for the permanent jumps. The sample
period is January 1995 to December 2012.
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Figure 4.16: Average numbers of jump days within a month for effective spread quartiles
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This table reports the number of jump days in a month. In each month, the jump stocks are grouped into
quartiles based on the effective bid-ask spread. Quartile 0 has the smallest effective spread while quartile 3
has the greatest. First subfigure shows the results of all jumps, including both transient and permanent jumps.
Second subfigure shows the results of the transient jumps. Third subfigure shows the results for the permanent
jumps. The sample period is January 1995 to December 2012.
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Figure 4.17: Average numbers of jumps per jump day within a month for effective spread
quartiles
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This table reports the number of jumps per jump day in a month. In each month, the jump stocks are grouped
into quartiles based on the effective bid-ask spread. Quartile 0 has the smallest effective spread while quartile 3
has the greatest. First subfigure shows the results of all jumps, including both transient and permanent jumps.
Second subfigure shows the results of the transient jumps. Third subfigure shows the results for the permanent
jumps. The sample period is January 1995 to December 2012.
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Figure 4.18: Average numbers of jumps in a month for exchange buckets
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This table reports the number of jumps in a month. The jump stocks are grouped into buckets based on the
exchanges on which the stock are listed: the exchange codes, which are respectively 1, 2, and 3 for NYSE,
AMEX, and Nasdaq. First subfigure shows the results of all jumps, including both transient and permanent
jumps. Second subfigure shows the results of the transient jumps. Third subfigure shows the results for the
permanent jumps. The sample period is January 1995 to December 2014.
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Figure 4.19: Average numbers of jump days in a month for exchange buckets
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This table reports the number of jump days in a month. The jump stocks are grouped into buckets based on
the exchanges on which the stock are listed: the exchange codes, which are respectively 1, 2, and 3 for NYSE,
AMEX, and Nasdaq. First subfigure shows the results of all jumps, including both transient and permanent
jumps. Second subfigure shows the results of the transient jumps. Third subfigure shows the results for the
permanent jumps. The sample period is January 1995 to December 2014.
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Figure 4.20: Average numbers of jumps per jump day in a month for exchange buckets
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This table reports the number of jumps per jump day in a month. The jump stocks are grouped into buckets
based on the exchanges on which the stock are listed: the exchange codes, which are respectively 1, 2, and 3
for NYSE, AMEX, and Nasdaq. First subfigure shows the results of all jumps, including both transient and
permanent jumps. Second subfigure shows the results of the transient jumps. Third subfigure shows the results
for the permanent jumps. The sample period is January 1995 to December 2014.
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Figure 4.21: The percentage of jump stocks for different exchanges buckets
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This table reports the percentage of jump stocks for different exchanges. The jump stocks are grouped into
buckets based on the exchanges on which the stock are listed: the exchange codes, which are respectively 1,
2, and 3 for NYSE, AMEX, and Nasdaq. The percentage of jump stocks is the number of the jump stocks
divided by the total number of stocks. First subfigure shows the results of all jumps, including both transient
and permanent jumps. Second subfigure shows the results of the transient jumps. Third subfigure shows the
results for the permanent jumps. The sample period is January 1995 to December 2014.
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Chapter 5

Concluding Remarks

This thesis covers three different projects in the areas of market microstructure and exchange

rate. These original studies shed some new light on their respective research topics. The first

project on central bank intervention, from a market microstructure perspective. The second

calibrates the exchange rate predictability. The third project focuses on price jumps, especially

the transient jumps, in the high frequency data, and the related market stability issue.

The paper on central bank intervention evaluates the effects of the central bank intervention on

different variables. In particular, it stresses the severe endogeneity problem and the importance

of instrumental variable. With the help of the instrumental variable, we conduct a thorough

empirical investigation on the effects of the central bank intervention. The empirical results

show that the instrumental variable does make a difference in the case where the intervention

is endogenous with respect to the dependent variable. Moreover, we measure the persistence

of the intervention’s price impact, and also confirm that the intervention’s price impact would

be high when the volatility is high based on Markov switching models. These results have very

practical application for the central banks.

The second study on calibrating the exchange rate predictability aims at measuring the infor-

mation transfer from the predictors to the future return, thus provides us with an upper bound

for any forecasting model based on the given set of predictors. In this way, we can distinguish

whether the poor forecasting performance is due to lack of information in the predictors or the

misspecification of the model. The importance is that in the last three decades, the model-
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dependent studies constantly fail to outperform the random walk benchmark systematically. In

our paper, we find that the issue is due to lack of information. Trying different forecasting model

would not help. However, the intraday exchange rate movement is systematically predictable.

The nonparametric model-independent approach proposed in this paper is also very useful for

predictors and forecasting model selection. For future research, this method can be applied to

other time series predictability problems.

The third study focuses on the jumps in intraday price movements, especially the transient

jumps, the flash crash type of extreme price fluctuations. By identifying all the transient and

permanent jumps in the TAQ data, we document cross-sectional variations in the price jumps

and the structural change of the jump properties around 2003. While the most liquid, large cap,

and high-price stocks become more stable, the illiquid, thinly-traded, small cap, and low-priced

stocks suffer from more transient jumps after 2003. The empirical findings have never been

documented before. We also discuss the theoretical mechanism: for the thinly-traded small cap

stocks, traditional market makers are crowded out by HFTs after the latency reduction, and

as endogenous liquidity providers, HFTs have the less long-term risk-bearing capacity and they

might withdraw liquidity or stop making the market under adverse market conditions. The

results are useful for the policy makers in charge of the market design. This project studies the

U.S. equity market, further research can be extended to the price stability in the international

stocks across different countries. Another direction is to identify the direct association between

HFT and the increased stability in the illiquid, small cap, and low-priced stocks.
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