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ABSTRACT

Maintaining the physical integrity of electrode microstructures in Li-ion batteries is critical to 

significantly extend their cycle life. This is especially important for high capacity anode materials such 

as silicon, whose operational volume expansion exerts huge internal stress within the anode, resulting 

in electrode destruction and capacity fade. In this study, we demonstrate that by incorporating metal-

organic frameworks (MOFs) with carboxylate organic linkers into Si-based anodes, a stable and flexible 

pore network is generated to maximize and maintain Li-ion flux throughout the electrode’s architecture. 

We show that the zirconium carboxylate MOF UiO-67 is a versatile co-material to boost performance 

and mitigate the rate of anode degradation that presently limits the lifetime of Si anodes. The cage-like 

pores in UiO-67 and flexural properties of the 4, 4'-biphenyldicarboxylate organic linker are proposed 

to create robust “ionophores” in the anode film to enhance longer-term durability and performance.
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INTRODUCTION

The development of electrode components beyond the active materials (Li host particles) remains a 

comparatively less explored domain in Li-ion batteries. A considerable research effort has attempted to 

use silicon as an anode material, with a specific capacity of 3579 mAhg-1 (compared with 372 mAhg-1 

for graphite).1 However, there are significant detrimental issues associated with a massive volume 

expansion upon alloying silicon with Li+ (up to 280%) resulting in pulverization and electrode 

degradation and failure.2 Additionally, its surface continually reacts with the electrolyte (≤ 0.9 V vs 

Li/Li+) to form a solid-electrolyte interphase (SEI), which is a major source of Li loss and contributes 

to the performance degradation.

Attempts to circumnavigate the problems associated with silicon have broadly used two distinct 

approaches. The first involves the modification of the silicon morphology, including amorphous thin 

films,[3],[4] nanowires, macro-porosity, nano-sized silicon particles5 and surface coatings.6 The second 

approach focuses on the development of hybrid silicon anodes and includes composite development 

with variation in the silicon content, morphology, composite composition, preparation techniques, and 

dispersion methods. Additives include lithium-inactive materials,7 lithium-active materials,7 and 

various binder systems7–9 as well as combining silicon with carbon materials.10 However, the highly 

complex synthesis methods along with excessive manufacturing cost of these materials still poses 

practical questions for real applications. 

In this paper, we report an investigation into how the electronic and ionic conductivity of silicon anodes 

may be optimized by incorporating metal-organic frameworks (MOFs) alongside carbon hierarchies. 

We reveal the beneficial effect of adding the structurally flexible MOF component to the composite, 

demonstrating improved mechanical properties via modification of the porosity. MOFs are a class of 

crystalline porous materials and have a unique combination of physical properties, namely high specific 

surface area, organic functional linkers and metal sites,11 and with evidence pointing towards their 

application as electrode materials for electrochemical devices.12–14 The tuneable pore structures and 

functional redox-active components of MOFs may conceivably make it possible for Li+ ions to travel 

more homogenously through the anode.15
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The practical use of redox-active MOFs in lithium-ion batteries (LIBs) as the primary Li host material 

is unrealistic for several reasons, namely, the low density, limited Li+ ion insertion capability, poor 

electronic conductivity, and irreversible structural modification over multiple cycles.14 Our rationale is 

to explore and understand MOFs for LIBs, as flexibility and porosity enhancing additives. The robust 

zirconium carboxylate MOFs, UiO-66 and UiO-67 were selected with the dual purpose of improving 

and maintaining the porous networks of the anode whilst enhancing the cohesion of the components. 

Both MOFs contain carboxylate organic linkers, chosen for the possible esterification reaction between 

the surface carboxylate groups in both the MOFs and in the polyacrylic acid (PAA binder) with silanol 

groups on the surface of Si in our electrode system.16 Certain MOF materials, particularly UiO-66, have 

emerged as being stable with respect to conditions of temperature, water or other chemical 

environments. UiO-66 has also been shown to intercalate Li by way of interaction with the aromatic 

components of the constituent ligands.11

Pore distribution plays a key role in cell performance through the electrochemical reaction kinetics, as 

well as the electrode’s transport properties.17 Impedance spectroscopy and physical characterization are 

used to capture and quantify the evolution of internal morphology and the build-up of resistance. 

EXPERIMENTAL SECTION 

Synthesis of UiO-66: 1,4-Benzenedicarboxylic acid, 1.19 g, and zirconium(IV) chloride, 0.823 g, 

(2:1 molar ratio) were weighed and dissolved in N,N-dimethylformamide (50 ml). To this solution, 10 

ml of hydrochloric acid (35%) was added and the resulting mixture was stirred at room temperature for 

30 minutes. The reaction vessel was sealed inside a 200 ml Teflon-lined stainless-steel autoclave and 

heated under hydrothermal conditions, at 120 °C for 12 hours. The product was obtained as a white 

solid by filtration and subsequent washing with methanol and then dried in air at 70 oC. All chemicals 

were used as supplied by Sigma-Aldrich.

Synthesis of UiO-67: 4,4'-Biphenyldicarboxylic acid, 1.082 g, and zirconium(IV) chloride, 0.805 g, 

in a 1.3: 1 molar ratio, were dissolved in N,N-dimethylformamide (60 ml). To this solution, 6 ml 
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4

hydrochloric acid (35%) was added and the resulting mixture was stirred for 30 minutes at room 

temperature. Then, the reaction was heated at 80 °C under hydrothermal conditions in a 200 ml Teflon-

lined stainless-steel autoclave for 24 hours. The product was obtained through filtration as a colorless 

solid, which was then stirred in N,N-dimethylformamide at 50 °C for 12 hours to remove unreacted 

biphenyl-4,4'-dicarboxylic acid, then filtered and washed with methanol, before drying at 70 C 

overnight. All chemicals were used as supplied by Sigma-Aldrich.

Electrode Materials: The electrode slurry was prepared from silicon powder with average particle 

size of 2.2 µm (Elkem Silgrain e-Si), carbon black (Super C65, TIMCAL C-NERGY), graphite (SFG-

6, TIMCAL C-NERGY), carbon nanotubes (Tuball Inc.) and few-layer graphene (FLG) (thickness of 

6 - 8 nm, XG Sciences). A carbon mixture was made from 88% carbon nanotubes, 6% carbon black 

and 6% FLG in deionized water with a solids content of 64%. The heterogeneous carbon mixture was 

added to enhance both the long-range (planar) and the short-range (depth) conductivity of coating with 

a possible mechanical strengthening from graphene.18 The aqueous binder was made from polyacrylic 

acid (PAA) powder (average Mw ~450,000, Sigma-Aldrich) and was partially neutralized to 70% with 

sodium hydroxide as proposed by Huang et al.18. The neutralization step is to extend the chain 

configuration of the PAA as it might affect the electrolytic dissolution and also the agglomeration of 

carboxyl groups in PAA from hydrogen bonding. The polymer chains in Na-PAA are stretched due to 

electrostatic repulsion and it also exhibits higher viscosity19 improving adhesion in the electrode 

material.

Electrode Material Preparation: The additives were dispersed in a mixture of deionized water and 

isopropanol (1:5 wt%) and sonicated for 30 min to break any agglomerates. The electrode was prepared 

from a slurry of silicon powder, carbon mixture, additives suspension and water as the polymer binder 

solvent (for every 10 g of silicon 20 g of deionized water was added). The components were mixed in 

a high-speed Homodisperer (Model 2.5, PRIMIX) for 30 min at 1000 rpm. The resulting mixture was 

ultrasonically processed (UP400S, SciMED) for two periods at 60% amplitude for 7.5 min each. 

Following this, the Na-PAA binder solution was added to the solution prior to high-speed 
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5

homodispersion for 30 min at 1000 rpm. Finally, the slurry was transferred to a Filmix disperser (Model 

40-40, PRIMIX, Japan) for homogenization and breakdown of any secondary agglomeration. This was 

a two-step process, first at 10 ms-1 for 30 secs and then at 25 ms-1 for 30 secs. 

The coating process involved spreading the prepared slurry onto a current collector of copper foil (10 

μm, Oak Mitsui, electrodeposited) using a draw-down coater with a spreading blade (K control coater 

Model 101, RK Print, UK). The blade gap between the blade tip and the copper foil can be adjusted 

between the ranges of 0 – 100 mm, for this study, a blade gap of 100 μm was used. After coating the 

slurry onto the copper foil, it was dried on a preheated hot plate, set at a temperature of 50 °C to 

eliminate any solvent. The coating was moved to a vacuum oven set at 50 °C for overnight drying to 

ensure maximum moisture removal. 

Materials Characterization: Powder X-ray diffraction patterns were measured for sample 

identification using a Panalytical X’Pert Pro MPD, equipped with monochromatic Cu Kα1 radiation (λ 

= 1.54056 Å) and a PIXcel solid state detector. Combined thermogravimetric analysis (TGA) – 

differential scanning calorimetry (DSC) was performed using a Mettler Toledo TGA/DSC1 instrument 

under either ambient air pressure or nitrogen atmosphere, with a heating rate of 10 °C·min-1 from 25 °C 

to 1000 °C.

Electrochemical Testing: Electrodes were cut from vacuum dried electrodes in a dry room (with a 

dew point of -45° C) to ensure there was no exposure to moisture during the cell assembly process. The 

separator is PP/PE/PP microporous trilayer membrane (Celgard 2325) and the electrolyte used was 

RD265 (1.2 M LiPF6 in ethyl carbonate/ethyl methyl carbonate (1/3 v/v), 15% fluoroethylene carbonate 

and 3% vinylene carbonate) (PuriEL, SoulBrain). The silicon half-cells were cycled against lithium 

(diameter = 15.6 mm, PI-KEM). For statistically reproducible results three half cells corresponding to 

each formulation were made. The mass of Si in the cut out dry electrode discs was 2.27±0.21 mg. The 

electrochemical cycling was characterized using a multi-channel potentiostat, VMP3 (Bio-Logic) at 

room temperature. The cells were charged and discharged using a constant current mode. For the first 

cycle a C-rate of C/20 was used to initiate SEI formation and from the second cycle, a rate of C/5 was 
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6

applied where C denotes capacity of the cell. A cut-off voltage of 50 mV was applied to avoid re-

crystallizing Li15Si4 from highly lithiated amorphous silicon.20 Electrodes from all the four formulations 

were cycled at 3 different silicon capacity, namely, 1200 mAhg-1 (corresponding to a current density 

of 238 mA g-1 at C/5), 1800 mAhg-1 (corresponding to a current density of 358 mA g-1 at C/5) and to the 

maximum experimental capacity of 3579 mAhg-1 (corresponding to a current density of 716 mA g-1 at 

C/5). Cells were cycled at the full capacity of silicon to compare the effects of these additives towards 

capacity retention and cycle life under more extreme operational parameters, and also at 1800 mAhg-1 

and 1200 mAhg-1 capacity limits to minimize any pulverization from large volume expansion upon 

lithiation20 for improved cycle life. The upper cut-off voltage applied was 1 V to avoid any 

overcharging. Impedance measurements were carried out after the first cycle and for every 10 cycles. 

Potentiostatic electrochemical impedance spectroscopy (PEIS) measurement technique was applied 

together with galvanostatic cycling at 50% state of charge (during lithiation step by limiting lithiation 

to 2.5 hrs). The frequency range applied for this analysis was from 100 KHz up to 10 mHz (with 10 

frequencies scanned per decade) with a sinus amplitude of 10 mV. The semicircle due to the SEI (RSEI) 

can be identified between the frequency range of 100 kHz to 10 kHz, while the semicircle of the CT 

(RCT) can be identified between the frequency range of 10 kHz to 10 Hz. The impedance response at 

lower frequencies between 10 Hz to 10 mHz is generally attributed to diffusion processes.

Electrode Tensile Property Characterization: The nano-indention test was conducted using a 

Berkovich nano-indenter (NanoTest Extreme, Micro Materials Ltd, UK). A load was applied to the 

electrode until it reached 20 mN, then it was held for 300 s to make sure the creep exponent has been 

removed during unloading. A thermal drift correction was followed for the 60 s after removing the load. 

For each electrode, 20 indentations were performed to produce statistically reproducible results. 

SEM and Focused ion beam-scanning electron microscopy (FIB-SEM) Characterization: 

After completion of cycling the cell was disassembled in a glove box under an argon atmosphere. SEM 

characterization was performed with field-emission SEM microscope (Sigma, Carl Zeiss, Germany) 

equipped with an Energy Dispersive Spectrometer (EDS) (Xmax 50, Oxford Instruments). Cycled 

electrodes were then transferred to the FIB-SEM (Scios, FEI) instrument for cross-sectional analysis 
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7

and tomography, to understand the microstructural evolution of the Si-MOF electrodes. Two-

dimensional (2D) analysis is insufficient to fully characterize the complex evolution in the pore shape 

characteristics of the electrodes.[23],[37]–[39] To overcome the limitations of 2D analysis, three-

dimensional (3D) characterization using FIB-SEM tomography was employed. 3D data sets were 

collected automatically using ‘slice and view’ software (FEI) where images were recorded using 

multiple detectors after each slice milled by the FIB. An ion beam voltage of 30 kV and an electron 

beam voltage of 1 kV was used throughout. Prior to running 3D acquisitions in an electrode, a platinum 

layer with a nominal thickness of 1 µm was deposited on the sample surface using the ion beam. A U-

shaped cut was made around the platinum layer to isolate the volume to be analyzed. Initially a 30 nA 

ion beam current was used as a rough cut but this was sequentially reduced to 7 nA, 3nA and then 1 nA 

to polish the sides on the isolated volume. The cut was reasonably large in order to enhance the quality 

of the SEM images and also to maximize the field of view. For generating the 3D volume of data, an 

ion beam current of 1 nA was used to cut the 200, 50 nm thick slices contained in a typical data stack. 

SEM image were captured after every slice with 25 µs dwell time and using multiple detectors. The 

detectors used for this study was the Everhart-Thornley Detector (ETD) and the Ion Conversion and 

Electron (ICE) detector for secondary electrons. The reconstructed 3D volume has a lateral (x-y spatial 

resolution) resolution between 16 nm to 35 nm along with the longitudinal (z spatial resolution) 

resolution of 50 nm. The spatial distributions of pore phase and solid phase (including the active 

material, carbonaceous additives, and binder) were then reconstructed. Two fiducial markers were 

placed inside the field of view to reset any drift that occurs during data collection. Fiducial-1 marker, 

on the surface of the electrode, was for aligning the ion beam during milling whilst the Fiducial-2 

marker in the cross-section was for electron beam alignment. This reduces the amount of misalignment 

between images and in this case negated the requirement for a data alignment process. The stack of 

SEM images were converted into a 3D volume and used to reconstruct both the pore volume and bulk 

material.

Image Processing: The SEM images from FIB-SEM were initially processed by merging the ETD 

images and ICE images. Then they were further processed by histogram equalization and then by 
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median noise filtering. This resulted in a smooth image with sharp edges that were subsequently 

converted to a binary image (white and brown) by applying threshold segmentation in Avizo (FEI). The 

brown represents pores and white the solid phase, i.e. silicon, carbonaceous materials, binder, and MOF. 

There is no manual segmentation involved, a process which in addition to being labour intensive could 

add a bias to the data analysis. From the reconstructed 3D volume, analysis on phase volume and surface 

area were made using Avizo (FEI) whereas tortuosity was calculated by open source TauFactor. 

TauFactor was employed within MATLAB for simulation of , where the binary segmented 3D 𝜏

reconstructed volume was the input.25

RESULTS AND DISCUSSIONS

Electrochemical Cycling Performance

To understand the benefits of MOFs a systematic study was carried out by comparing MOF-modified 

anodes with control formulations (ZrO2 and without any additive). ZrO2 was chosen as an 

electrochemically inert ceramic additive, containing the same chemical elements as the two MOFs 

(UiO-66 and UiO-67), whilst a synthetic flake graphite was used in the formulation with no additive. 

The formulation ratio of electrode slurry used was Si: binder: carbon-mixture: additive: 70:7:11:12 (wt. 

%). Figure 1b shows the distribution of silicon, MOFs and carbonaceous particles in the electrode slurry 

prepared after drying as seen by scanning electron microscopy (SEM). 

Galvanostatic cycling results are plotted in Figure 1d-f. Cells were cycled at the full capacity of silicon 

and also at lower capacity limits to compare the effects of these additives towards capacity retention 

and cycle life. From Figure 1d,e it can be observed that the capacity of the cell decreases over longer 

cycling, as expected for such devices. The cells cycling at the full experimental capacity of silicon show 

obvious capacity fade effects after 70 cycles (Figure 1d) whilst for the cells cycling at the half 

experimental capacity of silicon it is prolonged to more than 90 cycles (Figure 1e). The main reason for 

this effect can be attributed to breaking down and continual growth of SEI, which in turn results in pore 

clogging and an increased resistance for Li+ ion movement.[18],[19] From the cycling profiles, it is evident 

that incorporation of the MOFs in the Si anode has a significant positive effect on stabilizing the 
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electrode. Furthermore, the capacity fade is delayed as the capacity limit is reduced from 3579 mAhg-1 

to 1800 mAhg-1 and then further to 1200 mAhg-1. The fact that UiO-67 shows superior additive 

properties in comparison to UiO-66 could be attributed to an increased innate structural flexibility 

(owing to the nature of the more extended organic linker: see below for a description of the structure) 

and larger pore size (see Figure 2a,b). This could allow freer movement of Li+ ions throughout the bulk 

of the electrode material by a small reduction in tortuosity. In this sense these pores also help to maintain 

sufficient void structure around the active particles, providing “ion-conducting channels” to the 

electrode architecture. This is evident from the cell with UiO-67 cycling at the half capacity limit of 

silicon. 

In Figure 1e, it can be shown how the anode with UiO-66 also outperformed the non-modified anode 

before starting to degrade after 40 cycles. This could be related to the smaller pore sizes (compared to 

UiO-67) and relatively rigid framework resulting in higher tortuosity for Li-ion transport and thus 

increasing cell resistance. From Figure 1f it is seen that all the formulations cycled reversibly up to 100 

cycles with 1200 mAhg-1 capacity limit. However, the UiO-67 additive has better longevity compared 

to UiO-66. In order to understand lithium interaction with the MOFs used within the same cut-off 

voltages, MOF-only electrodes were prepared from 80% MOF, 10% binder and 10% carbon black. It 

can be observed from Figure 1g that UiO-66 can contribute about 271.67 mAhg-1 while UiO-67 

contributes to 387.34 mAhg-1 with a large first cycle loss of 242.92 mAhg-1 and 354.58 mAhg-1, 

respectively. The reversible capacity obtained from the MOF-only electrodes was lower than reported 

in a previous study11 and this is due to the different operating voltage cut-offs. Tang et al.11 cycled UiO-

66 cells between 0.01 V to 3 V vs Li/Li+ whereas in our study the cells were cycled between 0.05 V to 

1 V vs Li/Li+. Further electrochemical analysis of MOF-dominant electrodes is presented in Figure S9-

S11 in the supplementary section.
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10

Electrode Flexibility Test

UiO-66 consists of [Zr6O4(OH)4]12+ metal nodes connected by 1,4-benzenedicarboxylate organic 

linkers, forming an open-framework containing two distinct cages, tetrahedral and octahedral, with pore 

diameters of 0.85 nm and 1.15 nm, respectively[20],[21] (see Figure 2a). UiO-67 has an isoreticular 

structure except that it is connected by the more extended biphenyl-4, 4'-dicarboxylate linkers forming 

tetrahedral and octahedral pores with diameters 1.15 nm and 2.15 nm, respectively[21] (see Figure 2b). 

Figure 2c shows a plot of depth vs load from nano-indentation tests. Hardness and Young’s modulus 

are calculated using data taken from the slope of the tangent to the unloading curve, summarized as 

Table 1. Young’s modulus is an intrinsic property of the material and it can be observed from Table 1 

that the formulation with UiO-67 shows diminished reduced Young’s modulus in comparison to other 

additives. Therefore, we can postulate that the UiO-67 provides an effective inclusion to accommodate 

volume expansion stresses from silicon upon cycling. In comparison to UiO-66,30 there is enhanced 

performance from maintaining the structural integrity of the electrode with UiO-67, as observed in 

cycling data in Figure 1d-f. 

Table 1: Maximum contact depth, hardness and Young's modulus achieved from nano-indentation tests. 

Additive Maximum Depth [µm] Hardness [GPa]
Reduced Young’s 

Modulus [GPa]

UiO-66 4.62 0.20± 0.041 0.003± 4.00 0.25±

UiO-67 5.04 0.50± 0.035 0.007± 3.92 0.80±

ZrO2 4.08 0.20± 0.053 0.005± 5.09 0.39±

No additive 5.11 0.19± 0.033 0.002± 3.55 0.38±
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11

Microstructural Evolution using FIB-SEM

FIB-SEM tomography allows three-dimensional (3D) visualization and quantification of geometrical 

parameters such as thickness, pore surface area, phase volume fraction and tortuosity for a better 

understanding of the cell performance and its microstructural evolution.23 Tomography was performed 

on the pristine and aged electrodes (after 100 cycles). The region of interest for our samples ranged 

between 25 × 20 μm2 to 25 × 46 μm2; since the cycled electrodes had a variable change in thickness of 

the electrode. From there we obtained a 3D reconstructed volume of 20 × 15 × 10 μm3 for all the samples 

(Figure 3).

The porosity retention is higher in the MOF electrodes in comparison to the control electrodes. It can 

be seen that the porosity of the cycled electrodes at half capacity has decreased by only 31% and 22% 

for the UiO-66 and UiO-67, respectively (see Figure 4a) with respect to their pristine electrode. Reduced 

porosity or increased tortuosity may adversely affect the lithium permeability and diffusion into the 

active material, resulting in capacity decay or loss. The observation of cracks on the electrode surface 

is consistent with previously reported studies.31–33 This observation can also be supported by the 

impedance study (see Figure 5) and tortuosity factor (see Figure 4i) for the electrodes.

The initial thickness of the pristine electrode was recorded as well as the post-cycling thickness. There 

is an incremental change in the thickness of electrode cycled at half capacity by >50% in the control 

samples compared with 48% and 38% for the UiO-66 and UiO-67, respectively (see Figure 4b). Another 

observation that can be made is that electrodes cycled at half capacity have a lower increment in the 

electrode thickness with respect to electrodes cycled at full capacity of silicon. Comparing the pore 

surface areas in contact with the electrolyte for a pristine electrode and a cycled electrode, it can be seen 

that there is a large decrease in specific surface area, around 50% in the control samples compared to 

ca 29% for MOF electrodes at full capacity (see Figure 4c). This means that the surface of the particles 

has undergone redox reaction, i.e. there is continuum formation and growth of SEI.34 The UiO-67, 

however, has undergone the least change in pore surface area at half capacity demonstrating a 

significant advantage of having this MOF in the electrode. 
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From Figure 4d,e it can be observed that there is a segregation of pore-volume distribution upon cyclic 

aging. Coalescence among the particles in the cycled electrodes can also be seen, which is likely from 

the huge volume expansion and electrochemical fusion of silicon particles - similar to observations 

made in the previous studies.33 It has been reported elsewhere that silicon has a tendency to fuse together 

upon electrochemical cycling.35 The observed changes in porosity are likely to impact the permeability 

towards the electrolyte solvents and be responsible for the eventual decay in performance of the anode.

There is a significant change in the pore size and distribution after 100 cycles for each of the electrode 

formulations. Upon aging, there is a shift towards the lower end of the pore volume which may be an 

indication that the macropores are becoming filled with detached SEI products upon cycling (see Figure 

4f,g). However, on careful observation in Figure 4d,e it can be seen that there are many pores with large 

volume (i.e. towards the right-hand side of the distribution) which can be explained by the large volume 

expansion that active silicon particles undergo. This correlates with the decrease in charge transfer 

impedance upon full capacity cycling (see later in Figure 5j). From Figure 4e it can be seen that 

electrodes with UiO-66 and no additive have a higher volume percent of lower pores compared to UiO-

67 electrode attributing to the Si-fusion and subsequent pulverization from large volume expansion 

resulting in microstructure fragility. Therefore, it can be concluded that the UiO-67 acts as a flexible 

pore channel for the active silicon particle undergoing volume changes upon lithiation/de-lithiation and 

maintaining “ion-conducting channels” for the electrolytes. From Figure 4 there is a direct evidence of 

UiO-67 as the superior additive. This may be ascribed to it having larger pore diameter, and a longer 

organic linker than UiO-66 to provide a more flexible structure to absorb the continuous strain from 

silicon particle upon cycling. 

Tortuosity Factor  Calculation (𝝉)

 is an important parameter that provides information on resistance to ionic transport property of ions 𝜏

through pores.  was calculated by simulating the steady-state diffusion flow through the 3D pore 𝜏

network.36 From Figure 4i, it can be seen that  values for each of the electrodes have decreased upon 𝜏

cycling at half capacity, except for the formulation with no additive. The explanation for this is that in 

the absence of any cushioning additive effect which can help to sustain the volume changes, the 

Page 12 of 27

ACS Paragon Plus Environment

Chemistry of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



13

mesopores are filled by fragmented SEI layers. For electrodes with MOF additives,  decreases, as the 𝜏

volume changes from silicon particles have resulted in macro-voids and we propose that these cracks 

act as carrier path for the electrolyte. The architectural degradation is minimal in the MOF-containing 

anodes as inferred from impedance measurement and also reflected in the  values (see Figure 5). 𝜏

Therefore, the gradual decrease in pore volume from broken SEI would thereby impede the flow of Li+ 

ions through the porous network. Formulations with UiO-66 and UiO-67 when cycled at full capacity 

have lower  when compared to the cells cycled at half capacity since the former has undergone macro 𝜏

cracking with large volume changes with silicon’s expansion. This observation is also supported by 

impedance measurements (see Figure 5j).

Electrochemical Impedance Investigations

Nyquist plots obtained from PEIS provide information on the kinetics of the reaction and diffusion 

processes corresponding to certain frequency ranges.37–39 The two features occurring in the high-

frequency range correspond to interfacial phenomena, the first can be attributed to an insulating SEI 

layer, while the second to charge transfer (CT) resistance.39 RSEI gradually increases with the cycle 

number, which indicates that the SEI layer is continuously growing because of the large volume 

changes. Thus, one hypothesis we can make is that fragments of the SEI layer break from the surface 

and migrate to the pores in the electrode and continue to accumulate as a function of aging.[19],[26] This 

phenomenon has a strong influence on the impedance of the electrode and is very evident from Figure 

5i,l. During this aging period, where the thick SEI layer breaks off, there is re-formation of a new SEI 

layer and therefore, an increased series resistance from pore clogging. This formation of new SEI results 

in consumption of Li+ ions which should result in capacity loss; however, in the present study, we have 

an excess of Li+ ions from the Li foil used in a half cell. Upon cycling, the consumption of Li+ ions in 

the SEI layer reduces its concentration in the electrolyte and it is reflected in the slight increase in ionic 

resistivity, i.e. Rseries. The segregated pores and heterogeneous distribution of the pores from FIB-SEM 

results (see Figure 4d,e) hinder the passage of intercalating Li+ ions resulting in an increased resistance. 

The equivalent circuit used for this calculation is shown in Figure 5g where the capacitance of the SEI 
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layer and the capacitance of the double layer are denoted by constant phase elements CPE1 and CPE2, 

respectively.

Figure 5h-m shows the resistance values for all the different formulation and it can be observed the Si-

MOF electrodes showed less resistance in comparison to the control electrode. For the control 

electrodes with no additive, cycled at half capacity of silicon the impedance gradually increased until 

70 cycles and after which there was huge resistance increase: this is likely to be due to the continuum 

growth of an insulating (SEI) layer and high charge transfer resistance, which is entirely consistent with 

the cyclic data (see Figure 1d-f). The RCT for cells cycled at full capacity of silicon tends to decreases 

after 50 cycles for all of the formulations (Figure 5j) and can be explained as a result of large cracks 

that have resulted in the electrode’s structure due to huge periodic volume changes from silicon 

particles. The CT process involves two steps, namely, de-solvation of the solvated Li+ ions in the 

electrolyte and transportation of these Li+ ions through the SEI layer until it accepts an electron at the 

electrode’s surface40. The large voids allow comparatively easy transportation of electrolyte within the 

electrode and thereby facilitate the availability of Li+ ions to diffuse through the active particles. The 

large cracks also result in a fresh surface for further side reactions, increasing the RSEI which also 

increases the Rseries as they reduce the electrical conductivity of the electrode as a whole. 

CONCLUSIONS

The porous zirconium carboxylate MOFs UiO-66 and UiO-67 as additives in Si-based anodes have the 

dual purpose of improving and maintaining the porous nature of composite battery materials. It has 

proven possible to improve the performance of a silicon electrode by the homogeneous inclusion of 

MOFs with large pore size acting as “ion-conducting channels” via their flexible structures. The highly 

reversible electrochemical performance of the silicon electrodes that incorporate MOFs as additives 

significantly improve cell performance, especially with UiO-67. The MOFs can act as lithium hosts, 

contributing up to 387 mAhg-1 of capacity when cycled vs Li/Li+, but more importantly, the flexible 

frameworks of MOFs are able to maintain a high degree of porosity upon battery cycling, overcoming 

pore blockage and increased tortuosity that usually takes place in silicon anodes due to large volume 

changes on alloying/de-alloying. We propose that these findings provide a novel perspective towards 
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robust Si anodes for use in LIB materials, which could be tuned further by hierarchical modification of 

the porosity of MOFs, combined with a judicious choice of the functionalized ligands to provide 

compatibility with the anode components. Optimising the current formulation ratios will be the next 

phase of the study for further performance optimisation and we intend to perform these experiments in 

the future.
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Figure Captions

Figure 1. SEM images and specific discharge capacity (based on active mass of silicon) profiles at the 

different capacity limits. SEM image of (a) only UiO-67 MOF; (b,c) UiO-67 in Si electrode with energy 

dispersive spectra (EDS) derived chemical distribution maps showing the presence of Zr-based MOF 

(UiO-67) in the electrode slurry as shown in (c); specific discharge capacity at (d) full capacity of silicon 

(3579 mAhg-1) (e) half capacity of silicon (1800 mAhg-1) (f) one-third capacity of silicon (1200 mAhg-

1) (longer cycling of Si-MOFs are shown as the inset) (g) first lithiation-delithiation voltage profiles for 

MOFs. The legends for (d) also applies to (e-g).

Figure 2. Crystal structures of the MOFs (a) UiO-66 and (b) UiO-67. c) Tensile curves from nano-

indentation test. In (a) and (b) the blue polyhedral represent Zr-centred oxy coordination polyhedra, and 

the yellow spheres represent the maximum free pore space.

Figure 3. 3D FIB-SEM tomography reconstruction of Si-MOF electrodes. a) SEM image of the 

electrode after the final polishing step with two fiducial markers, (b) schematic representation of FIB-

SEM imaging process; the greyscale 3D reconstructed volume of the electrode with (c) UiO-67, (d) no 

additive, before and after cycling at full capacity for 100 cycles.

Figure 4. Geometrical property comparison at silicon’s half and full capacity cycling. Electrode’s (a) 

porosity, (b) thickness and (c) pore surface area comparison. Cumulative pore size distribution 

comparison of all cycled electrodes with (d) half capacity of silicon, (e) full capacity of silicon and 

individually for (f) no additive, (g) UiO-66, (h) UiO-67 electrodes. i) Tortuosity factor comparison 

between pristine electrodes and cycled electrodes after 100 cycles at Si’s half and full capacity cycling, 

(j) color map of diffusion simulation with red as high flux density regions for full capacity cycling of 

UiO-67 and no additive electrodes. The legends for (a) also applies to (c,d).
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Figure 5. Nyquist plots and impedance fitting results. Nyquist plots during the charging process for all 

formulations cycled with full capacity of silicon (3579 mAhg-1) after (a) 10 cycles, (b) 50 cycles and (c) 

100 cycles; with half capacity of silicon (1800 mAhg-1) after (d) 10 cycles, (e) 50 cycles and (f) 100 

cycles (zoom-in plot shown as the inset). g) The electrochemical equivalent circuit used for fitting the 

Nyquist plots; and the impedance fitting result comparison between (h-j) 3579 mAhg-1 and (k-m) 1800 

mAhg-1 against (h,k) Series resistance (i,l) SEI resistance (j,m) interphase contact and charge transfer 

resistance (a reconstruction of the degradation methods during cycling are illustrated with schematics 

as the insets and a more comprehensive description  of these is presented in Figure S13). The legends 

for (a) also applies to (b-c, h-j) whilst the legend for (d) further applies to (e-f, k-m).
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