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ARTICLE INFO ABSTRACT

Understanding the root causes of Lithium-ion battery degradation is a challenging task due to the complexity of
the different mechanisms involved. For simplicity, ageing mechanisms are often grouped into three degradation
modes (DMs): conductivity loss, loss of active material and loss of lithium inventory. Battery Management
Systems (BMSs) do not currently include an indication of the underlying DMs causing the degradation. Pseudo
Open Circuit Voltage (pOCV), Incremental Capacity - Differential Voltage (IC-DV), Electrochemical Impedance
Spectroscopy and Differential Thermal Voltammetry are the most common non-invasive diagnosis techniques
studied in the literature to quantify DMs. This work presents a critical and systematic review of these techniques
with the focus on the elaboration of their strengths and weaknesses for the implementation in automotive ap-
plications. Firstly, each technique is classified into different groups and their working principles are presented.
Secondly, an evaluation criterion is introduced to review each technique following a systematic approach. The
comparison of the techniques highlight that pOCV and IC-DV are the most advantageous because they fulfill
most of the points included in the evaluation criteria. The further implementation of these techniques would
support battery lifetime control strategies and battery designs.
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1. Introduction

Hybridization and electrification of vehicle propulsion systems have
become more critical in recent years because of two main factors.
Firstly, they contribute to increasing the total vehicle's efficiency; and
secondly, they can eliminate the vehicle's greenhouse emissions [1].
Currently, Lithium-ion Batteries (LIBs) are considered to be a highly
prospective technology in this industry due to their higher specific or
volumetric power and energy density and high cycle lifetime in com-
parison to other technologies such as lead-acid or nickel-metal hydride
[11.

The Battery Management System (BMS) is a software and hardware
unit which, among other functions, monitors battery ageing to ensure
and guarantee safety, performance and battery longevity. It is widely
known that continuous degradation of LIBs has a negative impact in
battery's performance and range prediction [2,3]. Continuous and se-
vere degradation can even trigger catastrophic battery failures causing
larger economical losses affecting the battery industry and manufac-
turer's reputation [4]. Hence, it is essential to understand and limit the
causes of LIB's degradation.

Degradation of LIBs is an extremely complex process that depends
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on a variety of ageing mechanisms. Ageing mechanisms can be caused
by parasitic reactions such as Solid Electrolyte Interphase (SEI) or li-
thium plating [5]; or can be caused by mechanical degradation (e.g.,
phase changes) or mechanical stress (e.g., particle cracking) [6]. Ageing
mechanisms are accelerated by extrinsic and intrinsic factors [7]. Ex-
trinsic factors are given by the inhomogeneous operating conditions
that a cell can be subject to, e.g., accessible temperature gradients due
to thermal management's constraints [7]. These factors can be mini-
mised by controlling the parameters which drive the dynamics of the
battery and are affected by the operating conditions (e.g., temperature,
C-rate, state of charge (SoC) or Depth of Discharge (DoD)) [1]. Intrinsic
factors are inherent to inconsistent manufacturing processes, e.g., var-
iations in cell quality within cells and can be limited by improving
quality control and manufacturing processes [8].

The BMS usually quantifies battery State of Health (SoH) based on
the decrease in capacity (SoHg) and increase in resistance (SoHp), me-
trics that are directly related to the vehicle range and power capability,
respectively [9]. The BMS has access to simple measurements such as
voltage, current and temperature, and hence, monitoring the ageing
mechanisms in real-time conditions becomes a challenging task. Pre-
vious studies [10-12] suggest categorising the different ageing
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mechanisms into three degradation modes (DMs) called conductivity
loss (CL), loss of active material (LAM) and loss of lithium inventory
(LLI). This classification would allow a BMS to indicate the ageing root
causes in real-time applications. This approach will underpin the de-
velopment of novel control strategies to maximise battery life as well as
the improvement of battery designs [3]. In our previous article [13], the
capability to identify and quantify DMs using Incremental Capacity-
Differential Voltage (IC-DV) and Electrochemical Impedance Spectro-
scopy (EIS) was studied. Other authors have presented alternative
methods based on non-invasive diagnosis techniques such as pseudo
Open Circuit Voltage (pOCV) [10,14-16], Differential Thermal Vol-
tammetry (DTV) [17-19] or a combination of pOCV and EIS techniques
[20]. Each of these methods follows an automated process that can be
implemented in real-world applications. In this article, real-world ap-
plications can be on-board and off-board. On-board processes take place
uniquely inside the vehicle through a microcontroller unit (MCU). Off-
board operations require the use of external equipment to process the
parameters. On-board and off-board are different terms than online and
offline. On-board and off-board determine whether data is processed
internally or externally with respect to the vehicle (where the data is
processed). Online and offline denote when data is being processed.
Offline processing is when a method is applied retroactively, on data
which has been previously acquired. Online processing is when a
method is applied in real time, as soon as the data is being acquired.
There is also a combination of offline and online options, called hybrid
option. The hybrid option is when some parameters are processed off-
line and others online. Based on this, Table 1 shows the different pos-
sibilities for an on-board and an off-board process.

A comparative review of non-invasive DMs diagnosis techniques has
never been conducted. The majority of the reviews focus on studying
SoH diagnosis [1,21-24] or prognosis [25-28] techniques in isolation
without considering the quantification of DMs. This study aims to sys-
tematically evaluate the relative merits of the techniques that are
capable to identify and quantify DMs non-invasively. It is beyond the
scope of this study to review invasive diagnostic techniques such as
Scanning Electron Microscopy (SEM), Energy Dispersive Spectrometry
(EDS) or X-Ray Diffractometry (XRD). These post-mortem techniques
are not considered in this review because they require opening up the
cells. This characteristic consequently makes their application in real-
world scenarios unfeasible. Non-invasive diagnostic techniques are re-
viewed according to the requirements that these techniques need to
fulfill as part of a Battery Electric Vehicle (BEV) application. The out-
comes of this review will support the selection of the most appropriate
non-invasive diagnostic technique to quantify DMs.

The structure of this work is divided as follows: Section 2 describes
the nature of the ageing mechanisms involved in LIBs. The working
principles of the diagnostic techniques suitable for non-invasive iden-
tification and quantification of DMs are described in Section 3. These
techniques are subsequently reviewed in Section 5 following the eva-
luation criterion described in Section 4. This criterion is derived ac-
cording to the requirements that a diagnostic method needs to fulfill in
real-world automotive applications. Section 6 describes the limitations
of this work, outlining areas that need to be further investigated. Fi-
nally, Section 7 presents the main conclusions of this study.

Table 1
Possibilities for on-board and off-board process.

Possibility Process Data processing

Off-board Offline
Online
Hybrid
Offline
Online

Hybrid

On-board

U W=
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2. Degradation mechanisms in lithium-ion batteries

Previously, studies [10-12,29] suggest categorising the different
ageing mechanisms into DMs (CL, LLI and LAM). CL includes the de-
gradation of the electronic parts of the battery such as current collector
corrosion or binder decomposition [5]. LLI is attributed to the variation
of the number of lithium-ions (Li-ions) that are available for inter-
calation and de-intercalation processes [5]. LAM is related to structural
transformations in the active material (positive or negative electrodes),
and non-active material elements (separator and electrolyte) [5]. Fig. 1
illustrates the most pertinent ageing mechanisms which fall into a
particular degradation mode. Each DM can lead to an increase in re-
sistance (e.g., charge transfer or diffusion), a reduction in current
density, capacity or/and power in a partly reversible (e.g., lithium
plating) or irreversible (e.g., SEI formation) manner [30]. Uddin et al.
[30] suggested a general relationship between battery ageing extrinsic
factors (temperature, C-rate, SoC, ADoD and cycle number) and the
affected component (positive or negative electrode) with the corre-
sponding ageing mechanism and potential effects on LIBs. Following on
from Uddin et al. [30], Table 2 suggests a generic relationship between
battery extrinsic factors (temperature, C-rate, SoC, ADoD and cycle
number) and the affected component (positive or negative electrode)
with the corresponding ageing mechanism, most pertinent DM (LLI,
LAM or CL), mechanism type (gradual, progressive degradation, or
overstress, abrupt degradation) and most pertinent observed effects
(Capacity Fade - CF, or/and Power Fade - PF). Previous studies that
have examined the ageing mechanisms within LIBs [5,31] were also
considered to reinforce this relationship further.

It is noteworthy that some ageing mechanisms are driven when two
or more extrinsic factors co-occur. For instance, lithium plating is
pertinent when the battery is cycled with high C-rates at low tem-
peratures [5]. It is beyond the scope of this article to explain these
ageing mechanisms at a material and chemical level. Further explana-
tion regarding these degradation mechanisms can be found in a number
of research publications such as [5,33,34]. The general ageing me-
chanisms presented in Table 2 hold true for most LIBs. Nonetheless,
there might be pronounced differences for each particular LIB when
taking into account the effect of having different cathode electrode
materials (e.g., LFP, NCA or NMC) or form factors (e.g., cylindrical,
pouch or prismatic). The reader is referred to previous publications
such as [33,35] where the degradation mechanisms are explained in
greater detail according to the type of cathode material and form factor
used.

3. Description of methods to identify and quantify DMs

LIB operation is characterised through two phenomena: thermo-
dynamics (equilibrium) and kinetics (non-equilibrium) [36]. The di-
agnostic techniques reviewed in this study follow either thermo-
dynamic or kinetic principles. The thermodynamic diagnostic
techniques infer ageing mechanisms based on voltage phase changes.
The kinetic techniques relate ageing mechanisms based on charge-
transfer and diffusion reactions. It is noteworthy that the thermo-
dynamic-based techniques consider some kinetics because it is not
possible to charge/discharge the cells with zero current or absolute
equilibrium state [10]. This amount of kinetics is assumed to be neg-
ligible throughout the thermodynamic-based techniques given that the
current employed is typically very low, e.g., in the order of C/10 or C/
25.

As thermodynamics and kinetics involve different electrochemical
processes, the insights that can be obtained through a thermodynamic
or kinetic method can be different. This conclusion motivates the re-
search of combining both types of methods to achieve a more complete
diagnosis of the battery. Fig. 2 shows the measurements the BMS needs
in order to deploy the diagnostic techniques reviewed. The pOCV is
measured during charging or discharging a battery at low C-rates (C-
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Fig. 1. Graphical illustration of the DMs and ageing mechanisms in LIBs, adapted from Refs. [11,30,32].

rate<C/10) over the whole SoC window [3]. The pOCV curve plots the
terminal voltage against the charge or SoC. Differentiating the pOCV
curve with respect to the charge yields the DV curve (the IC curve is the
reciprocal of the voltage derivative with respect to the charge) [3]. DTV
is another thermodynamic technique which requires the measurement
of the temperature and voltage when the battery is charged or dis-
charged at C-rates <2C [17-19]. As a kinetic-based technique, EIS
galvanostatic measurements are derived by applying a sinusoidal cur-
rent and measuring the corresponding sinusoidal voltage [2]. The im-
pedance is then calculated as the quotient of the complex voltage and
the current. Schindler et al. [20] proposed the combination of a ther-
modynamic and kinetic model which requires the pOCV (thermo-
dynamic based model) and EIS (kinetic based model) curves. Fig. 2 also
shows that each diagnostic method is used to quantify DMs, which is
the parameter considered by the BMS.

3.1. Pseudo-OCV

The pOCV based methods identify and quantify DMs based on the
changes of pristine half-cell (HC) pOCV curves. These HC pOCV mea-
surements are performed only once at laboratory conditions for a par-
ticular cell model. Measuring one sample is enough, and then this
method can be applied repeatedly [11,12]. This feature makes it pos-
sible to consider this method as non-invasive. pOCV measurements
emulates equilibrium conditions so that two or more phases with dif-
ferent lithium concentrations at the same chemical potential coexist.
This enables us to infer changes in the electrochemical properties that
physically can be measured through changes in charge, Q, and pOCV.
An approximate equilibrium state is achieved if the cell is typically
charged or discharged at very low currents (circa: < C/25) whilst
measuring Q and the pOCV [10]. Fig. 3 illustrates the general process of
the pOCV based methods to quantify DMs.

The pOCV based methods operate in a backward basis, i.e. firstly the
degradation is hypothesized and once this is proved, the hypothetical
degradation is accepted as the true degradation. This process is divided
into the following steps:

o Step 1: the expected DMs (LLI, LAM and CL) are hypothesized based
on engineering rules (refer to Table 2) or use-life knowledge.

e Step 2: HC-pOCV measurements are performed once at laboratory
conditions when the cell is new.

e Step 3: pristine HC-pOCV measurements are transformed into aged
HC-pOCV measurements through simulation by using the hypothe-
sized DMs from step 1.

e Step 4: the FC-pOCV at low C-rates (<C/25) is measured if the
battery is charging (parking mode), or the FC-pOCV is estimated if
the battery is discharging (driving mode).

e Step 5: the difference (error) between the simulated and the mea-
sured FC-pOCYV is calculated.
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e Step 6: the error obtained in step 5 is compared with a pre-defined
threshold error (¢). The estimated error can be expressed as the
absolute error or the Root Mean Square Error (RMSE). The value of ¢
is defined in an individual basis according to the requirements of
each particular application. If this error is lower or equal than the
pre-defined threshold, the hypothesized degradation is accepted.
Otherwise, the hypothesized degradation is rejected. In this case, a
new hypothesis is made and the whole process (steps 3 to 5) is re-
peated until the obtained error is lower or equal than . The value of
¢ is defined in an individual basis according to the requirements of
each particular application. As an example, Marongiu et al. [12]
obtains a maximum ¢ of 1.10% for the pOCV discharge and 0.98%
for the pOCV charge process. A limitation of this method is that
more than one hypothesis within the same iteration can be true and
hence, the DMs may not be estimated uniquely. A solution for this
would be to compare the result of the estimation with historical
battery operating parameters (e.g., temperature, SoC, ADoD or C-
rate). This would enable us to evaluate whether the hypothesized
DM are plausible with respect to the theory of battery degradation
(refer to Table 2).

Though pOCV based methods follow the process depicted in Fig. 4,
this review has categorised the pOCV based methods into 3 different
groups. The main difference among the groups is the parameter used to
relate the DMs with the shifts of HC-pOCV.

® Group 1: includes studies in which the relationship between HC-
pOCV curves and DMs are determined according to the change of
the charge-throughput and capacity ratio. The charge-throughput
represents an indication of the amount of accumulated current
(absolute value) that is stored (charging) and released (discharging)
in the battery over time [2]. The capacity ratio is calculated as the
ratio between the capacity of the NE with respect to the capacity of
the PE. This method was initially proposed by Dubarry et al. [10]
and further applied in Refs. [11,12,20].

Group 2: includes studies in which the relationship between HC-
pOCV curves and DMs is determined according to the change in SoC.
SoC and capacity ratio (Group 1) has the same physical meaning,
only the notation is different. This notation was used by the research
group from Tsinghua University (China) and therefore, the reviewed
articles related to this group are classified separately. In particular,
the SoC representation was suggested by Han et al. [15], extended
by Ouyang et al. [16] and applied in Refs. [37-39].

Group 3: includes studies in which the relationship between HC-
pOCV curves and DMs is determined according to the change in SoC.
In contrast to Group 2, the studies of Group 3 introduce two para-
meters, m (equivalent to LAM) and § (equivalent to LLI), to quantify
the DMs. This method was initially presented by Honkura et al.
[14,40] and further applied in Refs. [41,42].
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Relationship of the battery ageing extrinsic factors with the affected component, ageing mechanism, potential ageing effects, most pertinent DM, mechanism type and

most pertinent observed effects [5,30].

Extrinsic Level Affected Ageing Most Mechanism Most pertinent
factor component mechanism pertinent DM type observed effects
T High NE - Anode SEI growth. LLI Gradual. CF&PF
(>35°C) (Active
material).
Particle fracture LAM Overstress. CF&PF
(with cycling).
PE - Cathode SPI growth. LLI Gradual. CF&PF
(Active Gas generation. LAM Overstress. CF
Material). Particle fracture LAM Overstress. CF&PF
with cycling).
Current Binder CL Gradual. PF
collectors. decomposition.
Separator. Closing of LAM Overstress. CF&PF
separator pores.
Electrolyte Decrease in lithium LAM Gradual. PF
(salts). salt concentration.
Electrolyte LAM Overstress. PF
(organic solvents). Gas generation.
T Low NE - Anode Lithium plating and LLI Gradual. CF&PF
(<5°C) (Active dendrite growth on
Material). anode surface.
C-rate High NE - Anode Lithium plating and LLI Gradual. CF&PF
(>20) (Active dendrite growth on
Material). anode surface.
Particle fracture LAM Overstress. CF&PF
(with cycling).
SEI growth. LLI Gradual. CF&PF
PE - Anode Particle fracture LAM Overstress. CF&PF
(Active Material). (with cycling).
SoC High NE - Anode SEI growth. LLI Gradual. CF&PF
(> 95%) (Active
material).
Particle fracture LAM Overstress. CF&PF
(with cycling).
PE - Cathode Gas generation. LAM Overstress. CF.
(Active Material).
Current collector Pitting corrosion of CL Gradual. PF
(PE-Cathode). aluminum.
Current Binder CL Gradual. PF
collectors. decomposition.
Electrolyte Gas generation. LAM Overstress. PF
(organic solvents).
SoC Low PE - Cathode Reduction of LAM Gradual. CF&PF
(< 5%) (Active Material), sites.
mostly in LCO and LMO.
Current collector Free copper particles CL Gradual. CF&PF
(NE-Anode). of copper plating.
ADoD Large NE - Anode and Particle fracture. LAM Overstress. CF&PF
(> 80%) PE - Cathode
(both active material). Reduction of LAM Gradual. CF&PF
sites.
Cycle Continuous NE - Anode and Particle fracture. LAM Overstress. CF&PF
number PE - Cathode Reduction of LAM Gradual. CF&PF
(both active material). sites.

Fig. 4 provides an overview of the principle, required measure-
ments, computation and output for each pOCV group.

Aside the mentioned differences, Table 3 summarises other differ-
ences among the groups. The characteristics which are not included in
this table can be assumed the same for each Group.

3.2. Incremental Capacity - Differential Voltage (IC-DV)

A subset of the methods reviewed in Section 3.1 use IC and DV
curves to identify DMs and thus, to corroborate the DMs quantified
using HC-pOCV measurements. IC-DV curves are derived by
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Fig. 2. Relationship between BMS measurements and DMs diagnosis techniques reviewed in this study.

differentiating the charge with respect to the pOCV (IC - dV/dQ), and
vice versa, differentiating the pOCV with respect to the charge (DV -
dV/dQ). As reported in Ref. [3], DMs can be quantified by observing
changes in the IC-DV curves through ageing. According to the different

possibilities to identify and quantify DMs by means of IC and DV curves,
the IC-DV methods are classified into 3 groups.

® Group 1: includes studies which uses the IC-DV curves derived from
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Fig. 3. Generic framework of pOCV based methods.
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Method

pOCVv

h

met

)

d

Group

A 4

Group 1

A

A

Group 2

Group 3

DMs are determined based
on pOCV changes with
respect to the change of
charge-throughput and

loading ratio.

Principle

}

DMs are determined based
on pOCV changes with
respect to the change in SoC
(y(t) and x(t) parameters are

defined).

v

DMs are determined based
on pOCV changes with
respect to the change in SoC.
The following parameters are
defined: 6% (LLIPF), 8" (LLIY),
mE(LAM™E) and m"® (LAM™E).

A

y

Pristine state: half-cell pOCV and
charge at C-rates lower than C/10.
Ageing state: full-cell pOCV and charge

at C-rates lower than C/10.

Pristine state: half-cell pOCV and

charge at C-rates lower than C/10.
Ageing state: full-cell pOCV and charge
at C-rates lower than C/10.

Pristine state: half-cell pOCV and
charge at C-rates lower than C/10.
Ageing state: full-cell pOCV and
charge at C-rates lower than C/10.

Measurements

A 4

Minimise the RMSE of the
difference between the simulated
and measured pOCV.

Computation

Y

y

A

Minimise the RMSE of the
difference between the simulated
and measured pOCV.

Minimise the RMSE of the
difference between the
simulated and measured DV.

A

DMs: LLI, LAMde™,

LAMII™®, LAMde™ and LAMIi"® at a
particular ageing state.

Output

A 4

DMs: LLland LAM ata
particular ageing state.

Y DMs: LLIP, LLIM, LaM™
and LAM" at a particular

ageing state.

Fig. 4. Principle, required measurements, computation and output of each group of the pOCV technique.

the Group 1 pOCV methods. This approach was introduced by
Dubarry et al. [10] and further applied in Refs. [43,44]. There are
other studies [15,16,38,39,45-47] in which DMs are identified by
making assumptions. As these studies do not follow an automated

process, they are beyond the scope of this review.

e Group 2: constitutes the studies which relate the change of the Peak
Area (PA) of the IC curves with DMs. This approach was firstly
presented in Dubarry et al. [48] as an extension of the method in-
itially presented in Ref. [10]. The PA can also be used to validate the
DMs obtained from Ref. [10]. This approach has been developed by
the researchers of Dubarry's research group [4,48,49] and [50].

e Group 3: comprises the studies which quantifies the DMs based on
the change of particular points of the IC and DV curves. IC and DV
curves are in this case derived based on full-cell measurements. Only

two studies [3,51] were identified in this group.

Fig. 5 provides an overview of the principles, required measure-
ments, computation and output for each IC-DV group. The DMs in
Group 1 and 2 are derived using the same steps as in pOCV based
techniques (refer to Fig. 3) with an additional step. This step calculates
the IC and DV curves from the simulated pOCV curves once the hy-
pothesized DMs are accepted. Then either the changes of the IC-DV
curves (Group 1) or the changes of the PA of the IC curves (Group 2) are
related to the changes in DMs. Instead of using HC-pOCV measurements
as in Groups 1 and 2, the articles of Group 3 employ FC-pOCV mea-
surements to directly quantify DMs based on the change of the IC-DV
curves.

To maintain consistency with respect to the previous section,

Table 3

Differences among the characteristics of pOCV - Group 1, Group 2 and Group 3.
Characteristic Group 1 Group 2 Group 3
Definition LLI, LAMZE, LAMEE, LLL, LAM and R LLIPE, LLIVE,
of DMs LAM® and LAM™®

Parameters used
to relate DMs

Measurement of
the resistance
Kinetics effects
(e.g temperature)
Method used

to determine

DMs

LAMXE and LAM}E
LLI, LAMEE, LAMEE,
LAMNF and LAMJE

No
No

Difference between
POCVi and pOCViicys

Xo and yo

Yes
Yes (in Ref. [16])

Difference between
POCVi and pOCViiCy

SPE (LLIP®), SNE (LLIVE)
mPE (LAMPE)

and mNE (LAMM®)

No

No

Difference between
dpOCVi/dQs
and dpOCVpcus/ dQeas
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Method

IC-DV method

Group

Group 1
L2

Group 3
v

DMs are identified based on the changes
of the IC-DV curves. These curves are
derived from the pOCV (Group 1) model.

DMs are quantified based on change
of the Peak Area (PA) in the IC curves.
The IC curves are derived from the
pOCV (Group 1) model.

DMs are quantified based on the change of
particular points in the IC and DV curves.
IC and DV curves are generated from full-

cell measurements.

Principle

Pristine state: HC-pOCV and charge
(Q) at low C-rates (<C/10).
Ageing state k: FC-pOCV and charge
(Q) at low C-rates (<C/10).

Pristine state: HC-pOCV and charge
(Q) at low C-rates (<C/10).
Ageing state k: FC-pOCV and charge
(Q) at low C-rates (<C/10).

Ageing state k: FC-pOCV and
charge (Q) at low C-rates (<C/10).

Measurements

No computation

required.

Computation

Calculation of the Peak

Area (PA) of IC curves.

Calculation of growth in

percentage of the DMs
(Gic-ov).

v
DMs: LLI, LAMde™,
LAMIi*®, LAMde"* and LAMIi"* at
a particular ageing state k.

v
DMs: LLI, LAMde™,
LAMIi*, LAMde"® and LAMIiM at
a particular ageing state k.

DMs: CL, LLI
and LAM.

Output

Fig. 5. Principle, required measurements, computation and output of each group of the IC-DV technique.

Table 4 summarises the main differences among the Group 1, Group 2
and Group 3 methods. The characteristics which are not included in this
table are, again, assumed to be the same for each Group.

3.2.1. Group 1

The models of Group 1 correlates changes in IC and DV curves with
the DMs. These DMs are previously identified using the pOCV Group 1
model [10]. Following on from electrochemistry principles, changes in
IC and DV curves can be related to pre-determined DMs. For a LFP cell,
Dubarry et al. [10] showed that the change of the height of the peaks of
the IC curves at approximately constant voltage is related to LAM. Si-
milarly, the shift of the DV curves to lower capacities is linked to LAM.
For both cases, the pOCV changes slightly, and so implies the system is
close to equilibrium and therefore the total overpotential is approxi-
mately zero. From an electrochemical viewpoint this scenario involves
the movement of a low amount of Li-ions and therefore, these phase
changes are mostly attributed to structure disordering of the active
materials (LAM) [10,52]. The decrease of the height of the peaks and
shift toward higher (charging) or lower (discharging) voltages of the IC
curves is related to LLI. Likewise, the shift of DV curves toward lower
capacities without shift of the DV peaks is associated to LLI. A reduction
in the number of charge-transfer Li-ion intercalation and de-intercala-
tion reactions leads to a decrease of the pOCV (IC) and the capacity
(DV). Electrochemically these effects are mainly linked to LLI It is
noteworthy that it is difficult to distinguish between LAMIi*® and LLI
using the DV analysis. However, these DMs are clearly differentiated

Table 4

using the IC analysis. Hence, despite the fact that IC and DV curves are
determined from the Q and pOCV relationship, both curves offer dif-
ferent insights into the rate and nature of the degradation within the
cell.

Dubarry et al. [10] illustrates that a constant shift of the IC curves
toward lower voltages is related to CL. Likewise, the authors show that
a lack of change of the DV curves is connected to CL. Assuming a simple
model representation of the battery to Ohm's law, the pOCV is derived
as the difference between the pure OCV, OCV, and the voltage drop due
to the ohmic resistance, V.

pPOCY = OCV = Vyp = OCV — I-Ropm @

Given a constant current flow and a constant OCV as it is the case,
an increase in Ry, will cause a decrease in pOCV . The increase in R,
is related to CL [53], which means that this only affects the cell voltage,
not the capacity [10]. Therefore, without capacity fade, the effect of CL
can be seen as a change in cell voltage [10].

3.2.2. Group 2

The authors in Refs. [4,48,49] relate the change of the PA of the IC
curves with the DMs. This Group follows the same procedure as Group 1
(IC-DV) with the difference that the PA is calculated. The PA is calcu-
lated as subtracting the cell capacity at the voltage inflection points
minus the cell end of discharge capacity. The capacity distribution is
often given in terms of percentage of the total cell capacity. Computing
the PA of the same peaks at different time instants (i.e. characterisation

Differences among the characteristics of IC-DV - Group 1, Group 2 and Group 3*. *In contrast to Table 3, measurement of the resistance and kinetics effects are not
considered for any of these methods. Thus, resistance measurements are not included here.

Characteristic Group 1

Group 2 Group 3

Definition of
DMs

Parameters used
to relate DMs
Method used

to determine
DMs

LLI, LAMde®E, LAMIiPE
LAMdeNE and LAMINE
Changes in IC

and DV curves

DMs are not
quantified

LLI, LAMdePE, LAMIPE, LLI, LAM and CL

LAMdeNE and LAMIINE

Peaks of Changes in

IC curves
Calculation of integral area
determined by the inflection

points of the IC peaks

IC and DV curves
Differences between

max (pOCVFC), max (QFC)
and max (AQFC/ApOCVFC)
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Fig. 6. Framework of the methodology employed in Refs. [3,51]. (a) FC pOCV
measurement for BoL and EoL cell and (b) relationship of changes in IC and DV
curves with the DMs.

tests) allows to observe the most pertinent DMs over ageing. This
technique has the limitation that CL cannot be inferred.

3.2.3. Group 3

Pastor-Ferndndez et al. [3] quantify the DMs based on the changes
of the IC and DV curves calculated from full-cell pOCV and charge
measurements. Fig. 6 shows the framework of the methodology em-
ployed, which is composed by four steps.

e Step 1: consists of measuring the FC pOCV and charge (Q) at low C-
rate (C/10).

Step 2: the FC pOCV and Q measurements from step 1 are differ-
entiated. From this, the IC and DV curves are derived.

Step 3: following on from the conclusions from Ref. [10], the
changes in IC and DV curves are related with the DMs in a generic
way. Table 5 shows this relationship. As Dubarry et al. [10] study a
LFP cell, this generic relationship may not be always true for other
cell chemistries.

3.3. Electrochemical Impedance Spectroscopy (EIS)

EIS is a technique widely employed to measure the cell impedance
along a range of frequencies, typically from mHz to kHz [3]. The
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majority of the studies identified in the literature [29,54-62] use EIS as
a characterisation technique to infer ageing mechanisms without fol-
lowing an automated approach. In addition, some authors [63-65]
study the on-board implementation of EIS through novel power elec-
tronic such as switched-inductor ladder topology, and control, such as
digital proportional integral systems. It is seen that only the method
from Pastor-Ferndndez et al. [3,66] relate specifically the changes of
the EIS resistances with the DMs. Fig. 7 illustrates the steps to quantify
DMs according to Refs. [3,66].

e Step 1: it consists of measuring the FC impedance using the EIS test.
o Step 2: the measured EIS spectrum from step 1 is fitted in step 2
using the non-linear least squares algorithm and the corresponding
Adapted Randles-Equivalent Circuit Model (AR-ECM) is derived.
Step 3: it is known that one AR-ECM resistance comprises the
change of more than a single DM, and theoretically it is not possible
to isolate the causality between a single ageing mechanism, DM and
electrical component within an ECM representation. Despite this,
Step 3 proposes a relationship between each resistance of the AR-
ECM and the most pertinent DMs as shown Table 6. This relation-
ship is a first step to link each resistance of the AR-ECM with in-
dividual effects of DMs. For instance, other studies such as [20]
proposed an alternative procedure to relate the EIS resistances with
the DMs. Therefore, there is no unique way to relate AR-ECM re-
sistances with the effects of DMs, and thus, further work is required
in this respect.

3.4. Combination of thermodynamic (pOCV) and kinetic (EIS) methods

Schindler et al. [20] proposed an automated model to couple two
battery dynamic concepts: thermodynamics (HC- and FC-pOCV mea-
surements) and kinetics (internal resistance). The structure of this
model is composed by two sub-models: a pOCV model to quantify LAM
and LLI, and an EIS based model to quantify the overpotential due to Li-
ion kinetics. The steps of the pOCV model are the same as in pOCV
Group 1 method with two main differences. Firstly, the transformation
of pristine HC-pOCV into aged HC-pOCV measurements (refer to step 3
in Fig. 3) considers a gradual change of the NE pOCV (shrinkage) rather
than a constant change. Schindler et al. [20] established this gradual
change because the active material loss across the SoC window is not
uniform. Secondly, following on from the studies of pOCV Group 3
[14,40-42], Schindler et al. [20] use a RMSE cost function based on DV
curves to determine the DMs. The DV data is better amplified than the
pOCV data, and hence, solving the RMSE cost function using DV data
leads to a more reliable result than using pOCV data. Although EIS
measurements are considered in this method, CL is not quantified. The
EIS based model is employed to consider the amount of LLI and LAM
overpotential (pOCV) due to kinetic effects [20]. For this, the voltage
drop due to R,y is related to the overpotential (pOCV) caused by LLI
and the voltage drop due to Ryo (Ronm +Rc) is related to the over-
potential (pOCV) caused by LAM [20]. Fig. 8 illustrates the steps to
quantify DMs based on the Schindler et al. [20] model.

3.5. Differential Thermal Voltammetry (DTV)

Initial studies of Reyner et al. [67] and Maher et al. [68] demon-
strated that changes in the entropy profiles can be used as an indication
of the ageing mechanisms occurring in either the PE or NE. Later, Wu
et al. [17], Merla et al. [18,19] and Offer et al. [69] proposed the DTV
technique to obtain information of the entropic behaviour of the cell by
taking the temperature profile of the cell surface during galvanostatic
charge/discharge. These authors [17-19] infer ageing mechanisms by
applying the DTV technique, but they do not show the capability to
identify and quantify DMs. Fig. 9 illustrates the steps to infer DMs based
on the DTV technique. Thus, following the systematic approach speci-
fied by the criteria from Section 5.1, this technique could be excluded
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Table 5
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Relationship between the changes in IC and DV curves with the most pertinent DM [3].
® Step 4: the growth in percentage is defined to quantify each DM. This parameter is computed as the difference (in percentage) between the current ageing state
k and the initial ageing state of the maximum pOCV value for CL, the maximum dQ/dV value for LAM and the maximum Q value for LLIL.

Change in IC curve Unit Change in DV curve Unit DM

Decrease of the height of the peaks [Ah V1] Shift of the DV curves [V Al1] LAM

at approximately constant voltage. to lower capacities.

Decrease of the height of the peaks [Ah V1] Shift of DV curves toward lower [Ah] LLI

and shift toward higher voltages. and [V] capacities without shift of the DV peaks.

Shift toward lower voltages. [v] Lack of change [Ah] CL
Table 6
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Step 4 — Calculation of DMs (Geis) — CL, LLI and LAM

Fig. 7. Framework of the methodology employed in Refs. [3,66]. (a) Re-
lationship of EIS spectrum with kinetic Li-ion battery processes and (b) re-
lationship of AR-ECM components with DMs.

from this review because their corresponding studies neither identify
nor quantify DMs. However, the ageing mechanisms are directly related
to the DMs and for completeness, this technique has been considered as
a part of this review.

4. Requirements on battery monitoring algorithms

In the process of designing a diagnostic function, it is needed to
ensure that a minimum amount of requirements are fulfilled. The ar-
ticles are then reviewed according to the requirements characteristic of

Relationship between the resistances of the AR-ECM with the most pertinent
DM.
® Step 4: the growth in percentage is defined to quantify each DM. This
parameter is computed as the difference (in percentage) between the
current ageing state k and the initial ageing state of the Ry, value for CL,
the Rgpr plus R, values for LLI and the Ry value for LLI

AR-ECM component Unit Most pertinent DM
Increase in Ronm [Q] CL

Increase in Rgpr & Ry [Q] LLI

Increase in Ry [Q] LAM

automotive applications. This review would ultimately support the
implementation of these techniques in real-world applications. It is
noteworthy that this list is not exhaustive and more requirements can
be added based on the particularities of each system design.

e Universality: according to automotive standards such as MISRA
[70], there is a need to adapt diagnostic algorithms to the different
cell technologies without modifying the algorithms significantly.

e Real application capability: the framework defined for the
methods reviewed should be simple enough to be implemented in
real applications, e.g., within a BMS. In general, a diagnostic method
is simple enough when it has the potential to fulfill commercially
viable software and hardware requirements [21,24]. Hardware and
software requirements are defined below.

- Hardware (HW) requirements: the DM diagnostic algorithm
needs to consider the characteristics of the target hardware where
the diagnostic algorithm is executed. Following on from Ungurean
et al. [24], HW requirements are divided into data processing
mode and processing time. Data processing mode denotes how the
DMs are being quantified. This process can be done offline and
online (refer to Section 1). Processing time is related to the time
needed by the diagnostic algorithm to produce the estimation of
the DMs. This time depends mainly on the complexity of the
method and the power of the MCU used.

Software (SW) requirements: the DM diagnostic method needs

to consider also the requirements of the target software where the

diagnostic algorithm is programmed [21,24]. According to Ref.

[71], these requirements include functionality, reliability, us-

ability, efficiency, maintainability, portability and traceability. It

is beyond the scope of this study to discuss each of these re-
quirements in detail; they are however described fully in a number
of standards and guidelines such as ISO 9126 [71] and MISRA

[70,72].

e Consideration of real-world conditions: diagnostic models need
to be validated under scenarios close to real-world conditions. An
example would be to degrade cells with non-repetitive real driving
cycle data where ageing factors change randomly [28].

® Accuracy and precision: since LIBs are non-linear and time-vari-
able systems, estimating the DMs with a low level of uncertainty is a
challenge [1,21,24]. The level of uncertainty is measured with two
parameters: accuracy and precision. Within the context of
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Fig. 8. Framework of Schindler et al. [20] model.

quantification of DMs, accuracy and precision levels are difficult to
calculate. This complexity arises because the true value of this me-
tric cannot be easily derived, even if more complex electrochemical
techniques such as SEM or XPS are used. Thus, accuracy and pre-
cision are determined indirectly by calculating the error of the
parameter used to quantify the DMs. For instance, Marongiu et al.
[12] use the difference in pOCV to approximate accuracy.

Robustness: the reviewed methods should ensure optimal perfor-
mance for different operating conditions [21,24]. This means a
method needs to be tested with a different type of input data (e.g.,
time-varying ambient temperature, current, SoC and ADoD) con-
sidering typical scenarios of vehicle operation (e.g., driving or
parking). Depending on the scenario the ageing effects could be
different. For instance, long periods of parking resulting in battery

self-discharge (low SoCs) may lead to particular DMs (e.g., copper
plating on the negative current collector) [5] which are not common
during driving operation (refer to Table 2).

e Scalability from cell to module and battery pack: although the
majority of methods are developed for cell level, they should be
scalable to module and pack level in view of a potential real ap-
plication [73].

5. Systematic and critical review of methods to identify and
quantify DMs

As in Ref. [24], this review follows a systematic method. According
to Tranfield et al. [74], systematic reviews differ from traditional nar-
rative reviews by adopting a replicable, scientific and transparent
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process that aims to minimise bias through exhaustive literature sear-
ches of published and unpublished studies. The main limitation of
systematic reviews is the lack of flexibility. For instance, following a
consistent analysis could lead to the loss of important information
which is not seen within the specified review criterion [75]. Other re-
lated problems are the inappropriate subgroup analysis to fulfill the
review criterion, or the conflict with new experimental data which
cannot be categorised within the review criterion [75]. These problems
were mitigated in this work by considering some flexibility in the cri-
terion used. The level of flexibility was argued in each case. An example
of this is given in Section 5.7 for the DTV technique. The DTV technique
related studies neither identifies nor quantifies directly the DMs. Fur-
ther information concerning the steps to conduct a systematic review
can be found in Ref. [75].

5.1. Evaluation criterion

For this study, 14 metrics were initially used to review the method
described in each article systematically as shown Table 7. The first
three metrics (automated, identification and quantification) are in-
trinsically related to the type of techniques evaluated in this study. The
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rest of the metrics (4) to (14) are derived from the requirements de-
scribed in Section 4. Additionally, the next metrics were included as a
part of the review to have a better understanding of the research groups
involved in the field and the impact of their publications:

e Main author of the article.

® Research group.

e Country of the research group.

e Month (if available) and year when the article was online.

e Conference proceedings or journal in which the article was pub-
lished.

e Number of citations of each article according to Google Scholar
records [76]. The number of citations was recorded on 8th July
2018.

Following on from this criterion, tables are included to review the
articles systematically in Section 5.2, Section 5.3, Section 5.5 and
Section 5.7 for pOCV, IC-DV, EIS and DTV technique, respectively. The
contributions and drawbacks of each article are highlighted. It is be-
yond the scope of this study to describe the particularities of each ar-
ticle reviewed. For this, it is recommended to refer to the corresponding
citations.

5.2. Pseudo-OCV

5.2.1. Group 1

Table 8 evaluates the articles of Group 1 according to the criteria
specified in Section 5.1. The model proposed by Dubarry et al. [10] in
2012 is quite complete because apart from quantifying LLI, LAM and
CL, it also determines two other DMs: faradic rate degradation and
formation of parasitic phase. From the same research group of Dubarry
or through collaborations, their model was further applied in different
scenarios in Refs. [4,43,44,48,49]. Since these studies emphasize the
use of IC and DV techniques to identify [43,44] or quantify [4,48,49]
the DMs, their review was included in Section 5.3.1 and Section 5.3.2,
respectively. The main contribution of this study is to analyse the im-
pact of different types of DMs on different LIB aspects as described
above. The main drawback of the approach presented by Dubarry et al.
[10] is the lack of evidence to implement it on-board. This problem is
faced in the model presented by Marongiu et al. [12]. The authors
adapted the model proposed by Dubarry et al. [10] to quantify DMs on-
board of a.

LFP cell cycled by a repetitive dynamic profile at room temperature
(25°C). This model is composed by an offline and online part as de-
scribed in Fig. 3. This study stands out with respect to the literature
because of the capability to quantify DMs on-board using input data
from different scenarios (parking and driving). Although this method
was tested for LFP cells, it can also be applied to other cell chemistries
similarly as the method proposed by Dubarry et al. [10]. As pointed out
in Section 3.1, the main drawback of this approach, that has not re-
solved up to date, is that the DMs may not be estimated uniquely as
more than one hypothesis of DMs within the same iteration may be
true.

Following on from Ref. [10], Birkl et al. [11] also proposed a
parametric model to identify and quantify LLI and LAM by estimating
the shifts of HC and FC-pOCV curves. The contribution of this study is
the derivation of the DMs as a manifestation of a host of different
physical and chemical mechanisms. However, previous studies
[10,12,43,49] determined the DMs using a less detailed electrochemical
formulation making these models more suitable for BMS on-board ap-
plications.

Based on Dubarry's et al. model [10], Ma et al. [77] apply particle
swarm optimisation algorithm (PSO) to parametrise the half-cell model
considering the individual electrode behaviour and battery OCV at
different ageing levels. Following this model, the corresponding DMs
are quantified and the conclusions agree with the results obtained via
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Table 7
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Metrics used to conduct the literature review.

Metric

Description

(1) Automated

(2) Identification

(3) Quantification

(4) Universality

(5) On-board capability
(6) Method

(7) Cell chemistry type
(8) Input data form

(9) Data processing mode
(10) Processing time

(11) Accuracy level

(12) Robustness

(13) Scalability
(14) HW implementation

An article is related to Y (Yes) if the diagnostic method is automated; or to N (No), if not. A diagnostic method is automated if follows a step-by-step
process to identify or/and quantify the DMs. Automated processes are desired for further hardware and software implementation of a diagnostic
technique [24].

An article is related to Y if the diagnostic method identifies the DMs; or to N, if not.

An article is related to Y if the diagnostic method quantifies the DMs; or to N, if not.

An article is related to Y if the diagnostic method is universal; or to N, if not.

An article is related to Y if the method can be implemented on-board; or to N, if not.

Describes the method or group of methods used (pOCV, IC-DV, EIS or DTV) in an article.

Describes the cell chemistry type or types to which the method was applied (e.g., NCA, NMC, LFP, etc ...).

Input data form can be repetitive real drive cycles (RDC), repetitive synthetic (artificial) cycles (RS), or calendar (CAL).

Denotes when the acquired battery parameters are being processed: offline (Off) and online (On).

An article is related to S if the time needed to produce the first estimation is short (S < 30min); or to M if it is mid (30min<M<60min); or to L if it is
long (L > 60min); or to n.a. if the processing time is not available. As none of the reviewed studies attempt to implement the diagnostic methods into
a real-time hardware environment, the reported processing time is related to e.g., MATLAB software simulations.

Provides the degree to which the result obtained by applying the method is closer to the true result. The accuracy in the determination of the DMs
cannot be directly calculated as explained in Section 4. This calculation is determined indirectly by calculating the error of the estimation of the
PpOCV or capacity (C). Different metrics such as the absolute error or the RMSE are used to express the estimation error. In case the accuracy level is
not indicated, then the accuracy level of a particular diagnostic approach is related to NEV (not evaluated).

A method is robust if given different data as input the accuracy of the estimation result keeps at the same level. Each article is related to Y if the
method is robust; or to N if not; or to NEV if robustness is not evaluated.

An article is related to Y if the method is scalable from cell to module and pack; or to N if not; or to NEV if scalability is not evaluated.

An article is related to Y if the HW implementation of the method is studied; or to NEV if not. Note that the studies reviewed do not consider software

requirements and thus, this metric is not considered in this criterion.

IC and DV analyses. The main contribution of this study is to quantify
DMs applying the PSO algorithm. The main limitation of this study is
the lack of guidelines to implement this methodology in real-world
scenarios.

5.2.2. Group 2

Table 9 evaluates the articles of Group 2 according to the criteria
specified in Section 5.1.

An alternative to the method proposed by Dubarry et al. [10], Han
et al. [15] presented an approach to quantify DMs using the shifts of
HC- and FC-pOCV curves. Similarly to Ref. [10], IC curves were cal-
culated to identify the DMs in a qualitative manner. These qualitative
insights corroborated the quantification of the DMs determined by
pOCV curves. In addition, Han et al. [15] explain clearly the on-board
capability of the IC curves using the point counting method. The sim-
plicity and low computation requirements of this method make it sui-
table for BMS on-board applications. As a disadvantage, the point
counting method may not be suitable to calculate the IC curves for the
cases when the charging data is corrupted by noise. Further work in-
cludes testing this method using real BMS measurements, which often
contain a large amount of noise.

Table 8

Han's et al. degradation model was applied to quantify the DMs in
different scenarios in Refs. [37-39] by authors of the same research
group. Feng et al. [37] analysed the DMs of a 25 Ah NMC cell exposed
to extreme temperatures (> 80 °C) without achieving thermal runaway.
Ouyang et al. [38] evaluated the influence of the charging C-rate and
the cut-off voltage limit on the DMs of 11.5 Ah LFP cells cycled at low
temperature (—10°C). Yan et al. [39] studied the DMs in four High
Power (HP) Li-ion batteries cycled with a durability HEV profile at high
temperatures (30 °C, 40°Cand 50°C). For each of these cases, the
quantification of the DMs using pOCV and Han's model IC curves were
corroborated with the analysis of experimental IC curves. Ouyang et al.
[16] extend the automated pOCV model presented by Han et al. [15]
and further applied in Refs. [37-39]. Ouyang et al. [16] consider che-
mical kinetic principles in the calculation of x(¢t), y(t) and R. Apart
from using a novel mathematical formulation, the main contribution of
this study is that the degradation model was applied under realistic
scenarios. These scenarios are a frequency regulation profile for storage
grid applications and a dynamic BEV profile was used as inputs of the
pOCV model to quantify the DMs. Additionally, DMs were also studied
for a battery pack cell-to-cell variability scenario. Despite these con-
tributions, the authors highlighted that a more detailed test matrix to

Systematic and critical evaluation of the articles of Group 1 (pOCV) according to the criteria specified in Section 5.1. (1-5) And (11-14) see Section 5.1 for the
definition: Y (Yes), N (No), NEV (Not Evaluated), NQ (Evaluated but Not Quantified) and n.a. (not available).
(8) Type of input data: C (Calendaric data), RS (Repetitive Synthetic data) and RDC (repetitive Real Drive Cycle data).

(9) Data processing mode: Off (Offline) and On (Online).

(10) Processing time: S (Short, S < 30min), M (Mid, 30min<M<60min), L (Long, L > 60min) and n.a. (not available).

Article Main Research Country Available Journal #

Evaluation criteria

author group online cits. 1 2 3 4 5 6 7 8 9 10 11 12 13 14
[10] Dubarry ~ HNEI USA Jul-12 JPS 206 Y Y Y Y NEV pOCV LFP CAL Off n.a. NEV Y NEV NEV
&IC-DV
[12] Marongiu RWTH Germany May-16 JPS 8 YYYYY pOCVv LFP RDC Off&On n.a. 1.10% in C Y for NEV NEV
Cest
[11] Birkl Oxford UK Dec-16 JPS 46 Y Y Y Y N pOCVv LCO& RS Off&On n.a. < 3mV NEV NEV NEV
NCO poCv
Univ. & 8% DMs
[77] Ma Beijing China May-18 JPS 0 Y YYYY pOCV&IC- NMC RS Off na. <7mV NEV NEV NEV
DV
Institute & RMSE
pOCV

149



C. Pastor-Ferndndez, et al.

Table 9

Systematic and critical evaluation of the articles of Group 2 (pOCV) according to the criteria specified in Section 5.1. See definition of numeration (1) to (14) in Table 8.

Evaluation criteria

Journal #

Available

Country

Research

Main

Article

13 14

11 12

10

1

cits.

online

group

author

NEV NEV

NEV

< 5mV
(FC-pOCV)

NEV

S

Off&On

RS

LTO, LFP

pOCV
&IC

n.a.

Nov-13 JCP 187

China

Tsinghua
Univ.

Han

[15]

& LMO
NMC

only IC

NEV NEV

NEV

n.a.

Off&On

RS

poCv
&IC

NEV

Sep-14 JPS 40

China

Tsinghua
Univ.

Feng

[37]

NEV NEV

NEV

NEV

n.a.

Off&On

RS

LFP

pOCV
&IC

NEV

Mar-15 JPS 53

China

Tsinghua
Univ.

Ouyang

[38]

NEV

Y

8% pOCV

Off&On 15min

RS

pOoCV LFP,

&IC

NEV

Dec-15 AE 35

China

Tsinghua
Univ.

Ouyang

[16]

/1000 cycles
15min

LMO + NMC
LTO + NMC,
LMO& SC

N

NEV

Y

8% pOCV

Off&On

RDC

pOCV
&IC

NEV

AE

Jul-16

China

Tsinghua
Univ.

Yan

[39]

/1000 cycles

n.a.

NEV NEV

NEV

NEV

pOCVv MC CAL Off&On

N

China Feb-17 ECS

Harbin Institute
of Technology

Lu

[46]

&IC-DV

Renewable and Sustainable Energy Reviews 109 (2019) 138-159

calibrate the model's parameters more precisely for different operating
scenarios is needed.

From a different research group as [16,37-39], Lu et al. [46]
adapted the automated model of Han et al. [15] to identify and quantify
DMs. In addition to the automated model, they proposed a novel em-
pirical expression for predicting LAM. The nonlinear least squares
method was used in this case to solve the RMSE equation, and hence,
quantify the parameters related to the DMs. The results revealed that
the capacity fade during this calendaric investigation was pre-
dominantly caused by LLI and self-discharge. These results were qua-
litatively proven using IC and DV analysis. The main drawbacks iden-
tified for this model were: 1. lack in the capability to be applied on-
board; 2. lack of robustness since the model was only validated for
storage conditions and it may not be valid for other scenarios.

5.2.3. Group 3

Table 10 evaluates the articles of Group 3 according to the criteria
specified in Section 5.1.

In 2008 Honkura et al. [14] published the first article ever found in
which DMs are quantified following an automated model. As described
in Section 3.1, Honkura et al. [14] quantified LAM and LLI tracking
over time the changes in the amount of accessible active material, n?,
and the initial difference of Q*F and QVF with respect to QF¢, §'. Hon-
kura et al. [40] published in 2011 a similar article where apart from
quantifying the DMs as in Ref. [14], the authors also predict them using
the t'/2 rule. A year later, Dahn et al. [41] implemented this technique
in a software package to quantify DMs in an automated way. None of
these articles attempted to evaluate the on-board capability of the
pOCV + DV method until 2016 with the publication of Hu et al. [42].
Hu et al. [42] compute m and &' in a two iteration process rather than
deriving these parameters simultaneously. The advantage of the com-
putation method suggested by Hu et al. [42] is that the electrode slip-
pages, 6F and 8N, are easier to estimate by observing changes in the
peaks of the DV curve than by comparing the estimated and measured
DV data. However, the authors identified that the following issues re-
main to be addressed: 1. how to use FC-DV curves measured during a
partial charge cycle to estimate the degradation parameters; 2. how to
remove the noise in on-board measurements of FC pOCV and Q, and
make the parameter estimation robust.

5.2.4. Benefits and limitations of pOCV groups

Analysing Table 8, the advantages and disadvantages of the method
of each Group are compared in Table 11. In the case that not all the
articles of a group fulfill a particular metric, the references of the ar-
ticles that fulfill this are shown; or if none of the articles within a group
fulfill a particular metric, then the cell is left blank. It is seen that the
methods of Group 1 and 2 are the most feasible methods to quantify
DMs on-board in commercial BMS applications because they fulfill most
of the aspects defined in Section 5.1: (1-9) and (11-12) for Group 1;
and (1-4), (6-13) for Group 2. In contrast, the articles of Group 3 only
fulfill (1-6) and (9-10). The differences between the articles of Group 1
and 2 are: 1. the on-board capability and 2. the processing time and
robustness of the method. Group 1 has a better on-board capability than
Group 2. However, Group 2 fulfills processing time and robustness in
comparison to Group 1. Despite Group 3 does not fulfill (7), (8), (11),
(12), (13) and (14), the method is suitable for on-board applications as
shown in Ref. [42]. The recommendation would be to choose a method
of Group 1. To prove the robustness requirement, the chosen method
would need to be validated with different input data forms.

5.3. Incremental Capacity - Differential Voltage (IC-DV)

5.3.1. Group 1

Table 12 evaluates the articles of Group 1 according to the criteria
specified in Section 5.1.

Aside quantifying the DMs using HC-pOCV measurements as
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Table 10

Systematic and critical evaluation of the articles of Group 3 (pOCV) according to the criteria specified in Section 5.1. See definition of numeration (1) to (14) in
Table 8.

Article Main Research Country Available Journal # Evaluation criteria

author group online cits. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

[14] Honkura Hitachi Ltd. Japan 2008 ECS 30 Y Y Y Y N pOCV&DV NMC C Off&On NEV NEV NEV NEV NEV
[40] Honkura Hitachi Ltd. Japan Aug-2011 JPS 5 Y Y Y Y N pOCV&DV NMC CAL Off&On n.a. 20% Ceg NEV NEV NEV
[41] H. Dahn Dalhousie Uni. Canada Aug-2012 ECS 66 Y N N Y N pOCV&V LCO RS Off&On S 0.0001 V/mAh NEV NEV NEV
[42] Hu Iowa State Uni. USA Aug-2016 ASME 0 Y Y Y Y Y pOCV&DV LCO RS Off&On n.a. NEV N NEV NEV
Table 11

Comparison of the benefits and limitations of the methods of Group 1, 2 and 3 according to the evaluation criteria described in Section 5.1. See definition of

numeration (1) to (14) in Table 8.

Group Evaluation criteria Key

1 2 3 4 5 6 7 8 9 10 11 12 13 14  articles
Group 1 v v v v v v v v v X v v X X [10,12]
[10-12] [All]  [All] [ALl] [All] [12] [Al] [11] [12]  [All] [11,12] [10]
Group 2 v v v v X v v v v v v v v X [15,16]
[15,16,37-39,46]  [All]  [All] [ALl] [15,16,37-39] [Alll  [15,16,39] [39] [Alll [15.16,39] [16,39] [16,39]
Group 3 v v v v v v X X v v X X X X [42]
[14,40-42] [Alll  [14,40,42] [14,40,42] [41,42] [42] [All] [Alll  [41]

described in Section 5.2.1, Dubarry et al. [10] also introduces the 5.3.2. Group 2

theory to relate the changes of IC and DV curves with DMs. This theory
can be used as a guideline to identify DMs in an automated way as
suggested in Refs. [3,51]. Devie et al. [43] study the most pertinent
DMs involved with and without overcharging a LTO and a NMC pouch
cell. For the DMs that were initially hypothesized, IC-DV curves were
used to identify DMs. Further work includes achieving a better under-
standing of the electrochemical processes that lead to the DMs. Since
the same model and type of data was used as in Ref. [10], the con-
tributions and drawbacks of this article are the same as in Ref. [10].
Berecibar et al. [44] used IC curves generated with the Dubarry et al.
[10] model to highlight the differences in terms of DMs between NMC
HP and NMC HE cells. The DMs were in this case identified by visual
inspection of the changes in the IC curves without following any au-
tomated procedure.

Dubarry et al. [78] present an approach that can cover all the
possible voltage curves upon degradation to fit the voltage response
during constant current steps to decipher DMs. The voltage curves are
derived from simulations using the model proposed in Ref. [10]. These
curves are stored in the form of a look-up table that can be easily im-
plemented in real-world applications. The authors also define feature of
interests (FOI) from IC curves with the aim of relating the change of
these FOIs with possible degradation paths. The main limitations of this
approach are that chemistries with large voltage plateaus might be
difficult to diagnose, the computation effort is high, and some FOIs
could disappear with ageing providing an erroneous diagnosis.

Table 13 evaluates the articles of Group 2 according to the criteria
specified in Section 5.1.

Dubarry et al. [48] introduces the PA methodology in commercial
HE and HP LFP cells. In deeper, Anseén et al. [49] use PA analysis of IC
curves and Dubarry's et al. model [10] to identify and quantify the DMs
for a standard charging event and a fast charging event (4C) of a HP LFP
cell. Since the same model was used, the drawbacks of the PA analysis
of IC curves for this study are the same as the ones described previously
for [10]. Similarly, as in Ref. [49], Anseédn et al. [4] quantify the re-
versible and irreversible part of lithium plating in commercial LFP cell
cycled at constant temperature (23 °C).

Gao et al. [50] reveal the influence of different charging current
rates and cut-off voltages on the aging mechanism of batteries by using
PA IC analysis. In comparison to the rest of the studies of this group
[4,48,49], Gao et al. [50] do not use Dubarry's et al. model [10] to
quantify DMs based on the changes of HC-pOCV curves. Instead, the
authors relate the changes of the IC peaks with DMs by visual inspection
and then, the area of each peak is calculated. The main contribution of
this study is that DMs were quantified based on PA IC analysis without
using HC-pOCV measurements. The main limitation of this approach is
the amount of subjectivity involved when DMs are detected through
visual inspection. Further work includes developing an automated
process to reduce the subjectivity in the interpretation of the IC peaks.

5.3.3. Group 3
Table 14 evaluates the articles of Group 3 according to the criteria

Table 12

Systematic and critical evaluation of the articles of Group 1 (IC-DV) according to the criteria specified in Section 5.1. See definition of numeration (1) to (14) in

Table 8.

Group 1

Article Main Research  Country Available Journal # Evaluation criteria

author group online cits. ' 1 2 3 4 5 6 7 8 9 10 11 12 13 14

[10] Dubarry HNEI USA Jul-12 JPS 2060 Y Y Y Y Y pOCV LFP CAL Off&On n.a. NEV Y NEV NEV
&IC-DV

[43] Devie HNEI USA Mar-15 ECS 21 Y Y Y Y NEV pOCV LTO&NMC RS Off&kOn n.a. NEV Y NEV NEV
&IC-DV

[44] Berecibar IKERLAN  Spain Dec-16 IEEE 1 N Y N N N IC NMC RS Off&On n.a. NEV NEV NEV NEV

[78] Dubarry HNEI USA May-17 JPS 10 Y Y Y Y Y pOCVv LTO, RS Off&kOn n.a. NEV Y NEV NEV

NMC & LFP
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Table 13
Systematic and critical evaluation of the articles of Group 2 (IC-DV) according to the criteria specified in Section 5.1. See definition of numeration (1) to (14) in
Table 8.
Article  Main Research Country  Available  Journal # Evaluation criteria
author group online cits,. 1 2 3 4 5 6 7 8 9 10 11 12 13 14
[48] Dubarry  HNEI USA Feb-14 JPS 73 Y Y Y Y NEV pOCV LFP CAL Off&On S NEV Y NEV  NEV
&PA
[49] Anseéan Univ. Spain May-2016  JPS 32 Y Y Y Y NEV pOCV LFP RS Off&On n.a. NEV Y NEV  NEV
of Oviedo &PA
[4] Ansedn Univ. Spain Apr-2017 JPS 15 Y Y Y Y NEV pOCV LFP RDC Off&On n.a. NEV Y NEV  NEV
of Oviedo &PA
[50] Gao Beijing China Apr-2017 JPS 17 Y Y Y Y NEV pOCvV LCO RS Off na. NEV Y NEV  NEV
Jiaotong Univ. &PA

specified in Section 5.1.

Pastor-Fernandez et al. [51] use the conclusions derived from Du-
barry et al. [10] to identify the DMs by means of full cell IC and DV
curves. The authors used a metric called growth of degradation, Gic_py
, to quantify the effects of DMs. This study uses the experimental data
collected in Ref. [2] where four NCA-C Li-ion cells connected in parallel
were cycled until their EoL. The results of this study agree with the
outcomes obtained using the EIS technique in the same scenario as
shown in Ref. [3]. The main contribution of [51] is the development of
an automated method to quantify DMs based on full-cell IC-DV curves.
The main limitation of this study is that the assumptions of which this
approach is founded may not always be true. Further work includes
validating this approach over a broader range of conditions.

5.3.4. Benefits and limitations of IC-DV techniques

Analysing Table 12, the advantages and disadvantages of the
method of each Group are compared in Table 15 according to the re-
quirements defined in Section 5.2. In case that not all the articles of a
group fulfill a particular metric, the references of the articles that fulfill
a specific metric is shown. It is seen that the methods of each group
have approximately the same advantages and limitations. All three
groups fulfill aspects (1-3) and (6), highlighting that they are auto-
mated, universal and suitable for identification of DMs. Group 2 and 3
have also the capability to quantify the DMs. However, as the main
disadvantage, all three groups lack in an on-board implementation
capability (5). In addition, they do not fulfill aspects 11, 13 and 14.
Apart from these, Group 1 fulfills aspects number 9 and 12; Group 2
aspects 8, 9, 10 and 12; and Group 3 only 10. Hence, between the
different groups, number 2 is the one which concentrates more ad-
vantages.

5.4. pOCV and IC-DV studies focus on on-board implementation and
battery pack scalability

There is a number of studies which applies pOCV and IC-DV tech-
niques for SoH estimation rather than for quantification of DMs.
Although they do not identify neither quantify DMs, it is noteworthy to
mention them because some of their aspects can add value to the
techniques described in Section 5.2 and Section 5.3. These com-
plementary studies have been classified into two groups depending on
the aspect that add value:

® Group 1: these studies [47,79-81] support the capability of pOCV
and IC-DV methods to be implemented on-board within a com-
mercially viable BMS.

® Group 2: these articles [82,83] contribute to scale pOCV and IC-DV
techniques from cell to module and battery pack.

From this classification, the specific contribution of the articles of
each group is summarised in Table 16. As these articles are not aimed to
identify neither quantify DMs, it is beyond the scope of this study to
review them in detail.

5.5. Electrochemical Impedance Spectroscopy (EIS)

Only the studies presented by Pastor-Fernandez et al. [3,66] were
found to be relevant in terms of automation, identification and quan-
tification of DMs. Table 17 evaluates these studies according to the
criteria specified in Section 5.1.

Pastor-Fernandez et al. [66] proposes to track the change of the EIS
spectrum through the AR-ECM resistances (ohmic, SEI, charge-transfer
and Warburg) so that DMs are quantified. The main limitation of this
study is the lack of validation though e.g., post-mortem analysis. In
addition, the challenges to implement EIS measurement within a bat-
tery pack need to be studied.

5.6. Combination of thermodynamic (pOCV) and kinetic (EIS) methods

Only the research presented by Schindler et al. [20] combines a
thermodynamic (pOCV) and a kinetic (EIS) method to identify and
quantify DMs following an automated process. Table 18 evaluates this
study according to the criteria specified in Section 5.1.

Schindler et al. [20] identify and quantify the DMs based on the
fusion of an overpotential (pOCV) and a kinetic (EIS) model. The results
of the overpotential model show a linear dependency between relative
Ronm and LLI values, and Ry, and LAM values. Further experimental
work involving different cell chemistry types and testing conditions (C-
rate, SoC and temperature) need to be performed in order to validate
this linear relationship.

5.7. Differential Thermal Voltammetry (DTV)

Table 19 evaluates the DTV articles found in the literature according

Table 14
Systematic and critical evaluation of the articles of Group 3 (IC-DV) according to the criteria specified in Section 5.1. See definition of numeration (1) to (14) in
Table 8.
Article  Main Research  Country  Available Journal # Evaluation criteria
author group online cits. 2 3 4 5 6 7 8 9 10 11 12 13 14
[51] Pastor-Fernandez ~ WMG UK Nov-16 IEEE 4 Y Y Y Y NEV ICDV NCA RS Off S NEV NEV NEV NEV
[3] Pastor-Ferndndez =~ WMG UK Jun-17 JPS 8 Y Y Y Y NEV ICDV NCA RS Off S NEV NEV NEV NEV
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Comparison of the benefits and limitations of the of Group 1, 2 and 3 IC-DV methods according to the evaluation criteria described in Section 5.1.

Group Evaluation criteria Key
1 2 3 4 5 6 7 8 9 10 11 12 13 14 articles

Group 1 v v v v x v v X v X X v X X [10]
[10,43,44,78] [10,43,78] [All] [10,78] [10,43,78] [All] [43,78] [All] [10,43,78]
Group 2 v v v v x v X v v v X v X X [48]
[4,48-50] [All] [All] [All] [All] [4,48,49] [4] [4,48,49] [48] [All]
Group 3 v v v v x v X X X v X X X X [511
[3,51] [All] [All] [All] [All] [All] [All]

Table 16

Systematic and critical evaluation of the articles focus on on-board implementation according to the criteria specified in Section 5.1. See definition of numeration (1)

to (14) in Table 8.

Group 1
Article Main Research Country Available Journal # Evaluation criteria
author  group online cits. 1 2 3 5 6 7 8 9 10 11 12 13 14
[47] Feng Tsinghua China Jan-13 JPS 63 N N N Y IC&DV LFP& RS On n.a. 2% SoH.st N N NEV
Uni. LMO
[79] Weng Uni. of USA Feb-13 JPS 120 N N N Y pOCV&IC LFP RS Off&kOn S (187s) 1% 1C Y NEV NEV
Michigan
[80] Riviere EVE System  France Dec-15 IEEE 9 N N N Y (¢ LFP RS Off&On n.a. 2% SoH.g NEV NEV NEV
[81] Wang  Jiangsu China Feb-16 AE 25 N N N Y DV LFP RS Off&kOn S (17ms) 2.5% SoHe Y Y NEV
& Shandong
Uni.
Group 2
Article Main  Research Country Available Journal # Evaluation criteria
author group online cits. 1 2 3 4 5 6 7 8 9 10 11 12 13 14
[82] Zheng  Tsinghua China Dec-14 JPS 27 Y Y N Y NEV ECDS LFP RS Off&On n.a. 0.03 Ah NEV Y NEV
Uni.
in C
[83] Weng  Michigan China Aug-16 AE 31 N NNY Y pocCVv LFP RS Off&On n.a 1.62% Y Y NEV
& Tsinghua &IC SOHeg
Uni.

to the criteria specified in Section 5.1.

Wu et al. [17] present the DTV as a diagnostic technique to identify
ageing mechanisms using voltage and temperature measurements in
galvanostatic mode. The main limitation of this study is that the iden-
tification of the ageing mechanisms does not follow an automated ap-
proach and therefore, they are subject to different interpretations. To
avoid this, Merla et al. [18] proposed peak position, peak width and
peak height as FOIs of DTV curves to analyse the ageing mechanisms in
an automated way. The results showed that it is challenging to predict
the ageing mechanisms involved through individual peak parameter
observation. Although the peak and changes of the DTV curves can be
used to infer DMs, this result shows clearly in practice is not possible.
Another common limitation of [17,18] is that the DTV was validated on
individual cells under natural convection thermal boundary conditions.
Merla et al. [19] used DTV to identify the ageing mechanisms of four
commercial NMC connected in parallel placed under forced air surface
cooling to emulate a BEV application. One of the cells was aged on
purpose to demonstrate the diagnosis capability of the DTV. Despite

Table 17

this, the DTV results obtained for the four cells in parallel were com-
parable to the results obtained for the single cell test under natural
convection [18]. From the same research group as [17-19], the last
DTV study was published by Shibagaki et al. [69]. Following on from
the same model as in Refs. [17-19], Shibagaki et al. [69] correlate peak
DTV curve parameters with capacity fade, resistance increase and in-
homogeneous electrode performance suggesting that the technique
could be used for SoH estimation in real applications.

5.8. Comparison, benefits and limitations of diagnosis techniques

According to the criterion specified in Section 5.1, 14 different
metrics were used to review the articles of each diagnostic technique. In
addition to these metrics, other figures were evaluated to have a better
understanding of the research groups involved in this field and the
impact of their publications (refer to Section 5.1). This “soft” data and
the scientific data (14 evaluation metrics) are treated separately. Fig. 10
illustrates the level and the spread of the activity of different groups in

Systematic and critical evaluation of the EIS related articles according to the criteria specified in Section 5.1. See definition of numeration (1) to (14) in Table 8.

Article  Main Research  Country  Available Journal # Evaluation criteria

author group online cits. 1 3 4 5 6 7 8 9 10 11 12 13 14
[66] Pastor-Fernandez ~ WMG UK Jul-16 IEEE 4 Y Y Y NEV NEV EIS NCA RS Off S 10% in R NEV NEV NEV
[3] Pastor-Ferndndez ~ WMG UK Jun-17 JPS 8 Y Y Y NEV NEV EIS NCA RS Off S llrz)cl':) inR NEV NEV NEV

inR
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Table 18
Systematic and critical evaluation of the combination article (pOCV + EIS) according to the criteria specified in Section 5.1. See definition of numeration (1) to (14)
in Table 8.
Article  Main Research  Country  Available Journal # Evaluation criteria
author group online cits. 1 2 3 4 5 6 7 8 9 10 11 12 13 14
[20] Schindler ZSW Germany Jan-17 JPS 5 Y Y Y Y NEV pOCV LFP RS Off&fOn n.a. 1% inpOCV NEV NEV NEV
& EIS
Table 19

Systematic and critical evaluation of the DTV articles according to the criteria specified in Section 5.1. See definition of numeration (1) to (14) in Table 8.

Article  Main Research Country  Available Journal # Evaluation criteria
author  group online citss. 1 2 3 4 5 6 7 8 9 10 11 12 13 14
[17] Wu Imperial College UK Sep-14 JPS 29 N N N Y NEV SRCV,IC NMC RS Off na NEV Y NEV  NEV
London (ICL) EIS & DTV
[18] Merla ICL UK Jan-16 JPS 22 N N N Y NEV SRCV,IC NMC RS Off na NEV Y NEV  NEV
EIS & DTV
[19] Merla ICL UK Sep-16 JPS 8 N N N Y NEV SRCV,IC NMC RS Off n.a NEV Y Y NEV
EIS & DTV
[69] Offer ICL UK Nov-17 JPS 1 N N N Y NEV DIV LFP RS Off na NEV Y Y NEV

this research area.

From analysing Fig. 10 the following conclusions have been derived:

Fig. 10 (a): the techniques with a larger number of articles pub-
lished are clearly pOCV (13) and IC-DV (10) followed by DTV (4), EIS
(2) and Comb (1).- Fig. 10 (b): considering the affiliation of the first
author in each publication, the most relevant research groups in the
field are Tsinghua University (China) for pOCV, HNEI (USA) and Uni-
versity of Oviedo (Spain) for IC-DV, WMG (UK) for EIS, ZSW (Germany)
for Comb. And Imperial College London (UK) for DTV.. Fig. 10 (c):
from 2016 the topic of this study has acquired more importance in the
literature for each of the techniques evaluated.- Fig. 10 (d): JPS is the
journal which with more published articles related to these diagnostic
techniques. Other journals or conference proceedings where these type

of studies are published are AE, ECS, JPC, ASME, and IEEE.- Fig. 10 (e):
the articles related to the pOCV technique are the most cited in the
literature (737) followed by the IC-DV articles (387). In general, the
articles related to the rest of the techniques (EIS, Comb. And DTV) are
quite new, and hence, they have not been cited at that level.
According to Table 8, Table 12, Table 17, Tables 18 and 19, the 14
metrics defined in Section 5.1 were analysed with respect to the diag-
nostic techniques studied (pOCV, IC-DV, EIS, Combination (Comb.) and
DTV). The results are illustrated in form of bar plots in Fig. 11. From
these plots, conclusions are derived and summarised in Table 20.
From this comparison and the individual review of each article
conducted along this section, the main benefits and limitations of each
technique are shown in Table 21. Taking into consideration the results

(a)15 Number of publications per technique (b) 12 Research groups (c) 6 Publication timeline
— 1. Tsinghua Univ. (China) 4. HNEI (USA
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Fig. 11. Comparison of the scientific metrics: (a) number of articles which follow an automation process per technique; (b) number of articles per technique which
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implementation is proved.

Table 20

Conclusions derived from comparing the reviewed non-invasive diagnostic techniques.

Figure Conclusion

Fig. 11 (a)-(e)

For the analysis of the automation, identification, quantification, universality and on-board capability of each of the techniques there is a superior trend in the
number of pOCV articles with respect to the IC-DV ones. Only the IC-DV technique seems to be advantageous in terms of on-board implementation. In
comparison to the pOCV and IC-DV techniques, the rest of the techniques play a less significant role in these metrics. However, as a relative measure, all the EIS
and Comb. reviewed articles fulfill the automation, identification and quantification (DMs) metrics. In contrast, the DTV technique only fulfills universality and
on-board capability metrics.

Fig. 11 () The number of different cell chemistry types tested is larger for the pOCV (LFP, LCO, NCO, LTO, LMO and NMC) and IC-DV (LFP, LTO, NMC, LCO and NCA)
techniques than for the EIS (NCA), Comb. (LFP) and DTV (NMC) because the number of articles is also higher for these techniques.

Fig. 11 (g) RS is the most common type of data used in all the techniques because it is easy to generate at laboratory conditions. The main disadvantage of this is that this
type of data does not emulate real driving conditions (e.g., different C-rates, SoC, ADoD and temperature). Since the number of articles published is larger, pPOCV
and IC-DV techniques are also tested with C and RDC data.

Fig. 11 (h) All the reviewed articles process the data offline.

Fig. 11 () Only a few articles of the most published techniques (pOCV and IC-DV) provides a measure of the processing time. This result is because none of the reviewed
studies attempt to implement the diagnostic methods into a real-time hardware environment. Then, the reported processing time is related to software based
simulations, e.g., MATLAB based simulations.

Fig. 11 (j): A measure of the accuracy is given in terms of error of pOCV estimation for the pOCV and Comb. (pOCV part) based methods. The accuracy is not evaluated in
the studies reviewed for the rest of the methods. Therefore, the conclusions derived from these studies may not be 100% valid.

Fig. 11 (k)-(m) Robustness and scalability are mainly proved for IC-DV and pOCV related articles, followed by the DTV ones. For both cases, the number of articles which fulfill

these metrics is low as illustrates Fig. 10 (a). According to Fig. 11 (m), the HW implementation of the evaluated techniques has not been considered in the
literature yet. This is because the research of these techniques is still in an early stage, and further work with this respect needs to be considered.

illustrated in Fig. 11 and the advantages and disadvantages listed in
Table 21, it is seen that pOCV and IC-DV are the more advantageous
techniques. However, these also lack in some aspects such as the ne-
cessity of acquiring accurate HC measurements and the duration of such
experiment (> 10h) or that the estimation of DMs may not be unique.
Alternative techniques consider other ageing related parameters such as
impedance (EIS) or temperature (DTV), or the combination of them
(Comb.), which provide additional information to understand the DMs
involved. These alternative techniques are not mature enough yet as
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they lack aspects such as on-board capability (EIS), robustness and
scalability (EIS and Comb.), and capability to identify and quantify DMs
(DTV). It is recommended therefore to use pOCV and IC-DV as reliable
diagnostic techniques to identify and quantify DMs. At the same time,
further developments of the alternative techniques (EIS, Comb. And
DTV) need to be considered so that these techniques can contribute to
understand better the diagnosis of DMs.

As suggested in our previous work [3], it is recommended to apply
these techniques in an off-board environment (e.g., service station)
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Table 21
Advantages and disadvantages of pOCV, IC-DV, EIS, Comb. And DTV diagnostic techniques.
Technique Advantages Disadvantages
pOCVv (a) Automated. (a) Pristine HC-pOCV measurements are required
(b) Identifies DMs. at laboratory conditions.
(¢) Quantifies DMs. (b) pOCV test duration is long (> 10 h).
(d) Universal. (c) Ageing history measurements are required
(e) On-board capability. to discard the estimation of wrong DMs.
(f) Tested with RDC.
() Accurate (< 10%).
(h) Robust.
(i) Scalable.
IC-DV (a) Automated. (a) Pristine HC-pOCV measurements are required
(b) Identifies DMs. at laboratory conditions.
(c¢) Quantifies DMs. (b) pOCV test duration is long (> 10h).
(d) Universal. (c) Ageing history measurements are required
(e) On-board capability. to discard the estimation of wrong DMs.
(f) Tested with RDC. (d) Level of accuracy (< 10%) is not proved.
(g) Robust. (e) DMs can be neglected from the analysis
(h) Scalable. of the IC-DV curves.
EIS (a) Automated. (a) Not mature technique for identification
(b) Identifies DMs. of DMs at laboratory conditions.
(¢) Quantifies DMs. (b) Universality is not proved.
(d) Accurate (< 10%) (c) On-board capability is not proved
(HW implementation is complex).
(d) Not tested with RDC input data.
(e) Robustness is not proved.
(f) Scalability is not proved.
Comb. (a) Automated. (a) Pristine HC-pOCV measurements are required
(b) Identifies DMs. at laboratory conditions for the thermodynamic model.
(c) Quantifies DMs. (b) Test duration is long (> 10h) for pOCV test
(d) Universal (thermodynamic for the thermodynamic model.
model). (c) Ageing history measurements are required
(e) Accurate (< 10%). to discard the estimation of wrong DMs.
(d) Universality for the kinetic model is not proved.
(e) On-board capability is not proved
(HW implementation of the kinetic model is complex).
(f) Not tested with RDC input data.
() Robustness is not proved.
(h) Scalability is not proved.
DTV (a) Universal. (a) No automated.

(b) On-board capability.

(c) Robust.

(d) Scalable.

(e) Entropic influence.

(temperature) is considered.

(f) Voltage can be measure up

to 2C (faster than pOCV

test in which the min C-rate is C/10).

(b) No identifies DMs (only some ageing mechanisms).
(c) No quantifies DMs (only some ageing mechanisms).
(d) Level of accuracy (< 10%) is not proved.

(e) Not tested with RDC input data.

rather than on-board. Two reasons support this recommendation:

1 HW implementation of these techniques is less limited off-board
than on-board. In an off-board application, measurement outside the
vehicle, there is access to more sophisticated equipment in terms e.g.,
speed, accuracy or precision, than in an on-board environment, where
the characteristics of the HW components are more limited.

2 Under normal operation, degradation of LIBs is a slow process
where significant changes can be noted after months or years. For in-
stance, other functions such as voltage measurement need to be applied
more quickly, e.g., in the order of milliseconds. This low frequent check
suggests diagnosing DMs using external equipment (off-board).

6. Limitations of this study and further work

This review has highlighted that the most common limitations along
the different techniques are:

® None of the reviewed techniques validates their results with post-
mortem analysis.

o The conditions at which the techniques are tested (e.g., C-rate, SoC,
ADoD or temperature) are repetitive following synthetic profiles
rather than using more realistic profiles.

® Lack of on-board capability.
® Lack of scalability.
e Lack of HW implementation.

In addition, EIS, DTV and the combination of pOCV and EIS (Comb.)
require improvements regarding robustness (refer to Table 21). In
overall, DTV is the technique which requires more attention in the fu-
ture since DTV does not fulfill the majority of the metrics (automation,
identification of DMs, quantification of DMs, universality, accuracy
level, robustness, scalability and HW implementation) included in the
evaluation criterion.

From Section 5 it is seen that none of the diagnostic techniques
proposed in the literature has been tested in real-world conditions
within a vehicle. To do this, it is necessary to study the fundamental gap
between the requirements of the diagnostic techniques (e.g., scalability
or HW implementation) and the available functionalities of a com-
mercial BMS. Further work includes the need to test these techniques in
real-world conditions (off-board and on-board) to evaluate the level of
accuracy and robustness required (e.g., in terms of sample rate or the
level of noise immunity appropriate for the different diagnostic tech-
niques). Such an experiment can be conducted using real-time hard-
ware-in-the-loop systems. This would facilitate a level experimental
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repeatability difficult to achieve within actual in-vehicle test.
7. Conclusions

In summary, this study comprises a critical review of the different
techniques employed in the literature to quantify DMs. The outcomes of
this study provide guidelines to select the most appropriate diagnostic
techniques to identify and quantify DMs within different BMS appli-
cations.

The reviewed diagnostic methods are classified into thermo-
dynamics based techniques (pOCV, IC-DV, and DTV), kinetics based
(EIS) and a combination (Comb.) of them (pOCV + EIS). After an ex-
tensive review of the literature, these techniques are evaluated fol-
lowing the systematic criteria described in Section 5.1. In order to
support the application of these methods in real-world scenarios, these
criteria include requirements characteristics of the automotive domain.
The results revealed that none of these techniques was tested in a ve-
hicle in real-world conditions and thus, their hardware implementation
requires further investigation. Furthermore, a practical application of
these approaches may be more feasible off-board than on-board.

By comparing the different diagnostic techniques, pOCV and IC-DV
are more advantageous than EIS, DTV and Comb. techniques because
they fulfill a more significant number of requirements. Despite this, EIS,
DTV and Comb. techniques employ different ageing indicators such as
impedance for EIS, charge and impedance for Comb., and temperature
for DTV. This result motivates the further evaluation of these techni-
ques so that they can be implemented in real-world automotive appli-
cations in the future
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Appendix B. Nomenclature

Abbreviation

AE Applied Energy

AR-ECM Adapted Randles Equivalent Circuit Model
ARPA-E Advanced Research Projects Agency for Energy
ASME  American Society of Mechanical Engineers
BMS Battery Management System

CAL Calendaric data

CF Capacity Fade

CL Conductivity Loss

Comb Combination

DM Degradation Modes

DoD Depth of Discharge

DTV Differential Thermal Voltammetry

EIS Electrochemical Impedance Spectroscopy
FC Full Cell

FOI Feature of Interest

HC Half Cell

HW Hardware

HIU Helmbholtz-Institut Ulm

ICL Imperial College London

IEEE Institute of Electrical and Electronics Engineers
ISO International Standard Organisation

JCP Journal of Cleaner Production
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JPS Journal of Power Sources

L Long (processing time)

LAM Loss of Active Material

LCO Lithium Cobalt Oxide (LiCoO,)

LFP Lithium iron Phosphate (LiFePO,)

LIB Lithium-ion Battery

LLI Loss of Lithium Inventory

LMO Lithium Manganese Oxide (LiMn, O4)

LNO Lithium Nickel Oxide (LiNiO,)

LTO Lithium-Titanate Oxide (Li4 Ti5O15)

M Mid (processing time)

MCU Microcontroller Unit

MISRA  Motor Industry Software Research Association

N No

n.a. not available

NCA Nickel Cobalt Aluminum Oxide (LiNixCol-x-yAlyO2)

NE Negative Electrode

NEV Not Evaluated

NMC or NCM Lithium Nickel Manganese Cobalt Oxide (Li[NiMnCo]
05)

NQ Not Quantified

Off Offline

On Online

PA Peak Area

PE Positive Electrode

PF Power Fade

pOCV Pseudo Open Circuit Voltage

PSO Particle Swarm Optimisation

RDC Repetitive Drive Cycle

RMSE Root Mean Square Error

RS Repetitive Synthetic data

SH Short (processing time)

SEI Solid Electrolyte Interphase

SEM Scanning Electron Microscopy

SPI Solid Permeable Interphase

SRCV Slow Rate Cyclic Voltammetry

SoC State of Charge

SoH State of Health

SW Software

T Temperature

Univ University

WMG Warwick Manufacturing Group

XPS X-Ray Photoelectron Spectroscopy

Y Yes

ZSW Zentrum fiir Sonnenenergie und Wasserstoff-Forschung
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