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Global Air Transport Complex Network:
Multi-Scale Analysis
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Abstract—Almost half of the world’s population is carried by
airlines each year, and understanding this mode of transport is
important from economic and scientific perspectives. In recent
years, the increasing availability of data has led to complex net-
work and agent interaction models which attempt to gain better
understanding of the air transport network and develop forecasts.
In this case study paper, we review existing research on two key
approaches, namely: (i) a top-down multi-scale network science
approach, and (ii) a bottom-up entropy-maximization interaction
network approach. Using simple socioeconomic indicators, we
were able to construct a very accurate interaction model that can
predict traffic volume, and the model can forward estimate the
impact of population growth or fuel cost. Using network science
approaches, we were able to identify community structures and
relate them to economic outputs. We also saw how hubs evolved
over time to become more influential. Looking into the future,
using random graph theory, it seems that reduced flight cost will
lead to increased hub influence. The disseminated knowledge in
this case study paper will provide both academics and industry
practitioners with steps forward to co-explore the interesting
research landscape.

Index Terms—air transport network; complex network; spatial
interaction;

I. INTRODUCTION

Air transport networks are complex networks that span
across multiple distance scales (from a few km to 10,000km)
and multiplex together over 5000 airline operators and has
strong inter-dependencies with socioeconomic drivers. The
air transport network carry 3.5bn passengers per year and
generate over 30m jobs globally. The analysis of air transport
networks to better understand its network properties goes back
for over 10 years [1]-[4]. Both global and regional studies
have explored their complex network structure across different
network scales [5]-[7] with multi-layer analysis [6], [8]. The
analysis predominantly focus on robustness from attacks or
failures [9], [10], efficiency [4], and structural evolution [7].
The air transportation network is also responsible for the
propagation of knowledge and culture [11], infectious diseases
[12]-[16], and understanding the network properties allows
scientists to better estimate the intangible benefits and risks of
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global transportation. A detailed review of existing literature
will be given in each relevant section of analysis in this paper.

A. Case Study Outline

This paper summarizes an intense collaboration project
between Airbus (industrial practitioners) and academics that
bring in new complexity methodologies to add new knowledge
value. The goal is to review and explore the network science
and interaction modelling methods that can be used to gain
fundamental understanding into the complexity of air transport
networks.

Two fundamental approaches are tackled in this review:

o Bottom-up entropy-maximization
which considers consumer choice;

o Top-down network science analysis, which seeks to un-
cover common statistical patterns and infer latent knowl-
edge.

interaction model,

The former gives a complex and detailed understanding of how
spatial networks (i.e., flights) form from spatial processes (i.e.,
airports) and what the weight of each edge (i.e., passenger
volume) is with respect to cost (impedes flow) and benefit
(attracts flow) functions that relate to consumer behaviour.
The latter approach gives a statistical understanding into the
fundamental network properties and how they evolve over
time, enabling the application of generalized network scaling
laws that can be used to predict the future structure of the
network. Both the bottom-up and the top-down approach is of
fundamental interest to network science and industry.

B. Data Availability and Network Construction

Several air transport network data sources are available from
academic and commercial databases. One of the most widely
used commercial databases is the purchased OAG data. This
case study paper will use a single month’s sample in the year
2015, as well as open air transport data obtained from the
US Bureau of Transportation Statistics to demonstrate results.
The spatial resolution of the data includes 9000 global airports,
each geo-tagged with coordinates, and the temporal resolution
of the data are every civilian flight (dis-including cargo flights).
Compared to open data, the purchased data from OAG offers a
more comprehensive list of flights as well as passenger volume
and flight class distribution (e.g. between first, business, and
economy).

In order to construct a network from the data, airports are
represented by nodes and flights are represented by weighted



Fig. 1: Complex network of city nodes (airports) with
directed and weighted air transport links. Node size reflects
weighted degree and link line width indicates number of
seats per month. Subplot a) global network comprises of 9033
nodes and 101042 links. Subplot b) a number of domestic sub-
graphs which comprises of 9032 nodes and 53496 links.

links. The vast majority of work uses regular scheduled flights
and the seat number of each flight is used as a weight for
the link. True passenger numbers (load) are commercially
sensitive and cannot be obtained on a global scale. Each node,
if connected to another, is usually a bi-directed connection
with equal weighting (i.e., most flights transverse back and
forth). When multiple flights exist between two airports, the
total weight is the sum of the seats available. An example of
the network is shown in Figure 1.

C. Key Industrial Problems and Interest

Industrial practitioners range from aircraft manufacturers to
airline operators. Of fundamental interest to both parties is the
future of airline routes, both in terms of their spatial patterns
(including multi-hop routes) and their demand intensity (in-
cluding temporal fluctuations). Understanding these patterns
allows aircraft manufacturers, such as Airbus, to design future
aircraft, which may take up to 20 years and are required to
operate for another 30 years. Generally speaking, the problems
posed by industrial practitioners can be broken down into the
following:

+ How do we predict the passenger flow capacity of existing
routes?

o What are the vulnerable points in the network that can
help prioritize redundancy and security [16]?

o How can we categorize air transport networks for differ-
ent airlines to define their business model?

e« How can socioeconomic data help to understand the
future of the network?

Several resolutions are of interest, such as: airline business
model (i.e., legacy, budget, regional, international), operational
model (i.e., point-to-point, hub-spoke), geographic region (i.e.,
developed country, holiday destinations), time-span (i.e., post-
disaster, post-merger), and flight range (i.e., long-haul).

D. Organisation

In Section 2, we give a literature review of bottom-up
approaches such as spatial interaction models that have been
applied to different transport scenarios. Focus will be on both
pair-wise models such as the gravity law and the radiation
model, as well as the Boltzmann-Lotka-Volterra (BLV) com-
petitive interaction model [17]. A small-scale test case of its
application to the air transport network will be given.

In Section 3, we give a review of top-down network science
analysis on the air transport network. At the macroscopic
level, we focus on degree distribution and centrality corre-
lation measures to detect certain airport properties, as well as
small-world network structures and implications on network
resilience to failures. At the mesoscopic level, we will focus on
how community detection, core-periphery profiling, and other
methods can be used to identify network motifs such as hub-
spoke structure to help industry understand the network better
and design future aircrafts. Relationship with socioeconomic
parameters will also be reviewed and analysed.

In Section 4, we review work on random graph models and
how generic distance and hop-distance cost functions can be
used to change the network structure (i.e., from random geo-
metric graphs to random graphs). We use these cost functions
to hypothesize on how the network structure can evolve and
what it means for the business model of aircraft designers.

In the last section, we summarize the bottom-up and top-
down approaches and how future researchers can move for-
ward in this area to better understand the science of air
transport networks.

II. BOTTOM-UP APPROACH: SPATIAL INTERACTION
MODELS

A. Pairwise Models

Pairwise models are free from any global constraints (i.e., fi-
nite network commuter capacity bounded by total population),
and as such have low computational complexity.

1) Gravity Law: One method to measure flow is the widely
used gravity law to infer the volume of flow between any
two given cities [18]. The gravity law has been employed in
various forms for over a century [19], [20], but as with many
such laws, its theoretical underpinning comes in many forms
(see below). Gravity laws generally describe the attractive
force between two entities and has been used to describe to
flow of a wide variety of goods (e.g. vehicles, goods, disease,
and human beings) [21]-[24] and information (e.g. telephone
calls and social media messages) [25]-[27] between cities
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Fig. 2: Using entropy-maximization BLV model to predict passenger flow volume. Passenger flow (a) obtained from real
data, (b) predicted by assuming b; = log P;, and (c) predicted by assuming b; ; = log(P; F;).

and countries. The law consists of three main parameters: the
weights of the two nodes (i.e., population P) and the rate
of decay dependent on their Euclidean separation distance d.
Continuing with the flow model used previously, the number
of trips from location 7 to location j:

F;; OCPianﬁf(dij)' (1

where [«, ] are parameter exponents and the function of
distance f(d) can take on many forms depending on the
context of application. In the most classical gravity law case,
the form of f(d) is generally d—2.

A thorough review of gravity laws and complex networks
can be found in [18]. Almost all research will agree that
population determines the flow of goods or people [28],
[29]. The discrepancy between different models lies in
what form the gravity law takes, especially for the distance
function f(d), and the parameters that weight the population,
i.e., a and g in Eq. 1. Two studies in particular stand out
as examples of global trade or good exchange [12], [22].
For air travel, one of the largest flow studies examined
worldwide commuter traffic [22]. It was found that the
travel pattern conformed to the following gravity law with a
distance function f(d;;) = exp(—d;;/x). For below 300km,
the nodes were asymmetrically weighted (i.e., directed
links): [« = 0.46,8 = 0.64,x = 82]. This is perhaps
accounted for by travelling between home and work. For
over 300km, this study and many others like it found that
flow is nearly symmetric (i.e., undirected) and the parameters
are: [ = 0.35,5 = 0.37]. Other similar air traffic studies
indicated that for long distance the values for population
weighting are: o = S = 0.5 [12]. One challenge with the
gravity model is its sensitivity to parameterization and the
following models overcome this.

2) Radiation Model: Inspired by the gravity model, the
radiation model [24] has recently been proposed to overcome
all the aforementioned limitations. Using mobile data from
commuters (traveling from home to work), in [24] the authors
show that the flux is independent of key parameters in the
job market, namely: i) benefits of the job, ii) the number of
jobs available at the location, and iii) the number of people
N.. Hence, unlike the gravity model, the radiation model is

parameter-free. The average flux (F;;) is predicted by:
P, P;

(Pi + s5) (P + P + sij)

where F; = P;(N./N) denotes the total number of commuters

transferring from ¢ to j, and IV is the total number of people in

the country. The parameter s;; denotes the population within

a circle of radius 7;; that is centred around the location 4
(catchment area).

(Fij) = F; 2

In general, these pairwise models only consider the
attributes of nodes ¢ and j, and do not bound the overall
system with energy constraints that would otherwise capture
some kind of competitive decision making process. Perhaps,
the local studies (i.e., within cities or countries) do not need
to consider a high degree of competition, but these models
cannot be and have not been generalized to larger networks.

B. Multi-point Entropy Maximization Models

Pairwise models suffer from the lack of competition be-
tween nodes [30], [31]. As such, they tend to work for non-
competitive interactions and cannot accurately describe the
competitiveness nature of the global air transport industry.
Multi-point models consider all possible flows simultaneously
and attempt to discover the most likely combination.

1) Boltzmann-Lotka-Volterra (BLV) Formulation: We
now review the BLV model [17], which has been applied
to a wide range of competitive scenarios, such as financial
spending patterns in shopping centres. The BLV model has
the potential to predict the flow between different nodes of the
network, given data related to the cost and the benefit of having
flights between the airports. As such, it can test hypotheses
related to the impact of changing costs and passenger benefits.
Given a fixed number of spatial points (i.e., airports), there
are a finite number of route configurations. Entropy in a
spatial configuration context can be defined as the likelihood of
forming certain combination of links. This is the foundation to
the BLV model. The formulation is pinned on the maximizing
the number of micro-states in the network (a term from
statistical physics), which gives the most likely flow pattern



[17]: i
W(Fiy) = =
! Hz j F, m‘!
where the weighted flow between two arbitrary nodes is F; ;,
and F' is the total flow in the system. By taking logs and
using Stirling’s approximation, the above is equivalent to
maximizing the Shannon entropy S in the system:

S=—>F;;log(Fi;). (4)
,J

3)

At this point, the generic spatial interaction model needs to
define clear benefit and cost functions. Constraining the link
weights based on cost functions ¢; ; (i.e., distance and fuel
cost), benefit functions b; (i.e., attractiveness of destination
city Z;), and fundamental limits (i.e., total capacity of air-
ports X;), the most likely passenger flow F; ; can be found
with Lagrange multipliers (v, 3,7). The general form of the
predicted flow is given as [17]:

exp (ab; — Be; 5)
Yopexp (abj — Bey)’
where the Lagrange multipliers are optimisation parameters
that weigh each benefit and constraint. The benefit and

constraint functions are given below for particular regional
case studies.

ZjiX (5)

2) Case Study: Australia Domestic Network: Due to the
vast computation required to consider a global or even a large
regional air transport network, we consider an isolated and
small domestic network such as Australia. In particular, we
select the 5 largest airports: Sydney, Melbourne, Brisbane,
Adelaide, and Perth. Given known data on the flow between
these airports and the associated city data, we need to assume
right cost-benefit functions and corresponding Lagrange mul-
tipliers. Reasonable assumptions based on existing literature
can be developed for the cost-benefit functions. We assume
that the decision of having flights between two airports only
depends on the population P and separation distance d of the
nearest cities.

Benefit Function: Preliminary results show that the number
F; of passengers flying to a city j has positive correlation
with the population P; of the city j. From that, we construct
two ways to calculate b; which are in line with gravity law
equations [24]:

1) Model 1: b; = log P;,

2) Model 2: bi,j = 1Og(PLPJ)

We use both benefit models to predict Fj ;, then we compare
the predicted result and real data. We also compare the
dynamics of F; ; with the increase and decrease of populations
P; of each city ¢ by time.

Cost Function: Distance as a cost usually appears as a grav-
ity law or exponential form, which is used in transportation
cost functions [19], [20], [22], [24].

1) Fi; o d;, where a = 1,2 is similar to gravity or

radiation law land-based travel models.

2) F;; o« exp(—d;;), where this exponential form is

similar to Levy flight movement of birds and low friction

systems.

In our study, we assume cost is linearly dependent on the
distance: ¢; ; o< d;j, such that the flow is proportional to
the exponential form of the distance F; ; o exp(—d; ;) (see
Eq.(5)). In order to find the Lagrange multipliers «, 8 and -~y
such that the outputs F; ; of our model fit the flights data,
we minimize the norm of the residual relative to the true flow
data F; j .:

f(a7/377’25) = ||F‘7jlrue - FZJ
+ Al diag (£ j,..) — diag(Fi 5)|2,

where the second term enforces that the diagonal of the output
is zero for fixed A > 0. Since this is a global optimisation
problem with a non-convex objective function, one cannot
achieve perfect convergence, but the output of our calibrated
model gives good relative number of flights between different
airports. This means that we need to adjust the output of our
model by multiplying the results by C' = M""“’ , where M 414
is the true maximum number of flights arrlnfi Mmodel is the
predicted maximum number of flights between any two of the
five cities in our dataset.

2

(6)

Results: Figure 2a shows the passenger flow F' where
each element F;; is the flow of passenger from airport i to
airport j. Each row and column corresponds to five different
airports that are ordered from Sydney (SYD), Melbourne
(MEL), Brisbane (BNE), Perth (PER), and Adelaide (ADL).
Because each passenger flow is normalised, F; ; ranges from
0 < F; ; < 1. Figure 2b is the predicted passenger flow based
on the benefit function as model 1: the benefit for a passenger
to fly to airport j is b; = log P;. In Figure 2c, we use model
2 (i.e, b; = logP;P;) to calculate benefit function, and
obtain the result. As one can observe, model 1 shows better
agreement with the Australian air transportation data than
model 2, with model 1 yielding an aggregated normalised
flow intensity difference of 0.7 compared to those of 2.6 for
model 2.

3) Future Scope for Research: The BLV model [17] has
the advantage of finding the entropy-maximization solution to
a competitive network flow problem, including the temporal
dynamics. However, the non-convex nature of the BLV model
means that unless there is native intuition on the benefit and
cost functions (e.g. based on established studies), then discov-
ering the correct function form and the parameters is costly.
Nonetheless, the BLV model has been applied successfully to
complex challenges in urban retail, mobility [30], and policing.

During this brief analysis of how the BLV model can be
used to predict future passenger flows (flights), the benefit
function depends only on the population of the cities where
the airports are located (destination or both), and we modified
the input of the model manually (the population of one city)
in order to predict the future flows. If the benefit function
would reflect the actual capacity of the airport, like we suggest
above, then we can have a more natural evolution of the model:
instead of modifying the input Z; to the benefit function, we
can let it evolve by the following rule: AZ; = e(D; — Z;) Z;,
where D; = > . F;; is the total flow to each airport as



predicted by our model. The sign of AZ; depends on whether
D; > Z; (in which case the capacity of the airport should
grow) or D; < Z; (in which case the capacity of the
airport should decline). At each time step, we update Z; by
adding AZ; and then we re-calculate F; ; for each edge using
the new benefit Z. For instance, this may understand the
population and economic dynamics of BRIC countries and
understand the contributing factors to flight demand. An even
more sophisticated approach would take into account both the
airport capacity and population size, and other socioeconomic
data in addition, like GDP of the country/city.

III. Tor-DOWN APPROACH: COMPLEX NETWORK
MODELS OF AIR TRANSPORT

The complexity of the air transport network has led many
to apply network science to better understand its properties
at macroscopic (network properties), and mesoscopic
(community properties) levels. Existing work is abundant
with snap-shot analysis of network structure (i.e., degree
profile, modularity, closeness). However, longitudinal analysis
is rare, because the data is expensive to obtain. This section
will review both existing research and conduct longitudinal
case studies on sub-regions of the air transport network.

A. Macroscopic Network Properties

1) Previous Studies: For macroscopic studies, degree rank,
degree distribution and betweenness distribution are the most
well studied [1], [32]. Previous studies found that both the
degree (unweighted) and the betweenness (unweighted) have a
complementary cumulative distribution that obeys a truncated
power-law. The normalised gradient (slope) is found to be ap-
proximately -1.0 for degree and -0.9 for betweenness [1], [32].
Previous studies have also shown that the degree, betweenness,
and closeness rank distributions of the Chinese air transport
network was found to obey an exponential distribution [33].
Furthermore, the centrality measures are positively correlated
with passenger numbers, which indicates that airports that are
important from a network perspective also experience the most
number of passengers. Another interesting aspect of complex
networks is the small-world property, which also applies to
airline networks (clustering coefficient is an order of magni-
tude higher than the random graph equivalent). Furthermore,
it was found that average shortest path d grows with log(.5),
where S is the number of nodes in the network [1].

2) Case Study: Global Air Transport Network in 2015:
Centrality Distributions: Fig.3 shows the complex network
of airport (nodes) connected by directed and weighted air
transport links. Node size reflects weighted degree and link
line-width indicates number of seats per month (aggregated
over the flights). Subplot a) global network over one exam-
ple month comprises of 9033 nodes and 101042 links; and
subplot b) a number of domestic sub-graphs (national), which
comprises of 9032 nodes and 53496 links.

Fig.3 sub-plots a) and b) show the normalised cumulative
distribution of the weighted degree and population. The results
confirm established knowledge that the normalised weighted
degree (normalised with respect to mean z) exhibits a power-
law form:

P(> Dy/z) x (Dw/2z)"° (7)

which has been previously confirmed back in 2005 [1], [32].
The gradient (slope) a is found to be -0.81 for our 2015 data
(compared to -1.00 for 2005 [1]), indicating that there is a
diffusion of transportation flow towards a larger number of
highly connected hubs. Similarly, a power-law exists in the
cumulative distribution of the normalised cities’ population
Pop/z), which has been well established at both the global
and domestic (national) levels.

Centrality Correlations: Looking further, of particular
interest in the context of airline networks is the degree
and betweenness correlation. A high correlation indicates the
Hub-Spoke (HS) model, whereby highly connected airports
(degree) also act as shortest-path (betweenness) for multi-
hop routes (see Fig.3g). In particular, the variance is small
for hubs, giving confidence to the conclusion. Fig.3h looks
at the correlation between degree and betweenness per link
(betweenness/degree). The results show that the lower-bound
of the scatter plot increases the betweenness/degree as degree
increases. This shows that hubs not only have a lot of shortest
paths and connections, but the number of shortest paths per
link is also higher than non-hub airports. Other results also
reinforce the notion that hubs can be detected by degree pro-
filing and are important. For example, Fig.3f shows that degree
is highly correlated with eigenvector centrality, indicating that
airports with a high number of connections are also airports
with important connections.

In Fig.5, we select the top 50 hubs and show a strong corre-
lation between degree and betweenness centrality (data from
2016). We track the correlation from 1988 to 2018, showing
that the correlation falls towards the late 90s, but dramatically
increases from late 90s to today (correlation increase from 0.47
to 0.85), which corresponds to the significant fall in air travel
costs to consumers. In Section IV, we give a more theoretical
foundation on what factors drive the HS model, and theorize
that the cost of flight changes have led to an increase in HS
model.

Relation to Population Rank: In Fig.3’s sub-plots ¢) and
d) show the rank distribution of the weighted degree and
population. In particular, we note that the data generally obeys
an exponential rank distribution

D,, x exp(—br), (8)

where r is the rank and b is given in Fig.3d and e. Whilst
the coefficient of determination (R-squared) values show that
the exponential distribution can explain 97% and 86% of
the variations, there exists a King and Pauper effects which
cannot otherwise be explained by any other known statistical
distributions. The first few ranked cities have an order of
magnitude higher (King effect) air transport degree and
population. The tail ranked cities have an order of magnitude
lower (Pauper effect) air transport degree and population.
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Fig. 3: Complex network properties of the global air transport network. Sub-plots a) and b) show the normalised cumulative
distribution of the weighted degree and population. Sub-plots ¢), d), and e) show the rank distribution of the weighted degree
and population and eigenvector centrality. Sub-plots f-h) show the correlated centrality values for each airport.

This is not observable on the cumulative distribution plots,
and is evident in both the global graph and within each
sub-graph at the domestic level (see results in Fig. 4). More
interestingly, most of the King airports relate to the core of
the network and we will demonstrate that the air transport
network has a core-periphery structure.

B. Mesoscopic Network Properties

The global network can be de-constructed into different
sub-graphs. For example, each airline can form a sub-graph
[34], or the links on each continent can be detected through
community structure analysis (modularity) [1]. In [8], a multi-
layer network is constructed that comprises of major interna-
tional airlines and low-cost budget airlines in Europe. It was
found that the degree distribution of each sub-graph did not
necessarily conform to the power-law distribution observed at
the continental or global scale [1]. In general, it was found
that major international formed connections that contained
distribution tails which were orders of magnitude higher than
the power-law, and budget airlines formed connections that
had a degree tail distribution which was poorly connected,
indicating a Pauper effect. The robustness [35] of the air
transport network subject to random removal was tested in
[4], [9], [10], [32], and it was found that the existing network
structure has been designed for efficiency and is not resilient
against failures or attacks.

1) Domestic Network Centrality and Relation to Wealth:
The global air transport network includes both international

and domestic flights, and the latter can be regarded as
a set of sub-graphs. Fig.3d and e demonstrated that the
rank distribution of both the city’s population and airport
weighted degree fit an exponential distribution. We discover
that despite the variety of domestic sub-graph patterns
for different countries (see Fig.4b-f), the same exponential
distributed degree rank also exists in each sub-graph alongside
the similar exponentially distributed population rank. A key
observation is that each country’s difference between the
sub-graphs’ population and airport degree rank distributions
is correlated with the GDP per capita of the country. We
measure the difference by the ratio of the average area under
the graphs, which can be interpreted as the average number
of flight seats per person (data is for per month). Fig.3a
shows that the ratio is positively correlated with the GDP
per capita ¢ (2015 world bank) via a power-law relationship
]E[p(;g]] o 9, where g is found to be 0.69 and can explain
for approximately 73% of the variations in each domestic
sub-graph’s population and degree distribution differences. On
a statistical level, the relationship is intuitive in the sense that
individual wealth determines the frequency of domestic flights
and reasonably well understood [36]. However, what is less
well understood until our discovery is the close relationship
between the degree and the population rank distributions
and the universality of the distribution for every nation. The
higher resolution understanding of the distribution means that
should new cities be constructed or there is a change in the
demographics of one region, researchers can potentially use
the relationship found to estimate the resulting adjustments
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needed in the degree distribution and use it as a proxy for
network rewiring (i.e., plan new flight paths).

2) Core-Periphery Structure: An intuitive understanding
of a network core often refers to a subset of nodes that are
densely connected among themselves, whilst the periphery
is loosely connected to the core [37]. There already exists

different algorithms to detect a core structure based on certain
purposes, therefore, it is important to choose the appropriate
one. The core profiling method [38] used here considers the
degree of nodes in core and the link density within the core.
First, nodes are ranked based on decreasing order of degree.
For each node, the number of links &, that connected with
nodes having a higher degree than the selected node was
recorded. After the k! sequence is generated, the boundary
of the core is able to obtain by detecting the peak of the
sequence, after which k7 decreases steadily. A demonstration
for the 500 airports is shown in Fig. 7.

At a domestic sub-graph level, a core-periphery structure
also exists. Fig.6a shows the top 10 countries in terms of
the GDP, most airports, core size, and relative core size. The
relationship between each domestic sub-graph’s core size and
the nation’s GDP is shown in sub-plot Fig.6b. Sub-plots c-
h show the core-periphery structure for 6 example nations in
descending order GDP and corresponding descending order of
core size.

The global air transport network contains a core with
approximately 80 nodes (less than 1%), whilst the remaining
9000 are peripheral nodes. The relatively small core size
demonstrates the economic efficiency of the network, as well
as its low robustness to random and targeted failures. This
has been established previously in [32], but not done so with
the understanding of core-periphery structure properties. We
compared the current air transport network to a random
network in which the nodes are the same, but the links were
rewired randomly. Therefore, the number of nodes and links,
as well as the degree distribution were maintained in the
random network [39]. By comparing the relative core size
and the core link density between the real network and the
random networks, we found that the air transport networks
form more cohesive cores, which results in higher stability
and topological robustness in the face of perturbations (e.g.
attacks or failures [40]).
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3) Evolving Communities: Communities are a form of
mesoscale structure in networks. Roughly speaking, they are
defined as groups of nodes that are densely connected inter-
nally and sparsely connected to other groups in the network.
There are a number of ways to detect and define community
structures from the underlying data of air transport. However,
given the ill-defined nature of network communities, select-
ing a suitable detection method is still discretionary to the
researcher’s needs and intuition, both in terms of computing
complexity and data characteristics. Here, in Table I, we
present the main general classes of community detection
methods currently in use across the literature, referring to their
strengths and weaknesses.

In this particular case, we used the Louvain method (a form
of modularity maximization particularly suited for large net-
works) [41]. Crucially, we don’t need to specify the number of

a) 1996: 7 Communities b) 2006: 4 Communities

Fig. 8: Community structure of flights network in the US
in the month of January in three different years: (a) 2016
(4 communities), and (b) 1996 (7 communities). Data from
the Bureau of Transportation Statistics.

TABLE I: Summary of the main methods for detecting com-
munities in complex networks.

Detection Method Community Indicator

Spectral Clustering Eigenspace Closseness

Modularity Optimization Higher Link Density
Statistical Inference Higher Link Likelihood
Spin-Spin Interactions Low Energy Domains
Coupled Oscillators Phase Synchronization

Markov Processes Random Walk Confinement

communities in the network, that is detected automatically by
the algorithm. In the Fig. 8, we show identified communities
for the US domestic flights network in the month of January
for three different years: 2016, 2006, and 1996. Edges in the
network are weighted by the number of flights in the respective
time period. We notice that detected communities decrease in



number over time, and they align with US geographical areas.
For example, in 2016, there are 4 communities consisting of:
the East Coast and Puerto Rico (purple); the Midwest (red); the
South-East (green); and the Western States, including Alaska
and Hawaii (blue).

Some structural changes occur over time, especially in the
south-east United States. One reason for this could be the
consolidation of regional airlines such as JetBlue, which offers
many flights along the East Coast and relatively few flights
to other regions. Community structure is useful for market
segmentation based on route density. Furthermore, by looking
at how communities evolve over time, we may be able to pick
up changes in the state of the market in a particular region.
For our US case study, more work is necessary to understand
how communities change over time and what are the factors
that drive those changes.

4) Route Changes and Classification: Another method
for detecting substructures is route classification. An airline’s
network evolves constantly, with routes being added and
discontinued from year to year (see example below for United
Airlines). One question is whether we can characterize these
routes based on features such as: distance between origin
and destination, degree (or weighted degree) of origin and
destination (or difference between them), and socioeconomic
indicators of the areas serviced. Ideally, this would give an
indication of what kind of routes an airline is adding or
removing from its network.

As a proof-of-concept, we analysed the 10% of the pas-
senger data in the US for the second quarter of the years
1993-2015. This allows us to estimate the actual travel to
high accuracy and we can infer results about the weighted
domestic flight network. While the total air travel has increased
(see Fig. 9a), there is a clear shift towards longer flights
(Fig. 9b-c, note the order of the curves). At the same time,
the total number of different routes has decreased, pointing
towards an evolution of a hub and spoke structure. Future
research in this promising area can focus on developing
proprietary unsupervised learning methods for classification,
with particular attention to churn and the relationship between
operator type and the flight route.

IV. FUTURE OF AIR TRANSPORT NETWORKS

We assume that cities are randomly and uniformly dis-
tributed. The critical assumption is that we assume that the
number of routes is constant and that we make no assumptions
on which routes should or shouldn’t exist or what the range
of a route should be. That means the model is a pure theo-
retical spatial graph, aimed at only analyzing its fundamental
properties as a function of distance cost.

For example, if the distance penalty for a flight reduces,
how will it affect the network properties? To this end, we
construct a 2-D random geometric graphs (RGG) with a Pois-
son Point Process (random uniform), whereby the probability
of connect is weighted by, such that Q; ; = Kd~“, where
K is a normalizing factor (i.e., ticket cost). We attempt to
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Fig. 9: Route classification: (a-b) Cumulative distribution of
route distance for different years. (c¢) Number of routes for
different distance classes.

construct RGG with a fixed number of nodes and links for a
fair comparison of centrality metrics. As such, the expected

number of links £ = ZUQM, yielding K = #
Therefore, the probability of a link forming is: v

-

Qij= Bl . 9)
! Zk,l dm
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The resulting graph tends to vanish for large values of «
(i.e., ticket price K is too large to compensate), so E is only
maintained for certain « values (from O to 3).

In Fig. 10, we show 8 values of « uniformly distributed
from O to 3 (represented by different colours in the scatter
plot). For a high value of « (i.e., 2-3), the spatial graph shows
weak to no correlation between degree and betweenness.
This indicates that it is better to travel point-to-point or not
travel by air, and as such well connected (high degree) are
not prominent transfer hubs (high betweenness). For a low-
medium value of « (i.e., 0-2), the non-spatial graph shows
a strong correlation between degree and betweenness. This
indicates that the hub airports are also the best airports for
minimum hop transfers. As such, one conclusion that we can
draw is as follows. Traditionally, the cost of flying was high
and point-to-point (PP) transportation was prevalent. As the
cost reduced (especially since 2000s), the structure of the
network is statistically more likely to move to a Hub-Spoke
(HS) network, because large-hubs can afford efficient take-off
and landing and logistics. We can see this trend in the data

given in Fig 5, where there is a dramatic increase in the HS
model since 2000 (correlation increase from 0.47 to 0.85).

This has a profound effect on the design of future aircrafts,
as the PP model would prefer small to medium sized aircrafts
(e.g. Boeing 777/787 and Airbus A330), whereas a HS model
would perhaps prefer high-capacity jumbo-jets (e.g. Boeing
747 or Airbus A380).

V. CONCLUSIONS

Almost half of the world’s population is carried by air-
lines each year, and understanding this mode of transport is
important from economic and scientific perspectives. In this
case study paper, we reviewed both bottom-up (max. entropy
agent model) and top-down (network science) approaches to
better understand the fundamental science behind air transport
networks. A summary of key key findings is given in Table 11.

In Section II-B, using simple socioeconomic indicators, we
were able to construct a very accurate entropy-maximization
interaction model that can predict traffic volume for Australia.
Using the population and distance functions, the spatial inter-
action model can forward estimate the impact of population
growth. In Section III-B, using historical data, we were able
to identify how hubs evolved over time to become more
influential. In Section IV, looking into the future, using random
graph theory, it seems that reduced flight cost will lead to
increased hub influence.

Future research will integrate the flow dynamic data into
the complex network analysis, which can be done either
explicitly through differential equation models [42] or using
passenger flow data as a proxy [43].
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