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Abstract 

 

Most membrane proteins function through interactions with other proteins in the phospholipid 

bilayer, the cytosol or the extracellular milieu.  Understanding the molecular basis of these 

interactions is key to understanding membrane protein function and dysfunction. Here we 

demonstrate for the first time how a nano-encapsulation method based on styrene maleic acid 

lipid particles (SMALPs) can be used in combination with native gel electrophoresis to separate 

membrane protein complexes in their native state. Using four model proteins, we show that this 

separation method provides an excellent measure of protein quaternary structure, and that the 

lipid environment surrounding the protein(s) can be probed using mass spectrometry. We also 

show that the method is complementary to immunoblotting. Finally we show that intact 

membrane protein-SMALPs extracted from a band on a gel could be visualised using electron 

microscopy (EM). Taken together these results provide a novel and elegant method for 

investigating membrane protein complexes in a native state. 
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Membrane protein 
Nanoparticle 
SMALP 
Native PAGE 
Protein complex 
 
Abbreviations 
 

ABC  ATP-binding cassette 

AcrB  acriflavine resistance protein B 

AUC  analytical ultracentrifugation 

Bam  β-barrel assembly machinery 

BSA  bovine serum albumin 

EM  electron microscopy 

PAGE  polyacrylamide gel electrophoresis  

Sav1866 Staphylococcus aureus protein 1866 

SDS  sodium dodecylsulphate 

SEC  size exclusion chromatography 

SMA  styrene maleic acid 

SMALP styrene maleic acid lipid particle 
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Introduction 

 

Defining their quaternary structure is fundamental to understanding the function of many 

proteins. One key tool used for this is native polyacrylamide gel electrophoresis (native PAGE) 
1,2. This method has been successful for a wide range of applications where understanding 

protein quaternary structure has implications for both health3 and disease 4,5. In particular, native 

PAGE provides a non-disruptive and elegant method for defining the quaternary structure of 

small amounts of protein.  

 

For membrane proteins native PAGE has typically been less reliable. One issue is the necessity 

of using detergent during the protein solubilization and PAGE processes: the detergent 

interferes with non-covalent interactions between protein subunits 6, potentially disrupting 

quaternary structures. While conventional native PAGE in the presence of detergent has yielded 

formative data, for instance in defining the subunit composition of mitochondrial complexes7, in 

many cases native PAGE gels of membrane proteins have low clarity and resolution, rendering 

them difficult to interpret. To mitigate these issues, current native PAGE protocols for membrane 

proteins typically require other excipients alongside the detergent (e.g. Coomassie dye for blue 

native PAGE, or proprietary additives)8, which at best make the method complex and unwieldy 

and at worst fail to improve the quality of the data. To more reliably and rapidly expand our 

understanding of membrane protein complexes, we need a simple and effective native PAGE 

system that preserves the native state oligomeric state of membrane proteins. 

 

In 2009 we developed a new approach to membrane protein extraction that replaced 

conventional detergents with an amphipathic polymer, styrene maleic acid (SMA)9. SMA can 

extract proteins directly from the membrane complete with their local lipid environment10. The 

resulting SMA lipid particles (SMALPs) contain membrane proteins in stable nanoparticles of 

~10 nm diameter, which are suitable for many downstream biochemical studies. The SMALP 

method has been successful for ion channels11, transporters 12,13, enzymes14, respiratory 

complexes10 and light harvesting13 complexes, and receptors 15. These proteins have been 

extracted from a range of biological membranes. The SMA molecule is amphipathic, and its 

maleic acid moieties have two logarithmic acid dissociation constants (pKa) at pH 1.9 and 6.1. 

Therefore at the pH used for Tris-glycine PAGE, SMA is negatively charged, making it 

analogous to the sodium dodecyl sulphate in standard denaturing gels. Crucially, SMA differs 

from SDS in that it does not bind to and unfold the protein. Instead it interacts only with the lipid 

bilayers that surround the membrane protein, maintaining the membrane and hence stabilising 

the membrane protein structure 12,13. This makes SMA highly unlikely to interrupt protein-protein 

contacts that stabilise membrane protein complexes. Indeed, studies using SMALPs have 
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shown that it preserves protein complexes including homo-oligomers 11,16 and hetero-

complexes, e.g. cytochromes 10, light harvesting complexes13, and protein translocons 17,18.  

More importantly for electrophoresis, the high negative charge density of the SMA polymer in 

the SMALPs should enable membrane proteins, regardless of their inherent charge at pH 8, to 

migrate under electrophoresis. It is also worth noting that SMALPs are typically of uniform size, 

regardless of the mass of protein in the particle. This means that differences in migration 

observed in electrophoresis are likely to be dominated by the size of the protein and not the 

charge on the particle. 

 

In this work we have developed a native PAGE method for use with SMALPs (SMA-PAGE). To 

do so, we chose a set of membrane proteins with different architectures and oligomeric states 

that can be routinely purified in SMALPs (Supplementary Table 1). These are: ZipA, a 36 kDa 

single transmembrane ɑ-helical protein that adopts a range of oligomeric forms including 

monomers 19; Sav1866, a 65 kDa ABC-transporter that functions as a homodimer 20; the 112 

kDa bacterial drug transporter AcrB that assembles as a homotrimer 21; and the microbial 

protein translocator complex Bam, a β-barrel hetero-pentamer with a stoichiometry of 1:1:1:1:1 

and a total mass of ~210 kDa22. We assessed whether these proteins migrated as intact 

SMALPs, whether their migration was consistent with their native oligomeric states, and whether 

they retained lipids. We also showed that protein stains (e.g. Coomassie) and immunostains 

could be used with the system. We also proved that intact SMALPs could be extracted from the 

gel and be used for proteomics and lipidomics analysis. Finally we showed that the intact 

particles extracted from the SMA-PAGE could be visualised using electron microscopy. 

 

Results 

 

The aims of this study were three-fold. First, we investigated whether SMALP particles migrated 

intact through a native electrophoresis system, and whether their migration was related to the 

mass of the protein encapsulated in the SMALP. Secondly, we asked whether proteins in the 

SMA-PAGE gels could be easily visualised. Finally we explored the compatibility of SMA-PAGE 

with downstream analysis of membrane proteins. 
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Proteins in SMALPs migrate under native electrophoresis 

 

The SMALP-encapsulated membrane proteins selected for this study were applied to a 4-20 % 

acrylamide tris/glycine gel in a non-denaturing, non-reducing load dye. Their migration through 

the gel was compared to native electrophoresis standard proteins (Figure 1) and the apparent 

molecular weights are shown in the inset table. Each protein migrated to a position consistent 

with its molecular weight and produced a distinct band when stained with Coomassie-like 

protein stain (Figure 2; Supplementary Figure 1).  

 

Figure 1: Retardation front (Rf) analysis of an SMA-PAGE native gel. The migration (Rf) of the native 

protein markers was plotted against their molecular weights (black squares and labels) and fitted with a 

straight line. The Rf value of each protein in SMALPs was plotted on this line (red star) and its molecular 

weight calculated using the equation of the best fit line. The experimentally calculated molecular weights 

are shown in the inset table alongside their actual molecular weights  

 

The migration of the model proteins was compared on SDS-PAGE and SMA-PAGE gels (Figure 

2). Qualitatively, protein bands on SMA-PAGE (native) gels were less intensely stained than 

bands on SDS-PAGE gels loaded with equivalent amounts of protein (Figure 2). This implied 

that less of the protein surface area was available for staining in the SMA-PAGE gels compared 

to denaturing gels, which agrees with the fact that the majority of the protein remained 

embedded in a lipid bilayer in the particle. The bacterial drug efflux transporter, AcrB, 
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assembles as a trimer of three 113 kDa subunits. In SDS-PAGE, there was a single band 

consistent with the subunit molecular weight (Figure 2Aii). In SMA-PAGE, the migration of AcrB 

confirmed that it was present as a trimeric assembly of ~340 kDa (Figure 2Ai). Higher molecular 

weight bands were also visible at ~700 kDa. The higher molecular weight band seen in the 

SMA-PAGE experiment agreed our previous observation that trimer-dimers of AcrB exist in 

SMALPs as observed by negatively-stained EM 16. It is likely that the dimer is mediated by 

intraparticle protein-protein interactions. The Bam ABCDE complex purified in SMALPs was 

also analysed. SDS-PAGE showed that the complex consisted of the outer membrane beta-

barrel Bam A (90.5 kDa) and its associated soluble lipoproteins BamB-E of 42, 37, 28, 12 kDa 

respectively (Figure 2B). In SMA-PAGE the Bam complex migrated principally at ~240 kDa 

which probably represented the 1:1:1:1:1 stoichiometry of its subunits (Figure 2B). However, 

two additional bands were observed in this gel at 600 and 140 kDa. A previous report of Bam 

complex purified in detergent and resolved by blue native PAGE (BN-PAGE) showed that there 

were several populations of Bam complexes, composed of differing subunits that migrated to 

500, 300 and 150 kDa depending on the detergent concentration of the sample23. As we have 

shown, SMA-PAGE supported this observation. 

 

In the case of the Staphylococcus aureus ABC protein Sav1866, the protein-SMALP assembly 

migrated on SMA-PAGE gels as a physiological homodimer of 10 kDa (Figure 2B), compared 

with 65 kDa on SDS-PAGE (Figure 2C). By contrast, the bacterial cell division protein ZipA 

migrated in SMA-PAGE as a number of different oligomeric species between approximately 60 

and 720 kDa. This reiterates previous native PAGE analysis of full-length ZipA solubilised using 

detergent and the truncated soluble region of ZipA, showing the presence of a number of 

different oligomers 24.  
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Figure 2: PAGE gels of membrane proteins with different architectures and molecular weights. 

AcrB (A), Bam complex (B) Sav1866 (C ) and ZipA (D) analysed by SMA-PAGE (i) and SDS-PAGE (ii). 

The positions of molecular weight markers (in kDa) are indicated. The full-sized gels are shown in 

Supplementary Figure 1. 

 

To further confirm that the band observed on SMA-PAGE contained all the components of the 

Bam complex, the band at 220 kDa was excised from the SMA-PAGE, incubated with 

denaturing load dye, heated to 85 °C for 10 minutes and subjected to second-dimension SDS-

PAGE. After Coomassie staining each of the Bam subunits were visible (Supplementary Figure 

2). To further confirm its identity, part of the excised band was submitted for protein 

identification by mass spectrometry (Supplementary Table 3). These results confirmed that the 

Bam complex migrated under SMA-PAGE in its fully assembled form, and its lipoprotein 

subunits maintained contact with the BamA-SMALP throughout SMA-PAGE. In addition, mass 

spectrometry revealed that the folding chaperone protein SurA was also present in the Bam 

complex sample (Supplementary Table 2) . With a molecular weight of 47 kDa, the addition of 

this protein to the core Bam complex assembly could account for the higher-than-expected 

molecular weight observed from the native gel (Figure 2Bi). 

 

Protein-SMALPs retain their lipid environment during SMA-PAGE 

 

Protein-SMALPs can be separated by native PAGE, but it was important to determine whether 

the nanoparticles retained lipid as well as protein in the polyacrylamide gel. In this section we 
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demonstrate that protein and lipid co-migrated as intact SMALPs. Lipids were recovered from 

gels and could be identified by mass spectrometry.  

 

Bands corresponding to the protein-SMALPs were excised from SMA-PAGE gels. The resulting 

samples, which contained intact protein-SMALP, were extracted into chloroform/methanol. 

Liquid chromatography-mass spectrometric analysis of these extracts demonstrated that lipids 

were retained with the protein-SMALPs after migration through the native gels (Figure 3). A 

variety of molecular species belonging to phosphatidylethanolamine and phosphatidylglycerol 

classes (i.e two major membrane lipid classes of E. coli) were detected (Figure 3). The 

phospholipid profile was very similar to that of a global extract of E. coli (Teo et al, 2019). 

 

By contrast, in extracts from identical samples resolved by SDS-PAGE, no lipid was detected. 

This result had two clear implications. Firstly, it demonstrated that the SMALPs migrated in the 

SMA-PAGE in an intact form retaining the protein, lipid and SMA polymer, which is an entirely 

novel observation. Secondly, the results showed that mass spectrometry can be used on 

microgram quantities of sample extracted from SMA-PAGE gels to provide not only the identity 

of the protein, but also information about the lipid environment in which it is found. 
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Figure 3: Evidence for lipids co-migrating with protein-SMALPs. Proteins bands resolved by SDS-

PAGE (pink) and SMA-PAGE (blue) were extracted into SDS. Lipids were extracted using a modified 

Folch method and characterised  by liquid chromatography coupled to mass spectrometry (LC-MS) in 

negative ion mode.  The phospholipids were identified by their mass-to-charge ratios (m/z) and retention 

times on reverse phase chromatography. The spectra correspond to the region 16-21 mins of the 

chromatogram where phosphatidylethanolamines eluted (A), and the region from 11-16 mins where 

phosphatidylglycerols eluted (B). The individual signals are annotated with the total number of carbons in 

the fatty acyl chains (XX) to number of double bonds (Y) according to the formula CXX:Y.   

 

 

SMA-PAGE can be used for quality control of membrane protein samples 

 

A number of downstream analysis techniques commonly applied to studies of proteins rely on 

the production of a mono-dispersed sample, for example structural biology techniques like X-ray 

crystallography, electron microscopy and small-angle scattering. Many methods that assess 
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sample heterogeneity use size-based separation (e.g. size exclusion chromatography, analytical 

ultracentrifugation) which require significant amounts of concentrated protein. The separation of 

protein SMALPs in SMA-PAGE offers an opportunity to rapidly assess quality of membrane 

protein sample using small amounts of sample. 

 

To assess the potential for SMA-PAGE for quality control of protein samples, samples 

containing Sav1866-SMALPs were analysed using several methods. First, Sav1866-SMALPs 

were separated by size exclusion chromatography (SEC, Supplementary Figure 3). These 

fractions were resolved on SDS-PAGE to show a dominant band at 65 kDa in each fraction 

(Figure 4). By contrast, the same fractions analysed by SMA-PAGE gel showed multiple bands, 

ranging from protein that did not exit the loading wells down to bands at ~130 kDa (Sav1866 

dimers). This corresponded with the SEC profile of the samples, which indicated that the sample 

injected onto the column had contained aggregated Sav1866-SMALPs along with multiple 

oligomers. It was also clear that SMA-PAGE outperformed SEC in resolving protein-SMALPs, 

since all the fractions contained oligomers that were further separated by SMA-PAGE. Finally, 

several fractions from the SEC separation were analysed by sedimentation velocity analytical 

ultracentrifugation (svAUC, Supplementary Figure 4). This corroborated the observation that 

fractions across the SEC profile contained protein of different molecular weights despite it 

consisting of highly pure Sav1866 (Figure 4, Supplementary Figure 4). Overall, the SMA-PAGE 

provided a fast and convenient method by which to assess the sample monodispersity. 

 

Figure 4: Fractions containing Sav1866 after size exclusion chromatography analysed by SMA-

PAGE (upper) and SDS-PAGE (lower). Fractions eluted from a Superdex200 10/300 column were run 

on both native and denaturing gels.   
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Immunoblotting is compatible with SMA-PAGE 

 

The applications of SMA-PAGE demonstrated in the preceding sections used samples of pure 

protein, but in many cases it is preferable to assess the oligomerization state of proteins in 

impure samples (e.g. crude cell extracts). With some small adjustments, immunoblotting was 

used to identify proteins in different oligomeric forms in crude SMA-solubilised fractions. 

 

Solubilised membranes were separated by SMA-PAGE and transferred to a nitrocellulose 

membrane for immunoblotting. In the case of ZipA, this revealed that the high molecular weight 

species observed by SMA-PAGE were oligomeric ZipA-SMALPs (Figure 5). ZipA could be 

identified in both purified fractions and in a crude solubilised membrane fraction. The transfer 

efficiency of the blot was enhanced by soaking the gel in standard SDS running buffer for 10 

minutes before transfer to the membrane (Supplementary Figure 5). Samples containing high 

concentrations of SMA (i.e. solubilised membranes) initially showed high nonspecific antibody 

binding (Supplementary Figure 5), which was reduced by addition of 25 mM L-arginine to the 

blocking buffer or by undertaking a buffer exchange in a spin concentrator of the crude 

solubilised membranes prior to running the SMA-PAGE. To achieve good signal, it was also 

necessary to incubate antibody with the nitrocellulose membrane for 48 hours. These results 

showed that with relatively minor modifications to the existing method, immunoblotting 

techniques were compatible with SMA-PAGE. 

 

Figure 5: Detection of ZipA-SMALPs by immunoblotting. Purified ZipA-SMALPs (P) resolved by 

native PAGE were detected by Coomassie staining (blue) and immunoblotting (grey). The crude SMA-

solubilised membrane fraction (M) was also resolved by native PAGE and ZipA was detected by 

immunoblotting against its His tag.  
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SMA-PAGE is a rapid and efficient method of sample preparation for electron microscopy 

 

Cryo-electron microscopy (cryoEM) is now capable of delivering atomic-resolution data on 

protein structures and in recent years many protein structures, including those of membrane 

proteins, have been solved using this method. We have shown that SMALP-proteins are 

amenable to cryoEM16,25,26 and recently the first atomic resolution structure of a SMALP protein 

has been resolved 27.  One particularly attractive feature of cryo-EM is its low demand for 

sample quantity; grids can be prepared using microgram amounts of protein.  Nonetheless it still 

requires monodisperse protein samples. Here we show how SMA-PAGE can be used to 

produce such samples, which offers the potential to access structural data for hard-to-produce 

proteins. 

 

Samples of purified AcrB and Sav1866 were prepared for electron microscopy (EM) by running 

two samples of each on SMA-PAGE in neighbouring lanes. For each protein, one lane of the gel 

was stained using Coomassie stain to establish the position of the protein band, while the other 

was not stained. In one experiment the corresponding region in the unstained lane was excised 

and the protein extracted into a simple buffer of 20 mM Tris-Cl pH 8 and 150 mM NaCl. This 

solution, containing the SMALP-solubilised membrane protein, was used to prepare negatively-

stained grids by conventional methods16 and imaged by EM (Figure 6A). This shows that intact 

particles of monodisperse protein can be recovered from SMA-PAGE gels. Alternatively, AcrB 

was successfully transferred directly from the gels onto glow-discharged carbon/formvar coated 

copper grids for negative staining and imaging (Figure 6B). In the latter case, the band used for 

the preparation of EM grids was analysed by mass spectrometry to confirm the identity of the 

protein(s) it contained (Supplementary Table 4). 
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Figure 6: Micrographs of negatively stained Sav1866 (A) and AcrB (B,C). Both protein samples 

underwent SMA-PAGE and were extracted into buffer (Sav1866, A) or directly blotted from the surface of 

the gel onto a glow-discharged grid (AcrB, B). As a negative control, grids with AcrB were also prepared 

directly from solution by conventional methods (C). 
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Discussion  

 

Determining the quaternary state of membrane proteins is a continuing challenge for protein 

biochemists. Without this information our understanding of the dynamics of protein complexes in 

membranes is incomplete. This in turn leaves a large gap in our understanding of processes as 

important as endocytosis and cell signalling. Central to this issue has been the use of 

detergents, which have frequently been shown to alter the oligomeric state of membrane 

proteins making the results from  conventional hydrodynamic techniques untrustworthy. 

Similarly methods based on cross-linking of proteins in situ in membranes are dogged by 

artifacts. The SMALP system fundamentally resolves these issues by extracting particles 

without directly interacting with the protein complex. In this study we have exploited the mild 

solubilisation method offered by SMA and combined it with native gel electrophoresis to 

generate a new method for studying membrane protein assembly. 

 

We have applied our SMA-PAGE technique to four well-characterised membrane proteins with 

diverse architectures to demonstrate that proteins in SMALPs migrate consistently under native 

gel electrophoresis (SMA-PAGE). The migration is due to the high negative charge density of 

the maleic acid groups in the SMA copolymer at the pH used for the electrophoresis. The 

migration of the protein-SMALPs shown here correlates exceptionally well with their known 

molecular weights and oligomeric states. We anticipated that migration through the gel would 

also be dependent on the hydrodynamic properties of the protein and there may also be a mass 

contribution from the SMA and associated lipids. In the case of the elongated ABC protein 

Sav1866, migration was indeed slower than globular BSA despite the similar sizes of their 

dimeric states. However, in general, the molecular-weight dependence of migration in SMA-

PAGE appears to be similar to that of SDS-PAGE. 

 

In SDS-PAGE, SMA migrates separately from the protein and is sensitive to standard protein 

stains 28. Consequently it is observed on gels at a molecular weight of around 5-10 kDa. This 

staining was not observed in the native gels. This indicated that SMA remained associated with 

the protein during electrophoresis. Likewise, we have shown that membrane lipid can be 

extracted from protein bands after SMA-PAGE, but not after SDS-PAGE of the same samples. 

Therefore we conclude that the SMALPs migrate as a discrete complex containing protein, lipids 

and SMA. Due to the small size of the SMA polymer relative to the sizes of the proteins under 

study, and the accuracy of the mass estimates derived from SMA-PAGE (Figure 1), no mass 

contribution to the overall assemblies could be directly attributed to the polymer. 

 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

14 

At present our understanding of the influence of native lipids on membrane protein structure and 

function is at a nascent stage. The combination of SMALPs, SMA-PAGE and mass 

spectrometry provides a powerful new tool to explore this further using small amounts of protein. 

Mass spectrometry of protein SMALPs has already revealed differences in the lipid preferences 

of bacterial cell division proteins [Teo et al 2019]; integrating the SMA-PAGE improves the purity 

of samples under analysis and may reveal further information on protein-lipid interactions. In 

addition to this, proteins extracted from SMA-PAGE gels and imaged by EM display the 

characteristic disc-like appearance of the samples prior to electrophoresis.  

 

The initial observation that SMALPs promote the migration of membrane proteins under native 

conditions has many implications. Using SMA-PAGE, we resolved protein-SMALPs of different 

sizes, leaving oligomers (AcrB, Sav1866) and complexes (BamABCDE) intact. The intact 

migration of the Bam complex, consisting of both membrane-spanning domains and lipoprotein 

subunits, revealed the power of this method to advance our understanding of large membrane 

protein complexes. This may also allow us to examine, in a physiologically-relevant manner, the 

integration of membrane proteins into other cellular processes via soluble binding partners. On 

a more prosaic level, native gels allow contaminants to be distinguished from binding partners of 

proteins; contaminant proteins would be expected to resolve separately from intact protein 

complexes in SMALPs, which migrate as a single species This distinction that cannot be made 

when proteins are resolved on denaturing gels and the subunits of complexes migrate 

separately. Indeed, since proteins can be extracted from gels after SMA-PAGE, the gels may be 

useful as an additional purification step: bands containing the protein of interest can be excised 

and extracted into native buffers for downstream analysis.  

 

In addition, SMA-PAGE gels of fractions from an SEC column clearly showed differential 

migration of pure but polydisperse samples. The migration of protein on the gels corresponded 

well with the retention volumes from SEC columns. Aggregated material failed to migrate into 

the gel at all. This provides a fast and efficient quality control step for protein samples prior to 

applications such as EM, crystallisation and scattering techniques, especially after protein 

samples have been stored or freeze-thawed. Similarly, the results from SMA-PAGE for 

Sav1866, AcrB and ZipA are strikingly similar to those from analytical ultracentrifugation (AUC) 

of the same samples. Therefore SMA-PAGE has the potential to provide similar information to 

AUC but with modest amounts of protein and a simple experimental set-up. 

 

For some applications, the ability of SMA-PAGE to resolve aggregates and different oligomeric 

states gives it potential as a preparative method in its own right, rendering SEC wasteful and 

time-consuming by contrast. For both preparative and analytical applications, the SMA-PAGE 
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method has the potential to be faster and less demanding of sample quantity than other 

methods.  

 

Native gel electrophoresis uses laboratory equipment that is inexpensive and routinely 

available. Therefore it provides a rapid and cost-effective means to identify the oligomeric state 

of membrane proteins and the constituents of membrane protein complexes. The compatibility 

of SMA-PAGE with immunoblotting is particularly valuable in the case of solubilised 

membranes, because SMA solubilisation is a minimally disruptive method (isolating small discs 

of bilayer-containing membrane proteins). This allows the size and composition of native 

assemblies of membrane proteins to be rapidly and confidently defined.  

 

Finally, purified protein-SMALPs can be directly transferred from native gels onto grids for EM, a 

method previously described for soluble proteins by Knispel et al (2012) 29. AcrB blotted onto 

EM grids directly from gels resembled AcrB applied to gels directly from solution. Protein-

SMALPs can also be extracted into buffer and then placed on grids for EM analysis. By 

reducing the demand for sample, and removing aggregated material, the SMA-PAGE method 

provides an opportunity to increase the efficiency of the protein production pipeline. Since cryo-

EM now has the potential to generate structural data at a high resolution, including with 

SMALPs 30–33, this application could be transformative to the structural biology of membrane 

proteins. However, extensive optimisation of the SMA-PAGE method will be required to achieve 

this.   

 

Conclusions 

 

SMA-PAGE can be quickly carried out using equipment that is commonplace in life sciences 

laboratories, providing information that typically relies on time-consuming processes or 

expensive instruments. It is compatible with many important downstream analyses and 

applications in protein biochemistry. It applies specifically to membrane proteins, a class of 

proteins that is frequently challenging to overexpress and isolate, demanding very little sample 

and offering the answers to many pressing questions in the field. The method ties seamlessly 

into those already developed for solubilisation, purification and characterisation of membrane 

proteins using SMA, which have delivered success in recent years for many important targets. 
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Materials and Methods 

 

1. Materials 

Unless otherwise stated, chemicals were purchased from Sigma Aldrich or ThermoFisher. 

Styrene maleic anhydride 2:1 polymer (SMA2000P) was purchased from Grolman, U.K. and 

hydrolysed to styrene maleic acid as previously described 28. Gels and gel tanks were 

purchased from BioRad (U.K). Handcast gels were made using 40% bisacrylamide (National 

Diagnostics). For native gels the NativeMark protein ladder between 20 kDa and 1280 kDa was 

used (Thermofisher, U.K.). For SDS-PAGE we used NuPAGE LDS sample buffer (Invitrogen), 

HyperPage 10-190 kDa molecular weight markers (Bioline, UK) and GE Healthcare high 

molecular weight markers (10-250 kDa). Grids for EM (Formvar/Carbon film on Copper 200 

mesh) were purchased from EM Resolutions Ltd, U.K. 

 

2. Purification and characterisation of proteins 

 

Crude E. coli membranes were isolated according to standard protocols and solubilised in SMA 

as recently described 28. Proteins purified in this study were all His-tagged and were isolated by 

nickel affinity chromatography. Protein-SMALPs were further fractionated and analysed by size-

exclusion chromatography on the Superdex200 10/300 column in a buffer of 20 mM Tris-Cl pH 

8, 150 mM NaCl. Protein-SMALPs were analysed by AUC to estimate their molecular 

weight/oligomeric state as previously described 28. 

 

3. Preparation of native acrylamide gels and native load dye 

 

Several gel types were used for these experiments: native PAGE used 4-20 % precast gradient 

gels (Mini-Protean TGX and Criterion TGX, BioRad, U.K.) and hand cast gels at 10 % 

acrylamide, which did not use a stacking gel. All native gels were run using Tris/glycine running 

buffer (25 mM Tris pH 8.8, 192 mM glycine). The native loading dye was 1 mg/mL bromophenol 

blue, 20 mM Tris pH 8 and 50 % (v/v) glycerol. Native gels were run at 4 °C, 150 V for 60 

minutes or until the dye front reached the bottom of the gel. SDS-PAGE experiments used 10 % 

gels and the running buffer previously described supplemented with 0.1 % (w/v) SDS. The 

sample buffer was 4x LDS (Invitrogen, U.K.) and gels were run at 180 V for 45 minutes at room 

temperature. To detect protein, gels were stained with InstantBlue (Expedeon, U.K.), silver stain 

or Ponceau S stain according to standard protocols and manufacturers’ instructions. 

 

 

4. Immunoblotting 
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Polyacrylamide gels run under native conditions were soaked for 10 minutes in SDS-PAGE 

running buffer prior to blotting. Proteins were transferred from the gel onto a nitrocellulose 

membrane using the iBlot system (BioRad, U.K.) at 20 V for 7 minutes. Membranes were 

blocked with a buffer containing 5 % (w/v) skimmed milk powder in phosphate-buffered saline 

(ThermoFisher, U.K.) supplemented with 0.1 % Tween20 (PBS-T). His-tagged proteins were 

probed using a 1:2000 dilution of the anti-6His antibody AP-conjugated (R932-25, Thermofisher, 

U.K.) in blocking buffer and detected by enhanced chemiluminescence reagents (Pierce, UK) 

and a digital imaging system.  

 

5. Electron microscopy 

 

Grids for negative stain EM were prepared by transfer of protein directly from the SMA-PAGE 

gels, as an adaptation to the protocol of Knispel et al 29. Briefly, samples were run in duplicate 

on one gel. Half of the gel was stained to determine the location of the protein band, and on the 

unstained gel, the protein-containing areas were cross hatched with a clean scalpel and wetted 

with 5 μL buffer (20 mM Tris, 150 mM NaCl). For AcrB, EM grids were glow discharged for 40 

seconds. For gel-to-grid transfer, grids were placed carbon side down onto the unstained, 

wetted gels for 2 minutes. For conventional grids, 3 µl of sample was pipetted onto a glow-

discharged grid for 1 minute before excess volume was removed with blotting paper. Grids were 

stained with 1 % uranyl acetate and data were recorded on a Gatan CCD 4K x 4K camera at 

50,000x magnification on a Technai T12 electron microscope. The cross-hatched areas on the 

gels were excised and submitted for mass spectrometry to confirm the identity of the proteins 

transferred to the grids (see Section 6).  

 

For Sav1866, bands were excised from gels, diced and incubated overnight at 4°C in 100 µl 

buffer (20 mM Tris, pH 8, 150 mM NaCl). Gel fragments were removed by centrifugation 

(10,000 g, 10 min). The supernatant was used to prepare negatively stained grids according to 

standard protocols. Grids were stained with 2 % uranyl acetate and micrographs were recorded 

at 50,000x magnification on a 200 kV JEOL 2011 transmission electron microscope.  

 

6. Excision of gel bands for mass spectrometry of lipid and protein 

 

Bands containing the proteins of interest were excised from native PAGE gels using a clean 

scalpel. Three methods were used to extract protein from these gel bands. To analyse the 

samples recovered from native gels by SDS-PAGE, bands were diced with a scalpel and 

incubated with LDS loading dye and reducing agent before being run on standard SDS-PAGE 

gels to confirm their monomer molecular weights or subunit composition. Alternatively bands 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

18 

were homogenised in 5 % (w/v) SDS, and lipids were subsequently extracted and analysed by 

LC-MSMS as described below. Finally, in some cases, gel bands were incubated with SEC 

buffer at 4 ℃ overnight and protein-SMALPs diffused into the buffer. 

  

Lipid extraction 

The lipid extraction was carried out based on a modified Folch method34. Firstly, 200 µL ice-cold 

MeOH (supplemented with 0.005% w/v BHT) was added to 400 µL of sample, followed by 400 

µL ice-cold CHCl3 and lastly 150 µL ice-cold ultrapure H2O. Each sample was vortexed for 20 s 

and sonicated in ice bath for 15 min after each solvent addition, to facilitate rigorous mixing and 

extraction. The samples were centrifuged at 16,000 x g for 5 min at 4 °C to achieve phase 

separation. The lipid-containing (lower) organic layer was collected and the remaining aqueous 

phase was subjected to a second extraction by adding 400 µL ice-cold CHCl3. The samples 

were centrifuged again at 16,000 x g for 5 min at 4 °C and the organic layer was collected and 

combined with the first extraction. The resulting lipid extract was dried under a gentle stream of 

gas and reconstituted in 9:1 v/v MeOH:CHCl3 for LC-MS/MS analysis. 

 

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify lipids 

The reconstituted lipid extract (10 µL) was injected onto a Luna® C8(2) 100 Å column, 150 x 1 

mm (length x I.D.), 3 µm (particle size) (Phenomenex, USA) at a flow rate of 50 µL/min.  Lipid 

separation was achieved using a gradient of the following mobile phases: THF:MeOH:  10 mM 

aq. ammonium acetate; A: 3:2:5 v/v/v;  B: 7:2:1 v/v/v. The gradient was formulated as follows: 

40% B for 4 min, 40% B to 60% B over 6 min, 60% B to 100% B over 15 min, and hold 100% B 

for 5 min, 100% B to 40% B over 2 min, then re-equilibrate to the 40% B over 13 min. The 

eluent was analysed on a QTRAP® 5500 mass spectrometer (SCIEX, Warrington, UK) 

operating in negative ion mode with instrument parameters as follows: curtain gas: 35 psi, ion 

spray voltage: -4.5 kV; temperature: 150°C; GS1: 13 psi; GS2: 0 psi; declustering potential: 50 

V; entrance potential: 10 V; collision energy: 10 eV.The data were analysed using PeakViewTM 

software (SCIEX). 

 

Trypsin digestion and protein identification 

In-gel digestion: After gel bands were excised, they were destained and digested by a robot 

system. Briefly, gel was destained with acetonitrile followed by 100 mM ammonium bicarbonate. 

This cycle was repeated if necessary until gel pieces were fully destained. Destained gel pieces 

were dried (vacuum centrifugation; 5 min) and rehydrated in 100 ammonium bicarbonate. Then 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

19 

the gel pieces were reduced with 10 mM DTT, at 60°C for 15 min, the liquid was removed and 

replaced with 50mM iodoacetamide and 100 ammonium bicarbonate for alkylation. Gel pieces 

were incubated at room temperature in the dark for 45 min, washed with 100 ammonium 

bicarbonate and then dried for 5 min. Trypsin gold (Promega, WI, USA) solution was added in 

100:1 ratio, shaken at room temperature for 20 min, before diluted with 100 mM ammonium 

bicarbonate. Hydrolysis was allowed to occur overnight (~16 h) at 37 °C. The gel pieces were 

first extracted with the solution of 2% acetonitrile and 0.1% formic acid in water and shaken for 

30 minutes at room temperature. Extract the remaining peptides in the gel by using 70% 

acetonitrile with 0.1% formic acid in water shaken for 30 minutes at room temperature. The 

supernatant was pooled and dried in an evaporator. The samples were re-suspended in 0.1% 

formic acid in water for the LC-MS/MS analysis. 

In-solution digestion: Protein samples of 10 µg were dissolved in 100mM ammonium 

bicarbonate (pH 8). Dithiothreitol (DTT) was added (25 µL of 10 mM stock) and the sample was 

incubated at 60 oC for 45 mins. Sample was cooled to room temperature and cysteines 

alkylated by addition of 25 µL of 50mM iodoacetamide, mixed and incubated at room 

temperature in the dark for 45 mins. 250 ng of trypsin gold (Promega, Southampton, Hampshire, 

UK) was subsequently added to the sample and incubated at 37 oC overnight. The digested 

sample was dried and resuspended in 0.1% formic acid, then desalted using C18 ZipTips. The 

ZipTip was prepared by pre-wetting in 2x 10 µL 100% acetonitrile and rinsing in 2x10 µL 0.1% 

formic acid. Sample was loaded into the tip by aspirating and dispensing the sample 7-10 times. 

Next the tip was washed twice with 10 µL 0.1% formic acid to remove excess salts before 

elution of peptides with 10 µL of 50% acetonitrile/water/0.1% formic acid 3 times. Samples were 

dried down, then re-suspended in 10 µL of 0.1% formic acid solution in water for LC-MS/MS 

analysis. 

Protein identification by LC-MS/MS: UltiMate® 3000 HPLC series (Dionex, Sunnyvale, CA 

USA) was used for peptide concentration and separation. Samples were trapped on Thermo 

C18 PepMap 100 column, 3 µm particle size, 75um i.d. x 2 cm and then separated on Thermo 

Nano Series™ standard columns (75 µm i.d. x 15 cm packed with C18 PepMap100, 3 µm, 

100Å). The gradient for elution was 3.2% to 44% solvent B (0.1% formic acid in acetonitrile) for 

30 min. Peptides were eluted directly (350 nL/min) via a Triversa Nanomate nanospray source 

(Advion Biosciences, NY) into a LTQ Orbitrap Elite mass spectrometer (ThermoFisher 

Scientific). The mass spectrometer alternated between a full FT-MS scan (m/z 380 – 1800) and 

subsequent collision-induced dissociation (CID) MS/MS scans of the 7 most abundant ions. The 

MS and MS/MS scans were searched against the Uniprot database using Proteome Discoverer 
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1.4 (ThermoFisher Scientific) with SequestHT algorithm. The precursor mass tolerance was 10 

ppm and the MS/MS mass tolerance was 0.8 Da. Two missed cleavages were allowed and the 

data were filtered with a strict false discovery rate (FDR) of 0.01 and a relaxed FDR of 0.05. The 

protein grouping filter was applied and a minimum of two high confidence peptides (strict FDR 

0.01) were accepted as a real hit. 
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Highlights for SMA-PAGE: A new method to examine complexes of membrane proteins using 

SMALP nano-encapsulation and native gel electrophoresis  

  

• Styrene maleic acid lipid particles (SMALPs) can be used in combination with native 

gel electrophoresis (SMA-PAGE) to separate membrane protein complexes   

• This separation method provides an excellent measure of protein quaternary structure  

• SMA-PAGE is complementary to immunoblotting  

• The lipid environment surrounding the protein(s) can be identified using mass 

spectrometry  

• Intact membrane protein-SMALPs extracted from gel can be visualised using electron 

microscopy  
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