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Novel Energy Harvesting AF Relaying Schemes
With Channel Estimation Errors

Yulin Zhou, Yunfei Chen, Senior Member,IEEE

Abstract—Three novel structures using simultaneous wireless
information and power transfer in energy harvesting amplify-
and-forward(AF) relaying are investigated in this paper. Different
combinations of time-switching (TS) and power-splitting (PS)
energy harvesting protocols are studied. Three dynamic schemes
are proposed as channel estimation power splitting (CEPS), data
transmission power splitting (DTPS) and combination power
splitting (CPS). From source to relay (SR) in these schemes,
the data packet includes three parts: channel estimation, data
transmission and energy harvesting. From relay to destination
(RD) in these schemes, the data packet includes two parts: data
transmission and channel estimation. Closed-form expressions
for the cumulative distribution function (CDF) of the end-to-end
signal-to-noise ratio (SNR) for the three structures are derived.
Using these expressions, achievable rate (AR) and bit-error-
rate (BER) are derived. Different parameters are examined.
Numerical results show the optimal splitting ratio for channel
estimation, energy harvesting and data transmission, when the
packet size is fixed.

Index Terms—Amplify-and-forward, channel estimation,
energy-harvesting, power-splitting (PS) protocol, relaying-
systems, time-switching (TS) protocol.

I. INTRODUCTION

Relays have been considered in many communication sys-
tems due to their ability to improve reliability. Relaying mainly
contains decode-and-forward (DF) and amplify-and-forward
(AF). AF relaying is commonly used to increase the system
reliability [1]–[4]. At the AF relay, the amplification and
forwarding operations consume extra energy, which limits
lifetime of devices relying on batteries, such as sensors used
in buildings or human bodies [5]. Therefore, radio frequency
(RF) energy harvesting (EH) has been studied as an appro-
priate solution [1]. The information signal received by the
relay is sent to the destination using the energy harvested
from the source [6]. For example, the artificial-noise-aided
secure beamforming design with energy harvested from the
source have been discussed in [7], [8], and the nonlinear
conversion efficiency for energy harvester in EH wireless
systems has been studied in [9], [10]. Since RF signals can
be used for both information decoding (ID) and EH at the
same time, EH can provide extra energy in signal processing
[11]. In [2], two different energy harvesting protocols have
been proposed: power-splitting (PS) and time-switching (TS).
The harvest-use structures were used for either TS or PS
in [12]. In [13], more advanced energy harvesting structures
have been discussed, where the authors analyzed the rate-
energy tradeoff for wireless information and power transfer.
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Non-linear energy harvesting using four practical simultaneous
wireless information and power transmission structures was
first developed in [14]. In these schemes, EH is an important
part of relaying to prolong the lifetime of the relay node for
sustainable operations. PS reduces the information decoding
power at the relay, while TS reduces the throughput. The effi-
ciency of energy harvesting relaying can be further improved
by considering them jointly, which has inspired us to develop
combination structures using both TS and PS.

Another important part of wireless relaying is channel
estimation, which is necessary for demodulation at the des-
tination. For variable-gain AF relaying, both relay and des-
tination require channel estimation. Channel estimation has
been studied in several previous works. For instance, in [15],
linear minimum mean squared error (LMMSE) estimator was
proposed. In [16], minimum mean squared error (MMSE)
estimators were studied. In [17], estimators for individual
channel coefficients were studied, and moment-based (MB) es-
timators were developed in [18] for individual channel power.
In [19], the performances of different channel estimators in
AF relaying with energy harvesting were compared. These
estimators were developed for AF relaying without RF EH,
where the pilots for channel estimation are sent from relay
to destination using the relay’s own power, in addition to the
data transmission power.

In this paper, three novel structures of EH AF relaying
are proposed. The relay network model is shown in Fig. 1
and the data packets for different structures are shown in
Fig. 2. In these structures, the pilots are sent from relay to
destination by using the energy harvested from the source
without using the relay’s own power. To improve the efficiency
of energy harvesting, different combinations of time-switching
(TS) and power-splitting (PS) in the first hop have been
considered. The optimal power allocation among different
parts of the data packet, that is, channel estimation, energy
harvesting and information decoding, is explored. The data
packet in the second hop contains channel estimation and
information decoding. Compared with the previous works,
the main difference between this work and [12] is that [12]
considered TS and PS separately, while this work considers
different combinations of TS and PS simultaneously. Com-
pared with [13], this work includes channel estimation and
information decoding and the harvested energy is used for
both information decoding and channel estimation, while [13]
only considered channel estimation. Our structures consider all
factors mentioned in previous works at the same time, which
makes our design more comprehensive.

Two contributions of this work are summarized as follows.
Firstly, this is the first work on AF relaying that considers
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Fig. 2. (a) Channel estimation power splitting (CEPS) structure;
(b) Data transmission power splitting (DTPS) structure; (c)
Combination power splitting (CPS) structure.

data packets with channel estimation, EH and information
decoding. In the previous works, either the use of EH in
information decoding or the use of EH in channel estima-
tion were considered but not both. Secondly, the cumulative
distribution function (CDF) of the end-to-end signal-to-noise
ratio (SNR) for the three novel energy harvesting structures
are derived in this paper. These functions allow the derivation
of the achievable rate and bit error rate as well as the optimal
power allocation. The structures presented in this work can be
further used as the basic EH AF relaying protocols.

II. SYSTEM MODEL
Fig. 1 shows the AF relaying network including a source

S, a relay R and a destination D. Let dsr, drd, dsd denote
the distances between S and R, R and D and S and D,
respectively. Denote h1, h2 and h3 as the fading gains for
different structures in the channel between the source and the
relay and are complex Gaussian with mean zero and variance
2θ2. Denote g1, g2 and g3 as the fading channel coefficients
of the relay-to-destination links and are complex Gaussian
random variables with mean zero and variance 2θ2. Fig. 2(a)
shows the channel estimation power splitting (CEPS) structure.
Using PS, the source sends m11 pilots using its own power,
each of which is split in power with power ratio ρp for EH and
(1− ρp) for channel estimation, while the data is added using
TS. Note that these pilots are not sent by using the harvested

power in this case. Fig. 2(b) shows the data transmission
power splitting (DTPS) structure. In this structure, the source
sends m21 pilots for channel estimation, and the data symbols
are split in power with power ratio ρd for EH and (1 − ρd)
for data transmission. Fig. 2(c) shows the combined power
splitting (CPS) structure. In this structure the source sends
m31 pilots for channel estimation and (D−m31) data symbols
for information delivery. The energy is harvested by splitting
all symbols for both channel estimation and data transmission
with power splitting ratio ρc.

Each node is equipped with a single antenna and works in
half-duplex. There are two hops: source-to-relay (SR) link and
relay-to-destination (RD) link. The following assumptions are
used in this paper.

A. Assumptions

1) Time division is used in all the structures to achieve
orthogonal channels. Therefore, the source first sends
the data packet to the relay, and then the relay sends the
data packet to the destination.

2) A total of D symbols are used in each structure for chan-
nel estimation, data transmission and energy harvesting.
Each symbol occupies a time duration of T seconds.

3) All fading channel coefficients are complex Gaussian
random variables with mean zero, which are fixed for
each data packet but vary from packet to packet.

4) Variable-gain relaying is assumed so that the amplifica-
tion factor changes with the estimated channel gain in
the SR link [20], [21].

5) All the values of m11,m21 and m31 in Fig. 2 are integers
and smaller than D. Also, 0 6 ρp, ρd, ρc 6 1.

6) The conversion efficiency from AC to DC is assumed
constant.

B. Signal Models

Next, we give the signal models for different structures.
1) CEPS: In the CEPS structure, there are three parts in the

first hop: pilots for channel estimation and energy harvesting,
and data symbols for data transmission. At the relay, the
received signals of the m11 pilots are split into two parts with
a power splitting factor 0 < ρp < 1. First, the received pilot
at relay for channel estimation is given by

yr[i11] =

√
ρpPs1
dsr

e h1x[i11] + n11[i11] (1)

where i11 = 1, 2, . . . ,m11 is the total number of pilots in the
data packet, 0 < m11 < D is an integer, Ps1 is the transmitted
power of the source, dsr is the distance between source and
relay, e is the path loss exponent, x[i11] is the transmitted
pilot with unit power E{| x[i11] |2} = 1, E{.} represents the
expectation operator, and n11[i11] is the complex AWGN with
mean zero and noise power N11.

The received signal of the data symbols can be expressed
as

yr[j11] =

√
Ps1
dsr

eh1x[j11] + n11[j11] (2)

where j11 = m11 + 1, . . . , D, x[j11] is the transmitted data
symbol with unit power E{| x[j11] |2} = 1, n11[j11] is the
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complex AWGN with mean zero and noise power N11. This
power is supplied by source, not the harvester.

Hence, the harvested energy at the relay is

Er1 =
ηPs1|h1|2(1− ρp)m11

dsr
e (3)

where η stands for the conversion efficiency of the energy
harvester and we have assumed T = 1 for simplicity. The
harvested energy will be used to transmit m11 pilots to the
destination for the channel estimation and D − m11 data
symbols from the source in the second hop to keep the same
data rate. Thus the transmission power of the relay is

Pr1 =
ηPs1|h1|2(1− ρp)m11

Ddsr
e . (4)

Using (1), we can get an estimate of h1 as

ĥ1 =
Σm11
i11=1[

√
ρpPs1h1 + n11[i11]]

m11

√
ρpPs1
dsre

= h1 + ε11 (5)

where ε11 =
Σ
m11
i11=1n11[i11]

m11

√
ρpPs1
dsre

is the estimation error. Thus, one

has h1 = ĥ1 − ε11.
The received signal in (2) is amplified-and-forwarded to

the destination by using the harvested energy in (3) and the
channel estimate in (5). Thus, the amplification factor can be
written as

â2
1var =

1

Ps1|ĥ1|
2

dsre
+N11

(6)

where ĥ1 is the estimated channel gain for the first hop
between source node and relay node in (5).

During the second hop, the received pilots for channel
estimation at the destination node can be written as

yd[i12] =

√
Pr1
drd

e g1â1varx[i12] + n12[i12] (7)

where i12 = 1, 2, . . . ,m11, x[i12] is the pilot value, n12[i12] is
the AWGN with zero-mean and noise power N12, â1var is the
amplification factor given in (6), Pr1 is the relay transmission
power given in (4), drd is the distance between relay and
destination.

Also, the received data symbols at the destination can be
expressed as

yd[j12] =

√
Pr1
drd

e g1â1var (yr[j11]) + n12[j12] (8)

where n12[j12] is additive white Gaussian noise (AWGN) at
the destination node with zero mean and noise power N12,
and all the other symbols are defined as before.

The received data symbols at the destination in the direct
link can be expressed as

yd[j11] =

√
Ps1
dsd

ehsdx[j11] + nsd[j11] (9)

where dsd is the distance between source and destination, and
nsd[j11] is the complex AWGN with mean zero and noise
power Nsd.

2) DTPS: The DTPS structure is similar to CEPS, except
that energy is harvested from the data symbols.

First, the pilots received at the relay for channel estimation
in the first hop is

yr[i21] =

√
Ps2
dsr

eh2x[i21] + n21[i21] (10)

where i21 = 1, 2, . . . ,m21, m21 is the number of pilots
used for channel estimation, Ps2 is the transmitted power
of the source, x[i21] is the transmitted pilot with unit power
E{| x[i21] |2} = 1, and n21[i21] is the complex AWGN with
mean zero and noise power N21.

Also, the received signals of the data symbols in the second
part of the data packet in the first hop can be expressed as

yr[j21] =

√
ρdPs2
dsr

e h2x[j21] + n21[j21] (11)

where j21 = m21 + 1, . . . , D, x[j21] is the data symbol with
E{| x[j21] |2} = 1, n21[j21] is the complex AWGN during
data reception at the relay with zero-mean and noise power
N21.

The transmission power of the relay is

Pr2 =
ηPs2|ĥ2|

2
(1− ρd)(D −m21)

Ddsr
e . (12)

Using (10), we estimate h2 as

ĥ2 = h2 + ε21 (13)

where ε21 =
Σ
m21
i21=1n21[i21]

m21

√
Ps2
dsre

is the estimation error. Thus, one

has h2 = ĥ2 − ε21.
The received data in (11) is sent to the destination by using

the transmission power of the relay in (12) and the channel
estimate in (13). Thus, the amplification factor can be written
as

â2
2var =

1

Ps2
dsre
|ĥ2|

2
+N21

. (14)

During the second hop, the received pilots for channel
estimation at the destination can be written as

yd[i22] =

√
Pr2
drd

e g2â2varx[i22] + n22[i22] (15)

where i22 = 1, 2, . . . ,m21 and x[i22] = 1 is the pilot value,
n22[i22] is the additive white Gaussian noise (AWGN), â2var

is the amplification factor given in (14), Pr2 is the relay
transmission power given in (12).

Also, the received data symbols at the destination are

yd[j22] =

√
Pr2
drd

e g2â2var (yr[j21]) + n22[j22]. (16)

The direct link is still given by (9).
3) CPS: In the CPS structure, energy is harvested by

splitting power from both pilot symbols and data symbols.
The pilot received at the relay for channel estimation is

yr[i31] =

√
ρcPs3
dsr

e h3x[i31] + n31[i31] (17)

where i31 = 1, 2, . . . ,m31, 0 < m13 < D is the number
of pilots used for channel estimation, Ps3 is the transmitted
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power of the source, x[i31] is the transmitted pilot symbol
with E{x[i31]2} = 1, and n31[i31] is the complex AWGN
with mean zero and noise power N31.

The received data symbols can be expressed as

yr[j31] =

√
ρcPs3
dsr

e h3x[j31] + n31[j31] (18)

where j31 = m31 +1, . . . , D, x[j31] satisfies E{| x[j31] |2} =
1, n31[j31] is the complex AWGN during data reception at the
relay with mean zero and noise power N31.

The transmission power of the relay is

Pr3 =
ηPs3|h3|2(1− ρc)

dsr
e . (19)

Using (17), h3 can be estimated as

ĥ3 = h3 + ε31 (20)

with ε31 =
Σ
m31
i31=1n31[i31]

m31

√
ρc

Ps3
dsre

and h3 = ĥ3 − ε31.

In this case, the amplification factor can be written as

â2
3var =

1

Ps3
dsre
|ĥ3|

2
+N31

. (21)

The received pilots for channel estimation at the destination
are

yd[i32] =

√
Pr3
drd

e g3â3varx[i32] + n32[i32] (22)

where i32 = 1, 2, . . . ,m31 denotes the pilots for channel
estimation, and x[i32] = 1 is the pilot value, n12[i32] is the
additive white Gaussian noise (AWGN).

Also, the received data symbols at the destination can be
expressed as

yd[j32] =

√
Pr3
drd

e g3â3var (yr[j31]) + n32[j32], (23)

where n32[j32] is additive white Gaussian noise (AWGN) at
the destination node. The direct link is also given by (9).

III. END-TO-END SNR ANALYSIS

In this section, we will derive the end-to-end SNR expres-
sions for different structures. These expressions can be used
to analyze the system performances.

1) The CEPS Structure: By using the received signals in
(7), the channel gain of the RD link can be estimated as

ĝ1 =
Σm11
i1=1

(√
Pr1
drde

g1â1var + n12[i1]
)

m11â1var

√
P̂r1
drde

=

√
Pr1
drde√
P̂r1
drde

g1 + ε12

(24)
where ε12 =

Σ
m11
i12=1n12[i12]

m11â1var

√
Pr1
drd

e

and P̂r1 =
ηPs1|ĥ1|

2
(1−ρp)m11

Ddsre
.

By using (24) and (5) in (8), the received signal at the
destination can be expanded to give the end-to-end SNR
expression as

γ1end =
E[|
√

P̂r1
drde

ĝ1â1var

√
Ps1
dsre

ĥ1x[j11]|
2

]

u
(25)

where u = E[|
√

P̂r1
drde

ĝ1â1var

√
Ps1
dsre

ε11x[j11]|
2

]

+ E[|
√

P̂r1
drde

ĝ1â1varn11[j11]|
2

]

+ E[|n12[j12]|2] + E[|
√

P̂r1
drde

√
Ps1
dsre

ĥ1â1varε2x[j11]|
2

]

+ E[|
√

P̂r1
drde

√
Ps1
dsre

â1varε11ε12x[j11]|
2

]

+ E[|
√

P̂r1
drde

ε12â1varn11[i]|
2

].
One has E[|x[j11]|2] = 1, E[|n11[j11]|2] = N11 and

E[|n12[j12]|2] = N12. Also, denote E[|ε|21] = ε11var,E[|ε|22] =
ε12var. Equation (25) becomes

γ1end =
Ps1
dsre
|ĝ1|2|ĥ1|

2

v1
(26)

where v1 = Ps1
dsre
|ĝ1|2ε11var + |ĝ1|2N11 + Ps1

dsre
ε12var|ĥ1|

2
+

Ps1
dsre

ε11varε12var +N11ε12var + N12
ˆPr1

drd
e â21var

.

2) The DTPS structure: Using the received signals in (15),
one has

ĝ2 =

√
Pr2
drde√
P̂r2
drde

g2 + ε22 (27)

where ε22 =
Σ
m21
i22=1n22[i22]

m21â2var

√
ˆPr2

drd
e

and P̂r2 =

ηPs2|ĥ2|
2
(1−ρd)(D−m21)
Ddsre

from (12). Substituting (27) and
(13) in (16), the end-to-end SNR can be derived as

γ2end =
ρd

Ps2
dsre
|ĝ2|2|ĥ2|

2

v2
(28)

where v2 = ρd
Ps2
dsre
|ĝ2|2ε21var + |ĝ2|2N21 +

ρd
Ps2
dsre

ε22var|ĥ2|
2

+ ρd
Ps2
dsre

ε21varε22var + N21ε22var +
N22

ˆPr2
drd

e â22var

.

3) The CPS structure: Using the received signal in (22),
the channel gain of the RD link can be estimated as

ĝ3 =

√
Pr3
drde√
P̂r2
drde

g3 + ε32 (29)

where ε32 =
Σ
m31
i32=1n32[i32]

m31â3var
is the estimation error and P̂r3 =

ηPs3|h3|2(1−ρc)
dsre

from (19).
Substituting (29) and (20) in (23), the end-to-end SNR can

be derived from (23) as

γ3end =
|ĥ3|

2
|ĝ3|2 Ps3

dsre

v3
(30)

where v3 = Ps3
dsre
|ĝ3|2ε31var + Ps3

dsre
ε32var|ĥ3|

2
+ |ĝ3|2N31 +

Ps3
dsre

ε31varε32var + ε32varN31 + N32
ˆPr2

drd
e â23var

,ε31var = E{|ε1|2}

and ε32var = E{|ε2|2}.

IV. ACHIEVABLE RATE AND BER ANALYSIS

In this section, we will first derive the CDF of the end-
to-end SNR for the three novel structures in (26), (28), (30).
Then, we will calculate the rate and BER.
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1) The CEPS Structure: To derive the CDF, we first cal-
culate V ar(ε11) and V ar(ε12). From (5), ε11 has a mean of
zero, and a variance of

V ar(ε11) = E{|ε11|2} =
N11

m11ρp
Ps1
dsre

. (31)

Similarly, ε12 has a mean of zero and a variance of

V ar(ε12) =
N12D

(
Ps1
dsre
|ĥ1|

2
+N11

)
[η Ps1dsre

|ĥ1|
2

(1− ρp)m11]m11

. (32)

Assume that hsd is estimated in a similar way, and the
estimation error is εsd. One has

V ar(εsd) =
Nsd

D Ps1
dsde

. (33)

Using (31) and (32) in (26), the end-to-end SNR of the
relaying link can be derived as

γ1end =
|ĝ1|2|ĥ1|

2 Ps1
dsre

w1
(34)

where w1 = N11|ĝ1|2
m11ρp

+ |ĝ1|2N11 +

N12N11D
(
Ps1
dsre

|ĥ1|
2
+N11

)
[η

Ps1
dsre

|ĥ1|
2
(1−ρp)]m11

2m11ρp
+

Ps1
dsre

|ĥ1|
2
N12D

(
Ps1
dsre

|ĥ1|
2
+N11

)
[η

Ps1
dsre

|ĥ1|
2
(1−ρp)m11]m11

+

N12D
(
Ps1
dsre

|ĥ1|
2
+N11

)
[
N11
m11

+1]

[η
Ps1
dsre

|ĥ1|
2
(1−ρp)m11]

.

The SNR of the direct link is

γsd =

Ps1
dsde
|ĥsd|

2

Ps1
dsde

V ar(εsd) +Nsd
=

Ps1
dsde
|ĥsd|

2

Nsd
D +Nsd

. (35)

To move forward, we need the distributions of |ĥ1|
2
, |ĥsd|

2

and |ĝ1|2. By using the expression of ĥ1 in (5), its second-
order moment can be derived as

E(|ĥ1|
2
) = E|h1 +

Σm11
i11=1n11[i11]

m11

√
ρp

Ps1
dsde

|
2

= E(|h1|2

+ |
Σm11
i11=1n11[i11]

m11

√
ρp

Ps1
dsde

|
2

+ 2Re{h1 ×
Σm11
i11=1n11[i11]

m11

√
ρp

Ps1
dsde

∗

})

= E(|h1|2) + E

|Σm11
i11=1n11[i11]

m11

√
ρp

Ps1
dsde

|
2


= E(|h1|2) + | N11

m11
2ρp

Ps1
dsde

| ×m11 = 2θ2 +
N11

m11ρp
Ps1
dsre

(36)
Since h1 and ε11 are complex Gaussian, ĥ1 is also complex

Gaussian. Thus, |ĥ1|
2

is an exponential random variable with
scale parameter

λ11 =
1

2θ2 + N11

m11ρp
Ps1
dsre

. (37)

The probability density function (PDF) of |ĥ1|
2

can be
written as

f|ĥ1|
2(x) = λ11e

−λ11x. (38)

Its CDF is
F|ĥ1|

2(x) = 1− e−λ11x. (39)

Similarly, assuming that E
{
|h1|2

|ĥ1|
2

}
≈ E{|h1|2}

E
{
|ĥ1|

2
} , we can get

E
(
|ĝ1|2

)
≈ 4θ4

2θ2 + |N11|
m11ρp

Ps1
dsre

+
N12D

(m11)η(1− ρp)m11

− N12D
Ps1
dsre

m11η(1− ρp)m11

N11Ei(0)

2θ2 + N11

(m11ρp
Ps1
dsre

)

(40)

where E[ N11

|ĥ1|
2 ] = N11 ×

∫∞
0

1
xλ11e

−λ11xdx =

− N11

m11ρp
Ps1
dsre

Ei(0) has been used. When ε11 is small,

|ĝ1|2 can be approximated as an exponential random variable.
Therefore, let λ12 = 1

4θ4

2θ2+
|N11|

m11ρp
Ps1
dsre

+
|N12||D|ρp

|m11|η|1−ρp|m11

. Its

PDF can be approximated as

f|ĝ1|2(x) = λ12e
−λ12x (41)

and its CDF can be approximated as

F|ĝ1|2(x) = 1− e−λ12x. (42)

Similarly, let λsd = 1

2θ2+
Nsd

D
Ps1
dsd

e

. The PDF and CDF of

|ĥsd|
2

are
f| ˆhsd|

2(x) = λsde
−λsdx (43)

and
F| ˆhsd|

2(x) = 1− e−λsdx. (44)

The CDF of the relaying link can then be derived using
these exprerssions in Appendix A as

Fγ1end(γ01) = 1− 1

Ps1
dsre

(
2θ2 + | N1

m11ρp
Ps1
dsre
|
)

e
− γ01N1+γ01N1m11ρp

2θ2m11ρp
Ps1
dsre

+|N1|
2θ2m11ρp

Ps1
dsre

+ |N1|
m11ρp

−

e
− λ12m11γ01N12ρpD

ηρpm11(1−ρp)m11
2 Ps1
dsre

y
− γ01N1+γ01N1m11

2θ2m11ρp
Ps1
dsre

+|N1|(
2θ2 + | N1

m11ρp
Ps1
dsre
|
)

2
Ps1
dsre

(
z1(γ01)

(ηm11 (1− ρp)m11
2)m11ρp

)

1
2

K1(2

√
z2(γ01)

w4
).

(45)
The CDF of the direct link can calculated as

Fγsd(γ01) = 1 + (λsd − 1)e−λsd(
Nsdγthdsd

e

DPs1
+
γthNsddsd

e

Ps1
).
(46)

Thus, the achievable rate without direct link can be derived as

AR1 = [1− Fγ1end(γ01)]× D −m11

D
. (47)

and the achievable rate with a direct link can be derived as

AR1d = [1− Fγsd(γ01)Fγ1end(γ01)]× D −m11

D
. (48)
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Moreover, the bit-error-rate (BER) without direct link can be
calculated as

BER1 =

∫ ∞
0

1

2
erfc(

√
x) ∗ dFγ1end(x)

=
1

2

∫ ∞
0

e−x√
x ∗ π

Fγ1end(x)dx.

(49)

and the BER with direct link can be calculated as

BER1d =

∫ ∞
0

1

2
erfc(

√
x) ∗ d(Fγ1end(x)Fγsd(x))

=
1

2

∫ ∞
0

e−x√
x ∗ π

Fγ1end(x)Fγsd(x)dx.

(50)

where erfc(x) is the complementary error function.
2) The DTPS structure: Using similar methods, the CDF

of γ2end can be derived as

Fγ2end(γ02) = 1 + (ρd − 1)e
γ02N21ρd+γ02N21m21
2θ2ρdm21Ps2+ρdN21

− e

− γ02N22m21D

( 4θ4

2θ2+
|N21|

m21
Ps2
dsre

+
N22D

[η(1−ρd)(D−m21)]m21
)η(1−ρd)(D−m21)m21

2

e
− γ02N21ρd+γ02N21m21

2θ2ρdm21
Ps2
dsre

+|N21ρd|(
2θ2 + | N21

m21
Ps2
dsre
|
) 2

Ps2
dsre

(
z3(γ02)

η(1− ρd)(D −m21)m3
21

)
1
2

K1(2

√
z4(γ02)

w5
)

(51)
where w5 = η(1− ρd)(D −m21)m2

21 (2θ2m21
Ps2
dsre

ρd +

|N21ρd|), z3(x) = 1
4θ4

2θ2+
|N21|

m21
Ps2
dsre

+
N22D

[η(1−ρd)(D−m21)]m21

[xN21N22ρdD + xm21N22N21D + xN22m
2
21D +

xN22m21D ∗ xρdN21

m21
+ xN21](2θ2m21ρd

Ps2
dsre

+ |N21ρd|) and
z4(x) = 1

4θ4

2θ2+
|N21|

m21
Ps2
dsre

+
N22D

[η(1−ρd)(D−m21)]m21

(xN21N22ρdD+xm21N22N21D+xN22m
2
21D+xN22m21D∗

xρdN21

m21
+ xN21)m21.

Thus, the achievable rate without direct link can be derived
as

AR2 = [1− Fγ2end(γ02)]× (
D −m21

D
) (52)

and the achievable rate with a direct link can be derived as

AR2d = [1− Fγ2end(γ02)Fγsd(γ02)]× (
D −m21

D
). (53)

The BER without direct link can be calculated as

BER2 =
1

2

∫ ∞
0

e−x√
x ∗ π

Fγ2end(x)dx. (54)

and the BER with direct link can be calculated as

BER2 =
1

2

∫ ∞
0

e−x√
x ∗ π

Fγ2end(x)Fγsd(x)dx. (55)

3) The CPS structure: Using similar methods, the CDF of
γ3end can be derived as

Fγ3end(γ03) = 1 + (ρc − 1)e

γ03N31
ρc

+γ03N31m31

2θ2ρcm31Ps3+N31

− 1(
2θ2 + | N31

m31ρc
Ps3
dsre
|
)e−λ32bd −

γ03N31
ρc

+γ03N31m

2θ2ρcm31
Ps3
dsre

+|N31|

2
Ps3
dsre

(
z5(γ03)

[η(1− ρc)(D −m31)]m3
31

)

1
2

K1(2

√
z6(γ03)

w6
)

(56)

where w6 = [η(1 − ρc)(D − m31)m2
31](2θ2ρcm31

Ps3
dsre

+

|N31|), z5(x) = 1
4θ4

2θ2+
|N31|

m31ρc
Ps3
dsre

+
ρc|N32||D|
|m31|η|1−ρc|D

[xN31N32D+ xm31N32N31D+ xN32m
2
31D+ xN32m31D ∗

xN31

ρc2m31
+ xN31

ρc
](2θ2m31ρc

Ps3
dsre

+ |N31|)
and z6(x) = 1

4θ4

2θ2+
|N31|

m31ρc
Ps3
dsre

+
ρc|N32|

|m31|η|1−ρc|
(xN31N32D +

xmN32N31D + xN32m
2
31D + xN32m31D ∗

xN31

ρc2m31
+ xN31

ρc
)m31.

Thus, the achievable rate without direct link can be derived
as

AR3 = (1− Fγ3end(γ03))× (
D −m31

D
) (57)

and the achievable rate with a direct link can be derived as

AR3d = (1− Fγ3end(γ03)Fγsd(γ03))× (
D −m31

D
) (58)

The BER without direct link can be calculated as

BER3 =
1

2

∫ ∞
0

e−x√
x ∗ π

Fγ3end(x)dx (59)

and the BER with direct link can be calculated as

BER3d =
1

2

∫ ∞
0

e−x√
x ∗ π

Fγ3end(x)Fγsd(x)dx (60)

The above derived expressions can be used to calculate the
AR and BER for the three structures. All the BER results
are one-dimensional integrals, which can be easily calculated
using common mathematical software, ie., MATLAB. All the
AR results are in closed-form. Next, we will provide some
numerical examples.

V. NUMERICAL RESULTS AND DISCUSSION
In this section, we study the performances of the three novel

structures in terms of achievable rate and bit-error-rate. In
the study, we fix Ps1

dsre
= Ps2

dsre
= Ps2

dsre
= 1, η = 0.5, D =

100, N11 = N12 = N21 = N22 = N31 = N32 = 1. Define
γ1 = |h|2

2σ2 as the instantaneous SNR of the SR link, and
γ2 = |g|2

2σ2 as the instantaneous SNR of the RD link, where
g1 = g2 = g3 = g, h1 = h2 = h3 = h. The values of g and
h will change with γ1 and γ2, and their real and imaginary
parts are the same.

Fig. 3 shows the outage probability of different structures
by using simulation and analysis for comparison. One sees that
there is an excellent match between simulation and analysis.
This applies to all the following figures but to maintain the
readability of the figures, simulation results are not shown, as
they are not visible in 3D plots.
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Fig. 3. Comparison of simulation and analysis, when γ1 and
γ2 are fixed at 10 dB and 10 dB.

Fig. 4. Achievable rate of the CEPS structure versus the power
splitting ratio ρp, when γ1 and γ2 are fixed at 10 dB and 10
dB.

A. Achievable Rate Analysis

Fig. 4 illustrates the achievable rate of the CEPS structure
versus the power splitting ratio ρp, when γ1 and γ2 are fixed
at 10 dB and 10 dB, respectively. The value of ρp is changing
between 0 to 1 with an interval 0.05. The value of m11 is
changing between 0 to 100 with an interval 1. First of all,
we can see that the achievable rate increases first and then
decreases when m11 or ρp increase. The peak point represents
the optimal value. In this case, it can be observed that the
optimal value is achieved at m11 = 50 and ρp = 0.13, and the
maximum achievable rate is around 0.058. A larger m11 means
more accurate estimate of ĥ1, and more energy for harvesting
but less time for data transmission. A larger ρp means more
accurate estimate of ĥ1, but less energy for harvesting. Thus,
one must choose ρp carefully using our results to achieve the
best performance.

Fig. 5 is similar to Fig. 4, expect that γ1 , γ2 are fixed at 10
dB and 20 dB, respectively. In this case, the rate increases in
most cases. The optimal values are m11 = 50 and ρp = 0.3,
and the maximum rate is around 0.116. Thus, the performance
of the CEPS structure can be improved by increasing γ2, but

Fig. 5. Achievable rate of the CEPS structure versus the power
splitting ratio ρp, when γ1 and γ2 are fixed at 10 dB and 20
dB.

Fig. 6. Achievable rate of the DTPS structure versus the power
splitting ratio ρd, when γ1 and γ2 are fixed at 10 dB and 10
dB.

the optimal values change too.
Fig. 6 illustrates the achievable rate of the DTPS structure

versus the number of pilots for m11 and ρd, when γ1 , γ2

are fixed at 10 dB and 10 dB. Again, we can see that the
achievable rate increases first and then decreases when m21

or ρd increase, implying that the optimal value exists. For this
structure, the optimal values are m21 = 15 and ρd = 0.65,
and the maximum achievable rate is around 0.07.

Fig. 7 shows the rate of the CPS structure versus the number
of pilots for m31 and ρc, when γ1 , γ2 are fixed at 10 dB and
10 dB. Similar observations can be made. The optimal values
in Fig. 7 are m31 = 20 and ρc = 0.65 with a maximum rate
of around 0.074.

By comparing the achievable rates of the three different
structures, one can see that CEPS has a smaller maximum
achievable rate than DTPS and CPS. Also, DTPS and CPS
have similar optimal achievable rates from our calculations,
and CPS has a slightly bigger maximum achievable rate than
DTPS. Therefore, CPS has the best performance among these
three structures, and CEPS has the worst.
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Fig. 7. Achievable rate of the CPS structure versus the power
splitting ratio ρc, when γ1 and γ2 are fixed at 10 dB and 10
dB.

Fig. 8. BER of the CEPS structure versus the power splitting
ratio ρp, when γ1 and γ2 are fixed at 10 dB and 20 dB.

B. Bit Error Rate Analysis

Fig. 8 illustrates the BER of the CEPS structure, when γ1

and γ2 are fixed at 10 dB and 10 dB, respectively. In this
case, we can see that the BER decreases first and then rises
up when m11 or ρp increase. In this case, it can be observed
that the optimal values are m11 = 12 and ρp = 0.95, and
the minimum BER is around 0.07. Fig. 9 shows the BER
of the DTPS structure, when γ1 and γ2 are fixed at 10 dB
and 10 dB, respectively. In this case, it can observed that the
optimal values are m21 = 15 and ρd = 0.51, and the minimum
BER is around 0.0353. Fig. 10 illustrates the BER of the CPS
structure, when γ1 and γ2 were fixed at 10 dB and 10 dB,
respectively. In this case, it can be observed that the optimal
value of ρc is 0.56 and m31 does not have optimal value, the
minimize BER is around 0.03243.

Comparing the BERs of the three different structures, DTPS
and CPS have similar optimal BER from our calculations,
while CPS has minor improvement compared with DTPS.
Therefore, CPS has the best performance among these three
structures.

Fig. 9. BER of the DTPS structure versus the power splitting
ratio ρd, when γ1 and γ2 are fixed at 10 dB and 20 dB.

Fig. 10. BER of the CPS structure versus the power splitting
ratio ρc, when γ1 and γ2 are fixed at 10 dB and 20 dB.

C. Effect of Direct link
In this part, we compare the performance of CEPS with and

without a direct link. The DTPS and CPS has same observation
and are not shown here. Fig. 11 compares the performances
with and without direct link for different power splitting ratios
of 0.4 and 0.8. The achievable rate is higher with direct link,
as expected.

D. Comparison with Previous works
Fig. 12 compares the BERs of our combination structures

with the basic time-switching AF relaying (TSAF) structure
in the literature. The BER values of all three new structures
are smaller than that of TS. Therefore, our novel structures
have better performance than the conventional TS structures
in previous works.

VI. CONCLUSION

Three novel combination structures for energy harvesting
AF relaying have been investigated in this paper. Both distance
and direct link have been considered, and the improvement of
TS and PS energy harvesting protocols with different com-
binations has been discussed. Numerical results have verified



9

0 20 40 60 80 100

number of pilots

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ra
te

rhop=0.4

drhop=0.4

rhop=0.8

drhop=0.8
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Fig. 12. Performance comparison between Novel structures and
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the existence of optimal number of pilots and optimal value of
power splitting ratio for channel estimation, data transmission
and energy harvesting, when the packet size is fixed.
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APPENDIX A

PROOF OF CEPS

One has

I11 = Pr1{
Ps1
dsr

e |ĥ1|
2
− xN11

m11ρp
− xN11 < 0} (61)

I12 = Pr1{|ĝ1|2 <
z

w2
|
(
Ps1
dsr

e |ĥ1|
2
− xN11

m11ρp
− xN11

)
> 0}
(62)

where w2 = [ηρpm11 (1− ρp)m11
2 Ps1
dsre
|ĥ1|

2
]( Ps1dsre

|ĥ1|
2
−

xN11

m11ρp
− xN11) and z = xN12N11D

(
Ps1
dsre
|ĥ1|

2
+N11

)
+m11xρpN12N11D

(
Ps1
dsre
|ĥ1|

2
+N11

)
+ xm11m11ρpN12D

(
Ps1
dsre
|ĥ1|

2
+N11

)
+m11ρpx

Ps1
dsre
|ĥ1|

2
N12D

(
Ps1
dsre
|ĥ1|

2
+N11

)
. Using the CDF

of |ĥ1|
2

in (36), one has

I11 = 1− e
−

xN11

m11ρp
Ps1
dsre

+
xN11
Ps1
dsre

2θ2+| N11

m11ρp
Ps1
dsre

|

. (63)
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Also, (42) can be solved by using the CDF of |ĝ1|2 as

I12 =

∫ ∞
xN11

m11ρp
Ps1
dsre

+
xN11
Ps1
dsre

F|ĝ1|2(
z

w3
)f|ĥ1|

2(y)dy (64)

where w3 = [ηρpm11(1− ρp)m11
2 Ps1
dsre

y]

( Ps1dsre
y− xN11

m11ρp
− xN11). Let Ps1

dsre
y− xN11

m11ρp
− xN11 = t. By

using this variable transformation, one has

I12 =
1

Ps1
dsre

(
2θ2 + | N11

m11ρp
Ps1
dsre
|
)e− xN11+xN11m11ρp

2θ2m11ρp
Ps1
dsre

+|N11|

2θ2m11ρp
Ps1
dsre

+ |N11|
m11ρp

− 1(
2θ2 + | N11

m11ρp
Ps1
dsre
|
)

e
− λ12m11xN12ρpD

ηρpm11(1−ρp)m11
2 Ps1
dsre

y
− xN11+xN11m21

2θ2m11ρp
Ps1
dsre

+|N11|

2
Ps1
dsre

(
z1(x)

(ηm11 (1− ρp)m11
2)m11ρp

)

1
2

K1(2

√
z2(x)

w4
)

(65)

where w4 = (ηm11 (1− ρp)m11
2)(2θ2m11ρp

Ps1
dsre

+

|N1|), z1(x) = ( 1
4θ4

2θ2+
|N1|

m11ρp
Ps1
dsre

+
|N12||D|ρp

|m11|η|1−ρp|m11

)

(xN12N1D + m11ρpxN12N1D + xm11m11ρpN12D +

m11xN12D ∗ xN1ρp
m11ρp

+ xN1ρp) (2θ2m11ρp
Ps1
dsre

+ |N1|)
and z2(x) = ( 1

4θ4

2θ2+
|N1|

m11ρp
Ps1
dsre

+
|N12||D|ρp

|m11|η|1−ρp|m11

)

(xN12N1D + m11ρpxN12N1D + xm11m11ρpN12D +

m11xN12D ∗ xN1ρp
m11ρp

+ xN1ρp)m11ρp.
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